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Foreword

Manufacturing companies play an important role in the transition to a global
sustainable development. They create products by using resources such as materials
and energy, which in return cause various emissions to the environment, and
directly or indirectly affect the well-being of people. Consequently, the goal must
be to improve the production operation to reduce costs and environmental impacts
while creating products with a desired quality. This is no easy task since prevalent
cause–effect relationships in production systems bear the risk of problem shifting.
In particular, this is relevant for the production of complex products which require
various processes, diverse equipment, and specific factories. Well-intended mea-
sures and the utilization of innovative technologies may lead not only to local
improvements, but also to undesired effects in other sectors or equipment of a
production system causing higher overall costs and environmental impacts. In order
to avoid problem shifting, production engineers and product developers need
methods and tools for an integrated decision support and to foster the collaboration
of these disciplines to gain an interdisciplinary system understanding. In this regard,
simulation is a powerful method which enables to examine the dynamic behavior of
complex systems. However, due to the high effort related to the creation and
employment of sophisticated simulation models, the application of simulation in
industry is so far limited.

With this published work, Schönemann has strongly contributed to the appli-
cation of simulation for planning and improvement of production systems and
products. He developed a multiscale simulation approach with an exemplary
application for the case of large scale battery systems production which considers
the relevant characteristics and elements of production systems needed for the
integrated evaluation of economic, environmental, and technological goals. His
approach is based on coupled simulation models allowing the utilization of
best-suited modeling approaches and tools to represent specific production system
elements in detail. As an example of a detailed model, he suggests an agent-based
process chain simulation in order to consider the characteristics and production
requirements of individual product units. This is novel in contrast to established
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process chain simulation approaches. In addition, he defined interfaces between
different model types to enable the use of existing models and to increase the
re-usability of models, which reduces the effort for model creation and fosters the
collaboration of different disciplines and experts. Although being specifically
developed for battery production systems, the approach stands on a generalized
framework which allows an easy adaptation also to other industries.

Prof. Dr.-Ing. Christoph Herrmann
Technische Universität Braunschweig

Braunschweig, Germany

Prof. Dr. Sami Kara
University of New South Wales

Sydney, Australia
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Chapter 1
Introduction

Battery systems for energy storage are among the most relevant technologies of the
21st century. They – in particular modern lithium-ion batteries (LIB) – are enablers
for the market success of electric vehicles (EV) as well as for stationary energy
storage solutions for balancing fluctuations in electricity grids resulting from the
integration of renewable energy sourceswith volatile supply1.BothEVand stationary
storage solutions are important because they foster the transition from the usage
of fossil energy carriers towards cleaner renewable energy sources. Furthermore,
EV cause less local air pollution and noise emissions compared to conventional
combustion engine vehicles resulting in better air quality especially in urban areas.
Unfortunately, to this day, various technological and economic challenges impede a
broad application of batteries for EV as well as for large scale energy storage and
load leveling in electricity grids.

In 2010, the German government has set the goal of 1 million registered EV in
Germany by 2020 (NPE 2010). This goal is motivated by the commitment to reduce
carbon dioxide emissions of the transport sector as well as to establish Germany as a
lead provider andmarket for electricmobility technologies. Until today, however, this
goal seems far from reachable, even if hybrid electric vehicles (HEV) are included
in the electric vehicle stock. Figure1.1 shows provocatively the development of the
stock of EV in Germany from 2006 until 2016 in reference to the goal of one million
vehicles (without HEV). The plot is hardly visible in the figure since only 25,502 EV
were registered in 2016 (January). Consequently, a strong growth in new registrations

1In addition to EV and stationary storage, batteries are essential components for portable andmobile
consumer electronics. The predicted market shares (based on revenue breakdown) of these three
segments of LIB application in 2020 are 37.6% for grid and energy storage, 30% for automotive
applications and 23.9% for consumer electronics. Other industrial applications account only for
8.5% (Frost and Sullivan 2014).

© Springer International Publishing AG 2017
M. Schönemann, Multiscale Simulation Approach for Battery Production Systems,
Sustainable Production, Life Cycle Engineering and Management,
DOI 10.1007/978-3-319-49367-1_1
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Fig. 1.1 Top Development of the stock of EV in Germany from 2006 to 2016 in reference with the
goal of 1 million registered EV in Germany by 2020 (without HEV). Bottom Annual change in EV
stock in percent (KBA 2015, 2016)

is required to approach the set goal. However, the figure further presents the annual
development of the vehicle stock and it reveals that there is no consistent increase in
new vehicle registrations.

The barriers of a successful and broad commercialization of EV are high vehicle
costs, short driving ranges, and long charging times (Braess and Seiffert 2013).
In this regard, battery systems are among the most important vehicle components
(Hettesheimer et al. 2013). The production costs of battery systems2 can account for
up to 40%of the total production costs of a vehicle (Acatech 2010). This leads tomuch
higher sales prices of EV compared to conventional vehicles. This aspect becomes
even more relevant considering the relatively short life time of battery cells. Their
capacity decreases with age and used cycles and consequently the battery systemwill
likely have to be replaced during the life time of a vehicle. Furthermore, the driving
range of an EV depends on the energy density3 of the battery system. Since the size of
a battery system is limited by the available spacewithin a vehicle structure andweight
restrictions, the achievable capacity only enables a relatively short driving range.
In addition to these technological shortcomings, the production of battery systems
entails high environmental impacts due to the usedmaterials and required production
processes. For example, Volkswagen states that the battery system can contribute to
up to 45% of the production related CO2 emissions of a vehicle, whereas 36% can be
allocated to the production of battery cells (Volkswagen AG 2012). Similar, Hawkins
et al. mention the share of 35–41% for the battery production on the global warming
potential (GWP) of the vehicle production phase (Hawkins et al. 2013). Overall,
these numbers underline that battery systems are very important components of
EV. The market success of EV depends on the improvement of the performance of
battery systems and cells (i.e. energy and power density, cycling stability,4 charging

2According to Nykvist and Nilsson (2015), the production costs of battery cells for automotive
OEM are currently around US$ 300–400 per kWh; further decline is expected.
3Gravimetric (Wh/kg) and volumetric (Wh/l) energy density. Modern LIB have energy densities
around 230 Wh/kg (Nishi 2014).
4The cycling stability is characterized by the number of charging and discharging cycles until the
battery capacity degrades to 80% of the initial capacity (Dinger et al. 2010).



1 Introduction 3

times, etc.) and a reduction of their production costs. Decreasing production costs
will also foster the usage of batteries for stationary energy storage applications.
This could in return increase the production volume supporting economies of scale.
Furthermore, fromanenvironmental perspective, it is important to reduce thenegative
environmental impacts related to cell production. If batteries harm the environment,
they foil the intention behind EV and renewable energy sources which is to unburden
the environment of the impacts from transportation and energy generation.

The German engineering association VDMA5 published a road map for battery
production technology and named four grand challenges (VDMA 2014). The first
challenge is the scale up of processes from laboratory scales to series production
with high volumes. It is necessary to achieve short throughput times although facing
uncertain demands. Second, process stability has to be improved to increase the
output by reducing the scrap rate. The third challenge is sustainability in battery
production addressing the used materials in products and processes as well as energy
and resource efficiency. The last challenge is the reduction of production costs while
improving the product quality.

In addition, another challenge is the expected evolution in battery technology.
Today, LIB are the most established batteries of which producers have the most
experience and know-how regarding material combinations and large scale mass
production. However, new material systems such as lithium-air and new battery
types such as all solid state batteries are currently in development. Although these
so-called next-generation batteries are still only available in laboratory scale and have
not proven to be advantageous for large scale production, they will be relevant in the
future. Toyota already presented a road map towards lithium-air batteries (Yada et al.
2015; Mizuno et al. 2014). Figure1.2 shows a ragone plot of the energy and power
densities of different battery types. Thus, it is expected that the required production
technology and production steps will evolve together with new battery systems. Con-
sequently, these future developments have to be considered in present improvements
of battery production and in the evaluation of investments in production technology.
Finding solutions to the described challenges is of great importance to producers of
batteries and related production equipment.

Fig. 1.2 Ragone plots of
established and
next-generation battery
systems (Mizuno et al. 2014)

5Verband Deutscher Maschinen- und Anlagenbau e.V.



4 1 Introduction

Today, the majority of battery cells is produced in Asia.6 However, Tesla7

is currently building a gigafactory for battery cells in the USA with an annual
production capacity of 35 GWh. This capacity would be higher than the entire global
production capacity for battery cells in 2013. Tesla’s goal is to achieve a reduc-
tion in production costs of 40–45%. Companies from other countries – including
Germany – produce only a small number of battery cells per year. In this situation,
the challenges and drivers for improvements may be different for each battery pro-
ducer.While the establishedmarket participants aimat improvedbattery performance
and reduced production costs by optimizing their production systems and product
designs, aspiring companies have to establish a competitive battery production fac-
ing high risks from uncertain demands and low but potentially increasing production
volumes. Moreover, established producers have to find ways for integrating new bat-
tery technologies into existing production systems while new production facilities
may account for future battery technologies already from the beginning. In general,
it is important to tackle the described challenges of battery production by developing
innovative production technologies and strategies along with product designs which
enable a flexible scale up as well as an economic and environmental friendly pro-
duction. Figure 1.3 summarizes the challenges and drivers for the improvement of
battery production as well as the relevant goals.

The goals are strongly interlinked since the battery performance depends on prod-
uct specifications, materials, and process characteristics (e.g. quality rate or process
parameters), all of which also effect the production costs and environmental impacts
related to production processes. For example, the specified power and energy of
a battery have strong influence on production costs (Gallagher and Nelson 2014).
As another example, the substitution of battery materials (e.g. active materials or
solvents) may require different process parameters (e.g. mixing intensity or drying
time) or equipment which can effect the energy demands of machines, the utilization
of resources, and the output of product units per production time. That means that
improvement measures regarding one goal may result in problem shifting causing
negative effects regarding other goals. Consequently, it is important to find improve-
ment measures which avoid problem shifting between different production system
elements and the defined goals. However, the various and often dynamic relations

Fig. 1.3 Challenges, drivers, and goals of battery production

6More specifically, the countries with the highest production volume are Japan (by far with 19,200
MWh; Panasonic and Samsung), Korea (LG) and China (BYD). This order is based on the expected
market shares in 2017 (Roland Berger Strategy Consultants 2015).
7Tesla Motors, Inc.
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within a battery production system (e.g. between machines, processes, materials,
building infrastructure, material and information flows, etc.) result in complex sys-
tem characteristics which are difficult to be completely understood intuitively by
engineers. Thus, there is a need for methods and tools supporting an interdiscipli-
nary system understanding which fosters innovations and an integrated evaluation
of improvement measures regarding all goals. Such methods and tools must address
the following fields of action:

• Identification and reduction of inefficiencies and non-value adding activitieswithin
the production system

• Identification of energetic hot spots and reduction of energy demands of processes
and auxiliary equipment

• Identification and analysis of influences from production processes on product
characteristics along the process chain, and vice versa

• Derivation and evaluation of product specifications and production strategies aim-
ing at defined improvement targets (such as “high performance battery”, “envi-
ronmental friendly battery”, or “budget battery”)

However, no methods and tools for the integrated evaluation of measures are
already established or available for application. So far, only specific approaches
have been developed addressing either the technological, economic, or environmen-
tal evaluation of batteries, battery components, or production systems. The technical
performance of batteries is often analyzed with simulations on electrode, cell, mod-
ule, or system level. Physical models are used to determine performance indicators
for specific cells or batteries. Economic aspects and in particular the production
costs of batteries are addressed in various studies and cost models. The environmen-
tal impacts of batteries are analyzed in several life cycle assessment (LCA) studies.
However, the published LCA studies from the last few years have shown differ-
ent results for the energy consumption in cell production (Ellingsen et al. 2014).
Studies of the energy demand strongly rely on rough estimations and assumptions.
For example, some studies assume that factories operate at full capacity – which
is often not the case – or refer to a lab-scale production system. This effects the
results since energy demands depend on the used equipment and process parame-
ters and vary over time along with the production output. Also, often specialized
building equipment such as dry rooms are not included in the studies at all or not
considering the actual output of products. Hence, it has not been possible to allo-
cate the energy demands of peripheral production equipment on single product units
(Dunn et al. 2014). Furthermore, static methods such as LCA or cost calculations
have shortcomings regarding the consideration of dynamic effects. Since the chal-
lenges of battery production are especially caused by the dynamic behavior and
interactions of different production system elements, static methods seam not suit-
able for an integrated evaluation. Instead, dynamics in production systems can be
replicated and analyzed by simulation methods. In production engineering, discrete
event simulations are in use for the evaluation of process chain performance and
logistic related planning tasks but are not capable of simulating physical production
process in detail. Detailed physical models, however, are usable for the simulation of
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continuous processes but not well suited for modeling of discrete activities on pro-
duction system level. Other disciplines (e.g. material science or civil engineering)
use hybrid or so-called multiscale simulation approaches to analyze and solve multi-
domain engineering problems. This concept was already applied to the simulation
of production systems but mostly with a focus on energy management in factories
without considering a detailed product perspective. In conclusion, no model based
evaluation method exists for production systems which allows considering dynamic
interactions between product specification, production processes, the production sys-
tem operation, and factory infrastructure as well as between technological, economic
and environmental objectives. However, according to Forrester (1994) – the initia-
tor of the system dynamics approach – modeling and computer simulation help to
gain insight into the dynamic behavior of complex systems. Modeling is part of an
iterative learning process which results in an improved system understanding of the
involved stakeholders (Sterman 2000).

What is strongly required for the improvement of battery production is a new
modeling method for supporting the evaluation of improvement measures regarding
technological, economic, and environmental objectives as well as for generating an
interdisciplinary systemunderstandingof battery production, as illustrated inFig. 1.4.

The goal of this work is to develop such multiscale simulation method which con-
tributes to the improvement of battery systems for EV and stationary energy storage
solutions as well as their production systems. Such method must address different
planning perspectives such as strategic, tactical and operational planning (differ-
ent time scales) and consider all production system elements such as product units,
processes, machines, technical building services (TBS) and the building (different
spatial scales) and their dynamic interactions. For example, products are transformed
by processes in machines, machines are organized in process chains, the operation of
TBS depends on the activities within the process chain and the environmental con-
ditions inside and outside of the factory building. For these reasons, there is a need
for a hybrid multiscale simulation approach which allows to accurately imitate the
production activity and to determine performance indicators of production systems
and produced batteries or components for a later evaluation.

Beside addressing the described challenges, this desired planning method must
enable the evaluation of future battery technologies. This creates the demand for a
planning and evaluation method which is usable also for next-generation batteries
which are not specified today.

Fig. 1.4 Motivation for a multiscale simulation of battery production
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The developed concept shall be transformed into a functional model which serves
the evaluation of the concept and the intended evaluation tasks. This book is structured
into seven chapters of which the content is shortly described in the next paragraphs.

Chapter 2 presents the relevant background information needed to create a multi-
scale simulation of battery production systems. This includes knowledge
about the structure of battery systems, production systems and manage-
ment, as well as the simulation methodology with current trends, strate-
gies, and approaches for the development of simulation applications for
production systems. The chapter concludes with a summary of relevant
aspects of battery productionwhich have to be considered in a simulation
concept.

Chapter 3 presents the state of research regardingmultiscale simulation approaches
for production systems. The chapter evaluates existing research contri-
butions and derives research demands towards a multiscale simulation
of battery production systems. It reveals that although different simula-
tion approaches and methods as well as various specialized simulation
models (e.g. for machines, HVAC systems, buildings) exist, no approach
was found providing the required functionality to combine simulation
results from product and process scale up to the building.

Chapter 4 presents the development of the multiscale simulation concept for bat-
tery production systems. In particular, it describes the objectives and
requirements for the simulation concept, a framework as a pattern for
model interactions, the content and logic of models for required produc-
tion system elements and the coupling of different models. The core of
the concept is a process chain model which allows to model products
and machines as agents sharing information about their characteristics
and states. Furthermore, an application procedure is described which
supports developers of such multiscale simulation models in selecting
and modeling production system elements, and in using the resulting
simulation environment.

Chapter 5 presents the implementation of a multiscale core model which acts as
a coordinator for detailed models. This model enables the evaluation
of the functionality of the proposed simulation concept. It provides all
models, parameters and variables which are required to demonstrate
the simulation of any kind of production system configuration for bat-
tery production. Moreover, for the purpose of demonstration and for the
verification of the model coupling, a detailed model of a compressed
air generation system was developed and connected to the core model
via a middleware software. Furthermore, the section explains the veri-
fication of the core model with its integrated sub-models, the detailed
compressed air model and an analysis of the effects of the model cou-
pling on simulation results.

Chapter 6 demonstrates the application of the simulation concept by creating two
exemplary multiscale simulations for cell production and system assem-
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bly. The first case study investigated the cell production at the Battery
LabFactory Braunschweig which is a laboratory scale production facil-
ity. The second case is the assembly of different types of battery systems
on one assembly system. Both case studies demonstrate the application
of a multiscale simulation.

Chapter 7 summarizes the results of this work, presents a critical review of the
concept, and gives recommendations for further research activities.

Figure1.5 illustrates the structure of this book.

Fig. 1.5 Outline of the book
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Chapter 2
Battery Production and Simulation

This chapter introduces relevant background information about the production of
battery components and the assembly of battery systems (Sect. 2.1) as well as about
how simulation can be used to imitate the behavior of production systems (Sect. 2.2).

2.1 Battery Production

A sound understanding of the production of batteries requires background informa-
tion about the structure and components of batteries (Sect. 2.1.1), general knowledge
about production systems and production management (Sect. 2.1.2), as well as a
description of specific characteristics and requirements of the production of batteries
and their components (Sect. 2.1.3).

2.1.1 Batteries and Battery Components

As stated in the introduction, until today, the most relevant battery type for large
applications is the LIB. LIB systems are commonly used for EV, stationary storage
units and consumer electronics. Although new battery types and materials combina-
tions are in development in order to improve the performance of batteries, LIB are
expected to stay highly relevant (Kampker 2014). For this reason, the remainder of
this section will focus on LIB.

Principle of Lithium-ion Battery Cells

LIB are chemical energy storage systems which transform the stored energy into
electricity at electrodes. A basic LIB cell consists of a negative (anode) and a positive
(cathode) electrode which are separated by an isolating separator and surrounded
by an electrolyte. During discharging, lithium ions move from the anode through
the separator to the cathode and bind to active material particles. Simultaneously,
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Fig. 2.1 Illustration of the
layers of a battery cell

released electrons are conducted through an external circuit from the anode to the
cathode. During charging, the direction of the movement of electrons and lithium
ions is reversed by a connected power supply. Figure2.1 illustrates these reactions
and the structure of a LIB cell.

Electrodes consist of metallic current collector foils which are coated with active
material. The collectors of anodes are usually made of copper while cathode col-
lectors are made of aluminum. Different active materials can be used for anodes
and cathodes. These materials are characterized regarding energy density, life time,
safety, costs and environmental impacts. It is important to identify material combi-
nations which result in the desired technical properties and cause relatively low costs
and environmental impacts. Moreover, different materials require different processes
or process parameters, which may also effect costs and environmental impacts.

According to Kaiser et al. (2014), it is important that active materials and pores
of active materials are completely wetted and filled with electrolyte so that ions can
be released, transported and bound to all active material particles. This avoids local
current peaks. Furthermore, it is necessary to contact and bind the active material
particles with each other and the current collector to ensure electron transport from
and to each particle. The coating layer thickness and active material loading must
be uniform to avoid cell failures due to inhomogeneities. Similar rules are stated by
Pettinger (2013).

Cells can be designed to provide high energy or high power (Kampker 2014). High
energy cells are characterized by high specific energy and low specific power and they
usually have thick electrodes with a high density. High power cells are characterized
by high specific power and low specific energy and have thin and porous electrodes.
While the power of a cell is influenced by the contact area of electrodes, the energy
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Fig. 2.2 Cross-sections of
types of electrode-separator
package and cell housing

content depends on the amount of active materials within one cell (Väyrynen and
Salminen 2012).

In addition, cell types can be differentiated regarding their form and housing. The
most common types are cylindrical or prismatic hard-case or prismatic pouch cells
(Wöhrle 2013; Fleischer et al. 2012). Cylindrical cells usually have a metallic hard-
case and an electrode-separator assembly in formof a cylindrical winding (also called
jelly roll). Prismatic cells also have a hard-case but with a prismatic flat-winding or a
prismatic electrode-separator stack. Pouch cells – also called coffee bag cells – consist
of prismatic stacks or windings surrounded by laminated aluminum foil which fixates
the bundle of electrodes and separators. Figure2.2 illustrates cross-sections of the
types of electrode-separator package and cell housing.

Kampker (2014) and Pettinger (2013) present the advantages and challenges of
the different cell types. Pouch cells can have high specific energy and good cooling
characteristics, low weight, and allow a high packing density. Challenges in the
development and production of pouch cells exist regarding leak tightness, stacking
of electrode sheets, internal pressure, mechanical stability, and production costs.
Cylindrical cells can have high specific energy, are relatively easy to produce by
winding processes and provide good mechanical integrity, have a high degree of
tightness and a high life expectancy. However, their form bears the risk of high
temperatures (which requires external cooling), results in a low achievable packing
density, and requires additional mounting devices in cell modules. Prismatic cells
have a leak tight housing with high mechanical stability and enable an efficient space
utilization and easy assembly in cell modules.

In summary, battery cells consist of different components and their characteristics
are influenced by the selection of materials (for active materials, collector foil, sepa-
rator, electrolyte), design parameter (e.g. coating thickness), geometry and housing
(e.g. prismatic or cylindrical, soft or hard case), and required production processes
(e.g. winding or stacking and related cutting processes). The design of a battery cell
has to account for the specific intended use-case and technological, economic and
environmental objectives.
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Fig. 2.3 Illustration of an exemplary battery system structure

Structure and Components of Battery Systems

Batteries usually consist of multiple battery cells which are – depending on the
intended purpose – connected in serial or parallel which results in higher capacity or
voltage compared to single cells (Köhler 2013). Larger battery systems commonly
have a modular structure in which several battery cells are combined within modules
and several modules are installed in a mechanical structure together with sensors
(for monitoring the charge, voltage, and temperature), a battery management sys-
tem (BMS), a communication interface, a cooling system, and power electronics
(Väyrynen and Salminen 2012; Kampker et al. 2013; Warner 2014). Figure2.3 illus-
trates a schematic of the structure and components of an exemplary battery system.

Battery modules should consist of cells having matching capacities according to
defined tolerated capacity limits. This is important since the capacity of a module
is limited by the cell with the lowest capacity (Kenney et al. 2012; Kampker 2014).
This is caused by the BMS which will stop charging of a module as soon as the first
cell is completely charged. Consequently, all other cells will not receive a full charge
(Warner 2014). Moreover, modules should be designed around stackable frames
which create a rigid structure and enable a variable length of modules (Väyrynen
and Salminen 2012). Furthermore, the design of modules has to consider the used
cell type (Fleischer et al. 2012). Pouch cells are flexible to some extend and not as
rigid as hard case cells. For this reason, they have to be fixated within the module
structure. Additionally, internal pressures may result in bloating of cells so enough
space has to be provided in order to avoid mechanical stress. Prismatic cells can
be arranged in a more compact manner since the cells are more rigid, require no
special fixation and do not tend to expand much during operation. Cylindrical cells
are directly fitted to a module chasing. Due to their round form, it is important to
position the cells very closely to not waste available space. This is possible since
cylindrical cells are rigid and do not expand.

In summary, cells are assembled into modules which must be designed according
to the cell type and the desired capacity, current, and voltage. Battery systems consist
of various modules and components and can be of different size and shape depending
on the intended use-case and the used cell type.
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2.1.2 Production Systems and Production Management

The production of battery cells and the assembly of battery modules or systems
take place in production systems. The detailed analysis of the production of batter-
ies and battery components requires a general understanding of the typology and
management of production systems.

Processes and Process Chains

The actual production is characterized by a physical transformation process which
combines input factors into outputs. Inputs to processes are resources and equip-
ment, materials, energy, labor and information which are transformed into desired
(e.g. electrodes) and undesired (e.g. waste, emissions) products (Schenk et al. 2014;
Dyckhoff and Spengler 2010). Figure2.4 drafts a production processes with related
inputs and outputs.

Complex products – such as batteries – are usually produced by several processes.
Such sequences of processes are often referred to as process chains which consist
of multiple processes connected through material flows. Process chains can be of
different structure referring to the type of material flow which can be classified as
continuous, converging, diverging, or rearranging (Dyckhoff and Spengler 2010).
Figure2.5 presents the different types of process chain structures based on the mate-
rial flow.

In addition, the production activity can further be differentiated regarding type and
principle. The production type is determined by the product quantities. In this regard,
it is differentiated between the single production of individual products, the repeated
series production of a small quantity of a product type or of batches of a defined
larger quantity of a product type, as well as the (open end) mass production of a large
quantity of product units (Westkämper and Zahn 2009; Dyckhoff and Spengler 2010;
Schuh 2006). In contrast to unit processes, which result in one or multiple discrete

Fig. 2.4 Production as physical transformation process according to Dyckhoff and Spengler (2010)
and Schenk et al. (2014)

Fig. 2.5 Types of material flows according to Dyckhoff and Spengler (2010)
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product units, processes can also be continuous, resulting in batches or a specific
amount of product per time period (e.g. Schuh 2006). The production principle can
be differentiated regarding the spatial alignment of the processes. In a workshop
production, machines for similar operations or processes are grouped together in one
area. Products or work pieces have to move to the required workshops. In order to
reduce the material flow, machines can also be grouped as cells in one area based
on the process requirements of specific product types. Alternatively, machines can
be arranged linearly according to their position in a required process sequence. The
material flow can be realized for example by transfer lines which create a continuous
flow based on a defined tact time or an asynchronous flow. Flexible production sys-
tems combine the advantages of the cell arrangement with an automated processing
and material flow. These principles and types of production are usually applied in
suitable combinations. For example, while workshop or cell configurations are suit-
able for the production of individual products or small batches of various product
types, continuous line configurations are suitable for mass production. Flexible pro-
duction systems are used for mass production or series production of several product
types.

Elements and Hierarchy of Production Systems

Processes and process chains require peripheral processes and equipment, energy and
media supply, infrastructure for transport and quality control, worker for operations
of machines and material handling, as well as a surrounding workshop space in a
factory (Westkämper 2006). Thus, in a greater context, process chains are embedded
in production systems. A system in general consists of different entities interacting
with each other to fulfill the systems purpose (Westkämper and Zahn 2009). This is
also the case for production systems, where system entities (e.g. machines) interact
to create products. The elements of factories can be grouped into production equip-
ment, technical building services (TBS), and the building whereas the production
equipment can be further linked to single processes or process chains (Thiede 2012).
Figure2.6 shows the structure of these elements which is proposed by Thiede (2012).
These elements are connected through flows of material, media, energy, and infor-
mation which – similar to the actual processes – have to be controlled in order to
react on induced changes in the production system (Westkämper and Zahn 2009).
For this reason, Westkämper and Zahn suggest a hierarchical structure of produc-
tion systems which enables defined interfaces between different system elements
and a hierarchical target system. Literature provides various concepts for defining
the hierarchy of production systems (Wiendahl et al. 2007; Liang and Yao 2008;
Verl et al. 2011; Benkamoun et al. 2014; Heinemann et al. 2012; Schenk et al.
2014; Herrmann et al. 2010; Nyhuis and Wiendahl 2010). For example, Wiendahl
et al. structure the hierarchy into plant, production area, production system, manu-
facturing cell, and workstation. According to Westkämper and Zahn (2009), produc-
tion networks include different factories with production segments, where specific
process chains consist of machines or aggregated production cells. Heinemann et al.
(2012) differentiate between four levels: factory, material flow (process chain), single
process andmachines. Similar hierarchies are presented inHerrmann et al. (2010) and
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Fig. 2.6 Holistic factory
definition from Thiede
(2012)

Verl et al. (2011) additionally including the supply chain or global production system
as the highest level above the factory level. Schenk et al. (2014) present a hierarchy
of sub-systems of a production system based on peripheral orders. Another kind of
hierarchy is developed by Nylund and Andersson (2010) by introducing the terms
macro, meso, and micro level to production systems. The macro level refers to the
behavior of the whole factory including all production stages, material and informa-
tion flows, layout design and the systems overall performance. The meso level refers
to individual production stages consisting of areas with multiple units and their inter-
actions. The micro level refers to units such as machines, tools, methods and work
pieces. The authors describe the interactions between the levels as services such as
requests and delivery of relevant information. Their concept appears to be the only
one directly considering product units with their specific features. Other hierarchy
concepts do not specifically include the product level. However, the consideration
of products is important in order to describe and investigate product specific routing
or material flow as well as the effects of processes on product characteristics. Wuest
et al. (2013) developed a more detailed structure of the product level and the inter-
action between product characteristics with processes. In summary, the examined
publications suggest very similar structures for the hierarchy of production systems
– although in some cases using different terms – which can also be used to structure
the elements of battery production.

Production Management

Industrial production systems must be continuously adapted to short and long term
changes in production technology, market, politics and legislation, and society
(Dyckhoff and Spengler 2010). The purpose of productionmanagement is the design,
planning and control, as well as monitoring of the production activity (Schuh and
Schmidt 2014). The planning aims at the design of the production system and each
individual system element while the control regulates the execution of production
activities according to the order management. The production management acts as
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Fig. 2.7 Control loop of
production management;
figure adapted from
Dyckhoff and Spengler
(2010), Nyhuis and
Wiendahl (2010), and Thiede
(2012)

the controller in a control loop containing the production system as the controlled
system. The control variables are decisions regarding required actions and mea-
sures. These decisions can consider strategic, tactic, and operational perspectives.
The strategic production management aims at adapting the production system to
the requirements of the surrounding environment based on normative and strategic
reference goals (e.g. cost or sales objectives). Examples of strategic decisions are
initialization of new product development activities and the selection of new facility
locations. The tactical production management is responsible for the realization of
the strategic decisions. Examples are the utilization of new production technologies
or the rearrangement of a factory layout. The purpose of the operational production
management is to ensure the production of the requested quantity of products in the
desired quality in the available time. Decisions regarding all perspectives have to
consider feedback from the production system which is acquired based on defined
performance indicators. Examples of feedback variables from the production sys-
tem are the utilization, production costs, throughput times, and order fulfillment.
Figure2.7 illustrates an abstract control loop with the production system and pro-
duction management.

More detailed descriptions about production management can be found for exam-
ple in Schuh and Schmidt (2014), Herrmann (2010), Nyhuis and Wiendahl (2010)
and Westkämper (2006).

2.1.3 Production of Battery Cells and Systems

The information about production systems and production management can be used
to further investigate the production of LIB electrodes, cells, modules, and systems.

Production of Electrodes and Cells

The production of a LIB cell can be structured into the three stages electrode produc-
tion, cell assembly, and electrical formation. The major value is added within the cell
production stage. However, this stage also requires the highest investment (Roland
Berger Strategy Consultants 2010).
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The production of battery cells requires many processes in a sequential order.
The configuration of process chains for battery cells depends on the cell type, elec-
trode materials, used processes and production technology, as well as on producers
specific decisions. There are strong interrelation between different processes and
process parameters (Kaiser et al. 2014; Kampker 2014; Gallagher and Nelson 2014;
Pettinger 2013; Brodd and Helou 2013). For example, raw materials may be pre-
pared within an intensive dry mixing processes prior to wet mixing (dispersion).
As another example, the coating may be continuously or intermittently which also
effects the separation process. The separation process further depends on the form
of the electrode-separator assembly. Windings require a continuous electrode foil
while prismatic stacks need separated electrode sheets. These examples show, that
process chains for cells can be rather different and that it is not possible to define
a generic reference process chain. However, Fig. 2.8 presents an attempt of a gen-
eralized process sequence for cell production based on information from various
publications. First, the anode and cathode are produced by mixing, coating of the
resulting slurry onto the current collector foil and successive drying, calendering of
the coated foil, separation to required width or the final electrode format, and drying
of the finished electrodes. Second, electrodes are used as the basis for the assembly
of cells.

Material preparation and mixing The different materials for electrodes such as
active materials, carbon black, binder (usually polyvinylidene fluoride (PVDF))
and solvents (e.g. N-methylpyrrolidone (NMP)) are weighted, combined, and
mixed in different processing steps. In the mixing processes, first active materials
and additives such as carbon black are mixed (Wieser et al. 2015). Next, the pre-
pared materials are mixed with further additives such as a binder and a solvent.
The solvent is used to adjust the viscosity of the slurry (Tran et al. 2012; Li et al.
2011a). The desired result of the mixing processes is a viscous slurry which will
be coated onto the current collector foil. The material composition of the slurry
is different for anodes and cathodes as well as for different cell chemistry sys-
tems. Different formulations for the compositions of material types are possible
for anodes and cathodes of which an overview (of cathode formulations) is pre-
sented by Li et al. (2011a). Different mixing intensities, types of mixing tools, and
temperatures can be used to adjust the slurry according to the desired properties
such as homogeneity or viscosity (Kampker et al. 2013). The properties of a slurry

Fig. 2.8 Process chain of lithium-ion battery cells for stacking or folding cell assembly
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do not only directly influence the characteristics of the final cell but also the further
processing of the slurry in the subsequent process steps (Kaiser et al. 2014).

Coating and drying The slurry is coated onto a current collector foil either on
one or both sides. This process significantly affects the product quality. A uniform
transmission of the slurry and a definedmass load are required along the length and
width of the coating layer (WZL und VMDA 2012b). Different coating methods
can be used for applying the slurry onto the foil such as slot-die, comma or roll
coating whereas the slot-die coating is the most used method (Schmitt et al. 2013;
Kampker et al. 2013). The coating layer can be either continuous or intermittent
and it is possible to coat both sides of a foil simultaneously or subsequently. The
coating layer must be created with high precision regarding layer thickness and
the weight per area unit.
Directly after coating, the layermust be immobilized and solidifiedvia evaporation
of the solvent in the following drying process. Different types of dryers can be
used and the temperature profile within a dryer has influence on the adhesion of
the coating layer to the foils and on the binder distribution across the layer cross-
section.Undesired effects caused bywrong process parameters are the detachment
of active material particles from the foil which may result in reduced battery
performance and higher risk of failures. From an economic perspective it is of
interest to reduce the required drying time and increase the throughput, since
the process has a high energy demand and long dryers require high investment.
Further details about coating and drying can be found in Kaiser et al. (2014).

Calendering The resulting coating layers are usually porous. For this reason, cal-
endering can be used to compact the layer, reduce the pore volumes, and increase
the density. In a calender, several rolls are used to gradually reduce the thickness
of an electrode (WZLundVMDA2012b; Kampker et al. 2013). This improves the
contact between particles and the foil. Relevant process and machine parameters
are compression rate, line force, roller speed, and roll diameters (Haselrieder et al.
2013). Tolerances in coating and calendering can only be accepted on micrometer
scale. Larger deviations may result in accelerated aging of the battery cells. This
is also the case if anodes or cathodes from upper and lower tolerance limits are
combined within a cell (Kaiser et al. 2014).

Separation and drying Depending on the kind of cell packaging, the compressed
electrodes have to be separated. The created electrode coils are usually cut to
width in a continuous slitting process using rotary knifes or lasers (Pettinger
2013; Luetke et al. 2011). The cutting lines must be straight, clean, and precise.
The accepted tolerances are small since electrode sheets within one cell must
be of equal size. If cells are created by stacking or z-folding, single electrode
sheets have to be cut out of the electrode stripes or coils by die cutting or laser
cutting (WZL und VMDA 2012b; Baumeister and Fleischer 2014). The separated
electrode sheets or coils are dried to eliminate any water content from the coating
layer. The following cell assembly is located within a dry room to avoid newwater
input after drying (Kaiser et al. 2014).
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The assembly of battery cells depends on the type of cells to be produced. Espe-
cially packaging and housing are influenced by the form of the electrode-separator
assembly and the housing.

Package assembly The cell assembly starts with the packaging in which anodes,
cathodes, and separator are combined to wrapped packages. The design of the
packing process depends on the cell type. Electrode stacks can be created by
a stacking or z-folding process. In a stacking process, separate anode, cathode
and separator sheets are placed above each other in the order separator, anode,
separator, cathode. The stack is completed by sheets of separator, anode, and
separator. In a z-folding process, single electrode sheets are placed alternating
with a continuously supplied separator (Schmitt et al. 2014; WZL und VMDA
2012b). Cylindrical and prismatic windings are created by a winding process. As
in stacking, the order of layers is cathode, separator, anode, separator. Relevant
process parameters are tension, positioning accuracy, and angular velocity of the
strips and the radius of the windings. The resulting electrode-separator package
is wrapped and fixated (Kampker et al. 2013; Baumeister and Fleischer 2014).

Contacting, housing, and filling with electrolyte The tabs of the electrodes of
a created package must be contacted. Usually, ultra sonic spot welding or laser
welding is used to create the connections (Kampker et al. 2013). Next, the package
is placed within the cell housing which is closed and sealed. The cell is filled with
a liquid electrolyte. The electrolyte must penetrate into the porous separator and
electrode layers. This process is time consuming since the air inside the cell
structure can escape only slowly. For this reason, the cells are usually filled and
finally sealed under vacuum conditions (Schmitt et al. 2015).

Forming and aging The forming process – the first charging of a cell – activates
the active materials and initiates the forming of a solid electrolyte interphase
(SEI) on the anode (Yoshio et al. 2009). After the first charge, further charging
and discharging cycles can be used to age the cells and to identify cells with
reduced performance. Processes parameters are amperage, temperature differ-
ences, and pause lengths. The forming and aging processes are among the most
energy intensive processes in cell production. Moreover, forming and especially
the subsequent aging step are very time consuming. At the end of forming and
aging, cells are checked and tested regarding their performance and self-discharge
(Hettesheimer et al. 2013).

Assembly of Modules and Systems

The assembly of modules and systems strongly depends on the specific product
variant. For example, the cell type, the number of cells per module or modules per
system, as well as the design of the housings determine the required production
steps. However, an exemplary assembly structure can be characterized based on the
descriptions of WZL und VMDA (2012a, b), Kampker et al. (2013), and Fleischer
et al. (2012), as shown in Fig. 2.9.
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Fig. 2.9 Process chain of battery module and system assembly

At first, the cells are inspected and cells with similar characteristics are clustered.
Cells with undesired characteristics are sorted out. Next, several selected cells are
pre-assembled on a base plate using fixtures or frames (Väyrynen and Salminen
2012). The cell tabs are contacted according to the desired type of interconnection
(serial or parallel). Afterwards, a cell supervision circuit board is installed along
with sensors for temperature and state of charge (SOC). The sensors must be wired
and connected to the circuit boards. The installed sensors and the circuit board are
checked for correct functioning by connecting the module to a power source. In
addition, a thermal imaging camera can be used to monitor the welds (WZL und
VMDA 2012a). After testing, cooling plates are mounted to the assembly which
is inserted into a housing. The final assembly is tested regarding functioning and
performance (voltage test) and leak tightness of the cooling system (pressure test).
After a visual inspection, a module is completed.

Several modules are used to assemble a battery system. In the first production step
of system assembly, selected modules are inserted and mounted into a battery pack
base plate. Furthermore, installed are a cooling system, a BMS, and a high-voltage
module, as well as the required cables and wires. Next, the BMS is flashed with
software for battery management and diagnosis. The latter software is used within
a test to analyze the battery operation. Also, an initial charging creates an uniform
SOC for all cells. Afterwards, the housing is closed, sealed, and tested regarding leak
tightness.

Ambient Conditions for Battery Production

Battery factories must fulfill the high requirements regarding safety and product
quality while aiming at low production costs. The production of cells has specific
requirements regarding ambient indoor conditions and cleanness in building zones
since temperature, humidity, and cleanness have significant impact on product qual-
ity, safety, performance, and life time of the battery cells (Simon 2013). Simon
provides detailed information about the required environmental conditions for the
different productions steps in cell production and system assembly. As an example,
the cell assembly (and especially the filling with electrolyte) requires low humidity
with a dew point temperature up to −60 ◦C corresponding to a relative humidity
below 1% in the temperature range of 22± 2 ◦C. Consequently, the building con-
struction and building services (e.g. cooling towers, ventilation units, dehumidifiers,
heating and cooling) play an important role in the planning and operation of factories
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and they contribute to a great share of investment and energy demands. Furthermore,
battery factories need the supply of media which are directly required by processes
such as water for the production of coating materials, process exhaust air, cool-
ing water and compressed air (Simon 2013). Another relevant aspect mentioned by
Simon is the high waste heat from the drying process of the coated electrodes which
could be re-used by heat-recovery processes.

Production Costs of Batteries

As mentioned in the introduction, the production costs of a battery system can con-
tribute to up to 40% of an EV which makes them a significant cost driver. The total
costs of a battery consist of the costs of rawmaterials, the process steps in production
of electrodes and the assembly of cells, modules, and systems, as well as of other
components such as sensors or electronics (Fleischer et al. 2012). During the last
few years, several cost models have been developed for modern battery cells and
systems (Schünemann 2015; Nelson et al. 2012, 2015; Petri 2015; Petri et al. 2015;
Patry et al. 2015; Gallagher and Nelson 2014).

TheBattery Performance andCostModel (BatPaC)was developed at theArgonne
National Laboratory (Gallagher and Nelson 2014; Nelson et al. 2012). It supports the
design of battery systems. The production steps are separately documented which
allows modifications in the cost calculations. Furthermore, the model considers a
base plant scenario which can be scaled to represent different output. The impact of
flexibility in plants was further studied in Nelson et al. (2015). However, the BatPaC
model neglects energy costs and differences between production technologies. Based
on the cell design module of the BatPaC, Patry et al. (2015) developed a cost model
for cells which breaks costs down into purchase costs, processing costs, overhead
costs and other fees. The processing costs are determine based on factors and battery
characteristics such as electrode thickness. However, the process cost factors are
not explained in detail. Schünemann (2015) provided a more detailed discussion of
different existing cost models and developed an own integrated cost model for the
production of LIB cells. This model is based on a process chain analysis considering
detailed process characteristics and using average values for energy consumption,
processing times and material fractions per cell. However, dynamic interactions are
not considered within the process chain or the factory level and the model assumes
a constant output of cells for the allocation of indirect costs. His results show that a
large cost share is already caused in the mixing process due to high material costs.
This underlines the importance of eliminating scrap in the following processes.

In summary, the presentedmodels show that battery costs aremostly influenced by
the usedmaterials. Differences and uncertainties exist regarding the actual processing
costs (e.g. energy costs) and the effect of a higher factory output.

Environmental Impacts of Battery Production

Several LCA studies directly or indirectly have analyzed the environmental impacts
of battery production (Ellingsen et al. 2014; Dunn et al. 2014; Hawkins et al. 2013;
Notter et al. 2010). Most of these studies evaluated batteries in the context of EV.
The study of Hawkins et al. (2013) has shown that the production of vehicle batteries
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contributed to 35–41% of the GWP of the entire vehicle production. Their results
show a rather high impact of the battery compared to other studies (e.g. compared to
Notter et al. 2010), which are found to be caused by different assumptions regarding
the energydemands in battery production anddifferent systemboundaries.Dunn et al.
state that the throughput of a factory has a strong influence on the energy intensity of
battery production. This is explained by the high energy demands of energy intensive
TBS equipment (e.g. dry rooms) of which the energy demand is independent of the
produced quantity of batteries. If the output increases and the energy demand per
product unit decreases, the raw material production has the largest influence on the
environmental impacts (Dunn et al. 2014). Both of these factors can be influenced
within product development and production. Ellingsen et al. recommended reducing
the production energy demand or utilizing cleaner energy sources, enabling material
recycling, and enhancing the life time of batteries (Ellingsen et al. 2014).

In conclusion, although these studies came to differing results regarding the exact
environmental impact, all show that battery production has important influences on
the environmental impact of EV. Uncertainties exist mostly regarding the energy
requirements of battery production, the throughput of battery factories, and the life
time of batteries.

2.2 Simulation of Production Systems

This section describes the role of simulation in the context of the digital fac-
tory (Sect. 2.2.1), gives background information about different simulation
approaches (Sect. 2.2.2), and about how they are applied in the context of production
systems (Sect. 2.2.3). The section explains that the simulation of an entire produc-
tion system demands a multiscale simulation approach (Sect. 2.2.4) and how co-
simulation can support the collaborative development of comprehensive simulation
models (Sect. 2.2.5).

2.2.1 Digital Factory

The term digital factory1 refers to a network of digital methods and tools support-
ing the planning, realization, and improvement of factories including the related
processes and products (Westkämper et al. 2013; Bullinger et al. 2009; VDI 2008).
Moreover, the term refers to the totality of employees, software, and workflows
required to realize the virtual and real world production. Consequently, digital fac-
tory ismore than just a collection ofmethods and tools. It is also a set of organizational
measures aiming at creating a better understanding of the operation of factories. The
main purpose of the digital factory is the predictive, visual and simulative imitation

1In German: Digitale Fabrik.
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of the production of future products. With this function, it acts as a link between
product development and production management (Bracht et al. 2011). Moreover,
the digital factory aims at improving communication and collaboration between the
stakeholders in planning by providing a redundancy-free, consistent data and knowl-
edge base (Landherr et al. 2013). This leads to the goal to establish standardized
tools and models which can be re-used within different planning steps such as the
planning of factory buildings and TBS equipment, shop floor layout, production
processes, logistics and material flow, logistic oriented product development, and
machine configuration (Bracht et al. 2011). There are different types of methods to
support these different planning tasks. However, according to (Bracht et al. 2011),
there is no established structure formethods and tools in the context of digital factory.
He defines the following classes of methods: Methods for collecting data and infor-
mation, methods for design and representation, mathematical methods for analysis
and optimization, simulation methods, artificial intelligence methods, methods for
visualization aswell as for collaboration. In contrast to staticmethods for analysis and
representation, simulation is a method for analyzing complex dynamic effects and
interactions. It enables the replication of the time-dependent behavior of factories.

2.2.2 Simulation

Simulation is an established method for supporting planning tasks in industry and
research. The main principle of simulation is the emulation of an existing or planned
system and its behavior over time by using a approach (Banks et al. 2010). This
enables gaining insights about the modeled systems behavior which is transferable to
the real system (VDI 2014). A system can be defined to be a set of interacting entities.
Interactions determine the effect of system inputs on the outputs aswell as on states of
the system. The entities and interactions have to be included in a formal model which
can be executed during a simulation run. Experiments consisting of simulation runs
usually support planning tasks or decisions in which different scenarios of system
variants have to be evaluated and compared (März et al. 2011).

In general, modeling types can be grouped according to different characteristics
(Banks et al. 2010). While discrete models describe the change of system state
variables only at events at discrete points in time, continuous models describe system
variables continuously over the simulation period. Models can also combine both
characteristics and contain discrete and continuous objects within a hybrid model.
Furthermore, models can be based on deterministic inputs and deliver repeatable
results or contain random variables and determine their values during simulation
runs based on random number generators.Moreover, models can be static or dynamic
whereas static models describe the state of a system at a specific point in time, often
considering stochastic effects (e.g. Monte Carlo experiments, in which models with
random variables are repeatedly executed). Dynamic models describe the behavior
of a system over time.
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In addition to these characteristics, four main simulation approaches can be dif-
ferentiated which are suitable for different levels of abstraction of the related models
(Borshchev and Filippov 2004).

Discrete event (DE) simulation uses passive entities which flow through a net-
work of resources and trigger actions and variable changes. In DE models, states
of the modeled system change at discrete points in time. This approach is usually
used on tactical level with middle degree of abstraction.

Dynamic systems (DS) simulation is based on mathematical models of dynamic
systems which consist of state variables and algebraic equations. These models
are commonly used for physical systems with continuous behavior. DS is used on
operational micro level with low degree abstraction. Examples are Finite Element
Method (FEM) or Computational Fluid Dynamics (CDF) approaches.

Agent based (AB) simulation can be used to model the behavior of active agents
in a defined environment. Each agent acts individually based on its implemented
logic and interacts dynamically with other agents. The system behavior is deter-
mined in a decentralized manner without a global control.

System dynamics (SD) models describe the behavior of a corresponding system
with a set of differential equations representing interacting feedback loops and
flows affecting stock variables. SD is usually used on strategic level with high
degree of abstraction.

Figure2.10 structures these approaches according to their level of abstraction and
discrete or continuous behavior. Borshchev and Filippov further explain in detail
how these approaches can be combined to model a desired system behavior.

An important challenge in model development is determining the required detail
of models. Very detailed models contain many objects and cause effort in devel-
opment and maintenance. Very simplified models bear the risk of being to coarse
and not sufficiently accurate for the given planning task (Rose and März 2011).
Moreover, Sterman (2000) suggests to avoid black box models which do not provide

Fig. 2.10 Simulation approaches on abstraction level scale from Borshchev and Filippov (2004)
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enough insight into the system behavior of interest. Other challenges are related to
the clear definition of the simulation study objectives, the participation of all involved
stakeholder, and availability of required know-how and skills, selecting of a suitable
simulation tool, as well as sufficient validation (Wenzel et al. 2008). In order to
support model developers and simulation engineers, different but similar procedure
models were published for model development and simulation studies (Banks et al.
2010; VDI 2014; Rabe et al. 2008). The differences between these procedure models
are mainly related to the complexity, scope and terms of the individual steps. Content
wise, all models contain the steps related to objective analysis, model formulation,
implementation, verification and validation, and employment.

2.2.3 Simulation in Production

Simulation is widely used in planning, analysis, and improvement of factories and
the elements of production systems (Negahban and Smith 2014; März et al. 2011;
Jahangirian et al. 2010; Schuh 2006). Entire production systems or material flows
in process chains are usually represented by models which simulate the dynamic
behavior of a system using a DE approach (Bergmann 2014; Rose and März 2011).
According to the results of Jahangirian et al. 2010, DE andAB simulationswere often
used for scheduling, resource allocation, assembly line balancing, capacity planning,
transportation and inventory management. In addition to DE and AB, SD approaches
were used for strategic decisions such as supply chain management, project manage-
ment, and organizational design. Moreover, simulation of process chains including
DSprocessmodels is also seen to be beneficial for the improvement of product quality
(Afazov 2013; Barthel et al. 2013). Such approach may allow a detailed analysis of
the influences of processes on product characteristics. DS simulations are also usable
for the detailed micro analysis of the interaction between processes and machines
(Brecher et al. 2009). However, Afazov states that although simulation is often used
for a macro-scale analysis of process chains, the micro-scale analysis of processes
is still a challenge.

Already in 2004, Fowler suggested a real-time factory simulation which runs
simultaneously to the real factory operation and instantaneously provides results for
short-term decision making (Fowler 2004). Today this idea is for example addressed
in the context of the Industry 4.0 initiative which aims at creating intelligent factories
by using cyber-physical systems (CPS) consisting of virtual and physical elements
as well as digital technologies such as augmented reality and internet of things
(Kagermann et al. 2013). Similarly, the digital twin approach aims at combining a
real world system with a virtual duplicate. This approach allows to understand how
a product is transformed during production and also to trace the characteristics of a
product throughout its life cycle (Grieves 2014). However, so far the most simulation
applications focus on individual structural levels such as an entire production system,
a production cell, machines and equipment, or processes (Landherr et al. 2013). In
order to simulate an entire factory, new simulation approaches have to pursue a
multiscale simulation of production systems with its structures and processes.
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2.2.4 Multiscale Simulation

Many problems in science and engineering show multiscale solutions considering
different spatial and temporal scales of individual systems or processes. The con-
cept of multiscale modeling and simulation is established in various domains and
disciplines such as biology (Boras et al. 2015), material science or “computational
materials” (Wieser et al. 2015; McDowell and Olson 2009; Gates et al. 2005), or
computational science (Hoekstra et al. 2007). The idea behind multiscale modeling
is describing the behavior of one or multiple systems by separately considering dif-
ferent scales using the best suited methods and tools. As an example from material
science, Gates et al. start a bottom-up approach bymodeling at an atomic scale and by
using molecular mechanics or dynamics methods. Next, moving up in scales from
micro to meso scales using micro-mechanics until the system scale which can be
analyzed with fundamental mechanics (Gates et al. 2005). Problems can be solved at
particular scales and results can be passed to models addressing other scales. Thus,
multiscale modeling allows bridging of scales.

Similar to physical or chemical systems, production systems can be observed at
different spatial scales from unit processes over process chains and TBS up to the
building. In addition, Bullinger et al. (2009) suggest to consider different time scales
in production system simulation such as seconds, minutes, and hours or up to several
years. For this reason, multiscale modeling and simulation is seen as a key feature
in order to realistically imitate the operation of production systems (Landherr et al.
2013). Figure2.11 illustrates how a production system may extend the commonly
observed scales in multiscale modeling in both the temporal and spatial direction.

Production systems itself consist of system elements acting on different scales.
These elements have to be modeled within a multiscale simulation based on the
presented simulation approaches. Figure2.12 presents a structure of simulation
models for different scales considering different degrees of abstraction, simulation
approaches, and model characteristics.

One risk related to detailed multiscale simulations is the high expected effort
and required know-how for model development. This has to be considered since
modeling effort, the required skill set of simulation experts, as well as the missing
re-usability are common barriers of simulation which impedes the broad application

Fig. 2.11 Scales for the
analysis of materials at nano
scale and up to a production
system; figure inspired by
Gates et al. (2005) and
McDowell and Olson (2009)
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Fig. 2.12 Structure of simulation models for different scales considering suitable simulation
approaches; figure inspired by Borshchev and Filippov (2004) and Landherr et al. (2013)

for production engineering (Bergmann 2014). Another challenge is the selection of
suitable software tools for each production system element. Different tools exist for
different simulation approaches and model characteristics. Typical software tools
for DE simulation are Tecnomatix Plant Simulation (part of Siemens PLM software)
or Arena. An established SD simulation tool is Vensim. The tool AnyLogic allows
to combine DE, AB, and SD simulation. Established tools for DS simulation are
Matlab/Simulink,Abaqus,Adams, orDymola (Modelica). Consequently, the realiza-
tion ofmultiscale simulations requires the combined application of different software
tools or the complete implementation of all models within a multimethod simulation
software such as AnyLogic.

These challenges are partially addressed in the digital factory by providing inter-
faces and workflows to connect existing models and to enable the re-use of models.
Furthermore, it is suggested to develop separate models of different factory elements
and to create seamless interactions between these models and used tools in order to
achieve a distributed simulation model of a production system (Bullinger et al. 2009;
Fowler 2004).

2.2.5 Co-Simulation

During the last decade, a new simulation paradigm evolved aiming at the coupling
of different simulation models. The goal of coupled simulation or so-called co-
simulation is the integrated analysis of system elements and their interrelations
by coupling of multiple simulation models or tools for systems and sub-systems
(Sweafford and Yoon 2013; Brecher et al. 2009; Zülch et al. 2002; McLean 2005).
A clear and standardized definition of the term co-simulation has not yet been estab-
lished (Geimer et al. 2006).
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In co-simulation, each model represents a part of an entire system and exchanges
data with other models during simulation runtime. Co-simulation is motivated by an
increasing complexity of systems which requires an interdisciplinary collaboration
of experts. Co-simulation allows to use the best suited simulation tools for each sub-
system, to re-use models, to reduce the modeling time, and to represent a sub-system
in greater details than it would be in a monolithic model (Sicklinger et al. 2014;
McLean 2005). As a result, co-simulationmay lead to a time-efficient execution of an
entire system simulation and a high accuracy of simulation results (Aurich et al. 2009;
McLean 2005). Examples of co-simulation applications are multi-physics problems
(Sicklinger et al. 2014; Brecher et al. 2009; Errera et al. 2011), agent-based systems
(Morvan et al. 2012),multi-levelmaterial analysis (Gates et al. 2005), building energy
and control design (Zuo et al. 2014; Zhang et al. 2013), and planning of production
systems (Pedrielli et al. 2011; Zülch et al. 2002).

The data exchange between different models is a great challenge with respect to
accuracy and stability of the transfer and the results. Different strategies for cou-
pling and synchronization were developed and evaluated (Sicklinger et al. 2014;
Sweafford and Yoon 2013). The coupling of models can be realized by direct con-
nections between simulation tools or via centralized middleware software (e.g. based
on principles of High-Level Architecture (HLA)) (McLean 2005; Raab et al. 2008;
Kossel et al. 2006). The task of middleware software is the synchronization of data
exchange and communication between different simulation programs.Wetter (2010)
developed the open-source middleware interface Building Control Virtual Test Bed
(BCVTB) for coupling different tools such as EnergyPlus, Dymola (Modelica), Mat-
lab and Simulink in order to allow an integrated building energy simulation (Wetter
2010; Wetter et al. 2011). Common applications of the BCVTB are in the context of
building energy and control system evaluation. A commercial middleware solution is
TISC which consists of a TISC server and different TISC clients for implementation
in the coupled simulation tools (Kossel et al. 2006).

In co-simulation, models can be executed in a serial, parallel, or integrated con-
figuration (Sweafford and Yoon 2013; Leobner et al. 2011) or with fix or variable
time steps for data exchange. Sweafford and Yoon have shown that the parallel and
integrated model executions provide identical results while the results of serial sim-
ulations differ (from the parallel configuration) and are less accurate. Furthermore, a
serial configuration of multiple models results in longer execution times, especially
if models with long execution times are involved and other models have to wait for
the results. However, parallel coupling of models also cause challenges such as the
combination of discrete and continuous models (Leobner et al. 2011).

The simulation of complex production systems can benefit from the combina-
tion of different modeling types, simulation approaches, and software tools. Co-
simulation with specializedmodels of different production system elements or scales
can improve the simulation results also for the simulation of battery production.
Moreover, the combination of specialized models to a comprehensive multiscale
model requires the investigation of interactions and the definition of interfaces, which
fosters a deeper understanding of the observed system.
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2.3 Summary and Preliminary Findings for the Simulation
of Battery Production

Battery systems consist of different components which relate to different production
stages each of which has specific requirements in production. Cell production is char-
acterized by sequential process chains with specialized processes. These processes
require comprehensive machines and equipment which is expensive and have par-
tially very high energy demands. These processes – along with the used materials
– have strong influences on the product quality. In addition, cell production makes
great demands on the environmental ambient conditions such as temperatures, humid-
ity and cleanness which requires specific building equipment. Additional TBS are
needed for compressed air generation and air suction. Due to the expensive and
comprehensive facility infrastructure, machines, and equipment, it is important to
achieve high utilization and throughput in order to decrease specific production costs
and environmental impacts for each cell unit.

The assembly of modules or systems is characterized by handling and assembly
tasks which are relatively less complex compared to cell production. Furthermore,
the requirements for building environment conditions are not as high compared to
cell production. However, the product variety is much higher compared to the variety
of electrodes or cells.2 Consequently, it is a challenge to achieve a high production
systemutilization and short throughput timeswhile dealingwith high product variety.
This demands for a flexible production system.

Simulation of production systems or factories is – in general – used for the analysis
and improvement of the production activity and to support product development and
production management. It is suggested to consider multiple scales of production
systems and to use the best suited simulation approach for each production system
element. The simulation of battery production – in particular – shall consider the
production of all production stages from electrodes to systems. It should enable
the evaluation of the production performance based on various indicators which
allow the identification of hot-spots for improvement regarding quality, costs and
environmental impacts. In this regard, relevant are the utilization of machines and
the entire system, the lead times of jobs, the output of finished product units per
time period, the material demands per product unit, quality rates or scrap, as well as
the energy demands of machines and TBS equipment. Since different materials and
energy carriers have different impacts, the simulation has to differentiate material
types and energy carriers (e.g. electricity or gas). Moreover, while material demands
and energy demands of machines correlate with the output of final products, the
energy demands of peripheral equipment and TBS are independent of the output.
Thus, it is of interest to determine the energy demands per product unit in addition
to the overall energy demand.

To determine these indicators, the simulation has to imitate discrete unit processes
considering the influences of processes on product characteristics, machine

2For example, modules and systems can be assembled by using different cell types, different quan-
tities of cells, different housings, and with or without a cooling system.
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behavior, as well as the related energy and materials demands. In addition, the
material flow has to be simulated in order to determine the output and utilization
of the production systems. The simulation must be able to imitate sequential process
chains (cell production) as well as shop floor configurations allowing a flexible mate-
rial flow (module and system assembly). Furthermore, the simulation must consider
the influences of product variants on processes and the material flow.3

These relevant production system elements can be simulated by using different
approaches. DE simulation is suitable for describing the material flow of product
units between machines. An AB approach allows modeling of system elements as
individual instanceswith specific properties and characteristics. This would enable to
simulate the individual characteristics of product units and their development along
a process chain. DS simulation approaches are suitable to imitate the behavior of
dynamic systems such as machines, processes, or TBS equipment. The combined
and parallel utilization of different simulation models enables to use the best suitable
software tools for each sub-model, and to re-use existing specialized models of
involved stakeholders.
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Chapter 3
State of Research for Multiscale Simulation
of Production Systems

This chapter presents the state of research in areas related to multiscale simulation of
production systems. There are various generic or specific simulation applications for
production systems of which many were reviewed in order to provide an overview
about existing approaches, underline the relevance of production system simulation,
and to get inspiration for specificmethodological solutions. This chapter explains the
selection of reviewed approaches and the definition of evaluation criteria (Sect. 3.1)
as well as the evaluation of the selected approaches (Sect. 3.2). The chapter concludes
with an identified research demand (Sect. 3.3).

3.1 Selection of Approaches and Definition of Evaluation
Criteria

There has been a wide range of applications of simulation for production systems
and a multitude of simulation models and approaches. Consequently it is necessary
to select relevant approaches (Sect. 3.1.1) and to define evaluation criteria according
to the identified requirements for a detailed battery simulation (Sect. 3.1.2).

3.1.1 Selection of Approaches

In general, applicable simulations were considered which provide useful methods,
techniques, and ideas for themultiscale simulation of discrete part production includ-
ing different scales from the lowest process scale up to the building scale. In particular,
three main research areas were examined which share goals and features similar to
the intended multiscale simulation of battery production systems.
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1. Simulations for the evaluation of production systems regarding economic and
environmental objectives. In this context, simulations address the operational per-
formance (e.g. output, lead time), material flows, and the related energy demands
of the entire production equipment.

2. Simulations aiming at the analysis of product characteristics during production
along a process chain and the acting effects of process parameters, machine con-
figurations, and environmental conditions (technological objectives).

3. Simulations which combine different simulation models in order to improve the
result quality regarding the desired objective.

Static applications such as linear programming models were not considered in
this evaluation. These models are often used for planning and optimization tasks in
the context of production systems but do not imitate the complex dynamic behavior
of production systems over time. An example of such optimization model is pub-
lished by Agha et al. (2010) in which an integrated approach is used to optimize the
schedules of production operation and utility systems (boiler and fuel storage). Their
concept addresses amultiscale analysis of production systems but the static optimiza-
tion approach limits the application. Furthermore, contributions were not considered
if they solely focus on simulation techniques in general aiming at optimized algo-
rithms, IT infrastructures, and distributed computer systems (e.g. Sicklinger et al.
2014; Sweafford and Yoon 2013 or Viel and Minimes 2014).

3.1.2 Evaluation Criteria

The selected approaches have been evaluated regarding a set of criteria. These criteria
were derived from the findings described in Sect. 2.3 and clustered into the groups
scope, scales, as well as methodology and application. This subsection describes the
criteria and the specification of criteria fulfillment.

Scope

The criteria related to the scope observe the relevance of a simulation application for
battery production, the planning perspectives, and the addressed objectives.

Battery production relevance This criterion refers to the context of an approach.
The related question is, if an approach aims at simulating the production of bat-
teries or if it is applicable or adaptable for the simulation of battery production
systems. The criteria is not fulfilled if an approach is not related to or does not
address the production of batteries or battery components. This criterion is com-
pletely fulfilled it the research is directly related or specifically designed to be
applied to battery production. The criterion is partially fulfilled if an approach
addresses discrete production and considers system elements or aspects relevant
to battery production.

http://dx.doi.org/10.1007/978-3-319-49367-1_2
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Multiple planning perspectives Production management can take operational,
tactical, and strategic perspectives. The related question to this criterion is, if
a simulation application supports planning tasks of all three perspectives or if it
is limited to a specific perspective. In the best case, a simulation approach is able
to support tasks from all planning perspectives. The criterion is not fulfilled if it
is not possible to identify any addressed planning perspective.

Integrated objectives Product quality, production costs and environmental
impacts during production are closely related. Consequently, it is desired to inves-
tigate the cause-effect relations between technological, economic, and environ-
mental objectives in an integrated manner. The related question is, if a simulation
application allows to consider all three objectives simultaneously or if only specific
objectives are addressed, for example energy efficiency. The criteria is completely
fulfilled if an approach addresses the integrated analysis of all three objectives.
The criteria is not fulfilled, it no objective is clearly defined.

Production System Scales

The criteria related to the production system scales describe whether and in which
detail a simulation application addresses single or multiple scales of a production
system. For this evaluation, it has been differentiated between the scales process,
product, machine, process chain, TBS and the building.

Process This criterion refers to the consideration of production processes in a
simulation.1 Processes can be described andmodeled using different methods and
levels of detail. The related question to this criterion is, if a simulation includes
modeling of specific process characteristics and processing results in detail. This
criterion is not fulfilled if process characteristics and the influences on product
characteristics are not considered at all. It is fulfilled if physical models (e.g.
using finite element methods (FEM) or discrete element methods (DEM)) are
included for describing the detailed process characteristics. It is partially fulfilled
if process characteristics are considered within other related models for machines
or products. The degree of fulfillment depends on the modeled level of detail.

Product Processes transform an initial state of a product unit (or workpiece) into
an output state which is characterized by the current product characteristics. This
output product state can be the input of an adjacent process. This criterion refers to
the consideration of product unit specific requirements for processing and created
product characteristics within a simulation application. It is not fulfilled if product
units and their characteristics are not considered at all. It is completely fulfilled if
different product types, their specific requirements for processing and intermediate
states of product units during production are integrated within a simulation and
if the physical influences of processes and machines on product characteristics
can be analyzed. It is partially fulfilled if a simulation considers product units

1It was found that processes and machines are often treated and modeled synonymous. However, a
machine is required to perform a process. A process is the activity which transforms the properties
of a product to desired states or conditions.
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as events, product specific parameters (e.g. processing times) for processes, or
product units as black box models with a defined set of parameters.

Machines Machines consist of various components (e.g. mechanical parts, sen-
sors, control) and have different states (e.g. idle, processing, failure) and opera-
tional characteristics (e.g. maximum values of process parameters, working area,
capacity, availability, mean time to failure (MTTF), scrap rate). Furthermore,
machines have energy andmedia demands (e.g. for compressed air, cooling liquid)
which depend on the operational state. This criterion evaluates the consideration
of machine characteristics in simulation approaches. The related question is, if
an approach addresses the behavior of machines. This criterion is not fulfilled if
machines are not specifically included in an approach and completely fulfilled,
if detailed models of machines are used to represent structural and operational
machine characteristics including machine component behavior.

Process chain Machines can be grouped to process chains according to their func-
tionality or according to the desired process combinations for specific product
types. Relevant plannings task related to process chains are for example the allo-
cation and routing of products to machines, the scheduling of jobs, bottle neck
and lead time reduction, and improvement of the systems utilization. This crite-
rion refers to the consideration of the operation of multiple machines, material
flow and product routing, schedules, and the overall production performance. It
is not fulfilled if no coordinated process chain and product flow is included in an
approach. It is completely fulfilled if the product flow and routing, buffers, and
detailed scheduling are included and an evaluation of performance indicators as
well as of impacts on TBS is possible.

Technical building services This criterion refers to the consideration of TBS and
auxiliary equipment within a simulation application. TBS are related to machines
(e.g. compressed air, air suction) or the building operation (e.g. HVAC, lighting,
energy supply). The criterion is not fulfilled if TBS are not considered at all. It is
completely fulfilled if all required services are included by in-depth physical mod-
els which represent the operation as well as the interactions with processes (e.g.
demand/supply) and the building (e.g. heat emissions). The criteria is partially
fulfilled if only few TBS are included which are only represented by simplified
models.

Building This criterion specifies if a simulation supports the analysis of the build-
ing surrounding a production system. The simulation of buildings can be realized
with different methods and tools and be carried out in different levels of detail.
The related question is, if a simulation considers or includes the building ambient
conditions. It is completely fulfilled if the building shell is a major part of a sim-
ulation and if detailed physical models are implemented to represent the building
construction, weather influences, and internal loads. The criterion is not fulfilled if
the building is not part of an approach. It is partially fulfilled if simplified models
for building zones are used.
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Methodology and Application

This group of criteria addresses the questions whether existing simulation appli-
cations use coupled simulation models, provide an integrated evaluation of results
from different models, and are applicable to other production systems in general and
battery production in particular.

Model coupling and co-simulation Co-simulation is a suggested method for the
simulation of complex hierarchical systems and consequently usable for produc-
tion systems or factories. This criterion refers to the combined use of different
interdisciplinary simulation models within one application. The criterion is not
fulfilled if only one model is used. The criterion is completely fulfilled if multiple
models are individually implemented in the best-suited software environment and
coupled via a coordinating middleware software.

Methodological contribution This criterion refers to the contribution of a pub-
lication to the methodology of multiscale production system simulation. This
includes but is not limited to simulation methodology, model coupling, numerical
aspects, and synchronization of data exchange. The criterion is not fulfilled if a
publication does not address methodological issues towardsmultiscale simulation
of production systems. It is completely fulfilled if methodological aspects are the
main focus of a contribution.

Applicability This criterion refers to the application of existing simulation appli-
cations in an industrial production context. It is examined if models and tools are
available and adaptable as well as if there are clear guidelines for application.
The criterion is not fulfilled if a publication presents only a theoretical concept.
The criterion is completely fulfilled if commercial software is used, executable
models are developed, and guidelines or procedures for application are available.

In addition to these criteria, all existing simulation contributions were analyzed
regarding the used simulation approaches such as DE, AB, DS or SD.

3.2 Presentation and Evaluation of Existing Approaches

The presentation of research contributions begins with simulation applications
addressing the smallest scales of a production system (processes,machines, products)
and continues with simulations considering multiple and larger scales. All contribu-
tions are explained and discussed regarding the defined criteria. Figure3.1 illustrates
the identified contributions and the order of presentation based on the addressed
scales.

While there are several applications and concepts in the field of battery cell and
battery system simulation (e.g.Wieser et al. 2015; Allu et al. 2014; Du et al. 2014 and
Yu et al. 2013), there are hardly any existing or established simulation approaches
for individual processes of battery production. One of the few examples for process
simulation is the simulation of different formulation strategies of the mixing process
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Fig. 3.1 Qualitative
structuring of identified
research contributions in
production system
simulation regarding
addressed scales

(Li et al. 2014). Furthermore, according to Kaiser et al. (2014), computational fluid
dynamics are used for the dimensioning and design of coating devices. These sim-
ulations focus solely on processes without considering external influences such as
machine interactions in an industrial production environment.

Outside of the research field of battery production, several simulation concepts
focus on the combined simulation of processes and machines. For example, cou-
pling of models is used to analyze the interactions between machining processes and
related machine tools such as the impacts of vibrations or thermal effects on machin-
ing stability (Brecher et al. 2009; Aurich et al. 2009;Witt 2007; Schapp 2008). Many
researchers work in this field which is called process machine interaction (PMI). An
overview about research approaches in PMI is presented in Brecher et al. (2009).
The majority of studies contains the analysis of machine structures, physical compo-
nent behavior, process physics and interactions between machine, process and work
pieces. These approaches focus on product quality and refer to small spatial and
temporal scales of production systems.

Abele et al. developed a holistic simulation environment for the analysis of energy
demands of machines by combining models for machine components and processes
(Abele et al. 2012, 2015). They developed methods for the simulation-based assess-
ment of the energy demand of machining processes for a given product geometry
(NC files) and process parameters (e.g. cutting force). They combined models for
machine, process, and product to simulate the resulting energy demand. This work
was part of the research activity ECOMATION. In this context, Eisele (2014) devel-
oped amodular methodology andmodels for the simulation of machine components.
Physical models for machine components (e.g. motor, valves, pipes, cooling system,
etc.) have been summarizedwithin a library (Simulink)which can be used for the def-
inition of specific machines. These models also include process specific parameters.
In a similar concept, Schrems (2014) proposed a machine simulation considering
different machine components. The goal was to develop a method for modeling the
energy demand of machine tools. The components of a machines with relevance to
the energy demand are grouped according to their functions and demand behavior.
Furthermore, he combined several machine models to simulate the energy demands
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of an entire process chain (DE with Siemens Plant Simulation). He also suggested
to identify the shares of each machine of the total energy demand as well as on the
energy demand per product unit. Overall, this approach enables a detailed modeling
of machines on component level aiming at the simulation of energy demands on
process chain level.

The same goal was addressed by Weinert et al. (2011) who developed an energy
blockmethodology for modeling state specific energy demands of machines on com-
ponent level. Moreover, Weinert et al. extended the approach towards the modeling
of multiple machines. This allows using the methodology to include energy related
criteria into production system planning and scheduling. However, not much detail
is presented about the implementation of the models.

Liang and Yao (2008) presented a hybrid modeling approach for production sys-
tems combining the tools Matlab/Simulink and Arena to determine continuous char-
acteristics on process level and the discrete behavior of machines on workshop level.
Arena was used to model production lines with multiple machines and to deter-
mine the output and waiting times per product type. Matlab Stateflow was used to
describe the operational steps of machines. Matlab Simulink was used to imitate
the process controller and to determine processing times and cutting forces for each
work piece. ActiveX and VBA were used to control the continuous and discrete
Matlab models through the DE Arena model. This approach enables evaluating the
interactions between different scales of production lines. However, the specific target
of the approach is not clearly stated. The output of products and cutting forces are
calculated although it is not apparent how the results are used.

Colledani and Tolio (2013) developed an integrated multiscale and multilevel
model for a material recycling system combining the process and process chain level.
The goal was to estimate the performance of a de-manufacturing system considering
the complex interdependencies between process physics (e.g. separation quality or
size reduction) and the system dynamics (e.g. routing or utilization and profitability).
However, the system dynamics analysis is not conducted by simulation but with
analytic methods. Moreover, the physical process models refer to specific processes
and seem not to be easily adaptable.

Cho (2005) developed a distributed simulation approach for the job-shop schedul-
ing problem in which machines and parts are represented as events. The entities
machine and part have properties and states and exchange information with each
other via a developed communication architecture. The approach is able to determine
the arrival time of parts for different machine allocations. However, the approach is
targeted specifically to the scheduling problem, is implemented based on specific
software solutions, and is not easily adaptable to other cases.

Heilala et al. (2008) developed an application which combines DE simulation and
3D modeling of production systems with LCA to perform a joint analysis of eco-
nomic, environmental, and ergonomic characteristics of production systems. Their
goal was to establish a simulation tool for supporting the production system plan-
ning phase. Their approach differentiates the higher level of product flow and the
lower level of workstations and process steps. A DE simulation model is proposed
for calculating the system performance (e.g. percentage of machine states, energy
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demands) based on given schedules, product mix, product routes and other pro-
duction characteristics. Furthermore, product properties are included since material
properties and product dimensions have influence on economic and environmental
performance indicators. They use software for integrated factory and robotic simula-
tion (3DCreate and 3DRealize of Visual Components) and Excel for the calculation
of related environmental impacts. A coupling of DE simulation and LCA calculation
is suggested but not implemented.

Sproedt developed a similar concept which utilizes available life cycle inventory
(LCI) data in combination with a DE simulation model in order to automatically gen-
erate LCA results for production systems (Sproedt 2013; Sproedt et al. 2015). The
concept shall support the evaluation of improvement measures towards improving
the eco-efficiency and the performance of production systems. He included modules
for processes and supporting services in the simulation framework. These processes
and supporting services are described by various parameters (e.g. processing time,
MTTF) and states (e.g. idle, off, processing) which also include the behavior and
characteristics of the related machines. An evaluation module allows the calcula-
tion of various results such as costs, throughput time, and environmental impact.
The physical characteristics of processes and equipment are not modeled and the
building environment is not considered. The approach is prototypical implemented
and Sproedt further provided a detailed guiding procedure which supports the appli-
cation of his approach for other production systems. A similar approach using DE
simulation and LCA was presented by Löfgren and Tillman (2011).

The combined analysis of production operation and building energy management
is motivated by Michaloski et al. (2011). They proposed the integration of manufac-
turing execution systems (MES) with energy management system (EMS) to identify
and evaluate improvement measures towards energy efficiency and more sustainable
production. The main idea is to use DE simulation to determine schedules of pro-
duction activities including job and resource allocation, determine the production
performance (e.g. utilization, scrap rate, product quality) and to link the production
activities (e.g. based on average load profiles) to TBS (e.g. compressed air, HVAC).
The focus is on identifying improved schedules of production activities. The authors
provide their model structure and considered system elements as well as desired
performance indicators for MES and EMS. However, they have published only few
details about the DE simulation model and only qualitative simulation results.

Stahl et al. (2013) proposed a total factory simulation aiming at extendingmaterial
flow calculation toward environmental goals. Their concept includes the state-based
modeling of production assets such as machines combined with peripheral equip-
ment. They generate power demand profiles of each asset depending on the asset’s
states. This concept was introduced to plant simulation.

Seow andRahimifard (2011) proposed a framework formodeling energy demands
on plant and process level from a product perspective. Their motivation was to deter-
mine the total energy required to produce one product unit and to derive optimization
potentials for production operational as well as product design. They consider direct
and indirect energy demands as well as theoretical and auxiliary energy demands. In
order to allocate indirect energy demands to product units, they differentiate zones
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of facilities with similar indirect energy demands. Their approach includes energy
demands of TBS (e.g. compressed air, lighting, heating, process liquids) and auxiliary
equipment which results in a multiscale perspective. They developed an integrated
DE simulation model in Arena which allows to determine the embodied energy
of product units of multiple product types. This is based on the simulation of the
throughput of products through processes and different building zones. Product type
specific processing times are implemented. The theoretical energy demands are cal-
culated withmathematical models describing the characteristics of each process (e.g.
based on specific cutting energy and volume of a parts). Auxiliary energy demands
are estimated by equipment manufacturer specifications or determined by measure-
ments but they did not includemore detailedmodels of TBS system. Their tool can be
used for what-if analysis of different scenarios. The authors clearly state that the gen-
erated results can be valuable input for further evaluations such as LCA or life cycle
cost analysis. They further motivate to use the results as indicators for improvement
potentials in product design. Multiple planning perspective are clearly addressed.
However, the influences of processes on product quality are not considered.

Junge (2007) developed a method for the simulation-based development and opti-
mization of energy efficient production control. The core of his simulation approach
is a DE material flow simulation which enables to determine the energy demands
and costs as well as the production costs and other logistical performance indicators
(e.g. utilization, work in progress). Furthermore he modeled the current tempera-
ture, ventilation rate, and pollutant concentration inside a factory which are relevant
conditions for the operation of machines and the calculation of costs for heating and
cooling. This simulation model for the production system operation was coupled
with a building simulation. A specific coupling solution was developed based on
TCP/IP connections. The coupled simulation approach allowed analyzing the effects
of different production strategies and schedules as well as to support the planning of
TBS.

The goal of the research project ENOPA (engl.: Energy efficiency through opti-
mized coordination of production and technical building services) was to develop an
approach for the coupling of models for simulating energy demands of TBS and the
building with a process chain in order to improve energy efficiency in production
facilities (Hesselbach et al. 2008). The main motivation was to determine the timing
of demands for different media (e.g. electrical energy, compressed air, hot water,
or cooling liquids) of production processes and the resulting loads on supporting
building equipment. A comprehensive summary of the project results can be found
in the project report (ENOPA 2011) and in Hesselbach (2012).

Thiede developed a generic and adaptable DE simulation environment for ana-
lyzing the energy efficiency in production systems (Thiede 2012; Herrmann et al.
2011). He decided for an integrated modeling approach in order to avoid technical
problems and synchronization issues arising from a coupling of models. The main
goal was to assess the energy demands of production systems depending on the
actual operation. The approach aims at supporting strategic and operational produc-
tion management in the designs and control of production systems. For that reason,
the simulation environment contains generic modules for processes and TBS (e.g.
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compressed air and steam generation). This allows to determine the load profiles for
all observed energy carriers of the relevant equipment within a production system in
order to identify hot spots and peak loads. The process modules and the sub-models
for TBS are integrated within one model which is implemented with the software
AnyLogic. The model is flexible, modular, and scalable to be usable for different
industries. The simulation environment was used to demonstrate what-if analyses
for different scenarios of improvement measures. For example, the approach allows
changing operational system parameters (e.g. production speed) and to determine
the total energy demand.

Mousavi et al. (2015) presented a modeling approach for the integrated evaluation
of energy demands of unit processes and the entire production systems. The goal of
their energy-oriented factory simulation is analyzing the impacts of specific machine
tool parameters on the energy demand on production system level. They proposed a
framework which divides process chains into different unit processes which are char-
acterized by machine specifications, the design of products and the related process.
The process chain is supplied by peripheral and TBS equipment. Their approach can
determine the total time-dependent energy demand of the production system as well
as indicators describing the production performance such as lead time and output.
Within their implemented hybrid simulation model, they integrated models for unit
processes with models for TBS and a process chain model which is controlled by a
production control unit. They presented two case studies showing that the lot size
and machine parameters have impacts on the energy efficiency of the entire system.

The project INFO (Interdisciplinary research for energy optimization in produc-
tion operations) pursued the similar goal of increasing energy efficiency in produc-
tion by using a holistic factory simulation. More specifically, the goal was to obtain a
holistic contemplative simulation model to investigate the energy and resource effi-
ciency of production facilities already within the planning stage (Dür et al. 2013).
The main objectives were the analysis and reduction of the energy demand as well as
the related CO2 emissions and the economic profitability. That means that economic
and environmental goals are simultaneously addressed. For this purpose, the INFO
approach integrates the disciplines of power engineering, production technology and
building design. Within this project, several researcher worked on different aspects
of such holistic factory simulation. Leobner et al. (2011) presented an overview
of components of production facilities (structured in physical and information
components) as well as related rules, parameters, boundaries, and interfaces of inter-
actions which should be considered in a holistic modeling approach. Hafner et al.
studied the practicability of co-simulation with BCVTB for simulating the thermal
processes in a production building with the goal to optimize the energy usage in
cutting factories (Hafner et al. 2012, 2014). They coupled models for machines,
the energy system, and a building with different zones. Machines are modeled in
Modelica, Simscape and Matlab (simple data model combined with MS Excel).
Machines in Dymola and Simscape are simplified represented by electrical motors
at which electrical energy is lost at the resistor and converted into thermal energy
(heat flow to the building). Kovacic et al. (2013) further discussed the potential ben-
efits of coupled simulation based on a parametric simulation case study including a
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life cycle cost analysis of a production facility with a focus on the building. Heinzl
et al. (2013) set a research focus on the communication, step size, and synchronization
methodology of simulationmodels. He used an energy systemmodel (Modelica) and
a building model (EnergyPlus) to evaluate different production scenarios and build-
ing locations regarding the electrical power demand. The complete project results
are presented in Dür et al. (2013). On machine level, machines are represented as
parameter models based on state specific average energy demands (although physical
machine models were presented for example by Hafner et al. 2014). Parameter mod-
els were implemented for machine tools, compressors and lasers. Building models
were created in EnergyPlus but further simulation studies were also conducted with
COMSOL multiphysics (2D) CFD-simulation for evaluation of influences of tem-
perature distribution on the energy demand. BCVTB was used to combine Matlab,
Excel, EnergyPlus, and Dymola. In summary, all relevant aspects of production
systems related to energy flows were addressed at different levels of detail. How-
ever, traditional production objectives such as utilization, availability, lead time or
throughput were not part of the analysis. The simulation does not include a specific
model for a process chain. Furthermore, a product perspective is missing and process
physics with respect to product properties are not part of any simulation sub-model.

Based on results from the INFO project, Bleicher et al. (2014) further presented
a prototypical simulation framework and exemplary models for supporting the plan-
ning of production facilities by combination of specialized simulation models for
production equipment, energy system, and the building. Machines are represented
by multi-domain models combining electrical, mechanical, and thermal aspects of
machine tools. As an example they have presented a model of a turning lathe drive
train. The softwareMatlab Simscape is used tomodel the energy flows. Thesemodels
do not include operational machine characteristics such as availability, capacity, or
MTTF. Also the authors state that models become increasingly complex if multiple
machines have to be simulated. They suggest the use of energy demand profiles based
on empirical studies to substitute physical models. Their models are reduced to rele-
vant energy related states with allocated average energy demand. Using the detailed
physicalmodels is suggested for validation and prediction of energy demands outside
the co-simulation. The operation of machines (e.g. scheduling and job allocation) is
controlled by production data which in the presented case was retrieved from SAP.
The actual material flow of products through multiple machines is not simulated.
Furthermore, the value adding physical processes and their influence on product
characteristics are not included in their models. Consequently it is not possible to
evaluate performance indicators such as lead times or quality rates. The energy sys-
tem and related equipment is included in the co-simulation. The compressed air
generation is also mentioned in the case study but it is only stated that the power
demand of the compressors was represented with a physical model. The building is
said to be modeled within the software EnergyPlus according to the building infor-
mation modeling (BIM) methodology. However, no detailed information is given
about the energy system model, compressed air system model, or building model.
Furthermore, it is not explained how the static parameter models are linked with
simulation models.
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A similar objective was addressed in the project THERM (THrough-life Energy
andResourceModeling)which aimed at reducing energy demands, carbon emissions
and waste through integrated simulation of production operations and building envi-
ronments. The main result is a sustainable manufacturing modeling tool of which the
requirements, the model concept, the graphical representation, and the prototypical
implementation are presented in various publications (Wright et al. 2013; Despeisse
et al. 2012, 2013; Oates et al. 2011; Ball et al. 2013). The authors found that exist-
ing physical building simulation tools did not allow to sufficiently consider heat
emissions from production equipment into the building environment (Oates et al.
2011). As a result from this, they proposed a combined simulation of the building
environment, production equipment, and supporting TBS in order to determine the
heat balance and energy flows in a factory. The prototypical THERM simulation tool
and the defined workflow enable modeling of the climatic environmental conditions
within a factory building and the interactions with production equipment depending
on operational states. The tool is based on IES Virtual Environment. It enables the
determination of the total energy demand of a production facility and the evalua-
tion of improvement measures such as the reuse of resources. Moreover, a set of
predefined improvement measures (tactics) is provided. Ball et al. further proposed
integrating the effects of resource flows (e.g. parts, material) through a factory. How-
ever, the tool includes neither the evaluation of traditional production performance
indicators nor product properties or detailed process and machine behavior. Also,
no detail information is given about how the energy and resource flows are actually
modeled and how or if different schedules for equipment operations and jobs are
considered.

Outside thefield of production simulation, the simulation of buildings andbuilding
controls are broadly covered topics in building engineering and simulation science.
In this context, various multiscale and co-simulation approaches were developed
addressing the interactions between different building elements (e.g. Trčka et al.
2010; Wetter 2011; Sagerschnig et al. 2011; Wills et al. 2012; Zhang et al. 2013).
Many of these approaches focus on the integrated analysis of the interactions between
building shells and HVAC systems. Trčka and Hensen (2010) provide an overview
of related simulation approaches. As an example of a simulation concept, Chen et al.
(2015) used co-simulation to study the interactions between indoor climate in a
multi-zone building and energy efficiency measures.

To summarize the results of the evaluation, Harvey balls are used to represent the
rating of the evaluation criteria. Harvey balls indicate the degree to which a research
contribution fulfills the related criteria.2 The results of the comparison are shown in
Table3.1. It must be emphasized that the results were also significantly influenced
by the type and level of detail of the publications.

The table shows clearly that no simulation concept fulfills all criteria which are
relevant for the desired multiscale simulation of battery production systems.

2A white empty ball ( ) indicates that a criteria is not fulfilled at all while a black filled ball
( ) indicates that a criteria is completely fulfilled. Partial fulfillment of a criteron is indicated by
partially filled balls ( , , ).
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3.3 Findings and Research Demand

The evaluation has shown that there is a diversity of simulation concepts and appli-
cations which were developed for various purposes addressing different goals and
planning perspectives. It has revealed that the idea of a multiscale factory simula-
tion may provide various advantages but no published simulation concept was found
which fulfills all criteria relevant to the desired multiscale simulation of battery pro-
duction. The majority of developed simulation concepts were designed for discrete
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production scenarios which allows an adaptation to battery production. Some con-
cepts also include aspects relevant for a multiscale simulation of battery production,
such as the combined analysis of production activity and TBS. However, only very
few simulations directly address battery production (e.g. Li et al. 2014).

Furthermore, none of the reviewed simulations supports all planning perspec-
tives. Some simulations aim at supporting operational and tactical decisions such
as the combined evaluation of schedules and production system configuration (e.g.
ENOPA). Other simulations allow the evaluation of production system performance
combined with strategic planning tasks such as LCA (e.g. Sproedt 2013), factory
planning (e.g. INFO) or product design (e.g. Seow and Rahimifard 2011).

The review has also shown that coupled or integrated simulation approaches either
consider larger or smaller scales. Simulations linking the modeling of the building
andTBSwith production operations in general simplify the process and product scale
and use abstract models of machines. Simulations considering the process physics
or product states and traditional production objectives within a process chain usually
do not consider the building environment or TBS in greater details. Overall, no
simulation application combined detailed models for all scales.

In addition, the results show that only very few simulation concepts address
methodological issues regarding the application of coupled or co-simulation for pro-
duction systems. No publication was found in the context of production system
simulation which provides a defined framework for structuring simulation models,
a definition of relevant system parameters, state variables, and variables for data
exchange between models. The only concept aiming in this direction was published
by (Leobner et al. 2011) who defined the relevant system elements but without
specifying how these elements has to be modeled and which information has to be
exchanged. Wetter (2010) present detailed concepts for co-simulation in the context
of building simulation which could be transferred to production system simulation.

Similar, no reviewed simulation concept allows an integrated evaluation of techno-
logical, economic, and environmental objectives. The majority of the found simula-
tions address the energy demand of production equipment and consequently – since
energy contributes to the production costs – a combined evaluation of economic
and environmental objectives. Only very few simulations aimed at the evaluation of
the product quality in correspondence with process parameters (e.g. Brecher et al.
2009 and Li et al. 2014) but they neglect economic or environmental objectives.
And although the idea of PMI is transferable to battery production (and in particu-
lar to cell production), the reviewed simulation concepts (e.g. Witt 2007) focused on
machining or forming processes which is of limited relevance for battery production.

Furthermore, the reviewed simulation applications show no evident structure
regarding the relations between the addressed objectives (economic, environmen-
tal, quality), production system scales (product, process, machine, process chain,
TBS, and building) and the used simulation approaches (DE, DS, AB, SD, and co-
simulation). This information would support developers of multiscale simulation
in selecting the best suitable simulation approach for their objectives. Figure3.2
presents these findings by showing the research contributions on the left, simulation
approaches on the right at the top, objectives on the right in the middle, and scales on
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the right at the bottom. The lines indicate the relations and the line color is inherited
from either the simulation approaches, objectives, or scales. The figure shows that
DE and DS are the dominating simulation approaches whereas DS is mostly used for
simulations considering low or high production system scales. DE is used in most
of the simulations except for the lowest or highest scales. Co-simulation is not often
used and only applied in simulations considering small or large scales. Economic
and environmental objectives are equally often addressed while product quality is
neglected in most simulations. Accordingly, the product scale is not considered in
many simulations. It can be seen that the lines from different scales do not inter-
sect very often. Since the contributions are ordered from small to large scales, this
means that simulations mostly address only one or few different scales. The figure
shows that the scales machine and process chain are most considered. Overall, most

Fig. 3.2 Radial chart of the connections between research contributions, objectives, simulation
approaches, and addressed scales of production systems
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of the reviewed simulations use DE and DS simulation to address economic and
environmental objectives by considering interlinked machines.

Although the reviewed research contributions provide various relevant concepts
and modeling solutions for production system simulation, there is still further
research demand towards the desired multiscale simulation of battery production
systems.

In this context, the most relevant demand refers to the combination of a detailed
multiscale co-simulation of a production system including TBS and the building
(e.g. as in project INFO or Bleicher et al. 2014)with a process chain simulation (for
different process chain configurations, such as in Thiede 2012) for the coordination of
machine operation in interaction with TBS. The machines within such process chain
model must be modeled in greater detail (e.g. as in Abele et al. 2015 or Weinert
et al. 2011) to be able to evaluate the influence of different machine parameters or
configurations on system level. The process chain model must further be able to
evaluate traditional production objectives such as throughput time and output. This
is important for the evaluation of economic objectives and so far neglected in detailed
co-simulations which focus mostly on energy demands.

Furthermore, a stronger emphasis has to be put on the product perspective. The
product quality must be included in a multiscale simulation. For this reason, it must
be possible to describe the influences of processes on characteristics of product
units. This requires detailed physical process models or simplified parameter models
(see Brecher et al. 2009) which determine the process results for each product units
based on product type specific process parameters. These process models – or co-
simulations combining models for processes and machines – must be connectable to
the process chainmodel to get information about the required processing of a specific
product type. Moreover, the evaluation of the product quality along the process chain
is of great interest. For this reason it must be possible to trace the characteristics of
each product units through the process chain. This feature was not found in any of
the reviewed process chain simulations. It requires product units to be individual
entities and not just events as in DE simulation. In addition to the tracking of product
characteristics, it should be possible to determine the specific demands of materials
and energy for each product unit (similar to Seow and Rahimifard 2011). This fosters
the evaluation of environmental impacts.

Multiple planning perspectives can be addressed by a modular model structure
inwhich sub-models can be exchanged or added in order to achieve suitable results for
operational, tactical, or strategic planning tasks. At an early planning stage, models
must not be too detailed but operational decisionsmay require very accurate results in
high resolution. In this regard, co-simulation seems promising for creating a modular
structure. However, required is a framework for structuring the different models as
well as guidelines for model specification and co-simulation design.
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Chapter 4
Multiscale Simulation Modeling Concept
for Battery Production Systems

The purpose of a multiscale simulation of battery production systems is enabling
an integrated evaluation of improvement measures regarding production costs, prod-
uct quality, and environmental impacts, as well as gaining interdisciplinary system
understanding. Figure4.1 illustrates how different disciplines can use a multiscale
simulation to evaluate their specific improvement measures virtually and receive
results indicating the related impacts on system level.

This chapter covers the development of a multiscale simulation concept for bat-
tery production systems which is the basis for a later implementation of such sim-
ulation within software. The goal of this concept is supporting the development of
a multiscale simulation and to develop specialized simulation models considering
the required inputs and outputs for the use within the multiscale simulation. The
review of the state of research has shown that such concept is not available but that
the demand for multiscale production simulation is strong. The resulting research
demand and themotivation for a detailed analysis of battery production systems led to
a set of objectives for the desired simulation concept (Sect. 4.1). Based on the iden-
tified objectives and derived requirements, the simulation concept was developed
by defining the system boundaries and a model framework (Sect. 4.2), describing
the content and logic of the identified relevant models (Sects. 4.3 and 4.4), select-
ing suitable model coupling strategies and variables for data exchange (Sect. 4.5),
and defining the achievable results (Sect. 4.6). Finally, an application procedure is
suggested which describes how a specific multiscale simulation could be developed
(Sect. 4.7).

4.1 Objectives and Requirements

In general, objectives (O) describe what should be achieved and requirements (R)
describe what has to be done to fulfill the objectives. The derivation of objectives was
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Fig. 4.1 Scheme of a multiscale simulation of battery production systems

based on a deductive approach and the identified objectives were transformed into
specific requirements for the multiscale simulation. The objectives and requirements
are grouped according to the topics simulation structure, simulation objectives,model
architecture, model specification, and cooperative employment.

Simulation Structure

The main objective of this simulation concept is providing the theoretical foundation
for the development of a software-based multiscale simulation environment. The
concept has to define the fundamental structure of the simulation approach which
has to be flexibly applicable to different configurations of production systems for
different product types [O1]. The simulation must be usable for electrode and cell
production (independent of a specific cell type such as LIB or next generation cells)
aswell as formodule and system assembly [O2]. Also it has to considermultiple goals
for the improvement of these production stages [O3]. These superordinate objectives
lead to the following requirements.

R1 Definition of system boundaries of the simulation approach regarding content
of the simulation, desired results, and use cases.

R2 Definition of production system elements which are required for integration into
the multiscale simulation.

R3 Elaboration of the spatial and temporal scales required to represent the behav-
ior and interactions of elements within the hierarchical structure of production
systems according to the desired results.

R4 Formation of a framework for clustering of models for production system ele-
ments and information flows between models considering the hierarchy of pro-
duction systems.

R5 Realization of a flexible model structure to model all production stages.

Simulation Objectives

The simulation approach targets the interlinked improvement of production costs,
product quality, and environmental impacts of batteries and their components [O4].
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These tasks depend on the derivation and simultaneous evaluation of improvement
measures. The simulation shall support these tasks by creating transparency about
the production system behavior [O5]. This requires the

R6 definition of production stage specific performance indicators for technological,
economic, and environmental evaluation, as well as the

R7 derivation of state variables and parameters of simulation models needed for the
calculation of the defined performance indicators.

Model Architecture

Based on these indicators and variables, the concept has to specify the functionality
of the multiscale simulation environment in alignment with the involved models and
desired simulation results [O6]. This requires the

R8 selection of required models for the detailed simulation of production system
elements, and the

R9 detailing of all models regarding their inputs and results as well as the inherent
model type (e.g. empirical vs. physical) and logic.1

Model Specification

It is necessary to specify the simulation models in order to get desired results. This
includes the model functions for the evaluation of traditional economic production
objectives and environmental impacts [O7]. This leads to the following required
functions of a multiscale simulation.

R10 Simulation of material flows of jobs through a process chain.
R11 Characterization of finished jobs by production time, used resources, date and

time stamps, as well as value adding and non-value adding time shares.
R12 Consideration of blocking, starving and machine failures to imitate a realistic

system behavior.
R13 Simulation of energy demands of all equipment based on load profiles which

enable determining environmental impacts related to energy generation as well
as energy costs.

R14 Simulation of used quantities per material type and amount of scrap materials
for calculation of material costs and the amount of used and wasted materials.

Moreover, the simulation shall enable identifying the relevant product character-
istics and product specific influences on the production system [O8]. Also it should
allow the analysis of cause-effect relationships between processes and product char-
acteristics (e.g. process tolerances) along a process chain [O9]. This requires:

R15 a product model which allows tracing the product characteristics of semi-
finishedwork pieces and products during production (this has to include product
specifications, the current state of production, and product characteristics).

1The logic refers to the characteristics of the modeled element as well as the type and structure of
relations between parameters, variables, and performance indicators (e.g. equations or parameter-
based relations).
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R16 product instances to have individual values for characteristics to enable the
analysis of deviations of characteristics (this is needed to store information
about process tolerances and the effects on product characteristics).

R17 the definition of product type specific process routing and required processes.

In order to analyze cause-effect relationships and trade offs, it is important to
simulate the interactions between the production system activities and the operation
of installed equipment along with the specifications and the characteristics of prod-
ucts [O10]. The simulation must enable to perform different experiments to evaluate
the impacts of improvement measures, product designs, and production strategies on
system level [O11]. The results of these experiments have to be easy to interpret and
to create transparency about the system behavior. This requires

R18 multiscalemodeling of effects and relations betweenmachines, auxiliary equip-
ment, TBS, and the environment inside a building.

R19 a process chain model to determine the activity in a production system.
R20 adaptable simulation periods to identify effects on different temporal scales.
R21 adjustable model parameters to define specific production system scenarios.
R22 visualization of variables and performance indicators over time.
R23 specific report layouts for different performance indicators and stakeholders.

Cooperative Employment

The simulation concept shall facilitate the cooperation of experts from different
domains and disciplines by combining their knowledge into one simulation approach,
based on specialized models [O12]. The concept has to provide guidance on how a
multiscale simulation environment has to be developed, employed, and maintained
[O13].Moreover, the concept has to be independent from a specific software or model
implementation [O14]. This requires

R24 a definition of the information exchange and interfaces betweenmodels (regard-
ing required inputs from and outputs to other models).

R25 knowledge about model coupling in the context of production systems.
R26 a procedure for the development and employment of a multiscale simulation

including the development of each suggested model type.

The presented objectives and requirements for the multiscale simulation concept
are the starting point for the modeling framework development and the specification
of individual models.

4.2 Modeling Framework Development

The purpose of the multiscale modeling framework is supporting the selection and
structuring of simulation models based on defined system boundaries of the simula-
tion as well as on the hierarchy and scales of battery production systems.
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4.2.1 System Boundaries and Scope

The definition of system boundaries and the scope of the simulation is an important
prerequisite for determining the simulation content, the model inputs and outputs,
the simulation goals and desired results, as well as the involved stakeholders. Sys-
tem boundaries define which aspects of battery production have to be included in a
simulation and the scope describes the challenges and related planning tasks.

The starting point of the definition of system boundaries and associated scope is
the analysis of the production stages of battery production: electrode and cell pro-
duction as well as module and system assembly (see Sect. 2.1.3). The production of
electrodes and cells involves chemical and physical processes in a defined sequential
order but without an uniform tact time due to a large spread of processing times. The
order of processes is identical for all product variants and the number of electrode or
cell variants per process chain is low. The processes need specialized machines and
peripheral equipment for media supply or to maintain particular ambient conditions
(e.g. temperature or humidity). The major challenges in cell production are the selec-
tion of suitable equipment, identification and evaluation of cause-effect relationships
between processes and product quality, determination of optimal process parameters,
analysis of energy efficiency measures, as well as the elimination of bottlenecks in
order to achieve a full utilization of expensive resources.

The module and system assembly consists of various automated or manual han-
dling and assembly tasks which can be very different depending on the design of
modules and systems. In contrast to the rather predefined production of electrodes
and cells, there are many possible sequences for the assembly of modules or systems
(Li et al. 2011). And due to a high product variety, the sequence of processes can be
different for each job. Consequently, the material flow of jobs through the assembly
system is not predetermined and can be subject to optimization regarding a short
tact time. In contrast to electrode and cell production, there are no strict require-
ments regarding building ambient conditions. The influences of the actual processes
on product quality is relatively low compared to the influences of processes in cell
production. However, the characteristics of the used cells also determine the per-
formance of an entire battery system. This leads to the necessity to also consider
product characteristics in the assembly of modules and systems. This also allows
using simulation to evaluate selective assembly strategies, which aim at combining
most compatible cells into one module (Schmitt et al. 2014).

The planning tasks differ for cell production and system assembly. While in
the first the focus of improvements lies on product quality, energy efficiency, and
resource utilization, the focus in the second lies on achieving a high assembly sys-
tem utilization and reduced throughput times while handling a high product variety
with high volumes. High product variety is a challenge if variants require different
processing times for the same production steps. Hence, the line balancing prob-
lem is more relevant in the module and system assembly as it is for electrode and
cell production. These different improvement goals lead to the conclusion that it is

http://dx.doi.org/10.1007/978-3-319-49367-1_2
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Fig. 4.2 System boundaries and scope

reasonable to differentiate system boundaries for cell production and battery system
assembly. Figure4.2 summarizes the system boundaries and the respective scope.

4.2.2 Hierarchy and Scales

The system boundaries determine the battery production system elements which
have to be included in a multiscale simulation. In addition, the framework needs to
incorporate the hierarchical structure of these elements and their associated scales in
order to specify the required flows of information between simulation models.

The existing hierarchy concepts (see Sect. 2.1.2) use different levels for their
description of a production system which represent different scales. Spatial scales
refers to the size and geometrical extend of a production system element as well as
to the organizational allocation and relations of system elements. As an example,
a production machine is on a smaller spatial scale compared to a process chain or
the factory building. A machine is also part of a process chain and a process chain
is contained in a building. Another example is the allocation of TBS to single or
multiple machines, a process chain, or the building. TBS are on larger spatial scale
than the machines but on smaller scale than the building.

In addition to spatial scales, the hierarchical framework for simulation models
has to consider different temporal scales since the response time and the relevant
evaluation periods differ for various system elements. Consequently, it is necessary
to derive the framework based on relevant spatial and temporal scales.

The main activity of production systems is creating products which is in general
described by input-throughput-output processes. Batteries and battery components
require many processes which transform a current product state to the next desired
state by using machines, energy, and material. Machines, processes, and products
are the elements on the smallest spatial and temporal scales of a production system.
This means that the smallest value adding unit within a production system consists of
a machine, a processes, and a product. This unit is illustrated in Fig. 4.3. A product
is transformed from product state n to state n + 1 by a process which is defined

http://dx.doi.org/10.1007/978-3-319-49367-1_2
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Fig. 4.3 Smallest value
adding unit of a production
system

and characterized by process parameters. A machine is used for the execution of the
process.

The combination of processes and related machines to process chains repre-
sents the second spatial scale. Regarding the temporal scales, the duration of single
processes usually ranges from seconds to hours. The production of one product can
take hours and the production of multiple products (e.g. of a job with a specific
quantity of product units) can be measured in hours or days. The operation and per-
formance of process chains or multi-machine environments depends on schedules
and the production program which are valid for days, weeks, or months.

On higher scales, TBS can be differentiated between building related services (e.g.
energy supply, ventilation, or lighting) and process related services (e.g. compressed
air supply).2 For this reason, TBS are allocated to a spatial scale between process
chains and the building shell. Regarding the temporal dimension, TBS cover a larger
time spectrum. The interaction of TBS with processes has to be analyzed within
intervals of seconds. The energy supply peak load is determined for intervals of
15min. Temperature and humidity in a building change continuously but relatively
slowly within hours creating heating, cooling, or dehumidification demands. The
demands of processes (e.g. compressed air or air suction) can vary depending on
the utilization of the production systems which can change during weeks or months.
Thus, TBS systems have to be observed on different time scales.

The building is on the largest spatial scale of a production system. It contains
all equipment and products and is exposed to the outside environmental conditions
such as temperatures or humidity. These conditions depend on the season and the
location of a building. The relation between the outside conditions and the inside
ambient conditions is influenced by the building construction and the operation of
HVAC systems. Consequently, the energy demands of HVAC systems depends on the
outside conditions and its analysis requires a larger time scale in order to account for
seasonal effects. Figure4.4 illustrates the arrangement of production system elements
within the spatial and temporal scales.

The structure of spatial and temporal scales is the foundation for the framework
which defines of relevant simulation models within a multiscale simulation and their
interactions within the defined system boundaries.

2Sometimes the term TBS is also used equivalent to auxiliary equipment of machines such as a
decentralized cooling system. This equipment is directly related to singlemachines and not allocated
to TBS. It is suggested to be included within the modeling of the related machine.
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Fig. 4.4 Spatial and temporal scales of production systems (pc: process, m: machine)

4.2.3 Multiscale Model Framework

The framework clusters models for production system elements, defines interfaces,
and proposes a lean flow of information between models. It has a generic character
which allows using it as a foundation for multiscale simulations for any type of pro-
duction systems. Consequently, it can be used and adapted for both the production of
cells and the assembly of modules or systems. Figure4.5 illustrates the framework
which consists of layered model categories, exemplary model instances, and indi-
cated information flows. The most upper layer – containing models for machines,
processes, and intermediate or final products – represents the smallest spatial and tem-
poral scale of a production system. While going to lower layers of the framework,
the spatial and temporal scales increase according to the arrangement in Fig. 4.4.
Machines are part of a process chain and operated by workers. The process chain
model is the core of the multiscale model structure and it describes the material flow
within a multi-machine environment. Furthermore, it coordinates the information
flow between models on different scales. A process chain is supplied by machine
related TBS. Other TBS are related to the operation of the building and models of
these TBS system interact with the building model on the lowest framework layer.

The models are embedded in an infrastructure for model coupling which provides
the interfaces and data sources required by the models to interact with each other.
Inputs into the framework are data needed for developing and configuring the indi-
vidual models. Examples are data about machines (e.g. energy demands), product
bills of material, routing of products, machine allocation, or the construction of the
building. Outputs of the multiscale simulation are diverse results which have to be
evaluated and visualized.

The following chapters describe the different elements of themultiscale simulation
framework in the order indicated by the numbers in Fig. 4.5.
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zone 1 zone 2 zone ...

Fig. 4.5 Framework for multiscale simulation of production systems

4.3 Process Chain Model (1)

The process chain model imitates a multi-machine environment and acts as the coor-
dinator of product specific production activities. One function is determining the
schedules of machines and the routing of jobs through the production system in
order to derive demands for TBS as well as the related effects on the building envi-
ronment. For this purpose, it gathers and aggregates information from all machines
to determine demands for supplying units such as related TBS.More specifically, the
model represents the operation of machines to consider their availability, aggregate
the values of state variables of machines (e.g. power demand), to generate perfor-
mance indicators, to incorporate different production strategies and product routing,
and to coordinate the flow of product units between machines according to machine
allocation and schedules. With these functions, the model imitates the dynamics
on the “shop floor” by coordinating the system elements according to the produc-
tion program and defined production rules. The model further allows to examine
the movement of product units for tracing product characteristics and the impacts
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of different product types and production activities on performance indicators (e.g.
utilization, energy demands). Furthermore, the model collects information and acts
as a hub for information exchange with other models.

4.3.1 Process Chain Elements

The process chainmodel, based on an object oriented approach, allowsmodeling of a
process chainwhich consists of a numbermn ofmachines or workstations3 MACHmn,
each with a buffer Bmn with buffer capacity bacmn. Machines are located on a vir-
tual shop floor according to a defined layout. The process chain can be configured to
produce a numberptn of different product typesPTptn such as variants of anodes, cath-
odes, or cells. The production of each product type needs a finite sequence of produc-
tion steps (PSptn). As an example, the production of an anode requires the production
steps mixing, coating and drying, calendering and separation. Hence, the production
steps indicate the sequence of required processes4 where npsptn is the total number
of production steps of product type PTptn (PSptn = {PSptn,1,PSptn,2, . . .PSptn,npsptn}).
Each production step has to be assigned to at least one machine. Vice versa, the
available machines must be able to perform all production steps of all product types.
The allocation of production steps to machines may depend on the machine config-
uration, dimensions or work space, tools, and peripheral equipment. The allocation
determines the routing of a product units through the production system during pro-
duction.

The routing of product units during production is different for batch or single unit
production. Batch production means that an entire job Jjn (with job number jn) is
produced on onemachine simultaneously or until all product units of the job are done
with processing. A flow of single product units means that the first product unit of a
job is forwarded to the next machine as soon as it is donewith processing. The second
product unit starts processing as soon as the first leaves the machine. A job is finished
if all product units have completed all production steps. Combining batch and single
product flow within one simulation is not common since – in traditional DE process
chain simulation – the flow of same types of entities (batches or single product
units) is usually represented by occurring events. However, battery cell production
contains batch and single unit processes. Consequently, the process chain model
must be able to simulate the flow of batches and single product units as well as
diverging and converging flows. For this reason, so-called processing units PUptn

pun

are introduced to the process chain model. Processing units are characterized by a

3The term workstation is used if no specific dedicated machine is utilized for a productions step.
This might be the case in assembly systems relying on manual labor. It is usually not the case in
fully automated series production.
4The differentiation between productions steps and processes is proposed since same processes can
be required multiple times for the production of a product type but with other process parameters
and utilized machines. A described sequence of production steps avoids confusion about which
specific processes are actually required.
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Fig. 4.6 Process chain structure with machines (MACH), buffers (B), material flows (MF), and
processing units (PU)

number pun and an associated product type (ptn). Processing units can represent
batches or single product units and they are the modeled entities which actually
move to machines during simulation until all related production steps are completed.
Using processing units allowsmodeling the flow of a batch frommachine to machine
(as one processing units) as well as the individual flow of several product units (as
several processing units) related to one job. This model structure makes it possible
to utilize multiple machines simultaneously by processing units related to one job
which reflects a realistic system behavior. Figure4.6 shows an exemplary process
chain configuration consisting of machines with buffers and processing units with
the related material flows MFcmn,nmn from the current machine (number of current
machine cmn) to the next machine (number of next machine nmn). Each material
flow is characterized by distance and velocity of the transport of a processing unit
between two machines.5

For each job which has multiple assigned processing units, it has to be specified
which processing unit has to be finished before a consecutive processing unit can
be created. For example, in battery production electrodes are produced in batches.
The resulting semi-finished product after these processes is an electrode coil from
which electrode sheets are cut out. So far, an electrode batch can be represented by
one processing unit. Next, a number of anodes and cathodes are used to create a
cell. Each cell of a job individually travels through the machines until completion.
Each cell is represented by one processing unit. Overall, a job of a specific quantity
of cells starts with the batch production of electrodes and finishes when the last
cell is completed. During system assembly, a number of cells is used to assemble
a module and a number of modules is used to assemble a system. Figure4.7 shows
the relations of processing units for the stages of battery production. The routing of
these processing units depends on the allocation of production steps to machines, the
configuration of the process chain, and the selected control strategy.

5The possible velocity depends on the product type (e.g. size, weight), handling equipment and
conditions such as obstacles (e.g. doors, air locks, slopes). The distance depends on the machines
locations within a defined shop floor coordinate system.
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Fig. 4.7 Structure of processing units for cell production and system assembly

4.3.2 Process Chain Configurations and Control Strategies

The process chain model must have a flexible structure to simulate the sequential
production steps of electrode and cell production as well as flexible material flows
in module and system assembly. As explained in Sect. 2.1.2, there are different types
of material flow (e.g. diverging or converging) and production principles (e.g. job
shop or line) of which the suitability depends on the product type. According to
the product-process matrix presented by Hayes and Wheelwright (1979), job shop
and disconnected line configurations are suitable for few unique product types with
low volumes whereas continuous and connected line configurations are suitable for
high volumes of standardized products. Flexible and agile production systems aim
at handling high volumes of multiple product types (e.g. Langer and Alting 2000;
Hu et al. 2011). An example of an agile process chain configuration is the matrix-
structured configuration (Greschke and Herrmann 2014). Thus, the process chain
model needs an adaptable modeling structure for imitating different process chain
configurations and related control strategies. This is required to replicate existing
systems as realistic as possible and to model innovative configurations and control
strategies. Relevant for battery production are sequential assembly lines or job shops
layouts as well as flexible configurations such as matrix-structured process chains.
Due to their innovative character,matrix-structured process chains are not yet covered
in established simulation tools for material flow analysis.

Matrix-structures avoid a constant cycle time and equip machines in a way that
each can be used for the processing of different production steps of several product
types (Greschke 2016; Greschke and Herrmann 2014; Schönemann et al. 2015). The
redundancy of machine capabilities allows a flexible flow of processing units and
results in a higher utilization of the process chain. This configuration is proposed
for handling a high product variety with uncertain demands for each product type.
Hence, itmaybe a feasible configuration formodule and systemassembly.6 Figure4.8

6In general, the feasibility of a matrix-structure configuration strongly depends on the specific
product types which should be produced or assembled. The realization of a flexible routing may
be difficult for large and heavy products and limited due to space restrictions. Further information
about the concept of matrix-structured production systems and its application and evaluation is

http://dx.doi.org/10.1007/978-3-319-49367-1_2


4.3 Process Chain Model (1) 71

Fig. 4.8 Comparison of a sequential line with a matrix-structured configuration and the possible
material flows

Fig. 4.9 Simplified logic of processing unit flow

illustrates the comparison of a sequential line configuration with a matrix-structured
configuration indicating the possible material flows.

In order to achieve the required adaptable and flexible modeling of different
process chain configurations and control strategies, the routing of specific processing
units is based on autonomous decisions of processing units regarding selecting the
next machine instead of being predetermined in the model configuration. Whereas
traditional DE process chain models typically connect machines or processes cor-
responding to static directional material flows, the proposed model treats machines
and the flow of processing units independently. This can be realized by a hybrid DE
and AB simulation approach in which machines and processing units are modeled
as individual agents. Machines offer capabilities for the processing of production
steps and processing units select suitable machines for each productions step. This
logic enables to model any kind of process chain configuration and control strategy.
Figure4.9 illustrates the logic of the processing unit flow. Once a processing unit
enters a process chain, it searches a suitable machine for the next production step.
If one is found, the processing unit moves to the selected machine or its buffer. The
processing starts after arrival or after the previous processing unit is finished. After
completion of the production step, the processing unit searches a machine for the
next production step or – if all production steps are completed – moves to the finish
area. If no machine can be found and the processing unit is currently at a machine,
the product unit cannot travel anywhere. In this case, the current machine is blocked
until the product unit finds a next machine.

(Footnote 6 continued)
published for example in Greschke (2016), Greschke et al. (2014), Greschke and Herrmann (2014),
and Schönemann et al. (2015).
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Control strategies contain rules and criteria for the selection of suitable machines
and have to consider the given process chain configuration. Examples of control
strategies are “shortest distance” or “shortest throughput time” (Schönemann et al.
2015).

Shortest distance The control strategy shortest distance aims at reducing the dis-
tance a processing unit has to travel through the process chain. After completion
of a production step, a processing unit searches the next suitable machine based
on the distance between the current location and the next machine. This strategy
does not consider the overall lead time of a processing unit. This strategy might
be favorable if the costs of transportation are high.

Shortest throughput time The strategy shortest throughput time aims at short
waiting times for each processing unit resulting in short overall throughput times
and ahigh systemutilizationdue to reduced idling times ofmachines.Aprocessing
unit selects amachinewhich offers the processing of the next production step in the
shortest period of time. According to this strategy, first all machines are checked
whether they can process the next production step. Next, all suitable ones are
analyzed regarding the time until each station could start processing. This time
depends on the state of a machine (e.g. idle or processing), the amount of other
products in the buffer, and on other processing units having reserved themachine.7

The strategy also considers the distance and velocity of the movement between
the current location and the respective machine. The times until processing of all
suitablemachines are compared and the onewith the shortest time until processing
is selected.

Control algorithms based on these strategies require knowledge about the states
and conditions of all machines. A processing unit has to know which machine is
capable of processing the next production step, if a suitable machine is available
(turned on, free, and not disturbed) or what the ramp-up time is, what the capacity
or the current buffer level is, or how much remaining time it takes until the currently
processed processing unit is completed. These dynamic properties are determined in
models for each machine and provided as an input to the process chain model.

2 → Input: properties and states of all machines from machine models.

In the other direction, the process chain model interacts with machine models
by sending information about machine selection and arrival of processing units to
models of machines which have been selected by a processing unit. This allows
modeling the machine operations based on the dynamic scheduling and routing of
jobs and related processing units.

7If a machine is currently in idle state and not reserved by other products, the time till processing
is only determined by the movement. If a machine is currently processing another product, the
remaining processing time as well as the processing times of products in the buffer has to be
considered. If a machine is reserved by another processing unit, the time until processing is at least
the time until the prior processing unit is finished.
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Output → 2 : information of processing unit flow and machine selection of
processing units to machine models.

Control strategies have to consider different shift schedules. Often, facilities oper-
ate in twoor three shifts per day eachwith definedworking hours and break times. The
process chain model has to define the working hours and rules about what happens
with machines during non-working hours.

The described concept for process chain configuration and control strategies
allows to model various kinds of process chains and material flows and to dynami-
cally create schedules for machine operation which also influences the operation of
TBS and workers.

4.3.3 State Variables and Indicators

Performance indicators are used to quantify the operation of a process chain and
the surrounding infrastructure. They indicate the impacts of improvement measures
and enable the comparison of different process chain configurations. The suggested
indicators for thismodel are grouped into the categories energyflows,material inputs,
costs of machine operation, as well as system utilization and processing unit flow.

4.3.3.1 Energy Flows

The total energy demand is relevant for the energetic evaluation of a process chain
as well as for determining the embodied energy of individual processing units and
the average of the embodied energy. Thus, one purpose of the process chain model
is aggregating energy demands related to the operation of machines and to allocate
these demands to processing units.

Energy Demand of Process Chain

The total power demand (in kW) of a process chain and its infrastructure over time
PDTOTAL is the sum of the aggregated power demands of all machines (PDMACH ) and
the indirect power demand of the related TBS (PDTBS).

PDTOTAL(t) = PDMACH(t) + PDTBS(t) (4.1)

Figure4.10 illustrates the considered energy flows related to machines and TBS for
an exemplary building zone.

PDMACH at time t is determined by summing up the power demands of all
machines.

PDMACH(t) =
MN∑

mn=1

PDMACHmn(t) (4.2)
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Fig. 4.10 Energy flows (PD:
power demand, Q̇: heat flow,
CAD: compressed air
demand, CAG: compressed
air generation) for an
exemplary building

Since machines and other equipment demand energy not only during processing but
also during non-productive times (Gutowski et al. 2006; Devoldere et al. 2007), it is
important to consider the actual power demand over time instead of the average power
demand. The power demands of machines must be provided by machine models.

2 → Input: power demand PDMACHmn from machine models.

PDTBS is determined by summing up the power demands of TBS systems. For
battery production, relevant TBS are lighting, compressed air generation (CAG), and
HVAC of all building zones.

PDTBS(t) = PDLIGHTS(t) + PDCAG(CADMACH , t) + PDHVAC(Q̇TOTAL, t) (4.3)

The first term refers to the power demand of lights which is determined by a light-
ing model considering the required lighting intensity and efficiency for all building
zones.

5 → Input: power demand PDLIGHTS from lighting model.

Both the power demand of CAG and HVAC depend on different operational
factors. PDCAG depends on the compressed air demand CADMACH (in m3/h) which
is calculated by summing up the demands of all machines.

CADMACH(t) =
MN∑

mn=1

CADMACHmn(t) (4.4)

This demand is forwarded to the CAG model for determining PDCAG.

2 → Input: compressed air demand CADMACHmn from machine models.

Output→ 4 : total demand CADMACH to CAG model.
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The CAG model has to return the determined power demand (e.g. for compres-
sors) which is caused by the operation required to provide the requested amount of
compressed air. The CAG model further determines the pressure within the CAG
system which is a relevant information for machines (if the pressure is too low, a
machine may not be able to operate).

5 → Input: power demand PDCAG from the CAG model.

5 → Input: system pressure cap from the CAG model.

PDHVAC depend – among other factors – on heat emissions Q̇TOTAL to the building.
That means that the process chain model has to aggregate the heat emissions from
various sources and forward this information for determining the power demands
for heating, cooling, and ventilation. Machines demand power which is transformed
into heat and emitted to the building (Q̇MACH ).

2 → Input: heat emissions Q̇MACHmn from machine models.

Furthermore, lights are heat sources emitting heat (Q̇LIGHTS) depending on the sched-
ule (Ryckaert et al. 2010) and type of light source.

Output→ 5 : signals for turning lights on and off to the lighting model.

5 → Input: heat emissions Q̇LIGHTS from lighting model.

In addition, workers emit heat depending on their activity level (Harriman 2002).
The behavior of workers, depending on required machine operation and schedules,
can be modeled in more detail consider different levels of activity.

Output → 4 : required activity of workers to worker models.

5 → Input: heat emissions of workers Q̇WO from worker models.

In general, heat can also be emitted by products (here: processing units) if their
temperature is increased during processing (Wright et al. 2013). However, this is
usually not relevant in battery production. Consequently, the total heat emissions
can be calculated by summing up all heat emissions.

Q̇TOTAL = Q̇MACH + Q̇LIGHTS + Q̇WO (4.5)

These heat emissions act as heat gains inside the building andmaycause a temperature
increase. Thus, the process chain model has to communicate the heat emissions to
the building model which determines the resulting inside temperatures.
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Output → 6 : total heat emissions Q̇TOTAL to building model.

The building model provides the indoor temperature to the HVAC model which
calculates the required heating or cooling loads and the resulting power demand.

5 → Input: power demand of HVAC system PDHVAC from HVAC model.

Besides electricity, HVAC systems often use gas or district heat for heating or dehu-
midification. These demands can also be collected within the process chain model.

Since the requirements regarding indoor environment (e.g. temperature, humidity,
cleanness, illumination) are not necessarily the same for an entire building, it is
proposed to define building zones with identical conditions.8 Hence, heat emissions
have to be allocated to building zones. This requires knowledge about the location of
heat sources within the building. Machines can be allocated to zones based a process
chain layout and lights can directly be associated to a zone. Workers, however, can
move inside the building and across building zones. Worker models must be able to
simulate the movement and location of all workers within the building.9

4 → Input: current locations of workers from worker models.

The total power demand is base for the calculation of the total energy demand
EDTOTAL during a period of time (tstart until tfinish).

EDTOTAL =
tfinish∫

tstart

PDTOTAL(t) dt (4.6)

This total energy demand can be further broken down into the used energy carriers.
While machines, lighting, and compressed air generation usually require electric
energy, energy for building heating is often generated from natural gas or provided
as district heat. This breakdown of energy carriers as well as the related consumption
pattern is important since different energy carriers may cause different energy costs
(depending on the specific energy supply contract). As an example, industrial supply
contracts for electricity often determine the costs considering the electrical peak
power demand in addition to the total energy demand (Thiede et al. 2013b).Moreover,
the environmental impacts related to energy use differ for each energy carrier. For
example, the equivalent CO2 emissions per generated kWh depend on the regional
electricity mix.10

8The differentiation of building zones is common for building simulation and also suggested by
Seow and Rahimifard (2011) for the allocation of indirect energy demands to specific processes.
9Tracking of heat flows from movable objects to the building is proposed by Wright et al. (2013).
10The equivalent CO2 emissions from electricity generation in the German electricity mix in 2014
are 0.609kg COeq

2 /kWh (Umweltbundesamt 2015).
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Fig. 4.11 Allocation of
direct and indirect energy
demands of production to
direct and indirect shares of
embodied energy per
processing unit; Figure
inspired by Posselt et al.
(2014)

Embodied Energy of Processing Units

With reference to Seow and Rahimifard (2011), the embodied energy of products
is another interesting indicator. In the process chain model, the embodied energy of
a processing unit is made up of the direct and indirect energy demands which are
allocated to this unit. Direct energy demands are related to the actual value adding
activity. Indirect energy demands are caused by non-value adding activities as well
as the services and infrastructure needed to maintain the required conditions for the
processing. Figure4.11 illustrates the allocation of energy demands to the direct and
indirect shares of embodied energy.

In the model, the direct embodied energy deepun of a processing unit is determined
by integrating the power demands of the utilized machines11 over the processing
times (from tstart,ps to tfinish,ps) of all production steps (ps = 1, . . . , npsptn) of the
particular processing unit divided by the quantity of processing units qpuMACH which
is simultaneously processed in a machine.

deepun =

npsptn∑
ps=1

tfinish,ps∫
tstart,ps

PDMACH dt

qpuMACH
(4.7)

There are different strategies for allocating indirect energydemands frommachines
in idle state or peripheral equipment and TBS to the indirect embodied energy ieepun
of processing units. The process chain model allows to evaluate the impacts of differ-
ent allocation strategies. One strategy is to subtract the sum on the direct embodied
energy demands of all processing units being finished during an observed period of
time from the total energy demand and to divide the remainder by the quantity of
finished processing units qfpu.

ieepun = EDTOTAL − ∑
deepun

qfpu
(4.8)

It could also be the case, that compressed air is required for the actual processing
of processing units. In this case, a share of the energy demand for compressed air

11In this model, energy demands of linked auxiliary equipment and services directly related to a
machine during the processing state are also considered as direct energy demands.
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generation could be assigned to the direct embodied energy of the certain processing
units. Moreover, if not all processing units are being processed inside all building
zones, it is also possible within the model to allocate the energy demands of building
zones (e.g. of a dry room) only to processing units which were processed inside these
zones. The allocation of indirect energy demands was discussed in detail by Posselt
et al. (2014).

The embodied energy of a processing unit indicates howmuch energywas used for
the production. If a processing unit is used to create another processing unit (e.g. cells
are assembled into a module), the embodied energy has to be added to the embodied
energy of the receiving processing unit. A breakdown of the embodied energy allows
determining energetic hot-spots as well as evaluating impacts of process parameters
(on direct energy demand) and production strategies such as different batch or buffer
sizes (on indirect energy demand).

4.3.3.2 Material Inputs

During processing, the transformation of a processing unit is carried out using energy
and materials. For example, in the mixing process, diverse materials are fed into a
mixer to create a viscous slurry. Sincematerials contribute to a large share of costs and
environmental impacts of batteries, the evaluation of required materials is relevant.
The process chain model can allocate consumed material fractions to processing
units and determine the increase of material costs along the process chain. Themodel
contains a set of material types MATmatn (with number matn = 1, . . . ,MTN) and
related prices MATPmatn. During processing, an amount of a material type matamatn
is added to the processing unit along with cost information. The material costs of
a processing unit matcpun can be calculated during production by multiplying the
embodied amount of each material type with the unit price.

matcpun =
MATN∑

matn=1

matamatn · MATPmatn (4.9)

The necessary amount of each material per production stepmata
PSptn,i
matn can be defined

for each process within the process chain model or within process models and pro-
vided to the process chain model.

3 → Input: amount of each material type mata
PSptn,i
matn for production step i of

product type ptn from process models.

Beside direct material demands of processes, machines and processes often require
indirect auxiliary materials such as lubricants or other media. These indirect material
demands are determined within each machine and aggregated per auxiliary material
type AUXMATauxmatn on processes chain level. These demands can be allocated to
processing units in the same manner as indirect energy demands.
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2 → Input: amount of each auxiliary material type auxmataauxmatnmn of all
machines from machine models.

In a similar way, environmental impacts related to the amount of used material
can be added to processing units for each material type. The environmental impact of
materials can be represented by equivalent CO2 emissions (kgCOeq

2 /kg)). This allows
determining the current environmental impacts cause by finished and semi-finished
processing units at a specific point in time.

4.3.3.3 Costs of Machine Operation

The operation of machines induces fix and variable costs. Examples of fix costs
are costs resulting from depreciation, interests, insurances, used building space, etc.
Examples of variable costs are costs due to maintenance and repairs, energy demand,
auxiliaries (e.g. lubricants), etc. To assign the costs ofmachine operation to a process-
ing unit, machine-hour rates can be derived from the sum of all costs related to the
operation of a machine divided by the annual usage of the machine (Plinke and
Rese 2006). The process chain model allows to allocate defined machine-hour rates
MHRmn for each machine (in EURO/h) to processing units depending on the time
spent on a specific machine.

4.3.3.4 System Utilization and Processing Unit Flow

The utilization of a process chain and the flow of processing units are relevant indi-
cators for the economic evaluation of process chains.

Utilization

The utilization of a process chain utiPC or amachine utiMACH is defined by the ratio of
productive time shares and overall available production time. Figure4.12 illustrates
the operational time shares of a machine as fractions of the available production time
(e.g. shift time). A machine is only productive in processing state and not if it is in
idle state (e.g. during break times or if no jobs are available), blocked, or in failure
state.

In the model, the utilization of a process chain at a specific point in time t utiPCt

is determined by the ratio between the quantity of machines processing and the
total quantity of machines. For example, if four machines out of ten machines are
processing at time t, utiPCt is 40%. The mean utilization of a process chain utiPCmean

Fig. 4.12 Operational time shares of a machine during the available production time
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for an observed time period (e.g. shift or week) can be determined as the mean of
utiPC .

Yield

The yield Yptn
t at time t is the output of finished processing units of type ptn in the

desired quality (reduced by the discarded units) during a time period from start of
production until t. The yield refers to a job of a product type (e.g. yield of cells). This
indicator is important for the allocation of indirect energy demands and production
costs.

Production Lead Time of Jobs

The production lead time pltjn of a job is the time between the introduction of the first
processing unit of a job to the process chain (tjobstartjn ) until the last processing unit
is finished (tjobfinishjn ). This time can be determined for each job but the average lead
time apltptn resulting from all jobs is also relevant for the evaluation of the overall
performance of a process chain. This average is calculated by dividing the sum of
the lead times by the yield.

Value Adding and Non-value Adding Time Shares

The ratio of value adding to non-value adding time shares describes how fluent
processing units travel through the process chain. Figure4.13 illustrates the different
time shares of the lead time of a processing unit. This sequence corresponds to the
processing unit flow logic shown in Fig. 4.9.

The only value adding activity is the processing in a machine. All other activ-
ities such as handling, movement, or waiting occur during production but do not
directly add value. The value adding time share of a processing unit is determined
by adding the processing times of all production steps. The value must be divided by
the entire lead time of the processing unit. The ratio can also be calculated for jobs
by considering the time shares of the associated processing units.

Blocking

Whenever a processing unit cannot leave a machine because no next machine is
available, the current machine gets blocked. No new processing unit can enter the
machine because the finished processing unit is still present. Such blocking causes
waiting times for processing units and idle times for blocked machines and con-
sequently result in non-value adding time shares and energy demands. The process
chainmodel can determine the quantity of occurring blocking and the related produc-
tion steps which caused each blocking. This enables the identification of bottlenecks.

Fig. 4.13 Time shares of processing unit flow during production (M: moving; W: waiting;
B: blocked; P: processing)
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All described performance indicators can be used for evaluating different aspects
of the process chain operation which is effected by the behavior of its various ele-
ments and the surrounding infrastructure. The consideration of relevant cause-effect
relationships between model elements requires detailed modeling.

4.4 Concepts for Sub-models

The different models presented in the framework have to be further defined regarding
the required inputs, the inherent model logic, and the output results. First, a model
concept is proposed for machine models (Sect. 4.4.1). Second, a concept for mod-
eling product characteristics and specifications is explained which can be combined
with process models describing the creation and transformation of product character-
istics (Sect. 4.4.2). Third, a concept for human worker activity modeling is presented
(Sect. 4.4.3). Fourth, concepts and relevant aspects are derived for modeling of the
operation of TBS systems (Sect. 4.4.4) for lighting, compressed air generation, and
HVAC. Fifth, it is explained how a building model can describe the interactions of
a building with the surrounding environment and how the inside conditions can be
determined in order to derive required heating and cooling loads (Sect. 4.4.5).

4.4.1 Machine Models (2)

The behavior and operation of each machine within the process chain needs to be
described by a machine model. The purposes of machine models are

• modeling of machine operation over time according to the schedule provided by
the process chain model,

• description of machine states of entire machines or for all relevant components,
• determination of demand profiles for energy carriers and resulting heat emissions,
as well as

• modeling the machine failure behavior.

Machinemodels can be developed and configured based on production data andmea-
surements (e.g. Herrmann et al. 2011) or by usingmathematical equations describing
themachine operation based on physical effects (e.g. Eisele 2014; Heinzl et al. 2012).
Furthermore, machine models can be of different detail (Hesselbach 2012). On the
one hand, a machine can be treated as a black box. On the other hand, machines can
be described in more detail by modeling the operation of each component. As a min-
imum requirement for the multiscale simulation, machine models have to describe
machine states, the transition conditions between states, and parameters associated
to states (e.g. energy demand during idle). Moreover, the compressed air demand
and heat emissions of a machine have to be calculated. Information about states,



82 4 Multiscale Simulation Modeling Concept for Battery Production Systems

Fig. 4.14 Generic state chart for modeling of the machine operation

demands, and emissions is required by the process chain model. To fulfill the min-
imum requirements, a generic state-based machine model – applicable for any kind
of machine type – can be parametrized for specific machines.

4.4.1.1 Generic Machine Model

Machines can be described by static properties such as geometrical dimensions,
capacity and buffer size, as well as by dynamic characteristics such as electric power
and compressed air demands, media demands (e.g. cooling lubricant), and heat emis-
sions. The dynamic characteristics depend on the machine state.

Machine States

During production, a machine can be in different operational states with specific
transition conditions between these states. All machines can be described by generic
states such as off, on, ramp-up, idle, setup, processing, blocked, and failure. Thus, a
generic state chart has been created to model the behavior of a machine in a generic
manner (similar as in Schönemann et al. 2015; Mousavi et al. 2015; Thiede 2012;
Dietmair et al. 2009). This chart is shown in Fig. 4.14. Initially, a machine is in off
state and it is turned on if the model receives the signal from the process chain model,
that it has been selected by a processing unit.

1 → Input: signal about allocation of processing unit tomachine fromprocess
chain model.
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When a machine is turned on, it is in the ramp-up state until it switches to idle state
after the ramp-up time tramp. When a processing unit arrives, the machine switches
into processing or setup state.

1 → Input: signal about arrival of a processing unit (and its product type)
from process chain model.

If the product type requires a setup, the machine switches to processing state after
the setup time tsetup. After the processing time tprocess, the processing unit will leave
the machine. If the processing unit has left and a next processing unit is waiting
for processing, the machine will switch to setup or processing state again. If no
further product is available for processing, the machine switches to idle state. If
no next processing unit arrives for processing, the machine is switched off after the
shutdown time tshutdown. If a processing unit cannot leave themachine after processing
(if no next machine is available), the current machine switches to the blocked state
and stays in this state until the processing unit leaves.

1 → Input: signal about leaving of processing unit from process chainmodel.

If a machine failure occurs, the machine switches from the available to the failure
state. Processing units which are currently processed stay in the machine until the
failure is repaired. The time between failures is represented by the MTTF. The time
until a failure is resolved is represented by the mean time to repair (MTTR). These
times are usually modeled by using probability distributions which describe the
characteristics of each machine.12 The history element (H) indicates that when a
failure is resolved, the state chart switches to the state within the available state in
which the failure occurred.13 Information about each state change is provided to the
process chain model.

Output → 1 : states and conditions of machine to process chain models.

12In general, any kind of probability distribution can be used for describing MTTF and MTTR.
However, often a Weibull function is used since it is flexible and can be configured by defining
suitable scale and shape parameters (Birolini 2010).
13This assumption is not always valid. It is possible that failures required a machine to be switched
off completely or that the currently processes product units will not be further processed.
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Fig. 4.15 Exemplary power load profile of a machine with associated operational states

Electric Power and Compressed Air Demands

The process chain model requires information about the machine’s power demand
PDMACHmn and compressed air demand CADMACHmn . Both the power and compressed
air demands depend on machine states. Figure4.15 illustrates an exemplary power
demand profile of a machine for different states. In the generic model, the power
demand of a machine is modeled by an average power demand value for each state,
i.e. one (electric) power demand value PDMACHstate

mn
and compressed air demand value

CADMACHstate
mn

for each state. These values can be determined by measurements or
estimated based onmanufacturers specification and the nominal power of a machine.
The power demand profile can show different profiles depending on the type of
machine.

Output → 1 : power demand PDMACHmn to process chain model.

Output → 1 : compressed air demand CADMACHmn to process chain model.

Heat Emissions from Machines

During the operation of a machine, the supplied energy is partially converted into
heat due to conversion losses and inefficiencies.14 These internal heat sources lead
to a continuous increase of the machine temperature until a steady state is reached.
The warm machine emits heat Q̇MACHmn from the machine surface to the building
environment through convection and radiation15 (Hesselbach 2012). The thermal
behavior of a machine has to be modeled with a different approach compared to
power and compressed air demand since the system reacts slower on changes induced
by different states. The machine slowly heats up after it is turned on and it cools
down after it is turned off. The heat transfer through convection can be calculated
base on the convective heat transfer factor α, the machine surface area Amn and the
temperature difference between the machine temperature at the surface Tmn and the
air temperature of the building zone Tz (Lampinen et al. 2007).

Q̇conv = α · Amn · (Tmn − Tz) (4.10)

14A comprehensive description of energy conversion in factories can be found in Posselt (2016).
15Heat transfer through conduction can be neglected since air has a low thermal conductivitiy.
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The heat transfer through radiation can be determined based on the emissivity16 of
the machine εmn, the Stefan-Boltzmann constant17 σ , the machine surface area Amn

and the temperature difference between Tmn and Tz to the fourth power.18

Q̇rad = ε · σ · Amn · (
Tmn

4 − Tz
4) (4.11)

6 → Input: temperature of building zone Tz from building model.

The thermal behavior of a machine can be modeled at different levels of detail.
In the generic machine model, a machine is considered as a mass (of one material)
which is sufficient for a first analysis of the thermal behavior. For simplification, heat
emissions from the machine through radiation are neglected. This allows calculating
the machine temperature with the following equation19 (Hesselbach 2012).

Ṫmn + α · Amn

mmn · cmn · Tmn = Q̇HSmn + α · Amn · Tz
mmn · cmn (4.12)

Theheat source Q̇HS is simplifiedmodeled as the electrical power input to themachine
reduced by an efficiency factor η indicating the share of power which is not converted
into heat (e.g. converted into internal energy).

Q̇HSmn = PDMACHmn(t) · (1 − η) (4.13)

The described equations can be used to determine the total heat emission of a
machine Q̇MACHmn . This value is passed to the process chain model for the calculation
of the entire internal heat gains of a building zone.

Output → 1 : heat emissions Q̇MACHmn to process chain model.

In summary, the generic machine model enables the simulation of sequences of
machine states based on commands from the process chain about the production pro-
gram. It enables the generation of state-based profiles for power demand, compressed
air demand, and heat emissions. However, the generic models considers a machine
as a black box and relies on various assumptions. Consequently, the accuracy of the

16Emissivity values of polished aluminum and polished steel are 0.77 or 0.15, respectively.
17σ = 5.6703 · 10−8W/m2K4.
18Heat exchange through radiation occurs between themachine surface and the surrounding surfaces
such as walls, the ceiling, or other machine surfaces. For simplification, Hesselbach suggests to use
the average room temperature to determine the temperature difference (Hesselbach 2012).
19The equation is derived from the law Q = m · c · ΔT which defines the heat required to increase
the temperature of a body by ΔT . The acting heat flows are the internal heat source reduced by
heat emissions to the building environment. This leads to m · c dTmdt = Q̇HS − Q̇con − Q̇rad . For
simplification, radiation is neglected in Eq.4.12.
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achievable results is reduced in favor of modeling complexity. If a higher accuracy
is required, machine models can be of more detail in different regards.

4.4.1.2 Detailed Machine Model

Detailed models can substitute a generic machine model or be used in addition to
determine the previously definedmodel outputs based on the defined inputs. Thismay
become relevant since many modern machines can contain several functions such as
performing different processes, tool change, waste removal, and others (Gutowski
et al. 2009). Thus, the states of a machine can be broken down further compared
to the generic model. Hence, a generic model may not provide the necessary func-
tionality to imitate the machine behavior correctly. In this case, detailed models can
describe physical effects within the machine as well as the behavior and interactions
of different machine components. Depending on the components of a machine, on
a lower level, more specific states can be differentiated for individual machines. As
examples, a mixer could have the states “low intensity mixing” and “high intensity
mixing” and component specific transition conditions.

Power and Compressed Air Demand

The power demand of a machine is the sum of the power demands of all components
(e.g. Dietmair et al. 2009).

PDMACHmn(t) =
C∑

c=1

PDmnc(t) (4.14)

C indicates the number of different components. Likewise, the compressed air
demands is the sum of the demands of all components (e.g. grippers).

CADMACHmn(t) =
C∑

c=1

CADmnc(t) (4.15)

The power demands of each component can be either determined by measurements
or by physical modeling such as presented in Eisele (2014) and Schrems (2014).
Abele et al. presented a combined approach of machine and process modeling for
determination of a machine’s power demand (Abele et al. 2015). In every case, the
operational states of components have to be linked to the overall states of themachine.
The advantage of component based models is the possibility to identify components
with high energy demands. These components can be modeled with greater detail to
improve the machine model accuracy. Moreover, the effect of shutdown strategies or
stand-by modes can be tested for these components within simulation experiments.
Furthermore, the power demand of the entire machine within the different generic
states can be modeled at higher resolution since components can switch between
their states within the superordinate processing state.
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Heat Emissions

Instead of treating a machine as one mass with one internal heat source, the thermal
modeling of a machine can be detailed by dividing a machine in different virtual lay-
ers or by considering multiple internal heat sources induce by different components
as well as additional heat flows out of the machine (e.g. through cooling systems
or products) (Hesselbach 2012). A layered model allows imitating the heat distribu-
tion inside a machine and a more accurate calculation of heat emissions. Moreover,
this enables predicting the thermal conditions within a machine. Knowledge about
these conditions may be relevant for processes which rely on constant or specific
temperatures (e.g. a furnace with a temperature profile).

Failure Behavior

Machine models on component level allow modeling the failure behavior of com-
ponents. This may be more accurate compared to a black box machine model and
could be relevant for analyzing maintenance strategies. Detailed models can be used
to specify MTTF and MTTR for each component. In addition, the consequences of
the failing of a particular component can be specified within the model logic. Some
failures allow further machine operation but result in decreased product quality while
other failures impede further use of the machine until completed repair.

As disadvantages, detailed models are more complicated to develop, have higher
requirements regarding computational power, and need longer to compute. Further-
more, in general they rely on assumptions due to missing detailed information and
data about machines properties such as component behavior, materials, heat transfer
coefficients, etc. Thus, the trade-off between potentially higher accuracy – of detailed
models compared to the generic model – and higher modeling effort has to be evalu-
ated carefully. In some cases, combinations of generic machine models with detailed
specific models for certain aspects may provide better simulation results and foster a
deeper system understanding without causing very high modeling effort. Figure4.16
presents the advantages and disadvantages of both generic and detailed machine
models.

Fig. 4.16 Advantages and disadvantages of generic and detailed machine models
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4.4.2 Product and Process Models (3)

On the one hand, various factors during cell production and system assembly influ-
ence the performance and quality of final cells and battery systems.On the other hand,
product specifications of cells and systems influence the operation of machines and
process chains, affecting also other production system element. Simulating these
influences requires models for describing the specifications and characteristics of
processing units during production as well as models for processes describing the
creation and modification of product characteristics.

4.4.2.1 Product Model

In the multiscale simulation, product models characterize processing units during
production regarding their specifications and current characteristics. The purposes
of product models are

• providing information about the required production steps, processes, usable
machines, and related product specifications,

• describing the evolution of product characteristics along all production steps, and
• tracking and storing information about the production progress.

A product model has to relate to one particular processing unit which is associated to
a subordinate job. A processing units track the existing and created product charac-
teristics as well as time stamps for each production step. The defined job structure of
associated processing units allows to exchange product characteristics between dif-
ferent processing units within one job. This is important if processing units become
parts of other processing units and the characteristics of the latter depend on the
characteristics of the former. An example is the assembly of multiple electrodes with
specific characteristics into cells.

Output → 3 : product specifications to process models.

3 Input →: product characteristics from process models.

In order to describe the characteristics of a processing unit during production, a
set of characteristics PCHARptn can be defined for each product type. These charac-
teristics can be created or transformed within processes. Wuest (2015) developed a
concept for describing and tracking of product characteristics along a process chain
enabling examining the effects of created or transformed characteristics on consec-
utive processes. Following this concept, semi-finished processing units can be in
different states during production where state 0 is the state prior to production (raw
materials) and state npsptn is the final state after completing the last production step.
Figure4.17 illustrates the concept of product states and the related product char-
acteristics (A, B, …). The figure shows that product characteristics can be created
(indicated by *) or transformed (indicated by ’) from one product state to another.
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Fig. 4.17 Generic states (0–npsptn) and exemplary characteristics (A–F)

Fig. 4.18 Process chain and product states in cell production

The transition from one state to another is realized with processes. This product
model concept can be applied to any product type. The model development requires
the identification of all product states during production and the related product
characteristics. Following the defined system boundaries, product models have to be
differentiated for electrodes and cells as well as for modules and systems.

Electrodes and Cells

In general, the production of (LIB) cells requires 13 different processes (see
Sect. 2.1.3) whereas the first seven processes of electrode production are the same for
both anodes and cathodes. Consequently, there are 14 different product states within
cell production whereas states 1–7 are differentiated for anodes (a) and cathodes (c).
In these first seven states, anodes and cathodes have the same characteristics but each
of them potentially with different values. Figure4.18 illustrates the product states of
anodes, cathodes and cells during production with the related processes.20

Product state 0 in the product model refers to the raw materials and their spe-
cific properties (e.g. size, shape, and morphology of particles). State 1 refers to the
prepared materials with the characteristics weight fraction of each added material,

20Here, separation is considered as one process although in reality it could be differentiated between
slitting of coils to width and cutting of individual electrode sheets.

http://dx.doi.org/10.1007/978-3-319-49367-1_2
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conductivity, and packing density. State 2 refers to the finished slurrywith the charac-
teristics weight fractions, homogeneity, solid content, surface tension, viscosity, and
slurry density. The created slurry is coated on the collector foil and immobilized by
the drying process. State 3 refers to the foil with wet coating layer and state 4 refers
to the dried electrode coil. The coating procedure has substantial influence on the
homogeneity and thickness of the coating layer. Furthermore, relevant characteristics
of state 3 are the coating length lc and width wc as well as the realized mass load mL,
the coating layer density and the wet coating thickness. Moreover, relevant are the
properties of the collector foil (e.g. material, density, thickness). The drying process
influences the distribution of the binder which is dissolved in the coating layer, the
evaporation of the solvent, the adhesion of particles to the collector foil, as well as
the porosity of the dried coating layer (state 4). The coated electrode is compressed
in the following calendering process. State 6 refers to the compressed electrode. The
calendering process has influence on the density of the coating, coating layer thick-
ness, electrode thickness and porosity, pore radius, as well as the adhesion to the
current collector (Haselrieder et al. 2013). State 6 refers to the separated electrode
unit which will be processed in the later cell assembly. The main characteristics of
state 6 are cutting quality (e.g. form tolerance, cutting edge clearness), and loose
particle accumulations21 (Baumeister and Fleischer 2014). State 7 refers to the dried
electrodes. State 8 refers to the created package. Characteristics are the number of
anodes and cathodes, the accuracy of the electrode positioning, as well as the balanc-
ing of the electrode capacities (Schmitt et al. 2014). Also the separator is addedwhich
can be specified by its material properties. In the following processes, the arrester are
connected to the current collector (state 9), the package is housed (state 10) and the
housing is filled with electrolyte (state 11). Relevant characteristics of these states
are the quality of the contacting weld (state 9), the amount of electrolyte and the
wetting distribution inside the cell (state 11). The last processes after the assembly
are forming and aging. During formation, a cell is initially charged which activates
the active material. A low current is used to form the SEI layer on anodes (Yoshio
et al. 2009). Measurements are taken for the cells open circuit voltage (OCV) and
capacity (state 12). After forming, the cells are stored (aging) at a defined SOC
(state 13). Table4.1 lists the states of electrodes and cells with related processes as
well as created and transformed product characteristic.

A job refers to the production of a quantity of cells. It triggers the production of
anodes and cathodes as well as the assembly of cells. The electrode coils are pro-
duced in a sequence of batch processes. The coils are separated into single electrode
sheets. Consequently, the product states of the electrodes have to be differentiated
for anodes and cathodes and allocated to each single electrode sheet. The cells are
assembled in unit processes. Consequently, each cell has its own states and values
of characteristics. The characteristics of electrodes have to be forwarded to each
processing unit representing a cell. These relations are shown in Fig. 4.19.

21As explained, there may also be a differentiation between slitting of electrode coils and the cutting
of single electrode sheets.Thus, there may be another state in the product model.
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Table 4.1 Product states, characteristics, and related processes for cell production

State Description Previous process Created characteristics Transformed
characteristics

0 Raw material:
active materials,
additives

Raw material properties;
particle size(s);
density(ies); CB
agglomerate size

1a/c Mixed material
fractions

Dry mixing Weight fractions;
conductivity; packing
density

2a/c Slurry Wet mixing Coatable amount;
viscosity; solid content;
homogenity; surface
tension

CB agglomerate
size; weight
fractions

3a/c Coated foil Coating Homogeneity of layer;
mass load; wet coating
thickness; collector
properties

4a/c Dried electrode Drying Electrode thickness;
remaining solvent
content; binder
distribution; particle
adhesion; porosity;
density

Pore diameter

5a/c Compressed
electrode

Calendering Electrode
thickness; coating
thickness; density
of coating; particle
adhesion

6a/c Seperated
electrodes

Slitting, cutting Electrode geometry,
cutting quality; particle
accumulations

7a/c Dried electrodes Drying Remaining water
content

8 Wrapped electrode
stack/winding

Folding, stacking,
winding

No. of layers; placement
accuracy; capacity;
separator porosity;
separator thickness

9 Contacted
electrode package

Contacting Quality of arrester welds

10 Pouch package Housing Housing material

11 Assembled cell
with electrolyte

Filling, closing Amount of electrolyte;
wetting distribution

12 Formed and
activated cell

Forming SOC; OCV; SEI

13 Finished cell Aging Storage duration SOC
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Fig. 4.19 Schema for the transfer of product characteristics between processing units and the
subordinate job (exemplary for a job of cells)

Modules and Systems

Battery modules and systems can also be described during assembly by states with
related processes characteristics. Product state 0 refers to the cells and components
required for the assembly of a module. In the first process, cells are inspected. It
is essential to combine cells within a module which have the same performance.
The combination of cells with different performance may have negative impact on
the entire module whose behavior is determined by the weakest cell. Similar to the
selective assembly of electrodes into cells (Schmitt et al. 2014), strategies and mea-
sures for selective and adaptive assembly may be reasonable for module assembly.
State 1 refers to the tested selected cells. State 2 refers to the pre-assembled cells
and state 3 refers to the contacted cells. A relevant characteristic in state 3 is the
quality of the welds which is checked by a voltage test. State 4 refers to a module
with installed circuit board and sensors. State 5 refers to the entire assembly after
testing. The module is in state 6 after the mounting of cooling plates and in state 7
after housing. State 8 refers to a tested finished module.

State 9 describes the assembly of modules on a base plate and state 10 refers to the
final housed assembly. After the initial charging, a system is in state 11. A completed
system after testing is in state 12. The states of a module and a systemwith the related
processes as well as created and transformed characteristics are listed in Table4.2.

A job may refer to the assembly of a quantity of modules or systems. In module
assembly, the characteristics of selected cells must be copied to the characteristics
of the containing module. In system assembly, the characteristics of cells contained
in modules have to become part of the system’s characteristics.

In summary, the derived product model can describe the states of processing
units during production and the related characteristics. Specific product models can
contain parameters for defined product specification as well as variables and arrays
to represent product characteristics for each processing unit.

The presented product states and related characteristics cover the characteristics
which are often discussed in literature. However, the proposed product model allows
to easily extend the set of modeled characteristics to represent specific LIB sys-
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Table 4.2 Product states, characteristics and related processes for module and system assembly

State Description Previous process Created
characteristics

Transformed
characteristics

0 Cells and
components

Cell types

1 Selected cells for
module assembly

Inspection Characteristics of
cells

2 Assembled cells Pre-assembly Number of cells per
assembly; capacity;
voltage; current

3 Assembled and
contacted cells

Contacting Quality of joints;
internal resistance

4 Assembly with
circuit boards and
sensors

Installation of circuit
boards and sensors

Number of sensors

5 Tested assembly Testing State of assembly

6 Assembly with
cooling system

Cooling plate
installation

7 Housed module Housing

8 Tested module Testing State of housed
assembly

9 Modules on system
base plate

Module placing and
fixation

Capacity; voltage;
current

10 Housed components Component
installation and
housing

11 Charged and flashed
(software) system

Flashing and
charging

SOC

12 Closed housing
which is tested
regarding
leak-tightness

Closing and testing

tems or other battery types. The exact creation and transformation of the product
characteristics can be defined within process models.

4.4.2.2 Process Models

The purpose of process models is determining resulting product and process char-
acteristics for each product state (of a processing unit) considering the influences
between product specifications, process parameters, existing product characteristics,
and various other direct and indirect internal and external factors (e.g. Winter 2016).
Product characteristics can be created or transformed during processing of a pro-
duction step. In a deterministic case, process models determine values of product
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characteristics – based on relationships between specification and process parame-
ters – and store this information within a product model of a particular processing
unit. The resulting values of product characteristics can be predefined in a process
model (e.g. based on experimental results or desired values) or calculated based on
mathematical equations.

3 → Input: product specifications from product model.

Output → 3 : product characteristics to product model.

However, the results of production processes are subject to variations and accepted
within defined tolerance limits (Geiger and Kotte 2005; Brüggemann and Bremer
2015). The variation of processing results can have different origins. Variation can
be induced by machines (e.g. through geometric or thermal errors), process para-
meters (e.g. inaccurate setting of velocities or temperature profiles), materials (e.g.
insufficient quality or wrong amounts), method or process selection, environmental
conditions (e.g. temperature or humidity), as well as by humans being involved in
the process22 (Wuest 2015; Brüggemann and Bremer 2015).

2 → Input: influences (e.g. machining tolerances) from machine model.

6 → Input: environmental conditions from building model.

4 → Input: influences (e.g. performance level) from human worker model.

Since various processes are required for battery production and differentmachines
can be used, it is not possible to define generic influences which are valid for all
processes.

The variations of process results are considered within the multiscale simulation
to analyze the impacts of variations in characteristics along a process chain. This
consideration allows to evaluate the effects of individual processes on the overall
performance of final products. For example, electrodes with different variations in
characteristics are assembled into one cell. This effects the performance of each
cell. Cells with different performance are combined within one module. Thus, it is
important to consider existing characteristics within following processes.

3 → Input: existing product characteristics from product model.

Figure4.20 summarizes the inputs and outputs of a process model. A product model
provides information about product specifications and existing product characteris-
tics as inputs to the process model. A process model determines the resulting prod-
uct characteristics considering process variations based on different process specific

22The influence of humans in production is relevant if manual activity is required for processing or
setup. Since cell production is mostly automated, influences fromworkers can usually be neglected.
In module or system assembly, however, manual assembly tasks may be more relevant.
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Fig. 4.20 Process model
inputs and outputs

influences (frommachines, environmental conditions, and human workers). Further-
more, a process model determines the required machine operation based on product
specifications and forwards this information to the machine model. For example,
in the mixing process the required time and intensity (in terms of circumferential
velocity) determine the operational times and in consequence the production rate as
well as the power demand of the mixer.

Output → 2 : required machine parameters to related machine model.

Different forms of variation can be observed in battery production (Kenney et al.
2012). First, realized product characteristics can vary between different processing
units (e.g. one batch has different characteristics compared to another batch). For
example, a created slurry has a viscosity and a solid content which are slightly dif-
ferent to other produced slurries of the same product type. Each batch has only one
value for viscosity and solid content. The viscosity of a slurry is – among other factors
– influenced by the mixing time, the amount of solvent, and the CB agglomerates.
Also there may be interdependencies between those factors. An example is that the
viscosity is not much effected by the mixing time if CB agglomerates are already
small after dry mixing (Bockholt et al. 2013). Second, variations of a product char-
acteristic can occur within one processing unit. For example, the coating thickness
of a coated electrode varies within one batch due to processing tolerances or charac-
teristics of the slurry. Moreover, the mass load in coating is not always constant but
can be expressed by a probability distribution (Schmitt et al. 2014). This variation
can be assumed to be the same for all batches produced with the samemachine setup.
Another example is the pore diameter distribution, which indicates variation within
a slurry. Third, the variation of product characteristics can occur within and between
processing units. An example could again be the coating thickness, which can be
different if the machine parameters are slightly changes during setup or due to wear
over time. Another example is the assembly of different electrodes with variations in
coating thickness into cells. Hence, the capacity of cells depend on the characteristics
of installed electrodes. Figure4.21 illustrates these three forms of variation.23 The
sketched plots show the values for a created characteristic of subsequent processed

23Figure inspired by a discussion with Fridolin Röder.
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Fig. 4.21 Types of product characteristic variations resulting from one process

processing units for the same process. The grey background shadow indicate the
upper and lower limits.

These types of variations determine how product characteristics have to be mod-
eled within a product models. If a process model determines a single value for
characteristics (deterministic case or variation of type A in Fig. 4.21), variables can
be used within a processing unit to store values. If variation of characteristics occurs
within one processing unit (types B and C in Fig. 4.21), arrays have to be used to
store multiple values for a characteristic according to a defined resolution (number of
values per processing unit). As an example, a processing unit for an electrode batch
may contain an array to store values for the coating thickness of defined fractions of
the coated foil.

The variation of product characteristics can be determined according to probability
distributions (or probability density functions). Examples of distributions are uniform
or normal distributions. Distributions can be characterized by its location (e.g. mean
or median), spread (e.g. standard deviation or variance), and shape (e.g. skewness).
The probability distributions for each resulting characteristic within a process can
be determined based on empirical samples or theoretical models.24 So far, process
variations from industrial applications have not been published.

Probability distributions or density functions have to be implemented within
process models to determine resulting product characteristics. The location, spread,
and shape of probability distributions of resulting characteristics may be influenced
by previously created characteristics. For example, a higher solid content in the slurry
leads to a larger variation in coating thickness. As another example, the viscosity of
a slurry is – among other factors – influenced by the mixing time, the amount of sol-
vent, and the size of CB agglomerates. Figure4.22 exemplary shows possible forms
of influences of existing product characteristics on resulting characteristics. In addi-
tion, tolerance limits can be defined for each characteristic and if a resulting value
lies outside the accepted interval, the processing unit may be classified as waste.

In product and process development, product and process parameters as well as
machine configurations are varied and adjusted specifically to achieve a desired result
within defined tolerances. Excessively high requirements regarding product charac-
teristics and associated product quality result in very small acceptable tolerances.

24Further information about determining probability distributions and descriptive statistics in the
context of product quality can be found for example in Brüggemann and Bremer (2015).



4.4 Concepts for Sub-models 97

product characteristic

fr
eq

ue
nc

y

product characteristic

fr
eq

ue
nc

y

product characteristic

fr
eq

ue
nc

y

previous characteristics
influence probability

distribution 

previous characteristics 
influence expected value

and probability distribution

process modell
defines probability

distribution

Fig. 4.22 Influences of previous characteristics on probability density functions of cre-
ated/transformed characteristics

Since the reduction of process variation is associated with increasing complexity
and higher costs, unnecessarily small tolerances cause the design and configuration
of processes and machines to be more complicated and expensive. Due to the nec-
essary cost reductions in cell production, coordination of process tolerances with
required product characteristics as well as detailed understanding and optimization
of processes is of great importance. Hence, process models have to be developed
considering the type of variation and influences on variations.

Different types of process models can be used within the multiscale simulation.
Process models can determine resulting product characteristics and related machine
operations in a predictive and deterministic manner. In this case, models hold knowl-
edge about the exact desired value of a product characteristic and the requiremachine
operation (e.g. processing time and intensity). Alternatively, model can use knowl-
edge about process variations to determine the relations between product specifica-
tions, existing product characteristics, and external factors on product characteristics.
As an example, the relative humidity within the indoor air effects the product quality
in the cell assembly. This effect could be described by a parameter model based on
empirical experiments or by a physical model if the exact relations between humidity
and affected product characteristics are known. However, it is not always possible
to find a valid function for each product characteristic. Moreover, often the desired
value of a characteristic is known (e.g. from experiments) along with the required
process parameter for achieving this value. In this case it is only of interest how the
tolerances and variations in the process affect the resulting characteristic. Model-
ing of the actual physical effects is not necessary. Finally, combinations of different
modeling types are possible (e.g. as used by Winter 2016, who developed extensive
physical and empirical models to describe the grinding process).

In summary, there are different options for integrating process models for each
process into a multiscale simulation:

1. no process model, if no relations are known or relevant.
2. deterministic parameter model, if resulting product characteristics are known

(based on specifications) and not subject to disturbances/variation.
3. stochastic empirical parameter model, if variation in process results is known.
4. physical model of theoretical effects on product characteristics.
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5. combination of empirical and physical models.

4.4.3 Human Workers (4)

The operation of process chains requires workers for material handling, machine
operation and maintenance, as well as for manual assembly tasks. Simulation of
humans in production systems enables considering the behavior and characteristics
of workers while being active in a production environment. Simulation can be used
for different purposes. First, human resources contribute to the production costs
(Nelson et al. 2015). Thus, simulation can determine how the number of available
workers effects the performance of a process chain. As an example, Halubek and
Herrmann (2011) used agent-based modeling of worker behavior and characteristics
(e.g. speed, skill level) to examine the worker drift and the resulting performance of
mixed-model assembly lines. Second, simulation can be used to determine the effects
of humans on the building ambient conditions. Workers move within a factory and
emit heat and moisture (ISPE 2009; VDI 2015). These emissions depend on the
level of activity of workers which can be represented by different states such as
seated, standing, walking, working (Harriman 2002). Heat emissions are relevant
since they may influence the air temperature within a building zone which could
effect the HVAC operation and the related energy demands. Moisture emissions are
relevant if worker operate inside a dry room. In this latter case, emissions of workers
increase the humidity of the inside air which may lead to undesired environmental
conditions and to higher energy demands for dehumidification. Third, as stated in
various studies, worker performance is not deterministic and constant over time but
it depends on age, biorhythm, and fatigue of a worker (Siebers 2007; Baines et al.
2004). Simulation could enable to determine the resulting product quality depending
on the available workers over time.

Within the multiscale simulation, a worker model represents a worker WOwn

as an agent who can move inside and between building zones. Worker activities are
coordinated by the process chainmodel.Workers are required to operate andmaintain
machines. That means that the process chain model sends requests to worker models
about a desired activity. Worker availability and movement times can be integrated
into the control strategies of process chains. As an example, a machine can begin to
ramp-up only if a worker has arrived.

1 → Input: target position for worker from process chain model.

1 → Input: required activity level from process chain model.

The level of activity of each worker can be represented by a state chart as shown
in Fig. 4.23. The chart differentiates the states seated at rest, walking slowly, light
work, medium work, and heavy work. If a worker is inactive, the agent is in the
state seated at rest. If a worker is called to operate a machine, the worker moves
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seated at
rest

walking slowly light work medium work heavy work

Fig. 4.23 State chart of worker activity

with a defined velocity towards the machine. At a machine, the intensity of work
depends on themachine type andmachine state (e.g. required is mediumwork during
machine setup and light work during processing for machine supervision). Each state
is associatedwith values for heat andmoisture emissions. Detailed information about
heat and moisture emissions of humans can be found for example in Bohne (2014)
and Harriman (2002).25 The heat and moisture emissions are provided to the process
chain model since it aggregates all emissions for each building zone.

Output → 1 : heat emissions Q̇WOwn to process chain model.

Output → 1 : moisture emissions ṀEWOwn to process chain model.

In order to allocate the emissions to a building zone, the process chain model has to
know the position of each worker within the shop floor coordinate system.

Output → 1 : current position of worker WOwn to process chain model.

Overall, simulation of human worker activities can enable the analysis of the
impacts on process chain operation, product quality, heat and moisture emissions as
well as on labor costs. However, the impacts of workers on total energy demands for
cooling and dehumidification as well as on total production costs is relatively small.

4.4.4 TBS Models (5)

Relevant TBS systems for battery production are lighting, compressed air generation,
and systems for ventilation, heating, and air conditioning. These systems have to be
modeled and integrated in the multiscale simulation. The purpose of these models is
to

• describe the operation of TBS systems depending on the process chain operation,
• determine the energy demands of systems and their share of the total energy
demand of the production system,

• identify energetic hot-spots for the derivation of improvement measures regarding
dimensioning or control of TBS, and to

25For example, heat emissions range from 95 W (seated at rest) to 270 W (hard work).
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• understand and describe interdependencies between production system elements
and TBS systems (e.g. correlations between dry room conditions and product
characteristics).

4.4.4.1 Lighting

Lighting requires electrical energy and emits heat to the building which may cause
additional cooling loads for the air conditioning. Both the energy demand and heat
emissions (both in W/m2) depend on the light intensity LIz of a building zone (in
lm/m2), the efficiency of lamps LEz (in lm/W), and the duration.

It is assumed that lights in a zone are on if workers are inside the zone, if machines
are operating, and if available daylight is not providing sufficient illumination. The
schedules for lighting depend on the process chain operation. For example, the lights
in a zone are turned on when the first worker enters the zone and turned off if the last
worker leaves and no machine is operating. The lighting model uses the two states
on and off for lighting control and determines a constant power demand based on
LIz, LEz, and the zone area Az. The model generates the power demand profile of
lights based on the schedule provided by the process chain model.

1 → Input: signals for turning lights on and off from process chain model.

The total power demand of lighting is calculated by summing up the power demands
of all light sources in all building zones. The total power demand is provided to the
process chain model.

Ouput → 1 : power demand PDLIGHTS to process chain model.

The required power is emitted as heat to the related building zone (Hesselbach
2012). The resulting heat emissions are provided to the process chain model.

Ouput → 1 : heat emissions Q̇LIGHTS to process chain model.

The proposed lighting model is kept rather simple. More detailed models are
possible if lighting has strong influence on the production processes or if the energy
demand contributes to a high share of the total energy demand. Ryckaert et al.
(2010) provide a detailed discussion of energy efficiency measures for lighting. They
proposed a model to determine the required power considering LE of a zone and
different task areas with specific requirements.
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4.4.4.2 Compressed Air Generation

Compressed air is used to transform electric energy into mechanical energy. It is
among the most expensive and least efficient forms of energy26 (Mousavi et al. 2014)
and a high share of industrial energy demands is caused by compressed air generation
(Ruppelt 2003). For this reason, a model of a compressed air generation system is
proposed for the multiscale simulation. The purpose of this model is to examine the
impacts of system configurations and control strategies on the power demand PDCAG

and pressure cap – similar to Mousavi et al. (2014) and Thiede (2012).
A compressed air generation systemusually consists of components for generation

(one or several compressors), preparation and treatment (e.g. filters), and distribution
(e.g. tank, pipes) of compressed air. Such system can supply multiple consumers
(e.g. machines) within a process chain. The proposed modeling concept focuses on
the power demand of compressors since compressors are the main component of
a system supplying air to generate the desired pressure. The model must enable to
simulate the system pressure and the related operation of compressors.

The condition of compressed air is defined by pressure (p), volume (V) and tem-
perature (T) according to the following relation (Bierbaum and Hütter 2004).

p · V
T

= constant (4.16)

A common simplification for the determination of the system behavior is the assump-
tion of an isotherm process.

p0 · V0 = p1 · V1 = constant (4.17)

The flow of air can be described by the amount of air flowing through a cross section
during a specific period of time which can be specified as volume flow (V̇ ). The
pressure cap within the compressed air system with volume VCAS depends on the
inside volume change caused by air supply from the compressor(s) (Vin) as well as
demand from machines and pressure losses (Vout).

cap = VCAS + Vin − Vout

VCAS
(4.18)

The demand from machines is determined within the process chain model by sum-
ming up the compressed air demands of all machines.

1 → Input: compressed air demand CADMACH from process chain model.

26The efficiency of compressed air generation can be increased by measures such as heat recovery
and adjusted compressor control (Saidur et al. 2010).
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The system pressure has to be kept within a defined interval. If the pressure
decreases below pressure capmin, air is supplied to the system until the maxi-
mal pressure capmax is reached. Different control strategies exist for compressors
(Bierbaum andHütter 2004). The objective of the controller is tomaintain the desired
system pressure while minimizing energy demand and component wear. The con-
troller directly affects the air supply and the power demand of compressors. For
simplification of the model, it is assumed to use only one compressors which is
able to supply the desired supply rate.27 The controller determines if the compressor
is in off, on, or idle state. Within each state, the compressor has a specific power
demand. An example of a control strategy is the intermittent control using a two-
point controller. The compressor is switched on if cap = capmin and turned off if
cap = capmax. Other control strategies – for example keeping the compressor in idle
state until shutdown – are explained for example in Bierbaum and Hütter (2004)
and Ruppelt (2003). The resulting power demand of the compressor is assumed to
equal the power demand PDCAG of the compressed air system (PDCAG = PDcomp).28

The power demand as well as the system pressure are provided to the process chain
model. The latter allows machine models to check if the available system pressure
is sufficient for machine operation.

Ouput → 1 : power demand PDCAG to process chain model.

Ouput → 1 : system pressure cap to process chain model.

This model of a compressed air system allows determining the power demand
of compressors and the pressure based on the compressed air demands of machines
from a process chain. If required, the model can be extended towards considering
multiple compressors with individual characteristics and other system components.

4.4.4.3 HVAC

The indoor climate of a production facility has to be controlled according to process
requirements and comfort of workers. Furthermore, the exhaust air of a facility has to
be cleaned from substances which are harmful to the environment. For this purposes,
HVAC systems are installed for ventilation, heating, and air conditioning (cooling,
humidification, dehumidification) of buildings. Usually, an air handling unit (AHU)
is installed for each building zone which is equipped to fulfill the required treatment
functions (Bohne 2014). The required environmental ambient conditions within a
facility for battery production are described by Simon (2013). Since HVAC systems
may account for up to half of the energy demand in a facility (Pérez-Lombard et al.

27Often also several compressors (of the sameor different types) ormulti-staged compressor systems
are used tomeet themaximum switching operations for each compressor, to supply air with different
rates, or to achieve higher system pressures. The model can be adjusted accordingly.
28More detailed models may also include the power demands of filter, dryers or other equipment.
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Fig. 4.24 Schematic of an exemplary HVAC system for a building zone equipment for ventilation,
cooling and heating with heat recovery

2008), it is relevant to model the operation of these systems and to consider the
energy demands in the evaluation of battery production.

Ventilation, Heating, and Cooling

The inside air within a building zone is exposed to various emissions from processes,
humans, materials, etc. These emissions reduce the air quality and require ventilation
with outside air according to an air change rate acr29 (Fitzner 2013). In order to
maintain the desired air quality in production facilities, AHU for ventilation usually
consist of an outside air inlet, a central processing unit with fans and filters, and ducts
for air distribution to the air outlets into the building zone. Detailed descriptions of
various types of AHU are given in Bohne (2014) and Fitzner (2013).

Furthermore, a building is subject to internal and external heat sources and sinks.
Depending on specific heat flows and dampening effect of thermal masses inside a
building zone, heating or cooling equipment may have to be used in addition to ven-
tilation in order to establish the desired indoor temperature. In this case, AHU have
to be equipped with heating and cooling coils as well as external chillers supplying
the cooling coils (Bohne 2014). The controller of an AHU for heating controls the
operation of these different components according to setpoint temperature values and
sensor signals of current indoor (Tz) and outside (TOA) air temperatures. Figure4.24
shows a simplified and abstract schematic of an exemplary HVAC system for venti-
lation, heating, and cooling with heat recovery.

If the inside air temperature in a zone is too high or too low, the supplied air
has to be heated or cooled in order to adjust the inside air temperature to the desired
value. The heating and cooling demands depend on the outside air temperature which
depends on the season and location of a facility. To give some examples, Fig. 4.25
shows the daily mean temperatures for three locations.30 The figure allows to con-

29The air change rate defines how often the air within a zone has to be changed during one hour.
30Reno is the location of the Tesla giga factory for battery cells, Braunschweig is the location of
the Battery LabFactory Braunschweig, and Iceland is basically a rather cold country.
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Fig. 4.25 Daily mean temperature [◦C] in Reno (Nevada, USA), Braunschweig (Germany) and
Reykjavk (Iceland) in 2014 (based on data from Weather Underground 2015)

clude that the heating and cooling demands for buildings at these locations differ
according to the outside temperatures.

Simulation models of HVAC systems for ventilation, heating, and cooling should
enable to determine the operation and energy demands of AHU equipment consid-
ering internal (e.g. heat emissions of machines or humans) and external (e.g. out-
side temperature) influencing factors. In contrast to static calculations of maximum
heating and cooling loads (required for system design), simulation allows analyzing
the dynamic behavior of AHU in different situations and a more precise determina-
tion of energy demands. For this purpose, the inside and outside temperatures have to
be considered in the simulation. Furthermore, the simulation has to imitate different
time periods in order to account for seasonal conditions.

6 → Input: indoor temperature of building zone from building model.

6 → Input: outside weather conditions from weather file.

Based on this information, models of HVAC components determine the required
heat flows for heating or cooling for each zone and the resulting power demand.

Output → 6 : heating or cooling loads Q̇HVACz to building model.

Output → 1 : power demand PDHVAC to process chain model.

These values depend on the implemented control strategy of the AHU components
(e.g. two-point or variable heat flow control) and the setpoint values (e.g. accepted
temperature interval).

Dehumidification

In addition to defined indoor temperatures, some processes of battery cell assembly
have to take place in dry room conditions with very low humidity. The humidity of
the inside air is influenced by the humidity of the supplied air, leaks in the dry room
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Fig. 4.26 Daily mean dew point temperature [◦C] in Singapore, Reno (Nevada, USA), Braun-
schweig (Germany) and Reykjavk (Iceland) in 2014 (based on data from Weather Underground
2015)

constructions, and internal moisture gains from humans31 or products (Harriman
2002). In order to achieve very dry conditions, an AHU of a dry room has to be
equipped with a dehumidification system – in addition to the HVAC components for
ventilation, heating and cooling – which removes humidity from the supply air.

In production facilities of battery cells, commonly used are desiccant dehumidi-
fication units (Harriman 2002). Within AHU with such units, the inlet air stream is
mixed with a circulating air stream from the dry room and cooled down before dehu-
midification. Within the desiccant dehumidification unit, the moisture of the inlet air
stream is transferred to a regeneration air stream, which is heated before entering
the dehumidifier to enable a high intake of moisture. This regeneration air stream
is transported to the outside of the building (Harriman 2002). After dehumidifying,
the inlet air stream is heated before entering the dry room. The energy demands of
an AHU for dehumidification depend on internal heat and moisture emissions as
well as on outside air conditions such as temperature and humidity. The humidity
of the outside air can be characterized by the dew point temperature32 which also
depends on the location of the facility. To give some example, Fig. 4.26 shows the
daily mean dew point temperature for four different locations for 2014. In addition
to the locations selected for Fig. 4.25, Singapore was added due to its high dew point
temperature. The figure allows to conclude that the location influences the energy
demand of dehumidification systems.

Consequently,models ofHVACsystems for dehumidificationmust – in addition to
the described influences on ventilation, heating, and cooling – consider the humidity
of the outside air as well as the moisture emissions within a dryroom building zone
which increase the humidity of the inside air.

6 → Input: outside weather conditions from weather file.

31Harriman states that humans adapt to very low humidity levels and cause lower moisture loads in
super-dry conditions such as found for example in battery production.
32The dew point temperature is the temperature at which the contained water is condensed into
water. It also defines how much vapor is contained in the air.
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Since HVAC systems can be of various types (e.g. with or without circulating
air flow, heat exchange, or dehumidification), it is not possible to derive a generic
HVAC system model. Models have to be created specifically for a HVAC system
under examination. For this purpose, different generic models and tools for HVAC
simulation have been developed. For example, Chen and Treado presented a library
for physical modeling of different HVAC components (Chen and Treado 2014). De
Antonellis et al. developed a detailed model for the simulation and optimization of
a desiccant wheel (De Antonellis et al. 2010). Furthermore, different libraries are
available which allow to use predefined components to design simulation models of
HVAC systems with the software environments Modelica (e.g. Wetter et al. 2014)
or Simulink (e.g. Kalagasidis et al. 2007). However, despite this preliminary works,
physical modeling of HVAC systems is still no easy task. As an alternative to phys-
ical modeling, models for HVAC systems can also be derived from empirical data
as shown by Cherem-Pereira and Mendes (2012) for the example of room air condi-
tioners. If measurements about the power demand of different components as well as
the related environmental conditions are known, such approach may be of sufficient
accuracy for the modeling of the HVAC system operation.

Overall, the simulation of HVAC systems is closely connected to the simulation of
the thermal response of buildings since inside ambient conditions are the controlled
variables in HVAC system controllers. Various research approaches were already
developed for the integrated or coupled simulation of HVAC systems and buildings,
for example Nouidui and Wetter (2014), Zuo et al. (2014), Gorecki et al. (2015),
Feng et al. (2012), Wetter (2010), or Trčka and Hensen (2010). Consequently, a
building model is also needed for the proposed multiscale simulation to determine
the inside ambient conditions of a battery production facility and the impacts on
HVAC systems.

4.4.5 Building Model (6)

The building shields the production system from the outside environment. A building
can usually be divided in one or multiple thermal zones which can have different
properties, thermal behavior (e.g. losses or heat capacities) and desired inside ambient
conditions. These inside conditions depend on the building properties (e.g. structure,
shape, number of floors, windows, orientation, location, and materials) and various
external and internal influences. The purpose of building simulation models is to
determine the inside conditions of specific building zones based on these external and
internal influences (VDI 2001). Thermal simulation enables analyzing the relevant
influences and if passive improvement measures (e.g. sunscreens) allow to reduce
the HVAC system operation while maintaining the desired conditions (Bohne 2014;
Hesselbach 2012). In the multiscale simulation, the results of the building simulation
are inputs to HVAC models as well as to process models in case the environmental
conditions have influence on the processing results.
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Fig. 4.27 Simplified heat flows of an exemplary two-zone building

Output → 5 : inside conditions of building zones to HVAC models.

Output → 3 : inside conditions of building zones to process models.

The determination of inside conditions is based on the analysis of heat losses and
heat gains (energy flows) through the building shell and between building zones.
Heat losses can be divided into transmission losses and ventilation losses. Heat
losses due to transmission Q̇tr are influenced by the wall surface area Aw of a zone.
Furthermore, they are influenced by heat transfer coefficients Uw of the materials
of the surrounding walls and by the difference between the inside and outside air
temperatures.33 Heat losses due to ventilation Q̇v are mainly influenced by the air
change rate acr.34 External heat gains can also be caused due to transmission and
infiltration through the ventilation system. Furthermore, heat gains are caused by
solar radiation Q̇s through windows.35 Internal heat gains are caused by the HVAC
air supply (heating or cooling) Q̇HVAC , as well as by heat emissions from machines
Q̇MACH , lights Q̇LIGHT , andworkers Q̇WO. Figure4.27 illustrates exemplary heat flows
related to a building with two zones.

The inside temperature Tz of a building zone can be calculated based on the energy
balance.

Ṫz = Q̇s − Q̇tr − Q̇v + Q̇HVAC + Q̇MACH + Q̇LIGHTS + Q̇WO

mair · cair (4.19)

The calculation of heat flows due to transmission, ventilation and radiation
requires information about the outside temperaturewhich can be taken from radiation
models and weather data. Established weather data sources are files created based
on the test reference year (TRY) method in which meteorologists define an average
year for different locations (Fitzner 2013).

The values for internal gains are determined by HVAC models, machine models,
worker models and by the lighting model. They are aggregated within the process
chain model.

33Q̇tr = ∑
w Uw · Aw · (Tz − TOA), (Hesselbach 2012).

34Q̇v = acr · mair · (Tz − TOA), (Hesselbach 2012).
35Q̇s = Ad · Imax · g; with window area Ad , maximum radiation Imax , and energy transmittance g,
(Bohne 2014).
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5 → Input: heating or cooling loads Q̇HVACz from HVAC model.

1 → Input: aggregated heat emissions Q̇TOTALz from process chain model.

1 → Input: aggregated moisture emissions ˙MEz from process chain model.

The process chain model has to contain information about the zones of a building
to allocate the heat emissions. That includes also heat emissions frommoving objects
such as processing units (not relevant in battery production) and workers (Wright
et al. 2013).

Assessing the detailed thermal response of a complete building requires simula-
tion36 (Bohne 2014) with physical models to analyze the effects of different weather
conditions and scenarios (e.g. shifts). Crawley et al. presented an overview of the
capabilities of existing building simulation tools (Crawley et al. 2008).

4.5 Model Connection (7)

The derived models have to be connected in order to realize a multiscale simulation
imitating the dynamic behavior of an entire production facility. In this context, there
are two main tasks: The clear definition of interactions and information exchange
between models as well as the selection of suitable strategies for coupling and syn-
chronization of the involved models (which have been implemented in a software).

Interactions and Information Exchange

Interactions and information exchange depend on the desired input and output vari-
ables of models. Models providing specific variables have to be connected with
models in need of these variables. The relevant inputs and outputs of different model
types have already been indicated during the derivation of models. Figure4.28 illus-
trates the resulting proposed multiscale model structure and the interactions between
models (output � → � input). This illustration refers to a generic case but can be
adapted to any type of production system (according to the defined system bound-
aries) by adding of models for specific machines, processes, and products. For a
specific multiscale application, it is necessary to identify all required variables of all
involved models. This includes units and resolutions of each variable along with the
required frequency of updated values. Furthermore, it is important to optimize the
routing of information flows since every interface between twomodels causes efforts
for implementation and the risk of errors or information loss (e.g. due to rounding or
different model resolutions). For this reason, the process chain model is suggested to

36Alternatively, static calculations can be applied (Hesselbach 2012). Static approaches utilize
performance indicators, standardized factors or metrics to determine stationary energy balances of
buildings. Static calculations can determine the expected heating or cooling demands for extreme
weather conditions at a given location. The results can be used for the design and dimensioning of
HVAC systems.
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Fig. 4.28 Structure and exchanged variables of total multiscale model

act as a coordinator which collects, aggregates, and distributes information to other
models. As an example, the process chainmodel collects heat emissions ofmachines,
lights, and workers, aggregates these to total heat emissions per building zone, and
delivers this information to the building model. The building model in return pro-
vides the inside temperature for each building zone to the process chain model which
distributes this information to machine and process models. This structure simplifies
the information flow, reduces the number of interfaces between models and creates
flexibility towards the addition of new models.

Coupling and Synchronization

The actual coupling of models can be realized according to different concepts of
which the most relevant for production simulation are offline coupling, model inte-
gration and co-simulation (Ören 2014; Brecher et al. 2009). Figure4.29 illustrates
the different coupling concepts. Offline coupling means that coupled models are
executed sequentially and that results are exchanged after each simulation run of
one model. Although this type of coupling is relatively easy to implement, it is not
suitable for the proposed multiscale simulation approach since it is not possible to
consider dynamic interactions between models during simulation runs. Integration
of models means that different models are implemented within one integrated model
in the same software tool to avoid data exchange and synchronization between dif-
ferent tools. Models exchange data at each simulation time step or at certain events.
In co-simulation, models are implemented in specialized simulation environments
which are connected to each other. The data exchange has to be synchronized since
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Fig. 4.29 Concepts for
coupling of models (from left
to right): offline coupling,
model integration, and
co-simulation (direct
coupling and model
synchronization)

simulation times of individual models may differ. The time between two synchro-
nization steps must be adjusted according to the modeled system behavior. A short
synchronization time may reduce the simulation execution performance while a long
synchronization time could effect the simulation results because updated variables
may be synchronized too late. If interactions between only two models have to be
considered in co-simulation, these models could be directly coupled via a specific
interface. In this case, one of the models is responsible for the synchronization. If
data exchange has to be synchronized between several models and software envi-
ronments, this can be realized by using coordinating middleware software based on
principles of HLA or other middleware solutions (e.g. TISC (Kossel et al. 2006)).

These coupling concepts can also be combined. For example, generic machine
models and product models can be integrated into a process chain model and process
models can be directly coupled to machine models. The process chain model can be
synchronized with detailed machine models and models for HVAC systems, com-
pressed air generation, and a building.

In summary, the connection ofmodels allows to execute and coordinate all models
of a multiscale simulation and to simulate the dynamic interactions between the
modeled production system elements. The simulation results of each model have
to be combined in order to support the desired planning tasks and decisions. For
this purpose, it is suggested to determine and prepare the desired results within the
process chain model since it has access to data from all other models.

4.6 Result Evaluation and Visualization (8)

The resulting large amount of generated data during simulation has to be examined
with respect to the overall performance of the production system. The results allow
deriving detailed insight into the cause-effect relations between machines, TBS sys-
tems, processes and product characteristics, aswell as thematerial flow. Such detailed
analysis is needed to avoid problem shifting which may occur by only considering
isolated system elements of a production facility or planning perspectives. Conse-
quently, the simulation results of different models can be combined and aggregated
to performance indicators for a consistent evaluation of improvement measures and
the enhancement of the production system understanding.
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Variables and Indicators

Simulation results can be related to the overall performance of a production system,
process chains, single machines, jobs, or processing units. For an entire production
system, relevant indicators are the total energy demand and the energy demands
of different systems such as machines, HVAC systems, compressed air generation,
lighting, etc. This allows the identification of the most relevant systems with high
energy demand. In addition, the overall material consumption is of interest, divided
in raw materials for products and auxiliary materials required for production. The
energy and material demands can also be related to the output of final products
(e.g. in GWh of battery cells) during a period of time. These indicators on system
level enable deriving total costs and environmental impacts of the production activity
and comparing of different simulation runs. For example, the production costs Ctotal

can be determined by considering the total energy demand per energy carrier along
with energy prices based on the supply contract (Cenergy), the consumed amount of
materials along with the unit prices for each material type (Cmaterials), and the total
costs of machine operation based on the operational time of each machine and the
related machine-hour rates (Cmachining).

The total environmental impacts of production EItotal can be determined based
on the total energy demand per energy carrier along with the related environmental
impacts per energy carrier (EIenergy) as well as the used amount of materials together
with the related environmental impacts of each material type per kg (EImaterials).
In general, the environmental impacts can be expressed regarding different impact
categories. A commonly used indicator is the GWP which describes the induced
contribution to climate change (Thiede 2012). In this regard, equivalent CO2 emis-
sions caused by energy and material production can be applied as an indicator for
the environmental impacts on system scale. However, in order to gain insight into
the dynamic production system behavior and to evaluate specific improvement mea-
sures, required is a more detailed evaluation of the performance of production system
elements.

The material flow characteristics of process chains determine the output of semi-
finished and finished products as well as the operation of machines and related
systems. More specifically, a process chain can be characterized by its yield of
product units per product type, its utilization, as well as by the average production
lead time of all jobs per product type. Furthermore, the energy and compressed air
demands, non-productive time and energy demand shares, and heat emissions of all
machines can be aggregated to identify critical machines or associate processes.

The operation of individual machines is influenced by the material flow within a
process chain and it can be evaluated based on indicators for energy demands and
utilization. Energy demands can be derived by values of the state depended electrical
power demand and the compressed air demand. The utilization is determined by the
ratio of productive and non-productive time shares. A machine is only considered
productive within the processing state. If a machine is in setup, blocked or failure
state, it is considered non-productive. In addition, the overall heat emissions of a
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machine can be calculated for a given period of time to study the effects on HVAC
systems operation.

While the process chain model generates performance indicators about the mater-
ial flow of all jobs which are completed during a time period, single jobs and process-
ing units collect data about their specific material flow as well as specific energy and
material demands. Indicators of a job depend on the indicators of the associated
processing unit(s). Relevant indicators describe the start and finish time, lead time,
non-productive time share, and times per machine. Furthermore, relevant results are
the specific energy demand and material input per material type per processing unit.
They allow deriving the direct material costs and costs ofmachine operation based on
machine-hour rates. Material costs can be represented by a cumulative plot in order
to indicate the value of a semi-finished processing unit during production. Finally,
processing units store information about created or modified product characteris-
tics. Jobs can aggregate the product characteristics of all associated processing units
as average values or represented by a histogram. Also, on process chain level, the
product characteristics of processing units of all jobs (of one product type) can be
characterized by their distributions. This enables identifying the spread of individual
product characteristics and the origins of variations.

Table4.3 lists all suggested performance indicators with units and suitable forms
of representation. These indicators have to be made accessible by a simulation tool
or available within generated reports.

Value Stream Representation

In addition to single performance indicators, each job and processing unit can be
described by a value stream map. Value stream mapping (VSM) is an established
method aiming at the identification of inefficiencies and waste within a production
line (Erlach 2007). Value stream maps illustrate the processes required for produc-
tion along with buffers and specific process data. Traditional VSM focus on the
identification of lead times and non-value adding time shares but it was already
extended toward the consideration of specific energy demands (EVSM) for a job or
per product unit (Erlach and Westkämper 2009; Bogdanski et al. 2013). Figure4.30
illustrates the structure for an extended EVSM representation of the simulated flow
and processing of a processing unit for a battery cell. In general, the application
of VSM requires relatively low effort and the visualization of results is easy to
understand even without having expert knowledge. However, shortcomings of the
traditional static VSMmethod are that a value stream map refers to one product type
or family and that it is based on one time measurements or average values. Thus, a
value stream map has a snapshot character and it is not possible to consider dynamic
interactions between different jobs such as blocking of machines which may cause
waiting times. This shortcoming is abolished in the multiscale simulation since value
streammaps can be dynamically created for each job and processing unit. The model
is able to trace the material flow of processing units by creating a data box repre-
sentation to each processing unit with simulated values for times, direct and indirect
energy demands, and material demands for each completed process. This simulation
of value stream maps is based on the Multi-product EVSM (MEVSM) approach
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Table 4.3 Result indicators for different scales of production systems

Reference Indicator Unit Suggested
representation

Production
system

Total energy demand EDTOTAL kWh Number

Energy demand per energy carrier kWh Number

Total power demand PDTOTAL kWh Plot

Energy demand of TBS
(EDCAG,EDHVAC,EDLIGHTS)

kWh Numbers

Share of energy demand per machine/system kWh Pie chart

Output of final products Number

Total consumption of raw and aux. materials kg Numbers

Energy costs per energy carrier EUR Numbers

Total energy costs Cenergy EUR Numbers

Material costs (for all material types) Cmaterials EUR Numbers

Costs of machine operation Cmachining EUR Numbers

Total production costs Ctotal EUR Numbers

Environmental impact of energy supply EIenergy kg COeq
2 Numbers

Environmental impact of material consumption
EImaterials

kg COeq
2 Numbers

Total environmental impact EItotal kg COeq
2 Numbers

Process chain Utilization utiPC % Number

Output/yield of product types Yptn
t Numbers

Energy demands per machine kWh bar/pie plot

Compressed air demands per machine m3/h bar/pie plot

Waiting times per machines s, min bar/pie plot

Blockings per machine bar/pie plot

Heat emissions per machine per zone kWh bar/pie plot

Machine Utilization utimn % Number

Energy demand EDMACHmn kWh Number

Power demand PDMACHmn kW Plot

Compressed air demand CADMACHmn kW Plot

Share of productive and non-productive times % Pie chart

Share of productive and non-productive energy
demand

% Pie chart

Total heat emissions Q̇MACHmn kWh Number

(continued)
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Table 4.3 (continued)

Reference Indicator Unit Suggested
representation

Job and
processing
unit

Lead time s, min Number, VSM

Start time (overall, per process) s, min Number, VSM

Finish time (overall, per process) s, min Number, VSM

Share of productive and non-productive times % Pie chart, VSM

Material input per material type kg Number

Material cost EUR Number,
cumulative plot

Material cost per material type % Pie chart

Material cost per process EUR Number, VSM

Direct and indirect embodied energy (iee, dee) kWh Number

Embodied energy per process % Pie chart, VSM

Product characteristics Various Numbers,
histograms

(Schönemann et al. 2016). The MEVSM approach combines VSM and simulation
by using a generic structure for the definition of product type specific routing, prod-
uct characteristics37, and process parameters, as well as an AB and DE simulation
logic which allows calculating process specific performance indicators and product
specific evaluations. Using the MEVSM approach enables generating value stream
maps for all processing units which are produced simultaneously within one process
chain. A similar approach is the E2VSM approach which also combines DE simula-
tionwithVSM to generate economic and environmental evaluations of the production
of multiple product types (Alvandi et al. 2016).

Furthermore, for the simulation of battery production, the simulated value stream
map representation can be modified to show material inputs with related material
costs and costs of machine operation. Additionally to the VSM representation of jobs
or processing units, this kind of representation can be used for all jobs of each product
type combined. In this case, the values in data sets per process have to be replaced
by the average values determined by the values of each job. Moreover, a histogram
could be given for each data item, for example showing the direct energy demands
of all electrodes for coating and drying. This representation allows identifying the
most time or energy intensive production step of each product type.
Evaluation of stochastic effects

37Details about integrating product characteristics into value stream modeling are discussed in
Schönemann et al. (2014).
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Fig. 4.30 Structure for an extended value stream representation of the production of a processing
unit for a battery cell

If variables or inputs of a simulation model are stochastically distributed, the results
also have to be considered as random variables. In this case, simulation runs rep-
resent sampling experiments with fluctuating outcome. Random variables have to
be described using descriptive statistics. That means that they have to be repre-
sented by expected values and measures for variation. Within the result presentation,
histograms or box plots can be used to show the distribution of resulting values.
Furthermore, it is necessary to determine the minimum number of simulation runs
required to achieve statistically significant results (e.g. for a Monte Carlo simula-
tion). Detailed information about dealing with uncertainty are given for example in
Rabe et al. (2008) and Liebl (1995).

4.7 Application Procedure

The development and employment of a multiscale simulation is different compared
to monolithic specialized models. It allows to combine the knowledge and expertise
of different engineering disciplines. In particular, the improvement of battery pro-
duction regarding product quality, costs, and environmental impacts demands the
cooperation of the planning of products, processes, production technology, and fac-
tories. These disciplines have their own planning tasks and often use isolated tools or
models for the evaluation of specificmeasures. The knowledge from these disciplines
and the available models have to be combined for creating the proposed multiscale
simulation.However, existing specificmodels are often not compatible or reusable by
other disciplines (Bergmann 2014). For this reasons, a central function for simulation
development and coordination is required which collects and adapts existing mod-
els and knowledge for the use in a multiscale simulation. Furthermore, this central
function is responsible for the employment of the multiscale simulation and for the
generation of reports which are tailored to the needs of the involved disciplines. How-
ever, the involvement of all stakeholders and disciplines into the modeling process
is essential to foster learning effects and an interdisciplinary system understanding.
Once a multiscale simulation environment is developed and established, each dis-
cipline can file requests for simulation results related to a specific objective. The
central function will adapt the simulation accordingly and perform simulation runs
to generate reports. If objectives require more detailed simulation models of which
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Fig. 4.31 Structure for
development and
employment of a multiscale
simulation with the involved
disciplines

technology
planning

product
planning

factory
planning

production
planning

multiscale simulation of battery production systems

central simulation development and coordination

R1

R1: Requirements
R2: Requests
R3: Reports

R2 R3K

MA: Maintenance
E: Employement
R4: Results

D M E

specialized simulation expertise

MO

R4 K MR2

K: Knowledge
MO: Models
D: Development

R1 R2 R3K MO R1 R2 R3K MO R1 R2 R3K MO

no expertise is available within the involved stakeholders (e.g. for detailed building
simulation), specific simulation expertise has to be (externally) acquired in order
to integrate the desired model functions. Figure4.31 shows the described structure
of cooperation of disciplines for the development and employment of a multiscale
simulation.

There are multiple ways to apply the developed simulation concept to a specific
simulation environment. Different objectives, the availability of simulation models,
the know-how of simulation engineers, as well as other organizational and tech-
nological factors (e.g. available personal resources or software) can influence the
application to a large extend. However, a generalized application procedure should
help simulation engineers to structure the development process for amultiscale simu-
lation. This application procedure is divided into twelve steps which are structured in
six phases similar to simulation study procedures proposed by Banks et al. (2010) or
Wenzel et al. (2008). Figure4.32 illustrates these phases and steps and also the areas of
involvement of stakeholders from different disciplines. The simulation development
and coordination function is responsible for planning, realization, and controlling
of the twelve-step procedure. The other disciplines support during problem formu-
lation and provide specific planning objectives which should be supported by the
simulation. Also they are involved in the development of specific models and the
final evaluation of the simulation results. The specific tasks and methods for the
twelve steps of the procedure are described within the next subsections.

4.7.1 Description of Production System and Stakeholders (I)

In the first step, the battery production system under survey has to be described along
with the roles of involved stakeholders. This is important for clarification of the con-
text for the simulation and the following definition of objectives. The description
has to refer to the production stage (e.g. cell production and/or system assembly),
product variety, industrial scale (e.g. production volume per year), and utilized pro-
duction technology. Moreover, the description has to clarify the responsibilities and
organizational structure of different disciplines, departments, and people. A result
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Fig. 4.32 Procedure for application of the multiscale simulation concept

of this first step is a definition of the system boundaries and the responsibilities for
model development as well as the specific use cases of the simulation.

4.7.2 Definition of Evaluation and Simulation Objectives (II)

In addition to this greater objective, it is necessary to specify the strategic, tactical or
operational planning perspective in order to derive the required accuracy and scope
of the simulation results.

Strategic Strategic decisions – such as investment in a new production facility –
face a higher degree of uncertainty and demand the analysis of aggregated effects
for a longer time period of the simulated production system operation (e.g. a full
year to consider seasonal effects of the local climate). The purpose of a simulation
study in this context is the comparison of investment alternatives by comparing
the magnitude of performance indicators. The resolution of detailed models can
be reduced in order to decrease the computational requirements and to enable a
higher number of simulation runs.

Tactical Tactical decisions – such as the purchase of an additional machine or the
use of a new active material for electrodes – require more accurate results for a
sound evaluation of the effects on other system elements. The simulated period of
time may be shortened with reference to the specific planning task. For example,
if an additional machine shall increase the output it may be sufficient to compare
scenarios for the weekly or monthly output.
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Fig. 4.33 Characteristics of
simulation models for
strategic, tactical, and
operational planning
regarding accuracy,
resolution and precision of
simulation and considered
time scale

Operational Operational decisions – such as scheduling of certain jobs – refer to
short term decisions which can be based on a large amount of available data and
requires high accuracy. Models must be very accurate and of high resolution to
allow the valid comparison of very similar decision options considering a limited
time period (e.g. a shift or a week).

Figure4.33 illustrates the described characteristics of simulation models regarding
accuracy and considered time scale for different planning perspectives.

Moreover, different stakeholders may have different weighting of individual
objectives. Consequently, it is relevant to clarify the specific objectives of the simu-
lation to determine the required models and their necessary model resolution.

4.7.3 Definition of Required Models (III)

The framework (Fig. 4.5) illustrates the model classes of a multiscale simulation
of battery production systems. However, the integration of several detailed models
into a simulation increases the complexity of the overall model. That means, that
increased functionality and enhanced possible results are achieved at the cost of
higher modeling effort, a higher error rate (e.g. due to rounding), and the risk of
reduced acceptance of the results. Consequently, it has to be aimed for the balance
between high model complexity and result accuracy. It has to be examined which
models are needed to generate results in the resolution needed for the evaluation
of the defined objectives. For this purpose, it is necessary to collect information
about all production system elements within the system boundaries and to identify
relevant specifications such as operational times and energy data38 of machines or
TBS systems. This forms the foundation for the definition of required models.

In any case, a process chain model is required for simulating the material flow
and coordination for all other models. In addition, machines and other systems have
to be included in the multiscale simulation if they

• are part of the process chain,

38Energy demand related data can be acquired from machine specification of manufacturers docu-
mentation. If detailed data are required, data acquisition can be used to measure the actual power
demand. Strategies for selecting suitable types of acquisition are discussed in Thiede et al. (2013a).
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• have high energy or power demands, or
• have influence on product characteristics through related processes.

If a machine or system meets one of these criteria, it can be modeled in different
levels of detail. Two main model types can be distinguished:

• simplified state-based model (such as the proposed generic machine model), or
• detailed component based, state-based, empirical, or physical model.

If a machine is part of the process chain, its behavior has to be modeled at least in
terms of operational states. This is needed by control strategies of process chains to
determine the routing of processing units. Furthermore, if a machine or system has a
high energy demand, it is important to include a model which determines the power
demand even if the machine is not part of the process chain. A suitable method for
assessing the relevant machines or systems regarding energy demand is an energy
portfolio which clusters all machines/system with respect to power demand and
operational time per time period (Posselt 2016). This method is also suggested by
Thiede (2012) for selecting relevant machines/systems which should be considered
in simulation studies. If a machine or system has high or moderate (nominal) power
demand and a high or moderate operational time or utilization factor, it should be
included in the simulation.39 However, this method does not consider the volatility
of the power demand. If the demand is rather constant for each operational state,
a generic state-based model is sufficient to simulated the power demand profile. If
the power demand is very volatile, detailed modeling of the machine/system and its
components may be favorable in order to increase the result accuracy. Thus, a second
portfolio is suggested to cluster machines/systems regarding power demand and its
volatility. Figure4.34 shows both portfolios. The determination of the volatility and
the definition of the boundary between high and low volatility depend on the required
accuracy of the simulated energy demand (see Step II). As one feasible approach, it
is suggested to analyze the power demand values of a machine regarding a measure
of variance. However, it is important to consider the variation in power demand in
relation to the processing time of a machine. If the power demand fluctuates by
a high magnitude (e.g. periodically) within intervals of only a few seconds, but the
operational time of a machine is a couple of hours, the energy demand of the machine
may be rather constant.40

If a machine additionally has noticeable effects on the associated process – and
consequently on the product characteristics – it should be modeled in the required
level of detail for considering the impacts on the processing results. Examples of
effects are machining tolerances, tool wear, or random deviations. Figure4.35 sum-
marizes the selection of production system elements and the allocation of a suitable
modeling type.

39If it is not clear how often and for how long amachine/system is used, it is possible to perform sim-
ulation runs with generic machine models to determine the operational times of machines/systems
for the given production system.
40In this case, filtering or smoothing of the power demand profile with adequate filtering parameter
for the interval length allows to generate better insight in the relevant deviation.
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Fig. 4.34 Portfolios for selection of energy demanding systems (left) and allocation of model type
(right)

Fig. 4.35 Decision tree for selection of model types for machine models

If desired, the evaluation of product characteristics requires the modeling of
processes and their impacts on product characteristics as well as a product model to
store the results. Some processes could be modeled based on physical equations. If
no knowledge about theoretical relations exist, empirical data from experiments may
allow to derive relations between process parameters, environmental conditions and
resulting product characteristics.

4.7.4 Modeling, Implementation (IV), and Coupling
of Models (V)

It is necessary to develop a concept for each required model which defines the model
logic and specific outputs based on the intended results. For this purpose, each real
world systemor processwhich has to bemodeledmust be analyzed to derive a concept
model. Since a model has to be precise enough to achieve the defined objectives,
a fundamental understanding of the system or process is needed to decide which
essential characteristics should be considered in the model and which are negligible.
Subsequently, the concept model is specified and transferred to a formal model
(e.g. based on equations, state charts, etc.) and finally implemented in an executable
software model (Wenzel et al. 2008).
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Fig. 4.36 Data exchange
between models at different
simulation time steps

The selection of a software tool for a specific model depends on various factors.
It may be best to select the most suitable tool for each specific model. For example,
a DE simulation tool is suitable for the simulation of a process chain while tools
for continuous models (DS) are required to realistically imitate a compressed air
system or the thermal building ambient conditions over time. Furthermore, it may
be reasonable to choose simulation tools based on their ability to share information
with other models. However, it may also be adequate to use software which is already
available or intended to be used for othermodels of themultiscale simulation.Wenzel
et al. (2008) provided a checklist for model implementation.

Executable simulation models have to be connected within the multiscale simula-
tion. Since there are no established methods, guidelines, or suggestions for selecting
the most suitable coupling concept for specific model couples, it is suggested to
consider the following criteria.

One criteria is the timing of data exchange betweenmodels since different models
may require information at different points of time and with different accuracy.
For example, while it might be sufficient for some variables to be sampled and
communicated at distinctive time steps, it might be necessary for other variables to
communicate the integral or regression between two time steps. Furthermore, some
models run during the entire simulation while other models only provide results at
distinctive time steps. For example, static parametric models may provide results if
requested at single events while continuous models provide values at each time step.
Figure4.36 illustrates these different forms of data exchange. It implies that some
models can be executed sequentially (e.g.machine and processmodelswithin a linear
process chain) while other models have to run continuously in parallel (e.g. models
for HVAC systems and the building). The utilization of a middleware is reasonable
if models running in parallel have to exchange data during simulation.41

Another criteria is the execution time (in particular of one iteration). Somemodels
may have a very long execution time due to the amount of required calculations even
if the simulated time period is relatively short. Examples are detailed DEM or FEM
simulations. If such models would be connected to a process chain model, the latter
would have to wait until slower models provide results. Figure4.37 illustrates the

41The advantages and disadvantages aswell as characteristics of synchronization types are discussed
in various publications (e.g. serial versus parallel (Sweafford and Yoon 2013) or strong versus loose
coupling algorithms such as Jacobian-based simulation algorithms (Sicklinger et al. 2014). The
effects of smoothing and extrapolation of exchanged values is studied by Kossel (2011).
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Fig. 4.37 Effect of different
execution times of models

effect of different execution times in real time with respect to the simulation time
steps. The coupling of models via a middleware would allow to provide informa-
tion about the progress of detailed models to the process chain model so that other
parallel events could already be started. Alternatively, time intensive models may be
substituted with simplified mathematical or parametric models. This could drasti-
cally reduce the run-time making the model usable in a coupled simulation (Brecher
et al. 2009).

Several recommendations were derived from the discussed criteria. If a middle-
ware software and interfaces to all used software tools are available, the middleware
concept is suitable for all models. Another suggestions is that if all models are avail-
able in the same software tool, model integration is a reasonable concept (Thiede
et al. 2016). In any other case, each model combination has to be examined also
regarding the following recommendations summarized in Table4.4.

Table 4.4 Recommendations for model coupling

Characteristics of model couples Offline
coupling

Model
integration

Direct
coupling

Middleware
synchro-
nization

Parallelism of several models with
different time scales

Interactions between models during
model execution

High ratio between execution time
(of each iteration) and model
(simulation) time

High number of models to be coupled

Models available in the same software
environment

Only two or few models, available in
specialized software

: recommended; : not recommended; : reasonable, depending on circumstances
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4.7.5 Verification and Validation (VI)

Each specialized model and the connected multiscale model have to be verified
and validated (VDI 2014). Verification means, that an implemented model is tested
regarding providing the correct results based on the intended model logic without
errors. Validation means, that a model is tested regarding representing the corre-
sponding real world system precisely enough with respect to the defined simulation
objective. For the validation of the connected multiscale model, a focus has to be
set on the validation of cause-effect relations between different production system
elements. In general, verification and validation can both be supported by various
methods and techniques. Examples are validation based on historical data, fixed or
extreme value tests, sensitivity analysis, and sub model tests. Further procedures for
verification and validation as well as common methods and techniques are presented
for example by Rabe et al. (2008) and Wenzel et al. (2008).

4.7.6 Definition (VII) and Execution (VIII) of Simulation
Runs

Simulation runs have to be defined (step VII) by creating consistent parameter sets
and boundary conditions such as simulation time periods and seed values for ran-
dom number generators.42 The definition of simulation runs has to be aligned with
the simulation objectives (from step II). Simulation runs represent different produc-
tion system scenarios which should be compared. Examples are the evaluations of
impacts resulting from different processing times, energy demands, shift times, facil-
ity locations, or used raw materials on all of the defined performance indicators. If
the impacts of specific parameters shall be analyzed in detail, multiple simulation
runs can be defined in order to generate results for a sensitivity analysis. In this case,
only specific parameters are changed while all other parameters are kept constant. If
stochastic variables are included within the simulation, it is also important to conduct
multiple simulation runs for the same scenario in order to increase the quality of the
results (Wenzel et al. 2008). However, there is no established rule for the definition
of the required number of simulation runs and it is often based on experience (März
et al. 2011). Kelton (2000) suggested to use traditional experimental design meth-
ods to defined simulation experiments and to derive the best combination of input
parameters.

After the definition of simulation runs, the multiscale simulation model is used
to execute these simulation runs and to generate and prepare the resulting data for
the following evaluation (step VIII). Depending on the execution time of the overall

42Using a fixed seed value means, that stochastic variables (e.g. for machine failure) are determined
based on a random number generator but that these determined values are the same for each sim-
ulation run. This allows to compare different simulation runs with stochastic variables. If random
seed values are used, the stochastic variables are different for each simulation run.
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model, this stepmay require a lot of time. The results have to be stored in data formats
(e.g. spread sheets) which are easily accessible for evaluation even when simulation
tools are terminated.

4.7.7 Evaluation of Simulation Results
(IX) and Objectives (X)

The first evaluation (step IX) refers to the analysis of the quality of simulation results.
It has to be checked if the results are valid andplausible.Moreover, it has to be checked
whether they are suitable for the evaluation of the simulation objectives or if required
results aremissing or if the resolution of results is not high enough. Furthermore, if the
results indicate hot-spots within the simulated production activity (e.g. bottle necks
or machines with very high energy demands), it has to be checked if these relevant
aspects are covered by the results precisely enough or if more detailed models are
required for a deeper analysis. In the latter case, models have to be modified or
additional models have to be created.

The second evaluation (step X) refers to the analysis of the simulation objectives
based on the simulation results. The performance indicator values – based on the def-
inition in Table4.3 – resulting from different simulation runs have to be compared to
derive insight into the system behavior and to evaluate the benefits and shortcomings
of the scenarios. This step requires strong involvement of experts from different dis-
ciplines. If the results are not sufficient for the evaluation of the defined objectives
(e.g. the simulated time period is not long enough), additional simulation runs have
to be defined and executed.

4.7.8 Reporting of Evaluation Results (XI)

The quantitative and qualitative findings from the result evaluation have to be com-
bined within a report which addresses the defined objectives. The results will be used
by planners from the involved disciplines to derive recommendations for real world
decisions towards the improvement of a battery production system. Reports have
to contain a description about the utilized simulation models, the characteristics of
simulation runs, performance indicator values for each simulation runs, as well as a
summary of the results and derived conclusions about the scenarios. A report has to
state the impacts on production costs, environmental impacts, and quality of batteries
or battery components. Value stream maps can be used for each produced product
type (electrodes, cells, modules, systems) showing the process sequences and high-
lighting the most crucial processes regarding production time, energy demand, and
material consumption. Specific requirements for reports have to be discussed with
the involved stakeholders. Overall, it is important to clearly state and collect new
findings regarding the system behavior in order to establish a knowledge base which
allows deriving new improvement measures or experiments.
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Chapter 5
Implementation of a Multiscale Core Model

The concept of a multiscale simulation for battery production systems is centered
around a process chain model which acts as a coordinator for other models. Such
process chain model determines the activities within a production system and derives
inputs for detailed models of system elements. Consequently, this model is a key
component of multiscale simulations.

For this reason, an adaptable multiscale core model was developed and imple-
mented, which can be configured to any kind of process chain, contains essential
sub-models, which can by extended by external simulation models. The intention
behind this model is to provide a flexible software tool which contains the minimum
functionality needed for the realization of specific multiscale simulation applica-
tions. To serve this purpose, the core model allows simulating the material flow
of processing units and contains generic models for machines, product character-
istics and processes, lighting, and workers. Furthermore, the model has interfaces
for connecting external simulation models such as detailed process models, TBS
system models, or a building model. As an example, a model for a compressed air
generation system was implemented which is connected to the core model via a mid-
dleware software. This chapter presents the architecture of the core model (Sect. 5.1),
its components (Sect. 5.2), the compressed air generation system model (Sect. 5.3),
the synchronization concept for the connection of external models (Sect. 5.4), as well
as the verification of the overall model (Sect. 5.5).

5.1 Core Model Architecture

The model architecture describes the components and their interactions within the
core model. The main function of the core model is the simulation of the flowof
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processing units through a virtual shop floor consisting of different machines1.
Processing units are of a certain product typewhich specifies the sequence of required
production steps, each of which is allocated to one or several machines. Furthermore,
processing units belong to jobs which are characterized by a job type and a quan-
tity of final products. During production time, processing units search for suitable
machines, move to these machines and are processed until the last production step is
finished (see Sect. 4.3.2). Processing units and machines are modeled as agents with
individual properties based on agent classes. This allows the replication of agents
and a flexible definition of process chain layouts.

The core model also contains models for lighting and workers (agents) according
to themultiscalemodel structure shown inFig. 4.28.All systemelements are assigned
or dynamically linked to building zones. The core model aggregates all variables on
the main level – and if necessary for each building zone –, provides data to interfaces
for external models, and determines performance indicators. These indicators are
visualized within a cockpit for result evaluation during simulation runs. The model
also has an export function to make the results available after simulation. Figure5.1
drafts the model architecture by showing the different sub-models and components
with their inherent variables and information, as well as the interfaces for external
models.

Based on this architecture, the core model is implemented within the software
AnyLogic. AnyLogic is a hybrid simulation tool which enables combining DE, DS,

Fig. 5.1 Architecture of the multiscale core model with interfaces for external models

1As stated in the concept derivation, machines can also be substituted by workstations which do
not utilize any equipment.
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AB, and SD simulation within onemodel. The software is based on the programming
language Java.2

5.2 Core Model Components

As shown in Fig. 5.1, themain components of the coremodel are sub-models for jobs,
product types, processing units, machine agents, workers, lights, building zones, the
evaluation cockpit, and schedules. This section describes these components.

5.2.1 Jobs and Product Types

Jobs and product types are objects used for defining and controlling the sequence
and routing of processing units. Jobs correspond to requests for the production of a
quantity of a product type. As an example, a job is created for the production of 1000
battery cells of a certain type or for the assembly of 200 specific modules. Depending
on the product type, different processing units are required to simulate the routing of a
job as well as to track product characteristics along the process chain. For this reason,
job objects define the type and quantity of processing units which are required to
simulate the production of a desired quantity of final products.3 In the process chain
model, a job is characterized by a job type, the desired quantity of final products and
the associated product type(s). Three different job types have been predefined. The
first is a generic job type which can be used to imitate the production of one product
type in a certain quantity. This job creates a number of processing units corresponding
to the desired quantity. Processing units can be treated as single product units or as
batches.4 This allows using the generic job type if identical product units should be
produced. The second job type addresses the production of battery cells. A job defines
two processing units, each ofwhich represents an electrode batch.When both batches
are completed, the job defines processing units according to the desired quantity of
cells. A job is completed when the last related processing unit (cell) is finished. It
is necessary to specify the product types for anodes, cathodes, and cells. The third
job type is usable for the combined assembly of modules and systems. The desired
quantity of systems has to be specified to derive the required number of modules.5

As soon as enough modules are finished to complete a system, a processing unit of
a system may start production. Table5.1 summarizes the characteristics of the three
job types.

2Further information about AnyLogic can be found on www.anylogic.com.
3As an example, the production of 100 cells requires two processing units representing the electrode
batches and 100 processing units for representing each cell.
4That means that the number of processing units is different for single unit or batch production.
Example: If 100 product units should be produced in batches of 20 units, required are five processing
units. A generic job would have to be defined with a quantity of five.
5The number of modules per system has to be specified in the system’s product type definition.

www.anylogic.com
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Table 5.1 Characterization of job types regarding quantity, product types (anodes (a), cathodes
(c), cells (ce), modules (m), and systems (s)) and related processing units

Job type Quantity (Q) Product type (PT) Processing units

Generic Q PT

Cell Qcell PTanode, PTcathode, PTcell

System Qsystem PTmodule, PTsystem

The definition of product types allows the differentiation of electrodes, cells, mod-
ules, and systems. Moreover, a product type can specify different variants of these
products such as electrodes of different materials or cells with different numbers
of layers. In this model, product types specify processing units regarding their pro-
duction step sequences, the allocation of production steps to machines, as well as
processing times and material inputs per production step.

In summary, the job and product type objects make it possible to configure the
model to simulate a specific process chain. It can be used to simulate different pro-
duction stages – according the defined system boundaries – separately or within a
combined process chain.

5.2.2 Processing Unit Agents

Processing units are modeled as agents based on a processing unit agent class. On
process chain level, processing units are displayed by simplified interactive icons
which indicate the ID and product type. Moreover, a dynamic circle indicates the
progress during processing. Within each agent, the icon contains further information
about the current state, accumulatedmaterial cost and direct embodied energy (DEE),
as well as an illustration of the current product state. Figure5.2 shows an exemplary
icon of an electrode processing unit within the first mixing process, still in raw
material state.

This agent class contains a state chart for representing the states of a processing
unit during production, parameters for defining the product specifications, the related
job and assigned product type, variables for product characteristics, input materials,
and direct embodied energy as well as an algorithm for selecting the next suitable
machine. The state chart of a processing unit indicates if a processing unit is already
started, searches for a next machine, moves to a machine, is at a machine, or is
completed after the last production step. These states allow to control and monitor
the behavior of processing units within the process chain. When a processing unit is
created and initialized, it searches for the first machine. For this task, the algorithm
is implemented according to the shortest throughput time control strategy.6 This

6Other control strategies and selection criteria are possible (see Sect. 4.3.2).

http://dx.doi.org/10.1007/978-3-319-49367-1_4
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Fig. 5.2 Icon of an electrode
processing unit (here:
processing unit nr. 1 of
product type 2)

Fig. 5.3 Screenshot (for illustration only) of processing unit agent class content: top left icon, state
chart, parameters and variables; top right product specification and characteristics per state; bottom
algorithm (action chart) for machine selection

algorithm requires information from machine agents such as the location and the
time until availability.7 After a machine is selected, the processing unit agent moves
to the machine. When the processing is finished, the machine agent sends a signal
to the processing unit which searches for the next machine. If no available machine
can be found, the processing unit blocks the current machine. In this case, the search
algorithm stays active until a machine becomes available. This logic corresponds to
the processing unit flow illustrated in Fig. 4.9. Figure5.3 presents a screenshot of the
processing unit agent.

The flow of processing units is visualized by a value stream map. For each pro-
duction step, the model creates a data field which is filled with related performance
indicators such as processing time and waiting time. This allows analyzing if, where,
and for how long a processing unit had to wait prior to processing. Also it is possible
to determine the overall time of production for each processing unit. Each agent con-

7If external machine models are used, the remaining processing time might not be known or prede-
termined but a result of the simulation. In this case, the algorithm considers a very long time until
availability. As a result, a machine is usually not selected unless no other machine is available.

http://dx.doi.org/10.1007/978-3-319-49367-1_4
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Fig. 5.4 Screenshot of an exemplary VSM representation within a processing unit agent

tains a VSM representation showing the history of processing. Figure5.4 presents a
screenshot of an exemplary VSM representation of an processing unit for an elec-
trode batch. The figure shows the sequence of processes for an electrode job with
related processing data as well as a summary of derived indicators such as lead time.
The bars indicate the productive and non-productive time shares. Furthermore, the
representation shows the direct energy demands from processing at each machine.

5.2.3 Machine Agents

Machines are also modeled as agents based on a machine agent class. On process
chain level, machines are displayed by interactive icons which indicate machine
name, number, current state (by the color of the border), the current demands,machine
temperature, the number of processing units within the buffer, and the time shares
per state. Figure5.5 shows an exemplary screenshot of a machine icon.

The dynamic characteristics of a machine are determined decentralized within a
machine agent. On the inside, each machine agent consists of a flow chart for mod-
eling the processing unit agent flow through the machine, a state chart for modeling
of possible states and their transitions, parameters for specifying machine properties
(e.g. location, buffer size, etc.)8, and variables for describing the machine character-
istics (e.g. power demand, compressed air demand, and heat emissions). Elements of
the AnyLogic enterprise library are used to model the processing unit flow through
a machine. These elements allow to control the routing of processing unit entities
entering a machine to a buffer (queue element) which is closed (by a hold element) in
case the machine is still ramping-up. After ramp-up, a processing unit is routed to the
actual process (delay element) and – after the processing time – the processing unit

Fig. 5.5 Representation of a
machine agent on process
chain level

8Machine parameters can be externally configured in spreadsheets and imported to the model.
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leaves the machine if a new machine (or a buffer) is available for further processing.
If a processing unit does not find a next machine, the processing unit blocks the
current machine. If a machine failure occurs, the state chart switches to the failure
state and it is assumed that the machine behaves as in idle state. The processing of
the current processing unit is resumed after the failure is resolved.9

The flow chart communicates with the state chart which describes possible
machine states according to the definition of the generic machine model. The state
chart further determines the demands for electric power and compressed air. Fur-
thermore, the state chart allows to determine the time shares of different operational
states such as ramp-up time, idle time, and processing time. This also enables to
derive the utilization of each machine. The power demand is input to the calcula-
tions of machine temperature and heat emissions which also require certain machine
parameters (mass, surface area, etc.) and the current building zone temperature.

In addition, machine agents contain an algorithm for determining the time until a
machine is available for processingof a next processingunit. This algorithmconsiders
various factors such as the current state and buffer level, remaining processing time,
future processing times of buffered processing units, and remaining movement times
of processing units which are currently moving to a machine. Figure5.6 shows a
screenshot excerpt of the machine agent class content.

Machine agents can further contain process models and a set of associated process
parameters. Process models describe how a process modifies particular product char-
acteristics of processing units. Depending on the specific process, process models
can be realized by functions which calculate the resulting product characteristics
based on specifications and existing characteristics of a processing unit. Alterna-
tively, if the processing results vary over time or different sequential activities can
be distinguished, it is also possible to use timed state charts to define the execution
of functions in more detail.10

Finally, machine agents are responsible for the connection of external machine
models. For eachmachine, amachine agent has to be placedwithin the process chain.
If an external machine model is used, the machine agent coordinates the execution of
the external model. For this purpose, the state chart contains a section which controls
the interaction with external models. This is important since the external model has
to behave according to the defined states. Thus, the state chart of the machine agent
is used to send and receive coordinating signals. The machine agent also receives
values for power and compressed air demand from the external model. Table5.2 lists
the variables for communication with an external model.

This set of variables may be extended for specific purposes. For example, if an
external machine model simulates the detailed thermal behavior of machine compo-

9Different failure behavior could be implemented.
10This might be relevant for processes with long processing times. As an example, the process
characteristics during coating and drying may vary over time if the machine temperature increases
or the coating thickness increases due to variations in the coating device. The characteristics of the
coating layer may vary over time and may differ for different fragments of the layer. In this case, a
state chart may repeatedly trigger the process model function.
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nents, the external model has to provide the heat emissions to the related machine
agent.

Fig. 5.6 Screenshot (for illustration only) of machine agent class content: top left icon, flow chart
and state chart; top middle parameters and variables; top right evaluation of time shares; bottom left
energy and heat calculation; bottom right algorithm (action chart) for determination of time until
availability

Table 5.2 Required
standardized variables for
interaction with external
models

Send variables Receive variables

Ramp-up Is ramped-up

Processing unit
available for processing

Is processing

Product type Processing completed

Product specifications/
Characteristics

Power demand
compressed air demand
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Fig. 5.7 Representation of a
worker agent on process
chain level

5.2.4 Workers

Within the core model, it is assumed that each machine needs at least one worker
for operation. Workers are modeled as agents.11 As soon as a processing unit has
selected a machine which is currently turned off, this machine agent requests the
required number of workers. On process chain level, worker agents are represented
by an interactive icon, which is shown in Fig. 5.7. Each worker agent contains a state
chart with the states standing, walking, light work, and hard work. During walking,
a worker moves along a defined path to the target location. The current location of a
worker is mapped with the building zone areas and the heat and moisture emissions
are allocated to the current zone. In general, modeling of worker agents allows either
to determine the minimum number of workers or if a specific number of workers if
sufficient for the operation of all machines. Furthermore, it allows to determine the
heat and moisture emissions to each building zone. This aspect may be relevant for
dry rooms which accept only a certain internal moisture intake.

5.2.5 Building Zones and Lighting

The coremodel allows defining building zoneswithin the global shopfloor coordinate
system. Zones are characterized by area, temperature, lighting condition, and inside
heat and moisture emissions. Heat emissions are caused by machines, workers, and
lighting. For this reason, machines are assigned to building zones according to their
position within the shop floor and processing units and workers are linked to zones
based on their current location. The core model aggregates these emissions for each
building zone and provides the internal loads to an interface for the connection
of a building model. In return, a building model is expected to provide the inside
temperature – and, depending on the specific building model – humidity of each
zone. For this purpose, the definition of building zones in the process chain model
has to match the zone definition in the external building model.

Each building zone has light sources which can be operated according to different
schedules and control strategies. In the current model, the lights are turned on when a
worker enters a zone and turned off if the last worker leaves a zone.12 The control of
lighting for each zone is realized by a state chart which assigns a state-based power

11The model contains a pool of workers which are all able to operate any type of machine. It would
also be possible to specify the skills and characteristics of each worker agent in more detail.
12It is assumed that all lights within a zone are turned on and off simultaneously.
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Fig. 5.8 Screenshot of core model level with zones, machines, workers, and processing units

demand for lighting. This power demand depends on the required lighting intensity,
efficiency, zone area, and type of light source. The power demand equals the heat
emission to the building zone. Figure5.8 presents a partial screenshot of the process
chain level showing multiple machines and workers within three building zones.
The characterizing variables of each zone are presented at the top of each zone. The
circles around machines indicate the current intensity of heat emissions.

5.2.6 Shift Schedules

Mostly, production facilities operate only during defined shift hours according to
schedules. Considering these schedules in the simulation is important sincemachines
and lights may be turned off and HVAC operation switched into energy saving mode
during non-operation hours. Furthermore, the output of final products per time period
strongly depends on the shift schedules. AnyLogic allows simulating dates and times
based on a calender. This enables defining schedules and deriving control signals for
machines, TBS, and machine operators. In the implemented model, it is required to
define a daily start time and a shift duration. However, it is also possible to define
other schedules considering breaks and weekends.

5.2.7 Evaluation and Visualization

Simulation runs generate various data and values for defined performance indica-
tors. The AnyLogic model allows browsing through all agents and model compo-
nents to inspect specific variables, plots, and charts. Furthermore, on core model
level, the evaluation cockpit provides an overview about the key indicators of each
simulation run and allows to visualize and export time series of indicators. Plotting
various system variables over a longer period of time enables the analysis of effects
acting on a larger time scale such as weather impacts. Also it supports the obser-
vation of the required initiation time or so-called warm-up period of the simulation
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Fig. 5.9 Screenshot (for illustration only) of the visualization of performance indicators within the
model cockpit (energy demands, process chain utilization, building zone characteristics, lead times
per job, time shares of machine operation, etc.)

model.13 Examples of indicators in the cockpit are the electrical power demand of
all machines, the compressed air demand of all machines and the resulting compres-
sor power demand, the process chain utilization, as well as the aggregated heat and
moisture emissions per building zone. In addition, a pie chart illustrates the shares
of demanding systems on the overall energy demand. Furthermore, the cockpit con-
tains histograms of the lead times and embodied energy of jobs as well as a display
showing the current output of final products. Figure5.9 shows a screenshot of the
evaluation cockpit.

5.3 Compressed Air Generation System

The model for a compressed air generation system is implemented in the software
Matlab Simulink based on the previously described concept model. The model con-
sists of the three blocks tank, controller, and compressors. The tank block contains
the functions for the calculation of the system pressure cap. Inputs to the block are the
compressed air demand from the process chain, pressure losses due to leaks, and the
air supply from the compressor. The output of the block is the system pressure which
is an input to the controller block. The controller determines the air supply required
to maintain a system pressure within the accepted interval. It generates signals for
switching the compressor on and off. In the compressor block, Stateflow elements are
used to model the compressor states off, on, and idle as well as to determine the air
supply, the state-based power demand and the count of switching cycles. Figure5.10
shows a screenshot of the implemented model.

13The warm-up period refers to the time from the start of a simulation run until the model represents
the normal or balanced behavior of the real system. For example, in the simulation of a series
production, the model is warmed-up if all machines are operating and buffers are filled. This period
has to be considered in the result evaluation.



142 5 Implementation of a Multiscale Core Model

Fig. 5.10 Screenshot of compressed air generation system model in Simulink

Fig. 5.11 Exemplary
structure for model coupling
via TISC middleware

5.4 Coupling and Synchronization of Models

The core model provides two different types of interfaces for the coupling of external
models. First, static numeric models can be connected by a direct interface.14 The
process chain model calls the external model and waits for the results of the external
model in order to continue the simulation based on these results. For example, this
interface can be used to utilize static processmodelswhich calculate resulting product
characteristics based on empirical data samples. Such model can be called by a
machine agent during the processing state.

Second, external simulation models can be coupled with the core model by using
a middleware software. The TISC software suite is used which provides different
packages for establishing co-simulations.15 The core element is the TISC Center
which connects different client models. The TISC Center is responsible for the co-
simulation configuration, synchronization, and data exchange between all models.16

Figure5.11 illustrates the connection of external models to the core model using
TISC. At model start-up, AnyLogic has to load the required Java classes and connect
to the TISC server. Moreover, all exchanged variables have to be defined at model
start up. In the AnyLogic model, a reoccurring event triggers the synchronization by
sending values to the TISC server, waiting for a synchronization signal, and writing
the received values to the corresponding variables in AnyLogic. Figure5.12 shows
a screenshot of the TISC server control window.

14This coupling approach was used in Schönemann et al. (2016).
15TISC is offered by TLK-Thermo GmbH. Information can be found on www.tlk-thermo.com.
16The TISC suite provides interfaces to various software tools such as Matlab, Modelica (Dymola),
Ansys, and others. However, TISC did not provide a standardized interface for AnyLogic. For this
reason, the TLK-Thermo GmbH developed a TISC-to-java interface which enables AnyLogic to
communicate with TISC via defined Java classes. This support is gratefully acknowledged!

www.tlk-thermo.com
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Fig. 5.12 Screenshot of the TISC server control window

5.5 Verification

The multiscale core model was verified during implementation. To demonstrate the
used verification procedure, a generic job and model configurations were defined
which support testing of all model functions and generating transparent results which
are comparable with static calculations. The job defines the production of one batch
of a product type. The product type requires three production steps, each of which is
allocated to one machine and needs 60min of processing time. The three machines
are located in two different building zones both with an installed lighting power of
1500 W. Table5.3 lists the characteristics of the machines.

The energy demand per machine can be calculated based on the time shares
for each operational state and the associated power demands. The results of static
calculations state that the energy demands of the machines for the production of
one batch are 5,500 kWh for machine 1, 8,400 Wh for machine 2, and 6,400 Wh
for machine 3.17 Figure5.13 presents a plot of the resulting power demand profile
and the values of the resulting electrical energy demands. The figure also shows the
power demand of lighting. During the operation of the first machine, the lighting in
zone 1 is turned on. Afterwards, the lighting in zone 2 is turned on. Since machine 1
is in idle mode for 10min after processing, there has to be a short period in which the
lighting in both zones is turned on. This behavior can be seen in Fig. 5.13. Moreover,
the power demand profile allows verifying the correct order of production steps.
And since the lighting is turned on and off by workers, the power demand profile of
lighting allows to conclude that workers enter and leave the zones correctly.

Similarly, in order to verify the determination of the machine temperature, the
simulation results are compared to static calculations. The temperature of a machine
can be calculated by using the equationQ = m · c · Δ T . With the values for the mass
and specific heat capacity, the power inputs, and an initial temperature of 20 ◦C for
each machine, the resulting temperatures of the three machines can be calculated to
be 20.61, 20.23, and 20.84 ◦C. During simulation, the model determines the increase
of the temperatures up to the expected values, as shown in Fig. 5.14. After the power
is switched off, the machines cool down due to the colder surrounding environment.
The calculations of heat emissions of machines, workers, and lights as well as their
allocation to building zones were also verified.

17For example, the calculation for machine 1 is EDMACH1 = 10/60 h · 2, 000W + 1 h · 5, 000W +
10/60 h · 1000 Wh = 5, 500 Wh.
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Table 5.3 Machine configuration for model verification

Machine 1 Machine 2 Machine 3

Zone 1 2 2

tramp−up (min) 10 10 10

tshutdown (min) 10 10 10

PDrampup (W) 2,000 3,600 4,800

PDidle (W) 1,000 3,600 4,800

PDprocessing (W) 5,000 7,200 4,800

CADidle (m3/h) 0 0 0

CADprocessing (m3/h) 122 10 10

Mass (kg) 5,000 11,000 3,000

Spec. heat capacity (kJ/(kg · K)) 0.6 0.9 0.7

Fig. 5.13 Simulated power demand of the three machines and lighting

Fig. 5.14 Temperatures of the three machines

The compressed air systemmodel was verified with an approach similar to Thiede
(2012), who used a calculation example shown by Bierbaum and Hütter (2004) to
verify his compressed air module. They assumed a constant compressed air demand
of 122m3/h, a systemvolume of 3m3, aswell as a compressorwith amaximal volume
flow of 201 m3/h, 30 kW power demand during operation and 10 kW during idle.
Furthermore, Thiede assumed an initial pressure of 8 bars and that the compressor
stays in idle mode for 60 s before being switched off. He simulated a period of
one hour and the results showed eight compressor cycles and a power demand of
19.4 kWh. This scenario was also used for the verification of the developed Simulink
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Fig. 5.15 Plots of
compressed air demand
(top), system pressure
(middle), and compressor
power demand (bottom)

4000 4500 5000 5500 6000 6500 7000 7500 8000

time [seconds]

0

100

200

4000 4500 5000 5500 6000 6500 7000 7500 8000

time [seconds]

0

5

10

p
re

s
s
u

re
 [

b
a

r]
4000 4500 5000 5500 6000 6500 7000 7500 8000

time [seconds]

0

2

4

p
o

w
e

r 
[k

w
] ↓ 104

d
e

m
a

n
d

 [
m

3
/h

]

4000 5000 6000 7000 8000

time [seconds]

7

8

9

10

11

p
re

s
s
u

re
 [

b
a

r]

step size 1s step size 10s step size 60s

4000 5000 6000 7000 8000

time [seconds]

0

0.5

1

1.5

2

2.5

3

3.5

c
o

m
p

re
s
s
o

r 
p

o
w

e
r 

d
e

m
a

n
d

 [
W

] ↓ 104

step size 1s step size 10s step size 60s

Fig. 5.16 Plots of pressure (left) and compressor power demand (right) for different simulation
time step sizes (1, 10, 60 s)

model. One of themachineswas specifiedwith a compressed air demand of 122m3/h.
Themodel generated the same results with eight cycles and 19.55 kWh.18 Figure5.15
shows plots of the compressed air demand of the machine, the system pressure, and
the resulting compressor power demand.

Another important aspect is the simulation step size of the compressed air system
model as well as the step size for synchronization with the core model. In general,
shorter time steps result in more accurate results but correspond to a longer execution
time. The definition of the step size may have significant impact on the results. As
an example for verification, three different step sizes of the compressed air system
model have been tested. The results – shown in Fig. 5.16 – reveal that the step
size effects the simulated system pressure and compressor power demand. If the
simulation step size is larger, the lower and upper pressure limit is detected too late.
This caused the compressor to start and stop the air supply too late which also effects

18The slight deviation is caused by the initial pressure of 10 bars and by the fact that the last
compressor cycle was completely simulated and not stopped after exactly 3600s.
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Fig. 5.17 Plots of demand (top) and pressure (bottom) for different synchronization time steps
(1, 10, 60 s)

the resulting power demand of the compressor. The values for the power demand
are 19.55, 19.583, and 19.50 kW for a model step size 1, 10, and 60s respectively.
Although these variations are rather low, they could add up to a larger error over the
simulation period.19

In addition to the simulation step size, the synchronization step size is another
relevant factor. This step size indicates how often variables are synchronized between
the two models. At every synchronization step, the core model provides the current
compressed air demand to the compressed air system model. That means that peaks
in the compressed air demand which occur between two synchronization steps will
not be communicated. To demonstrate this effect, a compressed air demand peak
of 200 m3/h was generated for 30 s. Three simulation runs were conducted with
synchronization step size of 1, 10, and 60s. Figure5.17 shows the results. It can be
seen that the time of occurrence and the duration of the peak are detected wrongly
for synchronization step sizes of 10 and 60s.20 This leads to the incorrect simulation
of the system pressure. Since short synchronization time steps may result in longer
simulation execution times, this experiment has shown that the step size must be
defined according to the desired accuracy.

In summary, all relevant model functions were verified and found to provide
accurate results. This includes also the correct creation of value stream maps for
processing units and the functionality to use process models for the modification of
product characteristics within processing units. Consequently, the model can be used
as a core model for multiscale simulations. However, the exemplary results of the
experiments with different model and synchronization step sizes show that it is of

19The simulation runs have been repeated for the production of 50 instead of one product unit. Shift
schedules have been ignored. With a model time step of 1 s, the energy demand was 974.417 kWh.
For 10s it was 976.78 kWh and for 60s it was 962.67 kWh.
20In this example, the demand started exactly simultaneously to the synchronization step of 60s. If
it would have started just a bit later, it would have been ignored completely.
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importance to set time steps which are suitable for the specific machine behavior,
desired result accuracy, and acceptable simulation execution time. Otherwise, even
a verified model may deliver inaccurate results.
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Chapter 6
Exemplary Application

The developed multiscale simulation concept is exemplary applied to two different
battery production systems. The purpose of this application is demonstrating the use
of the simulation concept, the core model, the development of detailed models, as
well as the interpretation of simulation results. Since the simulation is applicable for
all production stages and different objectives, the application is demonstrated for cell
production (Sect. 6.1) as well as for the assembly of battery modules (Sect. 6.2).

6.1 Simulation of Cell Production

In the first study, a simulation model was created for the production of LIB cells at
the Battery LabFactory Braunschweig (BLB). The twelve-step application procedure
for multiscale simulations structures the following subsections.

6.1.1 Problem Formulation (I) and Objective Definition (II)

TheBLB is a battery cell research facility.1 It serves as a platform for interdisciplinary
research on the process chain for electrodes and cells. Research fields are cell design,
process improvement, sustainable manufacturing, battery cell and production system
simulation, as well as data acquisition and knowledge discovery in production. The
BLB is equippedwith state-of-the-art production equipment such as different types of

1The BLB was established in 2013 at the Technische Universität Braunschweig as an institution of
the Automotive Research Centre Niedersachsen (NFF); www.tu-braunschweig.de/blb.
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mixers, a continuous coating and dryingmachine, a calender, a laser cutter, automated
machines for cell assembly, and cycling automates. The assembly of cells at the BLB
is located inside a 150m2 dry room and is characterized by small batch sizes and
manual handling operations.

The objective of the simulation is imitating the operation of the BLB – under the
assumption that it operates at full capacity – and to demonstrate the capabilities of
the proposed multiscale simulation approach. The simulation shall determine per-
formance indicators such as the output of cells per time period and the utilization
of equipment, as well as energy demands for different scenarios. More specifically,
the simulation shall enable the evaluation of the impacts of machine configurations,
processing times as well as different materials on the energy demand. In addition,
the simulation shall allocate the energy demands to produced cells and create trans-
parency about the pattern of energy demands in order to identify the most relevant
machines and systems. The goal was to demonstrate the interaction of different mod-
els as well as possible results and use cases of the multiscale simulation.

6.1.2 Definition of Required Models (III)

The multiscale core model was used to simulate the material flow and to determine
the operation and demands of machines. This allows the coordination of detailed
models. In order to configure the core model and to define the required machine
agents, machines and peripheral equipment have been analyzed. According to the
proposed decision tree for model type selection, the machines of the process chain
must be included in the simulation. Detailed modeling of machines or equipment
may be reasonable if the energy demand is high and volatile see (Sect. 4.7.3). Hence,
machines and equipment were observed regarding power demands and operational
time to derive the required type of modeling for each equipment. The results of
a portfolio analysis provided by Posselt (2016) were used as a starting point for
the identification of machines/systems with high energy demands. In addition, an
analysis of measured load profiles of machines and equipment was carried out to
gather detailed insight into demand patterns. As a result, the following machines and
systems have been identified to have high energy demands:

• continuous coating and drying machine
• calender
• cycling automate
• extruder
• ventilation units incl. heating and cooling
• dry room units
• chiller

These machines and systems were further investigated to determine whether the
power demands are volatile and require detailed modeling or if generic models pro-
vide sufficient accuracy. As an example, the power demand of the calender was

http://dx.doi.org/10.1007/978-3-319-49367-1_4
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Fig. 6.1 Power measurement of calender. Unfiltered and filtered data
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Fig. 6.2 Power measurement of coating and drying machine. Unfiltered and filtered data

examined and the power demand profile – presented in Fig. 6.1 – shows rather con-
stant power demands for idling and processing. Generic modeling seams reasonable.

As another example, Fig. 6.2 shows a characteristic power demand profile of the
coating and drying machine. During ramp-up, the power demand increases until the
desired drying temperature is reached. The power demand remains constant during
processing and drops to a lower level at which it stays constant again. This allows to
conclude that the power demand during processing depends on process parameters.
Overall, the power demand of the coating and drying machine could be simplified
modeled by a genericmachinemodel inwhich the state-based power demanddepends
on process parameters. However, if NMP solvent is used in the electrode slurry, this
solvent is emitted in the drying process and the exhaust air has to be filtered before
it leaves the building. A treatment system is required which consists of components
with high power demands. It has to be modeled and connected to the dryer model in
order to simulate the effects of different solvents on the energy demand.

This analysis approach was used for all other machines and equipment with high
energy demands. It revealed that all selected machines can be sufficiently modeled
with generic models due to constant power demand profiles. There are also machines
with higher variation in power demand such as the z-folder or the laser cutter. How-
ever, their overall power demand is relatively low which means that a state-based
modeling approach with average values is reasonable for a first estimation of the
production systems energy demand. Detailed models of these machines may still be
reasonable if it is desired to simulate the impacts of machine behavior on process
results. For example, the speed of a gripper in the z-folder may effect the positioning
accuracy of electrodes. To investigate these effects, a detailed machine model of the
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Fig. 6.3 Framework for the multiscale simulation of the BLB

z-folder with each component was created in the software Simulink with defined
variables for the connection to the core model. However, these aspects and the model
were neglected.

The defined models and their relations must be clearly structured within the con-
text of the multiscale simulation. This can be realized by using the suggested frame-
work for multiscale simulation. Figure6.3 presents the adapted framework for the
simulation of the BLB.

6.1.3 Modeling, Implementation (IV), and Coupling
of Models (V)

The defined models have to be further specified and implemented in software. The
core model, the compressed air system model, and the machine models have to be
configured. In addition, detailed models have to be created for the HVAC systems
including the dry room and a model for the building zones.

Multiscale Core Model

The multiscale core model was configured to represent the BLB. This required the
definition of product types, material flows, jobs, machines, and building zones. An
image of the building ground plan was placed in the background of the models
main level and zones were defined based on the actual building zones. The machine
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Fig. 6.4 Screenshot of the
multiscale core model
implemented in Anylogic
during a simulation run

location was specified within the shop floor coordinates according to their position
in the ground plan. This allows an easy interpretation of the dynamic model behavior
and results during simulation. Figure6.4 shows a screenshot the process chain model
representation of the BLB. The machines are modeled with the machine agent class
providedby the process chainmodel. Eachmachinewas configuredbasedonmachine
specific parameters and state-based energy and compressed air demands.

As an example for an extended machine model, the coating and drying machine
was modeled in more detail to describe the effects of process parameters and the
operation of the exhaust air treatment system. This model was implemented in Any-
Logic within the machine agent class. The state-based power demand values for
the machine were derived from empirical results. Measurements were taken and
examined for various process parameter combinations. The analysis revealed that
the power demand is mostly effected by the dryer temperature. Figure6.5 shows box
plots of the power demand of the machine for the temperatures 80, 100, and 120 ◦C.
Within the model, the power demand is adjusted based on a defined temperature.
Furthermore, the air treatment system was modeled with state charts describing the
main components fan, filter, and chiller.2

2The fan has a nominal power of 11kW but it mostly operates at 30% of this power. The filter
requires compressed air. The purpose of the chiller is cooling of the exhaust air before entering
the filter. The chiller has a nominal power of 65kW. Its power demand depends on the outside air
temperature. Since no exact energy data exist so far, a template for a function was implemented
which can initially be used for a rough estimation of the chiller power demand and later be adapted.
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Fig. 6.5 Power demands of
continuous coating and
drying machine for three
different drying temperature
settings
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The control strategy of the process chain had to be adjusted to account for aspects
of the small scale production. It is assumed that production activity starts at 7 am and
stops at 8pm on each day (including weekends). The cycling automate is the only
machine running at night. All other machines start processing only if the processing
time is shorter than the remaining shift time. Furthermore, the mixing process only
starts if the slurry can be used for coating at the same day. The buffer capacities at
each machine are set high in order to avoid blocking. Mixers and the coating and
drying machine have small buffers since they have to be immediately available at the
beginning of a job.

Since battery production is highly automated, the influences of worker perfor-
mance on product quality were neglected within this study.3

Building and HVAC Model

The BLB has five building zones. Zone 1 contains the mixing processes and is
ventilated, heated, and cooled. Zone 2 contains the coating and drying machine and
the calender. It is ventilated and heated. Zone 3 and 4 are dry rooms for cell assembly.
Zone 5 contains the cycling automate and is ventilated and heated.

For simulation of the building inside conditions, a simplified five room model
was built in Simulink using the International building physics toolbox (IBPT).4 Each
zone was composed using construction objects for walls, windows, ceilings, as well
as ventilation and air conditioning systems. Weather data were prepared based on
TRY-files for Germany (DWD 2016). Figure6.6 shows a screenshot of the building
zone model. In the model, each building zone is ventilated with a constant air change
rate and power demands for ventilation are assumed to be constant within each of
the states operation and standby according to measurements taken at the BLB.5 The
heating energy is supplied to the BLB as district heat. In addition to the supplied
heat, the process chain model determines heat emissions of machines, lighting, and

3It is possible to implement existing worker performance models (e.g. from Baines et al. 2004) into
a multiscale simulation if the results are expected to be beneficial.
4The open-source toolbox was developed by the Building Physics research group of the Chalmers
University of Technology in Gothenburg, Sweden and the Department of Civil Engineering from
Technical University of Denmark in Copenhagen. The resources and information are available on
www.ibpt.org.
5For each zone: 8kW in operation and 5kW in standby mode.

www.ibpt.org
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Fig. 6.6 Five-zone building
model implemented in
Simulink

workers to each building zone. These heat emissions reduce the required heat supply
and may demand cooling. The building model determines the resulting heating and
cooling power demand required tomaintain zone temperatures between 20 and 26 ◦C.
The simulated heating demand equals the district heat demand6 while the cooling
demand has to be provided by a chiller.7

The dry rooms are both supplied by an AHU each containing fans, cooling coils
for pre-cooling of the outside air (supplied by the chiller), a desiccantwheel, a heating
coil for heating of the dried air to the desired room temperature (district heating), a
heating coil for the regeneration air flow (gas), and a waste heat recovery from the
regeneration air. In order to estimate the power demand of the dry room operation,
a model is derived based on power measurements8 and the analysis of the control
scheme. First measurements have shown a rather constant gas demand9 during dry
room operation as well as a constant power demand for ventilation. In addition, a
regression analysis was conducted to investigated the correlation between the outside
temperature and the power demand of the chiller. Figure6.7 shows a scatter plot of
samples for the power demand during intervals with an average temperature. It also
shows a fit based on a polynomial function, which was implemented in the chiller
model to estimate the power demand depending on the outside temperature.10

The effects of moisture emissions of workers and the relative humidity of the
outside air on the energy demand of the dry room components were not considered.
However, due to the structure of the dehumidification system, it is assumed that

6It was assumed that heat supply is available throughout the entire year although it might be turned
off during summer months.
7Themodel determines the required cooling demand tomaintain the zone temperature in the desired
range. However, in the BLB, the capacity of the available chiller is not large enough to supply the
dry room AHU as we as to provide cooling for all zones.
8Measurements were only available for April, August, September and October.
9Approximately 7m3/h. However, due to the lack of sufficient data, this aspect is neglected in the
model so far.
10Goodness of fit: R-square: 0.8496. The quality of this fit has to be re-evaluated if more data
samples are available.



156 6 Exemplary Application

0 2 4 6 8 10 12 14 16 18

temperature [°C]

15

20

25
c
h

ill
e

r 
p

o
w

e
r 

[k
W

]

chillerpower vs. temperature

fit

Fig. 6.7 Scatter plot of samples of chiller power demand [kW] and outside air temperature (◦C)

Fig. 6.8 Model coupling
structure

higher internal moisture loads and higher outside air humidity would result in a
higher gas demand.11 Moreover, in addition to the use of constant values (e.g. as
for the ventilation power demand) or empirical model (e.g. as for the chiller power
demand), it is also possible to calculate the theoretical energy demands based on the
specific characteristics of the air streams to and from the dry room. Such detailed
modeling may be reasonable for system or control design or to accurately determine
the indoor conditions. However, it would require further in-depth knowledge about
the dehumidification and ventilation system and cause higher modeling effort.

Model Coupling

The building model and the compressed air system model are connected to the core
model via the middleware TISC, as shown in Fig. 6.8. The building model receives
information from the process chain model about the shift schedule and variables
about heat emissions for each building zone. In return, the building model provides
the temperatures for each zone, the heating and cooling demands, aswell as the power
demand of the chiller. The zone temperatures are used in the core model to calculate
the heat emissions of each machine. Furthermore, the building model provides the
outside air temperature which is used to determine the power demand of the chiller
of the air treatment system.

11Further studies could deal with the measurement of the zone dew point temperature along with
the number of people inside a dry room over a time period. This may enable to derive a regression
function for the power demand depending on moisture loads.
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6.1.4 Verification and Validation (VI)

The general verification of the core model, the compressed air systemmodel, and the
coupling via TISCwas already explained in the previous chapter. The models used in
this studywere verified based on available production data and energymeasurements.
Since the BLB is usually not operating at full utilization, data about energy demands
and control ofHVAC systems are not completely available. Furthermore, the building
and HVACmodel was modeled without having complete data and information about
system characteristics and control parameters. As an example for limitations, heat
transfers between building zones are not considered and thematerials of construction
elements are not exactly matched with the materials used in the BLB. Moreover, the
calculation of humidity is not included in the building model. However, the geom-
etry of building zones is specified accurately and the model in general shows the
expected thermal behavior. For example, the temperatures in larger zones change
slower compared to zones with smaller air volume and zone temperatures increase
if heat is emitted from internal heat sources (provided by the core model). Thus,
the simulation results are useful as a rough estimation of the building climate and
to highlight the directions of interdependencies between model parameters. In sum-
mary, although some models were verified and validated based on available data,
the overall model cannot be considered validated and serves only as an experimental
model demonstrating the functionality of the multiscale simulation.

6.1.5 Definition (VII) and Execution (VIII) of Simulation
Runs

Specific simulation runs have to be defined based on the objectives and models have
to be configured accordingly. In this study, different experiments are used to illustrate
possible use-cases of the multiscale simulation. First, a reference scenario is defined
which imitates one month of production of one type of battery cells. Jobs, product
types, processing parameters, machine allocation and processing times were defined
in order to create a consistent scenario of the cell production within the BLB.12 Each
job represents the production of 50 cells and it is assumed that one anode batch and
one cathode batch are used for exactly these 50 cells. This reference scenario can
be used as a benchmark to evaluate the effects of different system changes related
to various planning tasks. This case study addresses the following five exemplary
tasks:

T1: Evaluation of different drying times and temperatures The coating and
drying machine has a high power demand and relatively long processing times.
It can be assumed that this machine is a bottleneck which effects the output of

12Since there is no established series production scenario of the BLB, this reference scenario
represents one exemplary system configuration which is not necessarily completely representative
for the BLB.
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cells and causes high energy demands. It should be evaluated how the output and
energy demand is effected by different processing times and temperature settings.

T2: Evaluation of additional machines The reference scenario refers to the actual
machine configuration of the BLB. However, since the BLB is not equipped for
series production, it is expected that the material flow will be blocked and that
buffers will run full due to limited capacity of some processes. For this reason,
the simulation should enable evaluating if additional machines can improve the
material flow and increase the output.

T3: Evaluation of different solvents Electrode slurries can contain different sol-
vents. OftenNMP is usedwhich is removedwithin the drying process and requires
treatment of the exhaust air. If water is used as solvent, no air treatment is neces-
sary. The effects of solvents on energy demands should be evaluated.

T4: Evaluation of different weather conditions The reference scenario is simu-
lated with weather data for July. It is of interest to evaluate how much the HVAC
energy demands are effected by the outside air temperature.

These evaluation tasks are the basis for the derivation of simulation runs. Simula-
tion runs represent scenarios with different production system and simulation model
configurations. They have to be specified to generate simulation results which allow
the evaluation of the related tasks. Table6.1 lists the description of defined simulation
runs for this case study. These runs have been executed to generate results.13

Table 6.1 Description of simulation runs

SR Description

SRRS Simulation run for the reference scenario

SR1,1 Reference scenario but with drying time increased by 10%

SR1,2 Reference scenario but with drying time increased by 20%

SR1,3 Reference scenario but with drying time reduced by 10%

SR1,4 Reference scenario but with drying time reduced by 20%

SR1,5 Reference scenario but with temperature at 100 ◦C
SR1,6 Reference scenario but with temperature at 120 ◦C
SR2,1 Reference scenario but with two filling machines

SR2,2 Reference scenario but with two coating and drying machines

SR2,3 Reference scenario but with two filling machines and two coating and drying
machines

SR3,1 Reference scenario with slurry containing NMP solvent. Air treatment system is
activated

SR3,2 Machine configuration from SR2,2 with slurry containing NMP solvent. Air
treatment system is activated

SR4,1 Reference scenario but with weather data for January

SR4,2 SR2,3 but with weather data for January

SR4,3 Reference scenario but with weather data for October

SR4,4 SR2,3 but with weather data for October

13Each run starts with empty buffers and consequently not in steady state. In addition, stochastic
effects such as machine failures or process variations are neglected due to the lack of required data.
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6.1.6 Evaluation of Simulation Results (IX)
and Objectives (X)

The results of the simulation runs were examined regarding result quality and usabil-
ity for the evaluation of the defined tasks. Figure6.9 presents exemplary plots of
performance indicators of SR2,3 for the simulation period of one month. These plots
show (from top to bottom) the power demands of machines, compressed air gen-
eration, heating and cooling, the dry room (ventilation and chiller), and lighting.
These plots enable identifying trends and characteristic situations. For example, a
daily power demand pattern can be identified from the first plot. Furthermore, heat-
ing demands are higher at times with lower outside temperature and cooling is only
active during days with a higher outside temperature. In addition to these monthly
plots, it is possible to visualize the total energy demand of each machine and sys-
tem for the simulated month – as shown in Fig. 6.10 for SR2,3. This visualization
helps to identify the most relevant machines/systems. Here it becomes clear that the
highest energy demands are caused by building cooling demand, coating and drying
machines, the chiller for the dry rooms, as well as the ventilation of zones.
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Fig. 6.9 Plots of indicators for SR2,3. From top to bottom: power demand of machines, compressed
air generation, heating and cooling, dry room, and lighting
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Fig. 6.10 Energy demands of machines and systems during one month for SR2,3

In this case study, indicators have been selected for the comparison of simulation
runs. These indicators were the yield of cells during the simulated period of one
month, the utilization of the process chain (utiPC ), the mean production time per job
(PTmean) and its deviation (PTdev), energy demands (ED) of different systems, aswell
as the average direct and indirect embodied energy per cell (∅ DEEcell, ∅ IEEcell).
Table6.2 lists the results for the simulation runs. Even though the actual numerical
values of the results must be doubted due to the non-validated model character, they
enable a discussion of the individual measures, the comparison of simulation runs,
and the improvement of the understanding of the complex behavior of the production
system.

The results of the reference scenario SRRS show that the mean of the production
time per job is high with 189h. A detailed analysis showed that the production time
increased over the observed time period. This is caused by including the model warm
up phase into the simulation results. After reaching a steady state, the model shows
that the machines in cell assembly have full buffers because the filling process is
a bottleneck. Many semi-finished product units are stored in buffers and cannot be
finished due to limited machine capacities. Furthermore, the mixing processes are
often blocked which allows to conclude that the coating and drying machine is also a
bottleneck. However, the sole extension of coating and drying capacities would only
result in more buffered semi-finished product units in cell assembly. In summary,
the high mean production time indicates a large amount of work in progress and an
undesired obstructed material flow.

The results of SR1,1–SR1,4 show the effects of different processing times for
coating and drying. As expected, longer processing times result in higher energy
demands of machines and higher direct embodied energy per cell. The reduced mean
production time of SR1,2 compared to SR1,1 can be explained with fewer started jobs
due to not available coating capacities. Thus, fewer product units fill the buffers in
cell assembly causing shorter production times. The opposite effect shows in SR1,4:
A shorter time for coating and drying increases the yield because the cell assembly
can start earlier within the simulated month. On the downside, higher throughput
in electrode production fills the buffers in cell assembly more quickly causing the
production times to increase even more for later jobs and blocking of the previous
processes. The resulting reduced activity in electrode production results in lower
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overall energy demands while maintaining a similar yield compared to the previous
simulation runs. However, the amount of produced electrodes is lower at the end of
one month.

SR1,5–SR1,6 differ from the reference scenario only regarding the power demand
for the coating and drying machine. The results show the expected higher energy
demand of machines but also of HVAC systems due to higher cooling demands.
Consequently, the direct and indirect embodied energy per cell is effected noticeably
by the drying temperature.

SR2,1–SR2,3 examined the impacts of additional machines. First, in SR2,1, two
additional filling machines resulted in a higher yield due to a resolved bottleneck
at the end of the process chain. The mean production time dropped significantly.
The utilization of cell assembly was reduced (since buffers were not always filled
and machines were in idle mode) which can be seen at the reduced power demand
for compressed air generation. As a result of the higher yield, the indirect embod-
ied energy per cell was noticeably reduced because the fixed power demands could
be allocated to more cells. In SR2,2, the reference scenario was extended by a sec-
ond coating and drying machine. The results indicate that the bottleneck was not
eliminated since the mean production time is very high and the yield similar to the
reference case. In SR2,3, the reference scenario was extended by both two additional
filling machines and one additional coating and drying machine. The results show
that a higher yield and shorter production times were possible in this case. This
underlines that the cell assembly was not fully utilized in SR2,1.

The results of SR3,1 show – in comparison to the reference scenario – that the
air treatment system caused higher overall energy demand as well as higher direct
(increased by almost 50%) and indirect embodied energy per cell. SR3,2 revealed –
based on SR2,1 – that a higher output did not help to reduce the embodied energy
since the energy demands of the air treatment system were assigned to the coating
machine. If the energy demand of the air treatment systemwould have been allocated
to the TBS systems, the higher output in SR3,1 would have resulted in reduced indirect
embodied energy compared to SR3,1. It can be concluded that avoidingNMP solvents
is an important measure in reducing the overall energy demand.

SR4,1 and SR4,2 usedweather data for January. The high required heating demands
caused an increase of the total energy demand and indirect embodied energy per
cell. Even though the output of SR4,2 is higher, the indirect embodied energy is
still significantly higher compared to SR2,3. SR4,3 and SR4,4 used weather data for
October. The weather conditions caused lower heating and cooling demands due to
moderate temperatures.

The embodied energy per battery cell is an important indicator for the evaluation
of the environmental impacts of each cell. Figure6.11 presents the simulation results
for the average direct (DEE) and indirect (IEE) embodied energy of one battery cell.
It becomes clear that the indirect embodied energy was higher in all simulation runs.
Furthermore, the indirect embodied energy strongly depends on the yield of finished
cells. This means that the energy demands of peripheral equipment and TBS as well
as the yield of a factory must be considered in the economic and environmental
assessment of battery cells. Moreover, the simulation results allow a breakdown
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Fig. 6.11 Average direct (DEE) and indirect (IEE) embodied energy per battery cell
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Fig. 6.12 Average embodied equivalent CO2 emissions from energy supply per battery cell

of the energy demand into different energy carriers. This enables a more accurate
determination of environmental impacts and energy costs. For example, in this study
the building heating is supplied by district heat while the other machines and TBS
systems demand electricity. These energy carriers cause different specific equivalent
CO2 emissions14 which can be used to determine the average embodied equivalent
CO2 emissions from energy supply for each produced battery cell, as shown in
Fig. 6.12.

In summary, the results allow to draw some general conclusions. The processing
times of individual processes may effect the bottleneck(s) of a process chain and
influence the achievable yield of finished cells. This further influences the indirect
embodied energy per cell.Moreover, the energy demands of processesmaydependon
product specifications (e.g. type of solvent) and process parameters (e.g. temperature
settings). As an example, the usage of NMP solvent increases the energy demand
noticeably (SR3,1 and SR3,2). This also effects the direct embodied energy per cell.
In addition, weather conditions have a significant effect on the energy demand of
HVAC systems. Thus, weather conditions have to be considered while selecting a
location for a battery cell factory.

Overall, the developed models can be used to conduct simulation runs for further
planning tasks or for in-depth sensitivity analysis of single parameters or model
characteristics.Moreover, themodel functions allow the analysis of worker behavior,
value streams of jobs, the development of product characteristics, etc. These aspects
were not included in this case study but could be used for future studies.

14ForGermany:COeq
2 impact of electricity production: 609g/kWh (Umweltbundesamt 2015); COeq

2
of district heat (from fossil energy carriers): 325g/kWh (Umweltbundesamt 2013).
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6.2 Simulation of Module Assembly

In this second case study, a simulation model was created for the assembly of battery
modules. This demonstration focused the application of themultiscale coremodel for
the evaluation of different process chain configurations. For simplification, only the
process chain scalewithworkstations15 was examined neglecting processes,workers,
TBS, and the building. Due to this specific focus, this section does not specifically
cover each step of the application procedure.

Problem Formulation and Objective Definition

The scope of this study was the comparison of a traditional assembly line configu-
ration with a matrix-structured process chain layout for the simultaneous assembly
of three exemplary types of battery modules. These modules differ regarding the
number of cells, installed cables and sensors, geometric dimensions, and the hous-
ing. Consequently, although the production steps of all considered module types are
in general identical, there are differences in the exact production steps and related
processing times. In this case, two module types require eight production steps while
the third requires seven steps because it does not contain a cooling system. Table6.3
lists the production steps with related processing times for the three module types.16

The differing processing times of production steps result in starving and blocking
of workstations. Thus, the goal of the production planning is defining process chain
layouts and machine allocations which enable a high system utilization by avoiding
starving and blocking. The objective of the simulation study was testing of different
process chain layouts, different buffer sizes of workstations, and different allocations
of production steps to workstations.

Table 6.3 Production steps with related processing times for each module type

Processing time per production step (min)

PS1 PS2 PS3 PS4 PS5 PS6 PS7 PS8

Module type 1 3 5 7 5 4 5 6 5

Module type 2 4 6 8.5 6.3 4 6 6 5

Module type 3 2.5 4.5 5 3 5 – 5 5

15In this case study, the term workstation was used since assembly tasks are often manual tasks
which are supported by different tools or resources.
16The processing times are defined based on assumptions and serve the purpose of demonstration.
They do not reflect real-word production data.
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(a) assembly line configuration (b) matrix-structured configuration

Fig. 6.13 Screenshots of the assembly line configuration in u-shape (a) and the matrix-structured
configuration (b) modeled in AnyLogic

Development of Models and Implementation

The multiscale core model was used for modeling of different process chain config-
urations and for evaluating scenarios regarding utilization and production time. In
the model, the assembly line configuration and the matrix-structured configurations
were created by specifying the workstation coordinates as well as the allocation of
production steps to workstation. The operational states of workstations were repre-
sented by generic machine models. Energy demands were not observed in this study.
Moreover, shift hours were not considered since TBS systems are not modeled and
there are no effects of weather conditions on any production system element. Battery
modules were represented by processing unit agents and the control strategy shortest
throughput time was used to control the flow of processing units.

For the assembly line configuration, each production step was allocated to one
workstation. Hence, in this case there were eight workstations which were positioned
within the virtual shop floor coordinate system according to the order of production
steps. Each workstation must have the required resources (e.g. tools).

For the matrix-structured configuration, each production step was allocated to
multiple workstations based on different criteria. For example, if different production
steps require the same tools (e.g. for fixation of cells on a base plate and for mounting
of the housing), these production steps can be allocated to the same workstation. In
this study, the production steps were allocated to nine workstations. Figure6.13a, b
present screenshots of the implemented process chains configurations.

Definition and Execution of Simulation Runs

The simulation model was used to determine the utilization and total production time
for the assembly line and thematrix-structured configuration. For each configuration,
the assembly of 500 modules was simulated in one simulation run with a random
sequence of product types. The buffer size of each workstation was set to one. A
fixed seed value was used for simulation in order to replicate the same sequence
of products for each simulation run. This random sequence of product types should
represent unknown demands for each product type. After the first two simulation
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runs for both the line and matrix-structured configuration, a third run was executed
to analyze an optimized matrix-structured configuration.

Evaluation of Simulation Results and Objectives

The results of the simulation runs were analyzed regarding the indicators utilization
and overall production time for the simulated assembly of 500 modules. Figure6.14
shows the plot of the utilization for the assembly line and matrix-structured config-
uration. The plots for both configurations show a fluctuation of the utilization which
can be explained by regular starving and blocking of workstations. However, the
utilization of the matrix-structured configuration (mean: 78.8%) is higher compared
to the utilization of the assembly line configuration (mean: 69.5%). Moreover, the
required production time for 500 modules is approximately 20% shorter with the
matrix-structured configuration (including ramp-up and ramp-down of the assembly
activity).

For further optimization of the matrix-structured configuration, the causes of
blocking were investigated. A total of 186 blockings occurred during the simula-
tion run. It was analyzed in which state a processing units could not be forwarded to
a next workstation. A histogramwas created showing the production step of process-
ing units at which blocking occurred. This indicated which production steps were
not sufficiently available in the process chain. Figure6.15 presents the histogram
which shows that processing units are often blocked after production step PS4 and
PS7. Consequently, workstations for production step PS5 and PS8 were not available
when needed. As a solution, these both production steps were additionally allocated
to workstation 9. Another simulation run was executed to evaluate this change in pro-
duction step allocations. Figure6.16 presents the plot of the resulting utilization of the
adjusted matrix-structured configuration in comparison to the previous simulation
results of the initial matrix-structured configuration. The adjusted matrix-structured
configuration resulted in a slightly higher utilization (mean: 81.6%) and a shorter
production time. The total number of blockings was reduced to 49. This procedure
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Fig. 6.14 Simulation results: Utilization of assembly line (top) andmatrix-structured configuration
(bottom)
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Fig. 6.16 Simulation results: Utilization of the initial (top) and the adjusted matrix-structured
configuration (bottom)

for analyzing blockings could be repeated in order to further optimize the allocation
of production steps. Alternatively to the additional allocation of production steps to
other workstations, buffer sizes may be increased or new workstations added to the
assembly system. The effects of such improvement measures can be analyzed with
the simulation model.

The coremodel could also be configured for the consideration ofmachine failures.
Probability distribution could be used to model the times between the occurrence of
machine failures (MTTF) and until failures are repaired (MTTR). The model must
be used to execute a large number of simulation runs with random seed value in order
to address the implemented stochastic effects and to avoid a snap-shot character of
simulation results. It was shown in Schönemann et al. (2015) that matrix-structured
assembly systems can be more suitable for handling stochastic machine failures
in comparison to sequential assembly lines. In the analyzed scenario, an assembly
line configuration was compared to a matrix-structured configuration. The failure
behavior of each machine was specified byWeibull functions for MTTF and uniform
distributions for MTTR. Weibull functions have been used since they are adjustable
to individual machine behavior. The uniform distribution allowed to equally consider
short and long repair times. The model was used to execute 100 simulation runs with
random seed values of the random number generator. The results show a higher
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utilization of the matrix-structured configuration which was equally high compared
to the deterministic case without machine failures.

In summary, this second case study has shown how the process chain model can
be used to evaluate different process chain configurations. The shown evaluation
addressed the economic performance of an assembly system by analyzing the sys-
tem utilization and the production time for a predefined yield. Such analysis of the
process chain performance may also be applied to cell production in the case that
multiple redundant machines are available. Moreover, in further simulation runs, an
modeled process chain of an assembly system can also be embedded within a factory
environment and extended by detailed models for processes, TBS, and the building
– similar to the demonstration in the first case study.
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Chapter 7
Summary and Outlook

This chapter summarizes the presented work (Sect. 7.1), gives a critical review of the
achieved results (Sect. 7.2), and provides an outlook by suggesting further research
(Sect. 7.3).

7.1 Summary

The presented work aimed at contributing to the research field of production system
simulation in general and simulation of battery production in particular. Chapter 1
presented an introduction to the challenges in battery production and highlighted the
motivation for a multiscale simulation approach for production systems.

Chapter2 discussed the required background information about battery produc-
tion and simulation. In its first part, the chapter separately covered the structure and
components of battery systems as well as the principles of production systems before
presenting the specific characteristics and requirements of the production of battery
electrodes, cells, modules, and systems. In the second part, the chapter discussed the
simulation methodology in the context of the digital factory network and introduced
different modeling characteristics, simulation approaches, and procedures for simu-
lation studies. The idea of a multiscale simulation for production system was derived
and various approaches for parallel or co-simulationwere presentedwhich enable the
simulation of multiple scales. The chapter ended with a summary about the require-
ments for the simulation of battery production systems. In short: The production of
electrodes and cells is characterized by specialized unit processes which have strong
influences on cell performance, requires expensive and energy intensive machines,
and demands for defined environmental conditions. The assembly of modules and
systems is characterized by assembly tasks, a high product variety, and the demand
for a flexible material flow. Consequently, a multiscale simulation approach must
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consider unit processes, material flow in process chains, TBS, and the building, as
well as the impacts of processes on product characteristics.

Chapter3 analyzed existing contributions in research fields related or relevant
to multiscale simulation in production. It showed that there are various simulation
concepts combining the simulation of different production system scales, addressing
different objectives (technical, economic, environmental), and using different simu-
lation approaches. However, the found simulation concepts mostly focus on specific
planning problems and do not enable themultiscale simulation of a whole production
system. None of the identified and evaluated contributions allowed or suggested a
detailed simulation simultaneously considering the influences of processes on prod-
uct characteristics, energy and material demands of unit processes, the material flow
in process chains based on a defined schedule, interactions between machines and
TBS, and the effects of outside weather conditions and the building shell construc-
tion on inside ambient conditions. Since such multiscale approach would support the
improvement of battery production, Chap.3 ended with the formulation of a research
demand.

Chapter4 described the proposed multiscale simulation concept for battery pro-
duction in greater detail. It began with the definition of objectives and requirements
based on the identified research demand and the initial motivation to develop a
new modeling approach. The chapter continued describing the derivation of system
boundaries and a generic modeling framework for a multiscale simulation as a pat-
tern for structuring interfaces between requiredmodels. Based on this framework, the
required models were derived and explained in detail. The process chain model was
found to be the central element of a multiscale simulation approach for production
systems since it determines the activity within a production system and acts as a coor-
dinator for other models. Concepts were presented for a process chainmodel with the
desired functionality as well as for additional detailed models for machines, products
and processes, TBS systems, and the building. For each model type, the description
describes the inputs from and outputs to other models. These intersections between
models were summarized and it was shown how detailed models can be integrated or
coupled to the process chain model in order to exchange the specified information.
Since the coordinated use of simulationmodels delivers a great amount of results, the
multiscale simulation concept further suggests indicators and representations for the
evaluation and visualization of simulation results. Finally, an application procedure
with twelve generic steps was proposed which supports the development, mainte-
nance, and employment of multiscale simulations for specific production systems.
It was suggested to define a responsible organizational role for the coordination of
involved stakeholders and the monitoring of the application procedure.

Chapter5 covered the implementation of a multiscale core model with interfaces
for external models based on the derived functionality described in Chap. 4. The
chapter presented the model architecture and details of the model components. In
addition, as an example of an external model, a generic compressed air generation
system was implemented and connected to the multiscale core model via a mid-
dleware software. The final section of the chapter explained the verification of the
internal functions of the process chain model as well as relevant aspects regarding
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the coupling of external models such as simulation step size and synchronization
time. As demonstrated by examples, these both aspects may influence the accuracy
of simulation results.

Chapter6 presented an exemplary application of the multiscale simulation con-
cept and the developed model infrastructure around the multiscale core model. Two
case studies provided insight into the application procedure, model functions, possi-
ble use-cases and exemplary simulation results. The first study addressed the battery
cell production and put emphasis on the multiscale character including detailed mod-
els for products, machines, TBS, and a building. It was shown how the multiscale
model can be used for specific evaluation tasks. The simulation results revealed rela-
tions between different system elements and improvement measures highlighting
the necessity to consider the complex system dynamics for the evaluation of isolated
measures. Somekeyfindings indicate that increasing the output is important to reduce
the production cost and environmental impacts due to high fixed energy demands
which are independent from the production rate. Furthermore, weather conditions
have noticeable effects on these fixed energy demands. Thus, selecting a factory
location has to consider the demand for moderate outside temperatures in order to
avoid high heating or cooling demands. The second study addressed the assembly of
battery modules focusing on the analysis of different process chain configurations. In
particular, a conventional assembly line was compared to a matrix-structured assem-
bly system configuration for the assembly of different product types. The results
show that the matrix-structured system can achieve a higher utilization while han-
dling high product variety. Both case studies presented different selected application
scenarios for the proposed simulation approach.

7.2 Critical Review

The presented simulation concept supports the development of multiscale simula-
tion applications for production systems. The concept was derived from the defined
objectives and extends the state of research by providing a generic modeling frame-
work for multiscale simulations, the definition of required models for production
system elements and their connecting interfaces, specific detailed modeling solu-
tions, as well as an application procedure. Although the basic idea of comprehensive
holistic production system simulations is not new, the proposed concept is unique in
its proposition to combine economic, environmental, and technological objectives
considering various scales from single product units to the building shell. This sim-
ulation concept was created in particular for the case of battery production but also
provides helpful advise and hints for the development of multiscale simulations for
any kind of production system. Especially the framework and the defined variables
for information exchange between models are helpful for developers of multiscale
production simulations for determining the required model functionality. Moreover,
these presented concepts for detailed models for system elements may serve as a
foundation for the development of specific simulation models. Theses aspects dif-

http://dx.doi.org/10.1007/978-3-319-49367-1_6
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ferentiate the proposed concept from most of the identified research contributions
which mainly presented exemplary applications and focused on selected objectives,
production system elements or scales, and simulation methods. However, it has to
be recognized that the concepts for detailed models are of simplified nature and – in
particular for HVAC systems, buildings, and processes – only qualitatively described.
This is due the fact that it is difficult to create generic models which are valid for any
kind of specific system.

An important feature of the multiscale simulation concept is the suggested use of
a process chain oriented core model as a coordinator for other models. This allows
imitating a realistic production activity and to dispense the use of average values or
assumptions for operational times and demands of system elements (e.g. machines).
Furthermore, a process chain simulation enables evaluating economic objectives such
as system utilization and production times as well as allocating of all determined
energy demands to the achieved yield. Such use of a process chain model in coupled
simulationswas already suggested for example byHesselbach et al. (2008) and Junge
(2007).However, the benefit of the here proposedmultiscale coremodel is the flexible
agent based modeling approach. The approach considers product units (or batches)
and machines as agents with individual properties, objectives, and requirements.
This enables the flexible configuration of different process chains, product types,
control strategies for product routing, machine allocation, and the tracking of product
characteristics (e.g. material input, quality parameters, embodied energy) along a
process chain. The flexibility in modeling is important for the simulation of battery
production since it facilitates the adaptation of a developed multiscale simulation to
new production technologies and process chain configurations which are expected to
come alongwith the establishment of newbattery technologies.Moreover, in contrast
to traditional process chain simulations – which are based on DEmodels considering
products as events and not as instances with individual properties – the agent based
approach allows to set individual product characteristics after each process and to
carry this information as inputs for following processes. This makes it possible to
study the amplifying or damping effects of variations in processing results along
a process chain. Thus, the proposed process chain model represents an innovative
approach which may also be interesting and useful for process chain simulations
addressing solely issues of product quality or production cost.

An exemplary multiscale core model was implemented with interfaces to exter-
nal models. This model is a generic tool which can be used to create simulation
applications for specific cases by connecting external models of machines, products
and processes, TBS, and buildings. It demonstrates how a process chain model func-
tionality is suitable for the coordination function in a multi-model environment of
coupled co-simulation applications. This tool could be used for the simulation of
battery production systems but is also adaptable to any other kind of discrete pro-
duction activity. However, although the model was build with care and considering
the required functionality defined in the concept, it has to be kept in mind that the
tool is a functional prototype and no finished software product.

The concept and the implemented core model were exemplary applied in two
academic case studies. These applications showed that a multiscale simulation can



7.2 Critical Review 173

support various planning tasks in battery production and that it is applicable for differ-
ent production stages such as cell production and module assembly. It becomes clear
that a multiscale simulation is able to generate results which would not be possible in
this extent by isolated simulation models. Within the case studies, detailed specific
models have been created for machines, HVAC systems, and a building shell. These
models only serve the purpose of demonstration but cannot be expected to deliver
valid results due to the lack of data and in-depth knowledge about the simulated sys-
tems. For the same reason, the case studies neglected some relevant functions of the
concept. Examples are the consideration of material demands, machine-hour rates,
process models including machine tolerances, stochastic effects such as machine
breakdowns, or influences of moisture loads on the energy demand of the dry rooms.
In addition, the case studies do not related to mass production systems. The first
study covered the cell production within a research facility and the second study
addressed an abstract module assembly process chain. Although the application of
the simulation concept could be elaborated and the results are assumed to be trans-
ferable to larger productions systems, this situation has to be kept in mind. For a real
case application, it is necessary to acquire a sufficient amount of data about the pro-
duction system and to develop valid models utilizing expert simulation knowledge
and involving all stakeholders. The proposed application procedure supports these
tasks.

Overall, the multiscale simulation concept brings various advantages for the sim-
ulation of battery production systems. The flexible agent based process chain simu-
lation combined with the modular architecture achieved by the coupling of different
models creates a planning tool which can be adapted to different scenarios and new
technologies. Consequently, this one method can be used for various planning tasks
and adapted to future production system configurations.Moreover, it provides amod-
eling concept which fosters an in-depth understanding of the observed production
system. Nevertheless, although the concept fulfills the set objectives and require-
ments, it is necessary to mention a last relevant challenge. Multiscale simulations
bear the risk of being very complex and causing huge efforts for model development
and employment. Beside the resulting resource demands, this high complexity may
give the impression that the results are more accurate and useful than they actu-
ally are. The case studies have shown that many assumptions and simplifications
are necessary to create a manageable model which can be executed in acceptable
time. These simplifications and assumptions may effect the results and could lead to
wrong conclusions and a reduced acceptance of the results. However, this challenge
should not impair the potential and relevance of multiscale simulation applications
for production systems. In contrast, further research should bemotivated to find solu-
tions for new efficient modeling and simulation techniques, as well as methods for
knowledge discovery to create valid models for processes and systems more easily.



174 7 Summary and Outlook

7.3 Outlook on Further Research

Further research activities can build upon the presented work and contribute to the
successful establishment of multiscale simulations for production systems in general
and for its application to battery production in particular.

Model library for machines and equipment The composition of a multiscale
simulation and the achievable results depend strongly on the available models
of system elements. The simulation concept and the proposed framework for
model coupling state which models are required to consider all relevant produc-
tion system elements. In the context of the work, different models for machines
and equipment (e.g. TBS systems) were developed and implemented for the use
in a multiscale simulation. However, these models are of generic character or
based on real machines for the small scale cell production in the BLB. Moreover,
detailed models are not available for all relevant system elements. Consequently,
it is of interest to create a library of valid models for machines and equipment used
in series production which can be employed to create multiscale simulations of
various large scale production systems. This task requires information about the
used production equipment with related characteristics (e.g. capacities, process-
ing times, machine-hour rates, etc.) in industry along and intensive energy data
measurements. Such library, supplied with knowledge from different disciplines,
could be an important measure in the context of the digital factory.

Product characteristics and process models The multiscale core model pro-
vides the functionality to apply process models within machine model agents
and to determine product characteristics which can be stored in processing unit
agents. This would allow evaluating the effect of processes (e.g. variations due to
tolerances) on product characteristics and to create transparency about the effects
along a whole process chain. However, the discussion of product characteristics
and process variations in this work stayed on a rather theoretical level due to
the lack of real data about machine and process tolerances. Since this aspect is
of great interest for achieving a high product quality at low cost, the described
ideas should motivate further work in this direction. In particular, it is impor-
tant to develop models for each process which define how a process creates or
modifies product characteristics. This requires empirical studies about production
processes and the derivation of knowledge from the gathered data. It is necessary
to identify the influences of process parameters, machine properties, and environ-
mental conditions on the process stability and resulting product characteristics.
The development of process models is a task for process experts but it should be
accompanied by developers of a multiscale production simulation to guarantee
the usability of the resulting models.

Coupling of process simulation Process models can be of various types. Some
processes might be replicated virtually by simulation models which simulate the
transformation of process inputs for given process parameters over the processing
time. Such model – for example based on DEM – may enable to consider various
influences on the process execution and resulting product characteristics. Thus,



7.3 Outlook on Further Research 175

integrating such models into a multiscale simulation may improve the consider-
ation of product quality. However, process simulation models may require long
time for execution. It should be tested if the execution times of available process
simulation models allow a co-simulation with the process chain model.

Combination with battery simulation If a multiscale simulation of a production
system for battery components is able to simulate process variations and resulting
product characteristics along a process chain, it is possible to use the resulting
product characteristics of finished product units as input values for battery simu-
lation models. This enables the evaluation of the influences of process tolerances
on battery performance. In particular for battery cells such approach is promising
since experimental parameter variations within each process of a process chain
cause high efforts. A multiscale simulation of production allows to use data and
models for each isolated process and to virtually imitate the effect of tolerances
along an entire process chain. A connected battery model could simulate the
performance of produced cells and determine critical influencing characteristics
resulting from production ofwhich other tolerancesmay be again examined by the
process chain simulation. This supports the simultaneous improvement of battery
design and production operation.

Adaptation for reverse material flows The multiscale simulation approach can
be adapted for the evaluation of recycling systems. The developed simulation con-
cept allows also tomodel diverging reversematerial flows and recycling processes
in detail. A similar application was already presented by Colledani and Tolio
(2013).

Superordinate system dynamics model The simulation of battery production
systems could be extended by a subordinate systemdynamicsmodel for the assess-
ment of a network of production facilities. Suchmodel could describe the demand,
supply, supply chain operation and market response to new technologies. It could
be fed with results from the multiscale production system simulation (e.g. possi-
ble output per time period) and in return provide results as input for the simulated
production program (e.g. the demands for different product types).

Application to other industrial sectors Although the concept was developed for
the production of batteries, it has been kept in mind that it is also applicable for
other production systems and industries. It will be an interesting task to use the
concept and developed modeling logic for different case studies in order to evalu-
ate the transferability. Furthermore, it would be interesting to adapt this approach
to the process industry with continuous product flows. A test case could be the
production of carbon fibers which require different processing steps with very
high temperatures and energy demands. Solutions must be found for the assign-
ment of product characteristics to fractions of continuously produced products
(similar to the coating and drying of electrodes).

Data mining Valid data from real applications are important inputs for simulation
models. Big data applications and data mining approaches are becoming more
established in research and industry. It is recommended to combine data acquisi-
tion and analytic applications with simulation models. The developed multiscale
simulation allows to use data for specific simulation models. In addition to the
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application of data mining methods for the generation of simulation inputs, these
methods can also be used for the evaluation of simulation results. Especially if
a multiscale model is very detailed and considers many elements of a produc-
tion system, data mining can be helpful to identify patterns within the generated
results.

Commercial software solutions The functional prototype of the multiscale core
model with interfaces for external models must be further developed for a broad
application in industry and research. It is important to achieve a better user interac-
tion and a workflow based on industry standards for software tools. Alternatively,
established software for process chain simulation (such as Plant Simulation or
Arena) could be extended with interfaces for external models or middleware soft-
ware. In general, it is important to establish the technical feasibility to connect
simulation models which are implemented in different software tools. This would
foster the re-usability of created simulation models, which is a major barrier for
the broad application of simulation in industry.

Simulation-based production control Simulationmodels could beused for oper-
ational production planning by providing predictive and real-time simulation
results in order to control the actual production system operation. The multiscale
simulation approach enables the development of a complete factory model which
could be used for simulation-based production system control if the required
computational resources and interfaces to control tools are available.
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