Programming Platforms for Big
Data Analysis

Jiannong Cao, Shailey Chawla, Yuqi Wang and Hanqing Wu

Abstract Big data analysis imposes new challenges and requirements on
programming support. Programming platforms need to provide new abstractions
and run time techniques with key features like scalability, fault tolerance, efficient
task distribution, usability and processing speed. In this chapter, we first provide a
comprehensive survey of the requirements, give an overview and classify existing big
data programming platforms based on different dimensions. Then, we present details
of the architecture, methodology and features of major programming platforms like
MapReduce, Storm, Spark, Pregel, GraphLab, etc. Last, we compare existing big
data platforms, discuss the need for a unifying framework, present our proposed
framework MatrixMap, and give a vision about future work.

Keywords Big data analysis - Programming platforms * Unifying framework - Data
parallel - Graph parallel - Task parallel - Stream processing

1 Introduction

The necessity of increased computing speed and capacity offered by big data pro-
gramming platforms has led to constantly evolving system architectures, novel devel-
opment environments, and multiple third-party software libraries and application
packages. Now, we are in an era where businesses, government sectors, small and
big organizations have all realized the potential of big data analysis. The great demand

J. Cao (X)) - S. Chawla - Y. Wang - H. Wu

Department of Computing, Hong Kong Polytechnic University, King’s Park, Hong Kong
email: csjcao@comp.polyu.edu.hk

URL: http://www4.comp.polyu.edu.hk/"csjcao/

S. Chawla
e-mail: csschawla@comp.polyu.edu.hk

Y. Wang
e-mail: csyqwang @comp.polyu.edu.hk

H. Wu
e-mail: cshwu@comp.polyu.edu.hk

© Springer International Publishing AG 2017 65
A.Y. Zomaya and S. Sakr (eds.), Handbook of Big Data Technologies,
DOI 10.1007/978-3-319-49340-4_3

66 J. Cao et al.

for big data analysis systems is giving a thrust to the research and development in
this area. Large amounts of data have to be handled in a parallel and distributed way
wherein, and the computations have to be distributed across many machines in order
to be finished in a reasonable amount of time. The issue of how the computation can
be parallelized, how data is distributed and how failures are handled in such a wide
distribution are compelling, and call for special programming platforms for big data
analysis.

Inrecent years, alot of programming platforms have emerged for big data analysis.
Figure 1 shows the time line of systems that handle large scale data. The timeline
clearly indicates the increasing amount of interest in these systems recently.

Big data processing can be done on either distributed clusters or high performance
computing machines like Graphical Processing Units [10].

In this section of the chapter, we provide an overview of existing programming
platforms for big data analysis, which gives the readers a brief impression on exist-
ing big data platforms. The remaining part of the chapter is organized as follows.
First, we discuss the special requirements and features of programming platforms
for large scale data analysis in the next section. We then present in Sect. 3, a classi-
fication schema for big data programming platforms based on different dimensions,
which would give insights on types of existing systems and their suitability to differ-
ent kinds of applications. In Sect.4, we will introduce the details of major existing
programming platforms. The programming platforms are described with respect to
their specific purpose, programming model, implementation details and important
features. We discuss our unifying framework and our proposed framework called
MatrixMap [15], as well as summarize the big data programming platforms accord-
ing to the essential requirements in Sect. 5. Finally, we conclude this chapter by giving
our understanding and vision on programming platforms. The chapter is intended to
benefit anyone who is new to big data analysis by presenting details and features of
popular big data programming platforms, analysts to choose appropriate program-

PARALLEL PREGEL
DATABASES G

LATE 80s

HADOOP

APACHE

CONDOR
1988 = STORM

Apache) 2l

010

Fig.1 Timeline of programming platforms for big data analysis

Programming Platforms for Big Data Analysis 67

ming platforms for their specific applications by offering comparison across them,
and also interested researchers by showing our current research work and vision on
future direction.

2 Requirements of Big Data Programming Support

Programming platforms constitute of systems and language environments that can
run on commodity, inexpensive hardware or software and can be programmed and
operated by programmers and analysts with average, mainstream skills. Big data
analysis need to have some essential requirements so as to deal with specific issues
related to vast data and large scale computations, they also need to support distributed
and local processing (data copies) and support ease of use, data abstraction, data flow
and data transformations. In traditional programming platforms, the key feature is
performance, but for systems with large scale data, there are many more features
essential for smooth functioning of the system and being useful.

Scalability

Scalability is the ability of a system, network, or process to handle a growing amount
of work in a capable manner or its ability to be enlarged to accommodate that growth
[5]. Scaling can be done by either scaling up the system, which means adding addi-
tional resources on a single computer/node to improve the performance or scaling
out the system, which refers to addition of more computers/nodes to the system in a
distributed software system.

Support Multiple Data Types
Big data systems should be able to support multiple data types, e.g., record, graph or
stream. Different common data types have been briefly explained in following text.

e Record data can be split into independent elements and thus data can be processed
independently. Independent results can be summed up to get the final result.

e Graph data cannot be split into independent elements like in the case of record
data. Elements may have relations with each other and thus the processing of one
element depends on other elements. Graph data not only include real graphs but
also other data which can be viewed as graph. The data can also be in form of
stream which would require fast processing in memory.

e Stream data arrive at a rate that makes it infeasible to store everything in active
storage. If it is not processed immediately or stored, then it is lost forever or we
lose the opportunity to process them at all. Thus, stream-processing algorithm is
executed in main memory, without or with only rare access to secondary storage.

Fault Tolerance

Fault tolerance is the property that enables a system to continue operating properly
in the event of the failure of (or one or more faults within) some of its components.
In a distributed framework with large scale data, it is imperative that some nodes

68 J. Cao et al.

carrying data can fail. For a fault tolerant system, when a server in the cluster fails, a
stand-by server is automatically activated to take over the tasks, there are also check
pointing and recovery to minimize state loss.

Efficiency

Massive computation capability is required for big data analysis and hence efficiency
is very critical when programming platforms are scaled up or scaled out for handling
large amounts of data. Efficiency means faster speed with respect to usage of certain
resources like memory or number of nodes.

Data I/0 Performance

Data I/O performance refers to the rate at which the data is transferred to/from a
peripheral device. In the context of big data analytics, this can be viewed as the rate
at which the data is read and written to the memory (or disk) or the data transfer rate
between the nodes in a cluster. The systems should have low latency to minimize
the time taken for reading and writing to the memory, and high throughput for data
transmission.

Iterative Task Support

This is the ability of a system to efficiently support iterative tasks. Since many of the
data analysis tasks and algorithms are iterative in nature, it is an important metric
to compare different platforms, especially in the context of big data analytics. The
systems must be suitable for iterative algorithms so that the result of one iteration
can be easily used in the next iteration, and all the parameters can be stored locally.
Processes can reside and can keep running as long as the machine is running.

The properties described above are very significant for description of program-
ming platforms. In the next section, we propose a classification of programming
system based on different dimensions. We have classified the programming plat-
forms based on the processing techniques and data sources.

3 Classification of Programming Platforms

The existing programming platforms for big data analysis have numerous special
features as discussed in the previous section. It is important to realize what kinds of
systems encompass what features so that it is easier to make a choice of program-
ming system with respect to the application. We classify the existing programming
platforms based on different dimensions as that have been described in the following
subsections.

3.1 Data Source

Data analysis is done for different kinds of source data. The data can arrive for
processing either in batches or continuous stream. Hence based on how the data

Programming Platforms for Big Data Analysis 69

arrives, various systems can be classified into Batch Processing Systems and Stream
Processing Systems. Many big data analysis applications work on batch-wise input,
and there are many like twitter or stock markets dealing with multiple data streams.
There have been much development in this regard, and specific programming plat-
forms have been fostered to deal with streaming data.

Batch Processing Systems are the systems that execute a series of programs
which take a set of data files as input, processes the data and produce a set of output
data files. It is termed as batch processing because the data is collected in batches as
sets of records and processed as a unit. Output is another batch that can be reused as
input if required.

Batch processing systems have existed for very long and they have various advan-
tages. These systems utilize computing resources in an optimum and efficient manner
based on the priority of other jobs. Batch processing techniques are likely to avoid
system overhead.

Many distributed programming platforms like MapReduce [8], Spark [32],
GraphX [12], Pregel [22] and HTCondor [14] are batch processing systems. They
analyze large scale data in batches in a distributed and parallel fashion.

Stream Processing Systems are the systems that process continuous input of
data. These systems should have faster rate of processing than rate of incoming data.
So an input dataset coming at time ¢ needs to be processed before dataset arrives at
time ¢ + /. The stream processing systems work under a very strict time constraint.
They are important in applications, which need continuous output from incoming
data like stock market, twitter etc. Big data programming platforms like Storm [30],
Spark Streaming [32] and S4 [24] are used for processing stream data.

3.2 Processing Technique

Programming platforms can also be classified based on the processing techniques.
Large scale processing can be done using different techniques like data parallel, task
parallel or graph parallel techniques. We have classified the programming platforms
according to the techniques they employ for processing data.

Data parallel programming platforms focus on distributed data across parallel
computing nodes. In data parallelism, each node executes the same task on differ-
ent pieces of distributed data. It emphasizes that data is distributed and executed in
parallel on different computing nodes, and then the result from different nodes is
consolidated and processed further. The data parallel systems tend to be very fault
tolerant as they can have redundancy. Also, this kind of arrangement makes process-
ing of large-scale data simpler by breaking down data into smaller units. MapReduce,
Spark, Hadoop are data parallel systems and have been very popular in big data pro-
gramming community. We also proposed MatrixMap to efficiently support matrix
computations.

Task parallel platforms are systems that process data in a parallel manner across
multiple processors. Task parallelism focuses on distributing execution processes

70 J. Cao et al.

Fig. 2 Classification //_,__-—— T — T
hema of big dat >
schiema o' BIg e /" Data Parallel /<Graph Paralm
programming platforms / \ :
(stream processing platforms // Hadoop Dryad \ Pregel \.__\
are mentioned in italics) Spark / \ = \
[P [GraphX | \

3 GraphLab
| MatrixMap | |

\ [PowerGraph /
“- Spark Streaming / owerlrap /

_ /> s/ N

J." ‘Inn moo_- =

Condor |

\ Task Paralicy

across different parallel computing nodes. HTCondor programming system is an
example of task parallel system.

Graph parallel platforms are systems that encode computation as vertex pro-
grams which run in parallel and interact along edges in the graph. Graph-parallel
abstractions rely on each vertex having a small neighborhood to maximize paral-
lelism, and effective partitioning to minimize communication. Formally, a graph-
parallel abstraction consists of a sparse graph G = {V, E}, and a vertex-program Q
which is executed in parallel on each vertex v belongs to set V, and can interact (e.g.,
through shared-state in GraphLab, or messages in Pregel) with neighboring instances
O (u) where (u, v) belongs to E. In contrast to more general message passing mod-
els, graph-parallel abstractions constrain the interaction of vertex-program to a graph
structure enabling the optimization of data-layout and communication [11]. Pregel,
Graphlab, GraphX are graph parallel systems popular for social network analysis.

Figure 2 depicts the classification schema of various programming platforms for
big data analysis. The Figure presents the classification in the form of a Venn diagram,
and the programming platforms are placed according to their matching criterion.
The systems in italics are stream processing systems, while the remaining are batch
processing systems. In the next section we describe the major existing programming
platforms in detail.

4 Major Existing Programming Platforms

In this section we describe in detail some major programming platforms that are
prominent in big data analysis. The programming platforms have been described
according to the prominent processing techniques used in their programming models.

Programming Platforms for Big Data Analysis 71

4.1 Data Parallel Programming Platforms

Data parallel programming platforms are the systems that distribute data over parallel
computing nodes [6]. In distributed systems, data parallelism is achieved by dividing
the data into a smaller size and each parallel computing node performing the same
task over small sized data. The intermediate result is then integrated to achieve the
final outcome of processing.

4.1.1 Hadoop

Hadoop is based on MapReduce programming model [8] which is the most popu-
lar paradigm for big data analysis till date, and brought a breakthrough in big data
programming. In this model, data-parallel computations are executed on clusters of
unreliable machines by systems, that automatically provide locality-aware schedul-
ing, fault tolerance, and load balancing. Hadoop MapReduce is an open source form
of Google MapReduce.

MapReduce is useful in a wide range of applications, including distributed pattern-
based searching, distributed sorting, web link-graph reversal, web access log stats,
inverted index construction, document clustering, machine learning, and statistical
machine translation. At Google, MapReduce was used to completely regenerate
Google’s index of the World Wide Web. It has replaced the old ad hoc programs that
updated the index and ran various analyses.

The MapReduce abstraction allows expressing simple computations without
revealing the complicated details of parallelization. There are two main primitives in
this abstraction called the Map and Reduce operations. The computation is expressed
in form of these two functions, wherein it takes a set of input key/value pairs and
produces a set of output key/value pairs.

Map, written by the user, takes an input pair and produces a set of intermedi-
ate key/value pairs. The MapReduce library groups together all intermediate values
associated with the same intermediate key and passes them to the Reduce function.

Reduce function, written by user too, accepts intermediate key and a set of values
for that key. It merges these values together to form a possibly smaller set of values.
This is done in an iterative fashion, so that list of values that are too large can fit
in memory. This is the key concept of the MapReduce paradigm that enables it to
handle large scale data in an efficient way.

The MapReduce framework transforms a list of (key, value) pairs into a list of
values. This behavior is different from the typical functional programming, Map
and Reduce combination, which accepts a list of arbitrary values and returns one
single value that combines all the values returned by map. Figure3 [4] depicts the
architecture of MapReduce programming model.

MapReduce framework for processing parallelizable problems across huge
datasets using a large number of computers (nodes), collectively referred to as a
cluster (if all nodes are on the same local network and use similar hardware) or a

72 J. Cao et al.

Map Shuffle Reduce

Fig. 3 Architecture of MapReduce model

grid (if the nodes are shared across geographically and administratively distributed
systems, and use more heterogeneous hardware). Processing can occur on data stored
either in a file system (unstructured) or in a database (structured). MapReduce can
take advantage of locality of data, processing it on or near the storage assets in order
to reduce the distance over which it must be transmitted.

“Map” step: Each worker node applies the “map()” function to the local data,
and writes the output to a temporary storage. A master node orchestrates that for
redundant copies of input data, only one is processed.

“Shuffle” step: Worker nodes redistribute data based on the output keys (produced
by the “map()” function), such that all data belonging to one key are located on the
same worker node.

“Reduce” step: Worker nodes now process each group of output data, per key, in
parallel.

The parallelism also offers some possibility of recovering from partial failure of
servers or storage during the operation: if one mapper or reducer fails, the work can
be rescheduled - assuming the input data is still available.

Hadoop has following important features:

Scalability: Hadoop is highly scalable and it can be scaled out instead of scaling up.
The main feature of Hadoop is that the machines with normal functioning capacity
can also be used for big data analysis. Multi-node clusters of Hadoop system can
be set up in distributed master slave architecture and scalability can be achieved for
thousands of nodes.

Fault tolerance: Fault tolerance is the most significant feature of MapReduce pro-
gramming model that makes it a robust and reliable programming system for large
scale data processing. Fault tolerance is achieved in MapReduce by redundancy of

Programming Platforms for Big Data Analysis 73

data. Each dataset is duplicated in 3—4 places. Even when a node fails, the same
dataset can be retrieved from other nodes.

Performance: MapReduce programming model is very efficient for large amounts
of data. However, the performance is not good when the dataset is small. The time
lag of Hadoop model is compromised because of its efficient fault tolerance and high
scalability.

4.1.2 Spark

Spark is an efficient and iterative processing model for big data processing. At its
core, Spark provides a general programming model that enables developers to write
applications by composing arbitrary operators, such as mappers, reducers, joins,
group-bys, and filters. This composition makes it easy to express a wide array of
computations, including iterative machine learning, streaming, complex queries, and
batch processing.

Spark programming model focuses on applications that reuse a working set of
data across multiple parallel operations. This includes many iterative machine learn-
ing algorithms, as well as interactive data analysis tools. It keeps track of the data
that each of the operators produces, and enables applications to reliably store this
data in memory. This feature enables efficient iterative algorithms and low latency
computations.

Spark provides two main abstractions for parallel programming: resilient dis-
tributed datasets and parallel operations on these datasets. Spark programming
model is shown in Fig.4 [27]. It describes two kinds of computations, iterative and

one-time
processing

[—

Distributed
memory

Input

(a) Low-latency computations (queries)

Input

(b) Iterative computations

Fig. 4 Spark programming model

74 J. Cao et al.

non-iterative. The main abstraction in Spark is that of a Resilient Distributed Dataset
(RDD), which represents a read-only collection of objects partitioned across a set of
machines that can be rebuilt if a partition is lost. The elements of an RDD need not
exist in physical storage; instead, a handle to an RDD contains enough information to
compute the RDD starting from data in reliable storage. This means that RDDs can
always be reconstructed if nodes fail. In Spark, each RDD is represented by a Scala
[25] object. Spark lets programmers construct RDDs in various ways like from a file
in a shared file system, by “parallelizing” a Scala collection (e.g., an array) in the
driver program, by transforming an existing RDD and by changing the persistence
of an existing RDD. Several parallel operations like reduce, collect, foreach etc. can
be performed on RDDs.

Spark also lets programmers create two restricted types of shared variables to
support two simple but common usage patterns. Programmer can create a “broadcast
variable” object that wraps the value and ensures that it is only copied to each worker
once. Also, Accumulators can be defined for any type that has an “add” operation
and a “zero” value. Due to their “add-only” semantics, they are easy to make fault-
tolerant.

Spark is built on top of Mesos [13], a “cluster operating system” that lets multiple
parallel applications share a cluster in a fine-grained manner and provides an API
for applications to launch tasks on a cluster. This allows Spark to run alongside
existing cluster computing frameworks, such as Mesos ports of Hadoop and MPI
[26], and share data with them. In addition, building on Mesos greatly reduced the
programming effort that had to go into Spark.

The two types of shared variables in Spark, broadcast variables and accumu-
lators, are implemented using classes with custom serialization formats. Spark is
implemented in Scala (Scala programming language.), a statically typed high-level
programming language for the Java Virtual Machine, and exposes a functional pro-
gramming interface similar to DryadLINQ [31]. In addition, Spark can be used
interactively from a modified version of the Scala interpreter, which allows the user
to define RDDs, functions, variables and classes and use them in parallel operations
on a cluster.

Spark has following important features:

Scalability: It is based on MapReduce architecture so it provides scalability feature.

Fault tolerant: Spark retains the fault tolerant feature of map reduce. Also, its novel
feature is the use of Resilient Distributed Datasets (RDD). The main property of
RDD is the capability to store its lineage or the series of transformations required
for creating it as well as other actions on it. This lineage provides fault tolerance to
RDDs.

Easy to use: Spark’s parallel programs look very much like sequential programs,
which make them easier to develop and reason about. Spark allows users to easily
combine batch, interactive, and streaming jobs in the same application. As a result, a
Spark job can be up to 100 times faster and requires writing 2—10 times less code than
an equivalent Hadoop job. One of Spark’s most useful features is the interactive shell,

Programming Platforms for Big Data Analysis 75

bringing Spark’s capabilities to the user immediately - no Integrated Development
Environment (IDE) and code compilation required. The shell can be used as the
primary tool for exploring data interactively, or as means to test portions of an
application you’re developing. Spark can read and write data from and to Hadoop
Distributed File System (HDFES).

Better Performance: Spark can outperform Hadoop by 10x in iterative machine
learning jobs, and can be used to interactively query a 39 GB dataset with sub-second
response time.

4.1.3 Dryad

Dryad [17] was a research project at Microsoft Research for writing parallel and
distributed programs to scale from a small cluster to a large data-center. From 2007,
Microsoft made several preview releases of this programming model technology
available as add-ons to Windows HPC Server 2008 R2. However, Microsoft dropped
Dryad processing work and focused on Apache Hadoop in October 2011. Dryad
allows a programmer to use the resources of a computer cluster or a data center for
running data-parallel programs. A Dryad programmer can use thousands of machines,
each of them with multiple processors or cores, without knowing anything about
concurrent programming.

A Dryad programmer writes several sequential programs and connects those using
one-way channels. The computation of an application written for Dryad is structured
as a Directed Acyclic Graph (DAG). The DAG defines the dataflow of the application,
and the vertices of the graph define the operations that are to be performed on the
data. The “computational vertices” are written using sequential constructs, devoid
of any concurrency or mutual exclusion semantics. A Dryad job is a graph generator
which can synthesize any directed acyclic graph. The structure of Dryad jobs is
shown in Fig.5 [28]. These graphs can even change during execution, in response

Fig. 5 The structure of Input files
Dryad jobs ? ? ? ?
R R [R

LR J

X X X X X X

TR S R TS

M M M M
] L]

Channels ! Vertices

M M
(processes)
Output files ; {

76 J. Cao et al.

to important events in the computation. The Dryad runtime parallelizes the dataflow
graph by distributing the computational vertices across various execution engines.
Scheduling of the computational vertices on the available hardware is handled by the
Dryad runtime, without any explicit intervention by the developer of the application
or administrator of the network.

The flow of data between one computational vertex to another is implemented by
using communication “channels” between the vertices, which in physical implemen-
tation is realized by TCP/IP streams, shared memory or temporary files. A stream is
used at runtime to transport a finite number of structured items.

Dryad defines a domain-specific language, implemented via a C++ library, that is
used to create and model a Dryad execution graph. Computational vertices are written
using standard C++ constructs. To make them accessible to the Dryad runtime, they
must be encapsulated in a class that inherits from the GraphNode base class. The
graph is defined by adding edges; edges are added by using a composition operator
that connects two graphs with an edge. A lot of operators are defined to help building
a graph, including Cloning, Composition, Merge and Encapsulation. Managed code
wrappers for the Dryad API can also be written.

Dryad’s architecture includes components that do resource management as well
as the job management. A Dryad job is coordinated by a component called the Job
Manager. Tasks of a job are executed on cluster machines by a Daemon process.
Communication with the tasks from the job manager happens through the Daemon,
which acts like a proxy. In Dryad, the scheduling decisions are local to an instance of
the Dryad Job Manager C i.e., it is decentralized. The logical plan for a Dryad DAG
results in each vertex being placed in a “Stage”. The stages are managed by a “Stage
manager” component that is part of the job manager. The Stage manager is used
to detect state transitions and implement optimizations like Hadoop’s speculative
execution.

Overall, Dryad is quite expressive. It completely subsumes other computation
frameworks, such as Google’s MapReduce, or the relational algebra. Moreover,
Dryad handles job creation and management, resource management, job monitoring
and visualization, fault tolerance, re-execution, scheduling, and accounting.

Dryad has following special features:

Scalability: Dryad is designed to scale to much larger implementations, up to thou-
sands of computers.

Fault tolerance: The fault tolerance model in the Dryad comes from the assump-
tion that vertices are deterministic. Since the communication graph is acyclic, it is
relatively straightforward to ensure that every terminating execution of a job with
immutable inputs will compute the same result, regardless of the sequence of com-
puter or disk failures over the course of the execution.

Performance: The Dryad system can execute jobs containing hundreds of thousands
of vertices, processing many terabytes of input data in minutes. Microsoft routinely
uses Dryad applications to analyze petabytes of data on clusters of thousands of
computers.

Programming Platforms for Big Data Analysis 77

Flexibility: Programmers can easily use thousands of machines and create large-
scale distributed applications, without requiring them to master any concurrency
programming beyond being able to draw a graph of the data dependencies of their
algorithms.

4.2 Graph Parallel Programming Platforms

Graph parallel systems are systems that encode computation as vertex programs
which run in parallel and interact along edges in the graph. Graph-parallel abstrac-
tions rely on each vertex having a small neighborhood to maximize parallelism and
effective partitioning to minimize communication.

4.2.1 Pregel

Pregel [22] is a programming model for processing large graphs in distributed envi-
ronment. It is a vertex-centric model, which defines serials of actions on an angle
of a single vertex, and then the program will run such vertices through a graph and
finally get the result.

Pregel has been created for solving large scale graph computations that is required
in modern systems like social networks and web graphs. Many graph computing
problems like shortest path, clustering, page rank, connected components etc. need
to be implemented for big graphs hence the requirement of the system.

Vertices iteratively process data and send messages to neighboring vertices. Edges
do not have any associated computation in this programming model. The computa-
tions consist of a sequence of iterations, called supersteps. Within each superstep,
the vertices compute in parallel, each executing the same user defined function that
expresses the logic of a given algorithm. A vertex can modify its state or that of its
outgoing edges, receive messages sent to it in the previous superstep, send messages
to other vertices (to be received in the next superstep), or even mutate the topology
of the graph. The state machine of vertex is shown in Fig. 6 [22].

The input to a Pregel computation is a directed graph in which each vertex is
uniquely identified by a string vertex identifier. Each vertex is associated with a
modifiable, user defined value. The directed edges are associated with their source
vertices, and each edge consists of a modifiable, user defined value and a target
vertex identifier. A typical Pregel computation consists of input, when the graph is

Fig. 6 State machine Vote to halt
for a vertex R~ T

C Active \'| (Inactive D

Message received

78 J. Cao et al.

initialized, followed by a sequence of supersteps separated by global synchronization
points until the algorithm terminates, and finishing with output. Algorithm termina-
tion is based on every vertex voting to halt. The output of a Pregel program is the
set of values explicitly output by the vertices. It is often a directed graph isomorphic
to the input, but this is not a necessary property of the system because vertices and
edges can be added and removed during computation. A clustering algorithm, for
example, might generate a small set of disconnected vertices selected from a large
graph.

The Pregel library divides a graph into partitions, each consisting of a set of
vertices and all of those vertices’ outgoing edges. Assignment of a vertex to a partition
depends solely on the vertex ID, which implies it is possible to know which partition
a given vertex belongs to even if the vertex is owned by a different machine, or even if
the vertex does not yet exist. The default partitioning function is just hash (ID) mod N,
where N is the number of partitions, but users can replace it. The execution of Pregel
is depicted in Fig. 7 [16]. In the absence of faults, the execution of a Pregel program
consists of several stages. First, many copies of the user program begin executing on
a cluster of machines. One of these copies acts as the master. It is not assigned any
portion of the graph, but is responsible for coordinating worker activity. The workers
use the cluster management system’s name service to discover the master’s location,
and send registration messages to the master. Then, the master determines how many
partitions the graph will have, and assigns one or more partitions to each worker
machine. Having more than one partition per worker allows parallelism among the
partitions and better load balancing, and will usually improve performance. Each
worker is given the complete set of assignments for all workers.

Barrier Synchronization

can be combined

Fig. 7 Implementation of Pregel

Programming Platforms for Big Data Analysis 79

After this stage, the master assigns a portion of the user’s input to each worker.
The input is treated as a set of records, each of which contains an arbitrary number
of vertices and edges. The division of inputs is orthogonal to the partitioning of the
graph itself, and is typically based on file boundaries. If a worker loads a vertex
that belongs to that worker’s section of the graph, the appropriate data structures are
immediately updated. Otherwise the worker enqueuers a message to the remote peer
that owns the vertex. After the input has finished loading, all vertices are marked as
active.

Later, the master instructs each worker to perform a superstep. The worker loops
through its active vertices, using one thread for each partition. The worker calls
Compute() for each active vertex, delivering messages that were sent in the previous
superstep. When the worker is finished it responds to the master, telling the master
how many vertices will be active in the next superstep. This step is repeated as long
as any vertices are active, or any messages are in transit. After the computation halts,
the master may instruct each worker to save its portion of the graph.

Pregel has following special features:

Scalability: Pregel has very good scalability. It can work for large sized graphs with
millions of vertices.

Fault tolerance: Fault tolerance is achieved through check pointing. At the beginning
of a superstep, the master instructs the workers to save the state of their partitions
to persistent storage, including vertex values, edge values, and incoming messages;
the master separately saves the aggregator values. Worker failures are detected using
regular “ping” messages that the master issues to workers. If a worker does not receive
a ping message after a specified interval, the worker process terminates. When one
or more workers fail, the current state of the partitions assigned to these workers is
lost. The master reassigns graph partitions to the currently available set of workers,
and they all reload their partition state from the most recent available checkpoint at
the beginning of a superstep S.

Performance: Pregel is very fast compared to non-graph based frameworks. But
during implementation it waits for the slow workers that decrease its speed.

Flexibility: Pregel provides flexibility to implement different algorithms. The Pregel
implementation is easy to understand and implementation of varied algorithms can
be done on it. Programming complexity is simplified by using the supersteps.

4.2.2 GraphX

GraphX [12] s an efficient, resilient, and distributed graph processing framework that
provides graph-parallel abstractions and supports a wide range of iterative graph algo-
rithms. Existing specialized graph processing systems, such as Pregel and GraphLab,
are sufficient to process only graph data. Thus, using specialized graph processing
systems in large-scale graph analytics pipeline, requires extensive data movement
and duplication across file system, and even network. Moreover, users have to learn

80 J. Cao et al.

and manage multiple systems, such as Hadoop, Spark, Pregel and GraphLab. Over-
all, having separate systems in entire graph analytics pipeline is difficult to use and
inefficient.

GraphX addresses the above challenges by providing both table view and graph
view on the same physical data. On one hand, GraphX views physical data as graphs
so that it can naturally express and efficiently execute iterative graph algorithms. On
the other hand, graphs in GraphX are distributed as tabular data-structures so that
GraphX also provides table operations on physical data. By exploiting this unified
data representation, GraphX enables users to easily and efficiently express the entire
graph analytics pipeline. Since graph can be composed by tables in GraphX, tabular
data preprocessing and transformation between table and graph are directly real-
ized within one system. Meanwhile, GraphX provides APIs similar to specialized
graph processing systems for naturally expressing and efficiently executing itera-
tive graph algorithms. Moreover, GraphX can leverage in-memory computation and
fault-tolerance by being embedded in Spark, a general-purpose distributed dataflow
framework.

Programmers can implement iterative graph algorithms without caring much
about the iterations and only need to define a vertex program. However, the foun-
dation of GraphX’ graph-parallel abstractions is different from the common one
that is iterative local transformation [12]. GraphX further decomposes iterative local
transformation into specific dataflow operators, which are a sequence of join stages
and group-by stages punctuated by map operations. The join operation and group-
by operation are in the context of relational database, and the map operation is to
perform update. GraphX realizes the partitioning of graphs in its representation of
physical data, called distributed graph representation. Figure 8 [12] illustrates how a
graph is represented by horizontally partitioned vertex and edge collections and their
indices. The edges are divided into three edge partitions by applying a partition func-
tion (e.g., 2D Partitioning), and the vertices are partitioned by vertex id. Partitioned
with the vertices, GraphX maintains a routing table encoding the edge partitions for
each vertex.

GraphX is built as a library on top of Spark [32], which is a general-purpose dis-
tributed dataflow framework. The architecture of Spark with GraphX is illustrated by
Fig. 9 [12]. As seen from the architecture, there is one more layer called Gather Apply
Scatter (GAS) Pregel API between GraphX and some graph algorithms. The GAS
Pregel API is implementation of Pregel abstraction of graph-parallel using GraphX
dataflow operations. It is claimed that GraphX can implement Pregel abstractions in
less than 20 lines of codes. Data structure of GraphX, the distributed graph repre-
sentation, is built on Spark RDD abstraction, and GraphX API is expressed on top
of Spark standard dataflow operators. GraphX can also exploited Scala foundation
of Spark, which enables GraphX to interactively load, transform, and compute on
massive graphs. GraphX requires no modifications to Spark. As a result, GraphX
can also be seen as a general method to embed graph computation within distributed
dataflow frameworks and distill graph computation to a specific join-map-group-by
dataflow pattern. Being embedded in Spark allows GraphX to inherit many good

Programming Platforms for Big Data Analysis 81

Edges Vertices Routing Table
I ;d;;; Ea_ni_tiar; K-: :-\:eae-x-pgﬁit-io-n-fk-: | partition A -
1 ®_).® I bitmask ||} :
Graph } T h @ " : 1 :
| | I
. edge ’.(j)—’@): ; | [(AT23]!
\, partition A el T L L, S L LK, ' @ 1 i[1] B 1]
\ edge partition B : 1 : : C 1 :
edge) 1l @ 1 || I
partition C : | 111 1

|

I

1

l L
O—Oi|mrmmn|
{ : | vertex partition B partition B
-

1 1
|: :
."sl ~| 1 edge partition C 1| It bRmask HI .
. . 1
S 1 1 H! [
ok I @' :® IR :
G el o =
, partition B }6-(5: :@ 0 i : ! .
PN | O — 0 1 | [)
clustered indices on hash indices on
source vertex vertex id
Fig. 8 Distributed graph representations
PageRank || Connected K-core Trangle
(20) Comp. (20) (60) il oo LDA ||SVD++
— 50 (220) (| (110)
| GAS Pregel API (34) | &
Spark (30,000)

Fig. 9 Spark with GraphX

features of Spark, such as in-memory computation and fault-tolerance. Compared
with Pregel and GraphLab, GraphX can achieve these features with a smaller cost.
GraphX has following important features:

Scalability: Being embedded in Spark allows GraphX to inherit Spark scalable prop-
erty.

Fault tolerance: Being embedded in Spark allows GraphX to inherit Spark fault
tolerance. Different from checkpoint-based fault tolerance, which is adopted by other
graph systems, fault tolerance of GraphX is based on lineage. Compared with check-
point fault tolerance, lineage-based fault tolerance produces smaller performance
overhead and optimal dataset replication.

Efficient for graph analytics pipeline: Similar to specialized graph processing sys-
tems, such as Pregel and GraphLab, GraphX enables users to naturally express and

82 J. Cao et al.

efficiently execute iterative graph algorithms. Moreover, GraphX provides opera-
tions for tabular data preprocessing, and transformation between graph and tabular
data so that there is no data movement and duplication across the network and file
system.

Support for SQL: Being embedded in Spark allows GraphX to inherit Spark SQL.

4.2.3 GraphLab

GraphLab is an efficient and parallel processing model for big data processing espe-
cially for large graph processing. As its core, GraphLab supports the representation
of structured data dependencies, iterative computation, and flexible scheduling. By
targeting common patterns in machine learning algorithms and tasks, GraphLab
achieves notable usability, expressiveness and performance.

GraphLab programming model focuses on applications that share a coherent com-
putational pattern: asynchronous iterative and parallel computation on graphs with
a sequential model of computation. This pattern encodes a broad range of machine
learning algorithms, and facilitates efficient parallel implementations.

GraphLab exploits the sparse structure and common computational patterns of
machine learning algorithms, and by composing problem specific computation, data-
dependencies, and scheduling, it enables users to easily design and implement effi-
cient parallel algorithms.

GraphLab’s ease-of-use comes from its abstraction which consists of the fol-
lowing parts: the data graph, the update function, scheduling primitives, the data
consistency model, and the sync operation. The data graph represents user modifi-
able program state, stores the user-defined data and encodes the sparse computational
dependencies, an example is shown in Fig. 10 [21]. The update function represents
the operation and computation on the data graph by transforming data in small over-
lapping contexts called scopes. Scheduling primitives determine the computation
order. The data consistency model expresses how much computation can overlap.
Last, the sync operation concurrently keeps track of global states.

The GraphLab is implemented in the shared memory setting [20] and distributed
in-memory setting [21]. In the shared memory setting, the GraphLab abstraction
uses PThreads for parallelism. The data consistency models have been implemented
using race-free and deadlock-free ordered locking protocols. To attain maximum per-
formance, issues related to parallel memory allocation, concurrent random number
generation, and cache efficiency are addressed in [20]. The shared memory setting
is extended to the distributed setting by refining the execution model, relaxing the
scheduling requirements, and introducing a new distributed data-graph, execution
engines, and fault-tolerance systems [21].

The GraphLab API serves as an interface between the machine learning and sys-
tems communities. Parallel machine learning algorithms built on the GraphLab API
benefit from developments in parallel data structures. As new locking protocols and
parallel scheduling primitives are incorporated into the GraphLab API, they become

Programming Platforms for Big Data Analysis 83

Data Graph

Edge Data

Vertex Data

—— —
LY
]
]

Fig. 10 The GraphLab data graph and scope S; of vertex 1 are illustrated in this figure. Each gray
cylinder represents a block of user defined data and is associated with a vertex or edge. The scope
of vertex 1 is illustrated by the region containing vertices {1, 2, 3, 4}. An update function applied
to vertex 1 is able to read and modify all the data in S} (vertex data D1, D2, D3, D4 and edge data
D12, D13, and Dy_4)

r'“'““““"“‘““““
=
)
s

immediately available to the machine learning community. On the other hand, Sys-
tems experts can use machine learning algorithms to new parallel hardware more
easily by porting the GraphLab API. Actually, on top of GraphLab, several imple-
mented libraries of algorithms in various application domains are already provided
including topic modeling, graph analytics, clustering, collaborative filtering, com-
puter vision etc.

GraphLab has following important features:

Scalability: GraphLab scales very well in various machine learning and data mining
tasks, and scaling performance improves with higher computation to communication
ratio.

Expressivity: Unlike many high-level abstractions (i.e., MapReduce), GraphLab
is able to express complex computational dependencies with the data graph and
provides sophisticated scheduling primitives which can express iterative parallel
algorithms with dynamic scheduling.

Better Performance: GraphLab can outperform Hadoop by 20-60x in iterative
machine learning and data mining tasks, and is competitive with tailored MPI imple-
mentation. The C++ execution engine is optimized to leverage extensive multi-
threading and asynchronous IO.

Powerful Machine Learning Toolkits: GraphLab has a large selection of machine
learning methods already implemented. Users can also implement their own algo-
rithms on top of the GraphLab programming APIL.

84 J. Cao et al.

4.3 Task Parallel Platforms

Task parallelism (also known as function parallelism and control parallelism) is a
form of parallelization of computer codes across multiple processors in parallel com-
puting environments. Task parallelism focuses on distributing execution processes
(threads) across different parallel computing nodes. In a multiprocessor system, task
parallelism is achieved when each processor executes a different thread (or process)
on the same or different data. The threads may execute the same or different code. In
the general case, different execution threads communicate with one another as they
work. Communication usually takes place by passing data from one thread to the
next as part of a workflow.

4.3.1 HTCondor

HTCondor has been derived from Condor that is a batch system for harnessing
idle cycles on personal workstations [19]. Since then, it has matured to become a
major player in the compute resource management area and renamed HTCondor in
2012. HTCondor (HTCondor) is a high throughput computing system for compute-
intensive jobs. Like other full-featured batch systems, HTCondor provides a job
queueing mechanism, scheduling policy, priority scheme, resource monitoring, and
resource management.

HTCondor is able to transparently produce a checkpoint and migrate a job to a
different machine which would otherwise be idle when it detects that a machine is
no longer available. It does not require a shared file system across machines - if no
shared file system is available, it can transfer the job’s data files on behalf of the user,
or it may be able to transparently direct all the job’s I/O requests back to the submit
machine. As a result, it can be used to seamlessly combine all of an organization’s
computational power into one resource.

HTCondor programming model has several logical entities, as shown in Fig. 11
[23]. The central manager acts as a repository of the queues and resources. A process
called the “collector” acts as an information dashboard. A process called the “startd”
manages the computes resources provided by the execution machines (worker nodes
in the diagram). The startd gathers the characteristics of compute resources such as
CPU, memory, system load, etc. and publishes it to the collector. A process called the
“schedd” maintains a persistent job queue for jobs submitted by the users. A process
called the “negotiator” is responsible for matching the computer resources to user
jobs.

The communication flow in Condor is fully asynchronous. Each startd and each
schedd advertise the information to the collector asynchronously. Similarly, the nego-
tiator starts the matchmaking cycle using its own timing. The negotiator periodically
queries the schedd to get the characteristics of the queued jobs and matches them
to available resources. All the matches are then ordered based on user priority and
communicated back to the schedds that in turn transfer the matched user jobs to

Programming Platforms for Big Data Analysis 85

Condor
Collector

{

Condor
Negotiator

Condor
Schedd

Fig. 11 Condor architecture overview

the selected startds for execution. To fairly distribute the resources among users,
the negotiator tracks resource consumption by users and calculates user priorities
accordingly.

Condor supports the transferring of input files to a worker node (startd) before
a job is launched and of output files to the submit node (schedd) after the job is
finished. Using a flexible plugin architecture, HTCondor can easily be extended to
support domain specific protocols, such as GridFTP and Globus Online.

HTCondor has following important features:

Flexibility: The ClassAd mechanism in HTCondor provides an extremely flexible
and expressive framework for matching resource requests (jobs) with resource offers
(machines). Jobs can easily state both job requirements and job preferences. Like-
wise, machines can specify requirements and preferences about the jobs they are
willing to run.

Efficiency: HTCondor is a high throughput computing system. Also, it utilizes the
computing resources in a very efficient way.

4.4 Stream Processing Programming Platforms

Much of “big data” is received in real time, and is most valuable at its time of arrival.
For example, a social network may wish to detect trending conversation topics in
minutes; a search site may wish to model which users visit a new page; and a service
operator may wish to monitor program logs to detect failures in seconds. To enable
these low-latency processing applications, there is need for streaming computation
models that scale transparently to large clusters, in the same way that batch models
like MapReduce simplified offline processing.

Designing such models is challenging, however, because the scale needed for the
largest applications can be hundreds of nodes. At this scale, two major problems are
faults and stragglers (slow nodes). Both problems are inevitable in large clusters,

86 J. Cao et al.

so streaming applications must recover from them quickly. Given below are some
popular programming platforms for stream processing.

44.1 Storm

Apache Storm is a free and open source distributed real-time computation system.
Storm is a complex event processing engine from Twitter [30]. Storm makes it easy
to reliably process unbounded streams of data, doing for real-time processing what
Hadoop did for batch processing [29].

It has been used by various companies for many purposes like real time analytics,
online machine learning, continuous computation, distributed RPC, ETL, and more.
The fundamental concept in Storm is that of a stream, which can be defined as
an unbounded sequence of tuples. Storm provides ways to transform the stream in
various ways in decentralized and fault tolerant manner [1].

The storm topology lays down the architecture for processing of streams. The
topology comprises of a spout, which is a reader or source of streams and a bolt,
which is a processing entity and wiring together of spouts and bolts as shown in
Fig. 12 [2].

Clients submit topologies to a master node, which is called the Nimbus. Nimbus
is responsible for distributing and coordinating the execution of the topology. The
actual work is done on worker nodes. Each worker node runs one or more worker
processes. At any point in time a single machine may have more than one worker
processes, but each worker process is mapped to a single topology. Note more than
one worker process on the same machine may be executing different part of the same
topology. The high level architecture of Storm is shown in Fig. 13 [22].

Each worker process runs a JVM, in which itruns one or more executors. Executors
are made of one or more tasks. The actual work for a bolt or a spout is done in

Fig. 12 Storm topology

Programming Platforms for Big Data Analysis 7

Supervisor Workers

Supervisor Workers

NN

Nimbus ZooKeeper) |«

Y

Supervisor Workers

ZooKeeper Supervisor Workers

i

Supervisor Workers

Fig. 13 High level architecture of Storm

the task. Thus, tasks provide intra-bolt/intra-spout parallelism, and the executors
provide intra-topology parallelism. Worker processes serve as containers on the host
machines to run Storm topologies. Spouts can read streams from Kafka (distributed
publish-subscribe system from LinkedIn), Twitter, RDBMS etc.

Storm supports the following types of partitioning strategies. Shuffle grouping
randomly partitions the tuples. Fields grouping hashes on a subset of the tuple
attributes/fields. All grouping replicates the entire stream to all the consumer tasks.
Global grouping sends the entire stream to a single bolt. Local grouping sends tuples
to the consumer bolts in the same executor. The partitioning strategy is extensible
and a topology can define and use its own partitioning strategy.

Each worker node runs a Supervisor that communicates with Nimbus. The cluster
state is maintained in Zookeeper [3], and Nimbus is responsible for scheduling the
topologies on the worker nodes and monitoring the progress of the tuples flowing
through the topology.

Storm currently runs on hundreds of servers (spread across multiple datacenters)
at Twitter. Several hundreds of topologies run on these clusters, some of which run
on more than a few hundred nodes. Many terabytes of data flows through the Storm
clusters every day, generating several billions of output tuples. Storm topologies are
used by a number of groups inside Twitter, including revenue, user services, search,
and content discovery. These topologies are used to do simple things like filtering
and aggregating the content of various streams at Twitter (e.g., computing counts),
and also for more complex things like running simple machine learning algorithms
(e.g., clustering) on stream data.

Storm has following important features:

88 J. Cao et al.

Scalability: It is scalable. It is easy to add or remove nodes from storm cluster without
disrupting existing data flows.

Fault tolerance: Storm guarantees that the data will be processed. Storm is very
resilient in regards to fault tolerance.

Easy to use: Storm is very easy to set up and operate.

Extensibility: Storm topologies may call arbitrary external functions (e.g., Looking
up a MySQL service for the social graph), and thus needs a framework that allows
extensibility.

Efficiency: Storm uses a number of techniques, including keeping all its storage
and computational data structures in memory. Storm is very fast in processing. A
benchmark clocked it at over a million tuples processed per second per node.

442 S4

Simple Scalable Streaming System (shorted for S4) [24] was released for processing
continuous, unbounded streams of data by Yahoo. S4 is a general-purpose, distrib-
uted, scalable, fault-tolerant, pluggable platform that allows programmers to easily
develop applications for processing continuous unbounded streams of data.

S4 is designed to solve real-world problems in the context of search applica-
tions that use data mining and machine learning algorithms. Compared with current
processing systems, S4, a low latency, scalable stream processing engine, is devel-
oped. The stream throughput is improved by 1000% (200k + messages /s /stream)
in S4 [18].

The design goal of S4 is developing a high performance computing platform that
can hide the complexity inherent in a parallel processing system from the applica-
tion programmer. Simple programming interfaces for processing data streams are
provided in S4. A cluster with high availability is designed; the cluster can scale
using commodity hardware. Latency is minimized by using local memory in each
processing node, and the disk I/O bottlenecks are avoided as well. A symmetric and
decentralized architecture is used in S4. Because all nodes in S4 share the same
functionality and responsibilities, there is no central node with specialized respon-
sibilities. Thus, the deployment and maintenance of S4 are greatly simplified. The
design is friendly and easy to program and flexible by using a pluggable architec-
ture. The gap between complex proprietary systems and batch-oriented open source
computing platforms is filled in S4 [18].

S4 provides a runtime distributed platform that handles communication, schedul-
ing and distribution across containers. The nodes are the distributed containers, which
are deployed in S4 clusters. The size of clusters is fixed in S4, the size of an S4 cluster
corresponds to the number of logical partitions (tasks). The key concepts are shown
in Fig. 14 [18].

In S4, computation is executed by Processing Elements (PEs) and messages are
transmitted between them in the form of data events. The stream is defined as a

Programming Platforms for Big Data Analysis

m“

89

PE Instance

Multiple Unlimited Apps An isa PE instances
applications number of encapsulate gm:ﬁp are clones of
deployed on S4 nodes. units of work. composed of the prototype.
clusters can be They can PE prototypes They are
interconnected consume and and streams associated with
to create more produce event that produce, a unique key
sophisticated streams. consume, and and contain the
systems transmit msgs. state.

Fig. 14 Key concepts in S4 (Incubator)

sequence of elements (events). The only mode of interaction between PEs is event
emission and consumption. PE cannot access to the state of other PEs. The framework
provides the capability to route events to appropriate PEs and to create new instances
of PEs [24].

PEs are assembled into applications using the Spring Framework. Processing
Elements (PEs) are the basic computational units in S4. Each instance of a PE is
uniquely identified by four components (the functionality, the types of events, the
keyed attribute and the value of keyed attribute).

Processing nodes (PNs) are the logical hosts to PEs. They are responsible for
listening to events, executing operations on the incoming events, dispatching events
with the assistance of the communication layer, and emitting output events (Fig. 15
[24]). S4 routes each event to PNs based on a hash function of the values of all known

Fig. 15 Processing node Processing Node

Processing Element Container
PE: PE: see PEn
4 v
Event —— — o
Listener Dispatcher Emiter =

[+

Communication Layer

Routing | Load Balancing
Failover Management
Transport Protocols

Zookeeper

90 J. Cao et al.

keyed attributes in that event. A single event may be routed to multiple PNs. The set
of all possible keying attributes is known from the configuration of the S4 cluster. An
event listener in the PN passes incoming events to the processing element container
(PEC) which invokes the appropriate PEs in the appropriate order. There is a special
type of PE object: the PE prototype. It has the first three components of its identity
(functionality, event type, keyed attribute); the attribute value is unassigned.

The communication layer uses Zookeeper (an open source subproject of Hadoop
maintained) (Apache ZooKeeper) to coordinate between nodes in a cluster. The
communication layer can provide cluster management and automatic failover to
standby nodes and maps physical nodes to logical nodes. The communication layer
uses a pluggable architecture to select network protocol. Events may be sent with or
without a guarantee.

The core platform is written in Java. The implementation is modular and plug-
gable, and S4 applications can be easily and dynamically combined for creating
more sophisticated stream processing systems. Every PE consumes exactly those
events which correspond to the value on which it is keyed. It may produce output
events. Two primary handlers are implemented by developers: an input event handler
processEvent() and an output mechanism output(). The output() method is optional
and is set to be invoked in a variety of ways. The output() method implements the
output mechanism for the PE, typically to publish internal state of the PE to some
external system [24].

S4 has following important features:

Fault tolerance: When a server in the cluster fails, a stand-by server is automatically
activated to take over the tasks. Check pointing and recovery mechanism are used to
minimize state loss.

Flexible deployment: Application packages and platform modules are standard jar
files (suffixed.s4r). The keys are homogeneously sparsed over the cluster, the flexible
deployment can help balance the load, especially for fine grained partitioning.

Modular design: Both the platform and the applications are built by dependency
injection, and configured through independent modules. The system is easy to be
customized according to specific requirements.

Dynamic and loose coupling of applications: The subsystems are easy to be assem-
bled into larger systems. The applications can be reused in S4, and pre-processing
can be separated. The subsystems can be controlled and updated independently.

4.4.3 Spark Streaming

Spark Streaming system simplifies the construction of scalable fault-tolerant stream-
ing applications. The authors propose a new processing model, discretized streams
(D-Streams), that overcomes these challenges [33]. D-Streams enable a parallel
recovery mechanism that improves efficiency over traditional replication and backup
schemes, and tolerates stragglers. D-Streams build applications through high-level

Programming Platforms for Big Data Analysis 91

operators and make efficient fault tolerance while combining streaming with batch
and interactive queries.

Existing streaming models use replication or upstream backup for fault tolerance.
This mechanism costs much time on fault tolerance and stragglers. Also their event
driven programming interface does not directly support parallel processing. The pur-
poses of Spark Streaming are to directly support parallel processing, fault tolerance
and efficient stragglers.

Unlike stateful programming model, Spark Streaming use batch processing
method to process continuous streaming and cut streaming into discretized intervals.
It can take advantage of batch operations in Spark and also provide typical streaming
operations. Spark Streaming uses short stateless, deterministic tasks instead of con-
tinues, stateful operators. The state stored in memory across tasks into RDD. Spark
Streaming runs a streaming computation as a series of very small, deterministic batch
jobs. When the streaming data is coming, Spark Streaming chops up the live stream
into batches of 0.5—1 second. It treats each batch of data as RDDs and processes them
using RDD operations. In this way, it has potential for combining batch processing
and streaming processing in the same system.

For fault-tolerance, RDDs remember the operations that created them and repli-
cated batches of input data in memory for fault-tolerance. So data lost due to worker
failure can be recomputed from replicated input data via RDD. Therefore, all data is
fault-tolerant. The lineage graph of RDD is shown in Fig. 16 [33].

Spark Streaming can easily be composed with batch and query model. It provides
both batch operation in Spark and standard streaming systems (Das) [7]. Batch API
in Spark includes Map, Reduce, GroupBy, Join operations. Streaming API in Spark
supports Windowing, Incremental Aggregation operations.

Spark Streaming consists of three components, shown in Fig. 17 [7]. A master,
that tracks the D-Stream lineage graph and schedules tasks to compute new RDD

pageViews ones counts
DStream DStream DStream
interval
[0, 1)
interval
[1.2)

Fig. 16 Lineage graph for RDDs

92 J. Cao et al.

Spark Master .
Spark Context Spark Client
\\ | RDD graph | Scheduler |
hY

DStream graph \\ [Block manager| [SToTe

‘ Network Input Tracker ‘ T cuw

Manager

Y

Job Scheduler Spark Worker

Task Block
‘ Job Manager ‘ ‘ thr:st mar?acgg

Fig. 17 Components of Spark Streaming architecture

partitions. Worker nodes that receive data, store the partitions of input and computed
RDDs, and execute tasks. A client library used to send data into the system.

In the Spark Master, network Input Tracker keeps track of the datareceived by each
network receiver and maps them to the corresponding input DStreams. Job Scheduler
periodically queries the DStream graph to generate Spark jobs from received data,
and hands them to Job Manager for execution. Job Manager maintains a job queue
and executes the jobs in Spark.

Spark Streaming has many important features that make it a desirable program-
ming platform. It scales to 100s of nodes and achieves second scale latencies. It
enables efficient and fault-tolerant stateful stream processing while integrating with
Spark’s batch and interactive processing. Spark provides a simple batch-like API for
implementing complex algorithms.

S A Unifying Framework

The existing programming platforms have various features that are relevant for par-
ticular kinds of applications. While some systems like traditional systems, MapRe-
duce, Hadoop, Pregel are generic systems with limited abilities, and other systems
are very specific for certain kind of applications like streaming data or graph based
data. In this section, we compare different programming platforms against features
that are important for big data analysis as mentioned in Sect. 2. We then discuss the
existing challenges, and describe the need for a unifying framework that allows a
generic abstraction over the underlying models and any new upcoming models. Then
we present our framework MatrixMap that overcomes the challenges of supporting
matrix computations in an efficient manner.

Programming Platforms for Big Data Analysis 93

5.1 Comparison of Existing Programming Platforms

The comparison of various programming platforms with respect to some important
features as discussed in the corresponding sections is summarized in Table 1. Most of
the data parallel programming platforms have high scalability. Hadoop derivatives
like Spark and Spark Streaming inherit similar characteristics for high scalability
with distributed processing. Real time processing is supported by Storm, S4 and
Spark Streaming in an efficient manner. Fault tolerance in big data analytics is a
critical feature because of dependency on multiple systems and size of application. It
is observed that Hadoop, Spark, Spark Streaming, GraphX and Storm are highly fault
tolerant as they use redundancy and special data structures called RDDs. GraphLab,
Pregel and S4 use checkpointing for fault tolerance.

The newer programming platforms like Storm, Spark Streaming have most
attributes required for efficient big data analysis. Much research is being carried
out to develop all machine learning algorithms for newer systems. For MapReduce
based systems, not all the machine learning algorithms can be formulated as map
and reduce problems. For interactive analysis, Storm, S4 and Spark Streaming can
be used as programming platforms.

Table 1 Comparison of Programming platforms for big data analysis

Processing Features/ |Scalability |Fault Efficiency .Usnhilil)« Real-time Iterative
Techniques |Platforms Tolerance Processing | Task
éSupport
= HTCondor |[Medium Low High Medium IYes
§ Storm High High High .Mcdium Yes Yes
%’ sS4 High Medium |Medium |High [Yes
s Hadoop | High High .Mcdium .rMcdium .
‘fu Spark High High High High Yes
=
?i Spark High High High High Yes Yes
3 Streaming !
Dryad Medium Medium |Low High %Yes
MatrixMap |High Medium |High :Mcdium Yc;
:"') GraphX Medium High High High "fes
§. GraphLab |Low Medium |High High ‘ues
Pregel Low Medium |Low [Medium i‘:’es

94 J. Cao et al.

5.2 Need for Unifying Framework

One of the existing challenges in big data programming is that no single programming
model or framework can excel at every problem. Different big data programming
platforms address different requirements, e.g., some platforms support graph based
processing and some systems are specifically designed for streaming data. Program-
mers need to spend much time learning individual models and their corresponding
language, and there are always tradeoffs between simplicity, expressivity, fault tol-
erance, performance etc.

Therefore, there is need of a unifying framework that allows for a generic abstrac-
tion on top of the underlying models and upcoming new models like MatrixMap as
shown in Fig. 18. Such an abstraction would integrate different programming plat-
forms so that the programmers only need to learn a single language and techniques
for diverse big data applications. Integration of big data platforms would require
unifying the interface so that data and operations supported by different models can
be abstracted, and mapping each data processing stage to underlying models. In addi-
tion, both inter-model and intra-model tasks need to be scheduled on processing units
for better efficiency. The cloud resources also have to be allocated dynamically after
analyzing the different computation requirements. Integrating data storage systems
such as file systems and special databases are another issue. There are various open
challenges in it calling for future research efforts.

Besides this, there are still many problems for the existing platforms when per-
forming big data analysis in different application scenarios. Thus, designing new pro-
gramming platform is another challenge that attracts much attention in the research
communities. We will present our proposed platform MatrixMap in the next section.

Big Data Application Shell

| API

General Interface

Mapping Schedule Resource Allocation Data Managem ent

Data Warchouse

Pig Latin Hive SQL

Spark | Pregel 54 New Model| ypFs ‘ RDBMS

NoSQL

MapReduce File

Working | Working | Working \lachine: i g .: Workin
Machine | Machine || Machine | 3 Machine |Cloud Storage Storage | 8 g
: _ =" A_Storage Storage

Fig. 18 Integration of diverse big data programming platforms

Programming Platforms for Big Data Analysis 95

5.3 MatrixMap Framework

Machine learning and graph algorithms play vital important roles in big data analyt-
ics. Most algorithms are formulated based into matrix computations. That is they
apply matrix operations on values and perform various manipulations of values
according to their labels. However, existing big data programming platforms do
not provide efficient support for matrix computations.

Most programming platforms provide separate models for machine learning and
graph algorithms, e.g., in Spark has different interfaces: GraphX for graph algorithms
and Spark for machine learning. The existing systems do not have direct support
for important matrix operations, e.g., in MapReduce, matrix multiplication must be
formulated into a series of map and reduce operations. The support is mostly limited to
matrix multiplication, but not other popular machine learning and graph algorithms,
e.g., Presto. Systems besides Spark save temporal data in secondary storage, slow to
load data for operations. The cache memory uses LRU algorithm (e.g., Spark), which
may not be efficient for all operations. These challenges have led us to develop a
model and framework for handling matrix based computations for big data analysis.

MatrixMap [15] is a new model and framework to support data mining and graph
algorithms. It provides matrix as language-level construct. The data is loaded into
key matrices and then powerful and simple matrix patterns are provided that support
basic operations for machine learning and graph algorithms. This model unifies data-
parallel and graph-parallel models by abstracting matrix computations into graph
patterns.

The framework implements parallel processing of matrix operations and data
manipulations invoked by user defined functions. MatrixMap supports high-volume
data with pattern-specific fetching and caching across memory and secondary stor-
age.

Algorithms are formulated as a series of matrix patterns, which define sequences
of operations on each element. Unary Operator: Map, Reduce; Binary Operator: Plus,
Multiply; Mathematical matrix operations are special cases of matrix patterns filled
with specific pre-defined lambda functions; User defined lambda functions according
to matrix patterns to support various algorithms.

The data is loaded into Bulk Key Matrix (BKM) which is suitable for large volume
data. BKM is a shared distributed data structure which spreads data into whole
clusters. It can keep data across matrix patterns. It is constant and cannot be changed,
after initiation. BKM is row-oriented or column-oriented. It cannot slice concrete
matrix element. BKM use key (string or digit) to index row or column. MatrixMap
adopts BSP model, while supporting asynchronous pipeline of IO and processing
with data partitioning as shown in Fig. 19 [15].

There are many applications of matrix patterns like logistic regression, alternat-
ing least squares, all pairs shortest path, Pagerank among other applications. When
compared with Spark, it achieved 20% improvement on execution time - the more
iterations, the better as shown in Fig. 20.

96 J. Cao et al.

Asynchronous
Matrix Pattern Queue
_________ I |
! Task 1
| I i
1 JTe) .
T . ol |
i |
it > [
I]
]

Data f ————————————————————————

Data From Network
A -

(i

Bulk
Key
Matrix
Fig. 19 Implementation of MatrixMap
Logitic Regrinsien Aermation Leait Saquares 200 die i
il Spark } i s 3 i Spare

Matrihan MatrizMap

iy i = “] 1 [0 = : 1 [El 0]
amser of mrsara b of B Wumber of Eavatiars

Fig. 20 MatrixMap performance w.r.t. Spark

MatrixMap provides powerful yet simple abstraction, consisting of a distributed
data structure called bulk key matrix and a computation interface defined by matrix
patterns. Users can easily load data into bulk key matrices and program algorithms
into parallel matrix patterns. MatrixMap outperforms current state-of-the-art sys-
tems by employing three key techniques: matrix patterns with lambda functions for
irregular and linear algebra matrix operations, asynchronous computation pipeline
with optimized data shuffling strategies for specific matrix patterns and in-memory
data structure reusing data in iterations. Moreover, it can automatically handle the
parallelization and distribute execution of programs on a large cluster.

Programming Platforms for Big Data Analysis 97

6 Conclusion and Future Directions

The purpose of this chapter is to survey various existing programming platforms for
big data analysis. We have enumerated various essential features that a programming
environment should possess for big data analysis. The prominent programming plat-
forms have been discussed in brief to give an insight into their purpose, programming
model, implementation and features. The comparisons of existing programming plat-
forms against various features have been summarized as well as the need for a uni-
fying framework and our proposed MatrixMap framework that implements machine
learning and graph based algorithms using matrices as language constructs, which
can handle large data in an efficient manner. In future, we would investigate more
in unifying framework for different big data platforms, and improve the MatrixMap
framework so that multiple machine learning algorithms can be implemented for
different kinds of data. In summary, we can say that research and development of big
data programming platforms are driven by real world applications and key industrial
stakeholders and it’s a challenging but compelling task. Programming platforms for
handling big data specially streaming data are still evolving. Samza [9] is a recent
addition to programming platforms for streaming data. The concept of “Lambda
Architecture” that integrates batch processing and real time processing together in a
harmonious way in terms of batch, speed and serving is also an area of interest for
the researchers. The integration of different big data programming platforms is an
open challenge with various issues related to task scheduling, resource allocation and
model mapping to be resolved; while designing new platforms to better perform big
data analysis in different application scenarios is another one. Developing a higher-
level programming support on top of multiple models can help ease and shorten the
development of big data applications.

Acknowledgements This work was partially supported by the funding for Project of Strategic
Importance provided by The Hong Kong Polytechnic University (1-ZE26) and HK RGC under
GREF Grant (PolyU 5104/13E).

References

1. V. Agneeswaran, Big Data Analytics Beyond Hadoop: Real-Time Applications with Storm,
Spark, and More Hadoop Alternatives, 1st edn. (Pearson FT Press, USA, 2014)

2. Apache storm documentation, https://storm.apache.org/documentation/Home.html

3. Apache zookeeper, http://zookeeper.apache.org

4. Architecture of mapreduce model, https://cloud.google.com/appengine/docs/-python/images/
mapreduce_mapshuffle.png

5. A.B. Bondi, Characteristics of scalability and their impact on performance, in Workshop on
Software and Performance (2000), pp. 195C203

6. W.Daniel Hillis, G.L. Steele, Jr., Data parallel algorithms. Commun. ACM, 29(12), 1170C1183
(1986)

7. T. Das, Deep dive into spark streaming. http://spark.apache.org/-documentation.html (2013)

https://storm.apache.org/documentation/Home.html
http://zookeeper.apache.org
https://cloud.google.com/appengine/docs/-python/images/mapreduce_mapshuffle.png
https://cloud.google.com/appengine/docs/-python/images/mapreduce_mapshuffle.png
http://spark.apache.org/-documentation.html

98

10.

11.

12.

13.

14.
15.

16.
17.

18.
19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

J. Cao et al.

. J. Dean, S. Ghemawat, Mapreduce: simplified data processing on large clusters. Commun.
ACM 51(1):107C113 (2008)

. T. Feng, Z. Zhuang, Y. Pan, H. Ramachandra, A memory capacity model for high performing

data-filtering applications in samza framework, in 2015 IEEE International Conference on Big

Data, Big Data 2015, Santa Clara, CA, USA, October 29 - November 1, 2015, p. 2600C2605

A.Fernandez, S. del R6, V. Lopez, A. Bawakid, M. José del Jestus, J. Manuel Bentez, F. Herrera,

Big data with cloud computing: an insight on the computing environment, mapreduce, and

programming frameworks. Wiley Interdisc. Rew.: Data Min. Knowl. Discov. 4(5), 380C409

(2014)

J.E. Gonzalez, Y. Low, H. Gu, D. Bickson, C. Guestrin, Powergraph: distributed graph-parallel

computation on natural graphs, in /0th USENIX Symposium on Operating Systems Design and

Implementation, OSDI 2012, Hollywood, CA, USA, October 8-10, 2012, p. 17C30

J.E. Gonzalez, R.S. Xin, A. Dave, D. Crankshaw, M.J. Franklin, I. Stoica, Graphx: graph

processing in a distributed dataflow framework, in //th USENIX Symposium on Operating

Systems Design and Implementation, OSDI 14, Broomfield, CO, USA, October 6-8, 2014, p.

599C613

B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A.D. Joseph, R.H. Katz, S. Shenker, I.

Stoica, Mesos: A platform for fine-grained resource sharing in the data center, in Proceedings

of the 8th USENIX Symposium on Networked Systems Design and Implementation, NSDI 2011,

Boston, MA, USA (2011)

Htcondor, http://research.cs.wisc.edu/htcondor/description.html

Y. Huangfu, J. Cao, H. Lu, G. Liang, Matrixmap: programming abstraction and implementation

of matrix computation for big data applications, in 2/st IEEE International Conference on

Parallel and Distributed Systems, ICPADS 2015, Melbourne, Australia (2015), p. 19C28

Implementation of pregel, http://people.apache.org/~edwardyoon/documents/-pregel.pdf

M. Isard, M. Budiu, Y. Yu, A. Birrell, D. Fetterly, Dryad: distributed data-parallel programs

from sequential building blocks, in Proceedings of the 2007 EuroSys Conference, Lisbon,

Portugal, March 21-23, 2007, p. 59C72

Key concepts in s4 (incubator), https://incubator.apache.org/s4/doc/0.6.0/-overview

M. J. Litzkow, M. Livny, M.W. Mutka, Condor - a hunter of idle workstations, in Proceedings

of the 8th International Conference on Distributed Computing Systems, San Jose, California,

USA, June 13-17, 1988, p. 104C111

Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, J.M. Hellerstein, Graphlab: a new

framework for parallel machine learning, in UAI 2010, Proceedings of the Twenty-Sixth Con-

ference on Uncertainty in Artificial Intelligence, Catalina Island, CA, USA, July 8-11, 2010,

p. 340C349

Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, J.M. Hellerstein, Distributed graphlab:

a framework for machine learning in the cloud. PVLDB 5(8), 716C727 (2012)

G. Malewicz, M.H. Austern, A.J.C. Bik, J.C. Dehnert, I. Horn, N. Leiser, G. Czajkowski, Pregel:

a system for large-scale graph processing, in Proceedings of the ACM SIGMOD International

Conference on Management of Data, SIGMOD 2010, Indianapolis, Indiana, USA (2010), p.

135C146

P. Mhashilkar, Z. Miller, R. Kettimuthu, G. Garzoglio, B. Holzman, C. Weiss, X. Duan, L.

Lacinski, End-to-end solution for integrated workload and data management using glideinwms

and globus online. J. Phys. Conf. Ser. 396(3), 032076 (2012)

L. Neumeyer, B. Robbins, A. Nair, A. Kesari, S4: distributed stream computing platform, in

ICDMW 2010, The 10th IEEE International Conference on Data Mining Workshops, Sydney,

Australia, 13 Dec 2010, p. 170C177

Scala programming language, http://www.scala-lang.org

M. Snir, S. Otto, S. Huss-Lederman, D. Walker, J. Dongarra, MPI-The Complete Reference,

vol. 1: The MPI Core, 2nd (revised) edn. (MIT Press, Cambridge 1998)

Spark programming model, http://blog.cloudera.com/blog/2013/11/-putting-spark-to-use-

fast-in-memory-computing-for-your-big-data-applications

The structure of dryad jobs, http://research.microsoft.com/en-us/projects/dryad

http://research.cs.wisc.edu/htcondor/description.html
http://people.apache.org/~edwardyoon/documents/-pregel.pdf
https://incubator.apache.org/s4/doc/0.6.0/-overview
http://www.scala-lang.org
http://blog.cloudera.com/blog/2013/11/-putting-spark-to-use-fast-in-memory-computing-for-your-big-data-applications
http://blog.cloudera.com/blog/2013/11/-putting-spark-to-use-fast-in-memory-computing-for-your-big-data-applications
http://research.microsoft.com/en-us/projects/dryad

Programming Platforms for Big Data Analysis 99

29.

30.

31.

32.

33.

M. Tim Jones, Process real-time big data with twitter storm. Technical Report pp. 1-9, IBM
Developer Works (2013)

A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J.M. Patel, S. Kulkarni, J. Jackson, K.
Gade, M. Fu, J. Donham, N. Bhagat, S. Mittal, D.V. Ryaboy, Storm @twitter, in International
Conference on Management of Data, SIGMOD 2014, Snowbird, UT, USA, June 22-27, 2014,
p. 147C156

Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P. Kumar Gunda, J. Currey, Dryadling: a
system for general-purpose distributed data-parallel computing using a high-level language, in
8th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2008, San
Diego, California, USA, Proceedings (2008), p. 1C14

M. Zaharia, M. Chowdhury, M.J. Franklin, S. Shenker, I. Stoica, Spark: cluster computing
with working sets, in 2nd USENIX Workshop on Hot Topics in Cloud Computing, HotCloud 10,
Boston, MA, USA (2010)

M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, I. Stoica, Discretized streams: fault-tolerant
streaming computation at scale, in ACM SIGOPS 24th Symposium on Operating Systems Prin-
ciples, SOSP 13, Farmington, PA, USA (2013), p. 423C438

	Programming Platforms for Big Data Analysis
	1 Introduction
	2 Requirements of Big Data Programming Support
	3 Classification of Programming Platforms
	3.1 Data Source
	3.2 Processing Technique

	4 Major Existing Programming Platforms
	4.1 Data Parallel Programming Platforms
	4.2 Graph Parallel Programming Platforms
	4.3 Task Parallel Platforms
	4.4 Stream Processing Programming Platforms

	5 A Unifying Framework
	5.1 Comparison of Existing Programming Platforms
	5.2 Need for Unifying Framework
	5.3 MatrixMap Framework

	6 Conclusion and Future Directions
	References

