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Abstract Graphs are a convenient representation for large sets of data, being
complex networks, social networks, publication networks, and so on. The grow-
ing volume of data modeled as complex networks, e.g. the World Wide Web, and
social networks like Twitter, Facebook, has raised a new area of research focused in
complex networks mining. In this new multidisciplinary area, it is possible to high-
light some important tasks: extraction of statistical properties, community detection,
link prediction, among several others. This new approach has been driven largely
by the growing availability of computers and communication networks, which allow
us to gather and analyze data on a scale far larger than previously possible. In this
chapter we will give an overview of several graph mining approach to mine and
handle large complex networks.

1 Introduction

Over thepast years the amount of data collectedhas increased substantially, especially
with the growing availability of theWorldWideWeb, expansion not only for text but
also with images and video. For instance, Facebook estimates that video exhibition
move from 1 billion in 2015 to 8 billion in 2016.

Social networks and social media are becoming a regular part of people lives,
as a person spends, in average, almost 2 hours per day in a social network. These
kind of data was studied in the past by social scientists, however in a much smaller
scale. They usually worked with hundreds of nodes to answer questions such as
which person is the most connected in the network, or which one, if removed, could
break the connection among all the individuals. Today, social networks are composed
by hundreds of million users and the analysis is different not only in the class of
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techniques but also in which type of questions we want to answer. Asking which
person will break the connection of the network does not make sense anymore, since
there could be no one to cause this kind of damage in a network of such size. This
crucial change in scale made these type of problems much more interesting and lead
to emergence of a new research field: graph mining.

These data are naturally mapped in complex networks that are represented using
graphs. Under this model, nodes are entities (e.g. people or groups of people), and
edges represent some kind of interaction between entities (e.g. friendship). Another
example is that of information networks, inwhich the nodes are information resources
such as Web pages or documents, and edges represent logical connections such as
hyperlinks, citations, or cross-references and so on.

These large volume of data makes it easy to study global phenomena that are
not discernible in smaller networks, for example, how a community is born, how
a network evolves over time, understand the importance of single node or an edge,
among many examples that were almost impossible to tackle in small networks.

Graphs are very a powerful tool to express and model mathematically complex
network structures, appearing in many domains, whenever it is useful to represent
how things are either physically or logically linked to one another in a network
structure.

A graph G is mathematically represented as G =< V, E >, on which |V| = n
represents the number of nodes (or vertex set), and |E | = m represents the number
of edges (or links), and a relation that associates with each edge two vertexes [109].
We say that two nodes are neighbors if they are connected by an edge.

The graph-based representation used for data has substantial non-trivial topo-
logical features, with patterns of connections between their elements that are nei-
ther purely regular nor purely random. For this reason this representation is usually
referred to as a Complex Network.

The study of complex networks brought to light important properties such as
power-law degree distributions [47], the Small World phenomenon [104], among
several others [109]. These patterns help us understand the interaction of people in
social networks [91, 99] as well as the dissemination of information and diseases
[36], and has other practical applications such as anomaly detection [7] and so on.

In this chapter we will navigate through several graph mining task, such as pattern
discovery using statistical properties (Sect. 2), community detection (Sect. 5), link
prediction (Sect. 4). We also will talk about how to represent networks with weight
(Sect. 7), multiple edges (Sect. 8) and temporally (Sect. 3). We also we show that
networks can be use to represent knowledge and map knowledge bases (Sect. 6.2).
We also present several platforms to store and process large graphs (Sect. 6). We
finish this chapter present what are the big challenges and open issues of this chapter
(Sect. 9) and than we conclude (Sect. 10).
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2 Definitions

A graph is a useful way to specify relationships among a collection of items. A graph
consists of a set of objects called nodes, with certain pairs of these objects connected
by links called edges.We say that two nodes are neighbors if they are connected by an
edge. A complex network is modeled as a graph G = 〈V, E〉, on which V represents
the number of nodes or verticals N = |V|, and E represents the number of edges or
links M = |V|. The traditional way of represent a graph G computationally is the
adjacency matrix, which is a square matrixA = N × N whereAi,j = 1 is (vi, vj) ∈ E
and 0 otherwise [109].

A graph is undirect if (vi, vj) ∈ E ⇔ (vj, vi) ∈ E , that is, the edges are unordered
pairs.

However, in many cases, it is desirable to express asymmetric relationships and
other attributes such as weights, time or multiple relations in the links. Thus, the
graph can become directed where the presence of vj, vi ∈ E does not imply that
vi, vj ∈ E . For example, A points to B but not vice versa, which means that edges are
ordered pairs. It is possible to also have weighted networks, G = 〈V, E,W〉 where
wi ∈ W , which means that each edge will have a weight wi associated to it (weights
are discussed in more detail in Sect. 7).

The node degree τ (vi), also called neighborhood of a node, can be defined by the
amount of incident edges on node vi (Table1).

Another important measure in real complex network is called the clustering coef-
ficient, which is proportional to the total number of triangles that a node or a network
has.

A triangle Δ of a graph G is a set of three completely connected nodes where
(u, v,w) ∈ V and edges (u, v), (v,w), (w, u) ∈ E .

In many networks it is found that if vertex A is connected to vertex B and vertex
B to vertex C, then there is a high probability that vertex A will also be connected
to vertex C. In the language of network theory, a friend’s friend is likely also to be

Table 1 Symbols used in this
chapter

Symbols Description

A Adjacency matrix

G Graph

E Set of edges

V Set of nodes

vi Node

ek Edge

Δ Triangle

τ (vi) Degree of node vi

C(vi) Cluster coefficient of node vi

C(G) Cluster coefficient of G
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a friend. In terms of network topology, transitivity means the presence of a high
number of triangles in the network [146].

Formally, the cluster coefficient can be expressed by the following equation:

C(vi) = 2 ∗ Δ(vi)

d(vi) ∗ (d(vi) − 1)
(1)

A node vi with degree |τ (vi)| has at most τ (vi) ∗ (τ (vi) − 1)/2 edges that could
exist among them, being Δ(vi) the fraction of edges that really exist (the number of
triangles). Thus, the cluster coefficient in Eq.1 C(vi) of a node vi is the proportion
of edges among nodes that are at distance 1 if the neighborhood of vi, divided by
the total number of edges that could exist among them. Also, C(vi) is the fraction of
triangles centered at node vi which (d(vi) ∗ (d(vi) − 1))/2 triangles could exist.

The global cluster coefficient C(G) is the average of the clustering of all nodes
C(vi) from graph G, divided by the total number of nodes n.

C(G) = 1

N
∗

N∑

i=1

C(vi) (2)

Nodes are also important in real graphs to analyze degree probability distribution
[47]. We define pk to be the fraction of nodes in the network that have degree
k. Equivalently, pk is the probability that a node chosen uniformly at random has
degree k. A plot of pk for any given network can be formed by making a histogram
of the degrees of nodes. This histogram is the degree distribution for the network.
An example of degree distribution from DBLP1 is presented in Fig. 1.

In a random graph of the type studied by Erdõs and Rényi [109], each edge is
present or absent with some constant probability p. As a result, the degree distribution
is, as mentioned earlier, binomial, or Poisson in the limit of large graph size.

Real-world networks are mostly found to be very unlike the random graph in
their degree distributions [2]. Many of them asymptotically follow power-laws in
their tails: pk ≈ kα for some constant exponent α. The degrees of the nodes in most
networks are strongly right-skewed, meaning that their distribution has a long right
tail of values that are far above the mean. In the context of social networks, for
example, power-law distribution means that most of people has few friends and few
people has a lot of friends. There are several metrics that also follows a power-law in
real networks, as nodes and edges during evolution [90], triangle distribution [142]
and weights [100].

Another important characteristic observed in real networks is the small diameter.
In graph theory, the diameter is defined as been the longest path among all the
shortest paths. However, in this definition the diameter is susceptible to outliers if
the graph has a long chain. Also, to calculate the diameter in real large graphs is
computationally very expensive.

1http://dblp.uni-trier.de.

http://dblp.uni-trier.de
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Fig. 1 Degree distribution from co-authorship network extract from DBLP

One of the traditional metrics for diameter is the effective diameter [79, 117],
defined as f (G) of a graph G. It is the minimum number of hops (steps or links) in
which 90% of all connected pairs of nodes can reach each other. One way to calculate
the effective diameter is build what we call a Hop Plot. The hop plot shows each
distance, starting in one, until a distance where the number of nodes reach does not
change over a very small threshold. An example of this plot is shown in Fig. 2. As we
can see, after distance 7 the number of nodes reached (y axis) do not longer increase.
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Fig. 2 Hop Plot from co-authorship network extract from DBLP
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3 Temporal Evolution

One of many interesting characteristics of complex networks are the ones connected
with temporal evolution. Network evolution has attracted a lot of interest in the last
years, not only because the complex network field has reached a stable knowledge
point about the simplest case, that is the undirected, unweighted, simple network.
Thus, the next step is to start to understand special cases of networks and evolution
is one of these cases. A complex network evolves over time with the creation and
deletion of nodes and edges, for example, when people join or leave a social network,
they create or break friendship ties.

Today, there are mainly three models of temporal complex networks.
The most traditional such network is a condensate in snapshots, each one rep-

resenting a period of time. The snapshots are represented by a series of graphs
G1, ...,GT , so that Gt = (Vt, Et) represents the graph at time t. Since G1, ...,GT repre-
sent different snapshots of the samegraph,we haveVt ⊆ V andEt ⊆ E . For simplicity
most of presentation assumes that, as the graph evolves, nodes and edges are only
added and never deleted, that is, V1 ⊆ V2 ⊆ ...VT and E1 ⊆ E2 ⊆ ...ET .

The second one follows the data stream model, where a large number of edges
representing interactions are continuously received over time and are superposed
over a much larger network. An example of such a scenario would be a Twitter post
stream, in which several posts are continuously received over time [3].

Anotherway to represent temporal networks is throughTime-VaringGraphsmod-
els (TGVs) also known in the literature as temporal or time-dependent networks [29].

TGVs graphs can be easily converted in snapshots by creating a graph with an
edge between nodes, if and only if there is connection between nodes during a time
interval. A example is shown in Fig. 3 where we illustrate a network in time t0, t1 and
t2. Networks (a), (b) and (c) represents the network in each timestamp using TGV
model while networks (a’), (b’) and (c’) represents the network using snapshots
model, network (c’) being the whole network.

One of the biggest differences between the TVG and the snapshot models is how
transitivity is addressed. As we saw in previous sections, transitivity is important
in some network phenomena, for instance, in link prediction. However, in the TVG
model, the edges are not carried on from one timestamp to another, thus transitivity
can be used within a particular timestamp [81]. In the snapshot model, the edges
from one timestamp are carried to the next one, so transitivity can use the whole
past network to predict the future network. This can be true in several scenarios,
as organizations, or social networks, where an acquaintance is carried for life even
if the contact is lost. However, there are situations where the TVG model is more
suitable, as is the case of the air-transport network for example where to build a route
is necessary to take time into account [71].

In the TVG model, all the measures such as diameter, paths, triangles, etc., need
to be rethought in the sense of being “time-respectful” [72]. Another issue in this
model is how to represent the network, since one will have a different network in
each timestamp and sometimes one wants to represent an edge that repeats from one
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Fig. 3 Networks in three different timestamps, using model TVG and Snapshots to represent them
in each timestamp. Network (c’) represents the whole network using snapshots model

timestamp to another. In [147], the authors propose a unifyingmodel for representing
TVG graphs. In this model a square adjacency matrix of n ∗ t (where n is the number
of nodes and t is the number of timestamps) is created and follows the same principles
of traditional adjacency matrix.

The third model considers the network as a graph data stream. These networks
are based on transient interactions, such as email or telecommunication networks.
To process a graph data stream is usually necessary real-time analytical methods [3]
as the one presented in [4].

Depending on what it is the purpose of the task, the choice of the model could
have a big impact. Also, graph data streams are far more challenging than graph
snapshots, since the first one is in general not possible to store in memory (even in
disk) for analysis.

Many interesting properties about network evolution have been studied over the
years using the snapshot model. In one case, the network presents the characteris-
tic of a shrinking diameter, i.e., in most cases the effective diameter of a network
decreases over time while the network grows. Another one is the network densifica-
tion which means the network becomes denser and the average degree increases as it
evolves [90].

|Et| ∝ |Vt|(α) (3)
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As shown in Eq.3 the number of nodes grows as function of number of edges.
For α = 1 there is a complex network that grows with a constant average degree
over time, while with α = 2 there is a much denser network. These helps not only to
understand real network evolution but also to discriminate them from random graph
models.

One of the most traditional ways to model evolution in network is Tensor Factor-
ization. In the most simple case, a tensor is a three dimensional matrix, where in our
contect usually one dimension is time [46]. However, tensor factorization present
scaling issues for large graphs.

Network evolution is extremely useful for complex network analysis, especially
to understand dynamic systems. How a network evolves is far from being answered
simply. Link prediction is one of few techniques that incorporates the time notion in
its definition, however time is still not being used as information that may improve
the method’s accuracy.

Other techniques, as community detection, are not directly applied in temporal
networks, and some surveys, as the one presented in [49, 129] show that despite
there being few methods that work in temporal networks, there’s still is a large gap
in techniques to solve this problem in a scalable way.

4 Link Prediction

Social networks are one of the most clear and well-known examples of complex
networks. These applications typically need to recommend connections among users,
such as the “People you may know” feature. Thus, the problem of how people get
connected is relevant not only for social network but also for a large number of use
cases such as organizations [42].

There are many reasons, sometime exogenous to the social network, why two
individuals will become friends: they may happen to be geographically close if one
moves to a city near the other’s neighborhood, or they may attend to same party, or
go to the same school, and so on. Such type of interaction can be hard to predict.

Commonly, two nodes are more likely to be connected if they are more similar.
Similarity may be based only on network structure. Thus, a large number of new
interactions are hinted at by the topology of the network: two individuals who are
close in the network will have friends in common, and this suggests that they are
more likely to become a friend in the near future.

Understanding the mechanisms by which people get connected and how networks
evolve have been addressed by what is known as the link prediction task. Link
prediction methods are based on graph snapshots as a model to support evolution.
Thus, in a formal way, link prediction can be defined as: Given a snapshot of a graph
G at time t, predict accurately which edges will appear in the network in time t + 1
[93]. Translated to the context of social networks, friends of your friends are likely
also to be your friends.
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In terms of network topology, transitivity means the presence of a high number
of triangles in the network [146].

Most of traditional linking prediction methods are based on graph structural prop-
erties as assigning a connection value, called score(u, w), to pairs of unconnected
nodes< u, w > based on a desired graphG. The scores are ranked in a list in decreas-
ing order of score(u, w) and afterwards predictions are made according to this list.

Let τ (u) = (u ∈ V : ∃(v, u) ∈ E) of node u be defined as the set of nodes in V
that are adjacent to u. For a node u, let τ (u) denote the set of neighbors of u in
G. A number of link prediction approaches are based on the idea that two nodes u
and w are more likely to form a link, in the future, if their sets of neighbors τ (u)
and τ (w) have large overlap. The most direct implementation of this idea for the
link-prediction problem is the common-neighbors predictor, which may be defined
as follows:

score(u, w) = |τ (u) ∩ τ (w)|

The common-neighbors predictor captures the notion that a friend may introduce
two strangers who have a common friend. This introduction has the effect of “closing
a triangle” in the graph and feels like a common mechanism in real life. In this sense
some other measures, also neighborhood based, were propose to rank nodes that are
likely to have a link in a near future.

The Jaccard coefficient is a similaritymetric that is commonly used in information
retrieval. It is used to measure the probability that both u and w have a feature f ,
for a randomly selected feature f that either u or w has. In the case of networks, the
feature f can be a list of friends that a node has. Formally, the Jaccard predictor uses
the following measure:

score(u, w) = |τ (u) ∩ τ (w)|/|τ (u) ∪ τ (w)|

The Adamic/Adar predictor [1] evaluates the degrees of the common neighbors
and emphasizes the nodes that share neighbors with small degree. This is because
a high degree node has a higher chance to be in the common neighborhood of
other nodes. This method computes features of the nodes, and defines the similarity
between two nodes to be the following:

score(u, w) =
∑

(V∈τ (u)∩τ (w))

1

log τ (v)

While the neighborhood-based measures provide a robust estimation of the like-
lihood of a link forming between a pair of nodes, they are not quite as effective
when the number of shared neighbors between a pair of nodes is small. A particular
walk-based measure that is used commonly to measure the link-prediction strength
is the Katz [80] measure, which is arguably one of the best link predictors available
because it has been shown to outperform many other methods as showed in [93].
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score(u, w) =
∑∞

l=1
βl|pathl(u,w)|

Another path measured in link prediction task is Random Walking which is a
path that consisted of succession of steps chosen randomly. As showed in [94] one
difficulty with all Random-walk to link prediction is their sensitive dependence to
parts of the network far away from target nodes. For example, in a random walk
from x to y, the walker has a certain probability to go too far away from both x
and y although they may be close to each other. This may lead to a low prediction
accuracy since in most real networks nodes tend to connect with the ones nearby
rather than far away. Another algorithm for link prediction in social network based
on Random Walks is presented in [17]. As we will present in Sect. 6.2, PRA is a
random walk-based algorithm to predict relations in a Knowledge base mapped as a
network.

Link prediction can be applied in other scenarios than social networks, for exam-
ple predict interactions and collaborations among people in organizations can help
manage companies in a productive way. The task of recommending unknowns but
similar people is quite different from possible friend recommendation tasks, which
focus on recommending individuals who have friends in common [67].

In [145], the author finds that the similarity between individuals’movements, their
social connectedness and the strength of interactions between them are strongly cor-
relatedwith each other. Thus, the authors also reports that humanmobility could serve
as a good predictor for the formation of new links, yielding comparable predictive
power to traditional network-based measures.

Another challenge which remains largely open in link prediction methods is how
to effectively combine the information from the network structure with rich node
and edge attribute data. Social ties could improve link prediction metrics as the
authors show in [17] where a supervised random walk that naturally combines the
information from the network structure with node and edge level attributes.

There are manymore metrics used to produce the score between two unconnected
nodes as presented in [69, 97].

The link-prediction problem can also be related to the task of inferring missing
links in complex networks: in many domains, one constructs a network and then
tries to infer additional links that, while not directly visible, are likely to exist, as
Prophet [13] presented in Sect. 6.2 [44].

This line of work differs from link prediction problem formulation in that it works
with a static snapshot of a network, rather than considering network evolution. It also
tends to take into account specific attributes of the nodes in the network, rather than
evaluating the power of prediction methods based purely on the graph structure.

The metrics presented above for link prediction can actually be called in a more
specific way as Link Existence Prediction. The link existence problem is defined as
the problem of predict whether a link will or not exist in undirected networks, which
is the same of link prediction, since most of studies emphasize only unweighted
undirected networks.
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However the link prediction problem could be extended for other problems related
to discover a link, such as direction, multiplicity and weight. Follow we define each
one of these problems are.

The link direction problem can be viewed as a link-prediction extension on
directed networks, where the link and direction will be predicted. An example of the
importance would be in a phone call network someone may want predict who-calls-
whom. However, most of the work developed predicts the direction of an existent
link [10].

Another possible extension is to apply the link prediction task in multiplex net-
works, where not only links between unconnected nodes could be predicted but also
new link between node already connected (more in Sect. 8). This is a big challenge
because links could have different meanings. Thus, most of work in this line needs
extra information other than topology. Multiplex network commonly are seen in aca-
demic, companies and social networks where relationships among individuals can
have different roles, as friend, family, co-work and so on [24].

In weighted networks, the link prediction problem can be viewed as the prediction
of both the link and the weight associated with it. The most common use of weights
in link prediction is to help predict the existence of links by combining themwith the
observed links [95]. In this case, most works adjust the metrics presented (common
neighbor, Jaccard, Adamic/Adar) from unweighted to weighted networks. Yet, how
weights improve the accuracy of a link prediction task and how to predict the weights
together (or not) with the links has not been well studied. Example of problems that
could benefit from weighted link prediction is urban or air transportation [138]. One
of the few studies, and a very interesting one, on the link prediction problem in
weighted networks is [96], where the authors find that weak links may play a more
important role than strong links.

The works presented until now are based on homogeneous networks, meaning
links are all from the same type and there are only static snapshots. When we say the
network is dynamic, we are implying that new links are constantly being added to
the network. Such new links may also arrive in the context of new nodes being added
to the network, or they may correspond to edges between already existing nodes.

Recentworks focus onheterogeneous networkswhere linkprediction are extended
for it, as co-author network [45], Location-based social networks [150], information
network [83, 133, 134].

Link prediction problem becomes extremely challenging when it is addressed to
dynamic massive heterogeneous network because of the challenges associated with
the dynamic nature of the network, and the different types of nodes and attributes
in it.

In [4] the authors present a method called “DYNALINK”, an algorithm for
dynamic link inference in temporal and heterogeneous networks. The algorithm is
able to construct link inference models for online and heterogeneous networks which
are continuously evolving over time.

Time can have a big influence in link prediction, since old links are less important
than the recent ones. For example, in a co-authorship network, new co-authors are
more important than the oldest ones in terms of indicate new co-authors. The authors
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in [46] show that Katz metric can be improved adding a weight in the link reflecting
how recent or how old the link is.

Another information that could be used to improve link prediction techniques
is community structure information, as in traditional data mining, where cluster
detection can be used as a pre-processing technique. In [127] the authors use the
community structure to help in link prediction. The same technique is used in [4].

An interesting type of research area that may extend research for weighted link
prediction is in signed networks. A signed network consists of a network composed
by positive and negative links, which could mean friends and foes [84], trusted and
distrusted peers [99]. A method to predict the signs of links (positive or negative) is
proposed in [89, 126], however the prediction of both the existence of a link and its
sign simultaneously has not been addressed yet.

5 Community Detection

A very important and rich research area in network theory is that of community
detection. The basic idea behind community detection is the possibility to group
nodes into larger groups with some criterion of similarity. The goal is to have a
way to capture mesoscopic structures and in some way decrease the complexity of
the original graph. This fertile research area has produced many community finding
methods and algorithms [50]. Many of these methods rely in the optimization of a
special function of the edges of the graph, usually called modularity, as we will se
next.

5.1 Modularity Maximization

Many real networks have some type of inner structure beyond local edges, but which
at the same time is different from and contained within the complete graph. For
instance, a social graph may be though locally by studying ego-networks (i.e. just the
immediate connections in a node), or may be analyzed globally, may be expressing
scale-free structure which is evidenced by the whole set of nodes and edges. But
in a social network it is also common to find friendship groups, or work groups
which are larger than ego networks and smaller than the whole graph. The aim of
community algorithms is finding these kind ofmesoscopic structures, usually refered
to as communities or modules [27, 50, 110].

Girvan and Newman [54, 112] propose an elegant way of finding these structures.
They reasoned that by analyzing edges and assuming that a set of nodes with larger
number of edges between them (compared to what would be expected if the edges
were randomly placed) could be thought to form a community. They defined an
objective function, the modularity Q, which represents the fraction of edges inside
communities minus the fraction of edges in groups if they were randomly assigned.
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In a network with n nodes, one can propose a given partition of nodes between
just two communities, so as to assign si = 1 if node i belongs to one community and
si = −1 if belongs to the other community. One can express the modularity of such
setting as follows:

Q = 1

4m

∑

ij

(
Aij − kikj

2m

)
sisj, (4)

where Aij is the adjacency matrix of the network, ki is the degree of node i, and
m = 1

2

∑
i ki is the number of edges in the network. The second term in the parenthesis

represents the expected fraction of nodes if the edges where randomly assigned.
Note that this assumes a certain null-model, i.e. an idea of which structure would
the network have is it was randomly generated. This is an important point that may
influence the outcome of the final set of communities, and that needs discussion in
any kind of generalization of the concept, as will be further discussed in Sect. 8.2. The
above framework may be repeated iteratively to the found subgraphs to subsequently
find smaller communities, taking care of modifying Eq.4 to correctly account for
all edges [112]. Whenever a proposed split gives a contribution non-positive to the
total modularity, then the algorithm is carried no further. Thus, the definition of
community in the Girvan-Newman method is a subgraph that is not further divisible
for maximizing its modularityQ. The modularity method has been widely successful
and even though it has been extended in many ways it continues to be the basis of
the most robust methods for community finding [110].

5.2 The Louvain Method for Community Detection

Another successful method for finding communities in very large networks is known
as the Louvain community detection method [26], a very efficient method that has
proved extremely useful in a number of big data graphs, taking a few minutes in
regular hardware to compute communities for graphs of hundredths of millions of
nodes and a few billion edges [16]. It was originally proposed by Lefebvre,2 and later
further developed by a group of researchers led by Blondel, all which at some point
had worked at the Universit Catholique de Louvain, hence its name. The Louvain
method is a modularity optimization algorithm based in the same principle that of
the Girvan-Newman algorithm developed in [110, 112] (see previous Sect. 5.1) It
was originally defined for weighted networks by allowing the adjacency matrix Aij

to contain weights wij (as is also the case of Eq.4).
The algorithm is a heuristic greedy optimization method performed in two steps.

First the method acts locally finding small communities. Initially every node is
assigned to its own community. Next, for each node i, the node is assigned to the
community C of each of its neighbors and the corresponding change in modularity
ΔQ is computed. The expression for ΔQ may be expressed as follows:

2https://perso.uclouvain.be/vincent.blondel/research/louvain.html.

https://perso.uclouvain.be/vincent.blondel/research/louvain.html
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where
∑

in is the sum of weights of edges in C,
∑

tot is the sum of weights of edges
incident to nodes in C, ki is the sum of weights of edges incident to node i, ki,in is the
sum of weights of edges from i to nodes inC and finallym is the total sum of weights
of edges in the network. Node i is moved to the community that contributes the most
to the total modularity (with a breaking rule in case of ties) or stays in its original
community in case no positive gain inQ is possible. This procedure is repeated until
no improvement in Q is possible.

In the second part of the algorithm a new network is built by now grouping all
nodes belonging to the communities found in the first part as new nodes in a new
network. The edges between two nodes in this new network have weights equal to
the sum of weights in edges between the original communities from the first stage.
Self-loops appear whose weights are equal to the sum of weights of all edges within
the community in the first stage of the algorithm corresponding to the new node. One
this new network is created, another pass (stages one and two) is applied to the new
network.

The Louvain community finding method is by no means the only community
finding method for large networks [39, 92], but it has proved a nice example of an
efficient and successful algorithm for networks by-product of rapidly growing— and
increasingly common—big datasets.

6 Graphs in Big Data

Graphs and networks are a fundamental concept in the context of big data, as big data
business is being driven by the possibility of quantifying relationship data. Indeed,
much of the value provided by the availability of vast quantities of data resides in the
ability to spot and quantify these relationships. Users that express an interest, friends
that stay in touch, clients that spend in a given item, all these have in common that
represent a relationship between two entities. And as we have seen in the previous
sections, relationships are susceptible to be efficiently described by networks or
graphs.

Google and Weibo funded their businesses linking users to topics and interest by
search and advertisement. Facebook linked people and of course interests, LinkedIn
connects people and professional opportunities. They all gather an enormous amount
of information from their data, so the ability to extract useful insights, in the form of
distilled bits of data, is crucial.

Many data wealthy businesses, different from social networks, are also starting to
see the fact that they could benefit greatly by the possibilities offered by graph ana-
lytics and graph methodologies in general. For instance, there is increasing interest
in graph methods applied to healthcare [118, 135].
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In this section wewill lay out some important examples and use cases, and wewill
mention the most important methods, applications and tools for the kind of networks
typically found in Big Data business.

6.1 Graphs in the Big Data Era

Google’s PageRankOne of the most interesting examples of graph methods applied
to big data was the PageRank algorithm [116], a cornerstone of Google’s early suc-
cess. PageRank is the ranking algorithm originally used by Google Search to present
an ordered set of web pages to the user, and even though today has been considerably
extended, today continues to play a relevant part in Google search results.3 PageRank
represented a success factor for Googles search engine, as it performed quite accu-
rately for search results ranking. The ranking algorithm computes the “importance”
of webpages with simple notion: based on the structure of the web page graph, use
links from other pages as a proxy for the importance of the page. In essence, PageR-
ank computes the probability that a random walk will end in a given node of the
network. The algorithm is iterative, and can compute the rank of all nodes in a graph
of arbitrary size. At every iteration s, the algorithm computes the (unnormalized)
probability PR for every node i in the network:

PRt+1(i) = r + (1 − r)
∑

j

PRt(j)

koj
, (6)

where r is the probability of a step for the random walk and koj is the our-degree of
node j. Even though there has been many variations to the algorithm since its intro-
duction, it is undeniable that PageRank still remains important to Google’s business.

Facebook’s Graph Search Beginning 2013, Facebook introduced its Graph Search
product,4 as “a new way to navigate (the graph’s) connections and make them more
useful”, i.e. with the aim of improving the efficient exploration of the wealth of data
produced by their social network. Facebook Graph Search is designed for users to be
able to make semantic searches for entities and their relationships. The tool uses a
battery of techniques to deliver search results, such as named entity queries as well as
structured queries, but it also relies heavily in graph-related quantities such as graph
distance (which is fundamental to the result) in tight combination with attributes of
nodes and edges such as friendship relationships, age, gender, number of friends,
celebrity status, among others [130].

3https://www.google.com/insidesearch/howsearchworks/algorithms.html.
4http://newsroom.fb.com/news/2013/01/introducing-graph-search-beta/.

https://www.google.com/insidesearch/howsearchworks/algorithms.html
http://newsroom.fb.com/news/2013/01/introducing-graph-search-beta/
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6.2 Knowledge Graphs

Tom Gruber defines an ontology as follows: “An ontology is a description (like a
formal specification of a program) of the concepts and relationships that can formally
exist for an agent or a community of agents. This definition is consistent with the
usage of ontology as set of concept definitions, but more general. And it is a different
sense of the word than its use in philosophy” [64].

The RDF (https://www.w3.org/RDF/) data model, also known as RDF triples
composed by subject-predicate-object, is a standard model for data interchange on
theWeb. The subject denotes the resource, and the predicate denotes traits or aspects
of the resource and expresses a relationship between the subject and the object.
For example, one way to represent the notion “Messi plays soccer” in RDF is as
the triple: a subject denoting “Messi”, a predicate denoting “plays”, and an object
denoting “soccer”. RDF data model is naturally suited to knowledge representation
and collection of RDF statements can be represents a labeled, directed multi-graph.
Mapping a Knowledge Base as graph, categories become nodes and relations are
edges.

Over the last few years, many research projects focused on building large scale
ontological knowledge bases (OKB) have been developed, such as Google Knowl-
edge Graph based on Freebase [28], YAGO [131], DBpedia [15], Elementary/Deep-
Dive [114], Walmart [43], Microsoft Satori and a continuously learning program
called NELL (Never Ending Language Learner) [34]. These projects store their
knowledge using what we call Knowledge Bases (KBs) with millions of facts about
the world, such as information about people, places and things referred as entities.

Traditionally, an knowledge base (KB) organizes and stores knowledge in two dif-
ferent parts, namely: (i) an ontological model, where categories (city, company, per-
son, etc.) and relations (worksFor(person, company), headQuarteredIn(company,
city))) are defined, and (ii) a set of facts which are instances of categories (city
(New York), company(Disney), person(Walt Disney) and relations.

Despite their size, KB are far from complete. As showed in [44] 71% of people
in Freebase have no known place of birth, and 75% have no known nationality.
Furthermore, coverage for less common relations can be even lower.

Therefore, a new approach is necessary to further scale up knowledge base con-
struction. Such an approach should automatically extract facts from the whole Web,
to augment the knowledge we collect from human input and structured data sources.
Unfortunately, standard methods for this task often produce very noisy, unreliable
facts. To alleviate the amount of noise in the automatically extracted data, the new
approach should automatically leverage already-cataloged knowledge to build prior
models of fact correctness.

One of the biggest problems in knowledge bases is extending it by inferring new
relations. The ability to infer new knowledge may be straightforward for humans,
but is tipically very hard be done automatically by a machine, as learning programs
populates the KB from corpora or the Web, which may be a difficult task.

https://www.w3.org/RDF/
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Mapping a KB as a network allows us to apply graph mining techniques to infer
new relations. Thus, one of task that are mainly used is link prediction, which
is applied to find implicit information so as to populate the KB. There are sev-
eral projects that use graph mining, such as Prophet [13] in NELL, or Knowledge
Vault [44] from Google. NELL also uses Random Walks to infer relations [86] and
PageRank for search [144].

Prophet [13] was created to be one of NELL’s components, to apply link-
prediction techniques intoNELL’s KBmaped to a graph. It executes a link-prediction
task using a metric called extra-neighbors to extend NELL’s ontology by finding new
possible relations and also it finds new instances of these relations and some possible
misplaced facts present on the KB (Fig. 4).

Knowledge Vault used PRA [86] to extend their KB that is based on Freebase.
Similar to distant supervision, PRA begins with an instance of a relation such as
(Basketball,MichaelRedd), i.e. a pair of entities, then it performs a random walk
on the graph, starting at all the subject (source) nodes. Paths that reach the object
(target) nodes are considered successful. For example [44], PRA learns that pairs
(X,Y) which are connected by a marriedTo edge often also have a path of the form

X
childOf−−−→ Z

childOf←−−− Y , since if two people share a common child, they are likely to
be married. The paths that PRA learns can be interpreted as rules.

Fig. 4 An example of rule (Sport, SportLeague) and instance (Basketball,NBA) infer by Prophet
based on three independent paths (Madison Square Garden, Michael Redd, Milwaukee Bucks)
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6.3 Graph Sampling

One way to work with massive amounts of data is sampling. Data sampling has been
applied over years in large data sets to extract representative small portions from
data allowing us to apply data mining techniques as clustering and classification
algorithms, usually computational expensive in the complete dataset. However, in
the context of complex networks, the question of how to extract a representative
small network from the original dataset is nontrivial. Also, one issue with graph
sampling is if one should focus on nodes, edges or both. Additionally, in non-linked
data, random sampling usually performs reasonably, however in complex network
randomsampling, be it in nodes or edges, the process usually produces a disconnected
graph [88].

It can be quite difficult to find a method to reduce the size of network and keep
all the important measures, useful for graph mining techniques as cluster and link
prediction [143].

Another area where graph sampling techniques are widely applied is in crawling.
Collecting data for analysis is a very important task and how these data are collected
is extremely important to the post analyze that will be done. The crawling process
of a graph starts from selecting one (or multiple) node(s) called seed(s). After a
node has been visited, the edges incident in this node are known and the next node
can be chosen. The policy of choosing the next node depends on the design of the
crawling. Among the possible policies are: Breadth-First, Edge based [5], Random
Walking [87, 87], Weighted edges [85], degree, triangles [119], among many other
[9, 153]. All the nodes and edges measures can be used for crawling and, of course,
for sampling, since we can extend the idea of selecting data from the original graph
(already collected) instead of collecting data [73].

If we add temporal evolution in the network, sampling becomes an even harder
problem, since now we have a timestamp as an extra information associated with the
edges. The same happens when we are dealing with multiplex networks that have
more than one link between nodes and this link could have both a weight and a
timestamp. Sampling is an important question in big data networks, but is still a very
open question without a closed solution.

6.4 Graph Analytics Tools

In this section we will briefly mention some graph tools and systems for modeling
and analytics especially suited for very large networks, i.e. with tens to hundredths
of millions of nodes and up to hundredths of billions of links. These systems are
fundamental to efficiently support Big Data applications, such as Natural Language
Processing tasks or targeted advertising.

Apache Giraph [12] is an open source distributed system for large scale graph
processing, based on Google’s proprietary Pregel [98]. It is an iterative graph system
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designed for high scalability (based on Apache Hadoop’s MapReduce implementa-
tion), and it extends Pregel with a number of features such as edge-oriented output,
master computation, sharded aggregators among others. Giraph is used by Facebook
to analyze its vast social graph, and is able to process trillions of edges [37], and
new, faster extensions are being developed based on it [137, 139] as well as dedicated
machine learning libraries [59].

Another graph analytics example is PowerGraph [58], a distributed graph place-
ment and representation that exploits a know feature of social networks: their power-
law degree probability distribution. PowerGraph was shown to process PageRank
and other tasks such as LDA in data from the Twitter social network, containing
41 million nodes and 1.5 billion edges. GraphLab, a CMU initiative, and afterwards
GraphLab Create [62], an open source framework for distributed, high-performance
computation over graphs, stemmed originally from PowerGraph.

Project Pegasus [120] is another CMU-based open-source, big graph-mining sys-
tem designed for high scalability. In [78], the authorsmake an interesting comparison
between Pegasus, Pregel, GraphLab and Microsoft’s contribution, names Trinity at
the time (now GraphEngine) [123, 124]. They compare system performance in a
number of graph-oriented tasks over two big datasets, a snapshot of the World Wide
Web (2002), crawled by Yahoo! with 1.4 billion nodes (web pages) and 6.6 billion
links, and a Twitter who-follows-whom graph (2009), containing 63 million nodes
(users) and 1.8 billion links.

Another Big Graph system is Twitter’s Cassovary [35], a processing library for
the Java Virtual Machine, which is now open source. Cassovary, written in Scala, is
designed to handle large graphs such as Twitter’s and also to be space-efficient. In
[66], the authors describe some variants of recommender systems implemented in
Cassovary, and a very interesting take on the architecture design, as the entire graph is
put in a single server for optimization purposes, contrary to the mainstream tendency
of distributed architectures. There are several other initiatives for big graph analytics
and processing systems, ranging from industrial tools such as IBM System G [75],
DataStax/Aurelius Faunus [48] or Teradata’s SQL-GR Graph Analytics engine [14],
to less production-oriented such as Microsoft’s GraphEngine [61] and even more
academic research-oriented systems such as the Stanford Network Analysis Project
(SNAP) [125], Galois [51], from University of Texas, GUESS [65] as well as iGraph
[76] (in its three flavors, R, C/C++ and Python), Gephi [21, 53] and Python-based
NetworkX [70], among several others.

It is also worth mentioning a different but important class of systems, graph
databases. Graph databases are generally not relational databases and exploit graph
structure to optimize searches and semantic queries, most commonly by keeping
track of relationships among nodes, among other things. Even though their purpose
may be diverse (some are operational, while others are for analytics or development,
and so on), we will focus on these differences and instead we will just present
some of the most known solutions as of 2016. Some examples include Titan [141]
(which Amazon integrates through their NoSQL database Amazon DynamoDB),
Neo4j [108], OrientDB [115], Sparksee [128], IBM Graph [74], and GraphX [63]
(Apache Spark’s API for graphs and graph-parallel computation), among several
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others. Some of these have in common that they use the Apache TinkerPop graph
computing framework [140], in particular, they are able to process instructions from
the Gremlin traversal language [122], a cross-platform virtual machine and language
that supports imperative and declarative querying for graph databases and graph
analytical engines.

7 Weighted Networks

Single networks represent their connections as binary entities, i.e. an edge is present
or not. Usually, edges do not provide more information than if they are present or
not. However, links between nodes may have some describing attribute, reflecting
their intensity, capacity, duration, intimacy or exchange of services [19, 60], which
may be encoded in some variable usually known referred to as weight of the link.

The study of weighted networks has not been thorough in the last decade. Some
initial work was done in [18, 149]. Many methods developed for single networks are
not trivial to extend for weighted networks. A weighted network can be treated as
a multiplex network where the weight becomes the number of edges between two
verticals, as shown in Fig. 5.

The weights in the edges of a network help model and define week and strong
ties. One way to measure this is the so-called strength of a node Vi (Eq. 7) defined
as the sum of all weights of neighbors of node vi. The strength of a node integrates
the information both with its connectivity and the importance of the weights of its
links, and can be considered as the natural generalization of the connectivity [102].

Svi =
∑

vj∈V (Vi)

wVi,Vj (7)

In [6] the authors presentOddBall, a fast, unsupervisedmethod to detect abnormal
nodes in weighted graphs. They also show that the total weightWvi and the number of
edgesEvi ofG follow a power-lawprobability distribution. In another interestingwork
[8], the authors study theweights associate to the reciprocity inmobile phone calls and
describe several patterns found. In the particular case of link prediction, models using

Fig. 5 Weighted network W
and multiplex network W



Link and Graph Mining in the Big Data Era 603

weighted networks are usually simpler than models that use the multiplex network
framework, since it has been shown that weights can also help in the algorithm
accuracy to predict new edges [95].

8 Extending Graph Models: Multilayer Networks

There have been constant research efforts to extend networkmodels to describe more
adequately complex real life networks. As we will see, many of this efforts involve
generalizing the definition of the basic blocks that constitute a graph. In this section
we will briefly describe one of the most interesting attempts, which is to consider
graphs with several types of edges. As we will see this allows for very rich networks
models.

8.1 The Layered Point of View: Multilayer Networks

As we have mentioned Sect. 1, graphs are an extraordinarily useful representation of
real networks, i.e. any collection of entities with a given relationship between each
other. In some practical settings, it is interesting tomodel a given type of relationship,
and the definition of edge is clear. This is the case, for instance, of a co-authorship
network, where we are interested in which authors published together, so the edge
definition is simply if there exists any publication with both authors’ names.

On the other hand, other settings are much more complex, given that the two
entities may have more than one type of relevant relationship. For instance, if we
are interested in modeling a social network, it could be useful to distinguish among
family and work relationships. One way of dealing with this situation is to count
everything as a link and try to keep the nature of the edge somehow, for instance as
weights in the link. In this way, we can use these weights to restrict or filter some
calculations.

Another equivalent approach is to think about thesemultiple types of relationships
as defining different networks or subnetwork, and then connect these accordingly, as
they are defined by the same set of nodes. By this point of view, each network is char-
acterized as a layer, so a network may be represented by a number of interconnected
layers [82].

This way of framing the structure of interactions among nodes has gained a lot
of track in particular in the community of complex networks, which has termed
the concept generally as multiplex networks [56, 57, 107] or networks of networks
[40, 52].

One example of this concept in very practical scenario is the case of overlay
networks [11]. In the field of engineering and computer science, and specifically
in the context of network virtualization, an overlay network is a virtual network
created on top of an existing “substrate” network, where only some of its nodes
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and links are used for the virtual network. An overlay network can be used to share
infrastructure and simplify topology, defining a network with different properties
than the underlying network, in terms of routing, security, caching, or other network
functionalities. Thus, an overlay network can be though of amultiplex networkwhere
certain nodes have special types of virtual links [38]. The Internet itself started out
as an overlay network over the telephone network, and currently many services such
as VoIP applications are also defined over the Internet, and so are also work on top
of overlays.

Indeed, over the last 40 years many fields of research have in some way or another
turned their attention to the same problemunder different names:multiplex networks,
networks of networks, multidimensional networks, multislice networks, etc. In [82],
the authors make a thorough review of different approaches and a provide a complete
historic perspective, as well as the different technical aspects of the state of the art.
In the following sections we will address some points directly related to the Big Data
scenario.

8.2 Models, Methodologies and Other Tools

To get some intuition, we will consider that a multilayer network is a set of nodes
belonging to a set of layers, and where any node in any layer may be connected
by an edge [82]. (There are even more general and elaborate models of multilayer
networks [41], but for our purposes we will set with this description.)

In Fig. 6 we show a basic representation of such a construction, with only two
layers and a few nodes. Not every layer must have the same nodes, and edges may
connect any pair of nodes between layers. Layersmay have anymeaning, for instance
they could define a type od interaction, so edges have a particular meaning according
to the layer, or theymay signify a particular time frame, in fact describing the dynam-
ics of the network. These and many other choices fit in this very general definition.
Additional constraints may also be put in place, for instance, considering that the set

Fig. 6 Multilayer network
representation, showing two
layers and two single-layer
networks, with some edges
connecting nodes between
layers
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of nodes is fixed for all layers (node alignment), or that edges across layers can only
connect the same node in each layer.

Generalization of single-layer algorithms Naturally, research efforts in multilayer
networks have focused on extending tools andmethods successfully used to study and
diagnose single-layer networks. New definitions have been developed for generaliz-
ing basic concepts such as node degree, neighborhoods, clustering coefficients, etc.
as well as methods and models such as community detection or diffusion dynamics.
We explore a few of these ideas next.

In the same way that single-layer networks may be represented by and adja-
cency matrix, a natural generalization for multi-layer networks is by describing them
through tensor representations [41]. Thus, oneway to represent amulti-layer network
is by providing the tensorAuvαβ , whose elements take value 1 if node u of layer α is
connected with node v of layer β, and 0 otherwise. This generalization corresponds
to multi-layer models with node alignment, but it is possible to go beyond to the
mode general case where this constraint is relaxed.

One of the most basic concepts in networks is that of degree. As we have seen, this
is simply the number of edges incident in a given node. Is it possible to generalize
the degree by having into account the weight of the node (weight degree or strength)
as well as discriminating by edge direction (in or out), for directed networks.

Generally speaking, a general procedure to transform a multi-layer network into a
single-layer network, so as to apply known (single-layer) techniques is by aggregating
layers in someway. This network aggregationmay be done in several ways according
to the study being made.

In the case of the degree, oneway to extend this concept is precisely by aggregating
through all the layers, i.e. summing all (or some) type of edges to get a value for the
degree, e.g. ku = ∑

vαβ Auvαβ . There are of course other approaches, for instance,
considering thresholds to the quantity of edges that contribute to the degree, and
also different normalizing methods [41]. The authors in [30–32] describe various
definitions of degree as well as diverse methods to compute degree centrality, which
we will comment in detail later, and other related concepts such as neighborhood.

As we have seen in Sect. 2 other central concept in network theory is that of
clustering coefficients, and, generally speaking, the notion of transitivity [111]. The
extension of these ideas to multi-layer networks has been quite challenging as there
are inherent ambiguities in the different possible definitions of these quantity. One
well known interpretation of the clustering coefficient for single-layer networks is that
is equal to the ratio of closed triples to connected triples. But the definition of triple in
multi-layer networks requires some care, as a triple may be defined in multiple ways
in this case, depending on the set of constraints that may be imposed regarding the
layers (i.e., the type of edges) allowed for consideration in the definition. Great effort
has been made in defining a suitable generalization of the clustering coefficient (see
[30, 32, 82] amongmany others). One important conclusion that onemay reach from
these efforts is that an adequate definition of the clustering coefficient is dependant
on the domain on is trying to describe, as the notion of neighborhood or path may
differ for different type of networks.
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A related and also central concept in single-layer networks is that of communities
or modules [111], i.e. the fact that a set of nodes within the network may be more
related between them than with other nodes not in the set (or rather, compared to
what is expected in a randomly connected network). Despite the numerous research
efforts involving some variant of multi-layer networks, few community detection
algorithms have been put forward compared to the huge number of such algorithms
for single-layer networks. One again, the additional degrees of freedom introduced
by these models makes previous definitions ambiguous and non-trivial to generalize.

One important concept in the are of community detection is the choice of a null-
model to which compare the network in order to precisely quantify the meaning of
“expected in a randomly connected network”. The authors in [20, 107] study this
problem in the case of multislice modularity, which has been used particularly for
the case of temporal networks [106] (i.e. layers representing time).

Centrality measures seek to inform about the relative importance of a given ele-
ment in the network [111]. There are several versions of centrality measures for
different contexts. Central of network science, many of these measures have already
been generalized for the case of multi-layer centrality. For instance, PageRank cen-
trality (introduced in Sect. 6.1) has been extended for the more general case through
random walker able to also traverse across layers, with suitable definitions of rank
also for the layers [113], or differentiating probabilities inside layers from those
across layers [152], or with the introduction of biased walkers [68].

8.3 Theoretical Models, Empirical Applications and Other
Examples

The possibilities open by the multi-layer formalism are indeed enormous [82]. Many
networks from different fields of study fit very well with this formalism.

For instance, Morris et al. [105] develop a two layer theoretical model for trans-
portation in spacial networks and show that different transport regimesmay be found.
In turn, Cardillo et al. [33] apply themultiplex theoretical framework to the European
Air Transportation Network, and they claim that the topology of each layer affects
the emergence of structural properties in the aggregate network.

In [106, 107], the authors show how a multislice framework may help understand
the communities developed as a function of time in a dataset of the U.S. Senate roll
call voting, from 1798 to 2008.

On a more theoretical note, the authors in [56] explore the diffusion properties in
the context of (node-aligned) multiplex networks, and explain the dynamics of the
diffusion process through the mathematical properties of the system, more specif-
ically, the spectrum of eigenvalues of a matrix built with the Laplacians of each
layer.
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In [25], Bianconi proposed a statistical mechanics framework to study mutliplex
networks, on the premise that a given link between nodes in a layer may be highly
correlated to another link between in another layer. The author develops entropy
expressions for the multiplex system that may be useful tools for inference problems.

Another interesting applicationofmultiplexnetworks is in thefieldof evolutionary
game-theory, in particular the study of cooperation in the context of interacting
agents. The authors in [57] explore the Prisoner’s Dilemma (PD) game in a multiplex
setting with random (Erdös-Rényi) networks in each layer, where layers are coupled
via the payoff parameter of the PD game, which is the sum of the payoffs in all layers.
They show that the resilience of the fraction of agents which stay in the cooperation
state is boosted by the introduction of interaction between layers in the system,
an important result indicating that the multiplex character of, for instance, social
networks, could influence favorably for the emergence of stable of cooperation.

9 Open Challenges

In this chapter, we have shown the relevance and ubiquity of graphs and networks
in big data systems and applications. Graph analytics and mining provide value to
these big data systems, and the field is really starting to emerge, driven by ever new
technologies and applications [55, 148]. Naturally, this remarkable growth pushes
the state-of-the-art of current systems until limitations are reached. Next we mention
some of the future challenges of the area and some efforts to push the capabilities of
today’s systems to meet tomorrow’s needs.

StreamingAnalyticsThe data streammodel may be useful inmany situations where
data is constantly produced. Many non-trivial challenges arise when dealing with
graph data streams, such as the trade-off between data size and accuracy in the com-
putation of graph measured destined to summarize the data. In this way, streaming
methologies have become central in many applications where the real-time nature
of information flow is relevant or needed [55, 151], as well as in other issues of a
more technological origin such as how to compute graph quantities in a distributed
or parallel setting [101]. Usually, graph streaming is done typically by providing a
stream of edge information to add or subtract, and make some computation in the
resulting graph [77]. The challenge is to maintain a precise or at least approximate
picture of the network or associated summary variables. A research field strongly
connected with this type of issues is graph visualization. For example, in stream-
ing visualization of power-grid networks, the accurate and quick description of the
network may be crucial at times of failure where responsibles have minutes or even
seconds to respond [148]. In general, there is currently a research effort in this field
is focusing in algorithms for directed edges, which may be more general as most
practical examples are directed [101].
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Representation learning for networksGraphs are intrinsically a non-linear combi-
nation of data, not always readily summarizable in every aspect by a few parameters.
One interesting research area in network theory is how to decrease the dimension-
ality of a given graph, while at the same time preserving useful characteristics or
informative traits we are in the first place interested in. This dimension reduction
techniques play an important part in prediction tasks, such as link prediction (see
Sect. 4) or prediction of node attributes such as user interests or functional labels in
biological networks.

On the other hand, a manifest characteristic in a graph dataset is its sparseness.
Depending on the task or application one is trying to accomplish, this sparseness may
be of help or, on the contrary, become a computational burden, leading to inefficient
algorithms. For instance, statistical learning in a graph may be hindered by the
inherent sparsity of some graphs, especially as they turn into very large graphs,
typical of big data domains. Traditional dimensionality reduction methods, such
as Principal Component Analysis or Multi-Dimensional Scaling, have been studied
widely in the literature [22]. But these techniques usually involve finding eigenvalues
of the adjacencymatrix (or another equivalentmatrix), which normally does not scale
well for large graphs.

A way to go around this problem is to find latent representations of the network,
which encode what is interesting or useful from the graph but are defined in a space
withmuch lower dimensionality [23]. Versions of such latent representations based in
deep neural networks have been quite successful in the context of Natural Language
Processing [103] and have lead the way for applications in many research areas,
including graph analytics and social networks.

In [121], the authors apply this ideas to social networks with the aim of encode
social relationships in a continuous vector space, which are then easily exploited by
statistical models. The authors propose a random walk algorithm which is used to
capture neighborhood similarity, in the sense that nodes with similar neighborhoods
will finally present similar representation in vector space. In [136], the authors pro-
pose finding latent representations as an optimization problem, by carefully devicing
an objective function to capture both local and global characteristics of network
structure.

With these type of methods, the learned representations may be used to perform
classification tasks or link prediction tasks, which proves to be much more efficient
due to the decreased dimensionality. However there is still much research needed
as, to date, representation learning have been mainly proposed as heuristic methods
aiming to automatically capture useful features from networks, with not much study
as to the general validity of the results, both in types of networks and in types of
features learned.

All-pairs computationOn a related note, graphs have the inevitable characteristic of
scaling as O(n2) when taking into account all pairs of nodes. Due to this fact, some
graph analytics methods in big data recurrently find limitations whenever computa-
tions involve computing over all pairs of nodes, e.g. all-pair shortest paths, or any
other type of similar quantity. This is the case, for instance, discussed in Sect. 4 for
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the Katz measure, which is based in a sequence of matrix-matrix computations [80,
132]. The usual way of bypassing this scaling limitation is to provide estimates or
approximations, which depending on the problem and the size of the data may no
longer be a satisfactory solution.

10 Conclusions

Many data sources in big data scenarios represent relationship data. Being social
data, Internet-of-things data, or even semi-structured data such as Twitter posts or
document corpora, relationships among entities are usually present, thus making it
viable to represent the data as graphs. The graph representation will not always be
necessary, but most of the times will be convenient and useful.

In this chapter we have covered many aspects of graph algorithms and network
analysis which are important, especially in the case of very large graphs. We have
shown that there is an increasing confluence of efforts towards the practical use of
graph analytics in the context of big data. One the one hand, the research community
continually provides powerful graph algorithms and methods, some of outstanding
business success such as PageRank, or the link prediction algorithms in Facebook
to grow their social base. On the other hand, a relentless developer community
yields ever more powerful software, libraries, as well as commercial and open-source
tools, focusing in the implementation of improved graph algorithms and in providing
more efficient ways to capture, handle and process large quantities of data as graph
information.

Graphs and networks are at the core of the big data era. The advent of big data
tools and systems has changed radically the access to real data, and both businesses
and the research community have benefited from this by leveraging graph analytics
and methods to produce new sources of wealth and information.
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