
Albert Y. Zomaya · Sherif Sakr Editors

Handbook
of Big Data
Technologies

Handbook of Big Data Technologies

Albert Y. Zomaya • Sherif Sakr
Editors

Handbook of Big Data
Technologies
Foreword by Sartaj Sahni, University of Florida

123

Editors
Albert Y. Zomaya
School of Information Technologies
The University of Sydney
Sydney, NSW
Australia

Sherif Sakr
The School of Computer Science
The University of New South Wales
Eveleigh, NSW
Australia

and

King Saud Bin Abdulaziz University
of Health Science

Riyadh
Saudi Arabia

ISBN 978-3-319-49339-8 ISBN 978-3-319-49340-4 (eBook)
DOI 10.1007/978-3-319-49340-4

Library of Congress Control Number: 2016959184

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

To the loving memory of my Grandparents.

Albert Y. Zomaya

To my wife, Radwa,
my daughter, Jana,
and my son, Shehab
for their love, encouragement, and support.

Sherif Sakr

Foreword

Handbook of Big Data Technologies (edited by Albert Y. Zomaya and Sherif Sakr)
is an exciting and well-written book that deals with a wide range of topical themes
in the field of Big Data. The book probes many issues related to this important and
growing field—processing, management, analytics, and applications.

Today, we are witnessing many advances in Big Data research and technologies
brought about by developments in big data algorithms, high performance com-
puting, databases, data mining, and more. In addition to covering these advances,
the book showcases critical evolving applications and technologies. These devel-
opments in Big Data technologies will lead to serious breakthroughs in science and
engineering over the next few years.

I believe that the current book is a great addition to the literature. It will serve as
a keystone of gathered research in this continuously changing area. The book also
provides an opportunity for researchers to explore the use of advanced computing
technologies and their impact on enhancing our capabilities to conduct more
sophisticated studies.

The book will be well received by the research and development community and
will be beneficial for researchers and graduate students focusing on Big Data. Also,
the book is a useful reference source for practitioners and application developers.

Finally, I would like to congratulate Profs. Zomaya and Sakr on a job well done!

Sartaj Sahni
University of Florida
Gainesville, FL, USA

vii

Preface

We live in the era of Big Data. We are witnessing radical expansion and integration
of digital devices, networking, data storage, and computation systems. Data gen-
eration and consumption is becoming a main part of people’s daily life especially
with the pervasive availability and usage of Internet technology and applications. In
the enterprise world, many companies continuously gather massive datasets that
store customer interactions, product sales, results from advertising campaigns on
the Web in addition to various types of other information. The term Big Data has
been coined to reflect the tremendous growth of the world’s digital data which is
generated from various sources and many formats. Big Data has attracted a lot of
interest from both the research and industrial worlds with a goal of creating the best
means to process, analyze, and make the most of this data.

This handbook presents comprehensive coverage of recent advancements in Big
Data technologies and related paradigms. Chapters are authored by international
leading experts in the field. All contributions have been reviewed and revised for
maximum reader value. The volume consists of twenty-five chapters organized into
four main parts. Part I covers the fundamental concepts of Big Data technologies
including data curation mechanisms, data models, storage models, programming
models, and programming platforms. It also dives into the details of implementing
Big SQL query engines and big stream processing systems. Part II focuses on the
semantic aspects of Big Data management, including data integration and
exploratory ad hoc analysis in addition to structured querying and pattern matching
techniques. Part III presents a comprehensive overview of large-scale graph pro-
cessing. It covers the most recent research in large-scale graph processing plat-
forms, introducing several scalable graph querying and mining mechanisms in
domains such as social networks. Part IV details novel applications that have been
made possible by the rapid emergence of Big Data technologies, such as
Internet-of-Things (IOT), Cognitive Computing, and SCADA Systems. All parts
of the book discuss open research problems, including potential opportunities, that
have arisen from the rapid progress of Big Data technologies and the associated
increasing requirements of application domains. We hope that our readers will
benefit from these discussions to enrich their own future research and development.

ix

This book is a timely contribution to the growing Big Data field, designed for
researchers and IT professionals and graduate students. Big Data has been recog-
nized as one of leading emerging technologies that will have a major contribution
and impact on the various fields of science and varies aspect of the human society
over the coming decades. Therefore, the content in this book will be an essential
tool to help readers understand the development and future of the field.

Sydney, Australia Albert Y. Zomaya
Eveleigh, Australia; Riyadh, Saudi Arabia Sherif Sakr

x Preface

Contents

Part I Fundamentals of Big Data Processing

Big Data Storage and Data Models . 3
Dongyao Wu, Sherif Sakr and Liming Zhu

Big Data Programming Models . 31
Dongyao Wu, Sherif Sakr and Liming Zhu

Programming Platforms for Big Data Analysis . 65
Jiannong Cao, Shailey Chawla, Yuqi Wang and Hanqing Wu

Big Data Analysis on Clouds . 101
Loris Belcastro, Fabrizio Marozzo, Domenico Talia and
Paolo Trunfio

Data Organization and Curation in Big Data . 143
Mohamed Y. Eltabakh

Big Data Query Engines . 179
Mohamed A. Soliman

Large-Scale Data Stream Processing Systems . 219
Paris Carbone, Gábor E. Gévay, Gábor Hermann,
Asterios Katsifodimos, Juan Soto, Volker Markl and Seif Haridi

Part II Semantic Big Data Management

Semantic Data Integration . 263
Michelle Cheatham and Catia Pesquita

Linked Data Management . 307
Manfred Hauswirth, Marcin Wylot, Martin Grund, Paul Groth
and Philippe Cudré-Mauroux

xi

Non-native RDF Storage Engines . 339
Manfred Hauwirth, Marcin Wylot, Martin Grund, Sherif Sakr
and Phillippe Cudré-Mauroux

Exploratory Ad-Hoc Analytics for Big Data . 365
Julian Eberius, Maik Thiele and Wolfgang Lehner

Pattern Matching Over Linked Data Streams . 409
Yongrui Qin and Quan Z. Sheng

Searching the Big Data: Practices and Experiences
in Efficiently Querying Knowledge Bases . 429
Wei Emma Zhang and Quan Z. Sheng

Part III Big Graph Analytics

Management and Analysis of Big Graph Data:
Current Systems and Open Challenges . 457
Martin Junghanns, André Petermann, Martin Neumann and
Erhard Rahm

Similarity Search in Large-Scale Graph Databases 507
Peixiang Zhao

Big-Graphs: Querying, Mining, and Beyond. 531
Arijit Khan and Sayan Ranu

Link and Graph Mining in the Big Data Era . 583
Ana Paula Appel and Luis G. Moyano

Granular Social Network: Model and Applications 617
Sankar K. Pal and Suman Kundu

Part IV Big Data Applications

Big Data, IoT and Semantics . 655
Beniamino di Martino, Giuseppina Cretella and
Antonio Esposito

SCADA Systems in the Cloud . 691
Philip Church, Harald Mueller, Caspar Ryan, Spyridon
V. Gogouvitis, Andrzej Goscinski, Houssam Haitof and Zahir Tari

Quantitative Data Analysis in Finance . 719
Xiang Shi, Peng Zhang and Samee U. Khan

Emerging Cost Effective Big Data Architectures 755
K. Ashwin Kumar

xii Contents

Bringing High Performance Computing to Big Data
Algorithms . 777
H. Anzt, J. Dongarra, M. Gates, J. Kurzak, P. Luszczek,
S. Tomov and I. Yamazaki

Cognitive Computing: Where Big Data Is Driving Us 807
Ana Paula Appel, Heloisa Candello and Fábio Latuf Gandour

Privacy-Preserving Record Linkage for Big Data:
Current Approaches and Research Challenges . 851
Dinusha Vatsalan, Ziad Sehili, Peter Christen and Erhard Rahm

Contents xiii

Part I
Fundamentals of Big Data Processing

Big Data Storage and Data Models

Dongyao Wu, Sherif Sakr and Liming Zhu

Abstract Data and storage models are the basis for big data ecosystem stacks.
While storage model captures the physical aspects and features for data storage,
data model captures the logical representation and structures for data processing
and management. Understanding storage and data model together is essential for
understanding the built-on big data ecosystems. In this chapter we are going to
investigate and compare the key storage and data models in the spectrum of big data
frameworks.

The growing demand of storing and processing large scale data sets has been driving
the development of data storage and databases systems in the last decade. The data
storage has been improved and enhanced from that of local storage to clustered,
distributed and cloud-based storage. Additionally, the database systems have been
migrated from traditional RDBMS to the more current NoSQL-based systems. In
this chapter, we are going to present the major storage and data models with some
illustrations of related example systems in big data scenarios and contexts based on
taxonomy of data store systems and platforms which is illustrated in Fig. 1.

1 Storage Models

A storage model is the core of any big-data related systems. It affects the scalabil-
ity, data-structures, programming and computational models for the systems that are
built on top of any big data-related systems [1, 2]. Understanding about the under-

D. Wu (B) · S. Sakr · L. Zhu
Data61, CSIRO, Sydney, Australia
e-mail: Dongyao.Wu@data61.csiro.au

D. Wu · S. Sakr · L. Zhu
School of Computer Science and Engineering, University of New South Wales,
Sydney, Australia

S. Sakr
National Guard, King Saud Bin Abdulaziz University for Health Sciences,
Riyadh, Saudi Arabia

© Springer International Publishing AG 2017
A.Y. Zomaya and S. Sakr (eds.), Handbook of Big Data Technologies,
DOI 10.1007/978-3-319-49340-4_1

3

4 D. Wu et al.

Fig. 1 Taxonomy of data stores and platforms

lying storage model is also the key of understanding the entire spectrum of big-data
frameworks. For addressing different considerations and focus, there has been three
main storage models developed during the past a few decades, namely, Block-based
storage, File-based Storage and Object-based Storage.

1.1 Block-Based Storage

Block level storage is one of the most classical storage model in computer science.
A traditional block-based storage system presents itself to servers using industry
standard Fibre Channel and iSCSI [3] connectivity mechanisms. Basically, block
level storage can be considered as a hard drive in a server except that the hard drive
might be installed in a remote chassis and is accessible using Fibre Channel or iSCSI.
In addition, for block-based storage, data is stored as blocks which normally have a
fixed size yet with no additional information (metadata). A unique identifier is used to
access each block. Block based storage focus on performance and scalability to store
and access very large scale data. As a result, block-based storage is usually used as
a low level storage paradigm which are widely used for higher level storage systems
such as File-based systems, Object-based systems and Transactional Databases, etc.

Big Data Storage and Data Models 5

Fig. 2 Block-based storage
model

1.1.1 Architecture

A simple model of block-based storage can be seen in Fig. 2. Basically, data are
stored as blocks which normally have a fixed size yet with no additional information
(metadata). A unique identifier is used to access each block. The identifier is mapped
to the exact location of actual data blocks through access interfaces. Traditionally,
block-based storage is bound to physical storage protocols, such as SCSI [4], iSCSI,
ATA [5] and SATA [6].

With the development of distributed computing and big data, block-based storage
model are also developed to support distributed and cloud-based environments. As
we can see from the Fig. 3, the architecture of a distributed block-storage system
is composed of the block server and a group of block nodes. The block server is
responsible for maintaining the mapping or indexing from block IDs to the actual
data blocks in the block nodes. The block nodes are responsible for storing the actual
data into fixed-size partitions, each of which is considered as a block.

6 D. Wu et al.

Fig. 3 Architecture of distributed Block-based storage

1.1.2 Amazon Elastic Block Store (Amazon EBS)

Amazon Elastic Block Store (Amazon EBS) [7] is a block-level storage service
used for AWS EC2 (Elastic Compute Cloud) [8] instances hosted in Amazon Cloud
platform. Amazon EBS can be considered as amassive SAN (StorageAreaNetwork)
in the AWS infrastructure. The physical storage could be hard disks, SSDs, etc. under
the EBS architecture. Amazon EBS is one of the most important and heavily used
storage services of AWS, even the building blocks component offerings from AWS
like RDS [9], DynamoDB [10] and CloudSearch [11], rely on EBS in the Cloud.
In Amazon EBS, block volumes are automatically replicated within the availability
zone to protect against data loss and failures. It also provides high availability and
durability for users. EBS volumes can be used just as traditional block devices and
simply plugged into EC2 virtual machines. In addition, users can scale up or down
their volume within minutes. Since the Amazon EBS lifetime is separate from the
instance on which it is mounted, users can detach and later attach the volumes on
other EC2 instances in the same availability zone.

1.1.3 OpenStack Cinder and Nova

In the open-source cloud such as OpenStack [12], the block storage service is pro-
vided by the Nova [13] system working with the Cinder [14] system. When you
start a Nova compute instance, it should come configured with some block storage
devices by default, at the very least to hold the read/write partitions of the running
OS. These block storage instances can be “ephemeral” (the data goes away when

Big Data Storage and Data Models 7

Fig. 4 File-based storage
model

the compute instance stops) or “persistent” (the data is kept, can be used later again
after the compute instances stops), depending on the configuration of the OpenStack
system you are using.

Cinder manages the creation, attaching and detaching of the block devices to
instances in OpenStack. Block storage volumes are fully integrated into OpenStack
Compute and the Dashboard allowing for cloud users to manage their own storage
on demand. Data in volumes are replicated and also backed up through snapshots.
In addition, snapshots can be restored or used to create a new block storage volume.

1.2 File-Based Storage

File-based storage inherits from the traditional file system architecture, considers
data as files that are maintained in a hierarchical structure. It is the most common
storage model and is relatively easy to implement and use. In big data scenario, a
file-based storage system could be built on some other low-level abstraction (such as
Block-based and Object-based model) to improve its performance and scalability.

1.2.1 Architecture

The file-based storage paradigm is shown in Fig. 4. File paths are organized in a
hierarchy and are used as the entries for accessing data in the physical storage. For a
big data scenario, distributed file systems (DFS) are commonly used as basic storage
systems. Figure5 shows a typical architecture of a distributed file system which
normally contains one or several name nodes and a bunch of data nodes. The name
node is responsible for maintaining the file entries hierarchy for the entire system
while the data nodes are responsible for the persistence of file data.

In a file based system, a user would need to know of the namespaces and
paths in order to access the stored files. For sharing files across systems, the path
or namespace of a file would include three main parts: the protocol, the domain
name and the path of the file. For example, a HDFS [15] file can be indicated as:
“[hdfs://][ServerAddress:ServerPort]/[FilePath]” (Fig. 6).

8 D. Wu et al.

Fig. 5 Architecture of distributed file systems

Fig. 6 Architecture of Hadoop distributed file systems

For a distributed infrastructure, replication is very important for providing fault
tolerance in file-based systems. Normally, every file has multiple copies stored on
the underlying storage nodes. And if one of the copies is lost or failed, the name
node can automatically find the next available copy to make the failure transparent
for users.

Big Data Storage and Data Models 9

1.2.2 NFS-Family

Network File System (NFS) is a distributed file system protocol originally developed
by Sun Microsystems. Basically, A Network File System allows remote hosts to
mount file systems over a network and interact with those file systems as though they
aremounted locally. This enables systemadministrators to consolidate resources onto
centralized servers on the network. NFS is built on the Open Network Computing
Remote Procedure Call (ONC RPC) system. NFS has been widely used in Unix
and Linux-based operating systems and also inspired the development of modern
distributed file systems. There have been three main generations (NFSv2, NFSv3
and NFsv4) for the NFS protocol due to the continuous development of storage
technology and the growth of user requirements.

NFS consists of a few servers and more clients. The client remotely accesses the
data that is stored on the server machines. In order for this to function properly, a few
processes have to be configured and running. NFS is well-suited for sharing entire
file systems with a large number of known hosts in a transparent manner. However,
with ease-of-use comes a variety of potential security problems. Therefore, NFS also
provides two basic options for access control of shared files:

• First, the server restricts which hosts are allowed to mount which file systems
either by IP address or by host name.

• Second, the server enforces file system permissions for users on NFS clients in
the same way it does for local users.

1.2.3 HDFS

HDFS (HadoopDistributedFile System) [15] is an open source distributedfile system
written in Java. It is the open source implementation of Google File System (GFS)
and works as the core storage for Hadoop ecosystems and the majority of the existing
big data platforms. HDFS inherits the design principles from GFS to provide highly
scalable and reliable data storage across a large set of commodity server nodes [16].
HDFShas demonstrated production scalability of up to 200 PBof storage and a single
cluster of 4500 servers, supporting close to a billion files and blocks. Basically, HDFS
is designed to serve the following goals:

• Fault detection and recovery: Since HDFS includes a large number of commodity
hardware, failure of components is expected to be frequent. Therefore, HDFS have
mechanisms for quick and automatic fault detection and recovery.

• Huge datasets: HDFS should have hundreds of nodes per cluster to manage the
applications having huge datasets.

• Hardware at data: A requested task can be done efficiently, when the computation
takes place near the data. Especially where huge datasets are involved, it reduces
the network traffic and increases the throughput.

10 D. Wu et al.

As shown in Fig. 6, the architecture of HDFS consists of a name node and a set
of data nodes. Name node manages the file system namespace, regulates the access
to files and also executes some file system operations such as renaming, closing, etc.
Data node performs read-write operations on the actual data stored in each node and
also performs operations such as block creation, deletion, and replication according
to the instructions of the name node.

Data in HDFS is seen as files and automatically partitioned and replicated within
the cluster. The capacity of storage for HDFS grows almost linearly by adding new
data nodes into the cluster. HDFS also provides an automated balancer to improve
the utilization of the cluster storage. In addition, recent versions of HDFS have
introduced a backup node to solve the problem caused by single-node failure of the
primary name node.

1.3 Object-Based Storage

The object-based storage model was firstly introduced on Network Attached Secure
devices [17] for providing more flexible data containers objects. For the past decade,
object-based storage has been further developedwith further investments beingmade
by both system vendors such as EMC, HP, IBM and Redhat, etc. and cloud providers
such as Amazon, Microsoft and Google, etc.

In the object-based storage model, data is managed as objects. As shown in Fig. 7,
every object includes the data itself, somemeta-data, attributes and a globally unique
object identifier (OID). Object-based storage model abstracts the lower layers of
storage away from the administrators and applications. Object storage systems can
be implemented at different levels, including at the device level, system level and
interface level.

Data is exposed and managed as objects which includes additional descriptive
meta-data that can be used for better indexing or management. Meta-data can be
anything from security, privacy and authentication properties to any applications
associated information.

Fig. 7 Object-based storage
model

Big Data Storage and Data Models 11

Fig. 8 Architecture of object-based storage

1.3.1 Architecture

The typical architecture of an object-based storage system is shown in Fig. 8. As
we can see from the figure, the object-based storage system normally uses a flat
namespace, in which the identifier of data and their locations are usually maintained
as key-valuepairs in the object server. In principle, the object server provides location-
independent addressing and constant lookup latency for reading every object. In
addition, meta-data of the data is separated from data and is also maintained as
objects in a meta-data server (might be co-located with the object server). As a result,
it provides a standard and easier way of processing, analyzing and manipulating of
the meta-data without affecting the data itself.

Due to the flat architecture, it is very easy to scale out object-based storage sys-
tems by adding additional storage nodes to the system. Besides, the added storage
can be automatically expanded as capacity that is available for all users. Draw-
ing on the object container and meta-data maintained, it is also able to provide
much more flexible and fine-grained data policies at different levels, for example,
Amazon S3 [18] provides bucket level policy, Azure [19] provides storage account
level policy, Atmos [20] provides per-object policy.

1.3.2 Amazon S3

Amazon S3 (Simple Storage Service) [18] is a cloud-based object storage system
offered by Amazon Web Services (AWS). It has been widely used for online backup
and archiving of data and application programs. Although the architecture and imple-
mentation of S3 is not published, it has been designed with high scalability, avail-
ability and low latency at commodity costs.

12 D. Wu et al.

In S3, data is stored as arbitrary objects with up to 5 terabytes data size and up to
2 kilobytes of meta-data. These data objects are organized into buckets which are
managed by AWS accounts and authorized based on the AMI identifier and private
keys. In addition, S3 supports data/objects manipulation operations such as creation,
listing and retrieving through either RESTful HTTP interfaces or SOAP-based inter-
faces. In addition, objects can also be downloaded using the BitTorrent protocol, in
which each bucket is served as a feed. S3 claims to guarantee 99.9% SLA by using
technologies such as redundant replications, failover support and fast data recovery.

S3 was intentionally designed with a minimal feature set and was created to make
web-scale computing easier for developers. The service gives users access to the
same systems that Amazon uses to run its own Web sites. S3 employs a simple web-
based interface and uses encryption for the purpose of user authentication. Users can
choose to keep their data private or make it publicly accessible and even encrypt data
prior to writing it out to storage.

1.3.3 EMC Atmos

EMC Atmos [20] is a object-based storage services platform developed by EMC
Corporation. Atmos can be deployed as either a hardware appliance or a software
in a virtual environment such as cloud. Atmos is designed based on the object stor-
age architecture aiming to manage petabytes of information and billions of objects
across multiple geographic locations yet be used as a single system. In addition,
Atmos supports two forms of replication: synchronous replication and asynchro-
nous replication. For a particular object, both types of replication can be specified,
depending on the needs of the application and the criticality of the data.

Atmos can be used as a data storage system for custom or packaged applications
using either a REST or SOAP data API, or even traditional storage interfaces like
NFS and CIFS. It stores information as objects (files + metadata) and provides a
single unified namespace/object-space which is managed by user or administrator-
defined policies. In addition, EMC has recently added support for the Amazon S3
application interfaces that allow for the movement of data from S3 to any Atmos
public or private cloud.

1.3.4 OpenStack Swift

Swift [21] is a scalable, redundant and distributed object storage system for the
OpenStack cloud platform. With the data replication service of OpenStack, objects
and files in Swift arewritten tomultiple nodes that are spread throughout the cluster in
the data center. Storage in Swift can scale horizontally simply by adding new servers.
Once a server or hard drive fails, Swift automatically replicates its content from
other active nodes to new locations in the cluster. Swift uses software logic to ensure
data replication and distribution across different devices. In addition, inexpensive
commodity hard drives and servers can be used for Swift clusters (Fig. 9).

Big Data Storage and Data Models 13

Fig. 9 Architecture of swift object store

The architecture of Swift consists of several components including proxy server,
account servers, container servers and object servers:

• The Proxy Server is responsible for tying together the rest of the Swift architecture.
It exposes the Swift API to users and streams objects to and from the client based
on requests.

• The Object Server is a simple blob storage server which handles storage functions
such as the retrieval and deletion of objects stored on local devices.

• The Container Server is responsible to handle the listings of objects. Objects in
Swift are logically organized in specific containers. The listings relations are stored
as sqlite database files and replicated across the cluster.

• The Account Server is similar to the Container Server except that it is responsible
for the listings of containers rather than objects.

Objects in Swift are accessed through the REST interfaces, and can be stored,
retrieved, and updated on demand. The object store can be easily scaled across a
large number of servers. Swift uses rings to keep track of the locations of partitions
and replicas for objects and data.

1.4 Comparison of Storage Models

In practice, there is no perfect model which can suit all possible scenarios. Therefore,
developers and users should choose the storage models according to their application
requirements and context. Basically, each of the storagemodel thatwe have discussed
in this section has its own pros and cons.

14 D. Wu et al.

1.4.1 Block-Based Model

• Block-based storage is famous for its flexibility, versatility and simplicity. In a
block level storage system, raw storage volumes (composed of a set of blocks) are
created, and then the server-based system connects to these volumes and uses them
as individual storage drives. This makes block-based storage usable for almost any
kind of applications, including file storage, database storage, virtual machine file
system (VMFS) volumes, and more.

• Block-based storage can be also used for data-sharing scenarios. After creating
block-based volumes, they can be logically connected or migrated between dif-
ferent user spaces. Therefore, users can use these overlapped block volumes for
sharing data between each other.

• Block-based storage normally has high throughput and performance and is gener-
ally configurable for capacity and performance. As data is partitioned and main-
tained in fix-sized blocks, it reduces the amount of small data segments and also
increases the IO throughput due to more sequential reading and writing of data
blocks.

• However, block-based storage is complex to manage and not easy to use due to
the lack of information (such as meta-data, logical semantics and relation between
data blocks) when compared with that of other storage models such as file-based
storage and object-based storage.

1.4.2 File-Based Model

• File storage is easy to manage and implement. It is also less expensive to use than
block-storage. It is used more often on home computers and in smaller businesses,
while block-level storage is used by larger enterprises, with each block being
controlled by its own hard drive and managed through a server-based operating
system.

• File-based storage is usually accessible using common file level protocols such as
SMB/CIFS (Windows) and NFS (Linux, VMware). At the same time, files contain
more information for management purposes, such as authentication, permissions,
access control and backup. Therefore, it is more user-friendly and maintainable.

• Due to the hierarchical structure, file-based storage is less scalable the the number
of files becomes extremely huge. It becomes extremely challenging to maintain
both low-latency and scalability for large scale distributed file systems such as
NFS and HDFS.

1.4.3 Object-Based Model

• Object-based storage solves the provisioning management issues presented by the
expansion of storage at very large scale. Object-based storage architectures can be
scaled out and managed simply by adding additional nodes. The flat name space

Big Data Storage and Data Models 15

Table 1 Comparison of storage models

Storage Model Data model Indexing Scalability Consistency

Block-based Blocks
with fixed size

Block Id Flat Strong

File-based Files File path Hierarchy Configurable

Object-based Objects and meta data
size not fixed

Block Id or URI Flat Configurable

organization of the data, in combination with the expandable metadata function-
ality, facilitate this ease of use. Object storage are commonly used for the storage
of large scale unstructured data such as photos in Facebook, songs on Spotify and
even files in Dropbox.

• Object storage facilitates the storage for unstructured data sets where data is gen-
erally read yet not written-to. Object storage generally does not provide the ability
of incrementally editing one part of a file (as block storage and file storage do).
Objects have to be manipulated as a whole unit, requiring the entire object to be
accessed, updated then re-written into the physical storage. This may cause some
performance implications. It is also not recommended to use object storage for
transactional data because of the eventual consistency model.

1.4.4 Summary of Data Storage Models

As a result, the main features of each storage model can be summarized as shown
in Table1. Generally, block-based storage has a fixed size for each storage unit
while file-based and object-based models can have various sizes of storage unit
based on application requirements. In addition, file-based models use the file-based
directory to locate the data whilst block-based and object-based models both reply
on a global identifier for locating data. Furthermore, both block-based and object-
based models have flat scalability while file-based storage may be limited by its
hierarchical indexing structure. Lastly, block-based storage can normally guarantee
a strong consistency while for file-based and object-based models the consistency
model is configurable for different scenarios.

2 Data Models

A data model illustrates how the data elements are organized and structured. It also
represents the relations among different data elements. A data model is at the core for
data storage, analytic and processing of contemporary big data systems. According
to different data models, current data storage systems can be categorized into two
big families: relational-stores (SQL) and NoSQL stores.

16 D. Wu et al.

For past decades, relational database management systems (RDBMS) have been
considered as the dominant solution formost of the data persistence andmanagement
service. However, with the tremendous growth of the data size and data variety, the
traditional strong consistency and pre-defined schema for relational databases have
limited their capability for dealing with large scale and semi/un-structured data in the
new era. Therefore, recently, a new generation of highly-scalable, more flexible data
store systems has emerged to challenge the dominance of relational databases. This
new groups of systems are called NoSQL (Not only SQL) systems. The principle
underneath the advance of NoSQL systems is actually a trade-off between the CAP
properties of distributed storage systems.

Asweknow from theCAP theorem [22], a distributed systemcanonly guarantee at
most two out of the three properties: Consistency,Availability and Partition tolerance.
Traditional RDBMS normally provide a strong consistency model based on their
ACID [23] transaction model while NoSQL systems try to sacrifice some extent of
consistency for either higher availability or better partition tolerance. As a result,
data storage systems can be categorized into three main groups base on their CAP
properties:

• CA systems, which are consistent and highly available yet not partition-tolerant.
• CP systems, which are consistent and partition-tolerant but not highly available.
• AP systems, which are highly available and partition-tolerant but not strictly con-
sistent.

In the remaining of this section, we will discuss about major NoSQL systems and
scalable relation databases, respectively.

2.1 NoSQL (Not only SQL)

Rational databases management systems (such as MySQL [24], Oracle [25], SQL
Server [26] and PostgreSQL [27]) have been dominating the database community
for decades until they face the limitation of scaling to very large scale datasets.
Therefore, recently a group of database systems which abandoned the support of
ACID transactions (Atomicity, Consistency, Isolation and Durability, which are key
principles for relational databases) has emerged to tackle the challenge of big data.
The group of these database systems are named as NoSQL (Not only SQL) systems
which aims to provide horizontal scalability towards any large scale of datasets. A
majority of NoSQL systems are originally designed and built to support distributed
environments with the need to improve performance by adding new nodes to the
existing ones. Recall that the CAP theorem states that a distributed system can only
choose at most two of the three properties: Consistency, Availability and Partition
tolerance. One key principle of NoSQL systems is to compromise the consistency to
trade for high availability and scalability. Basically the implementation of a majority
NoSQL systems share a few common design features as below:

Big Data Storage and Data Models 17

• High scalability, which requires the ability to scale up horizontally over a large
cluster of nodes;

• High availability and fault tolerance, which is supported by replicating and dis-
tributing data over distributed servers;

• Flexible data models, with the ability to dynamically define and update attributes
and schemas;

• Weaker consistency models, which abandoned the ACID transactions and are
usually referred as BASE models (Basically Available, Soft state, Eventually con-
sistent) [28];

• Simple interfaces, which are normally single call-level interfaces or protocol in
contrast to the SQL bindings.

For different scenarios and focus of usage, more NoSQL systems have developed
in both industry and academia. Based on different data model ported, these NoSQL
systems can be classified as three main groups: Key-Value Stores, Document stores
and Extensible-Record/Column-based stores.

2.1.1 Key-Value Stores

Key-value stores use a simple data model, in which data are considered as a set Key-
Value pairs, in which, keys are unique IDs for each data and also work as indexes
during accessing the data (Fig. 10). Values are attributes or objects which contains
the actual information of data. Therefore, these systems are called key-value stores.
The data in key-value stores can be accessed using simple interfaces such as insert,
delete and search by key. Normally, secondary keys and indexes are not supported.
In addition, these systems also provide persistence mechanism as well as replication,
locking, sorting and other features.

• Redis

Redis [29] is an open source Key-Value store system written in C. It supports a fairly
rich data model for stored values. Values can be lists, sets and structures in addition
to basic types (Integer, String, Double and Boolean). Apart from ordinary operations
such as reading and writing, Redis also provides a few atomic modifier such as
increment of a numeric value by one, adding an element to a list, etc. Redis mainly
stores data in memory, which ensures high performance. To provide persistence, data

Fig. 10 Data model of Key-value stores

18 D. Wu et al.

snapshots and modification operations are written out to disk for failure tolerance.
Redis can scale out by distributing data (normally achieved at client side) among
multiple Redis servers and providing asynchronous data replication through master-
slaves.

• Memcached family

Memcached [30] is the first generation of Key-Value stores initially working as cache
for web servers then being developed as a memory based Key-value store system.
Memcahed has been enhanced to support features such as high availability, dynamic
growth and backup. The original design of Memcached does not support persis-
tence and replication. However, its follow-up variation: Membrain and Membase do
include these features which make them more like storage systems.

• DynamoDB

DynamoDB [10] is a NoSQL store service provided by Amazon. Dynamo supports a
much more flexible data model especially for key-value stores. Data in Dynamo are
stored as tables each of which has a unique primary ID for accessing. Each table can
have a set for attributes which are schema free and scalar types and sets are supported.
Data in Dynamo can be manipulated by searching, inserting and deletion based on
the primary keys. In addition, conditional operation, atomic modification and search
by non-key attributes are also supported (yet inefficient), which makes it also closer
to that of a document store. Dynamo provides a fast and scalable architecture where
sharding and replication are automatically performed. In addition, Dynamo provides
support for both eventually consistency and strong consistency for reads while strong
consistency degrades the performance. E.g. Redis, Memcached, DynamoDB (also
support document store).

2.1.2 Document Stores

Document stores provide a more complex data structure and richer capabilities than
Key-Value systems. In document stores, the unit of data is called a document which
is actually an object that can contains an arbitrary set of fields, values and even
nested objects and arrays (Fig. 11). Document stores normally do not have predefined
schemas for data and support search and indexing by document fields and attributes.
Unlike key-value stores, they generally support secondary indexes, nested objects
and lists. Additionally, some of them can even support queries with constraints,
aggregations, sorting and evaluations.

• MongoDB

MongoDB [31] is an open source project developed in C++ and supported by the
company 10gen. MongoDB provides its data model based on JSON documents and
maintained asBSON (a compact and binary representation of JSON). Each document
in MongoDB has a unique identifier which can be automatically generated by the

Big Data Storage and Data Models 19

Fig. 11 Data model of document stores

server or manually created by users. A document contains an arbitrary set of fields
which can be either arrays or embedded documents. MongoDB is schema free and
even documents in the same collection can have completely different fields. Docu-
ments inMongoDB are manipulated based on the JSON representation using search,
insertion, deletion andmodification operations.Users can find or query documents by
writing them as expressions of constraints of fields. In addition, complex operations
such as sorting, iteration and projecting are supported. Moreover, users can perform
MapReduce-like program and aggregation paradigms on documents, which makes
it possible to execute more complicated analytic queries and programs. Documents
can be completely replaced and any parts of their fields can also be manipulated and
replaced.

Indexes of one ormorefields in a collection are supported to speed up the searching
queries. In addition, MongoDB scales up by distributing documents of a collection
among nodes based on a sharding key. Replication between master and slaves with
different consistency models depending on whether reading from secondary nodes
are allowed and how many nodes are required to reach a confirmation.

• CouchDB

CouchDB [32] is an Apache open source project written in Erlang. It is a distributed
documents-based store that manipulates JSON documents. CouchDB is schema free,
documents are organized as collections. Each document contains a unique identifier
and a set of fields which can be scalar fields, arrays and embedded documents.

20 D. Wu et al.

Queries on CouchDB documents are called views which are MapReduce-based
JavaScript functions specifying the matching constraints and aggregation logics.
These functions are structured into so-called designed documents for execution.
For these views, B-Tree based indexes are supported and updated during modifica-
tions. CouchDB also supports optimistic locks based on MVCC (Multi-Versioned
Concurrency Control) [33] which enables CouchDB to be lock-free during reading
operations. In addition, every modification is immediately written down to the disk
and old versions of data are also saved. CouchDB scales by asynchronous replication,
in which both master-slave and master-master replication is supported. Each client
is guaranteed to see a consistent state of the database, however, different clients may
see different states (as strengthened eventually consistency).

2.1.3 Extensible-Record Stores

Extensible-Record Stores (also called column stores) are initially motivated by
Google’s Big Table project [34]. In the system, data are considered as tables with
rows and column families in which both rows and columns can be split over multiple
nodes (Fig. 12). Due to this flexible and loosely coupled data model, these systems
support both horizontal and vertical partitioning for the scalability purposes. In addi-
tion, correlated fields/columns (named as column families) are located on the same
partition to facilitate query performance. Normally column families are predefined
before creating a data table. However, this is not a big limitation as new columns and
fields can always be dynamically added to the existing tables.

• BigTable

BigTable [34] is introduced by Google in 2004 as a column store to support various
Google services. BigData is built onGoogle File System (GFS) [35] and can be easily
scaled up to hundreds and thousands of nodes maintaining Terabytes and Petabytes
scale of data.

Fig. 12 Data model of extensible-record stores

Big Data Storage and Data Models 21

BigTable is designed based on an extended table model which maintains a three
dimensional mapping from row key, column key and timestamps to associated data.
Each table is divided into a set of small segments called tablets based on row keys
and column keys. Tablets are also the unit for performing load balancing when
needed. Columns are grouped as column families which are collocated in the disk
and optimized for reading correlated fields in a table. Each column family may
contain an arbitrary set of columns and each column of a record in the table can have
several versions of data marked and ordered by timestamps.

BigTable supports operations including writing and deleting values, reading rows,
searching and scanning a subset of data. In addition, it supports creation and dele-
tion of tables and column families and modification of meta-data (such as access
rights). BigTable also supports asynchronous replication between clusters and nodes
to ensure an eventually consistency.

• Hbase

HBase [36] is an Apache open source project and is developed in Java based on
the principles of Google’s BigTable. HBase is built on the Apache Hadoop Frame-
work and Apache Zookeeper [37] to provide a column-store database. As HBase is
inherited from BigTable, they share a lot of features in both data model and architec-
ture. However, HBase is built on HDFS (Hadoop Distributed File System) instead of
GFS and it uses ZooKeeper for cluster coordination compared with using Chubby in
BigTable. HBase puts updates in the memory and periodically writes them to disk.
Row operations are atomic with the support of row-level transactions. Partitions and
distributions are transparent to users and there is no client-side hashing like some
of the other NoSQL systems. HBase provides multiple master nodes to tackle the
problem of single-point failure of the master node. Compared with BigTable, HBase
does not have location groups but only that of column families. In addition, HBase
does not support secondary indexing, therefore, queries can only be performed based
on primary keys or by fully scanning the table. Nevertheless, additional indexes can
be manually created using extra tables.

• Casandra

Casandra [38] is an open source NoSQL database initially developed by Facebook
in Java. It combines the ideas of both BigTable and Dynamo and it is now open
sourced under the Apache license. Casandra shares the majority of the features as
other extensible record stores (column stores) in both data model and functionality.
It has column groups and updates are cached in the memory first then flushed to disk.
However, there still some differences:

• Casandra have columnswhich are theminimumunit for storage and super columns
which contains a set of columns to provide additional nestedness.

• Casandra is fully decentralized of which every node in the cluster is considered
equal and performs identical functions. In Casandra, a leader is selected based
on the Gossip Protocol; failures are detected by using the phi accrual algorithm

22 D. Wu et al.

and scalability is achieved by Consistent Hashing. All the process that have been
mentioned before: leader selection, failure detection and recovery are performed
automatically.

• Casandra only supports the eventually consistency model. It provides quorum
reads to ensure clients get the latest data from majority of the replicas. Writes in
Casandra are atomic within a column family and some extent of versioning and
conflict resolution are supported.

2.1.4 Summary of Major Data Store Systems

Table2 shows the comparison of existing data store systems. As we can see from the
table, Key-Value stores generally trade-off consistency for availability and partition-
tolerance while Document stores normally provide different levels of consistency
based ondifferent requirements of availability and partition-tolerance. In addition,we
can see that the majority of NoSQL data stores provide at least eventual consistency
and use MVCC for concurrent controlling. Most of the NoSQL data stores still use
master-slave architecture while some more advanced systems (Casandra, etc.) are
built on a decentralized, share-nothing architecture.

2.2 Relational-Based

Traditional DBMSs are designed based on the relational paradigm in which all data
is represented in terms of tuples and grouped into relations. The purpose of the rela-
tionalmodel is to provide a declarativemethod for specifying data and queries (SQL).
Unlike NoSQL systems, these databases have a complete pre-defined schema and
SQL interfaces with the support of ACID transactions. However, the ever increasing
need for scalability in order to store very large datasets have brought about some
key challenges for traditional DBMSs. Therefore, further performance improve-
ments have been made to relational databases to provide comparable scalability
with NoSQL databases. Those improvements are based on two main provisos:

• Small-scope operations: As large scale relational operations like Join cannot scale
well with partitioning and sharding, these operations are limited to smaller scopes
to achieve better performance.

• Small-scope transactions: Note that, transaction is also one key reason to cause
the scalability problem for relational databases. Therefore, limiting the scope of
transactions can significantly improve the scalability of DBMS clusters.

In terms of product systems, based on their model of usage, they can be classified
into two groups: Scalable Rational Systems and Database-as-a-service (DaaS).

Big Data Storage and Data Models 23

Ta
bl
e
2

C
om

pa
ri
so
n
of

m
aj
or

da
ta
st
or
e
sy
st
em

s

Sy
st
em

D
at
a
m
od

el
C
A
P

C
on

si
st
en
cy

C
on
cu
rr
en
tc
on
tr
ol

Pa
rt
iti
on
in
g

D
at
a
st
or
ag
e

D
is
tr
ib
ut
ed

ar
ch

R
ed
is

K
ey
-v
al
ue

A
P

E
ve
nt
ua
l/S

tr
on
g

L
oc
ks

C
lie

nt
-s
id
e

pa
rt
iti
on
in
g

R
A
M

+
D
is
k

M
ul
ti-
da
ta
no

de
s

M
em

ca
ch
ed

K
ey
-v
al
ue

A
P

E
ve
nt
ua
l

L
oc
ks

N
on
e

R
A
M

M
as
te
r-
sl
av
e

D
yn
am

o
K
ey
-v
al
ue

or
A
P

E
ve
nt
ua
l/S

tr
ic
t

M
V
C
C

K
ey
-b
as
ed

sh
ar
di
ng

R
A
M

+
D
is
k

M
as
te
r-
sl
av
e

do
cu
m
en
t

(m
ul
tip

le
m
as
te
rs
)

V
ol
de
m
or
t

K
ey
-v
al
ue

A
P

R
ea
d-
re
pa
ir

M
V
C
C

C
on

si
st
en
th

as
hi
ng

R
A
M

or
B
D
B

M
as
te
r-
sl
av
e

M
on
go
D
B

D
oc
um

en
t

C
P

E
ve
nt
ua
l/S

tr
on
g

M
ul
ti-
gr
an
ul
ar
ity

K
ey
-b
as
ed

D
is
k

M
as
te
r-
sa
ve

lo
ck
in
g

sh
ar
di
ng

C
ou
ch
D
B

D
oc
um

en
t

C
P

E
ve
nt
ua
l

M
V
C
C

C
on

si
st
en
th

as
hi
ng

D
is
k

M
as
te
r-
sa
ve

Te
rr
as
to
re

D
oc
um

en
t

C
P

E
ve
nt
ua
l

M
V
C
C
+
L
oc
ks

C
on

si
st
en
th

as
hi
ng

R
A
M

M
as
te
r-
sa
ve

B
ig
Ta
bl
e

C
ol
um

n-
fa
m
ily

C
P

E
ve
nt
ua
l

L
oc
ks

an
d
st
am

ps
R
an
ge
-b
as
ed

D
is
k

M
as
te
r-
sa
ve

H
B
as
e

C
ol
um

n-
fa
m
ily

C
P

E
ve
nt
ua
l

O
pt
im

is
tic

lo
ck
in
g

R
an
ge
-b
as
ed

R
A
M

+
D
is
k

M
as
te
r-
sa
ve

w
ith

M
V
C
C

(b
ac
ku

p
M
as
te
r)

C
as
an
dr
a

C
ol
um

n-
fa
m
ily

A
P/
C
P

E
ve
nt
ua
l/S

tr
on
g

M
V
C
C

C
on

si
st
en
th

as
hi
ng

D
is
k

D
ec
en
tr
al
iz
ed

M
yS

Q
L
cl
us
te
r

R
el
at
io
na
lt
ab
le
s

C
P

St
ro
ng

A
C
ID

R
ow

-b
as
ed

ha
sh
in
g

D
is
k

M
as
te
r-
sl
av
e

V
ol
tD
B

R
el
at
io
na
lt
ab
le
s

C
P

St
ro
ng

A
C
ID

H
or
iz
on

ta
l

pa
rt
iti
on
in
g

R
A
M

+
D
is
k

Sh
ar
e-
no

th
in
g

24 D. Wu et al.

2.2.1 Scalable Rational Systems

With the requirement for dealing with large scale datasets, optimizations and
improvements have been done on traditional DBMS systems such as MySQL. And
several new products have also come out with the promise to have good per-node
performance as well as scalability.

• MySQL Cluster

MySQL Cluster [39] has been part of the mainline MySQL releases as an exten-
sion that supports distributed, Multi-master and ACID compliant databases. MySQL
Cluster automatically shards data across multiple nodes to scale out read and write
operations on large datasets. It can be accessed through both SQL and NoSQL APIs.

The synchronous replication MySQL Cluster is based on a two-phase commit
mechanism to guarantee the data consistency on multiple replicas. It also automati-
cally creates node groups among the replicas to protect against data loss and provide
support for swift failover.

MySQL Cluster is implemented as fully distributed databases with multi-master,
each of them can accept write operations and updates are instantly visible for all
the nodes within the cluster. Tables in MySQL Cluster are automatically partitioned
among all the data nodes based on a Hashing algorithm of the primary key of each
table. In addition, sharding, load balancing, failing over and recovery in MySQL
Cluster are transparent to users, so it is generally easy to setup.

• VoltDB

VoltDB [40] is an open source SQL-based in-memory database which is designed
for high performance as well as scalability. VoltDB is also ACID-compliant and built
on a shared nothing architecture. Tables are partitioned over multiple nodes and data
can be accessed through any server. Partitions are replicated among different nodes
and data snapshots are also supported to provide fast failover and data recovery.
VoltDB is designed as a database that can be fit into distributed RAM on the servers,
so generally operations do not need to wait for the disk IO. All VoltDB SQL calls
are made through stored procedures each of which is considered as one transaction.
VoltDB is fully ACID compliant of which data is durable on the disk and ensured by
continuous snapshots and command logging. VoltDB has been further developed in
recent releases to be able to be integrated with Big Data ecosystems such as Hadoop,
HDFS, Kafka, etc. And it is also extended to support geo-spatial query and data
models.

• Vertica Analytics Platform

Vertica Analytics Platform (Vertica for short) [41] is a cloud-based, column-oriented,
distributed database management system. It is designed for the management of large,
fast-growing volumes of data as well as supporting highly optimized query perfor-
mance for data warehouses and other query-intensive applications. Vertica claims to

Big Data Storage and Data Models 25

dramastically improve query performance over traditional relational database sys-
tems along with high-availability and petabyte-scalability on commodity enterprise
servers. The design features of Vertica include:

• Column-oriented store: Vertica leverages the columnar data store model to offer
significant improvement on the performance of sequential record access at the
expense of common transactional operations such as single record retrievals,
updates, and deletes. The column-oriented data model also improves the perfor-
mance of I/O, storage footprint and efficiency when it comes to analytic workloads
due to the lower volume of data during loading.

• Real-time loading and query: Vertica is designed with a novel time travel trans-
actional model that ensures extremely high query concurrency. Vertica is able to
load data up to 10x faster than traditional row-stores by leveraging on its design of
simultaneously loading data in the system. In addition, Vertica is purposely built
with a hybrid in-memory/on-disk architecture to ensure near-real-time availability
of information.

• Advanced database analytics: Vertica offers a set of Advanced In-Database Ana-
lytics functionality so that users can conduct their analytics computations within
the database rather than extracting data to a separate environment for processing.
The in-database analytics mechanism is especially critical for applying computa-
tion on large scale data sets with the size range from terabytes to petabytes and
beyond.

• Data compression: Vertica operates on encoded data which dramatically improves
analytic performance by reducing CPU, memory, and disk I/O at processing time.
Due to the aggressive data compression, Vertica can reduce the original data size
to 1/5th or 1/10th its original size even with high-availability redundancy.

• Massively Parallel Processing (MPP) [42] support: Vertica delivers a simple, but
highly robust and scalable MPP solution which offers linear scaling and native
high availability on industry standard parallel hardware.

• Shared nothing architecture: Vertica is designed in a shared nothing architecture
which, on one hand, reduces system contention for shared resources and on the
other hand allows gradual degradation of performancewhen the system encounters
both software or hardware failures.

2.2.2 Database-as-a-Service (DaaS)

Database-as-a-service is a service model where a third party service provider hosts
scalable relational databases as services by applying the multi-tenancy technology
on database systems. Those services relieve their users from the need to purchase and
maintain expensive hardware and software for provisioning database functionality.
Three main approaches including Shared Server, Shared Process and Shared Table
are used to avoid the problemof under-utilization of data center resources. In practice,
the shared-servermodel ismost commonly used byDaaS providers as it is considered
the most efficient way for providing isolation for the data of each tenant.

26 D. Wu et al.

• Amazon RDS

Amazon RDS (Relational Database Service) [9] is a DaaS service provided by Ama-
zon Web Services (AWS). It is a cloud service to simplify setup, configuration,
operation and auto-scaling of relational databases for use by applications. It also
helps in the sake of backing up, patching and recovery of users database instances.
Amazon RDS provides asynchronous replication of data across multiple nodes to
improve the scalability of reading operations for relational databases. It also pro-
visions and maintains replicas across availability zones to enhance the availability
of database services. For flexibility considerations, Amazon RDS supports various
types of databases including MySQL, Oracle, PostgreSQL and Microsoft SQL, etc.

• Microsoft Azure SQL

Microsoft also released their SQL Azure [43] as a cloud based service for rela-
tional databases. Azure SQL is, namely, built on the Azure cloud infrastructure with
Microsoft SQL Server as its databases backend. It provides highly available, multi-
tenant database service with the support of T-SQL, native ODBC and ADO.NET for
data access. Azure SQL provides high availability by storing multiple copies of data-
bases with elastic scaling and rapid provisioning. It also provides self-management
functions for database instances and predictable performance during scaling.

• Google Cloud SQL

Google Cloud SQL [44] is another fully managed DaaS service hosted on Google
Cloud Platform. It provides easy setup, management, maintenance and administra-
tions for MySQL databases in cloud environments. Google Cloud SQL provides
automated replication, patch management, and database management with effortless
scaling based on users’ demand. For reliability, Google Cloud SQL also replicates
databases across multiple zones with automated failover and provides backups and
point-in-time recovery automatically.

• Other DaaS Platforms

Following the main stream of cloud-based solutions, more and more database soft-
ware providers havebeenmigrating their products as cloud services. There are various
DaaS provided by different venders including:

• Xeround [45] offers its own elastic database service based on MySQL across a
variety of cloud providers and platforms. The Xeround service allows for high
availability and scalability and it can work across a variety of cloud providers
including AWS, Rackspace, Joyent, HP, OpenStack and Citrix platforms.

• StormDB runs its fully distributed, relational database on bare-metal servers,
meaning there is no virtualization of machines. Despite running on bare metal
servers, customers still share clusters of servers with promises of isolation among
customer databases. StormDB also automatically shards databases in its cloud
environments.

Big Data Storage and Data Models 27

Table 3 Comparison for different data models

Name Data model CAP Consistency Scalability Schema Transaction

Key-value Key-values AP Loose High Key with BASE

stores scalar value

Record Column AP/CP Loose High Rows with BASE

stores families scalar
columns

Document Documents AP/CP Loose High Schema free BASE

stores JSON-like

Rational Relational C/CP Strict Low Row-based ACID

databases tables predefined
schema

• EnterpriseDB [46] provides its cloud database service mainly based on the open
source PostgreSQL databases. The Management Console in its cloud service pro-
visions PostgreSQL databases with database compatibility with Oracle. Users
can choose to deploy their database in single instances, high availability clusters,
or development sandboxes for Database-as-a-Service environments. With Enter-
priseDB’s Postgres Plus Advanced Server, enterprise users can deploy their appli-
cations written for Oracle databases through EnterpriseDB, which runs in cloud
platforms such as Amazon Web Services and HP.

2.3 Summary of Data Models

A comparison of the different data models is shown in Table3. Basically, NoSQL
data models:Key-Value, Column families and Document-based models has looser
consistency constraints as a trade-off for high availability and/or partition-tolerance
in comparison with that of relational data models. In addition, NoSQL data models
have more dynamic and flexible schemas based on their data models while relational
databases use predefined and row-based schemas. Lastly, NoSQL databases apply
the BASE models while relational databases guarantee ACID transactions.

References

1. S. Sakr, M. Medhat Gaber (eds.), Large Scale and Big Data - Processing and Management
(Auerbach Publications, Boston, 2014)

2. S. Sakr, A. Liu, A.G. Fayoumi, The family of mapreduce and large-scale data processing
systems. ACM Comput. Surv. 46(1), 11 (2013)

3. J. Satran, K. Meth, Internet small computer systems interface (iscsi) (2004)

28 D. Wu et al.

4. SCSI Protocol. Information technologyscsi architecture model5 (sam-5). INCITS document,
10

5. S. Hopkins, B. Coile, Aoe (ata over ethernet). The Brantley Coile Company, Inc., Technical
report AoEr11, 2009

6. ATA Serial. High-speed serialized at attachment. Serial ATAworking group, available at www.
sata-io.org (2001)

7. EBS Amazon. Elastic block store has launched all things distributed (2008). https://aws.
amazon.com/ebs/

8. EC2 Amazon. Amazon elastic compute cloud (amazon ec2), Amazon Elastic Compute Cloud
(Amazon EC2) (2010)

9. RDS Amazon. Amazon relational database service (amazon rds). https://aws.amazon.com/
rds/. Accessed 27 Feb 2016

10. S. Sivasubramanian,Amazon dynamodb: a seamlessly scalable non-relational database service.
in Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data
(ACM, New York, 2012), pp. 729–730

11. Amazon. Amazon cloudsearch service. https://aws.amazon.com/cloudsearch/. Accessed 27
Feb 2016

12. O. Sefraoui, M. Aissaoui, M. Eleuldj, Openstack: toward an open-source solution for cloud
computing. Intern. J. Comput. Appl. 55(3), 38–42 (2012)

13. K. Pepple, Openstack nova architecture. Viitattu 25, 2012 (2011)
14. OpenStack. Openstack block storage cinder. https://wiki.openstack.org/wiki/Cinder. Accessed

27 Feb 2016
15. K. Shvachko, H. Kuang, S. Radia, R. Chansler, The Hadoop distributed file system. in IEEE

MSST (2010)
16. S. Sakr, Big Data 2.0 Processing Systems (Springer, Switzerland, 2016)
17. K. Goda, Network attached secure device. in Encyclopedia of Database Systems (Springer,

New York, 2009), pp. 1899–1900
18. S3 Amazon. Amazon simple storage service(amazon s3). https://aws.amazon.com/s3/.

Accessed 27 Feb 2016
19. Azure Microsoft. Microsoft azure: Cloud computing platform and services. https://azure.

microsoft.com. Accessed 27 Feb 2016
20. Atoms EMC. Atmos - cloud storage, big data - emc. http://australia.emc.com/storage/atmos/

atmos.htm. Accessed 27 Feb 2016
21. SwiftOpenStack.Openstack swift - enterprise storage from swiftstack. https://www.swiftstack.

com/openstack-swift/. Accessed 27 Feb 2016
22. E.A. Brewer, Towards robust distributed systems. in Proceedings of the PODC, vol. 7 (2000)
23. J. Gray et al., The transaction concept: virtues and limitations. in Proceedings of the VLDB,

vol. 81 (1981), pp. 144–154
24. A.B. MySQL, MySQL: The World’s Most Popular Open Source Database (MySQL AB, 1995)
25. K. Loney, Oracle Database 10g: The Complete Reference (McGraw-Hill/Osborne, London,

2004)
26. Microsoft. Sql server 2014. https://www.microsoft.com/en-au/server-cloud/products/sql-

server/overview.aspx. Accessed 27 Feb 2016
27. PostgreSQL Datatype. Postgresql: the world’s most advanced open source database. http://

www.postgresql.org. Accessed 27 Feb 2016
28. D. Pritchett, Base: an acid alternative. Queue 6(3), 48–55 (2008)
29. J. Zawodny, Redis: lightweight key/value store that goes the extra mile. Linux Mag. 79, (2009)
30. B. Fitzpatrick, Distributed caching with memcached. Linux J. 2004(124), 5 (2004)
31. MongoDB Inc. Mongodb for giant ideas. https://www.mongodb.org/. Accessed 27 Feb 2016
32. Apache. Apache couchdb. http://couchdb.apache.org/. Accessed 27 Feb 2016
33. P.A. Bernstein, N. Goodman, Concurrency control in distributed database systems. ACM

Comput. Surv. (CSUR) 13(2), 185–221 (1981)
34. F. Chang, J. Dean, S. Ghemawat,W.C. Hsieh, D.A.Wallach,M. Burrows, T. Chandra, A. Fikes,

R.E. Gruber, Bigtable: a distributed storage system for structured data. ACM Trans. Comput.
Syst. (TOCS) 26(2), 4 (2008)

www.sata-io.org
www.sata-io.org
https://aws.amazon.com/ebs/
https://aws.amazon.com/ebs/
https://aws.amazon.com/rds/
https://aws.amazon.com/rds/
https://aws.amazon.com/cloudsearch/
https://wiki.openstack.org/wiki/Cinder
https://aws.amazon.com/s3/
https://azure.microsoft.com
https://azure.microsoft.com
http://australia.emc.com/storage/atmos/atmos.htm
http://australia.emc.com/storage/atmos/atmos.htm
https://www.swiftstack.com/openstack-swift/
https://www.swiftstack.com/openstack-swift/
https://www.microsoft.com/en-au/server-cloud/products/sql-server/overview.aspx
https://www.microsoft.com/en-au/server-cloud/products/sql-server/overview.aspx
http://www.postgresql.org
http://www.postgresql.org
https://www.mongodb.org/
http://couchdb.apache.org/

Big Data Storage and Data Models 29

35. S. Ghemawat, H. Gobioff, S.-T. Leung, The google file system. in ACM SIGOPS Operating
Systems Review, vol. 37 (ACM, Bolton Landing, 2003), pp. 29–43

36. L. George, HBase: The Definitive Guide (O’Reilly Media, Inc., Sebastopol, 2011)
37. P. Hunt,M.Konar, F.P. Junqueira, B. Reed, Zookeeper: wait-free coordination for internet-scale

systems. in USENIX Annual Technical Conference, vol. 8 (2010), p. 9
38. A. Lakshman, P. Malik, Cassandra: a decentralized structured storage system. ACM SIGOPS

Oper. Syst. Rev. 44(2), 35–40 (2010)
39. M. Ronstrom, L. Thalmann, Mysql cluster architecture overview. MySQL Technical White

Paper (2004)
40. M. Stonebraker, A. Weisberg, The voltdb main memory dbms. IEEE Data Eng. Bull. 36(2),

21–27 (2013)
41. A. Lamb, M. Fuller, R. Varadarajan, N. Tran, B. Vandiver, L. Doshi, C. Bear, The vertica

analytic database: C-store 7 years later. Proc. VLDB Endow. 5(12), 1790–1801 (2012)
42. F. Fernández de Vega, E. Cantú-Paz, Parallel and Distributed Computational Intelligence, vol.

269 (Springer, Berlin, 2010)
43. Microsoft. Sql database - relational database service. https://azure.microsoft.com/en-us/

services/sql-database/. Accessed 27 Feb 2016
44. Google. Cloud sql - mysql relational database. https://cloud.google.com/sql/. Accessed 27 Feb

2016
45. Xeround. Xeround. https://en.wikipedia.org/wiki/Xeround. Accessed 27 Feb 2016
46. EnterpriseDB. Enterprisedb - the postgres database company. https://www.enterprisedb.com.

Accessed 27 Feb 2016

https://azure.microsoft.com/en-us/services/sql-database/
https://azure.microsoft.com/en-us/services/sql-database/
https://cloud.google.com/sql/
https://en.wikipedia.org/wiki/Xeround
https://www.enterprisedb.com

Big Data Programming Models

Dongyao Wu, Sherif Sakr and Liming Zhu

Abstract Big Data programming models represent the style of programming and
present the interfaces paradigm for developers to write big data applications and
programs. Programming models normally the core feature of big data frameworks
as they implicitly affects the execution model of big data processing engines and
also drives the way for users to express and construct the big data applications and
programs. In this chapter, we comprehensively investigate different programming
models for big data frameworks with comparison and concrete code examples.

A programming model is the fundamental style and interfaces for developers to
write computing programs and applications. In big data programming, users focus
on writing data-driven parallel programs which can be executed on large scale and
distributed environments. There have been a variety of programming models being
introduced for big data with different focus and advantages. In this chapter, we will
discuss and compare themajor programmingmodels forwriting big data applications
based on the taxonomy which is illustrated in Fig. 1.

1 MapReduce

MapReduce [24] the current defacto framework/paradigm for writing data-centric
parallel applications in both industry and academia. MapReduce is inspired by the
commonly used functions - Map and Reduce in combination with the divide-and-

D. Wu (B) · S. Sakr · L. Zhu
Data61, CSIRO, Sydney, NSW, Australia
e-mail: Dongyao.Wu@data61.csiro.au

D. Wu · S. Sakr · L. Zhu
School of Computer Science and Engineering, University of New South Wales,
Sydney, NSW, Australia

S. Sakr
King Saud Bin Abdulaziz University for Health Sciences, National Guard,
Riyadh, Saudi Arabia

© Springer International Publishing AG 2017
A.Y. Zomaya and S. Sakr (eds.), Handbook of Big Data Technologies,
DOI 10.1007/978-3-319-49340-4_2

31

32 D. Wu et al.

Fig. 1 Taxonomy of programming models

Fig. 2 MapReduce paradigm

conquer [22] parallel paradigm. For a single MapReduce job, users implement two
basic procedure objectsMapper andReducer for different processing stages as shown
in Fig. 2. Then the MapReduce program is automatically interpreted by the execu-
tion engine and executed in parallel in a distributed environments. MapReduce is
considered as a simple yet powerful enough programming model to support a variety
of the data-intensive programs [43, 44].

1.1 Features

• Map and Reduce functions. AMapReduce program contains aMap function doing
the parallel transformation and a Reduce function doing the parallel aggregation
and summary of the job. Between Map and Reduce an implied Shuffle step is
responsible for grouping and sorting the Mapped results and then feeding it into
the Reduce step.

• Simple paradigm. In MapReduce programming, users only need to write the logic
of Mapper and Reducer while the logic of shuffling, partitioning and sorting is

Big Data Programming Models 33

automatically done by the execution engine. Complex applications and algorithms
can be implemented by connecting a sequence of MapReduce jobs. Due to this
simple programming paradigm, it is much more convenient to write data-driven
parallel applications, because users only need to consider the logic of processing
data in each Mapper and Reducer without worrying about how to parallelize and
coordinate the jobs.

• Key-Value based. In MapReduce, both input and output data are considered as
Key-Value pairs with different types. This design is because of the requirements
of parallelization and scalability. Key-value pairs can be easily partitioned and
distributed to be processed on distributed clusters.

• Parallelable and Scalable. Both Map and Reduce functions are designed to facil-
itate parallelization, so MapReduce applications are generally linearly-scalable to
thousands of nodes.

1.2 Examples

1.2.1 Hadoop

Hadoop [8] is the open-source implementation of Google’s MapReduce paradigm.
The native programming primitives in Hadoop are Mapper and Reducer interfaces
which can be implemented by programmers with their actual logic of processing
map and reduce stage transformation and processing. To support more complicated
applications, users may need to chain a sequence of MapReduce jobs each of which
is responsible for a processing module with well defined functionality.

Hadoop is mainly implemented in Java, therefore, the map and reduce functions
are wrapped as two interfaces called Mapper and Reducer. The Mapper contains
the logic of processing each key-value pair from the input. The Reducer contains the
logic for processing a set of values for each key. Programmers build theirMapReduce
application by implementing those two interfaces and chaining them as an execution
pipeline.

As an example, the program below shows the implementation of a WordCount
program using Hadoop. Note that, the example only lists the code implementation
of map and reduce methods but omits the signature of the classes.

Listing 1 WordCount example in Hadoop

1 pub l i c void map(Ob jec t key ,
2 Text value , Contex t c on t e x t) {
3 Str ing t e x t = va lue . t o S t r i n g () ;
4 S t r i n gToken i z e r i t r = new S t r i n gToken i z e r (t e x t) ;
5 whi le (i t r . hasMoreTokens ()) {
6 word . s e t (i t r . nextToken ()) ;
7 c on t e x t . w r i t e (word , one) ;
8 }
9 }

10

34 D. Wu et al.

11 pub l i c void reduce (Text key ,
12 I t e r a b l e < I n tWr i t a b l e > va lues , Contex t c on t e x t) {
13 i n t sum = 0 ;
14 f o r (I n tW r i t a b l e va l : v a l u e s) {
15 sum += va l . g e t () ;
16 }
17 r e s u l t . s e t (sum) ;
18 c on t e x t . w r i t e (key , r e s u l t) ;
19 }

2 Functional Programming

Functional programming is becoming the emerging paradigm for the next genera-
tion of big data processing systems, for example, recent frameworks like Spark [53],
Flink [1] both utilize the functional interfaces to facilitate programmers to write data
applications in a easy and declarative way. In functional programming, program-
ming interfaces are specified as functions that applied on input data sources. The
computation is treated as a calculation of functions. Functional programming itself
is declarative and it avoids mutable states sharing. Compared to Object-oriented
Programming it is more compact and intuitive for representing data driven transfor-
mations and applications.

2.1 Features

Functional Programming is one of the most recognized programming paradigms. It
contains a set of features which facilitate the development in different aspects:

• Declarative: In functional programming, developers build the programs by speci-
fying the semantic logic of computation rather than the control flow of the proce-
dures.

• Functions are the first level citizens in Functional Programming. Primitives of
programming are provided in functional manner and most of them can take user
defined functions as parameters.

• In principle, functional programming does not allow the sharing of states, which
means variables in functional programming are immutable. Therefore, there is no
side effects for calling functions. This makes it easier to write functionally correct
programs that are also easy to be verified formally.

• Recursive: In functional programming, many loops are normally represented as
recursively calling of functions. This facilitates the optimization of performance
by applying tail-recursive to reduce creating intermediate data and variables shared
in different loops.

• Parallelization: As there is generally no state sharing in functional programming,
it is easy and suitable for applying parallelization to multi-core and distributed
computing infrastructures.

Big Data Programming Models 35

• Referential Transparent: In functional programming, as there is no states shar-
ing and side effects. Functions are essentially re-producible. This means that re-
calculation of functional results is not necessary. Therefore, once a function is
calculated, its results could be cached and reused safely.

2.2 Example Frameworks

2.2.1 Spark

Spark provides programmers a functional programming paradigm with data-centric
programming interfaces based on its built-in data model - resilient distributed dataset
(RDD) [54]. Spark was developed in response to the limitations of the MapReduce
paradigm, which forces distributed programs to be written in a linear and coarsely-
defined dataflow as a chain of connected Mapper and Reducer tasks. In Spark, pro-
grams are represented asRDD transformationDAGs as shown inFig. 3. Programmers
are facilitated by using a rich set of high-level function primitives, actions and trans-
formations to implement complicated algorithms in a much easier and compact way.
In addition, Spark provides data centric operations such as sampling and caching to
facilitate data-centric programming from different aspects.

Spark is well known for its support of rich functional transformations and actions,
Table1 shows the major transformations and operators provided in Spark. The code
snippet in Listing 2 shows how to write a WoundCount program in Spark using its
functional primitives.

Basically, programming primitives in Spark just look like general functional pro-
gramming interfaces by hiding complex operations such as data partitioning, dis-
tribution and parallelization to programmers and leaving them to the cluster side.

Fig. 3 RDD chain of a Spark program

36 D. Wu et al.

Table 1 Main operations in Spark

Transformation Description

map Transform each element in the data set into a new type by passing them
through a map function

flatMap Transform elements in a set of collections into a plain sequence of elements
by passing through a function

reduce Aggregate elements in the data set with a function, the function needs to be
commutative and associative

filter find and return a subset of elements for the data set by checking a boolean
function

groupBy cluster the elements into different groups by mapping them with a function.
The result is in (key, list of values) format

union combine current data set with another data set to generate a new united data set

intersection find out the overlapping elements from two data sets

distinct find out the distinct elements from two data set

join join two key-value based data sets and group the values for the same key. The
result is in (key, (value1, value2)) format

cogroup For two data sets of type (K, V) and (K, W), returns a grouped data set of (K,
(Iterable [V], Iterable [W])) tuples

Therefore, the client side code is very declarative and simple to write by program-
mers. The Spark programs are essentially RDD dependency flows which will be
eventually translated into parallel tasks to be executed on distributed environments.

Listing 2 WordCount example of Spark

1 va l coun t s = t e x t . f l a tMap {_ . s p l i t (” \ \ s+”)}
2 .map{(_ , 1)}
3 . reduceByKey (_ + _)
4 coun t s . f o r e a ch (pr in t (_))

2.2.2 Flink

Flink [1] is an emerging competitor to Sparkwhich provides functional programming
interfaces that are quite similar to those of Spark. Filnk programs are regular programs
which are written with a rich set of transformation operations (such as mapping,
filtering, grouping, aggregating and joining) to the input data sets. Dataset in Flink is
based on a table based model, therefore programmers are able to use index numbers
to specify a certain field of a data set. Flink shared a lot of functional primitives
and transformations in the same way as what Spark does for batch processing. The
program below shows a WordCount example written in Flink.

Big Data Programming Models 37

Listing 3 WordCount example of Flink

1 va l coun t s = t e x t . f l a tMap {_ . toLowerCase . s p l i t (” \ \ s+”)}
2 .map{(_ , 1)}
3 . groupBy (0)
4 . sum (1)
5 coun t s . pr in t (_)

Apart from regular batch processing primitives, Flink is also natively designed
for stream processing with the support of a rich set of functional operations. The
streaming APIs of Flink is in its core bundle and users are able to write and execute
stream processing and batch processing applications in the same framework. Unlike
spark’s use a min-batch to simulate stream processing, Flink uses the producer-
consumer model for the execution of streaming programs. Therefore, it claims itself
as being amore natural frameworkwhich integrates both batch and streamprocessing.
Table2 shows the major streaming operations provided in Flink.

In addition to normal transformations, the streaming API of Flink also provide
a couple of window-based operations to apply functions and transformations on
different groups of elements in the stream according to their time of arrival. A couple
of window-based operations for Flink is listed in Table3.

Table 2 Main operations for streaming processing in Flink

Transformation Description

map Takes one element and produces another one element with a transformation

flatMap Takes one element and produces a collection of elements with a
transformation function

KeyBy Split input stream into different Partitions, each partition has the same key

reduce Rolling combine elements in a keyed data stream with a aggregation function

filter Retains a subset of elements from the input stream by evaluating a boolean
function

fold Same like reduce but provides a initial value and then combines the current
element with the last folded value

Table 3 Window-based operations for streaming processing in Flink

Transformation Description

window Windows can be applied on Keyed stream to group the data in each key
according to specific characteristics, e.g. arrival time

windowAll Windows can be applied on the entire input of a stream to divide data
into different groups based on specific characteristics

Window Reduce/Aggre-
gation/Fold

After the input is grouped by windows, users can apply normal stream
APIs such as reduce, fold and aggregation on the grouped streams

38 D. Wu et al.

3 SQL-Like

SQL (Structured Query Language) is the most classic data query language, origi-
nally designed for rational databases based on the rational algebra. It contains four
basic primitives: create, insert, update, delete for modifying the datasets consid-
ered as tables with schemas. SQL is a declarative language and also includes a few
procedural elements.

SQL programs contain a few basic elements including: (1) Clauses which are
constituent elements of statements andqueries; (2)Expressionswhich canbevaluated
to produce a set of resulting data; (3) Predicates which specify conditions that can
be used to limit the effects of statements and queries; (4) Queries which retrieve the
data based on some specific criteria; (5) Statements which have a persistent effect
on data, schema or even the database.

During execution of SQL, the SQLs are explained as syntax trees and then further
translated into execution plans. And there are a bunch of optimizations have been
developed to optimize the performance based on the syntax trees and execution plans.

3.1 Features

• Declarative and self-interpretable: SQL is a typical declarative language, it clearly
specifies what transformation and operations are being done to which part of the
data. By reading the SQL queries users can easily understand the semantics of the
queries just like understand about literal descriptions.

• Data-driven: SQL is data-driven, all the operations and primitives are representing
the transformation and manipulation of the target dataset (tables of data in SQL).
This makes SQL one of the most facilitated programming model for data-centric
applications for traditional databases and recent big data context.

• Standardized and Inter-operable: SQL is officially standardized by data commu-
nities such as IBM and W3C. Therefore, different platform provider can provide
their own implementation while keeping the inter-operability between different
platforms and frameworks. In Big data context, although there are some variations
for SQL such as HQL (Hadoop Query Language) in Hive and CQL (Casandra
Query Language) in Casandra, users can still easily understand and ship such
programs into each other.

3.2 Examples

3.2.1 Hive Query Language (HQL)

Hive [47] is a query engine built on Hadoop ecosystems, it provides a SQL-like inter-
face called Hive Query Language (HQL), which read input data based on defined
schema and then transparently converts the queries into MapReduce jobs connected

Big Data Programming Models 39

as a directed acyclic graph (DAG). Although based on SQL, HQL does not fully fol-
low the SQL standard. Basically,HQL lacks support for transactions andmaterialized
views, and only support for limited indexing and sub-queries. However, HQL also
provides some extensions which are not supported in SQL, such asmulti-table inserts
and creating table as select. The program below shows how to write a WordCount
program in Hive with HQL:

Listing 4 WordCount example of Hive

1 SELECT word , count (1) AS words FROM(
2 SELECT EXPLODE(SPLIT (l i n e , ’ ’) AS word FROM myinput)
3 words GROUP BY word

Basically, HiveQL has great extent of compatibility with SQL, the Table4 shows
the semantics and data types supported in current HiveQL v0.11.

3.2.2 Cassandra Query Language (CQL)

Apache Cassandra [36] was introduced by Facebook to power up the indexing of
their in-box searching. Cassandra follows the design of Amazon Dynamo with its
own query interfaces - Cassandra Query Language (CQL). CQL is an SQL based
query language that is provided as the alternative to the traditional RPC interface.
CQL adds an abstraction layer that hides implementation details of its query structure
and provides native syntaxes for collections and common encodings. The program
snippet below shows some simple operations written in CQL 3.0:

Listing 5 Code example of CQL

1 BEGIN BATCH
2 INSERT INTO u s e r s (userID , password , name)
3 VALUES (’ u se r2 ’ , ’ chngemb ’ , ’ second u s e r ’)
4 UPDATE u s e r s SET password = ’ psdhds ’
5 WHERE user ID = ’ use r2 ’
6 INSERT INTO u s e r s (userID , password)
7 VALUES (’ u se r3 ’ , ’ch@ngem3c ’)
8 DELETE name FROM u s e r s WHERE user ID = ’ use r2 ’
9 INSERT INTO u s e r s (userID , password , name)

Table 4 Hive SQL compatibility

Data types INT/TINYINT/SMALLINT/BIGINT, BOOLEAN, FLOAT, DOUBLE
STRING, TIMESTAMP, BINARY, ARRAY, MAP, STRUCT, UNION
DECIMAL

Semantics SELECT, LOAD, INSERT from query, WHERE, HAVING, UNION GROUP
BY, ORDER BY, SORT BY, CLUSTER BY, DISTRIBUTE BY LEFT,
RIGHT and FULL INNER/OUTER JOIN, CROSS JOIN Sub-quires in
FROM clause, ROLLUP and CUBE window functions (OVER, RANK, etc.)

40 D. Wu et al.

10 VALUES (’ u se r4 ’ , ’ch@ngem3c ’ , ’Andrew ’)
11 APPLY BATCH;

AlthoughCQL looks generally similar like SQL, there are somemajor differences:

• CQL uses KEYSPACE and COLUMNFAMILY compared to DATABASE and
TABLE in SQL. And KEYSPACE requires more specifications (such as strategy
and replication factor) than a standard relational database.

• There is no support for relationoperations such as JOIN,GROUPBY,orFOREIGN
KEY in CQL. Leaving these features out is important towards ensuring that the
writing and retrieving data is much more efficient in Cassandra.

• Cheap writes, updates and inserts in CQL are extremely fast due to its Key-Value,
and column family organization.

• Expiring records, CQL enables users to set expiry time for records by using the
“USING TTL” (Time To Live) clause.

• Delayed Deletion, execution of DELETE queries doesn’t really remove the data
instantly. Basically, deleted records are marked with a tombstone (defined in TTL,
which would exist for a period of time affected by the GC interval). Then, those
marked data will be automatically removed during the upcoming compaction
process.

3.2.3 Spark SQL

Spark introduces its rational query interfaces as Spark SQL [13], which is built on the
DataFrame model and consider input data sets as table based structure. Spark SQL
can be embedded into general programs of native Spark and MLlib [38] to enable
interactability between different Spark modules. In addition, as Spark SQL draws on
Catalyst to optimize the execution plans of SQL queries, Spark SQL can outperform
native Spark APIs on most of the benchmarked APIs. The code snippet below shows
how to define a DataFrame and use it to apply Spark SQL queries:

Listing 6 Code example of Spark SQL

1 va l peop le = sc . t e x t F i l e (”peop le . t x t ”) .map(_ . s p l i t (” ,”))
2 .map(p => Person (p (0) , p (1) . t r im . t o In t)) . toDF ()
3 peop le . r eg i s t e rTempTab l e (”peop le”)
4
5 sq lCon t ex t . s q l (”SELECT name , age FROM peop le
6 WHERE age >= 13 AND age <= 19”)

Basically, Spark SQLare embedded in the general programming context and supports
most of the basic syntaxes of SQLas shown inListing 7. SparkSQL is also compatible
with various data sources including Hive, Avro [7], Parquet [10], ORC [6], JSON,
JDBC and ODBC compatible databases and supports data set joins across these data
sources.

Big Data Programming Models 41

Listing 7 Supported Syntax of Spark SQL

1 /∗ The s yn t a x o f a SELECT query ∗ /
2 SELECT [DISTINCT] [column names] | [w i l d ca rd]
3 FROM [kesypace name .] t ab l e name
4 [JOIN c l a u s e t ab l e name ON jo in c o nd i t i o n]
5 [WHERE c o nd i t i o n]
6 [GROUP BY column name]
7 [HAVING c o n d i t i o n s]
8 [ORDER BY column names [ASC | DSC]]
9

10 /∗ The s yn t a x o f a SELECT query wi th j o i n s . ∗ /
11 SELECT s t a t emen t
12 FROM s t a t emen t
13 [JOIN | INNER JOIN | LEFT JOIN | LEFT SEMI JOIN |
14 LEFT OUTER JOIN | RIGHT JOIN | RIGHT OUTER JOIN |
15 FULL JOIN | FULL OUTER JOIN]
16 ON jo in c o nd i t i o n
17
18 /∗ Sev e ra l s e l e c t c l a u s e s can be combined in a
19 UNION, INTERSECT , or EXCEPT query . ∗ /
20 SELECT s t a t emen t 1
21 [UNION | UNION ALL | UNION DISTINCT |
22 INTERSECT | EXCEPT]
23 SELECT s t a t emen t 2
24
25 /∗ The s yn t a x d e f i n e s an INSERT query . ∗ /
26 INSERT [OVERWRITE] INTO [keyspace name .]
27 t ab l e name [(columns)]
28 VALUES values
29
30 /∗ The s yn t a x d e f i n e s an CACHE TABLE query . ∗ /
31 CACHE TABLE tab l e name [AS tab l e a l i a s]
32
33 /∗ The s yn t a x d e f i n e s an UNCACHE TABLE query . ∗ /
34 UNCACHE TABLE tab l e name

3.2.4 Apache Drill

Apache Drill [3] is the open source version of Google’s Dremel system, which is a
schema-free SQL Query Engine for MapReduce, NoSQL and Cloud Storage. Drill
is well known for its connectivity to variety of NoSQL databases and file systems,
including HBase [26], MongoDB [39], MapR-DB, HDFS [45], MapR-FS, Amazon
S3 [46], Azure Blob Storage [15], Google Cloud Storage [27], Swift [41], NAS and

42 D. Wu et al.

local files. A single query can join data from multiple data stores. For example,
you can join a user profile collection in MongoDB with a directory of event logs in
Hadoop. The main features of Apache Drill are listed as below:

• Drill uses a JSON based data model similar to MongoDB and ElasticSearch.
• Drill supports multiple industry-standard APIs, such as JDBC/ODBC, SQL and
RESTful APIs.

• Drill is designed as a pluggable architecture which supports connecting with mul-
tiple data stores, including Hadoop, NoSQL and cloud-based storages.

• Drill also supports different of data formats such as JSON, Parquet and plain text.

Drill supports standard ANSI of SQL to query data from different databases and
file systems regardless of its source system or its schema and data types. Listing 8
shows an example about creating a table from a JSON file in Drill.

Listing 8 Create a table from JSON data source in Drill

1 CREATE TABLE d f s . tmp . s amp lepa rque t AS
2 (SELECT t r a n s _ i d ,
3 ca s t (‘ date ‘ AS date) t r a n s d a t e ,
4 ca s t (‘ time ‘ AS time) t r a n s t ime ,
5 ca s t (amount AS double) amountm ,
6 u s e r _ i n f o , ma rke t i ng_ in fo , t r a n s _ i n f o
7 FROM d f s . ‘ / Users / d r i l l u s e r / sample . j son ‘) ;

Apart from normal SQL syntaxes, Drill also offers a couple of nested function
within SQL queries as listed in Table5.

3.2.5 Other SQL-like Query Frameworks

• Impala [21], provides high-performance, low-latency SQL queries on data stored
in popular Apache Hadoop file formats. The fast response for queries enables
interactive exploration and fine-tuning of analytic queries, rather than long batch
jobs traditionally associated with SQL-on-Hadoop technologies. Impala integrates
with the Apache Hive metastore database, to share databases and tables between
both components. The high level of integration with Hive, and compatibility with
theHiveQL syntax, lets you use either Impala orHive to create tables, issue queries,
load data, and so on.

Table 5 Nested functions in Drill

FLATTEN Separate the elements in nested data from a repeated field into
individual records

KVGEN Return a repeated map generating key-value pairs for querying of
complex data having unknown column names

REPEATED_COUNT Count the values in an array

REPEATED_CONTAINS Search for a keyword in an array

Big Data Programming Models 43

• Presto [25], is an open source distributed SQL query engine for running inter-
active analytic queries against data sources of all sizes ranging from gigabytes
to petabytes. Presto was designed and written from the ground up for interactive
analytics and approaches the speed of commercial data warehouses while scaling
to the size of organizations like Facebook.

4 Actor Model

The Actor model [29] is a programming model for concurrent computation, which
consider “Actor” as the universal primitive unit for computation meaning it treats
everything as an actor. An actor is responsible to react to a set of messages to trigger
specific processing logics (such as making decisions, building more actors, sending
more messages) for different contexts. The Actor model is also considered as a
reactive programming model in which programmers write acting logic in response
to events and context changes. Unlike other programmingmodelswhich are normally
sequential, the actor model is inherently concurrent. The reactions of an actor can
happen in any order and actions for different actors are also in parallel.

4.1 Features

• Message-driven: The Actor model inherits the message-oriented architecture for
communication. messages are the primitive and the only data carrier among the
systems.

• Stateless and isolation: Actors are loosely coupled to each other. Therefore, there
is no global state shared between different actors. In addition, actors are separate
functional units which are not suppose to affect others when failures and errors
are encountered.

• Concurrent: Actors in the actor system are in action at the same time, and there
is no fixed order for sending and receiving messages. Therefore, the whole actor
system is inherently concurrent.

4.2 Examples

4.2.1 Akka

Akka [49] is a distributed and concurrent programmingmodel developed byTypesafe
with inspiration drawn from Erlang. Akka has been widely used in recent distributed
and concurrent frameworks such as Spark, Play [50], Flink, etc. Akka provides
different programmingmodels but it emphasizes the actor-based concurrencymodel.

44 D. Wu et al.

Fig. 4 Hierarchy of Akka actors

Actors in Akka communicate with each other through asynchronous messages, so
typically no mutable data are shared and no synchronization primitives are used. In
addition, Akka provides a hierarchical supervision model which enforces failure and
fault management to the parental actors as shown in Fig. 4. Failures in Akka are also
considered as messages passed to parents. Lastly, actors in Akka are portable to be
executed in local and distributed environments without the need to modify existing
program logics.

Akka provides a reflectiveway of creating a actor, inwhich users explicitly specify
the class object and the name of an actor. In addition, Akka offers two basic message
passing primitives to support communication among actors:

• ask (written as “?”), sends a message to a target actor and waits for its response as
a future message.

• tell (written as “!”), sends a message to a target actor then finishes this communi-
cation, also known as fire-and-forget.

As an example, the program below shows the HelloWorld application written using
Akka:

Listing 9 HelloWorld exmaple in Akka

1 c l a s s Hel loAc to r extends Actor {
2 va l log = Logging (c on t e x t . system , t h i s)
3 de f r e c e i v e = {
4 case ” h e l l o ” => log . i n f o (”Hel lo World”)
5 case _ => log . i n f o (” r e c e i v e d unknown message”)
6 }
7 }
8 \∗ c r e a t e an He l loAc to r i n s t a n c e ∗ \
9 va l system = ActorSystem (”mySystem”)

Big Data Programming Models 45

10 va l a c t o r = system . ac t o rOf (Props [He l loAc to r] , ” a c t o r ”)
11 \∗ send a message t o t h e a c t o r ∗ \
12 a c t o r ! ” h e l l o ”

4.2.2 Storm

Storm [48] is an open source programming framework for distributed realtime data
processing. Storm inherits from the actor-model and provides two types of processing
actors: Spouts and Bolts.

• Spout is the data source of a stream and is continuously generating or collecting
new data for subsequent processing.

• Bolt is a processing entitywithin a streaming processing flow, each bolt is responsi-
ble for a certain processing logic, such as transformation, aggregation, partitioning
and redirection, etc.

Jobs in Storm is defined as directed acyclic graphs (DAG) with connected Spouts
and Bolts as vertices. Edges on the graph are data streams and direct data from one
node to another. Unlike batch jobs being only executed once, Storm jobs are running
until they are killed. The code snippet in Listing 10 shows an example about writing
a Bolt to produce tuple streams.

In Storm, a complete application is built by connecting Spouts and Bolts. As
shown in Listing 11 users can define the topology of the application by appending
each Bolt to its predecessor.

Listing 10 Building a Bolt to Generate Tuple Streams

1 publ i c c l a s s DoubleAndTr ip leBol t extends BaseRichBol t {
2 pr iva t e Outpu tCo l l e c t o rBa s e _ c o l l e c t o r ;
3
4 @Override
5 publ i c void p r epa r e (Map conf , TopologyContext con t ex t ,
6 Ou tpu tCo l l e c t o rBa s e c o l l e c t o r){
7 _ c o l l e c t o r = c o l l e c t o r ;
8 }
9
10 @Override
11 publ i c void execu t e (Tuple i n pu t) {
12 i n t va l = i n pu t . g e t I n t e g e r (0) ;
13 _ c o l l e c t o r . emi t (i npu t , new Values (va l ∗2 , v a l ∗ 3)) ;
14 _ c o l l e c t o r . ack (i n pu t) ;
15 }
16
17 @Override
18 publ i c void d e c l a r eOu t p u t F i e l d s (
19 Ou t pu t F i e l d sDe c l a r e r d e c l a r e r){

46 D. Wu et al.

20 d e c l a r e r . d e c l a r e (new F i e l d s (”double” , ” t r i p l e ”)) ;
21 }
22 }

Listing 11 Building a WordCount Topology in Storm

1 TopologyBui lde r b u i l d e r = new TopologyBui lde r () ;
2 b u i l d e r . s e t Spou t (”words” , new TestWordSpout () , 1 0) ;
3 b u i l d e r . s e t B o l t (”exc la im1” , new Exc lama t ionBo l t () , 3)
4 . s hu f f l eG roup i ng (”words”) ;
5 b u i l d e r . s e t B o l t (”exc la im2” , new Exc lama t ionBo l t () , 2)
6 . s hu f f l eG roup i ng (”exc la im1”) ;

4.2.3 Apache S4

Apache S4 (Simple Scalable Streaming System) was introduced by Yahoo in 2008
for stream processing. S4 is a general-purpose, distributed, scalable, fault-tolerant,
pluggable platform for processing continuous, unbounded streams of data. The main
features of S4 are listed as below:

• Decentralized: All nodes in S4 are symmetric with no centralized service and no
single point of failure.

• Scalable: The throughput of S4 increases linearly as additional nodes are added
to the cluster. There is no predefined limit on the number of nodes that can be
supported.

• Extensible: Applications can be easily written using a simple API. Building blocks
of the platform such as message queues and processors, serializer and checkpoint-
ing backend can be replaced by custom implementations.

• Fault-tolerant: Once a server in the cluster fails, a stand-by server is automatically
activated to take over the tasks.

In S4, each processing actor is called a ProcessElement (PE) which is responsible
to processing in response to each data element (an event) within the input stream. An
S4 application is built by connecting a couple of ProcessElement in a certain topology.
Listing 12 shows a example of implementing a Hello ProcessElement in S4.

Listing 12 Implement a Process Element in S4

1 publ i c c l a s s HelloPE extends Proces s ingE lemen t {
2 / / PEs can main ta in some s t a t e
3 boolean seen = f a l s e ;
4
5 / / c a l l e d upon every new Event on an incoming s tream .
6 publ i c void onEvent (Event even t) {
7 System . ou t . p r i n t l n (”Hel lo” + even t . g e t (”name”)) ;
8 seen = true ;
9 }

10 }

Big Data Programming Models 47

5 Statistical and Analytical

In recent years significant effort was spent to offer semantically friendly environ-
ments for statistical and analytical computation, which leads to the development and
revolution of statistical and analytical programming models. For example many cur-
rent analytics libraries or frameworks provide a linear algebra based programming
model which works with vectors, matrices and tensor data structures to deal with
algebraically defined mathematical problems in machine learning, statistics and data
mining, etc.

5.1 Features

Due to the mathematical nature of statistical and analytical programming, it is essen-
tially functional with manipulations on matrix and vector-based data structures.

• Functional: Mathematical operations are essentially functions consuming a set
of input parameters to generate an output. Also many complicated functions or
models arewrapped into functional libraries so that users can directly use it without
knowing the implementation details of the functions.

• Matrix-based data structure: Amatrix is one of themost widely used data structure
for representing modern analytics and statistic problems and solutions. Therefore,
the majority of existing analytic programming frameworks are based on matrices,
vectors and data frames to manipulate the data.

• Declarative: In statistical and analytical programming, the programs explicitly
specify the functions and operations that have been applied on the data (matrix,
vector and data frame.)

5.2 Examples

5.2.1 R

R [32] combines the S [17] programming language and Lexical Scoping inspired
by Scheme [20]. It is well known for statistical programming and drawing graphics.
In R, data are essentially represented as matrices which are very convenient for
implementing mathematical and statistical formulas. R and its libraries implement
a wide variety of statistical and graphical techniques and is easy to be extended by
developers.R is recently introduced to thebigdata processing context (RHadoop [23],
SparkR [11], RHIPE [28]) to facilitate the development of statistical and analytics
programs and applications. The code snippet belowshowshow to implement formula:
G = BBT − C − CT + sqsTq ξT ξ using R:

48 D. Wu et al.

Listing 13 Writing formula of R

1 g <− t (b) %∗% b − c − t (c)
2 + (sq %∗% t (sq)) ∗ (t (x i) %∗% x i)

5.2.2 Mahout

Apache Mahout [9] is an open-source implementations of distributed and scalable
machine learning and data mining algorithms. Mahout provides libraries that are
mainly focused in the areas of collaborative filtering, clustering and classification.
The initial implementation of Mahout is based on Apache Hadoop, but recently it
has started to provide compatible bindings on Spark and also being able to provide
matrix-based programming interfaces. For example the same formula shown in the
R section can be written in Mahout as the code segment below:

Listing 14 Code example of Mahout

1 va l g = b t . t %∗% bt − c − c . t
2 + (s_q c r o s s s_q) ∗ (x i do t x i)

TheMahout project recently (since release 1.0.0) shifts its focus to building backend-
independent programming framework, which is named “Samsara”. The new project
consists of an algebraic optimizer and an Scala DSL to unify both distributed and
in-memory algebraic operators. The current version supports execution of algebraic
programs on platforms including Apache Spark and H20. The support of Apache
Flink operators is also in progress.

6 Dataflow-Based

The dataflow programming paradigmmodels programs as directed graphs with oper-
ations and dependencies as nodes and edges. Dataflow programming [35] was first
introduced by Jack Dennis and his students at MIT in the 1960s. Dataflow pro-
gramming emphasizes the movement of data and considers programs as a series of
connections. Every operator and processor normally has explicitly defined inputs
and outputs and functions like black boxes. An operation runs as soon as all of its
inputs become valid. Thus, dataflow languages are inherently parallel and can work
well in large, decentralized systems.

In the big data scenario, data-centric jobs can also be modeled as dataflows in
which each node represents a small task while the edges represents the data depen-
dencies between different tasks. Developers may be need to write the process logic
of each node using other general programming languages such as Java, C and Python
while leave the dependency and connecting logic to the dataflow.

Big Data Programming Models 49

6.1 Features

The major features of dataflow programming can be listed as follows:

• Trackable states: Dataflow programming consider programs as connections of
tasks in combination with control logic. Therefore, unlike other programming
models, it provides a inherently trackable states during execution.

• Various representation: Dataflow programming model could be represented in
different ways for different purposes. As we have already discussed, it can be
inherently represented in a graph-based manner and also can be represented in
connected texts introductions and Hash tables.

6.2 Examples

6.2.1 Oozie

Apache Oozie [34] is a server side workflow scheduling system to manage complex
Hadoop jobs. In Oozie workflows are directed acyclic graphs with control flow and
nodes (each node as aMapReduce jobs). In Oozie, theworkflow is specified asXML-
based documents presenting the connection and dataflow of different MapReduce
jobs. Oozie can be integrated with other Hadoop ecosystems and also support differ-
ent types of jobs such as Pig, Hive, Streaming MapReduce, etc. The XML segment
below shows a Fork–Join workflow defined in Oozie:

Listing 15 Fork and Join example in Oozie

1 <workflow−app name=”sample−wf”
2 xmlns=” u r i : o o z i e :wo r k f l ow : 0 . 1 ”>
3 . . .
4 < fo r k name=” f o r k i n g ”>
5 <pa th s t a r t =” f i r s t p a r a l l e l j o b ” / >
6 <pa th s t a r t =” s e c o n d p a r a l l e l j o b ” / >
7 < / f o r k>
8 < a c t i o n name=” f i r s t p a r a l l e j o b ”>
9 <map−r educe>

10 <job−t r a c k e r > foo :8021< / job−t r a c k e r >
11 <name−node>ba r :8020< / name−node>
12 <job−xml>job1 . xml< / job−xml>
13 < /map−r educe>
14 <ok to=” j o i n i n g ” / >
15 < e r r o r t o=” k i l l ” / >
16 < / a c t i o n >
17 < a c t i o n name=” s e c o n d p a r a l l e l j o b ”>
18 <map−r educe>
19 <job−t r a c k e r > foo :8021< / job−t r a c k e r >

50 D. Wu et al.

20 <name−node>ba r :8020< / name−node>
21 <job−xml>job2 . xml< / job−xml>
22 < /map−r educe>
23 <ok to=” j o i n i n g ” / >
24 < e r r o r t o=” k i l l ” / >
25 < / a c t i o n >
26 < j o i n name=” j o i n i n g ” t o=” n e x t a c t i o n ” / >
27 . . .
28 < / workflow−app>

With the workflow specification, each action between control logic is a MapReduce
associated with its Job Tracker and job definition (in a separate xml file). Actions in
Oozie are triggered by time and data availability.

6.2.2 Microsoft Dryad

Microsoft Dryad [33] is a high performance, general purpose distributed comput-
ing engine which supports writing and execution of data-centric parallel programs.
Dryad allows a programmer to utilize the resources of a computer cluster or a data
center to run data-parallel programs. By using Dryad, programmers write simple
programs which will be concurrently executed on thousands of machines (each of
which with multiple processors or cores) while hiding the complexity of concurrent
programming. The code below shows an example about building a graph in Dryad:

Listing 16 Building Graphs in Dryad
1 GraphBui lde r XInputs = (ug r i z 1 >= XSet)
2 | | (ne ighbo r >= XSet) ;
3 GraphBui lde r YInputs = ug r i z 2 >= YSet ;
4 GraphBui lde r XToY = XSet >= DSet >> MSet >= SSet ;
5 for (i = 0 ; i < N∗4; ++ i){
6 XToY = XToY | | (SSet . GetVer tex (i) >= YSet . GetVer tex (i / 4)) ;
7 }
8 GraphBui lde r YToH = YSet >= HSet ;
9 GraphBui lde r HOutputs = HSet >= ou t pu t ;
10 GraphBui lde r f i n a l = XInputs | | YInputs
11 | | XToY | | YToH | | HOutputs ;

A Dryad job contains several sequential programs and are connected using one-way
channels. The program written by programmers is structured as a directed graphs, in
which, programs are vertices, while the channels are edges. A Dryad job is a graph
generator which can synthesize any directed acyclic graph. These graphs can also be
changed during execution to respond to important events or notifications.

Big Data Programming Models 51

7 Bulk Synchronous Parallel

TheBulk Synchronous Parallel (BSP) [51] is a computation and programmingmodel
for designing parallel algorithms. A BSP algorithm is considered as a computation
proceeds in a series of global super-steps, which consists of three components:

• Concurrent computation: Every participating processor may perform local com-
putations, i.e., each process can only make use of values stored in the fast local
memory of the processor. The computations occur asynchronously butmay overlap
with communication.

• Communication: The processes exchange data between themselves to facilitate
remote data storage capabilities.

• Barrier synchronisation: When a process reaches this point (the barrier), it waits
until all other processes have reached the same barrier.

7.1 Features

The BSP model contains the following key features:

• Message-based communications: BSP considers every communication action as
a message and it also considers all messages of a super-step as a unit. This signif-
icantly reduces the effort for users to handle low-level parallel communications.

• Barrel-based Synchronization: BSP uses barrels to guarantee the consistencywhen
needed, although barrel is a costly operation, it provides strong consistency and
can also provides support for fault tolerance in an easy and understandable way.

7.2 Examples

7.2.1 Apache Giraph and Google Pregel

Apache Giraph [4] is an iterative graph processing system built for high scalability.
Giraph is inspired by Google’s Pregel [37] which is based on the Bulk Synchronous
Parallel (BSP)model of distributed computation.Giraph adds several features beyond
the basic Pregel model, including master computation, sharded aggregators, edge-
oriented input, out-of-core computation, etc.

Listing 17 Shortest Path implementation in Giraph

1 publ i c void compute (I t e r a b l e <DoubleWri table > messages){
2 double minDis t = Double .MAX_VALUE;
3 for (DoubleWri tab le message : messages) {
4 minDis t = Math . min (minDist , message . g e t ()) ;
5 }

52 D. Wu et al.

6 i f (minDis t < ge tVa lue () . g e t ()) {
7 s e tVa lue (new DoubleWri tab le (minDis t)) ;
8 for (Edge<LongWritable , F l o a tWr i t a b l e >
9 edge : ge tEdges ()) {

10 double d i s t a n c e = minDis t+edge . ge tVa lue () . g e t () ;
11 sendMessage (edge . g e tT a r g e tVe r t e x I d () ,
12 new DoubleWri tab le (d i s t a n c e)) ;
13 }
14 }
15 vo teToHal t () ;
16 }

7.2.2 Hama

Apache Hama (stands for HadoopMatrix) [5] is a distributed computing framework
based on Bulk Synchronous Parallel computing model for massive scientific compu-
tations. Writing a Hama graph application involves inheriting the predefined Vertex
class. Its template arguments define three value types, associatedwith vertices, edges,
and messages. Hama also provides very flexible input and output options such as the
ability to extract Vertex from programmers’ data without any pre-processing. Hama
also allows programmers to do optimizations by writing Combiner, Aggregator and
Counter in data processing flows. The following code snippet shows an example of
PageRank implementation in Hama:

Listing 18 PageRank implementation in Hama

1 publ i c s t a t i c c l a s s PageRankVertex extends
2 Vertex <Text , Nu l lWr i t ab l e , DoubleWri table > {
3
4 @Override
5 publ i c void compute (I t e r a t o r <DoubleWri table > messages)
6 throws IOExcept ion {
7 / / i n i t i a l i z e t h i s v e r t e x t o 1 / coun t
8 i f (t h i s . g e tSupe r s t epCoun t () == 0) {
9 se tVa lue (new DoubleWri tab le (1 . 0 /

10 t h i s . ge tNumVert ices ())) ;
11 } e l s e i f (t h i s . g e tSupe r s t epCoun t () >= 1) {
12 double sum = 0 ;
13 for (DoubleWri tab le msg : messages) {
14 sum += msg . ge t () ;
15 }
16 double a lpha = (1 . 0 d−DAMPING_FACTOR)
17 / t h i s . ge tNumVert ices () ;
18 s e tVa lue (new DoubleWri tab le (a lpha +
19 (sum∗DAMPING_FACTOR))) ;
20 agg r eg a t e (0 , t h i s . ge tVa lue ()) ;

Big Data Programming Models 53

21 }
22
23 / / i f have no t reached g l oba l error , t hen proceed .
24 DoubleWri tab le g l o b a l E r r o r = ge tAggrega tedValue (0) ;
25
26 i f (g l o b a l E r r o r != nu l l && t h i s . g e tSupe r s t epCoun t () >2
27 && MAXIMUM_CONVERGENCE_ERROR>g l o b a l E r r o r . g e t ()) {
28 vo teToHal t () ;
29 } e l s e {
30 / / i n each s up e r s t e p send a new rank to ne ighbours
31 sendMessageToNeighbors (new DoubleWri tab le (
32 t h i s . ge tVa lue () . g e t () / t h i s . ge tEdges () . s i z e ())) ;
33 }
34 }
35 }

8 High Level DSL

There is no a single programmingmodel that can satisfy everyone and every scenario.
Many frameworks provide their own Domain Specific Language (DSL, in contrast
to general purpose programming language) for writing data-intensive parallel appli-
cations/programs in order to provide a better programming model in certain domains
or purposes.

8.1 Pig Latin

Pig [40] is a high level platform to create data centric programs on top of Hadoop.
The programming interface of Pig is called Pig Latin which is an ETL-like query
language. In comparison to SQL, Pig uses extract, transform, load (ETL) as its basic
primitives. In addition, in Pig Latin, it is able to store data at any point during a
pipeline. At the same time, Pig supports the ability to declare execution plans as
well as support for pipeline splits, thus allowing workflows to proceed along DAGs
instead of strictly sequential pipelines. Lastly, Pig Latin scripts are automatically
compiled to generate equivalent MapReduce jobs for execution.

Listing 19 WordCount example of Pig Latin

1 i n p u t _ l i n e s = LOAD ’ / tmp / wordcount−i n p u t ’
2 AS (l i n e : c h a r a r r a y) ;
3 words = FOREACH i n p u t _ l i n e s
4 GENERATE f l a t t e n (TOKENIZE(l i n e)) AS word ;
5 f i l t e r e d _wo r d s = FILTER words BY word MATCHES ’ \ \w+ ’ ;
6 word_groups = GROUP f i l t e r e d _wo r d s BY word ;

54 D. Wu et al.

Table 6 Basic relational operators in Pig Latin

Operators Description

LOAD Load data from underlying file systems

FILTER Select matched tuples from data set based on some conditions

FOREACH Generate new data transformations based on each columns of a data set

GROUP Group a data set based on some relations

JOIN Join two or more data sets based on expressions of the values of their column
fields

ORDERBY Sort the data set based on one or more columns

DISTINCT Remove duplicated elements from a given data set

MAPREDUCE Execute native MapReduce jobs inside the Pig scripts

LIMIT Limit the number of elements in the output

7 word_count = FOREACH word_groups
8 GENERATE count (f i l t e r e d _wo r d s)
9 AS count , group AS word ;

Pig offers a bunch of operators to support transformation and manipulation on
input datasets. Table6 shows the basic relational operators provided in Pig Latin and
the code snippet in Listing 19 shows a WordCount example written in Pig scripts.

8.2 Crunch/FlumeJava

Apache Crunch [2] is high-level library supports writing testing and running data-
driven pipelines on top of Hadoop and Spark. The programming interface of Crunch
is partially inspired by Google’s FlumeJava [19]. Crunch wraps native MapReduce
interface into high level declarative primitives such as parallelDo, groupByKey,
combineValues and union to make it easy for programmers to write and read their
applications. Crunch provides a couple of high level processing patterns (as shown
in Table7) to facilitate developers to write data-centered applications.

Listing 20 WordCount example of Crunch
1 P i p e l i n e p i p e l i n e = new MRPipeline (WordCount . c l a s s) ;
2 PCo l l e c t i on <S t r i ng > l i n e s = p i p e l i n e . r e a dTex t F i l e (a r g s [0]) ;
3
4 DoFn<S t r i ng , S t r i ng > func = new DoFn<S t r i ng , S t r i ng >(){
5 publ i c void p ro c e s s (S t r i n g l i n e ,
6 Emi t t e r <S t r i ng > em i t t e r){
7 for (S t r i n g word : l i n e . s p l i t (” \ \ s+”)) {
8 em i t t e r . emi t (word) ;
9 }
10 }

Big Data Programming Models 55

Table 7 Common data processing patterns in Crunch

Pattern Description

groupByKey Group and shuffle data set based on the key of the tuples

combineValues Aggregate elements in a grouped data set based on the combination function

aggregations Common aggregation patterns are provided as methods on the PCollection
data type, including count, max, min, and length

join Join two keyed data sets by group the elements with the same key

sorting Sort data set based on the value of a selected column

11 }
12 PCo l l e c t i on <S t r i ng > words =
13 l i n e s . p a r a l l e lDo (func , Wr i t a b l e s . s t r i n g s ()) ;
14
15 for (Pa i r <S t r i ng , Long> wordCount : words . coun t ())) {
16 System . ou t . p r i n t l n (wordCount) ;
17 }

In Crunch, each job is considered as a Pipeline and data are considered as Collec-
tions. Programmers write their process logic within DoFn interfaces and use basic
primitives to apply transformation, filtering, aggregation and sorting to the input
data sets to implement expected applications. The WordCount example of Crunch is
shown in Listing 20.

8.3 Cascading

Apache Cascading [31] is a high-level development layer for building data appli-
cations on Hadoop. Cascading is designed to support the building and execution of
complex data processing pipelines on a Hadoop cluster while hiding the underly-
ing complexity of MapReduce jobs. The below code snippet shows the example of
WordCount written using the Cascading API:

Listing 21 WordCount example of Cascading

1 Tap docTap = new Hfs (new AvroScheme () , docPath) ;
2 Tap wcTap = new Hfs (new Tex tDe l im i t ed () , wcPath , true) ;
3 Pipe wcPipe = new Pipe (”wordcount”) ;
4 wcPipe = new GroupBy (wcPipe , new F i e l d s (”coun t”)) ;
5 wcPipe = new Every (wcPipe ,
6 F i e l d s .ALL,
7 new Count (new F i e l d s (”coun t coun t ”)) ,
8 F i e l d s .ALL) ;
9
10 FlowDef flowDef = FlowDef . f lowDef ()
11 . setName (”wc”)

56 D. Wu et al.

12 . addSource (wcPipe , docTap)
13 . addTa i lS ink (wcPipe , wcTap) ;
14
15 Flow wcFlow = f lowConnec to r . connec t (flowDef) ;
16 wcFlow . writeDOT (”do t / wcr . do t”) ;
17 wcFlow . comple te () ;

As we can see from the example, a cascading job is defined as a Flow, in which it can
contains multiple pipes. Each pipe is actually a function block which is responsible
for a certain data process step such as GroupBy, Filtering, Joining and Sorting. Pipes
are connected to construct the final Flow for execution.

8.4 Dryad LINQ

DryadLINQ [52] is a compiler which translates LINQ (Language-Integrated Query)
programs to distributed computations which can be run on a cluster. The goal of
LINQ is to bridge the gap between the world of objects and the world of data. LINQ
uses query expressions akin to SQL statements such as select, where, join, groupBy
and orderBy, etc. In addition, LINQ also defines a set of method names (called stan-
dard query operators), along with translation rules used by the compiler to translate
fluent-style query expressions into expressions using these method names, lambda
expressions and anonymous types. In DryadLINQ, the data queries are automatically
compiled as DAG tasks to be executed on the Dryad engine to support the building
and execution of large scale data-driven applications and programs.

Listing 22 WordCount example of Dryad LINQ

1 publ i c s t a t i c IQueryable <Pa i r > Histogram (
2 IQueryable < s t r i n g > inpu t , i n t k){
3 IQueryable < s t r i n g > words =
4 i n pu t . SelectMany (x => x . S p l i t (’ ’)) ;
5 IQueryable <IGrouping < s t r i n g , s t r i n g >> groups =
6 words . GroupBy (x => x) ;
7 IQueryable <Pa i r > coun t s =
8 groups . S e l e c t (x => new Pa i r (x . Key , x . Count ())) ;
9 IQueryable <Pa i r > o rde r ed =
10 coun t s . OrderByDescending (x => x . coun t) ;
11 IQueryable <Pa i r > top = o rde r ed . Take (k) ;
12 return t op ;
13 }

The code snippet above shows an example of the WordCount program written using
DryadLINQ. As we can see from the example, LINQ actually provides ETL oper-
ations in an Object-oriented ways. Query primitives are object operations which
associated to the data, and the result of queries are represented as collections with
specific types.

Big Data Programming Models 57

8.5 Trident

Trident [12] is a high-level abstraction for doing realtime computing on top of Storm.
It allows you to seamlessly intermix high throughput (millions of messages per
second), stateful stream processing with low latency distributed querying. If you’re
familiar with high level batch processing tools like Pig or Cascading, the concepts
of Trident will be very familiar. Trident has joins, aggregations, grouping, functions,
and filters. In addition to these, Trident adds primitives for doing stateful, incremental
processing on top of any database or persistence store. Trident has consistent, exactly-
once semantics, so it is easy to reason about Trident topologies.

Listing 23 Code snippet of WordCount using Trident

1 Tr iden tTopo logy topo logy = new Tr iden tTopo logy () ;
2 T r i d e n t S t a t e wordCounts =
3 topo logy . newStream (”spou t1” , spou t)
4 . each (new F i e l d s (” s en t e n c e ”) ,
5 new S p l i t () ,
6 new F i e l d s (”word”))
7 . groupBy (new F i e l d s (”word”))
8 . p e r s i s t e n tAg g r e g a t e (new MemoryMapState . Fac t o ry () ,
9 new Count () ,

10 new F i e l d s (”coun t”))
11 . p a r a l l e l i smH i n t (6) ;

8.6 Green Marl

Green Marl [30] is a DSL introduced by the Pervasive Parallelism Laboratory of
Stanford University and specifically designed for graph analysis. Green Marl allows
user to describe their graphs intuitively through a high level interfacewhile inherently
provide data-driven parallelism. Green Marl, provides the ability to define both
directed graphs and undirected graphs and supports basic types (like Int, Long, Float,
Double and Bool) and collections (like Set, Sequence and Order). Green Marl intro-
duces its own compiler to interpret the program into C++ code for execution. The
compiler of Green Marl also introduces a couple of optimizations during compile-
time to improve the execution performance. The code snippet below shows an exam-
ple about the Betweenness Centrality algorithm written in Green Marl.

Listing 24 Betweenness Centrality algorithm described in Green Marl

1 Procedure Compute_BC (
2 G: Graph , BC: Node_Prop<F loa t >(G)) {
3 G.BC = 0 ; / / i n i t i a l i z e BC
4 Foreach (s : G. Nodes) {
5 / / d e f i n e temporary p r o p e r t i e s

58 D. Wu et al.

6 Node_Prop<F loa t >(G) Sigma ;
7 Node_Prop<F loa t >(G) De l t a ;
8 s . Sigma = 1 ; / / I n i t i a l i z e Sigma f o r roo t
9 / / T raver se graph in BFS−order from s

10 InBFS (v : G. Nodes From s) (v != s) {
11 / / sum over BFS−pa r en t s
12 v . Sigma = Sum(w: v . UpNbrs) {w. Sigma } ;
13 }
14 / / T raver se graph in r e v e r s e BFS−order
15 InRBFS (v != s) {
16 / / sum over BFS−c h i l d r e n
17 v . De l t a = Sum (w: v . DownNbrs) {
18 v . Sigma / w. Sigma ∗ (1+ w. De l t a)
19 } ;
20 v .BC += v . De l t a ; / / accumula te BC
21 } } }

8.7 Asterix Query Language (AQL)

TheAsterixQuery Language (AQL) [14] is the language interface provided byAster-
ixDB which is a scalable big data management system (BDMS) with the capability
for querying semi-structured data sets. AQL is based on a NoSQL style data model
(ADM) which extends JSON with object database concepts. Basically, AQL is an
expressive and declarative query language for querying semi-structured data with
the support for a rich set of primitive types, including spatial, temporal and textual
data. The code snippet below shows an example about joining two data sets in AQL.

Listing 25 Join two data sets by AQL

1 f o r $u s e r in d a t a s e t FacebookUsers
2 f o r $message in d a t a s e t FacebookMessages
3 where $message . au thor−i d = $u se r . i d
4 r e t u r n
5 {
6 ”uname” : $u s e r . name ,
7 ”message” : $message . message
8 } ;

As we can see from the example code, AQL combines the style of an SQL query
with the data model of JSON to provide a programming style that is both declarative
and data-driven. The core of AQL is called FLWOR (for-let-where-orderby-return)
expressionwhich is borrowed fromXQuery expressions.AFLWORexpression starts
with one or more clauses which establishes the variable bindings.

Big Data Programming Models 59

• A for clause binds a variable incrementally to each element of its associated
expression and includes an optional positional variable for counting/numbering
the bindings.

• A let clause binds a variable to the collection of elements computed by its associ-
ated expression.

• The where clause in a FLWOR expression filters the preceding bindings via a
boolean expression, much like a where clause does in an SQL query.

• The order by clause in a FLWOR expression induces an ordering on the data.
• The return clause defines the data expected to be sent back as the results of a query.

8.8 IBM Jaql

Jaql (or JAQL) [18] is a functional data processing and query language mostly focus-
ing on JSON-based query processing on BigData. Jaql was originally introduced by
Google and then further developed by IBM. Jaql is designed to elegantly handle
deeply nested semi-structured data and even deal with heterogeneous data. Jaql can
also be used in Hadoop as a expressive query language that is comparable with Pig
and Hive. The code snippet below shows some basic examples of queries written in
Jaql.

Listing 26 Basic opertions in Jaql
1 a = {name : ” s c o t t ” , age : 42 , c h i l d r e n : [” j a k e ” , ”sam”] } ;
2 a . name ; / / r e t u r n s ” s c o t t ”
3 a . c h i l d r e n [0] ; / / r e t u r n s ” j a k e”
4
5 / / f o r l o c a l f i l e sys t em
6 read (de l (” f i l e : / / / home / user / t e s t . c sv”)) ;
7 / / f o r hd f s f i l e sys t em
8 read (de l (”hd f s : / / l o c a l h o s t : 9000 / u ser / t e s t . c sv”)) ;
9

10 r e c s = [{a : 1 , b : 4} , {a : 2 , b : 5} , {a : −1, b : 4}] ;
11 r e c s −> t r a n s f o rm .a+ . b ; / / r e t u r n s [5 , 7 , 4]

9 Discussion and Conclusion

In this section, we summarize the main features and compare the various program-
ming models presented in this chapter.

Due to its declarative feature, functional programming is natural fit for data-driven
programs and applications. As pure functions are stateless and have no side effects,
functional programs are easier to be parallelized and proofed for correctness. In
addition, functional programs are easier to debug and test as functions are a better
isolation of functionalities without the uncertainties caused by state sharing and other

60 D. Wu et al.

side-effects. However, programming in a functional way is much different from pro-
gramming in the imperative programming. Developers need to shift from imperative
and procedure-based thinking to a functional way of thinking when writing the pro-
grams. This may require considerable efforts from the developer to learn and practice
in order to gain sufficient mastery.

MapReduce is considered as an easy way of writing data-driven parallel pro-
grams. The emergence of MapReduce significantly eased the task for developing
data-parallel applications on large scale data sets. Although the paradigm is simple,
it can still cover the majority of the algorithms in practice. MapReduce is not guar-
anteed to be fast as its focus is more on scalability and fault tolerance. In addition,
MapReduce is criticized for lacking the novelty of more recent developments and
its restricted programming paradigm which does not support iterative and streaming
algorithms.

SQL is considered as having limited semantics and not sufficiently expressive.
Basically, SQL is not a Turing-complete language, it is more towards a query rather
than a general programming language such as Java and C. As a result, it is more
suitable for writing ETL (Extract, Transform and Load) or CRUD (Create, Read,
Update and Delete) queries rather than general algorithms. For example, it would
be a horrible choice to use SQL for writing data mining and machine learning algo-
rithms. Traditional rational queries are slow and less scalable in Big Data scenarios,
therefore, query languages such as HQL and CQL cut down the majority of the ratio-
nal paradigms provided by traditional SQL in order to be more scalable in a big data
context.

The first advantage of dataflow programming is that it facilitates for visualized
programming and monitoring. Due to its simplified graph-based interfaces, it is
easy to prototype and implement certain systems and applications. In addition, it is

Table 8 Comparison for different programming models

Model Features Abstraction Semantics Computation
model

MapReduce Non-declarative
skeleton-based

low Limited inherent
parallel

MapReduce

Functional Declarative
stateless

High Rich and general
purpose

DAG or
Evaluation-based

SQL-based Declarative High Limited Execution plan

Data flow Non-declarative
modularized

mediate Rich
control-logic
based

DAG

Statistical Declarative High Limited
domain-specific

Mathemetical

BSP Skeleton-based Low Rich BSP

Actor Event-driven
message-based

Low Rich and inherent
concurrency

Reactive actors

Big Data Programming Models 61

also well known for providing end-user programming in which WYSIWYG (what
you see is what you get) interfaces are required. Another point in favour of data
flow programming is that, by writing programs in a dataflow manner, it actually
help developers to modularize their programs as connected processing components
and provide good loosely coupled structure and flexibility. However, compared to
other programming models such as functions and SQLs, dataflow-based model is
relatively non-declarative, unproductive for programming as it basically provides
low-level programming abstractions and interfaces, which is hard to be integrated
with.

To sum up, the comparison of basic programming models are listed in Table8.
Basically,MapReduce and BSPmodels are programming skeletons, functional, SQL
and statistical models are declarative, while data-flow model is inherently modu-
larized and actor model is essentially event-driven and message-based. In addition,
functional, SQL and statistical models are high-level abstractionmodels andMapRe-
duce, BSP and actor models are low-level abstraction. Lastly, functional, BSP and
actormodels aremore semantically complete to support richer operationswhile other
models are generally limited in semantics to trade off among understandability, user-
convenience and productivity [16, 42].

References

1. A. Alexandrov, R. Bergmann, S. Ewen, J.-C. Freytag, F. Hueske, A. Heise, O. Kao, M. Leich,
U. Leser, V. Markl, F. Naumann, M. Peters, A. Rheinländer, M.J. Sax, S. Schelter, M. Höger,
K. Tzoumas, D. Warneke, The stratosphere platform for big data analytics, VLDB J. 23(6)
(2014)

2. Apache. Apache crunch (2016). https://crunch.apache.org/. Accessed 17 Mar 2016
3. Apache. Apache drill (2016). https://drill.apache.org/. Accessed 17 Mar 2016
4. Apache. Apache giraph (2016). https://giraph.apache.org/. Accessed 17 Mar 2016
5. Apache. Apache hama (2016). https://hama.apache.org/. Accessed 17 Mar 2016
6. Apache. Apache orc (2016). https://orc.apache.org/. Accessed 17 Mar 2016
7. Apache. Avro (2016). https://avro.apache.org/. Accessed 17 Mar 2016
8. Apache. Hadoop (2016). http://hadoop.apache.org/. Accessed 17 Mar 2016
9. Apache. Mahout: Scalable machine learning and data mining (2016). https://mahout.apache.

org/. Accessed 17 Mar 2016
10. Apache. Parquet (2016). https://parquet.apache.org/. Accessed 17 Mar 2016
11. Apache. Spark r (2016). https://spark.apache.org/docs/1.6.0/sparkr.html. Accessed 17 Mar

2016
12. Apache Storm. Trident (2016). http://storm.apache.org/documentation/Trident-tutorial.html.

Accessed 17 Mar 2016
13. M. Armbrust, R.S. Xin, C. Lian, Y. Huai, D. Liu, J.K. Bradley, X. Meng, T. Kaftan, M.J.

Franklin, A. Ghodsi, M. Zaharia, Spark SQL: relational data processing in spark, in SIGMOD
(2015), pp. 1383–1394

14. AsterixDB. Asterix query language (aql) (2016). https://asterixdb.ics.uci.edu/documentation/
aql/manual.html. Accessed 17 Mar 2016

15. Azure Microsoft. Microsoft azure: Cloud computing platform and services (2016). https://
azure.microsoft.com. Accessed 27 Feb 2016

https://crunch.apache.org/
https://drill.apache.org/
https://giraph.apache.org/
https://hama.apache.org/
https://orc.apache.org/
https://avro.apache.org/
http://hadoop.apache.org/
https://mahout.apache.org/
https://mahout.apache.org/
https://parquet.apache.org/
https://spark.apache.org/docs/1.6.0/sparkr.html
http://storm.apache.org/documentation/Trident-tutorial.html
https://asterixdb.ics.uci.edu/documentation/aql/manual.html
https://asterixdb.ics.uci.edu/documentation/aql/manual.html
https://azure.microsoft.com
https://azure.microsoft.com

62 D. Wu et al.

16. O. Batarfi, R. El Shawi, A.G. Fayoumi, R. Nouri, S.-M.-R. Beheshti, A. Barnawi, S. Sakr,
Large scale graph processing systems: survey and an experimental evaluation. Clust. Comput.
18(3), 1189–1213 (2015)

17. R.A. Becker, J.M. Chambers, S: An Interactive Environment for Data Analysis and Graphics
(CRC Press, New York, 1984)

18. K.S. Beyer, V. Ercegovac, R. Gemulla, A. Balmin, M. Eltabakh, C.-C. Kanne, F. Ozcan, E.J.
Shekita, Jaql: a scripting language for large scale semistructured data analysis, in Proceedings
of VLDB Conference (2011)

19. C. Chambers, A. Raniwala, F. Perry, S. Adams, R.R. Henry, R. Bradshaw, N. Weizenbaum,
FlumeJava: easy, efficient data-parallel pipelines, in PLDI (2010)

20. W. Clinger, J. Rees, Ieee standard for the scheme programming language, in Institute for
Electrical and Electronic Engineers (1991), pp. 1178–1990

21. Cloudera. Apache impala (2016). http://impala.io/. Accessed 17 Mar 2016
22. T.H. Cormen, Introduction to Algorithms (MIT press, New York, 2009)
23. S. Das, Y. Sismanis, K.S. Beyer, R. Gemulla, P.J. Haas, J.McPherson, Ricardo: integrating r and

hadoop, in Proceedings of the 2010 ACM SIGMOD International Conference on Management
of data (ACM, 2010), pp. 987–998

24. J. Dean, S. Ghemawat, MapReduce: simplified data processing on large clusters. Commun.
ACM 51(1) (2008)

25. Facebook. Presto (2016), https://prestodb.io/. Accessed 17 Mar 2016
26. L. George, HBase: The Definitive Guide (O’Reilly Media, Inc., 2011)
27. Google. Cloud sql - mysql relational database (2016). https://cloud.google.com/sql/. Accessed

27 Feb 2016
28. S. Guha, R. Hafen, J. Rounds, J. Xia, J. Li, B. Xi, W.S. Cleveland, Large complex data: divide

and recombine (d&r) with rhipe. Stat 1(1), 53–67 (2012)
29. C. Hewitt, P. Bishop, R. Steiger, A universal modular actor formalism for artificial intelligence,

in Proceedings of the 3rd International Joint Conference on Artificial Intelligence (Morgan
Kaufmann Publishers Inc., 1973), pp. 235–245

30. S. Hong, H. Chafi, E. Sedlar, K. Olukotun, Green-marl: a dsl for easy and efficient graph
analysis, in ACM SIGARCH Computer Architecture News, vol. 40 (ACM, 2012), pp. 349–362

31. Inc Concurrent. Cascading - application platform for enterprise big data (2016). http://www.
cascading.org/. Accessed 17 Mar 2016

32. R. Ihaka, R. Gentleman, R: a language for data analysis and graphics. J. Comput. Graph. Stat.
5(3), 299–314 (1996)

33. M. Isard, M. Budiu, Y. Yu, A. Birrell, D. Fetterly, Dryad: distributed data-parallel programs
from sequential building blocks, in ACM SIGOPS Operating Systems Review, vol. 41 (ACM,
2007), pp. 59–72

34. M. Islam, A.K. Huang, M. Battisha, M. Chiang, S. Srinivasan, C. Peters, A. Neumann, A.
Abdelnur, Oozie: towards a scalable workflow management system for hadoop, in SIGMOD
Workshops (2012)

35. W.M. Johnston, J.R. Hanna, R.J. Millar, Advances in dataflow programming languages. ACM
Comput. Surv. (CSUR) 36(1), 1–34 (2004)

36. A. Lakshman, P. Malik, Cassandra: a decentralized structured storage system. ACM SIGOPS
Oper. Syst. Rev. 44(2), 35–40 (2010)

37. G. Malewicz, M.H. Austern, A.J.C. Bik, J.C. Dehnert, I. Horn, N. Leiser, G. Czajkowski,
Pregel: a system for large-scale graph processing, in SIGMOD Conference (2010)

38. X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu, J. Freeman, D.B. Tsai,
M. Amde, S. Owen, et al., Mllib: machine learning in apache spark (2015). arXiv preprint,
arXiv:1505.06807

39. MongoDB Inc. Mongodb for giant ideas (2016). https://www.mongodb.org/. Accessed 27 Feb
2016

40. C. Olston, B. Reed, U. Srivastava, R. Kumar, A. Tomkins, Pig latin: a not-so-foreign language
for data processing, in SIGMOD (2008)

http://impala.io/
https://prestodb.io/
https://cloud.google.com/sql/
http://www.cascading.org/
http://www.cascading.org/
http://arxiv.org/abs/1505.06807
https://www.mongodb.org/

Big Data Programming Models 63

41. Swift OpenStack. Openstack swift - enterprise storage from swiftstack (2016). https://www.
swiftstack.com/openstack-swift/. Accessed 27 Feb 2016

42. S. Sakr, Big Data 2.0 Processing Systems (Springer, Berlin, 2016)
43. S. Sakr,M.M.Gaber (eds.) Large Scale and BigData - Processing andManagement (Auerbach

Publications, 2014)
44. Sherif Sakr, Anna Liu, Ayman G. Fayoumi, The family of mapreduce and large-scale data

processing systems. ACM Comput. Surv. 46(1), 11 (2013)
45. K. Shvachko, H. Kuang, S. Radia, R. Chansler, The hadoop distributed file system, in IEEE

MSST (2010)
46. S3 Amazon. Amazon simple storage service (amazon s3) (2016). https://aws.amazon.com/s3/.

Accessed 27 Feb 2016
47. A. Thusoo, J.S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu, P. Wyckoff, R. Murthy,

Hive: a warehousing solution over a map-reduce framework. Proc. VLDB Endow. 2(2), 1626–
1629 (2009)

48. A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J.M. Patel, S. Kulkarni, J. Jackson, K.
Gade, M. Fu, J. Donham, et al., Storm@ twitter, in Proceedings of the 2014 ACM SIGMOD
international conference on Management of data (ACM, 2014), pp. 147–156

49. Typesafe. Akka (2016). http://akka.io/. Accessed 17 Mar 2016
50. Typesafe. Play framework - build modern & scalable web apps with java and scala (2016).

https://www.playframework.com/. Accessed 17 Mar 2016
51. L.G. Valiant, A bridging model for parallel computation. Commun. ACM 33(8), 103–111

(1990)
52. Y. Yu, M. Isard, D. Fetterly, M. Budiu, Ú. Erlingsson, P.K. Gunda, J. Currey, Dryadlinq: a

system for general-purpose distributed data-parallel computing using a high-level language, in
OSDI, vol. 8 (2008), pp. 1–14

53. M. Zaharia, M. Chowdhury, M.J. Franklin, S. Shenker, I. Stoica, Spark: cluster computing with
working sets, in HotCloud (2010)

54. M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, M.J. Franklin, S. Shenker,
I. Stoica, Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster com-
puting, in NSDI (2012)

https://www.swiftstack.com/openstack-swift/
https://www.swiftstack.com/openstack-swift/
https://aws.amazon.com/s3/
http://akka.io/
https://www.playframework.com/

Programming Platforms for Big
Data Analysis

Jiannong Cao, Shailey Chawla, Yuqi Wang and Hanqing Wu

Abstract Big data analysis imposes new challenges and requirements on
programming support. Programming platforms need to provide new abstractions
and run time techniques with key features like scalability, fault tolerance, efficient
task distribution, usability and processing speed. In this chapter, we first provide a
comprehensive survey of the requirements, give an overview and classify existing big
data programming platforms based on different dimensions. Then, we present details
of the architecture, methodology and features of major programming platforms like
MapReduce, Storm, Spark, Pregel, GraphLab, etc. Last, we compare existing big
data platforms, discuss the need for a unifying framework, present our proposed
framework MatrixMap, and give a vision about future work.

Keywords Big data analysis ·Programming platforms ·Unifying framework ·Data
parallel · Graph parallel · Task parallel · Stream processing

1 Introduction

The necessity of increased computing speed and capacity offered by big data pro-
gramming platforms has led to constantly evolving system architectures, novel devel-
opment environments, and multiple third-party software libraries and application
packages. Now, we are in an era where businesses, government sectors, small and
big organizations have all realized the potential of big data analysis. The great demand

J. Cao (B) · S. Chawla · Y. Wang · H. Wu
Department of Computing, Hong Kong Polytechnic University, King’s Park, Hong Kong
email: csjcao@comp.polyu.edu.hk
URL: http://www4.comp.polyu.edu.hk/˜csjcao/

S. Chawla
e-mail: csschawla@comp.polyu.edu.hk

Y. Wang
e-mail: csyqwang@comp.polyu.edu.hk

H. Wu
e-mail: cshwu@comp.polyu.edu.hk

© Springer International Publishing AG 2017
A.Y. Zomaya and S. Sakr (eds.), Handbook of Big Data Technologies,
DOI 10.1007/978-3-319-49340-4_3

65

66 J. Cao et al.

for big data analysis systems is giving a thrust to the research and development in
this area. Large amounts of data have to be handled in a parallel and distributed way
wherein, and the computations have to be distributed across many machines in order
to be finished in a reasonable amount of time. The issue of how the computation can
be parallelized, how data is distributed and how failures are handled in such a wide
distribution are compelling, and call for special programming platforms for big data
analysis.

In recent years, a lot of programming platforms have emerged for big data analysis.
Figure1 shows the time line of systems that handle large scale data. The timeline
clearly indicates the increasing amount of interest in these systems recently.

Big data processing can be done on either distributed clusters or high performance
computing machines like Graphical Processing Units [10].

In this section of the chapter, we provide an overview of existing programming
platforms for big data analysis, which gives the readers a brief impression on exist-
ing big data platforms. The remaining part of the chapter is organized as follows.
First, we discuss the special requirements and features of programming platforms
for large scale data analysis in the next section. We then present in Sect. 3, a classi-
fication schema for big data programming platforms based on different dimensions,
which would give insights on types of existing systems and their suitability to differ-
ent kinds of applications. In Sect. 4, we will introduce the details of major existing
programming platforms. The programming platforms are described with respect to
their specific purpose, programming model, implementation details and important
features. We discuss our unifying framework and our proposed framework called
MatrixMap [15], as well as summarize the big data programming platforms accord-
ing to the essential requirements in Sect. 5. Finally,we conclude this chapter by giving
our understanding and vision on programming platforms. The chapter is intended to
benefit anyone who is new to big data analysis by presenting details and features of
popular big data programming platforms, analysts to choose appropriate program-

Fig. 1 Timeline of programming platforms for big data analysis

Programming Platforms for Big Data Analysis 67

ming platforms for their specific applications by offering comparison across them,
and also interested researchers by showing our current research work and vision on
future direction.

2 Requirements of Big Data Programming Support

Programming platforms constitute of systems and language environments that can
run on commodity, inexpensive hardware or software and can be programmed and
operated by programmers and analysts with average, mainstream skills. Big data
analysis need to have some essential requirements so as to deal with specific issues
related to vast data and large scale computations, they also need to support distributed
and local processing (data copies) and support ease of use, data abstraction, data flow
and data transformations. In traditional programming platforms, the key feature is
performance, but for systems with large scale data, there are many more features
essential for smooth functioning of the system and being useful.

Scalability
Scalability is the ability of a system, network, or process to handle a growing amount
of work in a capable manner or its ability to be enlarged to accommodate that growth
[5]. Scaling can be done by either scaling up the system, which means adding addi-
tional resources on a single computer/node to improve the performance or scaling
out the system, which refers to addition of more computers/nodes to the system in a
distributed software system.

Support Multiple Data Types
Big data systems should be able to support multiple data types, e.g., record, graph or
stream. Different common data types have been briefly explained in following text.

• Record data can be split into independent elements and thus data can be processed
independently. Independent results can be summed up to get the final result.

• Graph data cannot be split into independent elements like in the case of record
data. Elements may have relations with each other and thus the processing of one
element depends on other elements. Graph data not only include real graphs but
also other data which can be viewed as graph. The data can also be in form of
stream which would require fast processing in memory.

• Stream data arrive at a rate that makes it infeasible to store everything in active
storage. If it is not processed immediately or stored, then it is lost forever or we
lose the opportunity to process them at all. Thus, stream-processing algorithm is
executed in main memory, without or with only rare access to secondary storage.

Fault Tolerance
Fault tolerance is the property that enables a system to continue operating properly
in the event of the failure of (or one or more faults within) some of its components.
In a distributed framework with large scale data, it is imperative that some nodes

68 J. Cao et al.

carrying data can fail. For a fault tolerant system, when a server in the cluster fails, a
stand-by server is automatically activated to take over the tasks, there are also check
pointing and recovery to minimize state loss.

Efficiency
Massive computation capability is required for big data analysis and hence efficiency
is very critical when programming platforms are scaled up or scaled out for handling
large amounts of data. Efficiency means faster speed with respect to usage of certain
resources like memory or number of nodes.

Data I/O Performance
Data I/O performance refers to the rate at which the data is transferred to/from a
peripheral device. In the context of big data analytics, this can be viewed as the rate
at which the data is read and written to the memory (or disk) or the data transfer rate
between the nodes in a cluster. The systems should have low latency to minimize
the time taken for reading and writing to the memory, and high throughput for data
transmission.

Iterative Task Support
This is the ability of a system to efficiently support iterative tasks. Since many of the
data analysis tasks and algorithms are iterative in nature, it is an important metric
to compare different platforms, especially in the context of big data analytics. The
systems must be suitable for iterative algorithms so that the result of one iteration
can be easily used in the next iteration, and all the parameters can be stored locally.
Processes can reside and can keep running as long as the machine is running.

The properties described above are very significant for description of program-
ming platforms. In the next section, we propose a classification of programming
system based on different dimensions. We have classified the programming plat-
forms based on the processing techniques and data sources.

3 Classification of Programming Platforms

The existing programming platforms for big data analysis have numerous special
features as discussed in the previous section. It is important to realize what kinds of
systems encompass what features so that it is easier to make a choice of program-
ming system with respect to the application. We classify the existing programming
platforms based on different dimensions as that have been described in the following
subsections.

3.1 Data Source

Data analysis is done for different kinds of source data. The data can arrive for
processing either in batches or continuous stream. Hence based on how the data

Programming Platforms for Big Data Analysis 69

arrives, various systems can be classified into Batch Processing Systems and Stream
Processing Systems. Many big data analysis applications work on batch-wise input,
and there are many like twitter or stock markets dealing with multiple data streams.
There have been much development in this regard, and specific programming plat-
forms have been fostered to deal with streaming data.

Batch Processing Systems are the systems that execute a series of programs
which take a set of data files as input, processes the data and produce a set of output
data files. It is termed as batch processing because the data is collected in batches as
sets of records and processed as a unit. Output is another batch that can be reused as
input if required.

Batch processing systems have existed for very long and they have various advan-
tages. These systems utilize computing resources in an optimum and efficientmanner
based on the priority of other jobs. Batch processing techniques are likely to avoid
system overhead.

Many distributed programming platforms like MapReduce [8], Spark [32],
GraphX [12], Pregel [22] and HTCondor [14] are batch processing systems. They
analyze large scale data in batches in a distributed and parallel fashion.

Stream Processing Systems are the systems that process continuous input of
data. These systems should have faster rate of processing than rate of incoming data.
So an input dataset coming at time t needs to be processed before dataset arrives at
time t + 1. The stream processing systems work under a very strict time constraint.
They are important in applications, which need continuous output from incoming
data like stock market, twitter etc. Big data programming platforms like Storm [30],
Spark Streaming [32] and S4 [24] are used for processing stream data.

3.2 Processing Technique

Programming platforms can also be classified based on the processing techniques.
Large scale processing can be done using different techniques like data parallel, task
parallel or graph parallel techniques. We have classified the programming platforms
according to the techniques they employ for processing data.

Data parallel programming platforms focus on distributed data across parallel
computing nodes. In data parallelism, each node executes the same task on differ-
ent pieces of distributed data. It emphasizes that data is distributed and executed in
parallel on different computing nodes, and then the result from different nodes is
consolidated and processed further. The data parallel systems tend to be very fault
tolerant as they can have redundancy. Also, this kind of arrangement makes process-
ing of large-scale data simpler by breaking down data into smaller units.MapReduce,
Spark, Hadoop are data parallel systems and have been very popular in big data pro-
gramming community. We also proposed MatrixMap to efficiently support matrix
computations.

Task parallel platforms are systems that process data in a parallel manner across
multiple processors. Task parallelism focuses on distributing execution processes

70 J. Cao et al.

Fig. 2 Classification
schema of big data
programming platforms
(stream processing platforms
are mentioned in italics)

across different parallel computing nodes. HTCondor programming system is an
example of task parallel system.

Graph parallel platforms are systems that encode computation as vertex pro-
grams which run in parallel and interact along edges in the graph. Graph-parallel
abstractions rely on each vertex having a small neighborhood to maximize paral-
lelism, and effective partitioning to minimize communication. Formally, a graph-
parallel abstraction consists of a sparse graph G = {V, E}, and a vertex-program Q
which is executed in parallel on each vertex v belongs to set V , and can interact (e.g.,
through shared-state in GraphLab, or messages in Pregel) with neighboring instances
Q (u) where (u, v) belongs to E . In contrast to more general message passing mod-
els, graph-parallel abstractions constrain the interaction of vertex-program to a graph
structure enabling the optimization of data-layout and communication [11]. Pregel,
Graphlab, GraphX are graph parallel systems popular for social network analysis.

Figure2 depicts the classification schema of various programming platforms for
big data analysis. The Figure presents the classification in the formof aVenn diagram,
and the programming platforms are placed according to their matching criterion.
The systems in italics are stream processing systems, while the remaining are batch
processing systems. In the next section we describe the major existing programming
platforms in detail.

4 Major Existing Programming Platforms

In this section we describe in detail some major programming platforms that are
prominent in big data analysis. The programming platforms have been described
according to the prominent processing techniques used in their programmingmodels.

Programming Platforms for Big Data Analysis 71

4.1 Data Parallel Programming Platforms

Data parallel programming platforms are the systems that distribute data over parallel
computing nodes [6]. In distributed systems, data parallelism is achieved by dividing
the data into a smaller size and each parallel computing node performing the same
task over small sized data. The intermediate result is then integrated to achieve the
final outcome of processing.

4.1.1 Hadoop

Hadoop is based on MapReduce programming model [8] which is the most popu-
lar paradigm for big data analysis till date, and brought a breakthrough in big data
programming. In this model, data-parallel computations are executed on clusters of
unreliable machines by systems, that automatically provide locality-aware schedul-
ing, fault tolerance, and load balancing. Hadoop MapReduce is an open source form
of Google MapReduce.

MapReduce is useful in awide range of applications, including distributed pattern-
based searching, distributed sorting, web link-graph reversal, web access log stats,
inverted index construction, document clustering, machine learning, and statistical
machine translation. At Google, MapReduce was used to completely regenerate
Google’s index of the World Wide Web. It has replaced the old ad hoc programs that
updated the index and ran various analyses.

The MapReduce abstraction allows expressing simple computations without
revealing the complicated details of parallelization. There are two main primitives in
this abstraction called theMap and Reduce operations. The computation is expressed
in form of these two functions, wherein it takes a set of input key/value pairs and
produces a set of output key/value pairs.

Map, written by the user, takes an input pair and produces a set of intermedi-
ate key/value pairs. The MapReduce library groups together all intermediate values
associated with the same intermediate key and passes them to the Reduce function.

Reduce function, written by user too, accepts intermediate key and a set of values
for that key. It merges these values together to form a possibly smaller set of values.
This is done in an iterative fashion, so that list of values that are too large can fit
in memory. This is the key concept of the MapReduce paradigm that enables it to
handle large scale data in an efficient way.

The MapReduce framework transforms a list of (key, value) pairs into a list of
values. This behavior is different from the typical functional programming, Map
and Reduce combination, which accepts a list of arbitrary values and returns one
single value that combines all the values returned by map. Figure3 [4] depicts the
architecture of MapReduce programming model.

MapReduce framework for processing parallelizable problems across huge
datasets using a large number of computers (nodes), collectively referred to as a
cluster (if all nodes are on the same local network and use similar hardware) or a

72 J. Cao et al.

Fig. 3 Architecture of MapReduce model

grid (if the nodes are shared across geographically and administratively distributed
systems, and usemore heterogeneous hardware). Processing can occur on data stored
either in a file system (unstructured) or in a database (structured). MapReduce can
take advantage of locality of data, processing it on or near the storage assets in order
to reduce the distance over which it must be transmitted.

“Map” step: Each worker node applies the “map()” function to the local data,
and writes the output to a temporary storage. A master node orchestrates that for
redundant copies of input data, only one is processed.

“Shuffle” step:Worker nodes redistribute data based on the output keys (produced
by the “map()” function), such that all data belonging to one key are located on the
same worker node.

“Reduce” step: Worker nodes now process each group of output data, per key, in
parallel.

The parallelism also offers some possibility of recovering from partial failure of
servers or storage during the operation: if one mapper or reducer fails, the work can
be rescheduled - assuming the input data is still available.

Hadoop has following important features:

Scalability: Hadoop is highly scalable and it can be scaled out instead of scaling up.
The main feature of Hadoop is that the machines with normal functioning capacity
can also be used for big data analysis. Multi-node clusters of Hadoop system can
be set up in distributed master slave architecture and scalability can be achieved for
thousands of nodes.

Fault tolerance: Fault tolerance is the most significant feature of MapReduce pro-
gramming model that makes it a robust and reliable programming system for large
scale data processing. Fault tolerance is achieved in MapReduce by redundancy of

Programming Platforms for Big Data Analysis 73

data. Each dataset is duplicated in 3–4 places. Even when a node fails, the same
dataset can be retrieved from other nodes.

Performance: MapReduce programming model is very efficient for large amounts
of data. However, the performance is not good when the dataset is small. The time
lag of Hadoop model is compromised because of its efficient fault tolerance and high
scalability.

4.1.2 Spark

Spark is an efficient and iterative processing model for big data processing. At its
core, Spark provides a general programming model that enables developers to write
applications by composing arbitrary operators, such as mappers, reducers, joins,
group-bys, and filters. This composition makes it easy to express a wide array of
computations, including iterative machine learning, streaming, complex queries, and
batch processing.

Spark programming model focuses on applications that reuse a working set of
data across multiple parallel operations. This includes many iterative machine learn-
ing algorithms, as well as interactive data analysis tools. It keeps track of the data
that each of the operators produces, and enables applications to reliably store this
data in memory. This feature enables efficient iterative algorithms and low latency
computations.

Spark provides two main abstractions for parallel programming: resilient dis-
tributed datasets and parallel operations on these datasets. Spark programming
model is shown in Fig. 4 [27]. It describes two kinds of computations, iterative and

Fig. 4 Spark programming model

74 J. Cao et al.

non-iterative. The main abstraction in Spark is that of a Resilient Distributed Dataset
(RDD), which represents a read-only collection of objects partitioned across a set of
machines that can be rebuilt if a partition is lost. The elements of an RDD need not
exist in physical storage; instead, a handle to an RDD contains enough information to
compute the RDD starting from data in reliable storage. This means that RDDs can
always be reconstructed if nodes fail. In Spark, each RDD is represented by a Scala
[25] object. Spark lets programmers construct RDDs in various ways like from a file
in a shared file system, by “parallelizing” a Scala collection (e.g., an array) in the
driver program, by transforming an existing RDD and by changing the persistence
of an existing RDD. Several parallel operations like reduce, collect, foreach etc. can
be performed on RDDs.

Spark also lets programmers create two restricted types of shared variables to
support two simple but common usage patterns. Programmer can create a “broadcast
variable” object that wraps the value and ensures that it is only copied to each worker
once. Also, Accumulators can be defined for any type that has an “add” operation
and a “zero” value. Due to their “add-only” semantics, they are easy to make fault-
tolerant.

Spark is built on top of Mesos [13], a “cluster operating system” that lets multiple
parallel applications share a cluster in a fine-grained manner and provides an API
for applications to launch tasks on a cluster. This allows Spark to run alongside
existing cluster computing frameworks, such as Mesos ports of Hadoop and MPI
[26], and share data with them. In addition, building on Mesos greatly reduced the
programming effort that had to go into Spark.

The two types of shared variables in Spark, broadcast variables and accumu-
lators, are implemented using classes with custom serialization formats. Spark is
implemented in Scala (Scala programming language.), a statically typed high-level
programming language for the Java Virtual Machine, and exposes a functional pro-
gramming interface similar to DryadLINQ [31]. In addition, Spark can be used
interactively from a modified version of the Scala interpreter, which allows the user
to define RDDs, functions, variables and classes and use them in parallel operations
on a cluster.

Spark has following important features:

Scalability: It is based on MapReduce architecture so it provides scalability feature.

Fault tolerant: Spark retains the fault tolerant feature of map reduce. Also, its novel
feature is the use of Resilient Distributed Datasets (RDD). The main property of
RDD is the capability to store its lineage or the series of transformations required
for creating it as well as other actions on it. This lineage provides fault tolerance to
RDDs.

Easy to use: Spark’s parallel programs look very much like sequential programs,
which make them easier to develop and reason about. Spark allows users to easily
combine batch, interactive, and streaming jobs in the same application. As a result, a
Spark job can be up to 100 times faster and requires writing 2–10 times less code than
an equivalent Hadoop job. One of Spark’s most useful features is the interactive shell,

Programming Platforms for Big Data Analysis 75

bringing Spark’s capabilities to the user immediately - no Integrated Development
Environment (IDE) and code compilation required. The shell can be used as the
primary tool for exploring data interactively, or as means to test portions of an
application you’re developing. Spark can read and write data from and to Hadoop
Distributed File System (HDFS).

Better Performance: Spark can outperform Hadoop by 10x in iterative machine
learning jobs, and can be used to interactively query a 39 GB dataset with sub-second
response time.

4.1.3 Dryad

Dryad [17] was a research project at Microsoft Research for writing parallel and
distributed programs to scale from a small cluster to a large data-center. From 2007,
Microsoft made several preview releases of this programming model technology
available as add-ons toWindows HPC Server 2008 R2. However, Microsoft dropped
Dryad processing work and focused on Apache Hadoop in October 2011. Dryad
allows a programmer to use the resources of a computer cluster or a data center for
runningdata-parallel programs.ADryadprogrammer canuse thousands ofmachines,
each of them with multiple processors or cores, without knowing anything about
concurrent programming.

ADryad programmerwrites several sequential programs and connects those using
one-way channels. The computation of an application written for Dryad is structured
as aDirectedAcyclicGraph (DAG). TheDAGdefines the dataflowof the application,
and the vertices of the graph define the operations that are to be performed on the
data. The “computational vertices” are written using sequential constructs, devoid
of any concurrency or mutual exclusion semantics. A Dryad job is a graph generator
which can synthesize any directed acyclic graph. The structure of Dryad jobs is
shown in Fig. 5 [28]. These graphs can even change during execution, in response

Fig. 5 The structure of
Dryad jobs

76 J. Cao et al.

to important events in the computation. The Dryad runtime parallelizes the dataflow
graph by distributing the computational vertices across various execution engines.
Scheduling of the computational vertices on the available hardware is handled by the
Dryad runtime, without any explicit intervention by the developer of the application
or administrator of the network.

The flow of data between one computational vertex to another is implemented by
using communication “channels” between the vertices, which in physical implemen-
tation is realized by TCP/IP streams, shared memory or temporary files. A stream is
used at runtime to transport a finite number of structured items.

Dryad defines a domain-specific language, implemented via a C++ library, that is
used to create andmodel aDryad execution graph. Computational vertices arewritten
using standard C++ constructs. To make them accessible to the Dryad runtime, they
must be encapsulated in a class that inherits from the GraphNode base class. The
graph is defined by adding edges; edges are added by using a composition operator
that connects two graphs with an edge. A lot of operators are defined to help building
a graph, including Cloning, Composition, Merge and Encapsulation. Managed code
wrappers for the Dryad API can also be written.

Dryad’s architecture includes components that do resource management as well
as the job management. A Dryad job is coordinated by a component called the Job
Manager. Tasks of a job are executed on cluster machines by a Daemon process.
Communication with the tasks from the job manager happens through the Daemon,
which acts like a proxy. In Dryad, the scheduling decisions are local to an instance of
the Dryad Job Manager C i.e., it is decentralized. The logical plan for a Dryad DAG
results in each vertex being placed in a “Stage”. The stages are managed by a “Stage
manager” component that is part of the job manager. The Stage manager is used
to detect state transitions and implement optimizations like Hadoop’s speculative
execution.

Overall, Dryad is quite expressive. It completely subsumes other computation
frameworks, such as Google’s MapReduce, or the relational algebra. Moreover,
Dryad handles job creation and management, resource management, job monitoring
and visualization, fault tolerance, re-execution, scheduling, and accounting.

Dryad has following special features:

Scalability: Dryad is designed to scale to much larger implementations, up to thou-
sands of computers.

Fault tolerance: The fault tolerance model in the Dryad comes from the assump-
tion that vertices are deterministic. Since the communication graph is acyclic, it is
relatively straightforward to ensure that every terminating execution of a job with
immutable inputs will compute the same result, regardless of the sequence of com-
puter or disk failures over the course of the execution.

Performance: The Dryad system can execute jobs containing hundreds of thousands
of vertices, processing many terabytes of input data in minutes. Microsoft routinely
uses Dryad applications to analyze petabytes of data on clusters of thousands of
computers.

Programming Platforms for Big Data Analysis 77

Flexibility: Programmers can easily use thousands of machines and create large-
scale distributed applications, without requiring them to master any concurrency
programming beyond being able to draw a graph of the data dependencies of their
algorithms.

4.2 Graph Parallel Programming Platforms

Graph parallel systems are systems that encode computation as vertex programs
which run in parallel and interact along edges in the graph. Graph-parallel abstrac-
tions rely on each vertex having a small neighborhood to maximize parallelism and
effective partitioning to minimize communication.

4.2.1 Pregel

Pregel [22] is a programming model for processing large graphs in distributed envi-
ronment. It is a vertex-centric model, which defines serials of actions on an angle
of a single vertex, and then the program will run such vertices through a graph and
finally get the result.

Pregel has been created for solving large scale graph computations that is required
in modern systems like social networks and web graphs. Many graph computing
problems like shortest path, clustering, page rank, connected components etc. need
to be implemented for big graphs hence the requirement of the system.

Vertices iteratively process data and sendmessages to neighboring vertices. Edges
do not have any associated computation in this programming model. The computa-
tions consist of a sequence of iterations, called supersteps. Within each superstep,
the vertices compute in parallel, each executing the same user defined function that
expresses the logic of a given algorithm. A vertex can modify its state or that of its
outgoing edges, receive messages sent to it in the previous superstep, send messages
to other vertices (to be received in the next superstep), or even mutate the topology
of the graph. The state machine of vertex is shown in Fig. 6 [22].

The input to a Pregel computation is a directed graph in which each vertex is
uniquely identified by a string vertex identifier. Each vertex is associated with a
modifiable, user defined value. The directed edges are associated with their source
vertices, and each edge consists of a modifiable, user defined value and a target
vertex identifier. A typical Pregel computation consists of input, when the graph is

Fig. 6 State machine
for a vertex

78 J. Cao et al.

initialized, followed by a sequence of supersteps separated by global synchronization
points until the algorithm terminates, and finishing with output. Algorithm termina-
tion is based on every vertex voting to halt. The output of a Pregel program is the
set of values explicitly output by the vertices. It is often a directed graph isomorphic
to the input, but this is not a necessary property of the system because vertices and
edges can be added and removed during computation. A clustering algorithm, for
example, might generate a small set of disconnected vertices selected from a large
graph.

The Pregel library divides a graph into partitions, each consisting of a set of
vertices and all of those vertices’ outgoing edges.Assignment of a vertex to a partition
depends solely on the vertex ID, which implies it is possible to know which partition
a given vertex belongs to even if the vertex is owned by a different machine, or even if
the vertex does not yet exist. The default partitioning function is just hash (ID)modN,
where N is the number of partitions, but users can replace it. The execution of Pregel
is depicted in Fig. 7 [16]. In the absence of faults, the execution of a Pregel program
consists of several stages. First, many copies of the user program begin executing on
a cluster of machines. One of these copies acts as the master. It is not assigned any
portion of the graph, but is responsible for coordinating worker activity. The workers
use the cluster management system’s name service to discover the master’s location,
and send registration messages to the master. Then, the master determines howmany
partitions the graph will have, and assigns one or more partitions to each worker
machine. Having more than one partition per worker allows parallelism among the
partitions and better load balancing, and will usually improve performance. Each
worker is given the complete set of assignments for all workers.

Fig. 7 Implementation of Pregel

Programming Platforms for Big Data Analysis 79

After this stage, the master assigns a portion of the user’s input to each worker.
The input is treated as a set of records, each of which contains an arbitrary number
of vertices and edges. The division of inputs is orthogonal to the partitioning of the
graph itself, and is typically based on file boundaries. If a worker loads a vertex
that belongs to that worker’s section of the graph, the appropriate data structures are
immediately updated. Otherwise the worker enqueuers a message to the remote peer
that owns the vertex. After the input has finished loading, all vertices are marked as
active.

Later, the master instructs each worker to perform a superstep. The worker loops
through its active vertices, using one thread for each partition. The worker calls
Compute() for each active vertex, delivering messages that were sent in the previous
superstep. When the worker is finished it responds to the master, telling the master
how many vertices will be active in the next superstep. This step is repeated as long
as any vertices are active, or any messages are in transit. After the computation halts,
the master may instruct each worker to save its portion of the graph.

Pregel has following special features:

Scalability: Pregel has very good scalability. It can work for large sized graphs with
millions of vertices.

Fault tolerance: Fault tolerance is achieved through check pointing.At the beginning
of a superstep, the master instructs the workers to save the state of their partitions
to persistent storage, including vertex values, edge values, and incoming messages;
the master separately saves the aggregator values. Worker failures are detected using
regular “ping”messages that themaster issues toworkers. If aworker does not receive
a ping message after a specified interval, the worker process terminates. When one
or more workers fail, the current state of the partitions assigned to these workers is
lost. The master reassigns graph partitions to the currently available set of workers,
and they all reload their partition state from the most recent available checkpoint at
the beginning of a superstep S.

Performance: Pregel is very fast compared to non-graph based frameworks. But
during implementation it waits for the slow workers that decrease its speed.

Flexibility: Pregel provides flexibility to implement different algorithms. The Pregel
implementation is easy to understand and implementation of varied algorithms can
be done on it. Programming complexity is simplified by using the supersteps.

4.2.2 GraphX

GraphX [12] is an efficient, resilient, and distributed graph processing framework that
provides graph-parallel abstractions and supports awide range of iterative graph algo-
rithms. Existing specialized graph processing systems, such as Pregel andGraphLab,
are sufficient to process only graph data. Thus, using specialized graph processing
systems in large-scale graph analytics pipeline, requires extensive data movement
and duplication across file system, and even network. Moreover, users have to learn

80 J. Cao et al.

and manage multiple systems, such as Hadoop, Spark, Pregel and GraphLab. Over-
all, having separate systems in entire graph analytics pipeline is difficult to use and
inefficient.

GraphX addresses the above challenges by providing both table view and graph
view on the same physical data. On one hand, GraphX views physical data as graphs
so that it can naturally express and efficiently execute iterative graph algorithms. On
the other hand, graphs in GraphX are distributed as tabular data-structures so that
GraphX also provides table operations on physical data. By exploiting this unified
data representation, GraphX enables users to easily and efficiently express the entire
graph analytics pipeline. Since graph can be composed by tables in GraphX, tabular
data preprocessing and transformation between table and graph are directly real-
ized within one system. Meanwhile, GraphX provides APIs similar to specialized
graph processing systems for naturally expressing and efficiently executing itera-
tive graph algorithms. Moreover, GraphX can leverage in-memory computation and
fault-tolerance by being embedded in Spark, a general-purpose distributed dataflow
framework.

Programmers can implement iterative graph algorithms without caring much
about the iterations and only need to define a vertex program. However, the foun-
dation of GraphX’ graph-parallel abstractions is different from the common one
that is iterative local transformation [12]. GraphX further decomposes iterative local
transformation into specific dataflow operators, which are a sequence of join stages
and group-by stages punctuated by map operations. The join operation and group-
by operation are in the context of relational database, and the map operation is to
perform update. GraphX realizes the partitioning of graphs in its representation of
physical data, called distributed graph representation. Figure8 [12] illustrates how a
graph is represented by horizontally partitioned vertex and edge collections and their
indices. The edges are divided into three edge partitions by applying a partition func-
tion (e.g., 2D Partitioning), and the vertices are partitioned by vertex id. Partitioned
with the vertices, GraphX maintains a routing table encoding the edge partitions for
each vertex.

GraphX is built as a library on top of Spark [32], which is a general-purpose dis-
tributed dataflow framework. The architecture of Spark with GraphX is illustrated by
Fig. 9 [12]. As seen from the architecture, there is onemore layer calledGather Apply
Scatter (GAS) Pregel API between GraphX and some graph algorithms. The GAS
Pregel API is implementation of Pregel abstraction of graph-parallel using GraphX
dataflow operations. It is claimed that GraphX can implement Pregel abstractions in
less than 20 lines of codes. Data structure of GraphX, the distributed graph repre-
sentation, is built on Spark RDD abstraction, and GraphX API is expressed on top
of Spark standard dataflow operators. GraphX can also exploited Scala foundation
of Spark, which enables GraphX to interactively load, transform, and compute on
massive graphs. GraphX requires no modifications to Spark. As a result, GraphX
can also be seen as a general method to embed graph computation within distributed
dataflow frameworks and distill graph computation to a specific join-map-group-by
dataflow pattern. Being embedded in Spark allows GraphX to inherit many good

Programming Platforms for Big Data Analysis 81

Fig. 8 Distributed graph representations

Fig. 9 Spark with GraphX

features of Spark, such as in-memory computation and fault-tolerance. Compared
with Pregel and GraphLab, GraphX can achieve these features with a smaller cost.

GraphX has following important features:

Scalability: Being embedded in Spark allows GraphX to inherit Spark scalable prop-
erty.

Fault tolerance: Being embedded in Spark allows GraphX to inherit Spark fault
tolerance. Different from checkpoint-based fault tolerance, which is adopted by other
graph systems, fault tolerance of GraphX is based on lineage. Compared with check-
point fault tolerance, lineage-based fault tolerance produces smaller performance
overhead and optimal dataset replication.

Efficient for graph analytics pipeline: Similar to specialized graph processing sys-
tems, such as Pregel and GraphLab, GraphX enables users to naturally express and

82 J. Cao et al.

efficiently execute iterative graph algorithms. Moreover, GraphX provides opera-
tions for tabular data preprocessing, and transformation between graph and tabular
data so that there is no data movement and duplication across the network and file
system.

Support for SQL: Being embedded in Spark allows GraphX to inherit Spark SQL.

4.2.3 GraphLab

GraphLab is an efficient and parallel processing model for big data processing espe-
cially for large graph processing. As its core, GraphLab supports the representation
of structured data dependencies, iterative computation, and flexible scheduling. By
targeting common patterns in machine learning algorithms and tasks, GraphLab
achieves notable usability, expressiveness and performance.

GraphLab programmingmodel focuses on applications that share a coherent com-
putational pattern: asynchronous iterative and parallel computation on graphs with
a sequential model of computation. This pattern encodes a broad range of machine
learning algorithms, and facilitates efficient parallel implementations.

GraphLab exploits the sparse structure and common computational patterns of
machine learning algorithms, and by composing problem specific computation, data-
dependencies, and scheduling, it enables users to easily design and implement effi-
cient parallel algorithms.

GraphLab’s ease-of-use comes from its abstraction which consists of the fol-
lowing parts: the data graph, the update function, scheduling primitives, the data
consistency model, and the sync operation. The data graph represents user modifi-
able program state, stores the user-defined data and encodes the sparse computational
dependencies, an example is shown in Fig. 10 [21]. The update function represents
the operation and computation on the data graph by transforming data in small over-
lapping contexts called scopes. Scheduling primitives determine the computation
order. The data consistency model expresses how much computation can overlap.
Last, the sync operation concurrently keeps track of global states.

The GraphLab is implemented in the shared memory setting [20] and distributed
in-memory setting [21]. In the shared memory setting, the GraphLab abstraction
uses PThreads for parallelism. The data consistency models have been implemented
using race-free and deadlock-free ordered locking protocols. To attainmaximumper-
formance, issues related to parallel memory allocation, concurrent random number
generation, and cache efficiency are addressed in [20]. The shared memory setting
is extended to the distributed setting by refining the execution model, relaxing the
scheduling requirements, and introducing a new distributed data-graph, execution
engines, and fault-tolerance systems [21].

The GraphLab API serves as an interface between the machine learning and sys-
tems communities. Parallel machine learning algorithms built on the GraphLab API
benefit from developments in parallel data structures. As new locking protocols and
parallel scheduling primitives are incorporated into the GraphLab API, they become

Programming Platforms for Big Data Analysis 83

Fig. 10 The GraphLab data graph and scope S1 of vertex 1 are illustrated in this figure. Each gray
cylinder represents a block of user defined data and is associated with a vertex or edge. The scope
of vertex 1 is illustrated by the region containing vertices {1, 2, 3, 4}. An update function applied
to vertex 1 is able to read and modify all the data in S1 (vertex data D1, D2, D3, D4 and edge data
D1→2, D1→3, and D1→4)

immediately available to the machine learning community. On the other hand, Sys-
tems experts can use machine learning algorithms to new parallel hardware more
easily by porting the GraphLab API. Actually, on top of GraphLab, several imple-
mented libraries of algorithms in various application domains are already provided
including topic modeling, graph analytics, clustering, collaborative filtering, com-
puter vision etc.

GraphLab has following important features:

Scalability: GraphLab scales very well in various machine learning and data mining
tasks, and scaling performance improves with higher computation to communication
ratio.

Expressivity: Unlike many high-level abstractions (i.e., MapReduce), GraphLab
is able to express complex computational dependencies with the data graph and
provides sophisticated scheduling primitives which can express iterative parallel
algorithms with dynamic scheduling.

Better Performance: GraphLab can outperform Hadoop by 20–60x in iterative
machine learning and data mining tasks, and is competitive with tailored MPI imple-
mentation. The C++ execution engine is optimized to leverage extensive multi-
threading and asynchronous IO.

Powerful Machine Learning Toolkits: GraphLab has a large selection of machine
learning methods already implemented. Users can also implement their own algo-
rithms on top of the GraphLab programming API.

84 J. Cao et al.

4.3 Task Parallel Platforms

Task parallelism (also known as function parallelism and control parallelism) is a
form of parallelization of computer codes across multiple processors in parallel com-
puting environments. Task parallelism focuses on distributing execution processes
(threads) across different parallel computing nodes. In a multiprocessor system, task
parallelism is achieved when each processor executes a different thread (or process)
on the same or different data. The threads may execute the same or different code. In
the general case, different execution threads communicate with one another as they
work. Communication usually takes place by passing data from one thread to the
next as part of a workflow.

4.3.1 HTCondor

HTCondor has been derived from Condor that is a batch system for harnessing
idle cycles on personal workstations [19]. Since then, it has matured to become a
major player in the compute resource management area and renamed HTCondor in
2012. HTCondor (HTCondor) is a high throughput computing system for compute-
intensive jobs. Like other full-featured batch systems, HTCondor provides a job
queueing mechanism, scheduling policy, priority scheme, resource monitoring, and
resource management.

HTCondor is able to transparently produce a checkpoint and migrate a job to a
different machine which would otherwise be idle when it detects that a machine is
no longer available. It does not require a shared file system across machines - if no
shared file system is available, it can transfer the job’s data files on behalf of the user,
or it may be able to transparently direct all the job’s I/O requests back to the submit
machine. As a result, it can be used to seamlessly combine all of an organization’s
computational power into one resource.

HTCondor programming model has several logical entities, as shown in Fig. 11
[23]. The central manager acts as a repository of the queues and resources. A process
called the “collector” acts as an information dashboard. A process called the “startd”
manages the computes resources provided by the execution machines (worker nodes
in the diagram). The startd gathers the characteristics of compute resources such as
CPU, memory, system load, etc. and publishes it to the collector. A process called the
“schedd” maintains a persistent job queue for jobs submitted by the users. A process
called the “negotiator” is responsible for matching the computer resources to user
jobs.

The communication flow in Condor is fully asynchronous. Each startd and each
schedd advertise the information to the collector asynchronously. Similarly, the nego-
tiator starts the matchmaking cycle using its own timing. The negotiator periodically
queries the schedd to get the characteristics of the queued jobs and matches them
to available resources. All the matches are then ordered based on user priority and
communicated back to the schedds that in turn transfer the matched user jobs to

Programming Platforms for Big Data Analysis 85

Fig. 11 Condor architecture overview

the selected startds for execution. To fairly distribute the resources among users,
the negotiator tracks resource consumption by users and calculates user priorities
accordingly.

Condor supports the transferring of input files to a worker node (startd) before
a job is launched and of output files to the submit node (schedd) after the job is
finished. Using a flexible plugin architecture, HTCondor can easily be extended to
support domain specific protocols, such as GridFTP and Globus Online.

HTCondor has following important features:

Flexibility: The ClassAd mechanism in HTCondor provides an extremely flexible
and expressive framework for matching resource requests (jobs) with resource offers
(machines). Jobs can easily state both job requirements and job preferences. Like-
wise, machines can specify requirements and preferences about the jobs they are
willing to run.

Efficiency: HTCondor is a high throughput computing system. Also, it utilizes the
computing resources in a very efficient way.

4.4 Stream Processing Programming Platforms

Much of “big data” is received in real time, and is most valuable at its time of arrival.
For example, a social network may wish to detect trending conversation topics in
minutes; a search site may wish to model which users visit a new page; and a service
operator may wish to monitor program logs to detect failures in seconds. To enable
these low-latency processing applications, there is need for streaming computation
models that scale transparently to large clusters, in the same way that batch models
like MapReduce simplified offline processing.

Designing such models is challenging, however, because the scale needed for the
largest applications can be hundreds of nodes. At this scale, two major problems are
faults and stragglers (slow nodes). Both problems are inevitable in large clusters,

86 J. Cao et al.

so streaming applications must recover from them quickly. Given below are some
popular programming platforms for stream processing.

4.4.1 Storm

Apache Storm is a free and open source distributed real-time computation system.
Storm is a complex event processing engine from Twitter [30]. Storm makes it easy
to reliably process unbounded streams of data, doing for real-time processing what
Hadoop did for batch processing [29].

It has been used by various companies for many purposes like real time analytics,
online machine learning, continuous computation, distributed RPC, ETL, and more.
The fundamental concept in Storm is that of a stream, which can be defined as
an unbounded sequence of tuples. Storm provides ways to transform the stream in
various ways in decentralized and fault tolerant manner [1].

The storm topology lays down the architecture for processing of streams. The
topology comprises of a spout, which is a reader or source of streams and a bolt,
which is a processing entity and wiring together of spouts and bolts as shown in
Fig. 12 [2].

Clients submit topologies to a master node, which is called the Nimbus. Nimbus
is responsible for distributing and coordinating the execution of the topology. The
actual work is done on worker nodes. Each worker node runs one or more worker
processes. At any point in time a single machine may have more than one worker
processes, but each worker process is mapped to a single topology. Note more than
one worker process on the same machine may be executing different part of the same
topology. The high level architecture of Storm is shown in Fig. 13 [22].

Eachworker process runs a JVM, inwhich it runs oneormore executors. Executors
are made of one or more tasks. The actual work for a bolt or a spout is done in

Fig. 12 Storm topology

Programming Platforms for Big Data Analysis 87

Fig. 13 High level architecture of Storm

the task. Thus, tasks provide intra-bolt/intra-spout parallelism, and the executors
provide intra-topology parallelism. Worker processes serve as containers on the host
machines to run Storm topologies. Spouts can read streams from Kafka (distributed
publish-subscribe system from LinkedIn), Twitter, RDBMS etc.

Storm supports the following types of partitioning strategies. Shuffle grouping
randomly partitions the tuples. Fields grouping hashes on a subset of the tuple
attributes/fields. All grouping replicates the entire stream to all the consumer tasks.
Global grouping sends the entire stream to a single bolt. Local grouping sends tuples
to the consumer bolts in the same executor. The partitioning strategy is extensible
and a topology can define and use its own partitioning strategy.

Each worker node runs a Supervisor that communicates with Nimbus. The cluster
state is maintained in Zookeeper [3], and Nimbus is responsible for scheduling the
topologies on the worker nodes and monitoring the progress of the tuples flowing
through the topology.

Storm currently runs on hundreds of servers (spread across multiple datacenters)
at Twitter. Several hundreds of topologies run on these clusters, some of which run
on more than a few hundred nodes. Many terabytes of data flows through the Storm
clusters every day, generating several billions of output tuples. Storm topologies are
used by a number of groups inside Twitter, including revenue, user services, search,
and content discovery. These topologies are used to do simple things like filtering
and aggregating the content of various streams at Twitter (e.g., computing counts),
and also for more complex things like running simple machine learning algorithms
(e.g., clustering) on stream data.

Storm has following important features:

88 J. Cao et al.

Scalability: It is scalable. It is easy to add or remove nodes from storm clusterwithout
disrupting existing data flows.

Fault tolerance: Storm guarantees that the data will be processed. Storm is very
resilient in regards to fault tolerance.

Easy to use: Storm is very easy to set up and operate.

Extensibility: Storm topologies may call arbitrary external functions (e.g., Looking
up a MySQL service for the social graph), and thus needs a framework that allows
extensibility.

Efficiency: Storm uses a number of techniques, including keeping all its storage
and computational data structures in memory. Storm is very fast in processing. A
benchmark clocked it at over a million tuples processed per second per node.

4.4.2 S4

Simple Scalable Streaming System (shorted for S4) [24] was released for processing
continuous, unbounded streams of data by Yahoo. S4 is a general-purpose, distrib-
uted, scalable, fault-tolerant, pluggable platform that allows programmers to easily
develop applications for processing continuous unbounded streams of data.

S4 is designed to solve real-world problems in the context of search applica-
tions that use data mining and machine learning algorithms. Compared with current
processing systems, S4, a low latency, scalable stream processing engine, is devel-
oped. The stream throughput is improved by 1000% (200k + messages /s /stream)
in S4 [18].

The design goal of S4 is developing a high performance computing platform that
can hide the complexity inherent in a parallel processing system from the applica-
tion programmer. Simple programming interfaces for processing data streams are
provided in S4. A cluster with high availability is designed; the cluster can scale
using commodity hardware. Latency is minimized by using local memory in each
processing node, and the disk I/O bottlenecks are avoided as well. A symmetric and
decentralized architecture is used in S4. Because all nodes in S4 share the same
functionality and responsibilities, there is no central node with specialized respon-
sibilities. Thus, the deployment and maintenance of S4 are greatly simplified. The
design is friendly and easy to program and flexible by using a pluggable architec-
ture. The gap between complex proprietary systems and batch-oriented open source
computing platforms is filled in S4 [18].

S4 provides a runtime distributed platform that handles communication, schedul-
ing and distribution across containers. The nodes are the distributed containers, which
are deployed in S4 clusters. The size of clusters is fixed in S4, the size of an S4 cluster
corresponds to the number of logical partitions (tasks). The key concepts are shown
in Fig. 14 [18].

In S4, computation is executed by Processing Elements (PEs) and messages are
transmitted between them in the form of data events. The stream is defined as a

Programming Platforms for Big Data Analysis 89

Fig. 14 Key concepts in S4 (Incubator)

sequence of elements (events). The only mode of interaction between PEs is event
emission and consumption. PE cannot access to the state of other PEs. The framework
provides the capability to route events to appropriate PEs and to create new instances
of PEs [24].

PEs are assembled into applications using the Spring Framework. Processing
Elements (PEs) are the basic computational units in S4. Each instance of a PE is
uniquely identified by four components (the functionality, the types of events, the
keyed attribute and the value of keyed attribute).

Processing nodes (PNs) are the logical hosts to PEs. They are responsible for
listening to events, executing operations on the incoming events, dispatching events
with the assistance of the communication layer, and emitting output events (Fig. 15
[24]). S4 routes each event to PNs based on a hash function of the values of all known

Fig. 15 Processing node

90 J. Cao et al.

keyed attributes in that event. A single event may be routed to multiple PNs. The set
of all possible keying attributes is known from the configuration of the S4 cluster. An
event listener in the PN passes incoming events to the processing element container
(PEC) which invokes the appropriate PEs in the appropriate order. There is a special
type of PE object: the PE prototype. It has the first three components of its identity
(functionality, event type, keyed attribute); the attribute value is unassigned.

The communication layer uses Zookeeper (an open source subproject of Hadoop
maintained) (Apache ZooKeeper) to coordinate between nodes in a cluster. The
communication layer can provide cluster management and automatic failover to
standby nodes and maps physical nodes to logical nodes. The communication layer
uses a pluggable architecture to select network protocol. Events may be sent with or
without a guarantee.

The core platform is written in Java. The implementation is modular and plug-
gable, and S4 applications can be easily and dynamically combined for creating
more sophisticated stream processing systems. Every PE consumes exactly those
events which correspond to the value on which it is keyed. It may produce output
events. Two primary handlers are implemented by developers: an input event handler
processEvent() and an output mechanism output(). The output() method is optional
and is set to be invoked in a variety of ways. The output() method implements the
output mechanism for the PE, typically to publish internal state of the PE to some
external system [24].

S4 has following important features:

Fault tolerance: When a server in the cluster fails, a stand-by server is automatically
activated to take over the tasks. Check pointing and recovery mechanism are used to
minimize state loss.

Flexible deployment: Application packages and platform modules are standard jar
files (suffixed.s4r). The keys are homogeneously sparsed over the cluster, the flexible
deployment can help balance the load, especially for fine grained partitioning.

Modular design: Both the platform and the applications are built by dependency
injection, and configured through independent modules. The system is easy to be
customized according to specific requirements.

Dynamic and loose coupling of applications: The subsystems are easy to be assem-
bled into larger systems. The applications can be reused in S4, and pre-processing
can be separated. The subsystems can be controlled and updated independently.

4.4.3 Spark Streaming

Spark Streaming system simplifies the construction of scalable fault-tolerant stream-
ing applications. The authors propose a new processing model, discretized streams
(D-Streams), that overcomes these challenges [33]. D-Streams enable a parallel
recovery mechanism that improves efficiency over traditional replication and backup
schemes, and tolerates stragglers. D-Streams build applications through high-level

Programming Platforms for Big Data Analysis 91

operators and make efficient fault tolerance while combining streaming with batch
and interactive queries.

Existing streaming models use replication or upstream backup for fault tolerance.
This mechanism costs much time on fault tolerance and stragglers. Also their event
driven programming interface does not directly support parallel processing. The pur-
poses of Spark Streaming are to directly support parallel processing, fault tolerance
and efficient stragglers.

Unlike stateful programming model, Spark Streaming use batch processing
method to process continuous streaming and cut streaming into discretized intervals.
It can take advantage of batch operations in Spark and also provide typical streaming
operations. Spark Streaming uses short stateless, deterministic tasks instead of con-
tinues, stateful operators. The state stored in memory across tasks into RDD. Spark
Streaming runs a streaming computation as a series of very small, deterministic batch
jobs. When the streaming data is coming, Spark Streaming chops up the live stream
into batches of 0.5–1 second. It treats each batch of data as RDDs and processes them
using RDD operations. In this way, it has potential for combining batch processing
and streaming processing in the same system.

For fault-tolerance, RDDs remember the operations that created them and repli-
cated batches of input data in memory for fault-tolerance. So data lost due to worker
failure can be recomputed from replicated input data via RDD. Therefore, all data is
fault-tolerant. The lineage graph of RDD is shown in Fig. 16 [33].

Spark Streaming can easily be composed with batch and query model. It provides
both batch operation in Spark and standard streaming systems (Das) [7]. Batch API
in Spark includes Map, Reduce, GroupBy, Join operations. Streaming API in Spark
supports Windowing, Incremental Aggregation operations.

Spark Streaming consists of three components, shown in Fig. 17 [7]. A master,
that tracks the D-Stream lineage graph and schedules tasks to compute new RDD

Fig. 16 Lineage graph for RDDs

92 J. Cao et al.

Fig. 17 Components of Spark Streaming architecture

partitions. Worker nodes that receive data, store the partitions of input and computed
RDDs, and execute tasks. A client library used to send data into the system.

In the SparkMaster, network Input Tracker keeps track of the data received by each
network receiver andmaps them to the corresponding inputDStreams. Job Scheduler
periodically queries the DStream graph to generate Spark jobs from received data,
and hands them to Job Manager for execution. Job Manager maintains a job queue
and executes the jobs in Spark.

Spark Streaming has many important features that make it a desirable program-
ming platform. It scales to 100s of nodes and achieves second scale latencies. It
enables efficient and fault-tolerant stateful stream processing while integrating with
Spark’s batch and interactive processing. Spark provides a simple batch-like API for
implementing complex algorithms.

5 A Unifying Framework

The existing programming platforms have various features that are relevant for par-
ticular kinds of applications. While some systems like traditional systems, MapRe-
duce, Hadoop, Pregel are generic systems with limited abilities, and other systems
are very specific for certain kind of applications like streaming data or graph based
data. In this section, we compare different programming platforms against features
that are important for big data analysis as mentioned in Sect. 2. We then discuss the
existing challenges, and describe the need for a unifying framework that allows a
generic abstraction over the underlying models and any new upcomingmodels. Then
we present our framework MatrixMap that overcomes the challenges of supporting
matrix computations in an efficient manner.

Programming Platforms for Big Data Analysis 93

5.1 Comparison of Existing Programming Platforms

The comparison of various programming platforms with respect to some important
features as discussed in the corresponding sections is summarized in Table1.Most of
the data parallel programming platforms have high scalability. Hadoop derivatives
like Spark and Spark Streaming inherit similar characteristics for high scalability
with distributed processing. Real time processing is supported by Storm, S4 and
Spark Streaming in an efficient manner. Fault tolerance in big data analytics is a
critical feature because of dependency on multiple systems and size of application. It
is observed that Hadoop, Spark, Spark Streaming, GraphX and Storm are highly fault
tolerant as they use redundancy and special data structures called RDDs. GraphLab,
Pregel and S4 use checkpointing for fault tolerance.

The newer programming platforms like Storm, Spark Streaming have most
attributes required for efficient big data analysis. Much research is being carried
out to develop all machine learning algorithms for newer systems. For MapReduce
based systems, not all the machine learning algorithms can be formulated as map
and reduce problems. For interactive analysis, Storm, S4 and Spark Streaming can
be used as programming platforms.

Table 1 Comparison of Programming platforms for big data analysis

94 J. Cao et al.

5.2 Need for Unifying Framework

One of the existing challenges in big data programming is that no single programming
model or framework can excel at every problem. Different big data programming
platforms address different requirements, e.g., some platforms support graph based
processing and some systems are specifically designed for streaming data. Program-
mers need to spend much time learning individual models and their corresponding
language, and there are always tradeoffs between simplicity, expressivity, fault tol-
erance, performance etc.

Therefore, there is need of a unifying framework that allows for a generic abstrac-
tion on top of the underlying models and upcoming new models like MatrixMap as
shown in Fig. 18. Such an abstraction would integrate different programming plat-
forms so that the programmers only need to learn a single language and techniques
for diverse big data applications. Integration of big data platforms would require
unifying the interface so that data and operations supported by different models can
be abstracted, andmapping each data processing stage to underlyingmodels. In addi-
tion, both inter-model and intra-model tasks need to be scheduled on processing units
for better efficiency. The cloud resources also have to be allocated dynamically after
analyzing the different computation requirements. Integrating data storage systems
such as file systems and special databases are another issue. There are various open
challenges in it calling for future research efforts.

Besides this, there are still many problems for the existing platforms when per-
forming big data analysis in different application scenarios. Thus, designing new pro-
gramming platform is another challenge that attracts much attention in the research
communities. We will present our proposed platformMatrixMap in the next section.

Fig. 18 Integration of diverse big data programming platforms

Programming Platforms for Big Data Analysis 95

5.3 MatrixMap Framework

Machine learning and graph algorithms play vital important roles in big data analyt-
ics. Most algorithms are formulated based into matrix computations. That is they
apply matrix operations on values and perform various manipulations of values
according to their labels. However, existing big data programming platforms do
not provide efficient support for matrix computations.

Most programming platforms provide separate models for machine learning and
graph algorithms, e.g., in Spark has different interfaces: GraphX for graph algorithms
and Spark for machine learning. The existing systems do not have direct support
for important matrix operations, e.g., in MapReduce, matrix multiplication must be
formulated into a series ofmapand reduceoperations. The support ismostly limited to
matrix multiplication, but not other popular machine learning and graph algorithms,
e.g., Presto. Systems besides Spark save temporal data in secondary storage, slow to
load data for operations. The cachememory uses LRU algorithm (e.g., Spark), which
may not be efficient for all operations. These challenges have led us to develop a
model and framework for handling matrix based computations for big data analysis.

MatrixMap [15] is a new model and framework to support data mining and graph
algorithms. It provides matrix as language-level construct. The data is loaded into
key matrices and then powerful and simple matrix patterns are provided that support
basic operations for machine learning and graph algorithms. This model unifies data-
parallel and graph-parallel models by abstracting matrix computations into graph
patterns.

The framework implements parallel processing of matrix operations and data
manipulations invoked by user defined functions. MatrixMap supports high-volume
data with pattern-specific fetching and caching across memory and secondary stor-
age.

Algorithms are formulated as a series of matrix patterns, which define sequences
of operations on each element. UnaryOperator:Map, Reduce; BinaryOperator: Plus,
Multiply; Mathematical matrix operations are special cases of matrix patterns filled
with specific pre-defined lambda functions; User defined lambda functions according
to matrix patterns to support various algorithms.

The data is loaded into BulkKeyMatrix (BKM)which is suitable for large volume
data. BKM is a shared distributed data structure which spreads data into whole
clusters. It can keep data across matrix patterns. It is constant and cannot be changed,
after initiation. BKM is row-oriented or column-oriented. It cannot slice concrete
matrix element. BKM use key (string or digit) to index row or column. MatrixMap
adopts BSP model, while supporting asynchronous pipeline of IO and processing
with data partitioning as shown in Fig. 19 [15].

There are many applications of matrix patterns like logistic regression, alternat-
ing least squares, all pairs shortest path, Pagerank among other applications. When
compared with Spark, it achieved 20% improvement on execution time - the more
iterations, the better as shown in Fig. 20.

96 J. Cao et al.

Fig. 19 Implementation of MatrixMap

Fig. 20 MatrixMap performance w.r.t. Spark

MatrixMap provides powerful yet simple abstraction, consisting of a distributed
data structure called bulk key matrix and a computation interface defined by matrix
patterns. Users can easily load data into bulk key matrices and program algorithms
into parallel matrix patterns. MatrixMap outperforms current state-of-the-art sys-
tems by employing three key techniques: matrix patterns with lambda functions for
irregular and linear algebra matrix operations, asynchronous computation pipeline
with optimized data shuffling strategies for specific matrix patterns and in-memory
data structure reusing data in iterations. Moreover, it can automatically handle the
parallelization and distribute execution of programs on a large cluster.

Programming Platforms for Big Data Analysis 97

6 Conclusion and Future Directions

The purpose of this chapter is to survey various existing programming platforms for
big data analysis. We have enumerated various essential features that a programming
environment should possess for big data analysis. The prominent programming plat-
forms have been discussed in brief to give an insight into their purpose, programming
model, implementation and features. The comparisons of existing programming plat-
forms against various features have been summarized as well as the need for a uni-
fying framework and our proposed MatrixMap framework that implements machine
learning and graph based algorithms using matrices as language constructs, which
can handle large data in an efficient manner. In future, we would investigate more
in unifying framework for different big data platforms, and improve the MatrixMap
framework so that multiple machine learning algorithms can be implemented for
different kinds of data. In summary, we can say that research and development of big
data programming platforms are driven by real world applications and key industrial
stakeholders and it’s a challenging but compelling task. Programming platforms for
handling big data specially streaming data are still evolving. Samza [9] is a recent
addition to programming platforms for streaming data. The concept of “Lambda
Architecture” that integrates batch processing and real time processing together in a
harmonious way in terms of batch, speed and serving is also an area of interest for
the researchers. The integration of different big data programming platforms is an
open challenge with various issues related to task scheduling, resource allocation and
model mapping to be resolved; while designing new platforms to better perform big
data analysis in different application scenarios is another one. Developing a higher-
level programming support on top of multiple models can help ease and shorten the
development of big data applications.

Acknowledgements This work was partially supported by the funding for Project of Strategic
Importance provided by The Hong Kong Polytechnic University (1-ZE26) and HK RGC under
GRF Grant (PolyU 5104/13E).

References

1. V. Agneeswaran, Big Data Analytics Beyond Hadoop: Real-Time Applications with Storm,
Spark, and More Hadoop Alternatives, 1st edn. (Pearson FT Press, USA, 2014)

2. Apache storm documentation, https://storm.apache.org/documentation/Home.html
3. Apache zookeeper, http://zookeeper.apache.org
4. Architecture of mapreduce model, https://cloud.google.com/appengine/docs/-python/images/

mapreduce_mapshuffle.png
5. A.B. Bondi, Characteristics of scalability and their impact on performance, in Workshop on

Software and Performance (2000), pp. 195C203
6. W.Daniel Hillis, G.L. Steele, Jr., Data parallel algorithms. Commun.ACM, 29(12), 1170C1183

(1986)
7. T. Das, Deep dive into spark streaming. http://spark.apache.org/-documentation.html (2013)

https://storm.apache.org/documentation/Home.html
http://zookeeper.apache.org
https://cloud.google.com/appengine/docs/-python/images/mapreduce_mapshuffle.png
https://cloud.google.com/appengine/docs/-python/images/mapreduce_mapshuffle.png
http://spark.apache.org/-documentation.html

98 J. Cao et al.

8. J. Dean, S. Ghemawat, Mapreduce: simplified data processing on large clusters. Commun.
ACM 51(1):107C113 (2008)

9. T. Feng, Z. Zhuang, Y. Pan, H. Ramachandra, A memory capacity model for high performing
data-filtering applications in samza framework, in 2015 IEEE International Conference on Big
Data, Big Data 2015, Santa Clara, CA, USA, October 29 - November 1, 2015, p. 2600C2605

10. A. Fernández, S. del Ró, V. López, A. Bawakid,M. José del Jesús, J.Manuel Bentez, F. Herrera,
Big data with cloud computing: an insight on the computing environment, mapreduce, and
programming frameworks. Wiley Interdisc. Rew.: Data Min. Knowl. Discov. 4(5), 380C409
(2014)

11. J.E. Gonzalez, Y. Low, H. Gu, D. Bickson, C. Guestrin, Powergraph: distributed graph-parallel
computation on natural graphs, in 10th USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2012, Hollywood, CA, USA, October 8-10, 2012, p. 17C30

12. J.E. Gonzalez, R.S. Xin, A. Dave, D. Crankshaw, M.J. Franklin, I. Stoica, Graphx: graph
processing in a distributed dataflow framework, in 11th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 14, Broomfield, CO, USA, October 6–8, 2014, p.
599C613

13. B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A.D. Joseph, R.H. Katz, S. Shenker, I.
Stoica, Mesos: A platform for fine-grained resource sharing in the data center, in Proceedings
of the 8th USENIX Symposium on Networked Systems Design and Implementation, NSDI 2011,
Boston, MA, USA (2011)

14. Htcondor, http://research.cs.wisc.edu/htcondor/description.html
15. Y. Huangfu, J. Cao, H. Lu, G. Liang,Matrixmap: programming abstraction and implementation

of matrix computation for big data applications, in 21st IEEE International Conference on
Parallel and Distributed Systems, ICPADS 2015, Melbourne, Australia (2015), p. 19C28

16. Implementation of pregel, http://people.apache.org/~edwardyoon/documents/-pregel.pdf
17. M. Isard, M. Budiu, Y. Yu, A. Birrell, D. Fetterly, Dryad: distributed data-parallel programs

from sequential building blocks, in Proceedings of the 2007 EuroSys Conference, Lisbon,
Portugal, March 21–23, 2007, p. 59C72

18. Key concepts in s4 (incubator), https://incubator.apache.org/s4/doc/0.6.0/-overview
19. M. J. Litzkow, M. Livny, M.W. Mutka, Condor - a hunter of idle workstations, in Proceedings

of the 8th International Conference on Distributed Computing Systems, San Jose, California,
USA, June 13–17, 1988, p. 104C111

20. Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, J.M. Hellerstein, Graphlab: a new
framework for parallel machine learning, in UAI 2010, Proceedings of the Twenty-Sixth Con-
ference on Uncertainty in Artificial Intelligence, Catalina Island, CA, USA, July 8–11, 2010,
p. 340C349

21. Y. Low, J. Gonzalez, A.Kyrola, D. Bickson, C.Guestrin, J.M.Hellerstein, Distributed graphlab:
a framework for machine learning in the cloud. PVLDB 5(8), 716C727 (2012)

22. G.Malewicz,M.H.Austern,A.J.C.Bik, J.C.Dehnert, I. Horn,N.Leiser,G.Czajkowski, Pregel:
a system for large-scale graph processing, in Proceedings of the ACM SIGMOD International
Conference on Management of Data, SIGMOD 2010, Indianapolis, Indiana, USA (2010), p.
135C146

23. P. Mhashilkar, Z. Miller, R. Kettimuthu, G. Garzoglio, B. Holzman, C. Weiss, X. Duan, L.
Lacinski, End-to-end solution for integrated workload and data management using glideinwms
and globus online. J. Phys. Conf. Ser. 396(3), 032076 (2012)

24. L. Neumeyer, B. Robbins, A. Nair, A. Kesari, S4: distributed stream computing platform, in
ICDMW 2010, The 10th IEEE International Conference on Data Mining Workshops, Sydney,
Australia, 13 Dec 2010, p. 170C177

25. Scala programming language, http://www.scala-lang.org
26. M. Snir, S. Otto, S. Huss-Lederman, D. Walker, J. Dongarra, MPI-The Complete Reference,

vol. 1: The MPI Core, 2nd (revised) edn. (MIT Press, Cambridge 1998)
27. Spark programming model, http://blog.cloudera.com/blog/2013/11/-putting-spark-to-use-

fast-in-memory-computing-for-your-big-data-applications
28. The structure of dryad jobs, http://research.microsoft.com/en-us/projects/dryad

http://research.cs.wisc.edu/htcondor/description.html
http://people.apache.org/~edwardyoon/documents/-pregel.pdf
https://incubator.apache.org/s4/doc/0.6.0/-overview
http://www.scala-lang.org
http://blog.cloudera.com/blog/2013/11/-putting-spark-to-use-fast-in-memory-computing-for-your-big-data-applications
http://blog.cloudera.com/blog/2013/11/-putting-spark-to-use-fast-in-memory-computing-for-your-big-data-applications
http://research.microsoft.com/en-us/projects/dryad

Programming Platforms for Big Data Analysis 99

29. M. Tim Jones, Process real-time big data with twitter storm. Technical Report pp. 1-9, IBM
Developer Works (2013)

30. A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J.M. Patel, S. Kulkarni, J. Jackson, K.
Gade, M. Fu, J. Donham, N. Bhagat, S. Mittal, D.V. Ryaboy, Storm@twitter, in International
Conference on Management of Data, SIGMOD 2014, Snowbird, UT, USA, June 22–27, 2014,
p. 147C156

31. Y. Yu, M. Isard, D. Fetterly, M. Budiu, Ú. Erlingsson, P. Kumar Gunda, J. Currey, Dryadlinq: a
system for general-purpose distributed data-parallel computing using a high-level language, in
8th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2008, San
Diego, California, USA, Proceedings (2008), p. 1C14

32. M. Zaharia, M. Chowdhury, M.J. Franklin, S. Shenker, I. Stoica, Spark: cluster computing
with working sets, in 2nd USENIXWorkshop on Hot Topics in Cloud Computing, HotCloud10,
Boston, MA, USA (2010)

33. M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, I. Stoica, Discretized streams: fault-tolerant
streaming computation at scale, in ACM SIGOPS 24th Symposium on Operating Systems Prin-
ciples, SOSP 13, Farmington, PA, USA (2013), p. 423C438

Big Data Analysis on Clouds

Loris Belcastro, Fabrizio Marozzo, Domenico Talia
and Paolo Trunfio

Abstract The huge amount of data generated, the speed at which it is produced,
and its heterogeneity in terms of format, represent a challenge to the current storage,
process and analysis capabilities. Those data volumes, commonly referred as Big
Data, can be exploited to extract useful information and to produce helpful knowl-
edge for science, industry, public services and in general for humankind. Big Data
analytics refer to advanced mining techniques applied to Big Data sets. In general,
the process of knowledge discovery from Big Data is not so easy, mainly due to
data characteristics, as size, complexity and variety, that require to address several
issues. Cloud computing is a valid and cost-effective solution for supporting Big
Data storage and for executing sophisticated data mining applications. Big Data ana-
lytics is a continuously growing field, so novel and efficient solutions (i.e., in terms
of platforms, programming tools, frameworks, and data mining algorithms) spring
up everyday to cope with the growing scope of interest in Big Data. This chapter
discusses models, technologies and research trends in Big Data analysis on Clouds.
In particular, the chapter presents representative examples of Cloud environments
that can be used to implement applications and frameworks for data analysis, and an
overview of the leading software tools and technologies that are used for developing
scalable data analysis on Clouds.

Keywords Cloud computing · Big data · Data analytics · Data mining

L. Belcastro (B) · F. Marozzo · D. Talia · P. Trunfio
DIMES, University of Calabria, Rende, Italy
e-mail: lbelcastro@dimes.unical.it

F. Marozzo
e-mail: fmarozzo@dimes.unical.it

D. Talia
e-mail: talia@dimes.unical.it

P. Trunfio
e-mail: trunfio@dimes.unical.it

© Springer International Publishing AG 2017
A.Y. Zomaya and S. Sakr (eds.), Handbook of Big Data Technologies,
DOI 10.1007/978-3-319-49340-4_4

101

102 L. Belcastro et al.

1 Introduction

In the last years the ability to produce and gather data has increased exponentially. In
fact, in the Internet of Things’ era, huge amounts of digital data are generated by and
collected from several sources, such as sensors, cams, in-vehicle infotainment, smart
meters, mobile devices, web applications and services. The huge amount of data
generated, the speed at which it is produced, and its heterogeneity in terms of format
(e.g., video, text, xml, email), represent a challenge to the current storage, process
and analysis capabilities. In particular, thanks to the growth of social networks (e.g.,
Facebook, Twitter, Pinterest, Instagram, Foursquare, etc.), the widespread diffusion
of mobile phones, and the large use of location-based services, every day millions of
people access social network services and share information about their interests and
activities. Those data volumes, commonly referred as Big Data, can be exploited to
extract useful information and to produce helpful knowledge for science, industry,
public services and in general for humankind.

Although nowadays the term Big Data is often misused, it is very important in
computer science for understanding business and human activities. As defined by
Gartner1: “Big Data is high volume, high velocity, and/or high variety information
assets that require new forms of processing to enable enhanced decision making,
insight discovery, and process optimization.”Thus, BigData is not only characterized
by the large size of data sets, but also by the complexity, by the variety, and by the
velocity of data that can be collected and processed. In fact, we can collect huge
amounts of digital data from sources, at a very high rate that the volume of data is
overwhelming our ability to make use of it. This situation is commonly called “data
deluge”.

In science and business, people are analyzing data to extract information and
knowledge useful for making new discoveries or for supporting decision processes.
This can be done by exploiting Big Data analytics techniques and tools. As an
example, one of the leading trends today is the analysis of big geotagged data for
creating spatio-temporal sequences or trajectories tracing usermovements. Such kind
of information is clearly highly valuable for science and business: tourism agencies
andmunicipalities can know themost visited places by tourists, the time of year when
such places are visited, and other useful information [4, 23]; transport operators can
know the places and routes where is it more likely to serve passengers [58] or crowed
areas where more transportation resources need to be allocated [57]; city managers
may exploit social media analysis to reveal mobility insights in cities such as incident
locations [24], or to study and prevent crime events [16, 26].

But it must be also considered that just Twitter and Facebook produce about 20
TB of data every day. According to a study conducted by the International Data
Corporation (IDC), the whole world produced about 165 exabytes (1 exabytes is
equal to 1018 bytes) of data in 2007, 800 exabytes in 2009, and it is estimated that in
2020 the global amount of data produced will reach the 35 zettabytes (1 zettabytes is
equal to 1021 bytes). Then to extract value from such kind of data, novel technologies

1http://www.gartner.com/it-glossary/big-data.

http://www.gartner.com/it-glossary/big-data

Big Data Analysis on Clouds 103

and architectures have been developed by data scientists for capturing and analyzing
complex and/or high velocity data. In this scenario data mining raised in the last
decades as a research and technology field that provides several different techniques
and algorithms for the automatic analysis of large data sets. The usage of sequential
data mining algorithms for analyzing large volumes of data requires a very long
time for extracting useful models and patterns. For this reason, high performance
computers, such as many and multi-core systems, Clouds, and multi-clusters, paired
with parallel and distributed algorithms are commonly used by data analysts to tackle
Big Data issues and to reduce response time to a reasonable value.

Big Data analytics refer to advanced mining techniques applied to Big Data sets.
In general, the process of knowledge discovery from Big Data is not so easy, mainly
due to data characteristics, as size, complexity and variety, that require to address
several issues. To overcame these problems and to get valuable information and
knowledge in shorter time, high performance and scalable computing systems are
used in combination with data and knowledge discovery techniques. In this con-
text, Cloud computing is a valid and cost-effective solution for supporting Big Data
storage and for executing sophisticated data analytic applications. In fact, thanks to
elastic resource allocation and high computing power, Cloud computing represents a
compelling solution for Big Data analytics, allowing faster data analysis, that means
more timely results and then greater data value.

Actually, despite the Cloud is an affordable solution for many users, the number
of analytics data solutions available is very limited. Most available solutions today
are based on open source frameworks, such as Hadoop and Spark, but there are also
some proprietary solutions, such as those proposed by IBM, EMC or Kognitio. Big
Data analytics is a continuously growing field, so novel and efficient solutions (i.e.,
in terms of platforms, programming tools, frameworks, and data mining algorithms)
spring up everyday to cope with the growing scope of interest in Big Data.

The remainder of the chapter is organized as follows. Section2 introduces themain
Cloud computing concepts. Section3 describes representative examples of Cloud
environments that can be used to implement applications and frameworks for data
analysis in the Cloud. Section4 provides an overview of the leading software tools
and technologies used for developing scalable data analysis on Clouds. Section5
discusses some research trends and open challenges on Big Data analysis. Finally,
Sect. 6 concludes the chapter.

2 Introducing Cloud Computing

This section introduces the basic concepts of Cloud computing, which provides scal-
able storage and processing services that can be used for extracting knowledge from
Big Data repositories. In the following we provide basic Cloud computing defini-
tions (Sect. 2.1) and discuss the main service distribution and deployment models
provided by Cloud vendors (Sect. 2.2).

104 L. Belcastro et al.

2.1 Basic Concepts

In the last years, Clouds have emerged as effective computing platforms to face the
challenge of extracting knowledge fromBigData repositories in limited time, as well
as to provide effective and efficient data analysis environments to both researchers and
companies. Fromaclient perspective, theCloud is an abstraction for remote, infinitely
scalable provisioning of computation and storage resources. From an implementation
point of view, Cloud systems are based on large sets of computing resources, located
somewhere “in the Cloud”, which are allocated to applications on demand [2]. Thus,
Cloud computing can be defined as a distributed computing paradigm in which all
the resources, dynamically scalable and often virtualized, are provided as services
over the Internet. As defined by NIST (National Institute of Standards and Technol-
ogy) [37] Cloud computing can be described as: “A model for enabling convenient,
on-demand network access to a shared pool of configurable computing resources
(e.g., networks, servers, storage, applications, and services) that can be rapidly pro-
visioned and released with minimal management effort or service provider inter-
action”. From the NIST definition, we can identify five essential characteristics of
Cloud computing systems, which are on-demand self-service, broad network access,
resource pooling, rapid elasticity, and measured service. Cloud systems can be clas-
sified on the basis of their service model and their deployment model.

2.2 Cloud Service Distribution and Deployment Models

Cloud computing vendors provide their services according to three main distribution
models:

• Software as a Service (SaaS), in which software and data are provided through
Internet to customers as ready-to-use services. Specifically, software and asso-
ciated data are hosted by providers, and customers access them without need to
use any additional hardware or software. Examples of SaaS services are Gmail,
Facebook, Twitter, Microsoft Office 365.

• Platform as a Service (PaaS), in an environment including databases, applica-
tion servers, development environment for building, testing and running custom
applications. Developers can just focus on deploying of applications since Cloud
providers are in charge of maintenance and optimization of the environment
and underlying infrastructure. Examples of PaaS services are Windows Azure,
Force.com, Google App Engine.

• Infrastructure as a Service (IaaS), that is an outsourcing model under which cus-
tomers rent resources like CPUs, disks, or more complex resources like virtual-
ized servers or operating systems to support their operations (e.g., Amazon EC2,
RackSpace Cloud). Compared to the PaaS approach, the IaaS model has a higher
system administration costs for the user; on the other hand, IaaS allows a full
customization of the execution environment.

Big Data Analysis on Clouds 105

Themost commonmodels for providingBigData analytics solution onClouds are
PaaS and SaaS. IaaS is usually not used for high-level data analytics applications but
mainly to handle the storage and computing needs of data analysis processes. In fact,
IaaS is the more expensive delivery model, because it requires a greater investment
of IT resources. On the contrary, PaaS is widely used for Big Data analytics, because
it provides data analysts with tools, programming suites, environments, and libraries
ready to be built, deployed and run on the Cloud platform.With the PaaSmodel users
do not need to care about configuring and scaling the infrastructure (e.g., a distributed
and scalableHadoop system), because theCloud vendorwill do that for them. Finally,
the SaaSmodel is used to offer complete BigData analytics applications to end users,
so that they can execute analysis on large and/or complex data sets by exploiting
Cloud scalability in storing and processing data.

Regarding deploymentmodels, Cloud computing services are delivered according
to three main forms:

• Public Cloud: it provides services to the general public through the Internet and
users have little or no control over the underlying technology infrastructure. Ven-
dors manage their proprietary data centers delivering services built on top of them.

• PrivateCloud: it provides services deployed over a company intranet or in a private
data center. Often, small and medium-sized IT companies prefer this deployment
model as it offers advance security and data control solutions that are not available
in the public Cloud model.

• Hybrid Cloud: it is the composition of two or more (private or public) Clouds that
remain different entities but are linked together.

As outlined in [27], users access Cloud computing services using different client
devices and interact with Cloud-based services using a Web browser or desk-
top/mobile app. The business software and users data are executed and stored on
servers hosted in Cloud data centers that provide storage and computing resources.
Resources include thousands of servers and storage devices connected each other
through an intra-Cloud network. The transfer of data between data center and users
takes place onwide-area network. Several technologies and standards are used by the
different components of the architecture. For example, users can interact with Cloud
services through SOAP-based or RESTful Web services [42] and Ajax technologies
allow Web interfaces to Cloud services to have look and interactivity equivalent to
those of desktop applications. Open Cloud Computing Interface (OCCI)2 specifies
how Cloud providers can deliver their compute, data, and network resources through
a standardized interface.

2OCCI Working Group, http://www.occi-wg.org.

http://www.occi-wg.org

106 L. Belcastro et al.

3 Cloud Solutions for Big Data

At the beginning of the Big Data phenomenon, only big IT companies, such as
Facebook, Yahoo!, Twitter, Amazon, LinkedIn, invested large amounts of resources
in the development of proprietary or open source projects to cope with Big Data
analysis problems. But today, Big Data analysis becomes highly significant and
useful for small and medium-sized businesses. To address this increasing demand a
large vendor community started offering highly distributed platforms for Big Data
analysis. Among open-source projects, Apache Hadoop is the leading open-source
data-processing platform, which was contributed by IT giants such as Facebook and
Yahoo.

Since 2008, several companies, such as Cloudera, MapR, and Hortonworks,
started offering enterprise platform for Hadoop, with greats efforts to improve
Hadoop performances in terms of high-scalable storage and data processing. Instead,
IBM and Pivotal started offering its own customized Hadoop distribution. Other big
companies decided to provide only additional softwares and support for Hadoop
platform developed by external providers: for example, Microsoft decided to base
its offer on Hortonworks platform, while Oracle decided to resell Cloudera plat-
form. However Hadoop is not the only solution for Big Data analytics. Out of the
Hadoop box other solutions are emerging. In particular, in-memory analysis has
become a widespread trend, so that companies started offering tools and services
for faster in-memory analysis, such as SAP, that is considered the leading company
with its Hana3 platform. Other vendors, including HP, Teradata and Actian, devel-
oped analytical database tools with in-memory analysis capabilities.Moreover, some
vendors, like Microsoft, IBM, Oracle, and SAP, stand out from their peers for offer-
ing a complete solution for data analysis, including DBMS systems, software for
data integration, stream-processing, business intelligence, in-memory processing,
and Hadoop platform.

In addition,many vendors decided to focuswhole offer on theCloud.Among these
certainly there are Amazon Web Services (AWS) and 1010 data. In particular, AWS
provides a wide range of services and products on the Cloud for Big Data analysis,
including scalable database systems and solutions for decision support. Other smaller
vendors, including Actian, InfiniDB, HP Vertica, Infobright, and Kognitio, focused
their big-data offer on database management systems for analytics only. Following
the approach in [48], the remainder of the section introduces representative examples
of Cloud environments:Microsoft Azure as an example of public PaaS, AmazonWeb
Services as the most popular public IaaS, OpenNebula and OpenStack as examples
of private IaaS. These environments can be used to implement applications and
frameworks for data analysis in the Cloud.

3https://hana.sap.com.

https://hana.sap.com

Big Data Analysis on Clouds 107

3.1 Microsoft Azure

Azure4 is the Microsoft Cloud proposal. It is environment providing a large set of
Cloud services that can be used by developers to create Cloud-oriented applications,
or to enhance existing applications with Cloud-based capabilities. The platform pro-
vides on-demand compute and storage resources exploiting the computational and
storage power of the Microsoft data centers. Azure is designed for supporting high
availability and dynamic scaling services that match user needs with a pay-per-use
pricing model. The Azure platform can be used to perform the storage of large
datasets, execute large volumes of batch computations, and develop SaaS appli-
cations targeted towards end-users. Microsoft Azure includes three basic compo-
nents/services:

• Compute is the computational environment to execute Cloud applications. Each
application is structured into roles:Web role, for Web-based applications;Worker
role, for batch applications; Virtuam Machines role, for virtual-machine images.

• Storage provides scalable storage to manage: binary and text data (Blobs), non-
relational tables (Tables), queues for asynchronous communication between com-
ponents (Queues). In addition, for relational databases, Microsoft provides its own
Cloud database services, called Azure SQL Database.

• Fabric controller whose aim is to build a network of interconnected nodes from
the physical machines of a single data center. The Compute and Storage services
are built on top of this component.

Microsoft Azure provides standard interfaces that allow developers to interact
with its services. Moreover, developers can use IDEs like Microsoft Visual Studio
and Eclipse to easily design and publish Azure applications.

3.2 Amazon Web Services

Amazon offers compute and storage resources of its IT infrastructure to developers
in the form of Web services. Amazon Web Services (AWS)5 is a large set of Cloud
services that can be composed by users to build their SaaS applications or integrate
traditional software with Cloud capabilities. It is simple to interact with these service
since Amazon provides SDKs for the main programming languages and platforms
(e.g. Java, .Net, PHP, Android).

AWS compute solution includes Elastic Compute Cloud (EC2), for creating and
running virtual servers, and Amazon Elastic MapReduce for building and execut-
ing MapReduce applications. The Amazon storage solution is based on S3 Stor-
age Service, with a range of storage classes designed to cope with different use
cases (i.e., Standard, Infrequent Access, and Glacier for long term storage archive).

4https://azure.microsoft.com.
5https://aws.amazon.com.

https://azure.microsoft.com
https://aws.amazon.com

108 L. Belcastro et al.

A full set of database systems are also proposed: Relational Database Service (RDS)
for relational tables; DynamoDB for non-relational tables; SimpleDB for managing
small datasets; ElasticCache for caching data. Even though Amazon is best known
to be the first IaaS provider (based on its EC2 and S3 services), it is now also a
PaaS provider, with services like Elastic Beanstalk, that allows users to quickly cre-
ate, deploy, and manage applications using a large set of AWS services, or Amazon
Machine Learning, that provides visualization tools and wizards for easily creating
machine learning models.

3.3 OpenNebula

OpenNebula [45] is an open-source framework mainly used to build private and
hybrid Clouds. The main component of the OpenNebula architecture is the Core,
which creates and controls virtual machines by interconnecting them with a virtual
network environment. Moreover, the Core interacts with specific storage, network
and virtualization operations through pluggable components called Drivers. In this
way, OpenNebula is independent from the underlying infrastructure and offers a uni-
form management environment. The Core also supports the deployment of Services,
which are a set of linked components (e.g., Web server, database) executed on sev-
eral virtual machines. Another component is the Scheduler, which is responsible for
allocating the virtual machines on the physical servers. To this end, the Scheduler
interacts with the Core component through appropriate deployment commands.

OpenNebula can implement a hybrid Cloud using specific Cloud Drivers that
allow to interact with external Clouds. In this way, the local infrastructure can be
supplemented with computing and storage resources from public Clouds. Currently,
OpenNebula includes drivers for using resources from Amazon EC2 and Eucalyp-
tus [40], another open source Cloud framework.

3.4 OpenStack

OpenStack6 is an open source Cloud operating system realesed under the terms of
the Apache License 2.0. It allows the management of large pools of processing,
storage, and networking resources in a datacenter through a Web-based interface.
Most decisions about its development are decided by the community to the point that
every six months there is a design summit to gather requirements and define new
specifications for the upcoming release. The modular architecture of OpenStack is
composed by four main components, as shown in Fig. 1.

OpenStack Compute provides virtual servers upon demand by managing the pool
of processing resources available in the datacenter. It supports different virtualization

6https://www.openstack.org/.

https://www.openstack.org/

Big Data Analysis on Clouds 109

Fig. 1 OpenStack architecture (source: http://openstack.org)

technologies (e.g., VMware, KVM) and is designed to scale horizontally.OpenStack
Storage provides a scalable and redundant storage system. It supports Object Storage
and Block Storage: the former allows storing and retrieving objects and files in the
datacenter. OpenStack Networking manages the networks and IP addresses. Finally,
OpenStack Shared Services are additional services provided to ease the use of the
datacenter, such as Identity Service for mapping users and services, Image Service
for managing server images, and Database Service for relational databases.

4 Systems for Big Data Analytics
in the Cloud

In this section we describe the most used tools for developing scalable data analysis
on Clouds, such as MapReduce, Spark, workflow systems, and NoSQL database
management systems. In particular, we discuss some frameworks commonly used
to develop scalable applications that analyze big amounts of data, such as Apache
Hadoop, the best-known MapReduce implementation, and Spark. We present also
some powerful data mining programming tools and strategies designed to be exe-
cuted in the Cloud for exploiting complex and flexible software models, such as
the distributed workflows. Workflows provide a declarative way of specifying the
high-level logic of an application, hiding the low-level details. They are also able to
integrate existing software modules, datasets, and services in complex compositions
that implement discovery processes. In this section we presented several data min-
ing workflow systems, such as the Data Mining Cloud Framework, Microsoft Azure
Machine Learning, and ClowdFlows. Moreover, we discuss about NoSQL database
technology that recently became popular as an alternative or as a complement to
relational databases. In the last years, several NoSQL systems have been proposed
for providing more scalability and higher performance than relational databases.

http://openstack.org

110 L. Belcastro et al.

We introduce the basic principles of NoSQL, described representative NoSQL sys-
tems, and outline interesting data analytics use cases where NoSQL tools are useful.
Finally, we present a brief overview of well known visual analytics tools, that help
users in analytical reasoning by interactive visual interfaces.

4.1 MapReduce

MapReduce is a programming model developed by Google [11] in 2004 for large-
scale data processing to cope efficiently with the challenge of processing enormous
amounts of data generated by Internet-based applications.

Since its introduction, MapReduce has proven to be applicable to a wide range
of domains, including machine learning and data mining, social data analysis, finan-
cial analysis, scientific simulation, image retrieval and processing, blog crawling,
machine translation, language modelling, and bioinformatics. Today, MapReduce
is widely recognized as one of the most important programming models for Cloud
computing environments, being it supported by Google and other leading Cloud
providers such as Amazon, with its Elastic MapReduce service,7 and Microsoft,
with its HDInsight,8 or on top of private Cloud infrastructures such as OpenStack,
with its Sahara service.9

Hadoop10 is the most used open source MapReduce implementation for devel-
oping parallel applications that analyze big amounts of data. It can be adopted for
developing distributed and parallel applications using many programming languages
(e.g., Java, Ruby, Python, C++). Hadoop relieves developers from having to deal with
classical distributed computing issues, such as load balancing, fault tolerance, data
locality, and network bandwidth saving.

The Hadoop project is not only about the MapReduce programming model
(Hadoop MapReduce module), as it includes other modules such as:

• Hadoop Distributed File System (HDFS): a distributed file system providing fault
tolerance with automatic recovery, portability across heterogeneous commodity
hardware and operating systems, high-throughput access and data reliability.

• Hadoop YARN : a framework for cluster resource management and job scheduling.
• Hadoop Common: common utilities that support the other Hadoop modules.

In particular, thanks to the introduction of YARN in 2013, Hadoop turns from a
batch processing solution into a platform for running a large variety of data appli-
cations, such as streaming, in-memory, and graphs analysis. As a result, Hadoop
became a reference for several other frameworks, such as: Giraph for graph analy-
sis; Storm for streaming data analysis; Hive, which is a data warehouse software

7http://aws.amazon.com/elasticmapreduce/.
8http://azure.microsoft.com/services/hdinsight/.
9http://wiki.openstack.org/wiki/Sahara.
10http://hadoop.apache.org/.

http://aws.amazon.com/elasticmapreduce/
http://azure.microsoft.com/services/hdinsight/
http://wiki.openstack.org/wiki/Sahara
http://hadoop.apache.org/

Big Data Analysis on Clouds 111

for querying and managing large datasets; Pig, which is as a dataflow language for
exploring large datasets; Tez for executing complex directed-acyclic graph of data
processing tasks; Oozie, which is aworkflow scheduler system formanagingHadoop
jobs. Besides Hadoop and its ecosystem, several other MapReduce implementations
have been implementedwithin other systems, includingGridGain, Skynet,MapSharp
and Twister [14]. One of the most popular alternative to Hadoop is Disco, which is
a lightweight, open-source framework for distributed computing. The Disco core is
written in Erlang, a functional language designed for building fault-tolerant distrib-
uted applications. Disco has been used for a variety of purposes, such as log analysis,
text indexing, probabilistic modeling and data mining.

4.2 Spark

Apache Spark11 is another Apache framework for Big Data processing. Differently
from Hadoop in which intermediate data are always stored in distributed file sys-
tems, Spark stores data in RAM memory and queries it repeatedly so as to obtain
better performance for some class of applications (e.g., iterative machine learning
algorithms) [56]. For many years, Hadoop has been considered the leading open
source Big Data framework, but recently Spark has become the more popular so
that it is supported by every major Hadoop vendors. In fact, for particular tasks,
Spark is up to 100 times faster than Hadoop in memory and 10 times faster on disk.
Several other libraries have been built on top of Spark: Spark SQL for dealing with
SQL and DataFrames, MLlib for machine learning, GraphX for graphs and graph-
parallel computation, and Spark Streaming to build scalable fault-tolerant streaming
applications.

For these reasons, Spark is becoming the primary execution engine for data
processing and, in general, a must-have for Big Data applications. But even though in
some applications Spark can be considered a better alternative to Hadoop, in many
other applications it has limitations that make it complementary to Hadoop. The
main limitation of Spark is that it does not provide its own distributed and scalable
storage system, that is a fundamental requirement for Big Data applications that use
huge and continually increasing volume of data stored across a very large number of
nodes. To overcome this lack, Spark has been designed to run on top of several data
sources, such as Cloud object storage (e.g., Amazon S3 Storage, Swift Object Stor-
age), distributed filesystem (e.g., HDFS), no-SQL databases (e.g., HBase, Apache
Cassandra), and others. Today an increasing number of big vendors, such Microsoft
Azure or Cloudera, offer Spark as well as Hadoop, so developers can choose the
most suitable framework for each data analytic application.

With respect to Hadoop, Spark loads data from data sources and executes most of
its tasks in RAM memory. In this way, Spark reduces significantly the time spent in
writing and reading from hard drives, so that the execution is far faster than Hadoop.

11http://spark.apache.org.

http://spark.apache.org

112 L. Belcastro et al.

Regarding task recovering in case of failures, Hadoop flushes all of the data back to
the storage after each operation. Similarly, Spark allow recovering in case of failures
by arranging data in Resilient Distributed Datasets (RDD), which are a immutable
and fault-tolerant collections of records which can be stored in the volatile memory
or in a persistent storage (e.g., HDFS, HBase). Moreover, Spark’s real-time process-
ing capability is increasingly being used by Big Data analysts into applications that
requires to extract insights quickly from data, such as recommendation and monitor-
ing systems.

Several big companies and organizations use Spark for Big Data analysis pur-
pose: for example, Ebay uses Spark for log transaction aggregation and analytics,
Kelkoo for product recommendations, SK Telecom analyses mobile usage patterns
of customers.

4.3 Mahout

Apache Mahout12 is an open-source framework that provides scalable implementa-
tions of machine learning algorithms that are applicable on big input. Originally, the
Mahout project provided implementations ofmachine learning algorithms executable
on the top of Apache Hadoop framework. But the comparison of the performance
of Mahout algorithms on Hadoop with other machine learning libraries, showed that
Hadoop spends the majority of the processing time to load the state from file system
at every intermediate step [44].

For these reasons, the latest version of Mahout goes beyond Hadoop and provides
several machine learning algorithms for collaborative filtering, classification, and
clustering, implemented not only in Hadoop MapReduce, but also in Spark, H2O.13

BothApache Spark andH2Oprocess data inmemory so they can achieve a significant
performance gain when compared to Hadoop framework for specific classes of appli-
cations (e.g., interactive jobs, real-time queries, and stream data) [44]. In addition,
the latest release ofMahout introduces a newmath environment, called Samsara [29],
that helps users in creating their own math providing general linear algebra and sta-
tistical operations. In the following, some examples for each algorithm’s category
are listed: analyzing user history and preferences to suggest accurate recommenda-
tions (collaborative filtering), selecting whether a new input matches a previously
observed pattern or not (classification), and grouping large number of things together
into clusters that share some similarity (clustering) [41]. In the future, Mahout will
support Apache Flink,14 an open source platform that provides data distribution,
communication, and fault tolerance for distributed computations over data streams.

12http://mahout.apache.org/.
13http://www.h2o.ai.
14https://flink.apache.org/.

http://mahout.apache.org/
http://www.h2o.ai
https://flink.apache.org/

Big Data Analysis on Clouds 113

4.4 Hunk

Hunk15 is a commercial data analysis platform developed by Splunk for rapidly
exploring, analyzing and visualizing data in Hadoop and NoSQL data stores. Hunk
uses a set of high-level user and programming interfaces to offer speed and simplic-
ity of getting insights from large unstructured and structured data sets. One of the
key components of the Hunk architecture is the Splunk Virtual Index. This system
decouples the storage tier from the data access and analytics tiers, so enabling Hunk
to route requests to different data stores. The analytics tier is based on Splunks Search
Processing Language (SPL) designed for data exploration across large, different data
sets. The Hunk web framework allows building applications on top of the Hadoop
Distributed File System (HDFS) and/or the NoSQL data store.

Developers can use Hunk to build their Big Data applications on top of data in
Hadoop using a set of well known languages and frameworks. Indeed, the frame-
work enables developers to integrate data and functionality fromHunk into enterprise
Big Data applications using a web framework, documented REST API and software
development kits for CSharp, Java, JavaScript, PHP and Ruby. Also common devel-
opment languages such as HTML5 and Python can be used by developers.

The Hunk framework can be deployed on on-premises Hadoop clusters or private
Clouds and it is available as a preconfigured instance on the Amazon public Cloud
using the Amazon Web Services (AWS). This public Cloud solution allows Hunk
users to utilize the Hunk facilities and tools from AWS, also exploiting commodity
storage on Amazon S3, according to a pay-per-use model. Finally, the framework
implements and makes available a set of applications that enable the Hunk analytics
platform to explore, explore and visualize data in NoSQL and other data stores,
including Apache Accumulo, Apache Cassandra, MongoDB and Neo4j. Hunk is
also provided in combination with the Cloudera’s enterprise data hub to develop
large-scale applications that can access and analyze Big Data sets.

4.5 Sector/Sphere

Sector/Sphere16 is a Cloud framework designed at the University of Illinois-Chicago
to implement data analysis applications involving large, geographically distributed
datasets in which the data can be naturally processed in parallel [19]. The frame-
work includes two components: a storage service called Sector, which manages the
large distributed datasets with high reliability, high performance IO, and a uniform
access, and a compute service called Sphere, which makes use of the Sector service
to simplify data access, increase data IO bandwidth, and exploit wide area high per-
formance networks. Both of them are available as open source software.17 Sector is a

15http://www.splunk.com/en_us/products/hunk.html.
16http://sector.sourceforge.net/.
17http://sector.sourceforge.net.

http://www.splunk.com/en_us/products/hunk.html
http://sector.sourceforge.net/
http://sector.sourceforge.net

114 L. Belcastro et al.

distributed storage system that can be deployed over a wide area network and allows
users to ingest and download large datasets from any location with a high-speed
network connection to the system. The system can be deployed over a large number
of commodity computers (called nodes), located either within a data center or across
data centers, which are connected by high-speed networks.

In an example scenario, nodes in the same rack are connected by 1Gbps networks,
two racks in the same data center are connected by 10 Gbps networks, and two
different data centers are connected by 10 Gbps networks. Sector assumes that the
datasets it stores are divided into one or more separate files, called slices, which are
replicated and distributed over the various nodes managed by Sector.

The Sector architecture includes a Security server, a Master server and a number
of Slave nodes. The Security server maintains user accounts, file access information,
and the list of authorized slave nodes. The Master server maintains the metadata of
the files stored in the system, controls the running of the slave nodes, and responds to
users’ requests. The Slaves nodes store the files managed by the system and process
the data upon the request of a Sector client. Sphere is a compute service built on
top of Sector and provides a set of programming interfaces to write distributed data
analysis applications. Sphere takes streams as inputs and produces streams as outputs.
A stream consists of multiple data segments that are processed by Sphere Processing
Engines (SPEs) using slave nodes. Usually there aremanymore segments than SPEs.
Each SPE takes a segment from a stream as an input and produces a segment of a
stream as output. These output segments can in turn be the input segments of another
Sphere process. Developers can use the Sphere client APIs to initialize input streams,
upload processing function libraries, start Sphere processes, and read the processing
results.

4.6 BigML

BigML18 is a system provided as a Software-as-a-Service (SaaS) for discovering
predictive models from data and it uses data classification and regression algorithms.
The distinctive feature of BigML is that predictive models are presented to users
as interactive decision trees. The decision trees can be dynamically visualized and
explored within the BigML interface, downloaded for local usage and/or integration
with applications, services, and other data analysis tools. Recently, BigML launched
its PaaS solution, called BigML PredictServer, which is a dedicated machine image
that can be deployed on Amazon AWS. An example of BigML prediction model is
shown in Fig. 2.

Extracting and using predictive models in BigML consists in multiple steps, as
detailed as follows:

• Data source setting and dataset creation.A data source is the raw data fromwhich
a user wants to extract a predictive model. Each data source instance is described

18https://bigml.com.

https://bigml.com

Big Data Analysis on Clouds 115

Fig. 2 Example of BigML prediction model for air pollution (source: http://bigml.com)

by a set of columns, each one representing an instance feature, or field. One of
the fields is considered as the feature to be predicted. A dataset is created as a
structured version of a data source in which each field has been processed and
serialized according to its type (numeric, categorical, etc.).

• Model extraction and visualization. Given a dataset, the system generates the
number of predictive models specified by the user, who can also choose the level
of parallelism level for the task. The interface provides a visual tree representation
of each predictive model, allowing users to adjust the support and confidence
values and to observe in real time how these values influence the model.

• Prediction making. A model can be used individually, or in a group (the so-called
ensemble, composedofmultiplemodels extracted fromdifferent parts of a dataset),
to make predictions on new data. The system provides interactive forms to submit
a predictive query for a new data using the input fields from a model or ensemble.
The system provides APIs to automate the generation of predictions, which is
particularly useful when the number of input fields is high.

• Models evaluation. BigML provides functionalities to evaluate the goodness of
the predictive models extracted. This is done by generating performance measures
that can be applied to the kind of extracted model (classification or regression).

http://bigml.com

116 L. Belcastro et al.

4.7 Kognitio Analytical Platform

Kognitio Analytical Platform,19 available as Cloud based service or supplied as a pre-
integrated appliance, allows users to pull very large amounts of data from existing
data storage systems into high-speed computermemory, allowing complex analytical
questions to be answered interactively. Although Kognitio has its own internal disk
subsystem, it is primarily used as an analytical layer on top of existing storage/data
processing systems, e.g., Hadoop clusters and/or existing traditional disk-based data
warehouse products, Cloud storage, etc. A feature called External Tables allows
persistent data to reside on external systems. Using this feature the system admin-
istrator, or a privileged user, can easily setup access to data that resides in another
environment, typically a disk store such as the above-mentioned Hadoop clusters and
data warehouse systems. To a final user, the Kognitio Analytical Platform looks like
a relational database management system (RDBMS) similar to many commercial
databases. However, unlike these databases, Kognitio has been designed specifically
to handle analytical query workload, as opposed to the more traditional on-line trans-
action processing (OLTP) workload. Key reasons of Kognitios high performance in
managing analytical query workload are:

• Data is held in high-speed RAM using structures optimized for in-memory analy-
sis, which is different from a simple copy of disk-based data, like a traditional
cache.

• Massively Parallel Processing (MPP) allows scaling out across large arrays of
low-cost industry standard servers, up to thousands nodes.

• Query parallelization allows every processor core on every server to be equally
involved in every query.

• Machine code generation and advanced query plan optimization techniques ensure
every processor cycle is effectively used to its maximum capacity.

Parallelism in Kognitio Analytical Platform fully exploits the so-called shared noth-
ing? distributed computing approach, in which none of the nodes share memory or
disk storage, and there is no single point of contention across the system.

4.8 Data Analysis Workflows

Aworkflow consists of a series of activities, events or tasks that must be performed to
accomplish a goal and/or obtain a result. For example, a data analysis workflow can
be designed as a sequence of pre-processing, analysis, post-processing, and inter-
pretation steps. At a practical level, a workflow can be implemented as a computer
program and can be expressed in a programming language or paradigm that allows
expressing the basic workflow steps and includes mechanisms to orchestrate them.

19www.kognitio.com.

www.kognitio.com

Big Data Analysis on Clouds 117

Workflows have emerged as an effective paradigm to address the complexity
of scientific and business applications. The wide availability of high-performance
computing systems, Grids andClouds, allowed scientists and engineers to implement
more and more complex applications to access and process large data repositories
and run scientific experiments in silico on distributed computing platforms. Most
of these applications are designed as workflows that include data analysis, scientific
computation methods and complex simulation techniques. The design and execution
of many scientific applications require tools and high-level mechanisms. Simple and
complexworkflows are often used to reach this goal. For this reason, in the past years,
many efforts have been devoted towards the development of distributed workflow
management systems for scientific applications.Workflowsprovide a declarativeway
of specifying the high-level logic of an application, hiding the low-level details that
are not fundamental for application design. They are also able to integrate existing
software modules, datasets, and services in complex compositions that implement
scientific discovery processes.

Another important benefit of workflows is that, once defined, they can be stored
and retrieved for modifications and/or re-execution: this allows users to define typ-
ical patterns and reuse them in different scenarios [5]. The definition, creation, and
execution of workflows are supported by a so-called WorkflowManagement System
(WMS). A key function of a WMS during the workflow execution (or enactment) is
coordinating the operations of the individual activities that constitute the workflow.
There are several WMSes on the market, most of them targeted to a specific appli-
cation domain. In the following we focus on some well-known software tools and
frameworks designed implementing data analysis workflows on Clouds systems.

Data Mining Cloud Framework

TheDataMining Cloud Framework (DMCF) [32] is a software system that we devel-
oped at University of Calabria for allowing users to design and execute data analysis
workflows on Clouds. DMCF supports a large variety of data analysis processes,
including single-task applications, parameter sweeping applications, and workflow-
based applications [33]. A Web-based user interface allows users to compose their
applications and to submit them for execution to a Cloud platform, according to a
Software-as-a-Service approach. Recently, DMCF has been extended to include the
execution of MapReduce tasks [3].

The DMCFs architecture includes a set of components that can be classified as
storage and compute components (see Fig. 3). The storage components include:

• A Data Folder that contains data sources and the results of knowledge discovery
processes. Similarly, a Tool folder contains libraries and executable files for data
selection, pre-processing, transformation, data mining, and results evaluation.

• The Data Table, Tool Table and Task Table that contain metadata information
associated with data, tools, and tasks.

• The Task Queue that manages the tasks to be executed.

118 L. Belcastro et al.

Fig. 3 DMCF architecture

The compute components are:

• A pool of Virtual Compute Servers, which are in charge of executing the data
mining tasks.

• A pool of Virtual Web Servers host the Web-based user interface.

The user interface provides three functionalities:

• App submission, which allows users to submit single-task, parameter sweeping,
or workflow-based applications;

• App monitoring, which is used to monitor the status and access results of the
submitted applications;

• Data/Tool management, which allows users to manage input/output data and tools.

The DMCF architecture has been designed as a reference architecture to be imple-
mentedondifferentCloud systems.However, a first implementationof the framework
has been carried out on the Microsoft Azure Cloud platform and has been evaluated
through a set of data analysis applications executed on a Microsoft Cloud data cen-
ter. The DMCF framework takes advantage of Cloud computing features, such as
elasticity of resources provisioning. In DMCF, at least one Virtual Web Server runs
continuously in the Cloud, as it serves as user front-end. In addition, users specify the
minimum and maximum number of Virtual Compute Servers. DMCF can exploit the
auto-scaling features ofMicrosoft Azure that allows dynamic spinning up or shutting
down Virtual Compute Servers, based on the number of tasks ready for execution
in the DMCFs Task Queue. Since storage is managed by the Cloud platform, the
number of storage servers is transparent to the user.

Big Data Analysis on Clouds 119

For designing and executing a knowledge discovery application, users interact
with the system performing the following steps:

1. TheWebsite is used to design an application (either single-task, parameter sweep-
ing, or workflow-based) through aWeb-based interface that offers both the visual
programming interface and the script.

2. When a user submits an application, the system creates a set of tasks and inserts
them into the Task Queue on the basis of the application requirements.

3. Each idle Virtual Compute Server picks a task from the Task Queue, and concur-
rently executes it.

4. Each Virtual Compute Server gets the input dataset from the location specified
by the application. To this end, file transfer is performed from the Data Folder
where the dataset is located, to the local storage of the Virtual Compute Server.

5. After task completion, each Virtual Compute Server puts the result on the Data
Folder.

6. TheWebsite notifies the user as soon as her/his task(s) have completed, and allows
her/him to access the results.

The set of tasks created on the second step depends on the type of application
submitted by a user. In the case of a single-task application, just one data mining task
is inserted into the Task Queue. If users submit a parameter sweeping application,
a set of tasks corresponding to the combinations of the input parameters values are
executed in parallel. If a workflow-based application has to be executed, the set
of tasks created depends on how many data analysis tools are invoked within the
workflow. Initially, only the workflow tasks without dependencies are inserted into
the Task Queue.

In DMCF workflows may encompass all the steps of discovery based on the
execution of complex algorithms and the access and analysis of scientific data. In
data-driven discovery processes, knowledge discoveryworkflows can produce results
that can confirm real experiments or provide insights that cannot be achieved in
laboratories. In particular, DMCF allows to program workflow applications using
two languages:

• VL4Cloud (Visual Language for Cloud), a visual programming language that lets
users develop applications by programming the workflow components graphi-
cally [33].

• JS4Cloud (JavaScript for Cloud), a scripting language for programming data
analysis workflows based on JavaScript [34].

Both languages use two key programming abstractions:

• Data elements denote input files or storage elements (e.g., a dataset to be analyzed)
or output files or stored elements (e.g., a data mining model).

• Tool elements denote algorithms, software tools or complex applications perform-
ing any kind of operation that can be applied to a data element (data mining,
filtering, partitioning, etc.).

120 L. Belcastro et al.

Fig. 4 Example of data analysis application designed using VL4Cloud

Another common element is the task concept, which represents the unit of par-
allelism in our model. A task is a Tool, invoked in the workflow, which is intended
to run in parallel with other tasks on a set of Cloud resources. According to this
approach, VL4Cloud and JS4Cloud implement a data-driven task parallelism. This
means that, as soon as a task does not depend on any other task in the same workflow,
the runtime asynchronously spawns it to the first available virtual machine. A task
Tj does not depend on a task Ti belonging to the same workflow (with i �= j), if
Tj during its execution does not read any data element created by Ti . In VL4Cloud,
workflows are directed acyclic graphswhose nodes represent data and tools elements.
The nodes can be connected with each other through direct edges, establishing spe-
cific dependency relationships among them. When an edge is being created between
two nodes, a label is automatically attached to it representing the type of relationship
between the two nodes. Data and Tool nodes can be added to the workflow singularly
or in array form. A data array is an ordered collection of input/output data elements,
while a tool array represents multiple instances of the same tool. Figure4 shows an
example of data analysis workflow developed using the visual workflow formalism
of DMCF [6].

In JS4Cloud, workflows are defined with a JavaScript code that interacts with
Data and Tool elements through three functions:

• Data Access, for accessing a Data element stored in the Cloud;
• Data Definition, to define a new Data element that will be created at runtime as a
result of a Tool execution;

• Tool Execution: to invoke the execution of a Tool available in the Cloud.

Once the JS4Cloud workflow code has been submitted, an interpreter translates the
workflow into a set of concurrent tasks by analysing the existing dependencies in the
code. The main benefits of JS4Cloud are:

1. It extends thewell-known JavaScript languagewhile using only its basic functions
(arrays, functions, loops).

2. It implements both a data-driven task parallelism that automatically spawns ready-
to-run tasks to the Cloud resources, and data parallelism through an array-based
formalism.

3. These two types of parallelism are exploited implicitly so that workflows can be
programmed in a totally sequential way, which frees users from duties like work
partitioning, synchronization and communication.

Big Data Analysis on Clouds 121

Fig. 5 Example of data analysis application designed using JS4Cloud

Figure5 shows the script-based workflow version of the visual workflow shown in
Fig. 4. In this example, parallelism is exploited in the for loop at line 7, where up to 16
instances of the J48 classifier are executed in parallel on 16 different partitions of the
training sets, and in the for loop at line 10, where up to 16 instances of the Predictor
tool are executed in parallel to classify the test set using 16 different classification
models.

Figure5 shows a snapshot of the parallel classification workflow taken during its
execution in theDMCFsuser interface.Beside each code line number, a colored circle
indicates the status of execution. This feature allows user to monitor the status of the
workflow execution. Green circles at lines 3 and 5 indicate that the two partitioners
have completed their execution; the blue circle at line 8 indicates that J48 tasks are
still running; the orange circles at lines 11 and 13 indicate that the corresponding
tasks are waiting to be executed.

Microsoft Azure Machine Learning

Microsoft AzureMachine Learning (AzureML) is a SaaS that provides aWeb-based
machine learning IDE (i.e., integrated development environment) for creation and
automation of machine learning workflows. Through its user-friendly interface, data
scientists and developers can perform several common data analysis/mining tasks on
their data and automate their workflows.

Using its drag-and-drop interface, users can import their data in the environment or
use special readers to retrieve data form several sources, such as Web URL (HTTP),
OData Web service, Azure Blob Storage, Azure SQL Database, Azure Table. After
that, users can compose their data analysis workflows where each data process-
ing task is represented as a block that can be connected with each other through
direct edges, establishing specific dependency relationships among them. Azure ML
includes a rich catalog of processing tools that can be easily included in a workflow
to prepare/transform data or to mine data through supervised learning (regression
e classification) or unsupervised learning (clustering) algorithms. Optionally, users
can include their own custom scripts (e.g., in R or Python) to extend the tools catalog.
When workflows are correctly defined, users can evaluate them using some testing
dataset.

122 L. Belcastro et al.

Fig. 6 Example of Azure machine learning workflow (source: http://studio.azureml.net)

Users can easily visualize the results of the tests and find very useful information
about models accuracy, precision and recall. Finally, in order to use their models to
predict new data or perform real time predictions, users can expose them as Web
services. Always through aWeb-based interface, users can monitor theWeb services
load and use by time. Azure Machine Learning is a fully managed service provided
by Microsoft on its Cloud platform; users do not need to buy any hardware/software
nor manage virtual machine manually. One of the main advantage of working with a
Cloud platform like Azure is its auto-scaling feature: models are deployed as elastic
Web services so as users do not have to worry about scaling them if the models usage
increased. An example of workflow built on Microsoft Azure Machine Learning is
shown in Fig. 6.

ClowdFlows

ClowdFlows [22] is an open source Cloud-based platform for the composition, exe-
cution, and sharing of data analysis workflows. It is provided as a software as a
service that allows users to design and execute visual workflows through a simple
Web browser and so it can be run from most devices (e.g., desktop PCs, laptops,
and tablets). ClowdFlows is based on two software components: the workflow editor
(provided by aWeb browser) and the server side application that manages the execu-
tion of the application workflows and hosts a set of stored workflows. The server side
consists of methods for supporting the client-side workflow editor in the composition
and for executing workflows, and a relational database of workflows and data. The
workflow editor includes of a workflow canvas and a widget repository. The widget
repository is a list of all available workflow components that can be added to the
workflow canvas. The repository includes a set of default widgets. Figure7 shows
an example of workflow built on CloudFlow.

http://studio.azureml.net

Big Data Analysis on Clouds 123

Fig. 7 Example of CloudFlow workflow (source: http://clowdflows.org)

According to this approach, the CloudFlows service-oriented architecture allows
users to include in their workflow the implementations of various algorithms, tools
and Web services as workflow elements. For example, the Weka’s algorithms have
been included and exposed as Web services and so they can be added in a workflow
application. ClowdFlows is also easily extensible by importing third-party Web ser-
vices that wrap open-source or custom data mining algorithms. To this end, a user
has only to insert theWSDLURL of aWeb service to create a newworkflow element
that represents the Web service in a workflow application.

Pegasus

Pegasus [12] is aworkflowmanagement systemdeveloped at theUniversity of South-
ern California for supporting the implementation of scientific applications also in
the area of data analysis. Pegasus includes a set of software modules to execute
workflow-based applications in a number of different environments, including desk-
tops, Clouds, clusters and grids. It has been used in several scientific areas includ-
ing bioinformatics, astronomy, earthquake science, gravitational wave physics, and
ocean science. The Pegasus workflow management system can manage the execu-
tion of an application expressed as a visual workflow by mapping it onto available
resources and executing the workflow tasks in the order of their dependencies. In par-
ticular, significant activities have been recently performed on Pegasus to support the
system implementation on Cloud platforms and manage computational workflows
in the Cloud for developing data-intensive scientific applications (Juve et al. 2010;
Nagavaram et al. 2011). The Pegasus system has been used with IaaS Clouds for
workflow applications and the most recent versions of Pegasus can be used to map
and execute workflows on commercial and academic IaaS Clouds such as Amazon
EC2, Nimbus, OpenNebula and Eucalyptus [12]. The Pegasus system includes four
main components:

• the Mapper, which builds an executable workflow based on an abstract workflow
provided by a user or generated by the workflow composition system. To this end,

http://clowdflows.org

124 L. Belcastro et al.

this component finds the appropriate software, data, and computational resources
required for workflow execution. The Mapper can also restructure the workflow
in order to optimize performance, and add transformations for data management
or to generate provenance information.

• the Execution Engine (DAGMan), which executes in appropriate order the tasks
defined in the workflow. This component relies on the compute, storage and net-
work resources defined in the executable workflow to perform the necessary activ-
ities. It includes a local component and some remote ones.

• the TaskManager, which is in charge of managing single workflow tasks by super-
vising their execution on local and/or remote resources.

• TheMonitoring Component, whichmonitors theworkflow execution, analyzes the
workflow and job logs and stores them into a workflow database used to collect
runtime provenance information. This component sends notifications back to users
notifying them of events like failures, success and completion of workflows and
jobs.

The Pegasus software architecture includes also an error recovery system that
attempts to recover from failures by retrying tasks or an entire workflow, re-mapping
portions of theworkflow, providingworkflow-level checkpointing, and using alterna-
tive data sources,whenpossible. ThePegasus system records provenance information
including the locations of data used and produced, and which software was used with
which parameters. This feature is useful when a workflow must be reproduced.

Swift

Swift [53] is a implicitly parallel scripting language that runs workflows across
several distributed systems, like clusters, Clouds, grids, and supercomputers. The
Swift language has been designed at the University of Chicago and at the Argonne
National Lab to provide users with a workflow-based language for grid computing.
Recently has been ported on Clouds and exascale systems. Swift separates the appli-
cation workflow logic from runtime configuration. This approach allows a flexible
development model.

As the DMCF programming interface, the Swift language allows invocation and
running of external application code and allows binding with application execution
environments without extra coding from the user. Swift/K is the previous version
of the Swift language that runs on the Karajan grid workflow engine across wide
area resources. Swift/T is a new implementation of the Swift language for high-
performance computing. In this implementation, a Swift program is translated into
an MPI program that uses the Turbine and ADLB runtime libraries for scalable
dataflow processing over MPI. The Swift-Turbine Compiler (STC) is an optimizing
compiler for Swift/T and the Swift Turbine runtime is a distributed engine that maps
the load of Swift workflow tasks across multiple computing nodes. Users can also
use Galaxy [17] to provide a visual interface for Swift.

The Swift language provides a functional programming paradigm where work-
flows are designed as a set of code invocations with their associated command-line
arguments and input and output files. Swift is based on a C-like syntax and uses an

Big Data Analysis on Clouds 125

implicit data-driven task parallelism [54]. In fact, it looks like a sequential language,
but being a dataflow language, all variables are futures, thus execution is based on data
availability. When input data is ready, functions are executed in parallel. Moreover,
parallelism can be exploited through the use of the foreach statement. The Turbine
runtime comprises a set of services that implement the parallel execution of Swift
scripts exploiting the maximal concurrency permitted by data dependencies within
a script and by external resource availability. Swift has been used for developing
several scientific data analysis applications, such as prediction of protein structures,
modeling the molecular structure of new materials, and decision making in climate
and energy policy.

4.9 NoSQL Models for Data Analytics

With the exponential growth of data to be stored in distributed network scenarios,
relational databases exhibit scalability limitations that significantly reduce the effi-
ciency of querying and analysis [1]. In fact, most relational databases have little
ability to scale horizontally over many servers, which makes challenging storing and
managing the huge amounts of data produced everyday by many applications.

The NoSQL or non-relational database approach became popular in the last years
as an alternative or as a complement to relational databases, in order to ensure hor-
izontal scalability of simple read/write database operations distributed over many
servers [8]. Compared to relational databases, NoSQL databases are generally more
flexible and scalable, as they are capable of taking advantage of new nodes transpar-
ently, without requiring manual distribution of information or additional database
management [46]. Since database management may be a challenging task with huge
amounts of data, NoSQL databases are designed to ensure automatic data distrib-
ution and fault tolerance [15]. In the remainder of this section, we describe some
representative NoSQL systems, and discuss some use cases for NoSQL databases,
with a focus on data analytics.

NoSQL databases provide ways to store scalar values (e.g., numbers, strings),
binary objects (e.g., images, videos), or more complex values. According to their
data model, NoSQL databases can be grouped into three main categories [8]: Key-
value stores, Document stores, Extensible Record stores.

Key-value stores provide mechanisms to store data as (key, value) pairs over
multiple servers. In such kind of databases a distributed hash table (DHT) can be
used to implement a scalable indexing structure, where data retrieval is performed
by using key to find value [8].

Document stores are designed to manage data stored in documents that use differ-
ent formats (e.g., JSON), where each document is assigned a unique key that is used
to identify and retrieve the document. Therefore, document stores extend key-value
stores because they provide for storing, retrieving, and managing semi-structured
information, rather than single values. Unlike the key-value stores, document stores
generally support secondary indexes and multiple types of documents per database,

126 L. Belcastro et al.

and provide mechanisms to query collections based on multiple attribute value con-
straints [8].

Finally, Extensible Record stores (also known as Column-oriented data stores)
provide mechanisms to store extensible records that can be partitioned across mul-
tiple servers. In this type of database, records are said to be extensible because new
attributes can be added on a per-record basis. Extensible record stores provide both
horizontal partitioning (storing records on different nodes) and vertical partitioning
(storing parts of a single record on different servers). In some systems, columns
of a table can be distributed over multiple servers by using column groups, where
pre-defined groups indicate which columns are best stored together.

A brief comparison of noSQL databases is shown in Table1. For a more detailed
comparison see also [20, 28, 39].

Google Bigtable

Google Bigtable20 is a popular table store. Built above the Google File System, it is
able to store up to petabytes of data and supporting tables with billions of rows and
thousands of columns. Thanks to its high read and write throughput at low latency,
Bigtable it is an ideal data source for batch MapReduce operations [9] and other
applications oriented to the processing and analysis of large volumes of data.

Data in Bigtable are stored in sparse, distributed, persistent, multi-dimensional
tables composed of rows and columns. Each row is indexed by a single row key, and
a set of columns that are grouped together into sets called column families. Instead,
a generic column is identified by a column family and a column qualifier, which is a
unique name within the column family. Each value in the table is indexed by a tuple
(row key, column key, timestamp). To improve scalability and to balance the query
workload, data are ordered by row key and the row range for a table is dynamically
partitioned into contiguous blocks, called tablets. These tablets are distributed among
differentBigtable cluster’s nodes (i.e.,Tablet Servers). To improve loadbalancing, the
Bigtable master is able to split larger and merge smaller tablets, redistributing them
across nodes as needed. To ensure data durability, Bigtable stores data on Google
File System (GFS) and protects it from disaster events through data replication and
backup. Bigtable can be used into applications through multiple clients, including
Cloud Bigtable HBase, a customized version of the standard client for the industry-
standard Apache HBase.

Apache Cassandra

Apache Cassandra21 is a distributed database management system providing high
availability with no single point of failure. Born at Facebook and inspired byAmazon
Dynamo and Google BigTable, Apache Cassandra is designed for managing large
amount of data across multiple data centers and Cloud availability zones.

Cassandra uses a masterless ring architecture, where all nodes play an identical
role, that allows any authorized user to connect to any node in any data center.

20https://cloud.google.com/bigtable/.
21http://cassandra.apache.org/.

https://cloud.google.com/bigtable/
http://cassandra.apache.org/

Big Data Analysis on Clouds 127

Ta
bl
e
1

C
om

pa
ri
so
n
of

so
m
e
N
oS

Q
L
da
ta
ba
se
s.
FS

=F
ile

Sy
st
em

;M
E
M

=I
n-
M
em

or
y

D
yn
am

oD
B

C
as
sa
nd
ra

H
ba
se

R
ed
is

C
ou
ch
D
B

B
ig
Ta
bl
e

M
on
go
D
B

N
eo
4j

Ty
pe

K
ey
-v
al
ue

C
ol
um

n
C
ol
um

n
K
ey
-v
al
ue

D
oc
um

en
t

C
ol
um

n
D
oc
um

en
t

G
ra
ph

D
at
a
st
or
ag
e

M
E
M
,F

S
H
D
FS

,C
FS

H
D
FS

M
E
M
,F

S
M
E
M
,F

S
G
FS

M
E
M
,F

S
M
E
M
,F

S

M
ap
R
ed
uc
e

ye
s

ye
s

ye
s

no
ye
s

ye
s

ye
s

no

Pe
rs
is
te
nc
e

ye
s

ye
s

ye
s

ye
s,
w
ith

lim
its

a
ye
s

ye
s

ye
s

ye
s

R
ep
lic

at
io
n

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

Sc
al
ab
ili
ty

hi
gh

hi
gh

hi
gh

hi
gh

hi
gh

hi
gh

hi
gh

hi
gh

Pe
rf
or
m
an
ce

hi
gh

hi
gh

hi
gh

hi
gh

hi
gh

hi
gh

hi
gh

hi
gh
,v
ar
ia
bl
e

H
ig
h

av
ai
la
bi
lit
y

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

L
an
gu
ag
e

Ja
va

Ja
va

Ja
va

A
ns
i-
C

E
rl
an
g

Ja
va
,P

yt
ho
n,

G
o,

R
ub
y

C
+
+

Ja
va

L
ic
en
se

Pr
op
ri
et
ar
y

A
pa
ch
e
2.
0

A
pa
ch
e
2.
0

B
SD

A
pa
ch
e
2.
0

Pr
op
ri
et
ar
y

G
N
U
A
G
PL

3
G
N
U
G
PL

3
a L

as
tq

ue
ri
es

ca
n
be

lo
st
as

ex
pl
ai
ne
d
in

ht
tp
://
re
di
s.
io
/t
op

ic
s/
pe
rs
is
te
nc
e

http://redis.io/topics/persistence

128 L. Belcastro et al.

This is a really simple and flexible architecture that allows to add nodes without
service downtime. The process of data distribution across nodes is very simple and
no programmatic operations are needed by the developers.

Since all nodes communicate each other equally, Cassandra has no single point
of failure, that ensures continuous data availability and service uptime. Moreover,
Cassandra provides very customizable data replication service that allows to replicate
data across nodes that participate in a ring. In this manner, in case of node failure,
one or more copies of the needed data are available on other nodes.

Cassandra also provides built-in and customizable replication,which stores redun-
dant copies of data across nodes that participate in a Cassandra ring. This means that
if a node in a cluster goes down, one or more copies of data stored on that node is
available on other machines in the cluster. Replication can be configured to work
across one data center, many data centers, and multiple Cloud availability zones.
Focusing on performance and scalability, Cassandra reaches a quite linear speedup,
that means the OPS (Operations Per Second) capacity can be increased by adding
new nodes (e.g., if 2 nodes can handle 10,000 OPS, 4 nodes will support 20,000
OPS, and so on).

Many companies have successfully deployed and benefited from Apache Cas-
sandra including some large companies such as: Apple (75,000 nodes storing over
10 PB of data), Chinese search engine Easou (270 nodes, 300 TB, over 800 million
requests per day), and eBay (over 100 nodes, 250 TB), Netflix (2,500 nodes, 420
TB, over 1 trillion requests per day), Instagram, Spotify, eBay, Rackspace, and many
more.

Neo4j Graph Database

If we need to take into account real time data relationships (e.g. create queries using
data relationships), NoSQL databases are not the best choice. In fact, relationship-
based or graph databases has been created for naturally supporting operations on
data that use data relationships. Graph databases provide a novel and powerful data
modeling technique that does not store data in tables, but in graph models [43], with
several benefits in storing and retrieving data connected by complex relationships.

There are several graph data models, such as Neo4j, OrientDB, Virtuoso, Allegro,
Stardog, InfiniteGraph. Among all we focus on Neo4j. Neo4j is an open-source
NoSQL graph database implemented in Java and Scala that is considered the most
popular graph database used today. The Neo4j source code and issue tracking are
available on GitHub, with a large support community. It is used today by a very large
number of organizations working in different sectors, including software analytics,
scientific research, project management, recommendations, and social networks.

In the Neo4j graph model, each node contains a list of relationship records that
refer to other nodes, and additional attributes (e.g. timestamp, metadata, key-value
pairs, and more). Each relationship record must have a name, a direction, a start node
and an end node, and can contains additional properties. One or more labels can be
assigned both to nodes and relationships. In particular, such labels can be used for
representing the roles a node plays in the graph (e.g., user, address, company, and so

Big Data Analysis on Clouds 129

Fig. 8 Example of bank fraud graph dataset (source: http://neo4j.com)

on) or for associating indexes and constraints to groups of nodes. Figure8 shows an
example of a graph model used for detecting bank fraud.

Moreover, Neo4j clusters are designed for high availability and horizontal read
scaling using master-slave replication. Focusing on performance, Neo4j is thousands
of times faster than SQL in executing traversal operation. The traversal operation
consists of visiting a set of nodes in the graph by moving along relationships (e.g.,
find potential friends in social network from user friendship). With such kind of
operations, graph models allow to take into account only the data that is required,
without doing expensive grouping operations as done by relational database during
join operations [51]. Queries in Neo4j are written using Cypher, a declarative and
SQL-based language for describing patterns in graphs. Cypher is a relative simple
but very powerful language, that allows to execute queries in a easy way on a very
complex graph database.

4.10 Visual Analytics

A primary problem in data analysis is to interpret results easily. To overcome this
problem, in the last years, great progress has been made in the field of visual ana-
lytics. As defined by [50], visual analytics is the science of analytical reasoning
facilitated by interactive visual interfaces. Nowadays, people use visual analytics
tools and methodologies to extract synthetic information from often confusing data
and use them in further analysis or business operations. The power of visual analytics
techniques relies on human brain capabilities to process graphics faster than text. In
particular, through a graphical data presentation, the human brain could be able to
find complex and often hidden patterns and relationships in data that are difficult to

http://neo4j.com

130 L. Belcastro et al.

discover using automatic methods. Also in the Big Data context, the tools used to
visualize results and to interact with data play a key role. Thus, in order to support
data presentation and interaction also in presence of Big Data, innovative method-
ologies (e.g., interactive charts, animations, diagrams, and much more) have been
developed.

In particular, to ride the wave of visual analytics technologies, several big IT com-
pany, such as Microsoft, Google, and SAS, developed advanced data presentation
and data visualization tools able to interact with existent Big Data platforms, includ-
ing Hadoop-based ones. For example, Microsoft extended Excel functions to allow
integration with its Big Data solution. In particular, Excel’s users can be connected
to Azure Storage associated to an Hadoop HDInsight cluster using the Microsoft
Power Query for Excel add-in. Once data has been retrieved, users can exploit Excel
functions to make more interesting charts or graphs.

Google Fusion Tables22 is an other alternative for turning data into graphics in a
very easy way. It allows to load tabular data, filter and summarize across hundreds of
thousands of rows, and create geo maps, heat maps, graphs, charts, animations, and
more. Also Google Charts23 are a powerful Javascript library for making interactive
charts for browsers and mobile devices. Google Charts allows to create several types
of charts, from simple line charts to complex hierarchical tree maps. In the field of
maps and location-based applications, advanced platforms, such as Google Maps,24

Mapbox,25 can be used to create interactive and dynamic maps, display additional
layers on a map or generate routes. In the field of visual data analysis, several Big
Data start-ups spring up in the last years. Tableau,26 for example, is a Big Data
company from Stanford with multinational operations in fifteen cities, and more
than 39,000 customer accounts in 150 countries. It developed software solutions for
easily creating complex charts from huge amount of data. In fact, thanks to its Cloud
analytics platform, Tableau allows users to manipulate data through a simple web
control panel. In this way, users can interact directly with data to find interesting
insights. Among all the competitors in this field, SAS27 probably stands out among
its peers.

SAS Visual Analytics, in fact, represents a complete solution for advanced data
visualization and exploratory analyses. Thanks to its drag-and-drop capabilities and
no code requirements, it allows users to easily solve complex issues using several
sophisticated techniques for data analysis (e.g. decision trees, network diagrams,
scenario analysis, path analysis, sentiment analysis) and business intelligence. In
addition, exploiting in-memory processing, SAS software makes analytic applica-
tions faster.

22https://tables.googlelabs.com.
23https://developers.google.com/chart.
24https://www.google.com/maps.
25https://www.mapbox.com/.
26http://www.tableau.com.
27https://www.sas.com.

https://tables.googlelabs.com
https://developers.google.com/chart
https://www.google.com/maps
https://www.mapbox.com/
http://www.tableau.com
https://www.sas.com

Big Data Analysis on Clouds 131

4.11 Big Data Funding Projects

Open-source projects discussed in the previous sections (e.g., Hadoop, Spark, and
NoSQL databases) have been widely used in several public funding projects. As
examples:

• BigFoot project28 is a cloud-based solution featuring scalable and optimized
engines to store, process and interact with Big Data. It has received funding from
the European Union’s Horizon 2020 program.

• Optique29 is a EU funding project with a total budget of about 14 million EUR.
It is aims to provide a novel end-to-end OBDA (Ontology-Based Data Access)
[7, 38] solution for improving Big Data access. In particular, Optique platform
allows to quickly formulate intuitive queries exploiting user vocabularies and con-
ceptualizations, and executing them using massive parallelism.

Also government agencies invested large amount of money on Big Data technolo-
gies in many public sector fields, such as intelligence, defense, weather forecasting,
crime prediction and prevention, and scientific research.

As example, US Administration invested more that 250 million USD for Big
Data research and development initiative across multiple agencies and departments.
Moreover, in 2014 UK government decided to invest about 73 million GBP in Big
Data and other analytics technologies with the goals of creating 58,000 new jobs in
Britain by 2017, contributing 216 billion GBP to the countrys economy.

4.12 Historical Review

In this section a brief historical review of Big Data is presented. Undoubtedly, main
events in Big Data evolution are due to big IT and Internet companies, like Google
and Yahoo, who faced first the need of new solutions for tackling the rise of Big Data.
A significant role in this context has been played by Hadoop and its related projects,
that made Big Data analytics accessible also to a larger number of organizations.

Hadoop was created by Doug Cutting and it has its origins in Apache Nutch
(2002), an open source web search engine, itself a part of the Lucene project (2000).
After Google released the Google File System (GFS) paper (October 2003) and the
MapReduce paper (December 2004), Cutting went to work with Yahoo and decided
to build open source frameworks based on them: in 2006 Yahoo! created Hadoop
based on GFS andMapReduce, and one year later, it started using Hadoop on a 1000
node cluster. In 2006, Yahoo Labs created Pig based on Hadoop, and then donated
it to the Apache Software Foundation (ASF). In few years, several other projects
was created around Hadoop and, in a short time, graduated to a Apache Top Level
Project: HBase (2008), Hive (2008), Cassandra (2008), Storm (2011), Giraph (2011),

28http://bigfootproject.eu/.
29http://optique-project.eu.

http://bigfootproject.eu/
http://optique-project.eu

132 L. Belcastro et al.

Fig. 9 A short Hadoop ecosystem’s history

and so on. At the same time, manyHadoop distributor was founded, such as Cloudera
(2008), MapR (2009), Hortonworks (2011). A short history of Hadoop and related
project is shown in Fig. 9.

Spark represents another milestone in Big Data analytics. Spark was initially
created at UC Berkeley’s AMPLab in 2009, open sourced in 2010 under a BSD
license, and donated to the ASF in 2013. Finally, in February 2014, Spark became a
Top-Level Apache Project and declared the most active ASF project. As discussed
before, Spark is nowadays considered the primary execution engine for several Big
Data applications, sometimes used to complement Hadoop.

4.13 Summary

It is not easy to summarize all the features of the systems discussed till now or to
do a proof comparison among them. Some of those systems have common features
and, in some cases, using one rather than another is an hard choice. In fact, given a
specific data analytic task, such as a machine learning application, it is possible to
use several tools. Some of those are widely used commercial tools, provided through
cloud services, that can be easily used by no skilled people (e.g., Azure Machine
Learning or Amazon Machine Learning); other are open-source frameworks that
require skilled users who prefer to program their application using a more technical
approach. In addition, choosing the best solution for developing a data analytic
application may depend on many other factors, such as budget (e.g., often high-level
services are easy-to-use but more expensive than low-level solutions), data format,
data source, the amount of data to be analyze and its velocity, and so on. Table2
presents a brief comparison of the Big Data analytics systems.

Big Data Analysis on Clouds 133

Ta
bl
e
2

A
br
ie
f
co
m
pa
ri
so
n
of

m
os
tc
om

m
on

bi
g
da
ta
an
al
yt
ic
s
sy
st
em

s

Sy
st
em

s/
To

ol
s

A
na
ly
tic

s
O
pe
n-
so
ur
ce

C
lo
ud

m
od
el

St
re
am

in
g

G
ra
ph

In
-m

em
or
y

M
ac
hi
ne

le
ar
ni
ng

SQ
L

D
at
a
flo

w
D
at
a

pr
oc
es
si
ng

W
or
kfl

ow

H
ad
oo
p

x
x

x
x

x
x

x
Ia
aS

Sp
ar
k

x
x

x
x

x
x

x
Ia
aS

M
ah
ou
t

x
x

x
Ia
aS

O
oz
ie

x
x

Ia
aS

Te
z

x
x

Ia
aS

G
ir
ap
h

x
x

Ia
aS

St
or
m

x
x

Ia
aS

H
iv
e

x
x

Ia
aS

Pi
g

x
x

Ia
aS

H
un
k

Sa
aS

Se
ct
or
/S
ph
er
e

x
x

Sa
aS

B
ig
M
L

x
Sa

aS
,P

aa
S

K
og

ni
tio

an
al
yt
ic
al

x
x

Pa
aS

D
M
C
F

x
x

x
x

Sa
aS

,P
aa
S

M
ic
ro
so
ft

A
zu
re

M
L

x
x

x
Sa

aS

A
m
az
on

M
L

x
x

x
x

Sa
aS

Pe
ga
su
s

x
x

Ia
aS

C
lo
w
dF

lo
w
s

x
x

Pa
aS

Sw
if
t

x
x

Ia
aS

134 L. Belcastro et al.

Table 3 Summary considerations about graph databases

Graph databases

Horizontal scaling Poor horizontal scaling

When to use For storing objects without a fixed schema and linked together by
relationships; when users can done naturally their reasoning about
data via graph traversals instead of using complex SQL queries

CAP tradeoff Usually prefer availability over consistency

Pros Powerful data modeling and relationships representation; locally
indexed connected data; easy to query

Cons Highly specialized query capabilities that make them the best for
graph data, but not suitable for non-graph data

Hadoop represents the most used framework for developing distributed Big Data
analytics application. In fact, Hadoop-ecosystem is undoubtedly the most complete
solution for any kind of problem, but at the same time it is thought for high skilled
users. On the other hand, many other solutions are designed for low-skilled users
or for low-medium organizations that do not want to spend resources in developing
and maintaining enterprise data analytics solutions (e.g., Microsoft Azure Machine
Learning, Amazon Machine Learning, Data Mining Cloud Framework, Kognitio
Analytical, orBigML). Finally, other solutions have been createdmainly for scientific
research purposes and, for this reason, they are poorly used for developing business
applications (e.g., Sector/Sphere, Pegasus).

Choosing the best database solution for creating a Big Data application is another
key-step, so several aspects need to be considered. To decide what kind of database
to adopt, the first aspect to be considered is probably the classes of queries will be
run. So graph databases are probably the best solution for representing and querying
highly connected data (e.g., data gathered from social network) or that have com-
plex relationships and/or dynamic schema. In any other case, when non-graph data
are analyzed, graph databases could result in really bad performance. About that,
summary considerations on graph databases are presented in Table3.

Another aspect to be considered in choosing the best database solution should
be the CAP (Consistency, Availability, and Partition) capabilities offered, because
distributed NoSQL database systems can’t be fully CAP compliant. In fact, the CAP
theorem, also named Brewer’s theorem [18], states that a distributed system can’t
simultaneously guarantee all three of the following properties:

• Consistency (C), that means all nodes see the same data at the same time;
• Availability (A), that means every request will receive a response within a reason-
able amount of time;

• Partition (P) tolerance, that means the system continues to function also if arbitrary
network partitions occur due to failures.

Big Data Analysis on Clouds 135

Table 4 Summary considerations about Key-Value databases

Key-value databases

Horizontal scaling Very high scale provided via sharding

When to use When you have a very simple data schema or extreme speed scenario (like
real-time)

CAP tradeoff Most solutions prefer consistency over availability

Pros Simple data model; very high scalability, data can be accessed using query
language like SQL

Cons Some queries could be inefficient or limited due to sharding (e.g., join
operations across shards); no API standardization; maintenance is
difficult; poor for complex data

Table 5 Summary considerations about column-oriented databases.

Column-oriented databases

Horizontal scaling Very high scale capabilities

When to use When you need consistency and higher scalability performance than a
single machine (i.e., usually using more than 1,000 nodes), without using
indexed caching front end

CAP tradeoff Most solutions prefer consistency over availability

Pros Higher throughput and stronger concurrency when it is possible to
partition data; multi-attribute queries; data is naturally indexed by
columns; support semi-structured data

Cons More complex than the document stores; poor for interconnected data

Thus if a distributed database system guarantees Consistency and Partitioning, it
can never ensure Availability. Similarly, if you need a full Availability and Partition
tolerance, you can’t have Consistency, anyway not immediately. In fact, on a dis-
tributed environment, data changes on one node need some time to be propagated to
the other nodes. During that time the copies will be mutually inconsistent, that may
lead to the possibility of reading not updated data. To try to overcome this limitation,
the Eventual Consistency property is usually provided: it ensures that the system,
sooner or later, will become consistent. This is a weak property, so if the adopted
database system only provides eventual consistency, the developer must be aware
that exists the possibility of reading inconsistent data. NoSQL databases usually
offer a balance among CAP properties, which is the key difference among the dif-
ferent available solutions. For each database family, some summary considerations
are also provided for Key-Value databases (Table4), Column-oriented (Table5), and
Document-oriented databases (Table6).

136 L. Belcastro et al.

Table 6 Summary considerations about document-oriented databases

Document-oriented databases

Horizontal scaling Scale provided via replication or replication and sharding

When to use When your record structure is relatively small and it is possible to store
all of its related properties in a single doc

CAP tradeoff In most cases prefer consistency over availability

Pros High scalability and simple data model; generally support secondary
indexes, multiple types of documents per database, and nested
documents or lists; MapReduce support for adhoc querying.

Cons Eventually consistent model with limited atomicity and isolation; poor
for interconnected data; query model is limited to keys and indexes

5 Research Trends

Big Data analysis is a very active research area with significant impact on industrial
and scientific domains where is important to analyze very large and complex data
repositories. In particular, in many cases data to be analyzed are stored in Cloud plat-
forms and elastic computing Clouds facilities are exploited to speedup the analysis.
This section outlines and discusses main research trends in Big Data analytics and
Cloud systems for managing and mining large-scale data repositories.

As we discussed, scalable data analytics requires high-level, easy-to-use design
tools for programming large applications dealing with huge, distributed data sources.
Moreover, Clouds are widely adopted by many organizations, however several exist-
ing issues remain to be addressed, so that Cloud solutions can improve their efficiency
and competitiveness at each business size, from medium to large companies. This
requires further research and development in several key areas such as:

• Programming models for Big Data analytics. Big Data analytics programming
tools require novel complex abstract structures. The MapReduce model is often
used on clusters and Clouds, but more research is needed to develop scalable
higher-level models and tools. State-of-the-art solutions generated major success
stories, however they are not mature and suffer several problems from data transfer
bottlenecks to performance unpredictability. Several other processingmodels have
been proposed as alternative to MapReduce, such as Dryad [21] or Pregel [30],
but they have never been widely used by developers.

• Data storage scalability. The increasing amount of data generated needs evenmore
scalable data storage systems. As discussed in the previously, traditional RDBMS
systems are not the best choice for supporting Big Data applications in the Cloud,
and that leads to the popularity of noSQL platforms [8]. Several noSQL solutions
have been proposed, with good experimental results in term of performance gain,
but several other improvements are still needed [47, 52]. In fact, RDBMS systems
have been around for a long time, are quite stable and offers lots of features. In
the other hand, most noSQL systems are in its early version and several additional

Big Data Analysis on Clouds 137

features have yet to be improved or implemented, such as integrating capabilities
from DBMS (e.g., indexing techniques), facilities for ad-hoc queries, and more.

• Data availability. Cloud service provides have to deal with the problem of granting
service and data availability. Especially in presence of huge amounts of data,
granting high-quality service is an opened challenge. Several solutions have been
proposed for improving exploitation, such as using a cooperative multi-Cloud
model to support Big Data accessibility in emergency cases [25], but more studies
are still needed to handle the continue increasing demand for more real time and
broad network access to Cloud services.

• Data and tool interoperability and openness. Interoperability is a main issue in
large-scale applications that use resources such as data and computing nodes.
Standard formats andmodels are needed to support interoperability and ease coop-
eration among teams using different data formats and tools. The National Institute
of Standards and Technology (NIST) just released the Big Data interoperability
framework,30 a collection of documents, organized in 7 volumes, which aim to
define some standards for Big Data.

• Data quality and usability. Big Data sets are often arranged by gathering data from
several heterogeneous and often not well-known sources. This leads to a poor data
quality that is a big problem for data analysts. In fact, due to the lack of a common
format, inconsistent and useless data can be produced as a result of joining data
from heterogeneous sources. Defining some common and widely adopted format
would lead to data that are consistent with data from other sources, that means
high quality data. Since real-world data is highly susceptible to inconsistency,
incompleteness, and noise, finding effective methodologies for data preprocessing
is still an open challenge for improve data quality and the analysis results [10]. In
this regard, an interesting discussion about challenges of data quality in the Big
Data has been presented in [6].

• Integration of Big Data analytics frameworks. The service-oriented paradigm
allows running large-scale distributed workflows on heterogeneous platforms
along with software components developed using different programming lan-
guages or tools. Scalable software architectures for fine grain in-memory data
access and analysis. Exascale processors and storage devices must be exploited
with fine-grain runtime models. Software solutions for handling many cores and
scalable processor-to-processor communications have to be designed to exploit
exascale hardware [13, 36].

• Tools for massive social network analysis. The effective analysis of social net-
work data on a large scale requires new software tools for real-time data extraction
and mining, using Cloud services and high-performance computing approaches
[31, 35]. Social data streaming analysis tools represent very useful technologies
to understand collective behaviors from social media data. Tools for data explo-
ration and models visualization. New approaches to data exploration and models
visualization are necessary taking into account the size of data and the complexity
of the knowledge extracted. As data are bigger and bigger, visualization tools will

30http://www.nist.gov/itl/bigdata/bigdatainfo.cfm.

http://www.nist.gov/itl/bigdata/bigdatainfo.cfm

138 L. Belcastro et al.

be more useful to summarize and show data patterns and trends in a compact and
easy-to-see way.

• Local mining and distributed model combination. As Big Data applications often
involve several local sources and distributed coordination, collecting distributed
data sources to a centralized server for analysis is not practical or in some cases
possible. Scalable data analysis systems have to enable localmining of data sources
and model exchange and fusion mechanisms to compose the results produced in
the distributed nodes [55]. According to this approach the global analysis can be
performed by distributing the local mining and supporting the global combination
of every local knowledge to generate the complete model.

• In-memory analysis. Most of the data analysis tools query data sources on disks
while, differently from those, in-memory analytics query data in main memory
(RAM). This approach brings many benefits in terms of query speed up and faster
decisions. In-memory databases are, for example, very effective in real-time data
analysis, but they require high-performance hardware support and fine-grain par-
allel algorithms [49, 59]. New 64-bit operating systems allow to address memory
up to one terabyte, so making realistic to cache very large amount of data in RAM.
This is why this research area is very promising.

6 Conclusions

In the last years the ability to gather data has increased exponentially. Advances and
pervasiveness of computers have been the main driver of the very huge amounts of
digital data that today are collected and stored in digital repositories. Those data vol-
umes can be analyzed to extract useful information and producing helpful knowledge
for science, industry, public services and ingeneral for humankind.However, the huge
amount of data generated, the speed at which it is produced, and its heterogeneity,
represent a challenge to the current storage, process and analysis capabilities. Then
to extract value from such kind of data, novel technologies and architectures have
been developed by data scientists for capturing and analyzing complex and/or high
velocity data. In this scenario was born also the Big Data mining field as a discipline
that today provides several different techniques and algorithms for the automatic
analysis of large data sets. But, the process of knowledge discovery from Big Data is
not so easy, mainly due to data characteristics, and to get valuable information and
knowledge in shorter time, high performance and scalable computing systems are
needed. In many cases, Big Data are stored and analyzed in Cloud platforms.

Clouds provide scalable storage and processing services that can be used for
extracting knowledge from Big Data repositories, as well as software platforms for
developing and running data analysis environments on top of such services. In this
chapter we provided an overview of Cloud technologies by describing the main
service models (SaaS, PaaS, and IaaS) and deployment models (public, private or
hybrid Clouds) adopted by Cloud providers. We also described representative exam-
ples of Cloud environments (Microsoft Azure, Amazon Web Services, OpenNebula

Big Data Analysis on Clouds 139

and OpenStack) that can be used to implement applications and frameworks for
data analysis in the Cloud. The development of data analysis applications on Cloud
computing systems is a complex task that needs to exploit smart software solu-
tions and innovative technologies. In this chapter we presented the leading software
tools and technologies used for developing scalable data analysis on Clouds, such as
MapReduce, Spark, workflow systems, and NoSQL database management systems.
In particular, we particularly focused onHadoop, the best-knownMapReduce imple-
mentation, that is commonly used to develop scalable applications that analyze big
amounts of data. As we discussed, Hadoop is also a reference tool for several other
frameworks, such as Storm, Hive, Oozie and Spark. Moreover, besides Hadoop and
its ecosystem, several other MapReduce implementations have been implemented
within other systems, including GridGain, Skynet, MapSharp, and Disco.

As such Cloud platforms become available, researchers are increasingly port-
ing powerful data mining programming tools and strategies to the Cloud to exploit
complex and flexible software models, such as the distributed workflow paradigm.
Workflows provide a declarative way of specifying the high-level logic of an appli-
cation, hiding the low-level details. They are also able to integrate existing software
modules, datasets, and services in complex compositions that implement discovery
processes. In this chapterwe presented several dataminingworkflow systems, such as
Data Mining Cloud Framework, Microsoft Azure Machine Learning, ClowdFlows.

Then we also discussed NoSQL database technology that became popular in the
latest years as an alternative or as a complement to relational databases. In fact,
NoSQL systems in several application scenarios are more scalable and provide
higher performance than relational databases. We introduced the basic principles
of NoSQL, described representative NoSQL systems, and outlined interesting data
analytics use cases where NoSQL tools are useful. Finally, some research trends
and open challenges on Big Data analysis has been discussed, such as scalable data
analytics requirements of high-level, easy-to-use design tools for programming large
applications dealing with huge distributed data sources.

Acknowledgements This work is partially supported by EU under the COST Program Action
IC1305: Network for Sustainable Ultrascale Computing (NESUS).

References

1. V. Abramova, J. Bernardino, P. Furtado, Which nosql database? a performance overview. Open
J. Databases (OJDB) 1(2), 17–24 (2014)

2. R. Barga, D. Gannon, D. Reed, The client and the cloud: democratizing research computing.
IEEE Internet Comput. 15(1), 72–75 (2011)

3. L. Belcastro, F. Marozzo, D. Talia, P. Trunfio, Programming visual and script-based big data
analytics workflows on clouds, in Big Data and High Performance Computing. Advances in
Parallel Computing, vol. 26 (IOS Press, 2015), pp. 18–31

4. L. Bermingham, I. Lee, Spatio-temporal sequential pattern mining for tourism sciences. Pro-
cedia Comput. Sci. 29, 379–389 (2014). 2014 International Conference on Computational
Science

140 L. Belcastro et al.

5. S. Bowers, B. Ludäscher, A.H. Ngu, T. Critchlow, Enabling scientificworkflow reuse through
structured composition of dataflow and control-flow, in 22nd International Conference onData
Engineering Workshops, 2006. Proceedings (IEEE, 2006), pp. 70–70

6. L. Cai, Y. Zhu, The challenges of data quality and data quality assessment in the big data era.
Data Sci. J. 14, 2 (2015)

7. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, R. Rosati, Tractable reasoning and
efficient query answering in description logics: the dl-lite family. J. Autom. Reason. 39(3),
385–429 (2007)

8. R. Cattell, Scalable sql and nosql data stores. ACM SIGMOD Record 39(4), 12–27 (2011)
9. F. Chang, J. Dean, S. Ghemawat,W.C. Hsieh, D.A.Wallach,M. Burrows, T. Chandra, A. Fikes,

R.E. Gruber, Bigtable: a distributed storage system for structured data. ACM Trans. Comput.
Syst. (TOCS) 26(2), 4 (2008)

10. D. Che,M. Safran, Z. Peng, Frombig data to big datamining: challenges, issues, and opportuni-
ties, inDatabase Systems for Advanced Applications: 18th International Conference, DASFAA
2013, International Workshops: BDMA, SNSM, SeCoP, Wuhan, China, 22–25 April 2013.
Proceedings (Springer, Berlin, 2013), pp. 1–15

11. J. Dean, S. Ghemawat, Mapreduce: simplified data processing on large clusters, in Proceedings
of the 6th Conference on Symposium on Opearting Systems Design & Implementation - Volume
6, OSDI’04, Berkeley, USA (2004), p. 10

12. E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P.J. Maechling, R. Mayani, W. Chen,
R.F. da Silva, M. Livny et al., Pegasus, a workflowmanagement system for science automation.
Futur. Gener. Comput. Syst. 46, 17–35 (2015)

13. J. Dongarra et al., The international exascale software project roadmap. Int. J. High Perform.
Comput. Appl. 25, 3–60 (2011)

14. J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.H. Bae, J. Qiu, G. Fox, Twister: a runtime
for iterative mapreduce, in Proceedings of the 19th ACM International Symposium on High
Performance Distributed Computing. HPDC ’10 (ACM, New York, 2010), pp. 810–818

15. S.K. Gajendran, A survey on nosql databases. University of Illinois (2012)
16. M.S. Gerber, Predicting crime using twitter and kernel density estimation. Decision Support

Syst. 61, 115–125 (2014)
17. B. Giardine, C. Riemer, R.C. Hardison, R. Burhans, L. Elnitski, P. Shah, Y. Zhang, D. Blanken-

berg, I. Albert, J. Taylor et al., Galaxy: a platform for interactive large-scale genome analysis.
Genome Res. 15(10), 1451–1455 (2005)

18. S. Gilbert, N. Lynch, Brewer’s conjecture and the feasibility of consistent, available, partition-
tolerant web services. ACM SIGACT News 33(2), 51–59 (2002)

19. Y.Gu,R.L.Grossman, Sector and sphere: the design and implementation of a high-performance
data cloud. Philos. Trans. R. Soc. Lond. AMath. Phys. Eng. Sci. 367(1897), 2429–2445 (2009)

20. I.A.T. Hashem, I. Yaqoob, N.B. Anuar, S. Mokhtar, A. Gani, S.U. Khan, The rise of big data
on cloud computing: review and open research issues. Inf. Syst. 47, 98–115 (2015)

21. M. Isard, M. Budiu, Y. Yu, A. Birrell, D. Fetterly, Dryad: distributed data-parallel programs
from sequential building blocks. SIGOPS Oper. Syst. Rev. 41(3), 59–72 (2007)

22. J. Kranjc, V. Podpečan, N. Lavrač, Clowdflows: a cloud based scientific workflow platform, in
Machine Learning and Knowledge Discovery in Databases (Springer, 2012), pp. 816–819

23. T. Kurashima, T. Iwata, G. Irie, K. Fujimura, Travel route recommendation using geotags in
photo sharing sites, in Proceedings of the 19th ACM International Conference on Information
and Knowledge Management. CIKM ’10 (ACM, New York, 2010), pp. 579–588

24. R. Lee, S. Wakamiya, K. Sumiya, Urban area characterization based on crowd behavioral
lifelogs over twitter. Personal Ubiquitous Comput. 17(4), 605–620 (2013)

25. S. Lee, H. Park, Y. Shin, Cloud computing availability: multi-clouds for big data service, in
Convergence and Hybrid Information Technology (Springer, 2012), pp. 799–806

26. A. Lemieux, Geotagged photos: a useful tool for criminological research? Crime Sci. 4(1), 3
(2015)

27. A. Li, X. Yang, S. Kandula, M. Zhang, Cloudcmp: comparing public cloud providers, in
Proceedings of the 10th ACM SIGCOMMConference on Internet Measurement (ACM, 2010),
pp. 1–14

Big Data Analysis on Clouds 141

28. J.R. Lourenço, B. Cabral, P. Carreiro, M. Vieira, J. Bernardino, Choosing the right nosql
database for the job: a quality attribute evaluation. J. Big Data 2(1), 1–26 (2015)

29. D. Lyubimov, A. Palumbo, Apache Mahout: Beyond MapReduce (Chapman and Hall/CRC,
Boca Raton, 2016)

30. G. Malewicz, M.H. Austern, A.J. Bik, J.C. Dehnert, I. Horn, N. Leiser, G. Czajkowski, Pregel:
a system for large-scale graph processing, in Proceedings of the 2010 ACM SIGMOD Inter-
national Conference on Management of Data. SIGMOD ’10 (ACM, New York, 2010), pp.
135–146

31. G. Marciani, M. Piu, M. Porretta, M. Nardelli, V. Cardellini, Real-time analysis of social
networks leveraging the flink framework, in Proceedings of the 10th ACM International Con-
ference on Distributed and Event-Based Systems. DEBS ’16 (ACM, New York, 2016), pp.
386–389

32. F. Marozzo, D. Talia, P. Trunfio, A cloud framework for parameter sweeping data mining
applications, in 2011 IEEE Third International Conference on Cloud Computing Technology
and Science (CloudCom) (IEEE, 2011), pp. 367–374

33. F. Marozzo, D. Talia, P. Trunfio, Using clouds for scalable knowledge discovery applications,
in Euro-Par Workshops, Rhodes Island, Greece. Lecture Notes in Computer Science, vol. 7640
(2012), pp. 220–227

34. F. Marozzo, D. Talia, P. Trunfio, Scalable script-based data analysis workflows on clouds,
in Proceedings of the 8th Workshop on Workflows in Support of Large-Scale Science (ACM,
2013), pp. 124–133

35. A. Martin, A. Brito, C. Fetzer, Real-time social network graph analysis using streammine3g,
in Proceedings of the 10th ACM International Conference on Distributed and Event-Based
Systems. DEBS ’16 (ACM, New York, 2016), pp. 322–329

36. I. Mavroidis, I. Papaefstathiou, L. Lavagno, D.S. Nikolopoulos, D. Koch, J. Goodacre, I. Sour-
dis, V. Papaefstathiou, M. Coppola, M. Palomino, Ecoscale: reconfigurable computing and
runtime system for future exascale systems, in 2016 Design, Automation Test in Europe Con-
ference Exhibition (DATE) (2016), pp. 696–701

37. P.M. Mell, T. Grance, Sp 800-145. the nist definition of cloud computing. Technical report,
National Institute of Standards & Technology, Gaithersburg, MD, United States (2011)

38. R. Möller, B. Neumann, Ontology-based reasoning techniques for multimedia interpretation
and retrieval, in Semantic Multimedia and Ontologies: Theory and Applications, ed. by Y.
Kompatsiaris, P. Hobson (Springer, London, 2008), pp. 55–98

39. A.B.M. Moniruzzaman, S.A. Hossain, Nosql database: new era of databases for big data ana-
lytics - classification, characteristics and comparison. CoRR abs/1307.0191 (2013)

40. D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, D. Zagorodnov, The
eucalyptus open-source cloud-computing system, in 9th IEEE/ACM International Symposium
on Cluster Computing and the Grid, 2009. CCGRID ’09 (2009), pp. 124–131

41. S. Owen, R. Anil, T. Dunning, E. Friedman, Mahout in Action (Manning Publications Co.,
Greenwich, 2011)

42. L. Richardson, S. Ruby, RESTful Web Services (O’Reilly Media, Inc., Sebastopol, 2008)
43. M.A. Rodriguez, P. Neubauer, The graph traversal pattern. CoRR abs/1004.1001 (2010)
44. S. Shahrivari, Beyond batch processing: Towards real-time and streaming big data. CoRR

abs/1403.3375 (2014)
45. B. Sotomayor, R.S. Montero, I.M. Llorente, I. Foster, Virtual infrastructure management in

private and hybrid clouds. IEEE Internet Comput. 13(5), 14–22 (2009)
46. M. Stonebraker, Sql databases v. nosql databases. Commun. ACM 53(4), 10–11 (2010)
47. A. Tai, M. Wei, M.J. Freedman, I. Abraham, D. Malkhi, Replex: a scalable, highly available

multi-index data store, in 2016 USENIX Annual Technical Conference (USENIX ATC 16)
(USENIX Association, Denver, 2016), pp. 337–350

48. D. Talia, P. Trunfio, F. Marozzo, Data Analysis in the Cloud (Elsevier, 2015). ISBN 978-0-12-
802881-0

49. K.L. Tan,Q.Cai, B.C.Ooi,W.F.Wong,C.Yao,H. Zhang, In-memory databases: challenges and
opportunities from software and hardware perspectives. SIGMOD Rec. 44(2), 35–40 (2015)

142 L. Belcastro et al.

50. J.J. Thomas, K.A. Cook, A visual analytics agenda. IEEE Comput. Graph. Appl. 26(1), 10–13
(2006)

51. A. Vukotic, N. Watt, T. Abedrabbo, D. Fox, J. Partner, Neo4j in Action (Manning, Shelter
Island, 2015)

52. Z. Wang, Y. Chu, K. Tan, D. Agrawal, A. El Abbadi, X. Xu, Scalable data cube analysis over
big data. CoRR abs/1311.5663 (2013)

53. M. Wilde, M. Hategan, J.M. Wozniak, B. Clifford, D.S. Katz, I. Foster, Swift: a language for
distributed parallel scripting. Parallel Comput. 37(9), 633–652 (2011)

54. J.M. Wozniak, M. Wilde, I.T. Foster, Language features for scalable distributed-memory
dataflow computing, in 2014 Fourth Workshop on Data-Flow Execution Models for Extreme
Scale Computing (DFM) (2014), pp. 50–53

55. X. Wu, X. Zhu, G.Q. Wu, W. Ding, Data mining with big data. IEEE Trans. Knowl. Data Eng.
26(1), 97–107 (2014)

56. R.S. Xin, J. Rosen,M. Zaharia,M.J. Franklin, S. Shenker, I. Stoica, Shark: sql and rich analytics
at scale, in Proceedings of the 2013 ACM SIGMOD International Conference on Management
of Data. SIGMOD ’13 (ACM, New York, 2013), pp. 13–24

57. L. You, G. Motta, D. Sacco, T. Ma, Social data analysis framework in cloud and mobility
analyzer for smarter cities, in 2014 IEEE International Conference on Service Operations and
Logistics, and Informatics (SOLI) (2014), pp. 96–101

58. J. Yuan, Y. Zheng, L. Zhang, X. Xie, G. Sun, Where to find my next passenger, in Proceedings
of the 13th International Conference on Ubiquitous Computing. UbiComp ’11 (ACM, New
York, 2011), pp. 109–118

59. H. Zhang, G. Chen, B.C. Ooi, K.L. Tan, M. Zhang, In-memory big data management and
processing: a survey. IEEE Trans. Knowl. Data Eng. 27(7), 1920–1948 (2015)

Data Organization and Curation
in Big Data

Mohamed Y. Eltabakh

Abstract This chapter covers advanced techniques in Big Data analytics and query
processing. As the data is getting bigger and, at the same time, workloads and ana-
lytics are getting more complex, the advances in big data applications are no longer
hindered by their ability to collect or generate data. But instead, by their ability to
efficiently and effectively manage the available data. Therefore, numerous scalable
and distributed infrastructures have been proposed to manage big data. However, it
is well known in literature that scalability and distributed processing alone are not
enough to achieve high performance. Instead, the underlying infrastructure has to
be highly optimized for various types of workloads and query classes. These opti-
mizations typically start from the lowest layer of the data management stack, which
is the storage layer. In this chapter, we will cover two well-known techniques for
optimized storage and organization of data that have big influence on query per-
formance, namely the indexing, and data layout techniques. However, in the cases
of non-traditional workloads where queries have special execution and data-access
characteristics, the standard indexing and layout techniques may fall short in pro-
viding the desired performance goals. Therefore, further optimizations specific to
the workload characteristics can be applied. In this chapter, we will cover tech-
niques addressing several of these non-traditional workloads in the context of big
data. Some of these techniques rely on curating either the data or the workflows
(or both) with useful metadata information. This curation information can be very
valuable for both query optimization and the business logic. In this chapter, we will
cover the curation and metadata management of big data in query optimization and
different systems. In this chapter, we focus on the MapReduce-like infrastructures,
more specifically its open-source implementation Hadoop. The chapter covers the
state-of-art in big data indexing techniques, and the data layout and organization
strategies to speedup queries. It will also cover advanced techniques for enabling
non-traditional workloads in Hadoop. Hadoop is primarily designed for workloads
that are characterized by being batch, offline, ad-hoc, and disk-based.Yet, this chapter
will cover recent projects and techniques targeting non-traditional workloads such as

M.Y. Eltabakh (B)
Computer Science Department, Worcester Polytechnic Institute,
Worcester, MA, USA
e-mail: meltabakh@cs.wpi.edu

© Springer International Publishing AG 2017
A.Y. Zomaya and S. Sakr (eds.), Handbook of Big Data Technologies,
DOI 10.1007/978-3-319-49340-4_5

143

144 M.Y. Eltabakh

continuous query evaluation, main-memory processing, and recurring workloads. In
addition, the chapter covers recent techniques proposed for data curation and efficient
metadata management in Hadoop. These techniques vary from being semantic spe-
cific, e.g., provenance tracking techniques, to generic frameworks for data curation
and annotation.

1 Big Data Indexing Techniques

1.1 Overview

Big data infrastructures such as Hadoop are increasingly supporting applications
that manage structured or semi-structured data. In many applications including sci-
entific applications, weblog analysis, click streams, transaction logs, and airline ana-
lytics, at least partial knowledge about the data structure is known. For example,
some attributes may have known types and possible domain of values, while other
attributes may have little information known about them. This knowledge, even if
it is partial, can enable optimization techniques that otherwise would not be possi-
ble. Query optimization in big data is fundamentally important, especially because
(1) the datasets to be processed are getting very large, (2) the analytical queries are
increasing in complexity and may take hours to execute if not carefully optimized,
and (3) the pay-as-you-go cost models for cloud computing add additional urgency
for optimized processing.

A typical query in big data applicationsmay touch files in the order of 100s of GBs
or TBs of size. These queries are typically very expensive as they consume significant
resources and require long periods of time to execute. For example, in transaction
log applications, e.g., transaction history of customer purchases, one query might be
interested in retrieving all transactions from the last two months that exceed a certain
amount of dollar money. Such query may need to scan billions of records and go
over TBs of data.

Indexing techniques are well-known techniques in database systems, especially
relational databases, to optimize query processing. Examples of the standard index-
ing techniques are the B+-Tree, R-Tree, and Hash-based indexes along with their
variations. However, transforming these techniques and structures to big data is
not straightforward due to the unique characteristics of both the data itself and the
underlying infrastructure processing the data. At the data level, the data is no longer
assumed to be stored in relational tables. Instead, the data is received and stored in
the forms of big batches of flat files. In addition, the data size exceeds what relational
database systems can typically handle.

On the other hand, at the infrastructure level, the processing model no longer
follows the relational model of query execution, which relies on connecting a set of
query operators together to form a query tree. Instead, the MapReduce computing
paradigm is entirely different as it relies on two rigid phases of map and reduce.

Data Organization and Curation in Big Data 145

Moreover, the access pattern of the data from the file system is also different. In
relational databases, the data records are read in the form of disk pages (a.k.a disk
blocks), which are very small in size (typically between 8 and 128KBs) and usually
hold few data records (10s or at most 100s of records). And thus, we assume that
the database systems can support record-level access. In contrast, in the Hadoop file
system (HDFS), a single data block ranges between 64MBs and 1GB, and usually
holds many records. Therefore, the record-level access no longer holds. Even the
feasible operations over the data are different from those supported in relational
databases. For example, record updates and deletes are not allowed in theMapReduce
infrastructure. All of these unique characteristics of big data fundamentally affect
the design of the appropriate indexing and pre-processing techniques.

Plain Hadoop is found to be orders-of-magnitudes slower than distributed data-
base management systems when evaluating queries on structured data [1, 67]. One
of the main observed reasons for this slow performance is the lack of indexing
in the Hadoop infrastructure. As a result, significant research efforts have been
dedicated to designing indexing techniques suitable for the Hadoop infrastruc-
ture. These techniques have ranged from record-level indexing [27, 28, 46, 65]
to split-level indexing [34, 38], from user-defined indexes [27, 38, 46] to system-
generated and adaptive indexes [28, 34, 65], and from single-dimension indexes
[27, 28, 34, 46, 65] to multi-dimensional indexes [30, 56, 58].

In Table1, we compare several of the Hadoop-based indexing techniques with
respect to different criteria. Record-level granularity techniques aim for skipping
irrelevant records within each data split, but eventually they may touch all splits.
In contrast, the split-level granularity techniques aim for skipping entire irrelevant
splits. SpatialHadoop system provides both split-level global indexing as well as
record-level local indexing, and thus it can skip irrelevant data at both granularities.
Some techniques index only one attribute at a time (Dimensionality = 1), while
others allow indexing multi-dimensional data (Dimensionality = m). Techniques
like HadoopDB and Polybase Index inherit the multi-dimensional capabilities from
the underlying DBMS. E3 technique enables indexing pairs of values (from two
attributes), but only for a limited subset of the possible values. Most techniques
operate only on the HDFS data (DB-Hybrid = N), while HadoopDB and Polybase
Index have a database system integrated with HDFS to form a Hybrid system. In
most of the proposed techniques, the system’s admin decides on which attributes
to be indexed. The only exceptions are the LIAH index, which is an adaptive index
that automatically detects the changes of the workload and accordingly creates (or
deletes) indexes, and the E3 index, which automatically indexes all attributes in
possibly different ways depending on the data types and the workload. Finally, the
index structure is either stored in HDFS along with its data as in Hadoop++, HAIL,
LIAH, SpatialHadoop, and ScalaGist, in a database system along with its data as in
HadoopDB, or in a database system while the data resides in HDFS as in E3 and
Polybase Index. In the following, we present few of these techniques in more details.

Target Queries: Indexing techniques target optimizing queries that involve selec-
tion predicates, which is the common theme for all techniques listed in Table1. Yet,

146 M.Y. Eltabakh

Table 1 Comparison of Hadoop-based indexed techniques

Technique Granularity Dimensionality DB-hybrid Definition Index location

Hadoop++ [27] Record 1 No Admin HDFS

HAIL [28] Record 1 No Admin HDFS

LIAH [65] Record 1 No System HDFS

E3 [34] Split 1 and 2 No System DB

SpatialHadoop [30] Record/Split m No Admin HDFS

ScalaGist [58] Record m No Admin HDFS

HadoopDB [4] Record m Yes Admin DB

Polybase
Index [38]

Split m Yes Admin DB

they may differ on how queries are expressed and the mechanism by which the selec-
tion predicates are identified. For example, Hadoop++, HAIL, and LIAH they allow
expressing the query in Java while also passing the selection predicates as arguments
within the job configuration. As a result, a customized input format will receive these
predicates (if any) and perform the desired filtering during execution. In contrast, E3
framework is built on top of the Jaql high-level query language [14], and thus queries
are expressed, compiled, and optimized using Jaql. An example query is as follows:

read(hdfs("docs.json"))

-> transform { author: $.meta.author,

products: $.meta.product,

Total: $.meta.Qty * $.meta.Price}

-> filter $.products == "XYZ";

Jaql has the feature of applying selection-push-down during query compilation
whenever possible. As a result, in the given query the filter operator will be
pushed before the transform operator, with the appropriate re-writing. The E3
framework can then detect this filtering operation directly after the read operation
of the base file, and thus can push the selection predicate into its customized input
format to apply the filtering as early as possible.

HadoopDB provides a front-end for expressing SQL queries on top of its data,
which is called SMS. SMS is an extension to Hive. In HadoopDB queries are
expressed in an identical way to standard SQL as in the following example.

SELECT pageURL, pageRank

FROM Rankings

WHERE pageRank > 10;

SpatialHadoop is designed for spatial queries, and thus it provides a high-level
language and constructs for expressing these queries and operating on spatial objects,
e.g., points and rectangles. For example, a query can be expressed as follows:

Data Organization and Curation in Big Data 147

Objects = LOAD "points" AS (id:int, Location:POINT);

Result = FILTER Objects BY

Overlaps (Location, Rectangle(x1, y1, x2, y2));

ScalaGist enables buildingGist indexes, e.g., B+-tree andR-tree, overHDFS data.
A single query in ScalaGist can make use of multiple indexes at the same time. For
example, given a table T with schema {x,…, (a1, a2)}, where x is a one-dimensional
column, and (a1, a2) is a two-dimensional column, the following query can use both
a B+-tree index (on x) and an R-tree index (on (a1, a2)) during its evaluation:

SELECT *

FROM T

WHERE x ≤ 100

AND 10 ≤ a1 ≤ 20

AND 30 ≤ a2 ≤ 60;

Finally, the Polybase system enables expressing queries using standard SQL over
HDFS data that are defined as external tables. First, users need to define the external
table as in the following example:

Create External Table hdfsLineItem

(l_orderkey BIGINT Not Null,

l_partkey BIGINT Not Null,

...)

With (Location = ’/tpch1gb/lineitem.tbl’,

Data_Source = VLDB_HDP_Cluster,

File_Format = Text_Delimited);

And then, a query on the external table can be expressed as follows:

SELECT *

FROM hdfsLineItem

WHERE l_orderkey = 1;

1.2 Record-Level Non-adaptive Indexing

Hadoop++ [27] is an indexing technique built on top the Hadoop infrastructure.
Unlike other techniques that require extensive changes to Hadoop’s execution model
to offer run-time optimizations, e.g., HadoopDB [4, 5], Hadoop++ relies on aug-
menting the indexing structures to the data in a way that does not affect the execution

148 M.Y. Eltabakh

mechanism of Hadoop. All processing on the indexes, e.g., creating the indexes,
augmenting them to the data, and their access, are all performed through pluggable
user-defined functions (UDFs) that are already available within the Hadoop frame-
work.

The basic idea of the Hadoop++ index, which is referred to as a Trojan Index, is
illustrated in Fig. 1a. At the loading time, the base data is partitioned using a map-
reduce job. This job partitions the data based on the attribute to be indexed, i.e., if
attribute X is to be indexed then depending on the X ’s value in each record, the
record will be assigned to a specific split Id. This assignment is performed by the
mapper function. On the other hand, the reducer function receives all the records
belonging to a specific split, and creates the trojan index corresponding to that split.
The index is then augmented to the data split to form a bigger split, referred to as
an indexed split as depicted in the figure. Each indexed split will also have a Split
Header (H), and a Split Footer (F), which together hold the metadata information
about each indexed split, e.g., the split size, the number of records, the smallest and
largest indexed values within this split, etc. In general, Hadoop++ can be configured
to create several trojan indexes for the same data on different attributes. However,
only one index can be the primary index according to which the data records are
sorted within each split. This primary index is referred to as the clustered index,
while the other additional indexes are non-clustered indexes.

At query time, given a query involving a selection predicate on one of the indexed
attributes, the processing works as follows. First, a custom InputFormat function
would read each indexed split (instead of the data splits), and consult the trojan
index for that split w.r.t the selection predicate. If there are multiple indexes, then the
appropriate index is selected based on the selection predicate. If none of the records
satisfies the query predicate, then the entire split is skipped and the map function
terminates without actually checking any record within this split. Otherwise, the
trojan index will point to the data records within the split that satisfies the query. If
the trojan index is clustered, then this means that the data records within the given
block are ordered according to the indexed attribute, and thus the retrieval of the
records will be faster and requires less I/Os.

It is worth highlighting that trojan indexes are categorized as local indexes mean-
ing that a local index is created for each data split in contrast to building a single
global index for the entire dataset. Local indexes have their advantages and disad-
vantages. For example, one of the advantages is that the entire dataset does not need
to sorted, which is important because global sorting is prohibitively expensive in big
data. However, one disadvantage is that each indexed split has to touched at query
time. This implies that amapper function has to be scheduled and initiated byHadoop
for each split even if many of these splits are irrelevant to the query.

Hadoop++ framework also provides a mechanism, called Trojan Join, to speedup
the join operation between two datasets, say S and T (Refer to Fig. 1b). The basic idea
is to partition both datasets (at the same time) on the join key. This partitioning can be
performed at the loading time as a pre-processing step. The actual join does not take
place during this partitioning phase. Instead, only the corresponding data partitions
from both datasets are grouped together in bigger splits, referred to as Co-Partition

Data Organization and Curation in Big Data 149

The base data

Map-Reduce Job (at loading time)

Data Split 1 Data Split 2 Data Split n

TI 1 TI 2 TI n

Indexed Split 1 Indexed Split 2 Indexed Split n
Trojan
Index

Partitions
data on the
indexed key

Header Footer

Data Split 1 Data Split 2Data Split 1 Data Split 2

Co-group Co-group

 Co-partition Split without Trojan Index
Header Info
for each split

Data Split 1 Data Split 2Data Split 1 Data Split 2

Co-group Co-group

 Co-partition Split Combined with Trojan Index

Index Index

(a) Hadoop++ Trojan Index

(b) Hadoop++ Trojan Join

Fig. 1 Hadoop++ Trojan Index and Trojan Join

Splits. And then, at query time when S and T need to be joined, the join operation
can take place as a map-only job, where each mapper will be assigned one complete
co-partition split. As such, each mapper can join the corresponding partitions within
its split. Therefore, the join operation becomes significantly less expensive since the
shuffling/sorting and reduce phases have been eliminated (compared to the traditional
map-reduce join operation in Hadoop). As highlighted in Fig. 1b, the individual splits
from either of S or T (or both) within a single co-partitioned may or may not have a
trojan index on them.

Hadoop++ framework is suitable for static indexing and joining. That is, at the
time of loading the data into Hadoop, the system needs to know whether or not
indexes need to be created (and on which attributes), and also whether or not
co-partitioning between specific datasets need to be performed. After loading the

150 M.Y. Eltabakh

data no additional indexes or co-partitioning can be created unless the entire dataset
is re-processed from scratch. Similarly, if new batches of files arrive and need to be
appended to an existing indexed dataset, then the entire dataset need to be re-loaded
(and the entire indexes to be re-created) in order to accommodate for the new batches.

1.3 Record-Level Adaptive Indexing

The work proposed in [28, 65] overcomes some of the limitations of other previous
indexing techniques, e.g., [27, 46]. The key limitations include the following. First,
high creation overhead for indexes. Usually building the indexes requires a pre-
processing step, and this step can be expensive since it has to go over the entire
dataset. Previous evaluations have shown that this overhead is usually redeemed from
few queries, i.e., the execution of few queries using the index will redeem the cost
paid upfront to create the index. Although that is true, reducing the creation overhead
is always a desirable thing. The second limitation is the question of which attributes
to index? In general, if the query workload is changing, then different indexes may
need to be created (or deleted) over time. The work in [28, 65] addresses these two
limitations.

HAIL (Hadoop Aggressive Indexing Library) [28] makes use of the fact that
Hadoop, by default, creates three replicas of each data block—This default behavior
can be altered by the end-users to either increase or decrease the number of replicas. In
plain Hadoop, these replicas are exact mirror of each other. However, HAIL proposes
to re-organize the data in each replica in a differentway, e.g., each of the three replicas
of the same data block can be sorted on a different attribute. As a result, a single file
can have multiple clustered indexes at the same time. For example, as illustrated in
Fig. 2, the 1st replica can have each of its splits sorted on attribute X , the 2nd replica
sorted on attribute Y , and the 3rd replica sorted on attribute Z . These sorting orders
are local within each split. Given this ordering, a clustered trojan index as proposed
in [27] can be built on each replica independently.

HAIL also proposes a replica-aware scheduling policy. In plain Hadoop, since all
replicas are the same, the task scheduling decision does not differentiate between the
replicas. In contrast in HAIL the task scheduler needs to take the query predicates
into account while selecting the target replica to work on. For example referring
to Fig. 2, given a query involving a selection predicate on attribute Y , then HAIL
scheduler will try to assign the map tasks to the splits of the 2nd replica. Otherwise,
a full scan operation has to be performed on either of the other replicas because their
indexes cannot help in evaluating the given predicate.

LIAH (Lazy Indexing andAdaptivity inHadoop) indexing framework [65] further
extends the idea of HAIL by adaptively selecting the columns to be indexed under
changing workloads, and also lazily building these indexes as more queries execute
in the system. LIAH can incrementally build a given index starting from indexing
few splits, and incrementally indexing more splits as more queries are executed until
the entire index is built. This strategy is based on the idea of piggybacking the index

Data Organization and Curation in Big Data 151

The base data

Replica 1 Replica 2 Replica 3

Each split is locally
sorted on X

Each split is locally
sorted on Y

Each split is locally
sorted on Z

Three replicas of the
same block but of
different ordering

Trojan index on Z

Trojan index on Y
Trojan index

on X

Fig. 2 HAIL indexing framework

creation task over other user’s queries to reduce the overheads involved in the index
creation. For example, referring to Fig. 2, in LIAH it is possible that the system starts
without any indexes on the base data. And then, by automatically observing the
query workload, the system decides that attributes X and Y are good candidates for
indexing, e.g.,manyqueries have selectionpredicates on either of these twoattributes.
LIAH puts a strategy to incrementally make the splits of the 1st replica sorted based
on X , and for each split where its data becomes sorted, its corresponding trojan
index is built. LIAH framework keeps track of which blocks have been indexed, and
which blocks need to indexed (which will be done progressively and piggybacked
over future users’ jobs). As more user jobs are submitted to the system, and the data
blocks are read anyway, additional blocks can be indexed. In this way, the overheads
involved in the index creation are distributed over many user queries.

1.4 Split-Level Indexing

Most of the previous indexing techniques proposed over theHadoop Infrastructure try
tomimic the indexes in traditional databases in that they are record-level indexes. That
is, their objective is to eliminate and skip irrelevant records from being processed.
Although these techniques show some improvements in query execution, they still
encounter unnecessary high overhead during execution. For example, imagine the
extreme case where a queried value x appears only in very few splits of a given file.
In this case, the indexing techniques like Hadoop++ and HAIL would encounter the
overheads of starting a map task for each split, reading the split headers, searching
the local index associated with the split, and then reading few data records or directly

152 M.Y. Eltabakh

terminating. These overheads are substantial in a map-reduce job, and if eliminated
can improve the performance.

The proposed E3 framework in [34] is based on the aforementioned insight.
Its objective is not to build a fine-grained record-level index, but instead be more
Hadoop-compliant and build a coarse-grained split-level index to eliminate entire
splits whenever possible. E3 proposes a suite of indexing mechanisms that work
together to eliminate irrelevant splits to a given query before the execution, and thus
map tasks start only for a potentially small subset of splits (See Fig. 3a). E3 inte-
grates four indexing mechanisms, which are: split-level statistics, Inverted indexes,
materialized views, and adaptive caching, each is beneficial under specific cases.
The split-level statistics are calculated for each Number and Date field in the dataset.
These statistics include the min and max values of each field in each split, and if this
min-max range is very sparse, then the authors have proposed a domain segmenta-
tion algorithm to divide this range into possibly many but tighter ranges to avoid
false positives (a false positive is when the index indicates that a value may exist in
the dataset while it is actually not present). The inverted index is built on top of the
String fields in the dataset, i.e., each string value is added to the index and it points to
all splits including this values. By combining these two types of indexes for a given
query involving a selection predicate, E3 can identify which splits are relevant to
the query, and only for those splits a set of mappers will be triggered.

The other two mechanisms, i.e., materialized views and adaptive caching, are
used in the cases where indexes are mostly useless. One example provided in [34] is
highlighted in Fig. 3b. This example highlights what is called “nasty values”, which
are values that are infrequent over the entire dataset, but scattered over most of the
data splits, e.g., each split has one or few records of this value. In this case, the
inverted index will point to all splits, and becomes almost useless. E3 framework
handles these nasty values by coping their records into an auxiliary materialized
view. For example, the base file A in Fig. 3b will now have an addition materialized
view file stored in HDFS that contains a copy of all records having the nasty value
v. Identifying the nasty values and deciding on which ones have a higher priority to
handle has been proven to be an NP-Hard problem, and the authors have proposed
an approximate greedy algorithm to solve it [34].

The adaptive cachingmechanism in E3 is used to optimize conjunctive predicates,
e.g., (A = x and B = y), under the cases where each of x and y individually are
frequent, but their combination in one record is very infrequent. In other words, none
of x or y are nasty values, but their combination is a nasty pair. In this case, neither
the indexes nor the materialized views are useful. Since it is prohibitively expensive
to enumerate all pairs and identify the nasty ones, the E3 framework handles these
nasty pairs by dynamically observing the query execution, and identifying on-the-fly
the nasty pairs. For example, for the conjunctive predicates (A = x and B = y), E3
will consult the indexes to select a subset of splits to read. And then, it will observe
the number of mappers that actually produced matching records. If the number of
mappers is very small compared to the triggered ones, then E3 identifies (x, y) to be
a nasty pair. Consequently, (x, y) will be cached along with pointers to its relevant
splits.

Data Organization and Curation in Big Data 153

File A

(V,{1,2,3, …, N})

 (a) Using inverted index to answer Query Q(v):
Read all splits containing value v (up to N)

Split-Level
Inverted Index

File A

Split 1 Split 2 Split 3 Split N

Materialized View over A

Split 1 Split M

Building a materialized view
including all records containing v

(b) Using materialized view to answer
Query Q(v): Read only M splits

instead of N (M << N)

v appears infrequently in
many splits (nasty atom)

Split 1 Split 2 Split 3 Split N

E3 Indexing
Framework

Split-level statistics
(min, max,

domain-segmentation ranges)

Global Inverted Index

Auxiliary
Materialized Views

Adaptive Caching

For number & date fields

For string fields

For “nasty infrequent” values

For “nasty” value pairs

(a) E3 Indexing Framework

(b) E3 Inverted Indexes vs. Materialized Views

Fig. 3 E3 indexing framework [34]

1.5 Hadoop-RDBMS Hybrid Indexing

There has been a long debate on whether or not Hadoop and database system can
co-exist together in a single working environment, and whether or not this strat-
egy is beneficial. There are several successful projects that built such integration
[4, 13, 36–38]. HadoopDB is one of the early projects that brings the optimizations
of relational database systems to Hadoop [4]. HadoopDB proposes major changes
to Hadoop’s infrastructure by replacing the HDFS storage layer by a database man-
agement layer. That is, the Data Node and Task Tracker on each slave node in the
Hadoop’s cluster will be running an instance of a database system. This database
instance replaces the HDFS layer, and thus the data on each slave node are stored
and managed by the database engine. HadoopDB will push as much of work as
possible to the database engine, and as a result all indexing capabilities and query

154 M.Y. Eltabakh

optimizations of database systems automatically become accessible. However, the
drawbacks of HadoopDB is that the management of dynamic scheduling and fault
tolerance becomes more complicated. In addition, the integration of structured and
un-structured data in the same workflow becomes tricky to perform.

Polybase [38] is another system that enables the integration of Hadoop and data-
base engines. In Polybase, the HDFS datasets are defined within the database system
as external tables. And then, users’ queries can span both the data stored in theDBMS
and the data stored in HDFS’s external tables. At execution time, part of the query
can be translated to map-reduce jobs, while another part is SQL-based. The data flow
between the two systems through custom InputFormats and Database Connectors.
However, without efficient access plans to the data in the external tables, these tables
can easily become a bottleneck and the entire execution plan slows down. The work
in [38] proposes an indexing technique, called Polybase Split-Indexing, that creates
B+-Tree indexes on the HDFS datasets. These indexes reside within the database
system. These indexes can be leveraged in different ways. For selection queries, they
can be used as early split-level filters to identify the relevant splits in HDFS. For
join queries, they can be used for performing a semi-join within the database system
before retrieving HDFS’s data. Moreover, they can be used as caches of hot HDFS
data within the database system, and if a query touches only the attributes within the
index, then the entire processing can be performed inside the database.

2 Data Organization and Layout Techniques

2.1 Overview

Oneof the dominant factors in queryperformance is the data layout,whichdetermines
the structure and organization of the data in the file system. Data organization is
a well-known and effective strategy in boosting performance in database systems
that has been studied for decades. However, not all techniques are transferable to
the context of big data and the Hadoop infrastructure. Even if the same basic idea
can be transferred to Hadoop, the technical details and challenges would be different
because the characteristics of the data and the infrastructure are different as explained
in Sect. 1.1.

At the conceptual level, both of the data organization (or re-organization) and the
indexing strategies presented in Sect. 1 have the same objective, which is avoiding a
full scan over the data whenever possible, and touching only a subset of the records.
However, at the design level, the two strategies are different. Indexing techniques
build auxiliary structures of special properties, called indexes, in addition to the base
data, and then at query time these auxiliary structures are consulted first to identify
the relevant subset of records to the query. In contrast, re-organization and data layout
techniques may or may not create auxiliary structures.

Data Organization and Curation in Big Data 155

CountryCode

Fig. 4 Data organization with and without auxiliary data creation

In some cases as illustrated in Fig. 4, the base data is re-organized in a certain way
(usually offline) to enable better query evaluation in the future. For example, the base
dataset D in Fig. 4 has no specific organization or ordering for its records. As a result,
a query involving a selection predicate over the CountryCode attribute would have
to scan all records in D. However, if D is re-organized in the form of dataset D’,
where the records are partitioned based on the CountryCode values (R.H.S of
Fig. 4), then the same query would execute much faster on D’ since the query can
now scan only the relevant partition(s). Depending on the application needs, the base
data D may or may not be kept after the creation of D’.

In some other cases, data organization may involve building auxiliary datasets
(in addition to the base data), where these datasets are processed or massaged in a
certain way. For example, given the base dataset D in Fig. 4 and after applying a
complex workflow on D, it can be beneficial to keep not only the final results of the
workflow, but also the intermediate data at specific points, e.g., storing the datasets
T1, T2, and T3 as illustrated in L.H.S of Fig. 4. This is because these datasets may
have interesting properties that may help speeding up future queries. In this case,
datasets T1, T2, and T3 usually do not replace D and it remains stored in the system.
In the following, we present in more details several data organization techniques,
which are proposed in the context of the Hadoop infrastructure.

2.2 Result Materialization and Caching Techniques

Result materialization is a known technique from relational databases where it is also
referred to as materialized views [76]. In relational databases, materialized views are
typically defined by the database admin in an explicit way through a SQL command.

156 M.Y. Eltabakh

Once the materialized view is created, the key challenge is how to maintain this view
up to date. It is a challenging task especially because the base tables on which the
view is built may change in anyway through insertions, updates, or deletes [50, 75].
Another challenge is that given a query, the system needs to decide whether or not
the existing materialized views can optimize this query and in which way. Several
techniques in the context of big data and the Hadoop infrastructure have inherited
the same concept of materialized view but with some variations to match the new
environment. Examples of these techniques include [16, 31, 60]. However, different
from database systems, these techniques do not have to deal with maintaining the
materialized results since in the context of big data, the data tuples usually do not
change. However, they still monitor the cases where the base files got deleted or new
files are appended to the existing base data. In these cases, the materialized results
are deleted as well.

The ReStore system [31] creates possible materialization points while executing
a workflow of map-reduce jobs expressed in Apache Pig. Similar to the L.H.S of
Fig. 4, the materialization points can be at any stage within the workflow. The system
allows the materialization of the results generated after each job within the workflow,
or even at a finer granularity where the materialization may take place within the
same job, e.g., store a map output within a map-reduce job. Since materializing
everything is prohibitively expensive, ReStore deploys several heuristics to decide
on which materialization points to add within a given workflow. Ultimately, the
system maintains a repository of these materialized results in HDFS along with
metadata information on eachmaterialized result. Thismetadata includes the query or
workflow structure produced the result, the dependent base files, and access statistics.
And then, given a subsequent query or workflow of map-reduce jobs, the system
optimizes this workflow based on the stored materialized results. As illustrated in
Table2, ReStore enables the re-usability at the workflow level, a single job, or a
subset of a job.

The MRShare system [60] is different from ReStore in that the former system
requires all queries targeting optimization to be submitted to the system at once
in the form of a single batch. MRShare will then build a single optimized query

Table 2 Comparison of Hadoop-based sharing techniques

Technique Granularity Knowledge of
Workload

Sharing opportunities

ReStore [31] Across workflows Dynamic Workflow, one job,
partial job

MRShare [60] Single batch Known in advance Scan, map output, map
function

Multi-query [70] Across batches Dynamic Scan, map output,
reduce input

HaLoop [16] Single iterative job Known in advance Map input, reduce
input, reduce output

Data Organization and Curation in Big Data 157

plan for their execution. During the execution of this batch, intermediate results can
be shared across multiple queries. Yet, these intermediate results are not kept in the
system beyond the execution of the given batch. Therefore, in some sense the ReStore
and MRShare systems are complementary to each other. MRShare proposes several
sharing opportunities specific to theMapReduce computing paradigm as indicated in
Table2. These opportunities include: (1) Sharing Scan, in which two jobs accessing
the same file in the same key-value pair formats can share the scan over this file,
(2) Sharing Map Output, in which the output stream from the mapper function of
two jobs can be merged into one stream if they produce the same key-value pair
types. In this case, each output record will be tagged with a special tag indicating
whether it belongs to either or both jobs. And (3) Sharing Map Function, in which
the map function of both jobs can be identical and can be shared. As an extension to
MRShare, the work proposed in [70] generalizes the grouping strategy of MRShare
to identify better sharing opportunities, and it also enables materialization of results
and re-usability across batches.

HaLoop [16] is another system that enables caching and re-usability of results
in MapReduce. However, HaLoop provides such features within a single iterative
workflow. These workflows are very common in datamining techniques such as Page
Rank, K-means clustering, and graph analysis. These techniques are usually iterative
in nature, and theymay need to access the same data again and again across iterations,
which creates opportunities for sharing and re-using of results from previous itera-
tions.As presented in Table2,HaLoop proposes extensions to theHadoop framework
to enable the caching and re-usability at different stages including: (1) Map Input
Cache, in which a mapper retrieving remote data from another DataNode will cache
this data locally to re-use it in subsequent iterations, (2)Reduce Input Cache, inwhich
reducers may cache their inputs from the invariant dataset (the dataset that does not
change across iterations) and re-use that in subsequent iterations, and (3) Reduce
Output Cache, which allows reducers to compare the results from the current and
previous iterations without remote data access. Not all of the three caching types
are useful in all iterative jobs, and it depends on the nature of the job. For example,
a PageRank job assigns a rank for every webpage depending on the ranking of the
pages it points to, and the ranks of those pages iteratively depend on their references
(PageRank is explained in details in [16]). In this job type of job, it can make use
of the Reduce Input Cache and Reduce Output Cache, but not Map Input Cache.
HaLoop is designed to optimize a single iterative job, and thus the caches are purged
after the completion of the job.

2.3 Pre-processing and Colocation Techniques

CoHadoop [33] is a system that re-organizes the data in place without creating aux-
iliary datasets. The key idea of CoHadoop is to extend Hadoop’s internals, more
specifically the logic of the NameNode, to allow more informative decisions regard-
ing the storage location of each data block. Typically, by default, each data block in

158 M.Y. Eltabakh

Plain Hadoop

(a) Files are blindly distributed
over the DataNodes

CoHadoop

(b) Files are colocated to account
for the application’s semantics

Fig. 5 Data colocation in CoHadoop

HDFS is replicated three times. The NameNode decides to which DataNode each
replica of a given block should go to. This procedure is referred to as the Data Place-
ment Policy. In the earlier versions of Hadoop (before Hadoop version 1.x.x), the
placement policy is built-in within Hadoop and it aims for a single objective, which
is load balancing. This means that each DataNode should have approximately equal
storage load. Clearly, this policy is blind to the higher-level application semantics,
and the decision may not align with the application’s best interest. For example, As
indicated in Fig. 5, the two files A and B can be semantically related and frequently
accessed together, e.g., one file is a data file while the other one is its associated
index, the two files usually join together, etc. Similarly, the two files C and D are
semantically related. As shown in Fig. 5a, plain Hadoop is blind to such relationships
and may randomly put un-related files together.

CoHadoop provides an interface through HDFS that enables applications to pro-
vide hints to HDFS regarding the relationships among the uploaded files. These hints
can be viewed as simple tokens (or locators), where all files having the same token
are assumed to be related, and now CoHadoop will try to colocate them in the same
set of nodes. Referring to Fig. 5, while the four files are being uploaded (or gen-
erated), the application can assign files A and B the same token, while C and D
will be assigned a different token. As a result, as shown in Fig. 5b, CoHadoop will
try to colocate related files together on the same DataNotes. A typical application of
CoHadoop is the join of two data files, say Customers and Transactions. Each file get
partitioned on the join key using a map-reduce job, and then corresponding partition
pairs from both files is assigned a specific locator, and this assignment is performed
by the reduce function.

It is worth highlighting that the newer versions of Hadoop (version 1.x.x and
later) enable applications to plugin an application-specific logic for the placement
policy function so that, to some extent, applications can control where to store their

Data Organization and Curation in Big Data 159

data. One of the issues with CoHadoop is load balancing. That is, colocating many
files together may negatively affect load balancing and few DataNodes may become
heavily loaded. However, It has been studied in [33] that as long as new tokens
are frequently introduced into the system, the overall data distribution will not be
significantly affected. Moreover, the proposed colocation functionality is a best-
effort approach meaning that the system does not have to enforce it if the distribution
becomes skewed.

Trojan Join technique proposed in [27] is another example of data pre-processing
and organization (Refer to Sect. 1.2). In Trojan Join, two datasets S and T are both
pre-partitioned on the join key using a single map-reduce job. And then, each pair of
corresponding partitions are stored together to form one logical split referred to as
Co-Partition Splits. Certainly, each pair of partitions can be colocated on the same
DataNode to speedup their retrieval. More details on Trojan Join technique can be
found in Sect. 1.2.

Thework in [46] has also studied the advantages of pre-partitioning the data on the
join performance. For example, two datasets D1 and D2 can be both pre-partitioned
on the join column, and at query time, a map-only job can join these two datasets
where each mapper will read a pair of corresponding partitions; one from D1 and
one from D2. In general, the pre-partitioning has shown to speedup join queries
between 5x and 10x as studied in [27, 33, 46]. The colocation has shown to further
add between 2x and 4x speedup on top of the pre-partitioning [33].

2.4 None Row-Oriented Storage Layouts

The standard layout of the data records in HDFS, or more specifically within
each block of HDFS is the Row-Oriented layout. In this layout (See Fig. 6a), the
data blocks are horizontal partitions of the data file, and each block consists of a
set of entire data records. And then, within each block the records are organized

Block 1

Block 2

Block 1

Block 2

(a) Row Layout (c) PAX Layout (b) Column Layout

Fig. 6 Different types of data layouts

160 M.Y. Eltabakh

row-by-row as illustrated in Fig. 6a. This layout has a big advantage if the access
pattern requests the entire records along with all their columns. This is because there
is no overhead in constructing each record. However, the disadvantage is that if the
data file has many columns, and typical queries are only interested in few columns
each time, then there is a significant I/O waste due to reading un-needed data.

The Column-Oriented layout (Fig. 6b) is designed to overcome this limitation.
This layout is proposed in several techniques including [12, 35, 48]. In this layout,
the data blocks are vertical partitions of the data file. Depending on the number of
records in the file and the HDFS block size, one HDFS block may contain sub-
column, one column, or many columns. In some techniques [35], each column is
stored as one file with varying number of data blocks depending on the number of
values. The column-oriented layout is suitable for workloads in which each query
accesses few columnswhile the data file originally has very large number of columns.
In this case, only the columns of interest to the query are touchedwithout wasting any
I/O accessing the other columns. In addition, the column-oriented layout allows for
efficient compression of the data. That is, the valueswithin one columnare of the same
type, and tend to be highly compressible unlike the row-oriented layout. It is worth
mentioning that writing and accessing column-oriented data only requires special
output and input formats without the need for changing the internals of Hadoop.
However, the disadvantage of this layout is that constructing an entire record (ormany
columns of each record) turns out to be an expensive process. Especially because
different columns are most probably located on different DataNodes in Hadoop.
Therefore, constructing records (if needed) would involved high communication
and processing overheads. It has been studied in [47] that if a query is referencing
a number of column around 13 or more, then the column-oriented layout performs
worse than the row-oriented layout.

ThePAX (Partition across) layout (Fig. 6c) is proposed to overcome the limitations
of both previous layouts, and hopefully combining their advantages [21]. In this
layout, the data blocks are horizontal partitions of the data file as in the row-oriented
layout. Yet, the difference is that within each data block, the data is arranged in
column-oriented layout. As a hybrid layout, PAX has several advantages including
it avoids expensive tuple construction since the values contributing to one record
are usually in the same data block, it does not add unnecessary network overhead,
and it can still avoid reading segments of the data blocks that are irrelevant to the
query at hand. In most workloads, PAX layout outperforms the row-oriented and
column-oriented layouts. However, under workloads in which most of the columns
are accessed by most of the queries, then PAX adds unnecessary CPU overhead for
record construction, such overhead adds up for large files of billions of records.

The Trojan layout proposed in [47] differs from the previous approaches in three
aspects. First, it proposes an algorithm to dynamically decide on the column group-
ings, which are groups of relevant columns that if stored together would enhance
the performance of the majority of queries. Second, as in plain Hadoop, each data
block is replicated three times, but in Trojan layout, each replica may have different
layout—although it is the same content. And third, a query will be routed to access
specific replica depending on the query’s access pattern.

Data Organization and Curation in Big Data 161

In summary, data organization and layout is critical for improved query perfor-
mance. The different layouts and organizations covered in this section in the context
of Hadoop have shownmore than 10x improvement over naive solutions under differ-
ent scenarios. Certainly, there is no single optimal layout as it significantly influenced
by the query workload. As the workload changes, the data layout may also need to
be changed accordingly.

3 Non-traditional Workloads in Big Data

3.1 Overview

There are various ways to categorize queries (and workloads) according to different
criteria. For example, one criteria considers the response time of queries, and based
on that queries can be categorized as being interactive or batch queries. Another
criteria considers the amount of data being touched by a query, and the granularity
of the retuned results, e.g., whether it is tuple oriented or aggregation and mining
oriented, and based on that queries can be categorized as OLTP (Online Transaction
Processing), or OLAP (Online Analytical Processing). Another important criteria—
which is our focus in this section—considers the frequency of queries’ execution
including how many times and how frequently the queries execute (See Fig. 7). On
one end of this categorization spectrum are the ad-hoc queries, which are queries that
are submitted once, get executed by the system, and then discarded (forgotten) by
the system. This is the typical type of queries in big data, and more specifically the

Ad-Hoc
Queries

Continuous
Queries

Recurring
Queries

Fig. 7 Spectrum of ad-hoc, recurring, and continuous query types

162 M.Y. Eltabakh

Hadoop infrastructure. On the other side of the spectrum are the continuous queries,
which are queries that are registered in the system before execution, live long in
the system, and get executed frequently according to user-defined parameters. The
characteristics of the ad-hoc and continuous queries are fundamentally different from
each other, and thus the underlying systems and infrastructures supporting them are
also significantly distinct as presented in Fig. 7.

Ad-hoc queries are queries that are submitted to the system in an ad-hoc way
meaning that the system has no prior knowledge about them, and there is no mech-
anism to expect whether or not a given query will execute again, or what will be
submitted next. When an ad-hoc query is submitted, the system tries to find the best
execution plan to execute this query in isolation from any other queries. In the ad-hoc
query model, the underlying data is assumed to be relatively static and does not fre-
quently change. A typical example of the ad-hoc queries over big data infrastructures
are the traditional Hadoop map-reduce jobs.

The opposite to the ad-hoc queries are the continuous queries, which are queries
that are registered in the system before execution, and hence the system knows
many details about these queries, and it can also learn more characteristics about
these queries over time. Continuous queries are frequently executed by the system—
usually in a high frequency—and the execution is initiated by a triggeringmechanism,
which can be a time-based (e.g., every 10min re-executed the query), event-based
(e.g., whenever a sensor’s reading exceeds a specific threshold re-execute the query),
or count-based (e.g., when 1000 tuples are collected re-execute the query). Since
continuous queries are long lived in the system, shared execution andglobal execution
plan(s) are typically used to efficiently execute many queries altogether [2, 3]. In the
continuous query model, the underlying data is assumed to be streaming data that is
arriving to the system in a very high rate and continuously changing. Each execution
of a continuous query considers only a limited segment of the streaming data (known
as window), which moves (a.k.a slides) over the data from one execution to another.
A typical example of the continuous queries are the queries in stream management
systems [2, 3], and complex event processing (CEP) systems [64, 74].

Big data applications were initially focusing on ad-hoc disk-based queries, e.g.,
the traditional map-reduce jobs. Yet, as the applications are getting more diverse
and the analytics horizon expands, there is recent interest in supporting continu-
ous queries over Hadoop-like infrastructure (The R.H.S of Fig. 7). Moreover, recent
big data applications have introduced a third type of queries, which we refer to as
recurring queries. Recurring queries are very common in most Hadoop-based appli-
cations, and big data applications in general. They appear in numerous applications
that periodically generate and collect huge volumes of fresh data that must be peri-
odically integrated into complex analytics. Examples of these applications include
log processing, clickstream analysis, news feed updates, and social network services.
Recurring queries are analytical queries that periodically execute over data subsets
identified by a sliding window on the evolving data. For example, executing a query
at the end of each day and processing the last n hours, days, weeks, or even months
worth of data, depending on the granularity of interest.

Data Organization and Curation in Big Data 163

As presented in Fig. 7, recurring queries have distinct characteristics from both
ad-hoc and continuous query types. In fact, recurring queries combine properties
from both worlds in an interesting way. For example, recurring queries are similar
to continuous queries in that both are long-lived, re-execute periodically over the
incoming data, have the notion of sliding windows to limit of the scope of the data to
be processed, and process (possibly) large segments of overlapping data. However,
they fundamentally differ in that recurring queries do not always mandate real-time
millisecond processing. Instead, they tend to have a larger granularity of execution,
e.g., they may execute once every hour or every day. Also, they may return the
results within a certain period of time, e.g., few minutes to a couple of hours. Hence
a query may remain idle for longer periods of time. Moreover, recurring queries are
inherently data-intensive disk-based queries as theymay process TBs of disk-resident
data in each execution. In contrast, stream processing systems are optimized mostly
for main-memory realtime processing.

On the other side of the spectrum, ah-hoc batch-processing systems such as
plain Hadoop, are well-designed for scalability and disk-based processing—both
are shared properties for recurring queries. However, these systems lack the notion
of recurring execution, sliding windows, and overlapping data sets. Hence they fall
short in providing backbone support for recurring queries and optimizing the execu-
tion according to their characteristics.

Example Queries: In the following, we illustrate few examples queries under each
of the three categories highlighted in Fig.7.

Ad-hoc Queries: Any Hadoop job given in isolation from any other job is con-
sidered as an ad-hoc query. The standard Word Count query is a typical ad-hoc
query. Transactional log processing queries that aggregate transactions by cus-
tomers, items, or regions are all examples of ad-hoc queries. These queries have
the characteristics of the L.H.S column in Fig.7 including that they execute only
once, they read their data from disk (the distributed file system), the input data to a
query is static and does not change, and their is no notion of window semantics.

Recurring Queries: In log processing, an aggregation query may need to execute
every 12 or 24h (the frequency of execution), and in each execution it processes
and aggregates the log data from the recent past (the window of execution), e.g., the
last 10 days or last month, over different dimensions such as age, country, gender
to detect emerging patterns. This query has characteristics of the middle column in
Fig.7 including that the system is aware of its execution frequency, the input data is
read from disk (the distributed file system), the query execution may still take long
time, e.g., hours, and thus it is viewed as batch execution, and the query must have the
notion of a window to define the scope of each execution. Since with each execution,
the window slides over the data, there can be significant overlap between consecutive
executions, and thus incremental evaluation is critical for recurring queries.

Continuous Queries: Online aggregation is an example of continuous queries
where continuous real-time update of results is needed. Compared to recurring
queries, in online aggregation, the window of execution is usually very small, e.g.,
few hours, and execution’s frequency is usually higher, e.g., few minutes. Given this

164 M.Y. Eltabakh

small granularity, the data under processing is usually kept in memory, and also
passed from the mapper phase to the reducer phase (within a single Hadoop job) or
even across jobs through the main memory as well.

In this section, we will cover several techniques proposed in literature for the non-
traditional workloads in Hadoop, namely the recurring workloads and the online
analytics.

3.2 Techniques for Recurring Workloads

As mentioned previously, a recurring query is a query that repeats periodically.
Therefore, there are possibilities for new optimization opportunities to optimize such
queries if treated as a first-class citizen. A naive approach for executing a recurring
query is to manually re-issue the query every time it needs to be executed. How-
ever, this naive approach lacks both convenience and system-level optimizations. To
overcome these limitations, several systems have been proposed such as Oozie [10],
Nova [61], and Redoop [51, 52].

Apache Oozie [10] is a workflow scheduler that provides partial support by
enabling developers to write scripts for automatic scheduling of jobs. Using this,
end-users would no longer need to re-issue the recurring query over and over manu-
ally, but instead have it kicked off in an automated fashion. The Nova system [61] is
also a workflow management system on top of Pig/Hadoop. It offers scheduling of
job and queries such that a recurring query can be automatically triggered when an
event takes place. Nova forms the execution flow as a directed graph, where the nodes
represent either dataset or analytical tasks, and edges represent the flow of the data.
The edges are annotated with instructions that guide the execution. For example, an
analytical task may receive in each execution a delta changes (new data) or an entire
data set including the changes. Similarly, the output from an analytical task can be
either delta to the previous results or a complete new results. To support continu-
ous and recurring workloads, the analytical tasks can have different types to enable
incremental processing. Examples of these types are Stateless Incremental, Stateless
Incremental with Lookup Table, or Stateful Incremental. Nova also provides several
triggering mechanisms to trigger the execution of a given task. These mechanisms
are either data-driven, e.g., when a new data arrives, time-driven, e.g., every one
hour, or cascade, e.g., when another task finishes.

Both Oozie and Nova work on top of Hadoop without the need to change any
of Hadoop’s internals or its execution engine. This approach has advantages and
disadvantages. The advantages are that the system design is relatively easier as it
does not involve altering Hadoop’s behavior, and also the portability since these
systems can seamlessly work on different versions of Hadoop. However, the main
disadvantage as pointed in [51] is the lack of system-level optimizations (See Fig. 8).
Basically, in both Oozie and Nova, Hadoop infrastructure is unaware of the recurring
nature of the submitted queries, e.g., it is unaware of the window semantics, the
possible overlapping of the data being re-processed by consecutive execution, etc.

Data Organization and Curation in Big Data 165

Execution 1

Time

Execution 2

Execution 3

Window 1

Window 2

Window 3

t1 t2 t3

New data

New data

Expired data

Expired data

Significant overlapping
between executions

pane 1 pane 2 pane 3

Fig. 8 Consecutive executions of a recurring query

For example, referring to Fig. 8 which shows three consecutive executions of one
recurring query at times t1, t2, and t3, and each execution processes a window of data
configured by the query, e.g., the last 30 days of data. As the time moves forward,
Execution 2 will be triggered at time t2 to process Window 2. It is clear that there is a
significant amount of work that may be re-done if the overlapping segments between
Window 1 and Window 2 is ignored. And the same applies for Window 3, and so on.

The Redoop system [51] has proposed extensions to Hadoop that enable reg-
istering these recurring queries inside Hadoop. And then, by analyzing the query
semantics and configuration parameters, e.g., the window size, and the sliding fre-
quency, it provides various types of query optimizations. For example, it can divide
each window into smaller units, called panes, which become the unit of processing.
The results from each pane can be shared across possibly many windows of execu-
tions, and hence redundant execution is avoided. For example, in Fig. 8, Window 1 is
divided into three panes, where pane 1 evaluation belongs only to Window 1, pane
2 evaluation is shared between Window 1 and Window 2, while pane 3 evaluation
is shared between the three windows. Redoop also offers caching strategies in the
local file system of the DataNotes that allows future executions to efficiently make
use and build on top of previous execution results. Redoop system focuses on opti-
mizing a single recurring query. As an extension to Redoop, the Helix system [52]
proposes different mechanisms to enable efficient sharing of execution among mul-
tiple recurring queries possibly having different configuration parameters such as
different window sizes, sliding frequencies, and quality of service requirements.

3.3 Techniques for Fast Online Analytics

Plain Hadoop is designed to suit a wide range of applications, and thus several of its
design choices aim for flexibility and simplicity instead of performance. Therefore

166 M.Y. Eltabakh

by default, Hadoop is suitable for fast online analytics. Several techniques and opti-
mizations have been proposed to overcome this limitation of Hadoop and remove
many of its bottleneck operations [8, 11, 23, 53].

The HOP (Hadoop Online Prototype) system modifies Hadoop to support con-
tinuous and online analytics [23, 24]. A key bottleneck in Hadoop that HOP has
resolved is the materialization point between mappers and reducers. In Hadoop, the
output from themappers within amap-reduce job is an intermediate data that is mate-
rialized and stored in the local file system of the DataNodes running the mappers.
And then, when reducers start, each reducer has information on which files to access
and bring from the remote mapper nodes to its local node. The materialization is an
important step to simplify the communication between mappers and reducers and
also to the fault tolerance mechanism. However, it slows down the processing and it
cannot be part of an infrastructure targeting fast online analytics.

HOP proposes to replace the built-in materialization step with a pipelining mech-
anism where the data flows frommappers to reducers through main memory buffers.
Mappers are extended to push (pipeline) their output records to reducers using estab-
lished TCP connections between each mapper and all reducers. For efficiency, map-
pers will not push each record as it get produced, instead they will buffer a specific
number of records in main memory, possibly apply a combiner over the buffer, and
once the pre-defined threshold is reached, the buffer is pushed to the reduce function.
Given this change of the communication channel between themap and reduce phases,
HOP has re-visited the fault tolerance mechanism to ensure seamless recovery under
failures. Under these changes, HOP has shown to enable fast online analytical queries
on Hadoop, e.g., online aggregations, and also enable continuous queries. That is, a
set of mappers and reducers are continuous running to consume newly arriving data,
pipeline the outputs from mappers to reducers, and produce continuous stream of
results (Table3).

The SOPA system proposed in [53] also enables one-pass analytics over Hadoop.
The system relies more on in-memory processing, reading the input data only
once, and incrementally processing new batches of arrived data. One of the built-in

Table 3 Comparison of Hadoop-based indexed techniques

Technique Primary
storage

Pipelining Shuffling phase Analytics

HOP [23] HDFS Yes Disk-based sorting Incremental and
non-incremental

SOPA [53] HDFS Yes Memory-based
hashing

Incremental and
non-incremental

M3 [8] Memory Yes Memory-based
hashing

Incremental

M3R [66] Memory Yes Memory-based
hashing

Incremental

C-MR [11] Memory Yes Memory-based
sorting

Incremental

Data Organization and Curation in Big Data 167

operations in Hadoop that has been replaced is the sort-merge operation, which is
part of the shuffle/sort phase between the mappers and the reducers. Sorting the data
is performed in the shuffle/sort phase to group all map outputs records having specific
key k altogether and passing that to a single reducer instance. However, it is well
known that sorting is an expensive process—especially when performed over very
large datasets. SOPA proposes to replace the sort-merge operation with another less-
expensive operation, which is a hash-based partitioning operation. The hash-based
operation would still achieve the same goal, which is grouping all records of the
same key together, but without encountering the high overhead. Another advantage
of the hash-based operation is that it is not a blocking operation, meaning it does not
need to collect all the input before it starts producing output. Therefore, it can be
easily pipelined and it can leverage in-memory processing more easily.

Several types of hash functions have been proposed in SOPA depending on
whether or not the reduce function can be incrementally computed. If incremen-
tal computation is possible, e.g., in the case of simple aggregates such as sum() and
count() functions, then reducers can receive partial inputs, incrementally update their
state, and then consume more inputs. This flow enables better pipelining between
mappers and reducers, yet it requires an extended interface for reducers that allows for
creating and maintaining a state for each key in the reduce function. The design tries
to keep as many states as possible in memory such that their incremental updates
become more efficient. However, if that is not the case, the paper has presented
another mechanism, referred to as dynamic hashing, to adaptively select a subset of
key states to keep in memory while moving the other states to local disk.

Other techniques have been proposed to alter Hadoop’s disk-based and batch
processing nature to be streaming nature. The M3 system [8] is designed to replace
the HDFS layer in data and rely only on main-memory processing. Moreover, in
M3 the jobs are continuous jobs in the sense that they get registered in the system,
and the mappers and reducers remain continuously running and consuming data. M3
mimics stream processing systems in its design as well as its functionalities. For
example, it supports incremental processing and the query results is also computed
incrementally by reporting delta changes over the previously reported results. The
Continuous-MapReduce (C-MR) [11], and Main Memory Map Reduce (M3R) [66]
systems aim for the same objective as M3. They try to entirely (or partially) replace
the disk-based file system HDFS with main-memory storage and processing. In all
of these techniques, especial consideration has to be given to fault tolerance to be
able to recover from failures. The common strategy used by these techniques is to
replicate the data multiple times in the memory of different machines. Moreover,
since these techniques will manage continuous queries over possibly infinite input
data, they all inherit the window semantics from stream processing systems to limit
the scope of their computations. Certainly, main-memory processing puts limitations
on the size of the data to be processed, and also puts restrictions on the type of jobs to
be supported, e.g., M3 supports only jobs that can be incrementally evaluated. Yet,
the availability of large memories in the modern clusters, e.g., each single machine
can have 100s of GBs of memory, enable many applications to store and manage
their data entirely in memory.

168 M.Y. Eltabakh

4 Curation and Metadata Management in Big Data

4.1 Overview

Metadata is a general term that references all auxiliary information that is related
to the base data, but not really part of the data. This auxiliary information may
range from execution statistics, optimization hints, users’ comments, related articles
or documents, to corrections and highlights of errors, provenance information, and
special tagging ormarking.As highlighted in Fig. 9a, themetadata information can be
attached at different granularities and be related to, for example, specific table cells,
row, columns or arbitrary combination of them. This type of metadata is referred to
as data-centric annotations, where is the metadata is associated with the base data
regardless of any execution workflows. Another type of metadata captures execution
statistics as data goes under complex transformations and workflows, and this type
is referred to as execution-centric annotations (Fig. 9b). In contrast, another type of
metadatamay capture the lineageof the data including the input records contributed to
each output, the applied transformation functions, and the configuration parameters
used during execution. This type is referred to as provenance-centric annotations
(Fig. 9c).

Metadata and annotation management is relatively a new research topic in the
database community. However, the concept of annotations and curating the data has
been known for a long time. Historically, it goes back to the paper-based Post-It
yellow notes that scientists and people have used in early 1970s to write down their
thoughts, ideas, and exchange information [29]. Then, with the advances of data
management and the increasing use of DBMSs in scientific applications, the virtue,
size, and complexity of the annotation repositories have increased. Consequently,

GID GName GSequence

JW0080 mraW ATGATGGAAAA…

JW0041 fixB ATGAACACGTT…

JW0037 caiB ATGGATCATCT…

JW0055 yabP ATGAAAGTATC…

Gene B3: obtained from GenoBase

B1: Curated by user admin

B2: possibly split by frameshift

B5: This gene has an unknown function

B4: pseudogene

JW0080 mraW ATGATGGAAAA…

JW0037 caiB ATGGATCATCT…

(a) Data-centric annotations at different
granularities (table cell, rows, columns, etc.).

(b) Execution-centric annotations capturing resources
consumption and performance metrics.

(c) Provenance-centric annotations capturing the lineage of
output records in terms of the input records.

Fig. 9 Examples of metadata usage

Data Organization and Curation in Big Data 169

there was a pressing need to develop annotation management techniques that can
capture and query the annotations in more systematic and advanced ways. This trig-
gered numerous projects and research initiatives to address annotation management
in the context of relational database management systems.

In general, the metadata and the annotations cannot be treated as regular data.
This is because they have a fundamental logical difference compared to the base
data, which is that they are viewed as auxiliary information that should propagate
(be carried) automatically with the data. For, example, since scientific data may
go though complex transformations during query processing, e.g., projection, join,
grouping and aggregation, and duplicate elimination, the related annotations must
also go though corresponding transformations by each query operator. If annota-
tions are modeled as regular data—which was the case before the development of
annotationmanagement engines—then the annotationmanagement tasks are entirely
delegated to end-users and higher-level applications starting from the storage and
indexing of annotations and ending by explicitly encoding the propagation seman-
tics within each of the users’ queries. Both tasks have been shown to be very complex
and sophisticated. For example, the storage and indexing mechanisms need to deal
with the combinatorial relationship between annotations and data, e.g., annotations
can be attached to single table cells (attributes), rows, columns, arbitrary sets and
combinations of them, or even attached to sub-attributes [32, 42]. Moreover, manu-
ally encoding the annotations’ propagation within each query is not only error-prune,
and lacks optimizations, but also renders even simple queries very complex [17, 41,
68]. That is why annotation management engines have been proposed to efficiently
and transparently manage such complexities across applications.

Annotation management in relational databases has ranged from developing
generic frameworks [15, 22, 32, 43, 68] to developing semantic-specific tech-
niques for annotations [19, 40, 49]. The generic frameworks, e.g., Mondrian [43],
DBNotes [22], InsightNotes [44, 73], and others [54], target extending the data-
base functionalities with annotation management capabilities. This includes efficient
storage and indexing, interfaces to add and query the annotations, and new algebraic
semantics—and possibly new query operators—to enable efficient annotation propa-
gationwithin a query pipeline. The semantic-specific techniques havemostly focused
on lineage and provenance tracking [18, 20, 26, 71], where each output record from
a SQL query carries references to all input records that have contributed to the output
record.

As the data management systems have evolved to the cloud-based systems and
the emerging infrastructures such as Hadoop for managing big data, the annota-
tion management techniques have also evolved to operate on these new infrastruc-
tures. The usage of annotations in these techniques varies from execution statistics
[55, 61], and provenance tracking [6, 9, 45, 62] to tagging for query optimiza-
tion [7] and generic frameworks [59]. In the following, we describe several of these
techniques in more details.

170 M.Y. Eltabakh

4.2 Execution-Centric Metadata Approach

Several techniques have been proposed in the context of MapReduce to leverage
annotations and metadata information in job execution. Examples of these systems
are the high-level languages of Hadoop including Apache Pig [39], Hive [69], and
Jaql [14]. These query languages offer some optimizations while compiling the high-
level scripts into map-reduce jobs. Yet, they do not have sophisticated query opti-
mizer, and thus they rely on users’ annotations of the query script and use that as
hints for the query optimizer. For example, a join statement can be annotated with
keyword “replicated” in Pig to indicate that one of the two joined datasets is small,
and it should be sent out (broadcast) to every mapper reading a portion of the big
dataset. In this case, the join operation can take place as a map-only job instead of
an expensive map-reduce job.

Other systems that leverage annotations during execution are the Nova [61] and
Stubby [55] systems. Nova is a workflowmanagement system on top the Pig/Hadoop
infrastructure. It uses process-related and system-generated annotations to provide
execution hints to the system such as the transfermode of the data between processes,
the output format and schema of each task, and the behavior of each task. On the other
hand, Stubby uses the annotations to collect execution statistics, profiling jobs, and
providing execution hints. Annotations can be related to a dataset, a specific operator
in aworkflow, or execution statistics. Examples of the dataset-related annotations can
the physical layout of the dataset or any special ordering or partitioning properties
about the data. Stubby uses the annotations as a mean to communicate information
needed for the workflow optimization.

4.3 Provenance-Centric Metadata Approach

Lineage or provenance tracking means tracking the source of a given piece of data,
e.g., from where it comes, which input records have contributed to a given output
record, which derivations and transformations have been applied to get such output.
Provenance tracking is very important in many applications because in some cases
the trustworthy of the data cannot be assessed without knowing the source of the
data. In some other cases it can be important for applications to go back to the source
data and analyze why the output includes such values.

Lineage tracing has been recently studied in the context of Hadoop
[6, 9, 45, 62]. Unlike relational database systems where complex transformations
are possible though complex SQL queries, in Hadoop the transformation is only
possible though the map and reduce phases. However, database execution is an open
box in the sense that the system knows exactly the semantics of each operator and the
type of transformation being applied to each tuple. In contrast, Hadoop execution is
black box and the systemmay not know what type of transformation is being applied
inside the map and reduce functions. This is especially true if the job is expressed in
java.

Data Organization and Curation in Big Data 171

Ramp system [45, 63] tracks the lineage of the data generated from map-reduce
jobs by assigning artificial object identifiers (OIDs) for each input data record, and
then producing each output record along with its provenance information (the con-
tributing input OIDs). The OIDs are assigned to the <key, value> pairs generated
from the input formats, and this OID reflects the offset of each input record in its
HDFS file. And then, Ramp uses system-generated wrappers around the mapper and
reducer functions as well as the RecordReader and RecordWriter functions within
the InputFormat and OutputFormat, respectively (See Fig. 10). These wrappers will
transparently carry the input OIDs to the output sidewhile bypassing the user-defined
map and reduce functions. For example, referring to Fig. 10a, the wrapper around
the InputFormat RecordReader automatically adds a unique OID (p in the example)
to each generated record, and then the wrapper around the user’s mapper function
extracts this provenance information and bypass it to the output record. Similar
extensions have been designed for the reduce-side functions (Fig. 10b).

Since themapand reduce functions are blackboxeswith noknownsemantics to the
system, Ramp puts some restrictions to ensure correct tracking of provenance infor-
mation. For example, Ramp supports one-to-one and one-to-many input-to-output
granularity in themapper function. This means that Ramp can track the provenance if
each input record to the map function generates zero, one or many outputs. However,
many-to-one input-to-output can not be tracked. For example, if the map function
internally performs some buffering, and then based on some internal semantics the
function periodically generates output records, then the provenance cannot be tracked
under such hidden behavior. Similar restrictions apply to the reduce side. For exam-
ple, Ramp assumes that all inputs values corresponding to a key contribute to the
output record. If the function internally does not follow this logic, then the provenance
information will not be correctly tracked.

Several other provenance tracking systems have been proposed over Hadoop.
This includes the Kepler+Hadoop system [25] that tracks the provenance within the

Fig. 10 Ramp extensions
for provenance tracking [63]

(a) Map-Side Extension (b) Reduce-Side Extension

172 M.Y. Eltabakh

scientific workflows, and Newt [57] that uses fine-grained lineage information for
debugging and error tracking.Most of the aforementioned techniques encounter high
overheads due to provenance tracking. This is because the size of the provenance
information can be very large, and it may need to be carried out though the shuf-
fling and sorting phases of MapReduce. The work proposed in HadoopProv [6] and
MrLazy [7] overcomes this drawback by separating the provenance tracking of the
map and reduce phases, where each phase writes its provenance information to disk
separately, and no provenance information is shuffled in between these two phases.
And then, only when needed, another job can join the separate results to construct
the final output-to-input lineage information. This join operation is regarded as an
offline task, and thus the involved overhead is no longer carried on the users’ jobs.

All of the above mentioned techniques are coarse-grained techniques in the sense
that they track the provenance at the record level, where a record is the object cre-
ated from the underlying InputFormat function. These techniques cannot track the
provenance at the attribute level since the map and reduce functions are assumed to
be black boxes. The Lipstick technique [9] is distinct from these systems in that it
is a fine-grained attribute-level provenance tracking system. However, Lipstick uses
Apache Pig as its query interface, which enables the system to understand and track
the logic and the semantics of the queries.

4.4 Data-Centric Metadata Approach

Unlike the other two approaches, the data-centric techniques are generic annota-
tion management frameworks that do not bind the annotations to specific semantics.
Instead, they enable applications to annotate and curate their data freely [59]. Con-
ceptually, these generic frameworks can be leveraged in implementing the other types
including the execution-centric and provenance-centric techniques.

In general, designing generic annotation management engines is greatly influ-
enced by the underlying infrastructure in three aspects, which are: (1) The inter-
action with the annotation management engine, i.e., the mechanisms by which the
annotations are added and/or retrieved, (2) The granularities at which annotations
are supported, and (3) The propagation and possible transformations that can be
automatically supported on top of the raw annotations. For example, the CloudNotes
system proposed in [59] is a generic annotation management engine on top of the
Hadoop/HDFS infrastructure. CloudNotes is different from those generic annotation
engines in RDBMSs because of the inherent characteristics of Hadoop/HDFS, which
affect the three aspects mentioned above as follows:

• Automated Creation and Consumption of Annotations: In RDBMSs, end-
users may manually investigate and annotate their data. However, in Hadoop-based
applications, such manual investigation and curation is not practical. Instead, the
assumption is that the annotations will be produced by automated processes (map-
reduce jobs), and also consumed and leveraged by other automated processes (map-
reduce jobs). And it can be the case that the same job acts as both a producer and a
consumer of the annotations.

Data Organization and Curation in Big Data 173

• Single-Granularity Annotations: Annotation management engines typically
support annotating the data at the finest granularity provided by the underlying data
model. For example, in RDBMSs, annotations can be at the granularity of table cells,
rows, columns, etc. [15, 42], and in array-based systems, annotations are defined at
the granularity of array cells [72]. Supporting annotations at a smaller granularity,
e.g., a sub-valuewithin a table cell, becomes an application-specific task and encoded
by the application. CloudNotes inherits the same principle. Since HDFS has a single
unit of granularity, which is the object formed from the InputFormat layer and passed
to the mapper layer, the system supports annotating the data at this granularity.

•BlackboxAnnotationPropagation: Hadoop uses a blackboxmap-reduce com-
puting paradigm, where the actual computations and transformations applied to the
data are unknown. As a result, CloudNotes does not provide automated transforma-
tion rules for the annotations. Instead, it provides the application developers with
interfaces to integrate the annotations into the processing cycle as fits each applica-
tion’s semantics.

CloudNotes works by extending the internals of the Hadoop infrastructure to
accept, store, and propagate the annotations attached to each data object (See Fig. 11).
It provides interfaces in the map functions to be able to either add new annotations to
its input records, add new annotations to its output records, or retrieve the annotations
on the input records. Similarly, it provides interfaces for the reduce functions to be
able to either retrieve their inputs’ annotations (which are passed from mappers to
reducers), or add new annotations to their output records. As illustrated in Fig. 11,
reducers cannot annotate their inputs because this input is intermediate and gets
automatically purged after the job completion.

Introducing the annotations into Hadoop creates several challenges including:
(1) The data is no longer assumed to be read-only because the annotations associ-
ated with the data may change over time. Therefore, a concurrency control module
needs to be developed to ensure correct execution among multiple jobs. (2) Anno-
tations should automatically and transparently propagate with the data. And hence,
effective buffering and proactive prefetching techniques need to be developed. It
is worth mentioning that the techniques in the execution-centric and provenance-
centric categories focus on creating the annotations, but they do not address how
these annotations propagate in future queries whenever the data is accessed. And
(3) Annotation jobs, i.e., the map-reduce jobs that only targeted to add more annota-
tions, can be lazily evaluated as long as no other job is asking for these annotations.
Therefore, possible optimizations and batching of jobs become feasible. CloudNotes
system proposes different techniques to address these challenges.

CloudNotes proposes different storage schemes for the annotations, where the
annotations can be either stored in HBase or HDFS. In both schemes, the storage is
transparent from the end-users. Whenever a map-reduce job access a specific HDFS
file, the annotations attached to each record in this file automatically propagate to
the map functions and get cached locally (either in main memory or local disk) for
fast retrieval by upon request.

174 M.Y. Eltabakh

Annotate
intermediates

Annotation Addition Annotation Propagation

Map-Only
job

Annotate
inputs

HDFS Input

Annotate
outputs

HDFS Output

Map
Function

Reduce
Function

HDFS Input

Annotate
inputs

HDFS Output

Annotate
outputs

Fig. 11 Annotation flow (addition and propagation) in CloudNotes system

5 Conclusion

This chapter covered several advanced techniques related to data indexing, organi-
zation, and curation in the context of the emerging Hadoop MapReduce infrastruc-
ture. Several data indexing techniques have been presented covering the spectrum of
record-level versus split-level indexing, static versus adaptive indexing, andHadoop-
centric versus hybrid (Hadoop plus relational DBMS) indexing. In addition to data
indexing, the layout on disk also plays an important role in query processing and opti-
mization. The chapter covered several advanced techniques for special data organi-
zation and layouts including data colocation, result materialization and caching, pre-
partitioning, and different types of layouts such as row-oriented, column-oriented,
or PAX layouts. Both the indexing and special organization techniques have shown
in literature to speedup query processing by orders of magnitudes. Yet, under non-
traditional workloads, additional optimizations can be applied to further enhance
the performance. The chapter covered several of these non-traditional workloads
and their optimizations including recurring workloads and online analytics. Finally,

Data Organization and Curation in Big Data 175

the chapter covered the state-of-art techniques in big data curation and their lever-
age either in query and workload optimizations (the execution-centric approaches),
or capturing higher-level semantics and business logic (the provenance-centric and
data-centric approaches).

References

1. D.J. Abadi, Tradeoffs between parallel database systems, hadoop, and hadoopdb as platforms
for petabyte-scale analysis, in SSDBM (2010), pp. 1–3

2. D.J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, C. Erwin, E.F. Galvez, M.
Hatoun, A. Maskey, A. Rasin, A. Singer, M. Stonebraker, N. Tatbul, Y. Xing, R. Yan, S.B.
Zdonik, Aurora: a data stream management system, in SIGMOD Conference (2003), p. 666

3. D.J. Abadi, Y. Ahmad, M. Balazinska, U. Çetintemel, M. Cherniack, J.-H. Hwang,W. Lindner,
A. Maskey, A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, S.B. Zdonik, The design of the borealis
stream processing engine, in CIDR (2005), pp. 277–289

4. A. Abouzeid, K. Bajda-Pawlikowski, A.R. Daniel Abadi, A. Silberschatz, HadoopDB: an
architectural hybrid ofMapReduce andDBMS technologies for analytical workloads, inVLDB
(2009), pp. 922–933

5. A. Abouzied, K. Bajda-Pawlikowski, J. Huang, D.J. Abadi, A. Silberschatz, Hadoopdb in
action: building real world applications, in SIGMOD Conference (2010), pp. 1111–1114

6. S. Akoush, R. Sohan, A. Hopper, HadoopProv: towards provenance as a first class citizen in
MapReduce, in USENIX Workshop on the Theory and Practice of Provenance (2013)

7. S.Akoush, L.Carata, R. Sohan,A.Hopper,MrLazy: lazy runtime label propagation forMapRe-
duce, in HotCloud (2014)

8. A.M. Aly, A. Sallam, B.M. Gnanasekaran et al., M3: stream processing on main-memory
mapreduce, in ICDE (2012), pp. 1253–1256

9. Y. Amsterdamer, S.B. Davidson, D. Deutch, T.Milo, J. Stoyanovich, V. Tannen, Putting lipstick
on pig: enabling database-style workflow provenance, in PVLDB (2011), pp. 346–357

10. Apache. Oozie: hadoop workflow system. http://yahoo.github.com/oozie/
11. N. Backman, K. Pattabiraman, R. Fonseca et al., C-mr: continuously mapreduce workflows on

multi-core processors, in Proceedings of 3rd International Workshop on MapReduce and Its
Applications Date (2012), pp. 1–8

12. A. Balmin, T. Kaldewey, S. Tata, Clydesdale: structured data processing on hadoop, in Pro-
ceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD
2012, Scottsdale, AZ, USA, May 20–24 (2012), pp. 705–708

13. A. Balmin, K.S. Beyer, V. Ercegovac, J. McPherson, F. Özcan, H. Pirahesh, E.J. Shekita, Y.
Sismanis, S. Tata, Y. Tian, A platform for extreme analytics. IBM J. Res. Develop. 57(3/4), 4
(2013)

14. K. Beyer, V. Ercegovac, R. Gemulla, A. Balmin, M.Y. Eltabakh, C.-C. Kanne, F. Ozcan, E.
Shekita, Jaql: a scripting language for large scale semi-structured data analysis, in PVLDB,
vol. 4 (2011)

15. D. Bhagwat, L. Chiticariu,W. Tan, An annotation management system for relational databases,
in VLDB (2004), pp. 900–911

16. Y. Bu, B. Howe,M. Balazinska, M.D. Ernst, Haloop: efficient iterative data processing on large
clusters. Proc. VLDB Endow. 3(1–2), 285–296 (2010)

17. P. Buneman et al., On propagation of deletions and annotations through views, inPODS (2002),
pp. 150–158

18. P. Buneman, A. Chapman, J. Cheney, Provenance management in curated databases, in SIG-
MOD (2006), pp. 539–550

19. P. Buneman, J. Cheney, W.-C. Tan, S. Vansummeren, Curated databases, in Proceedings of the
27th ACM symposium on Principles of database systems (PODS) (2008), pp. 1–12

http://yahoo.github.com/oozie/

176 M.Y. Eltabakh

20. P. Buneman, S. Khanna, W. Tan, Why and where: a characterization of data provenance. Lect.
Notes Comput. Sci. 316–333, 2001 (1973)

21. S. Chen, Cheetah: a high performance, custom data warehouse on top of mapreduce. PVLDB
3(2), 1459–1468 (2010)

22. L. Chiticariu, W.-C. Tan, G. Vijayvargiya, DBNotes: a post-it system for relational databases
based on provenance, in SIGMOD (2005), pp. 942–944

23. T. Condie, N. Conway, P. Alvaro, J.M. Hellerstein, K. Elmeleegy, R. Sears, Mapreduce online,
in NSDI (2010), pp. 313–328

24. T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, J. Gerth, J. Talbot, K. Elmeleegy, R. Sears,
Online aggregation and continuous query support inmapreduce, in SIGMOD (2010), pp. 1115–
1118

25. D. Crawl, J. Wang, I. Altintas, Provenance for MapReduce-based data-intensive workflows, in
WORKS Workshop (2011), pp. 21–30

26. Y. Cui, J.Widom, Lineage tracing for general datawarehouse transformations, inVLDB (2001),
pp. 471–480

27. J. Dittrich, J.-A. Quiané-Ruiz, A. Jindal, Y. Kargin, V. Setty, J. Schad, Hadoop++: making a
yellow elephant run like a cheetah (without it even noticing). VLDB 3, 518–529 (2010)

28. J. Dittrich, J. Quiané-Ruiz, S. Richter, S. Schuh, A. Jindal, J. Schad, Only aggressive elephants
are fast elephants. PVLDB 5(11), 1591–1602 (2012)

29. T. Donnelly, 9 Brilliant Inventions Made by Mistake. Inc. Accessed 24 Aug 2012
30. A. Eldawy,M.F.Mokbel, Spatialhadoop: a mapreduce framework for spatial data, in 31st IEEE

International Conference on Data Engineering, ICDE 2015, Seoul, South Korea, April 13–17
(2015), pp. 1352–1363

31. I. Elghandour, A. Aboulnaga, Restore: reusing results of mapreduce jobs. Proc. VLDB Endow.
5(6), 586–597 (2012)

32. M.Y. Eltabakh, W.G. Aref, A.K. Elmagarmid, M. Ouzzani, Y.N. Silva, Supporting annotations
on relations, in EDBT (2009), pp. 379–390

33. M.Y. Eltabakh, Y. Tian, F. Özcan, R. Gemulla, A. Krettek, J. McPherson, Cohadoop: flexible
data placement and its exploitation in hadoop. PVLDB 4(9), 575–585 (2011)

34. M.Y. Eltabakh, F. Özcan, Y. Sismanis, P. Haas, H. Pirahesh, J. Vondrak, Eagle-eyed elephant:
split-oriented indexing in Hadoop, in Proceedings of the 16th International Conference on
Extending Database Technology (EDBT) (2013), pp. 89–100

35. A. Floratou, J.M. Patel, E.J. Shekita, S. Tata, Column-oriented storage techniques for mapre-
duce. PVLDB 4(7), 419–429 (2011)

36. A. Floratou, U.F. Minhas, F. Özcan, Sql-on-hadoop: full circle back to shared-nothing database
architectures. PVLDB 7(12), 1295–1306 (2014)

37. A. Floratou, F. Özcan, B. Schiefer, Benchmarking sql-on-hadoop systems: TPC or not tpc? in
Big Data Benchmarking - 5th International Workshop, WBDB, Potsdam, Germany, August
5–6, 2014. Revised Selected Papers 2014, 63–72 (2014)

38. V.R. Gankidi, N. Teletia, J.M. Patel, A. Halverson, D.J. DeWitt, Indexing HDFS data in PDW:
splitting the data from the index. PVLDB 7(13), 1520–1528 (2014)

39. A.F. Gates, O. Natkovich, S. Chopra, P. Kamath, S.M. Narayanamurthy, C. Olston, B. Reed,
S. Srinivasan, U. Srivastava, Building a high-level dataflow system on top of map-reduce: the
pig experience. Proc. VLDB Endow. 1414–1425 (2009)

40. W. Gatterbauer, M. Balazinska, N. Khoussainova, D. Suciu, Believe it or not: adding belief
annotations to databases. Proc. VLDB Endow. 2(1), 1–12 (2009)

41. F. Geerts, J. Van Den Bussche, Relational completeness of query languages for annotated
databases, in DBPL (2007), pp. 127–137

42. F. Geerts et al., Mondrian: annotating and querying databases through colors and blocks, in
ICDE (2006), p. 82

43. F. Geerts, A. Kementsietsidis, D. Milano, MONDRIAN: annotating and querying databases
through colors and blocks, Proceedings of the 22nd International Conference on Data Engi-
neering, ICDE 2006, 3–8 April 2006 (GA, USA, Atlanta, 2006), p. 82

Data Organization and Curation in Big Data 177

44. K. Ibrahim, D. Xiao, M.Y. Eltabakh, Elevating annotation summaries to first-class citizens
in insightnotes, in Proceedings of the 18th International Conference on Extending Database
Technology, EDBT 2015, Brussels, Belgium, March 23–27 (2015), pp. 49–60

45. R. Ikeda, H. Park, J. Widom, Provenance for generalized map and reduce workflows, in CIDR
(2011), pp. 273–283

46. D. Jiang, B. C. Ooi, L. Shi, S. Wu, The performance of mapreduce: an in-depth study. Proc.
VLDB Endow. 472–483 (2010)

47. A. Jindal, J. Quiané-Ruiz, J. Dittrich, Trojan data layouts: right shoes for a running elephant,
in ACM Symposium on Cloud Computing in conjunction with SOSP 2011, SOCC ’11, Cascais,
Portugal, October 26–28 (2011), p. 21

48. T.Kaldewey, E.J. Shekita, S. Tata, Clydesdale: structured data processing onmapreduce, in 15th
International Conference on Extending Database Technology, EDBT ’12, Berlin, Germany,
March 27–30, 2012, Proceedings (2012), pp. 15–25

49. G. Karvounarakis, T.J. Green, Semiring-annotated data: queries and provenance. SIGMOD
Rec. 41(3), 5–14 (2012)

50. P. Larson, J. Zhou, View matching for outer-join views. VLDB J. 16(1), 29–53 (2007)
51. C. Lei, E. Rundensteiner, M.Y. Eltabakh, Redoop: supporting recurring queries in Hadoop, in

Proceedings of the 16th International Conference on Extending Database Technology (EDBT)
(2013)

52. C.Lei, Z. Zhuang,E.A.Rundensteiner,M.Y.Eltabakh, Shared execution of recurringworkloads
in mapreduce. PVLDB 8(7), 714–725 (2015)

53. B. Li, E. Mazur et al. A platform for scalable one-pass analytics using mapreduce, in SIGMOD
(2011), pp. 985–996

54. Q. Li, A. Labrinidis, P.K. Chrysanthis, ViP: a user-centric view-based annotation framework for
scientific data, in Proceedings of the 20th international conference on Scientific and Statistical
Database Management (SSDBM) (2008), pp. 295–312

55. H. Lim, H. Herodotou, S. Babu, Stubby: a transformation-based optimizer for MapReduce
workflows. PVLDB 5(11), 1196–1207 (2012)

56. Y. Liu, S. Hu, T. Rabl, W. Liu, H. Jacobsen, K. Wu, J. Chen, J. Li, Dgfindex for smart grid:
enhancing hive with a cost-effective multidimensional range index. PVLDB 7(13), 1496–1507
(2014)

57. D. Logothetis, S. De, K. Yocum, Scalable lineage capture for debugging DISC analytics, in
SOCC (2013), pp. 17:1–17:15

58. P. Lu, G. Chen, B.C. Ooi, H.T. Vo, S. Wu, Scalagist: scalable generalized search trees for
mapreduce systems [innovative systems paper]. PVLDB 7(14), 1797–1808 (2014)

59. Y. Lu, Y. Li,M.Y. Eltabakh, Decorating the cloud: enabling annotationmanagement inMapRe-
duce. PVLDB 5(11), 1–26 (2016)

60. T. Nykiel, M. Potamias, C. Mishra, G. Kollios, N. Koudas, Mrshare: sharing across multiple
queries in mapreduce. Proc. VLDB Endow. 494–505 (2010)

61. C. Olston, G. Chiou, L. Chitnis, F. Liu, Y. Han, M. Larsson, A. Neumann, V.B. N. Rao,
V. Sankarasubramanian, S. Seth, C. Tian, T. ZiCornell, X.Wang, Nova: continuous pig/hadoop
workflows, in SIGMOD Conference (2011), pp. 1081–1090

62. H. Park,R. Ikeda, J.Widom,Ramp: a system for capturing and tracing provenance inmapreduce
workflows. PVLDB 4(12), 1351–1354 (2011)

63. H. Park,R. Ikeda, J.Widom,Ramp: a system for capturing and tracing provenance inmapreduce
workflows, in VLDB. Stanford InfoLab (2011)

64. M. Ray, E.A. Rundensteiner, M. Liu, C. Gupta, S. Wang, I. Ari. High-performance complex
event processing using continuous sliding views, in EDBT (2013), pp. 525–536

65. S. Richter, J. Quiané-Ruiz, S. Schuh, J. Dittrich, Towards zero-overhead adaptive indexing in
hadoop, in CoRR (2012). arXiv:abs/1212.3480

66. A. Shinnar, D. Cunningham, B.Herta et al.,M3r: increased performance for in-memory hadoop
jobs. PVLDB 1736–1747 (2012)

67. M. Stonebraker et al., Mapreduce and parallel dbmss: friends or foes? Commun. ACM 53(1),
64–71 (2010)

http://arxiv.org/abs/abs/1212.3480

178 M.Y. Eltabakh

68. W.-C. Tan, Containment of relational queries with annotation propagation, in DBPL (2003)
69. A. Thusoo, J.S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu, P. Wyckoff, R. Murthy,

Hive - a warehousing solution over a map-reduce framework. PVLDB, 1626–1629 (2009)
70. G. Wang, C.-Y. Chan, Multi-query optimization in mapreduce framework. PVLDB 7(3), 145–

156 (2013)
71. A. Woodruff, M. Stonebraker, Supporting fine-grained data lineage in a database visualization

environment, in ICDE (1997), pp. 91–102
72. E. Wu, S. Madden, M. Stonebraker, SubZero: a fine-grained lineage system for scientific

databases, in ICDE (2013), pp. 865–876
73. D. Xiao, M.Y. Eltabakh, InsightNotes: summary-based annotation management in relational

databases, in SIGMOD Conference (2014), pp. 661–672
74. D. Zhang, M. Ray, M. Liu, D. Dougherty, E.A. Rundensteiner, Nested complex event

processing: predicate specification and evaluation, in Transactions on Large-Scale Data- and
Knowledge-Centered Systems V. Special Issue on Advanced Data Stream Management and
Processing of Continuous Queries (Springer, Berlin, 2013)

75. J. Zhou, P. Larson, H.G. Elmongui, Lazy maintenance of materialized views, in Proceedings
of the 33rd International Conference on Very Large Data Bases, University of Vienna, Austria,
September 23–27, 2007 (2007), pp. 231–242

76. J. Zhou, P. Larson, J. Goldstein, L. Ding, Dynamic materialized views, in Proceedings of
the 23rd International Conference on Data Engineering, ICDE 2007, The Marmara Hotel,
Istanbul, Turkey, April 15–20 (2007), pp. 526–535

Big Data Query Engines

Mohamed A. Soliman

Abstract Big data analytics are techniques that are used to analyze large datasets in
order to extract patterns, trends, correlations and summaries. Analytics are used in
several big data applications ranging from the generation of simple reports to running
deep and complex query workloads. The insights drawn by running big data analytics
depend primarily on the capabilities of the underlying query engine, which is respon-
sible for translating user queries into efficient data retrieval and processing opera-
tions, as well as executing these operations on one or multiple nodes in order to find
query answers. Classically, parallel database systems have been adopted in various
domains, particularly enterprise data warehouses, as the data processing platform for
running big data analytics. An SQL-based query engine, running on a shared-nothing
cluster, is typically used by these platforms. Scalability is realized by partitioning
data across multiple machines that communicate via a high speed interconnect layer.
These systems often rely on dedicated expensive hardware resources in order to scale-
out query processing and provide fault tolerance. With the emergence of Hadoop, it
became possible to use cheap commodity hardware for achieving linear scalability
and fault tolerance. A typical Hadoop environment involves a software stack run-
ning in one ecosystem, while sharing hardware resources across different systems,
called tenants. Earlier Hadoop query engines leveraged programming frameworks
such as MapReduce to run analytics using programs executed on a distributed file
system. The Hadoop Distributed File System (HDFS) has been effectively used for
batch processing of simple analytics. The need for coding and manual optimiza-
tion of analytics, the lack of support to complex queries and the limited interactive
processing capabilities, have triggered the need for adopting new technologies with
more expressive query languages and advanced query processing techniques. Inte-
grating parallel database systems into Hadoop ecosystem is an obvious approach to
combine the advantages of both worlds. In this respect, multiple challenges needed
to be addressed to fit a parallel database query engine in Hadoop software stack.
Data placement, query optimization, query execution and resource management
are some of the technical problems that are actively studied in this area. In this
chapter, we discuss the state-of-the-art of query engines in parallel database systems,

M.A. Soliman (B)
Datometry Inc., San Francisco, CA, USA
e-mail: mohamed.soliman@datometry.com; mohamed.fathi@gmail.com

© Springer International Publishing AG 2017
A.Y. Zomaya and S. Sakr (eds.), Handbook of Big Data Technologies,
DOI 10.1007/978-3-319-49340-4_6

179

180 M.A. Soliman

Hadoop-based systems, as well as the hybrid systems that integrate parallel databases
and Hadoop technologies. We present the architectures of multiple example systems
and highlight their similarity and differences. We also give an overview of the research
problems and proposed techniques in the areas of query optimization and execution.

1 Introduction

The architecture of Hadoop-based data processing systems and Massively Parallel
Processing (MPP) databases are similar in many aspects. Both architectures store big
data by slicing it across a large number of shared-nothing independent nodes. Scal-
ability is achieved by parallelizing query evaluation over these independent nodes.
Fault tolerance is realized by replicating the same data blocks on multiple nodes.

Earlier technologies have integrated MPP databases and Hadoop-based data
processing systems by building connectors that port data from one platform to the
other. More recent technologies have achieved tighter integration of both worlds by
adopting different approaches. Adapting MPP database systems to run in Hadoop
ecosystems, strengthening the capabilities of Hadoop-based query engines to match
parallel databases, and building parallel database systems designed specifically for
Hadoop are some of the approaches that have been adopted in this respect.

1.1 MPP Query Engines

MPP database systems are primarily based on relational database technologies. A
major requirement of these technologies is the existence of a relational schema that
describes the structure of different data entities. A schema is defined as a set of rela-
tions, where each relation represents a logical data entity. Physically, each relation is
stored as a table, which maps to one or more files on disk. The rows in each table cap-
ture relation instances, while the columns capture relation attributes. Normalization
methods are used to eliminate redundancy and maintain data integrity by enforcing
dependencies among relations.

In MPP systems, a database is partitioned into smaller databases stored at different
physical machines (nodes) in an underlying cluster. Data partitioning in MPP systems
is typically based on horizontal partitioning of data across nodes. Data storage and
query evaluation are dual features that need to be provided by each node in the MPP
cluster.

The query language in MPP databases is typically the Structured Query Language
(SQL), which is a declarative language widely used in various domains for exploring
large datasets and implementing business logic. SQL has a number of key strengths
including well-defined semantics, industry-grade standards, and expressive power
that allows specifying complex query constructs concisely.

Big Data Query Engines 181

Fault tolerance is the ability of the system to recover form disasters or unexpected
errors that result in data loss such as disk failures. Fault tolerance in MPP systems
is typically achieved by using replicas, which are nodes that maintain a copy of the
original data. Consistency between the original nodes and their replicas is achieved by
sharing the query logs, or by using publisher/subscriber mechanisms to synchronize
data updates.

A given query is transformed by the query optimizer into an execution plan that
defines the sequence of steps that need to be performed to compute query results.
The optimizer-generated plan includes explicit data movement operations. The cost
of moving data is taken into account during optimization.

A query executing in an MPP database can include several pipelined execution
stages, with explicit communication between nodes at each stage. Query evaluation
is parallelized by running data processing operations in parallel on different nodes.
During query evaluation, nodes need to communicate with each other by sending
and receiving partial query results.

1.2 Hadoop Query Engines

Hadoop data processing environments adopt a more flexible data model. Input data,
both structured and unstructured, following different formats are consumed by the
data processing engines in the Hadoop ecosystem. Relationships among data entities
and integrity constraints are not strictly enforced. Users are typically required to
implement consistency check logic to maintain the correct behavior of their data
processing applications.

Query languages in Hadoop environments require writing imperative programs
that utilize programming frameworks to implement the data processing task at
hand. The earlier programming frameworks provided basic APIs for manipulating
key/value pairs. The more recent frameworks introduced advanced programming
techniques including functional programming and high-order functions to allow
expressing more complex operations in a concise form.

Data partitioning in Hadoop environments is managed by a scalable distributed file
system, the Hadoop Distributed File System (HDFS). Data is partitioned into small
blocks stored at different nodes in the cluster. In order to achieve fault tolerance, new
nodes are automatically added to store data blocks that were stored at failed nodes,
while updating the HDFS data location tracking service.

Query execution in Hadoop environments requires building a data processing
pipeline that divides the required data processing into multiple stages, and may
require materializing the intermediate results between stages. The first widely
adopted query execution framework of this nature is MapReduce [5].

The flexibility of Hadoop allows separating data storage and computation across
different cluster nodes. In this environment, data could be stored on a subset of cluster
nodes, and processed by a different subset of nodes.

182 M.A. Soliman

1.3 Chapter Organization

We present the state-of-the-art of big data query engines in different environments,
and discuss a number of research challenges related to big data query processing.
We primarily focus on system architectures and the research challenges in the query
optimization and query execution areas.

The remainder of this chapter is organized as follows. In Sect. 2, we present the
architectures of some examples of MPP query engines. In Sect. 3, we present the
architectures of some examples of Hadoop query engines. In Sect. 4, we present the
architectures of some examples of hybrid systems that integrate MPP and Hadoop
technologies. We then discuss in Sect. 5 the technical challenges involved in building
query optimizers in big data systems. We describe the techniques used in building
query executors for big data systems in Sect. 6. We summarize this chapter in Sect. 7
with final remarks.

2 Massively Parallel Query Engines

In this section, we present the system architectures of some examples of MPP query
engines. The presented systems are only a small subset of the available solutions.
Many of the design principles adopted by the presented systems are common in many
query engines.

2.1 Teradata

Teradata [29] is probably the earliest MPP system that was commercially available
and widely adopted by many enterprise customers. Teradata database is based on
Symmetric Multiprocessing (SMP) technology, combined with a communications
network that connects the SMP nodes to provide a Massively Parallel Processing
system architecture. A node in Teradata architecture is a combination of hardware
and software components running multiple symmetric CPUs. Each node has one or
more disk arrays. An MPP configuration is two or more loosely coupled nodes. An
interconnect layer, called BYNET, is used to link nodes on the MPP system. BYNET
provides the communication means that is needed to provide message exchange
among the nodes.

The Teradata MPP architecture is based on the concept of virtualized processors
(vprocs) that abstract the details of the underlying physical node. Vprocs are software
processes that run on Teradata node. There are multiple types of vprocs including
the following:

Big Data Query Engines 183

Fig. 1 Access Module Processors (AMPs) in teradata [29]

• Access Module Processor (AMP): A vproc that performs query execution. Each
AMP owns a portion of the overall database storage. An AMP exclusively manages
a disk space in its underlying node. During query processing, each AMP handles
the tasks of sorting, joining and aggregation.

• Parsing Engine (PE): A vproc that performs query parsing and query optimization.

Teradata architecture is shared-nothing. The AMP and PE vprocs share neither
memory nor disk across processing nodes. Figure 1 shows the architecture of AMPs
in Teradata system.

Each table row is owned by exactly one AMP. That AMP is the only subsystem
that can create, read, update, or lock its data. The local control on logging and locking
in each AMP enhances system parallelism and reduces BYNET traffic.

Load balance in Teradata database is achieved by distributing table rows evenly
across its AMPs and by giving the AMPs the responsibility for the data they own.
Teradata is a self-organizing parallel database system. Tables do not have explicit
distribution keys. Instead, table rows are hashed across the AMPs of a system using
the row hash value of their primary index. When a new row is inserted, the value of
its primary index column(s) are used to compute a hash value that maps to one AMP.
The row is sent to the selected AMP, where it gets stored in the disk space managed
by the AMP.

Users need to carefully choose the primary index for each table, so that rows that
are frequently joined hash to the same AMP. This is crucial for performance as it
allows eliminating the need to send rows across the BYNET in order to join them.

184 M.A. Soliman

Fig. 2 Greenplum database architecture [23]

2.2 Greenplum

Pivotal Greenplum Database (GPDB) [23] is a massively parallel processing analytics
database. GPDB adopts a shared-nothing computing architecture with two or more
cooperating processors. Each processor has its own memory, operating system and
disks. GPDB leverages this high-performance system architecture to distribute the
load of petabyte data warehouses, and use system resources in parallel to process a
given query. Figure 2 shows a high level architecture of GPDB.

Storage and processing of large amounts of data are handled by distributing the
load across several servers or hosts to create an array of individual databases, all
working together to present a single database image. The master is the entry point
to GPDB, where clients connect and submit SQL statements. The master coordi-
nates work with other database instances, called segments, to handle data processing
and storage. When a query is submitted to the master, it is optimized and broken
into smaller components dispatched to segments to work together on delivering the
final results. The interconnect is the networking layer responsible for inter-process
communication between the segments.

When creating a new table in GPDB, the table can be associated with a distribution
method. The supported methods include hashed distribution and random distribution.

Big Data Query Engines 185

The goal of data distribution is to spread data across many nodes and disks in order
to scale out query processing.

During query execution, data can be distributed to segments in multiple ways
including hashed distribution, where tuples are distributed to segments based on
some hash function, replicated distribution, where a full copy of a table is stored at
each segment and singleton distribution, where the whole distributed table is gathered
from multiple segments to a single host (usually the master).

A query is submitted to the master node, where it gets parsed and optimized into
a query plan. The master node obtains catalog information required to optimize the
given query by looking up data objects in the system catalog. After query plan is
created, a copy of the plan is dispatched to each node.

The query plan is an operator tree that captures the order of query execution.
During query execution, a leaf operator in the query plan, running on a given node,
reads data from its local node storage and returns data to upper level operators. Upper
level operators carry on query execution while communicating with query operators
running on other nodes. This communication is enabled through the interconnect
layer.

2.3 Vertica

Vertica [16] is the commercialized analytical database system resulting from the
C-Store research project [28]. The architecture of Vertica is based on the concept
of column projections, which are restricted forms of materialized views. A column
projection is a sorted subset of the attributes of a table. The physical data organiza-
tion in Vertica stores tables as column projections, rather than self-contained units.
Each projection is possibly stored in a separate data file that could be compressed.
A super projection that contains all table columns is also maintained to allow for
reconstructing the full table when needed.

The main insight behind using column projections is that in many analytical
queries, users are only interested in a subset of table columns. Reading data from full
tables is not often required. Hence, by materializing and sorting vertical fragments of
each table, there is a good chance that a small subset of these fragments is sufficient
to answer a given query, without the need to scan and read the full tables.

Vertica supports join operations by materializing prejoin projections. By phys-
ically materializing the join results between a fact table and multiple dimension
tables, many join queries have an improved performance. However, this comes with
the expense of maintaining the prejoins in the physical storage and keeping them in
sync with other projections in the presence of data updates. This cost can be lessened
by employing compression and encoding techniques.

Figure 3 illustrates the high level design of column projections in Vertica using a
sample sales table. Two projections are maintained for sales table. The first projec-
tion is a super projection, while the second projection contains two columns. Both
projections can be horizontally partitioned and stored at multiple nodes to allow for
parallel query processing.

186 M.A. Soliman

Fig. 3 Column projections
in Vertica [16]

Big Data Query Engines 187

3 Hadoop Query Engines

In this section, we describe the architectures of a number of Hadoop query engines.
Earlier Hadoop query engines required implementing elaborate imperative programs
for performing data processing tasks. The underlying framework provided simple
APIs as the building blocks of these programs. More recent solutions extended
Hadoop programming frameworks with more advanced techniques such as functional
programming. A number of Hadoop query engines have also considered adding a
declarative SQL-like interface to be used as the main query language for writing big
data applications.

3.1 MapReduce

MapReduce [5] is a programming framework that can be used for processing large
data sets. The input to a MapReduce program is stored in a distributed file system as
a set of partitions stored on different nodes in the computing cluster. The framework
requires users to specify two basic functions:

• Map: A function that transforms a key/value pair into a set of intermediate
key/value pairs. A typical map function processes input records by applying filter-
ing and transformation operations, and generates as output a set of intermediate
key/value pairs. Before the map function produces its output, a hash function is
used to split output records into a set of disjoint partitions. The map function even-
tually generates a file for each partition and stores these files to the disk of local
nodes.

• Reduce: A function that merges intermediate values that are associated with the
same key, producing potentially a smaller set of values compared to the input. Each
instance of the reduce function reads a number of partition files from a number
of cluster nodes. Each partition file is consumed by one instance of the reduce
function. The output of the reduce function is also stored to a file in the distributed
file system.

Programs written using the previous framework can be easily parallelized and
executed on a large cluster of commodity machines.

The structure of input files in MapReduce programs must be handled by the
user program. While support for simple data types of key/value pairs is readily
available, parsing and processing more complex structures requires adding logic to
user program to perform these operations. When input data is shared by multiple
applications, the structure of the input files must be enforced and maintained by
some external service [21]. This problem does not usually exist in database systems,
where catalog services are used to abstract the definition and maintenance of metadata
(description of how data is structured) from the logic of the underlying applications.

188 M.A. Soliman

Fig. 4 The architecture of Hive [12]

3.2 Hive

Hive [12, 30] is a query translation layer on top of MapReduce. The design of Hive
exposes a dialect of SQL to Hadoop users. The expressed queries are translated to
graphs of MapReduce jobs. The expressiveness power of SQL allows users to formu-
late complex queries in a declarative manner, without the need to write MapReduce
programs that specify the exact operations to be performed.

While abstracting the query language interface is key to improve the usability of
Hadoop query engines, two additional aspects are also addressed by Hive to improve
the productivity of Hadoop query engines:

• Storage: storing datasets in an efficient format that allows fast data access and
better use of storage resources.

• Query optimization and execution: A sophisticated query optimizer and an
advanced query executor are highly needed to improve query response times and
optimize utilization of computation resources.

Figure 4 shows the architecture of Hive [12]. Two interfaces are exposed to clients
to submit queries: (1) Command Line Interface (CLI), and (2) HiveServer2. The client
facing interface is used to submit queries to the Driver component. The Driver com-
ponent transforms the incoming query into a parse tree representation. The Planner

Big Data Query Engines 189

component receives the query parse tree and then, based on the type of submitted
query, a specific planner implementation is chosen to analyze the given query parse
tree. During query analysis, catalog information regarding metadata objects (e.g.,
table definitions) may be needed. This information is obtained by contacting the
Metastore, which is implemented using a Relational Database Management System
(RDBMS), typically PostgreSQL [25].

The Planner component in Hive generates a directed acyclic graph of MapReduce
tasks that represents the required data processing operations. The graph is submitted
to the Data Processing Engine for execution.

To read/write a table with a specific file format, Hive assigns the corresponding file
reader/writer to MapReduce tasks reading/writing this table. For a given file format, a
serialization-deserialization library (SerDe) is used to serialize and deserialize data.

After all MapReduce jobs have finished, the Driver fetches the results of the
query, and sends the results back to the query client. Besides processing data directly
stored in HDFS, Hive can also process data stored in other storage systems, e.g.
HBase [11]. For those systems, a corresponding Storage Handler is needed. For
example, the HBase storage handler is used when a query needs to read or write data
from or to HBase.

3.3 Spark

The key advantage of the MapReduce framework is the seamless scalability, fault tol-
erance and parallelization capabilities it provides for big data applications. However,
managing distributed memory in the computing cluster is missing in MapReduce.
Intermediate results are typically stored to temporary files on disks and may not
be shared across applications. This means that it is not possible to efficiently reuse
previous computations in new data processing tasks.

A number of classes of big data applications can largely benefit from reusing
previous computations. For example, in machine learning and graph algorithms,
iterative computation is used to analyze and process a large dataset. In each iteration,
the previously computed values are used to generate new values. The intermediate
computation used by one application may also be usable in other applications. Data
reuse is highly needed to improve the efficiency of this type of applications.

Apache Spark [33] is a Hadoop-based computational framework that mainly tar-
gets iterative applications. The framework provides a general-purpose query engine,
a set of functional programming APIs, and a number of libraries for streaming, graph
processing and machine learning.

The functional programming APIs provided by Spark allow users to manipulate
distributed data collections called Resilient Distributed Datasets (RDDs). An RDD
is a collection of data objects that are partitioned across a cluster. A number of
operations can be applied to RDDs including map, filter, and reduce operations.

RDDs maintain their lineage information in a reliable way. The lineage is the
sequence of operations that were performed to construct an RDD. Maintaining lin-

190 M.A. Soliman

eage information is the key for fault tolerance in Spark, which allows recovering
lost data using the lineage graph of the RDDs. Replaying the sequence of operations
encoded in the RDD lineage allows reconstructing an RDD in the event of data loss.

The query evaluation on RDD is performed lazily. All data processing operations
that do not require producing output are implicitly encoded in the RDD lineage,
but not actually performed. When an output operation, for example producing some
aggregated value, is requested, the sequence of data processing operations (encoded
in the lineage) is triggered.

A first effort towards building a relational query interface on top of Spark was a
system called Shark [31], which is a shorthand for Spark on Hive. Shark modified the
Apache Hive system to run on Spark as the underlying computation framework that
is used instead of MapReduce. Traditional query optimizations, such as columnar
processing, are implemented on top of the Spark engine. However, Shark could only
be used to query external data stored in the Hive catalog. This limitation means that
it was not possible to use Shark for processing data inside a Spark user program.

A recent solution has addressed this limitation by introducing a native SQL layer
on top of Spark. The resulting system is called SparkSQL [2]. We discuss the details
of query optimization in SparkSQL in Sect. 5.3.

4 SQL on Hadoop

While Hadoop’s scalability and fault-tolerance match the requirements of running
analytics on big data, the need to formulate analytics as complex MapReduce pro-
grams as well as the lack of support to interactive data exploration (with short response
times) were considerable limitations.

To address these limitations, SQL-like declarative languages, such as HiveQL in
Hive [30], were first developed in a query language layer on top of Hadoop. HiveQL
queries are compiled into MapReduce jobs. While HiveQL improved the usability of
Hadoop ecosystem for running complex big data analytics, the generated MapReduce
jobs had typically poor performance. It became obvious that more advanced query
optimization and execution techniques are still lacking in Hadoop environments.

A number of systems (e.g., HAWQ [24], Impala [14] and Presto [3]) have imple-
mented from scratch (or ported) full-fledged relational query engines to work on top
of HDFS. There are two main advantages of these systems, compared to the native
Hadoop-based query engines:

• Query optimizers are sophisticated enough to generate more efficient query plans.
This means that the probability of running analytics based on bad execution plans,
which often translates to long execution times, is relatively small.

• Query execution is not following the MapReduce execution style. This means
that using these query engines for data exploration in Hadoop is possible. A key
advantage of these engines is pipelining intermediate query results without the
need to materialize them, in contrast to MapReduce.

Big Data Query Engines 191

In this section, we describe the system architectures of some examples of SQL-
on-Hadoop systems, and highlight their main similarities and differences.

4.1 HAWQ

HAWQ [24] is a massively parallel processing SQL engine on top of HDFS. HAWQ
originated as a redesign of Greenplum database into a hybrid of MPP database and
Hadoop technologies. The layered architecture of Greenplum database (Fig. 2) is
adopted and reused to build an SQL engine that relies on the Hadoop distributed file
system for data replication and fault tolerance.

By building on the extensive query language and optimization capabilities of
Greenplum database, HAWQ has a high degree of SQL standard compliance as well
as extensive query optimization capabilities. In particular, HAWQ employs Orca [27],
an industry-grade optimizer, at its core, to devise efficient query plans minimizing
the cost of accessing data in Hadoop clusters. The architecture of HAWQ combines
the benefits of using a state-of-the-art cost-based optimizer with the scalability and
fault-tolerance of Hadoop to enable interactive processing on Big Data in Hadoop
environments. We describe the architecture of Orca query optimizer in Sect. 5.2.

The main difference between HAWQ and Greenplum Database is the underlying
data storage characteristics. Greenplum database assumes dedicated data servers
that handles data storage, while HAWQ runs on a cluster of commodity machines.
HAWQ achieves its scalability and fault tolerance by relying on Hadoop’s ability to
seamlessly scale the underlying cluster, and its built-in replication mechanisms.

The first design of HAWQ [4], shown in Fig. 5, re-architected various components
of Greenplum database including distributed transaction processing, fault tolerance,
unified catalog service and metadata dispatch. HAWQ’s architecture is based on three
type of nodes: master, HDFS name node, and segment nodes. The segment nodes
run both HAWQ’s compute units (each compute unit manages a physical partition
of the database) as well as the typical HDFS data nodes.

The master node is the main entry point of the system, where user queries are
submitted. The master node is responsible for authenticating users based on given
credentials, parsing incoming queries, invoking query optimizer to produce execution
plan, and finally dispatching query plans to segment nodes to initiate query execution.
The master node has an accompanying standby master, which is kept in-sync with
the primary master by sharing log files.

Each physical node in HAWQ’s cluster runs an HDFS data node as well as multiple
compute units. The compute units leverage multi-core architecture during query
execution. In a typical configuration, each compute unit is assigned to a processor
core in the physical node that the unit runs on. This allows operations like scanning
input data to be conducted in parallel by initiating multiple compute units on the
same physical node, each utilizing a dedicated processing core.

HDFS data nodes are collocated with compute units on the same physical
machines to leverage data locality. Nodes access HDFS storage layer through lib-

192 M.A. Soliman

Fig. 5 Initial HAWQ architecture [4]

hdfs3, an HDFS library. Pivotal extension framework (PXF) is an extensible frame-
work, which enables SQL access to external data sources such as HBase [11] and
Hive [12].

A major requirement that was not addressed in the first design of HAWQ is
elasticity within Hadoop ecosystem. This is important to allow HAWQ to share
resources with other Hadoop tenants. Computing and storage resources should be
dynamically allocated during query execution by negotiating with Hadoop resource
managers.

The redesign of HAWQ is called Apache HAWQ [22] and its architecture is shown
in Fig. 6. In this architecture, on each physical host, HAWQ runs a segment node, an
HDFS data node and a node manager. The master nodes of Apache HAWQ, HDFS
and YARN [32] (Hadoop utility for resource management) run on separate nodes.
Apache HAWQ is integrated with YARN for resource management.

When a query is submitted to Apache HAWQ, a set of virtual segments are allo-
cated according to the estimated cost of a query, as given by HAWQ’s query opti-
mizer, and the current usage of resources in the Hadoop cluster, as given by YARN.
After virtual segments are determined, the query is dispatched to the corresponding
physical hosts. The set of physical hosts that will execute a query can be a subset

Big Data Query Engines 193

Fig. 6 Apache HAWQ architecture [22]

of physical hosts of the whole Hadoop cluster. The HAWQ resource enforcer on
each node monitors and controls the real time resources used by the query to avoid
resource usage violations. Nodes can be added dynamically without data redistribu-
tion. When a new node is added, the HAWQ master is notified to make the additional
resources given by the new node visible for future queries.

4.2 Impala

Impala [14] is a massively-parallel query execution engine, developed specifically
to run on Hadoop clusters. The design of Impala decouples the query engine from
the underlying storage engine. The architecture of Impala is based on multiple com-
ponents that interact together to provide query processing and data storage function-
alities. The architecture is shown in Fig. 7. The architecture is based on three main
services:

• Impalad: A daemon service that is responsible for accepting queries from client
processes and managing query execution across the cluster. This daemon service
is also responsible for executing individual query fragments on behalf of other
Impalad’s. One Impalad is deployed on every machine in the cluster. When an
Impalad operates in the first role (managing query execution), it is said to be the
coordinator for that query. All Impalad’s may operate in all roles. This property is
important for fault-tolerance and load-balancing. Each node also runs a datanode
process, which is responsible for accessing data in the underlying HDFS. This
allows taking advantage of data locality by reading from the filesystem without
going through the network.

194 M.A. Soliman

Fig. 7 Architecture of Impala [14]

• Statestored: A daemon service that is responsible for metadata publish-subscribe
service. This service is used to disseminate metadata updates to Impala processes
in the cluster. There is a single statestored instance.

• Catalog: A daemon service that serves as the catalog repository. Using catalog,
Impala daemons may execute data definition language (DDL) commands (e.g.,
creating data objects such as relational tables). The object definitions are reflected
in external catalog stores such as the Hive Metastore. Changes to the system catalog
are broadcast via the statestore.

Impala synchronizes cluster-wide metadata by leveraging its symmetric-node
architecture, where all nodes are able to accept and execute queries. Therefore, a
fresh version of system-wide catalog must be obtainable by all nodes at any point of
time. A holistic view of resource utilization in the system must also be available at
all nodes, so that queries can be optimized and scheduled properly.

These capabilities are provided by pushing metadata updates to interested nodes.
This is implemented by the satestore, which is a publish-subscribe service that pushes
metadata updates to a set of subscribers. The statestore maintains a table that stores
a set of topics. Processes that are interested in receiving updates on a particular topic
subscribe with the statestore service.

After registration, the statestore periodically sends two message types to each
subscriber:

• Topic update message: A message that has all changes to a topic since the last
update. In response to a topic update, each subscriber sends a list of changes in
its subscribed topics. Those changes are guaranteed to be applied by the time the
next update is received.

• Keepalive message: The statestore uses keepalive messages to maintain the connec-
tion with subscribers. When keepalive message is not received from a subscriber
after some time threshold, the subscription times-out, and the subscriber needs to
re-register with statestore.

We discuss query optimization and query execution techniques in Impala in
Sects. 5.5 and 6.4, respectively.

Big Data Query Engines 195

Fig. 8 Architecture of Presto [3]

4.3 Presto

Presto [3] is a distributed SQL query engine optimized for interactive processing in
Hadoop clusters. Unlike MapReduce framework, which is a computation framework
primarily designed for batch processing, Presto is designed to support data explo-
ration tasks that typically involve running analytics with low latency requirements.

Figure 8 shows the architecture of Presto. The query client submits SQL statements
to the coordinator component. The submitted queries are parsed, optimized and
turned into query execution plans. While optimizing a query, a Metadata interface to
Hive Metastore is used to obtain definitions of data and query objects such as tables
and functions.

The query execution plan is turned by the scheduler component into an execution
pipeline. The pipeline assigns work to nodes closest to the data. The query execution
progress is monitored by the scheduler. The pipeline workers produce output by
pulling data from the previous workers, apply corresponding data processing tasks,
and sending the results upon request to later stages in the pipeline. An installation of
Presto’s components is shown in Fig. 9.

Presto query execution engine does not spawn MapReduce jobs. The query execu-
tion model employs a custom engine with special query operators designed to support
SQL operations. Query processing is done in memory and intermediate results are
pipelined across the network between stages. This avoids unnecessary I/O where
intermediate results need to be written to disk between query processing stages. The
pipelined execution model in Presto can run multiple stages at once, and streams
data from one stage to the next as it becomes available. This reduces end-to-end
latency of queries. However, in-memory query execution in Presto has its pitfalls

196 M.A. Soliman

Fig. 9 Components of Presto [3]

when processing a large data set that exceeds the total available memory. In this
case, query execution fails.

Presto has a storage abstraction that allows using disparate data sources. Storage
connectors, to different types of data sources are designed by writing interfaces for
fetching metadata getting data locations, and accessing the contents. The storage
connectors support ingesting data from multiple sources including Hive and HBase.

Presto is offered as a cloud service by Qubole [26]. By using Presto cloud service,
analytics can run on cloud data storage (e.g., Amazon storage service). This can
be useful for running interactive workloads for data exploration, or integrating data
from multiple sources by using storage connectors. The cloud elasticity is leveraged
so that resources needed for data storage and query execution dynamically shrink or
expand depending on the requirements of each query workload.

5 Query Optimization

The job of a query optimizer is to turn a user query into an efficient query execution
plan. The optimizer typically generates the execution plan by considering a large
space of possible alternative plans and assigning an estimated cost to each alternative
in order to pick the cheapest one. The art of query optimization is a combination of
technically challenging problems (e.g., plan enumeration, cost estimation, statistics
derivation, property enforcement and join ordering), some of them are known to be
NP-Hard.

Query optimizer is one of the most performance-sensitive components in a data-
base system. Differences in query plans may result in several orders of magnitude
of difference in query performance, significantly more than any other contributing
factor. Big data has triggered a renewed interest in query optimization techniques

Big Data Query Engines 197

as a set of principled methods that could, when combined with scalable hardware
resources and robust execution engines, make analyzing and processing petabytes
of data finally possible. The increased amounts of data that need to be processed
in today’s world stress on the importance of building an intelligent query optimizer
at the core of any query engine.

The impact of having a good optimizer on query performance is known to be
substantial. The extensive research done by the database community in query opti-
mization over the past decades provides a plethora of techniques that can be leveraged
and adopted in new data processing environments such as Hadoop.

In this section, we discuss query optimization in big data systems. We start by
presenting a number of query optimization research problems. We then describe the
architectures of query optimizers of some examples of big data query engines. We
highlight the main similarities and differences of discussed optimizers, and present
a number of technical problems tackled by these optimizers.

5.1 Research Problems

Building a query optimizer is not an easy undertaking. It takes a lot of design and
development efforts to get the query optimizer in the required shape. There are many
challenges involved in the design of query optimizers in big data query engines. In
this section, we give an overview of some of these challenges.

Modularity. Building query optimizer as a complex monolithic software component
does not allow adapting the optimizer design to the changing processing environ-
ments of big data. New data formats and query execution engines are constantly
adopted in big data domains. The optimizer design needs to be modular to allow
plugging new components that consume data in new formats, and exploit the query
processing capabilities of new query execution engines.

An crucial interface to query optimizer is metadata acquisition. The optimizer
makes extensive use of metadata (e.g., table/index definitions and data statistics)
during plan enumeration, transformation rules, statistics derivation and cost com-
putation. Using a highly extensible abstraction of metadata and system capabilities
is important to allow query optimizer to deal with new data types and processing
environments. Designing the optimizer’s statistical and cost models as pluggable
components is an important challenge that needs to be addressed in this respect.

Extensibility. Having all elements of a query and its optimizations as first-class
citizens in optimizer’s architecture is an important challenge that impacts optimizer
design. When an optimizer is designed based on a strict set of optimizations and query
elements, adding new optimizations becomes technically hard. This often leads to
resorting to multiple optimization phases, where the decisions made in earlier phases
are revisited in later phases.

One example of new requirements that were triggered by big data processing
environments is data distribution. In big data environments, scalability is realized

198 M.A. Soliman

by distributing data load across machines in the cluster. Such requirement did not
exist in earlier database systems. Optimizers ported from older systems, or the ones
that adopted older designs handle data distribution by adding a plan parallelization
phase, where data distribution is considered after some optimization decisions have
been already made.

Multi-phase optimizer design impacts the quality of final query plan since the
available information does not impact all optimizer’s decisions. Multi-phase opti-
mizers are notoriously difficult to extend as new optimizations or query constructs
often do not match the predefined phase boundaries.

Addressing this challenge by abstracting query elements, data properties and
query optimizations as first-class constructs that optimizer treats similarly can avoid
the problems of multi-phase optimization where certain constructs are dealt with as
an afterthought.

Exploitingmulti-core architectures. Query optimization is probably the most CPU-
intensive operation that a query engine performs. The space of plan alternatives is
combinatorial by definition. There are pressing needs for efficient exploration and
pruning of the plan space in order to produce high-quality execution plans.

Exploiting multi-core architectures is an important tool that allows optimizers to
scale. By dividing the optimization tasks into a set of work units, using multiple CPU
cores for query optimization becomes possible.

A crucial challenge in this respect is formulating and capturing dependencies
among optimizer’s work units, and designing a work unit scheduler that assigns
optimization tasks to processing cores and efficiently gathers the computation results
of these units to generate the optimizer’s plan space.

Testing optimizer accuracy. Evaluating the accuracy of query optimizers objec-
tively is a difficult problem. Benchmarks developed for assessing the query perfor-
mance test the system as a whole end-to-end. However, no benchmarks are currently
available to test a query optimizer in isolation [10]. Being able to compare the accu-
racy of optimizers across different products independently is highly desirable.

The most performance-critical element in a cost-based optimizer is probably the
accuracy of its cost model as it determines how to prune inferior plan alternatives.
There is no standard way to test an optimizer’s accuracy. The cost units used in the
cost model and displayed with the plan do not reflect anticipated wall clock time but
are used only for comparison of alternative plans pertaining to the same input query.
Comparing this cost value with the actual execution time does not permit conclusions
about the accuracy of the cost model.

Moreover, the optimization results are highly system-specific and therefore defy
the standard testing approach where results are compared to a reference or baseline
to check if the optimizer finds the ‘correct’ solution: the optimal query plan for
System A may widely differ from that for System B because of implementation
differences in the query executors and the optimizers. These differences can lead
to choosing radically different plans. Building testing infrastructure for evaluating
query optimizers is an important research problem.

Big Data Query Engines 199

Fig. 10 Interaction between
Orca and database
system [27]

5.2 Orca

Orca [1, 6, 20, 27] is the query optimizer of Pivotal’s data management products,
including Greenplum database [23] and HAWQ [24]. While many query optimizers
are tightly-coupled with their host systems, a unique feature of Orca is its ability to
run outside the database system as a stand-alone optimizer. This ability is crucial
for supporting query engines with different computing architectures (e.g., MPP and
Hadoop) using one optimizer. It also allows leveraging the extensive legacy of rela-
tional optimization in new query processing paradigms. Furthermore, running the
optimizer as a stand-alone product enables elaborate testing without going through
the monolithic structure of a database system.

Figure 10 shows the interaction between Orca and an external database system.
The database system needs to include translators that consume/emit data using Data
Exchange Language (DXL), which is an XML-based language that is used to define
an interface for accessing Orca. The Query2DXL translator converts a query parse
tree into a DXL query, while the DXL2Plan translator converts a DXL plan into
an executable plan. The implementation of such translators is done completely out-
side Orca, which allows multiple systems to interact with Orca by providing the
appropriate translators.

The input to Orca is a DXL query. The output of Orca is a DXL plan. During
optimization, the database system can be queried for metadata (e.g., table definitions).
Orca abstracts metadata access details by allowing database system to register a
metadata provider (MD Provider) that is responsible for serializing metadata into
DXL before being sent to Orca. Metadata can also be consumed from regular files
containing metadata objects serialized in DXL format.

The design of Orca is based on the Cascades optimization framework [9]. The
space of plan alternatives generated by the optimizer is encoded in a compact
in-memory data structure called the Memo. The Memo structure consists of a set
of containers called groups, where each group contains logically equivalent expres-
sions. Memo groups capture the different sub-goals of a query (e.g., a filter on a table,
or a join of two tables). Group members, called group expressions, achieve the group
goal in different logical ways (e.g., different join orders). Each group expression is

200 M.A. Soliman

Fig. 11 Memo structure [9]

an operator that has other groups as its children. This recursive structure of the Memo
allows compact encoding of a huge space of possible plans.

A DXL query message is shipped to Orca, where it is parsed and transformed to
an in-memory logical expression tree that is copied-in to the Memo. For example,
Fig. 11 shows the logical expression of a simple inner join query between two tables
T1 and T2. The logical expression creates three groups for the two tables and the
Inner-Join operation. Group 0 is called the root group since it corresponds to the
root of the logical expression. The dependencies between operators in the logical
expression are captured as references between groups. For example, Inner-Join [1,
2] refers to Group 1 and Group 2 as children.

Orca optimizes queries in top-down fashion by computing optimization requests
in the Memo. Each optimization request specifies physical properties (e.g., data
distribution and sort order) that need to be satisfied. A Memo group is optimized
under a given optimization request by finding the best plan, rooted at the group, that
satisfies the required properties at the least cost.

Figure 12 shows how Orca processes optimization requests in the Memo for
a simple join query between two tables T1 and T2 based on the join condition
(T1.a=T2.b). The query results are required to be sorted on column T1.a. Assume

Fig. 12 Processing optimization requests in Orca [27]

Big Data Query Engines 201

that relation T1 is hash-distributed on column T1.a, and relation T2 is hash-distributed
on column T2.a.

The initial optimization request is req. #1: {Singleton,< T 1.a >}, which specifies
that query results are required to be gathered to a single node (typically the master)
based on the order given by column T1.a. The group hash tables are shown, where
each request is associated with the best group expression (GExpr) that satisfies it at
the least estimated cost. The black boxes indicate enforcer operators that are plugged
in the Memo to deliver sort order and data distribution:

• Gather operator gathers tuples from all segments to the master.
• GatherMerge operator gathers sorted data from all segments to the master, while

keeping the sort order.
• Redistribute operator distributes tuples across segments based on the hash value

of given argument.
• Sort operator enforces a given sort order to the partition of tuples residing on each

node.

Figure 13 shows the detailed optimization of req. #1 by InnerHashJoin[1,2], which
is a hash-based algorithm for joining two relational inputs given by groups 1 and 2.
For the join condition (T1.a=T2.b), one of the alternative plans is aligning child
distributions based on join condition, so that tuples to be joined are co-located. This
is achieved by requesting Hashed(T1.a) distribution from group 1 and Hashed(T2.b)

Fig. 13 Plan generation in Orca [27]

202 M.A. Soliman

distribution from group 2. Both groups are requested to deliver ANY sort order. After
child best plans are found, InnerHashJoin combines child properties to determine the
delivered distribution and sort order. Note that the best plan for group 2 needs to hash-
distribute T2 on T2.b, since T2 is originally hash-distributed on T2.a, while the best
plan for group 1 is a simple Scan, since T1 is already hash-distributed on T1.a.

When it is determined that delivered properties do not satisfy the initial require-
ments, unsatisfied properties have to be enforced. Property enforcement in Orca in
a flexible framework that allows each operator to define the behavior of enforcing
required properties based on the properties delivered by child plans and operator
local behavior.

Enforcers are added to the group containing the group expression being optimized.
Figure 13 shows two possible plans that satisfy req. #1 through property enforcement.
The left plan sorts join results on segments, and then gather-merges sorted results at
the master. The right plan gathers join results from segments to the master, and then
sorts them. These different alternatives are encoded in the Memo and it is up to the
cost model to differentiate their costs.

Finally, the best plan is extracted from the Memo based on the linkage structure
given by optimization requests. Figure 12 illustrates plan extraction in Orca. The
local hash tables of relevant group expressions are illustrated. Each local hash table
maps incoming optimization request to corresponding child optimization requests.
The best group expression of req. #1 in the root group is first looked-up, which leads
to GatherMerge operator. The corresponding child request in the local hash table
of GatherMerge is req #3. The best group expression for req #3 is Sort. Therefore,
GatherMerge is linked to Sort. The corresponding child request in the local hash
table of Sort is req #4. The best group expression for req #4 is InnerHashJoin[1,2],
and so Sort is linked to InnerHashJoin. This procedure is followed to complete plan
extraction leading to the final plan shown in Fig. 12.

5.3 Catalyst

Catalyst [2] is the query optimizer of SparkSQL [2], which is used to turn SQL queries
into Spark execution plans. Many constructs in Catalyst are represented using tree
data structures, including logical expressions, intermediate expressions and physical
query execution plans. The optimizer design is based on decoupling the optimization
phases which gives room for including further optimizations as the design evolves.

The design of Catalyst is based on a query rewrite engine that runs batches of
transformation rules. Each transformation rule converts an input tree to an equiva-
lent output tree. Transformation rules are partitioned into batches. Batches are run
sequentially, and rules within each batch are also run sequentially. The rule engine
terminates when reaching a fixed point, which means that applying further trans-
formations would not change the input expression anymore, or when a maximum
number of iterations is reached.

Big Data Query Engines 203

Fig. 14 Query optimization phases in SparkSQL [2]

Query optimization in Catalyst takes place in a number of sequential phases, as
depicted in Fig. 14. We describe in the following the different phases that Catalyst
optimizer goes through to produce the final query execution plan. We give a step-
by-step illustration using the example shown in Fig. 15.

• Query Parsing: A HiveQL-based parser is used to generate an abstract syntax
tree for an incoming SQL query. Figure 15a shows the tree representation of an
example SQL query.

• Metadata Lookup: The abstract syntax tree is preprocessed by resolving table
names referenced in the query by looking up the MetaStore to obtain table defini-
tion. Figure 15b shows a MetaStoreRelation created for an unresolved relation in
the query after looking up the MetaStore.

• Resolving References: A globally unique identifier is assigned to each attribute
(column) referenced in the query tree. Then, derivation of data types of every data
item in the query tree takes place. Figure 15c shows unique numerical identifiers
assigned to columns in the query tree.

• Logical Planning: Multiple logical rewrites are conducted to simplify the input
query tree. These rewrite operations include the following:

– Removing redundant query operators.
– Constant folding, where inlined constant expressions are reduced to simple

atomic values.
– Filter simplification, where trivial filters are removed, and subtrees that are

known to return no results are pruned.
– Filter push down, so that filtering operations are applied as early as possible.
– Eliminate unused column references that are not needed to compute the final

query answers.

Figure 15d shows the transformed query tree after applying the previous logical
rewrites. For example, the Filter operator has been pushed down, while the Sub-
query operator was eliminated because of being a redundant operator.

• Physical Planning: In this phase, the optimized logical plan is transformed into
a number of possible physical plans. This is done by recognizing operators in
the logical plan that can be directly transformed into physical counterparts. For
example, a filter on a MetaStore relation can be transformed into HiveTableScan.
In addition, a list of strategy objects, each of which can return a list of physical
plan options, is used to transform logical operators to equivalent physical ones.

204 M.A. Soliman

Fig. 15 Query optimization example in SparkSQL

Examples of strategy objects include HashJoin and NestedLoopJoin strategies. If
a given strategy object is unable to plan all of the remaining operators in the tree,
it creates a placeholder to be filled by other strategy objects. Figure 15e shows the
final physical plan, which is reduced to a simple HiveTableScan with an embedded
filter.

• Plan Parallelization: In this phase, data exchange operators are plugged into the
generated physical plans to establish the required data distributions. Distribution
requirements could arise from operator local requirements, or from query-specific
requirements. Physical operators may not be able to establish data distributions on
their own. In this case distribution enforcers are used to guarantee delivering the
required data distribution. The enforced distributions include the following:

Big Data Query Engines 205

– Clustered distribution: Tuples that share the same values of clustering expres-
sions are co-located.

– Ordered distribution: Tuples are sorted according to ordering expressions.
– All Tuples distribution: A single partition is created where all tuples are

co-located.

Similar to many other operations, distribution enforcement is a transformation rule
in SparkSQL. A transformation rule is used to ensure that distribution of input data
meets the distribution requirements of each operator by inserting Exchange (data
movement operators) when required. Given a physical plan, the Add-Exchange
rule performs the following operations:

– Check if every child distribution satisfies the distribution required from that
child

– Check if children distributions are compatible with each other. For example, in
order for a join operation to be conducted correctly, the data of joined inputs
must be either co-located or hashed to the same nodes, or, alternatively, one of
the two inputs needs to be replicated to all nodes.

– If a child does not meet required distribution, or is not compatible with other
children, an exchange operator is added.

5.4 V2Opt

V2Opt is the latest query optimizer of Vertica MPP database system [16]. The goal
of building a new optimizer in Vertica database is to integrate the awareness of data
distribution, sort orders, and non-star schemas into all optimizer decisions.

The design of V2Opt is extensible and allows adding new optimizations with
small modifications to the codebase. In V2Opt, the physical properties of a given
query are first identified. These properties includes column selectivity, sort order
and integrity constraints. The identified physical properties are used by a cost-based
pruning strategy. The underlying cost model, used in pruning, combines different
factors including data compression and CPU/Network transfer costs. The objective
of pruning is to retain the most important properties that need to influence optimizer
decisions. The collected properties are used to reduce optimization search space, and
integrate data distribution into join order enumeration phase. By having optimizer
extensibility mechanisms in place, new physical properties could be added to the
optimizer without changing the entire architecture.

5.5 Impala Query Optimizer

The query optimizer of Impala [14] generates execution plans by following a two-
phase approach:

206 M.A. Soliman

• Phase 1 (Single node planning): In this phase, a query plan that runs on a single node
(i.e., without considering data partitioning in the Hadoop cluster) is generated.

• Phase 2 (Plan parallelization): In this phase, a parallelized query plan that processes
distributed data in the cluster is generated.

In the first optimization phase, the query parse tree is translated into a non-
executable single-node plan tree. The single node plan consists of different types
of operators including table scan, join, aggregation, sort and analytic evaluation
functions. In this phase, filters specified in the given query are pushed down to be
applied as close as possible to data sources. This is important to early-prune parts of
the data that are not needed to compute the final query answer. New filters could also
be inferred from existing filters to prune data more aggressively. Another important
optimization that takes place in this phase is join ordering, where an efficient eval-
uation order of relational joins is identified. Heuristics are typically used to avoid
exhaustive enumeration of the join orderings space.

In the second optimization phase, the single-node plan is turned into a distributed
(parallel) execution plan. The optimization objective of this phase is to minimize
data movement and maximize scan locality.

Data movement is controlled by adding Exchange operators between plan nodes,
and by adding extra non-exchange plan nodes to minimize data movement across the
network (e.g., local aggregation nodes). During this second phase, the join strategy
for every join node is decided, including broadcast (one input of the join is replicated
on all nodes) and partitioned/hashed (the two join inputs are partitioned across nodes
using the join expression, so that tuples that would join together reside on the same
node).

All aggregations are executed as a local aggregation followed by a merge aggre-
gation operation. The local aggregation output is partitioned on the grouping expres-
sions and the merge aggregation is done in parallel on all nodes. Sort is parallelized
similarly using a local sort followed by a single-node merge operation.

At the end of the second phase, the distributed plan tree is split into a set of plan
fragments at the boundaries given by the exchange operators. Each plan fragment
constitutes a unit of execution encapsulating a portion of the plan tree that operates
on the same data partition on a single machine.

Figure 16 gives an example for a query joining two HDFS tables (t1, t2) and one
HBase table (t3) followed by an aggregation and sort with a limit, where only the
top-n sorted answers are required. The single-node plan is shown on the left, while
the distributed and fragmented plan is shown on the right. The colored rounded
rectangles indicate plan fragments and arrows indicate data exchange operations.

The table data is randomly partitioned. Tables t1 and t2 are joined using the
partitioned strategy, while their join results are joined with t3 using the broadcast
strategy. Each scan node is placed in its own fragment since scan results are exchanged
to the join node, which requires a hash-based partition of the data. The following
join with t3 is a broadcast join placed in the same fragment as the join between t1
and t2 because a broadcast join preserves the existing data partition.

Big Data Query Engines 207

TopN

HashJoinScan: t1

Scan: t3

Scan: t2

HashJoin

Pre-Agg

MergeAgg

TopN

Broadcast

Merge

Hash(t2.id)Hash(t1.id1)

Hash(t1.custid)

at HDFS

at HBase

at Coordinator

HashJoin

Scan: t1

HashJoin

Agg

Single-Node
Plan

Distributed Plan

Scan: t3

Scan: t2

TopN

Fig. 16 Two-phase query optimization in Impala [14]

A two-phase distributed aggregation is performed after the second join. The local
aggregation is computed in the same fragment as the second join. The local aggre-
gation results are hash-exchanged based on the grouping keys, and then merge-
aggregated again to generate the final aggregation result. The same two-phased
approach is used to compute the top-n query results. The final top-n step is per-
formed at the coordinator, which returns the results to the user.

6 Query Execution

Query executor is responsible for executing the data processing operations, as given
by the plan generated by the optimizer, to the underlying data. The end results of
query execution is producing the required query answers.

A key feature of many query executors is the ability to pipeline query results. This
means that intermediate query results are progressively staged in a data processing
pipeline, where each node in the pipeline performs a single operation, until the final
query answer is obtained. Each operator in the pipeline is able to produce intermediate
output results without reading the full input data. Pipelining may not be possible for
certain types of operations that require consuming the full input before producing the
output. These operations are called ‘blocking’. One example is the Sort operation.

Pipelining in many query executors is based on the pull-based iterator model [8].
This model abstracts the details of query execution using three main APIs:

• Open: This API is used to start pulling data from a child operator by initializing
operator’s internal state.

• GetNext: This API is used by an operator to pull the next result from its child.
• Close: This API is used to signal end of processing, and triggers the cleanup of

used resources.

208 M.A. Soliman

Query plans are modeled as binary trees of operators communicating through
iterator calls. Each operator pulls data incrementally from its child operators, until
input is exhausted.

Consider for example a join operator that has two child operators representing
scan operations on two input relations. The join operator pulls data from the two scan
nodes, computes the joins and returns the join results to the client. Query execution
terminates when the two inputs are exhausted, and no more join results still need to
be computed.

In this section, we describe some of the query execution techniques adopted
by big data query engines and highlight the impact of these techniques on system
performance. We start by presenting a number of query execution research problems.
We then describe how some of these problems are tackled by current proposals.

6.1 Research Problems

We give an overview of some of the research problems involved in the design and
development of query executors in big data query engines.

Memory Management. The efficiency of query executor is largely determined by
its ability to manage memory intelligently. Query processing on big data often leads
to huge intermediate query results that cannot fit in memory. When a query executor
has the ability to process data beyond memory limits, the query engine becomes
much more useful at supporting complex data analytics.

One of the techniques that many executors use to handle data beyond memory
limits is the management of spill files. In this technique, an operator state is allowed
to overflow the available memory by writing data to disk. For example, a hash-join
operator can store part of the hash table to disk files when it does not fit in available
memory.

A crucial challenge in these techniques is how to determine the memory require-
ments of different query operators before query execution starts. The determination
of memory requirements is essential in Hadoop multi-tenant ecosystem where appli-
cations need to reserve resources a priori by communicating with resource manager.
Data statistics, optimizer’s cost estimates, and state of query execution are impor-
tant factors that need to be considered to determine memory requirements. Building
predictive models that determine memory requirements is an important research
problem.

Adaptive Execution. During query execution, the state of available resources
change. For example, the available memory and/or network sources could become
more scarce or abundant based on the current system state.

By designing query execution engine to be adaptive, the query engine becomes
able to adapt its needs according to current system state. For example, a particular
join algorithm might be efficient in the presence of abundant memory, and much less
efficient if intermediate results need to be spilled to disk. In this case, changing the

Big Data Query Engines 209

join algorithm in the midst of query execution could be a solution to work around the
availability of system resources. Designing operators with such algorithmic flexibility
is an interesting research problem.

Handling Different DataModels. Big data imposes the need to handle data follow-
ing different models. While relational data is still the main data model adopted by
many query engines, other data models are increasingly used. For example, nested
data models (e.g., JSON [13]) are increasingly used by web services to exchange
data.

Building a query executor that is able to process data following different models
is crucial for handling the changing environments of big data. While some of the
proposed techniques handle new data models by building transformers that convert
data from one model to another, integrating native support of different data models
within the execution engine is an important research problem.

6.2 Hadoop-Based Execution Engines

Hadoop-based execution engines rely on the distributed file system to achieve scal-
ability and fault-tolerance. The execution engines provide libraries that integrate
with the distributed file system to allow users to formulate analytics as imperative
programs.

The first Hadoop-based query execution engine was the MapReduce frame-
work [5] (cf. Sect. 3.1). In this framework, a library provides users with the APIs
required for distributed query execution. Users need to program analytics using the
APIs provided by the MapReduce library. The framework takes care of automatic
distribution of query execution. The invocations of the map function are distributed
across multiple machines by partitioning the input data into a set of splits. Each split
can be processed on a different machine. The invocation of the reduce function are
distributed by hashing the intermediate key space into disjoint partitions.

When a MapReduce program is executed, the following sequence of actions
occurs, as illustrated in Fig. 17:

• A copy of user program is started on each machine used in query execution. A
special copy of the user program is called the master. The rest of the copies are
called workers, which are assigned work by the master. The master initially picks
idle workers and assigns each one a map task or a reduce task.

• When a worker is assigned a map task, it reads the contents of the corresponding
input split, and maps each key/value pair to an intermediate key/value pair buffered
in memory.

• Periodically, the buffered pairs are hashed into partitions stored on local disk. The
locations of these buffered pairs on the local disk are passed back to the master,
which is responsible for forwarding these locations to the reduce workers.

• When the master notifies a reduce worker about the location of a hash partition
of intermediate data, the worker reads the partition by issuing remote procedure

210 M.A. Soliman

User
Program

Master

(1) fork

worker

(1) fork

worker

(1) fork

(2)
assign
map

(2)
assign
reduce

split 0

split 1

split 2

split 3

split 4

output
file 0

(6) write

worker
(3) read

worker

(4) local write

Map
phase

Intermediate files
(on local disks)

worker output
file 1

Input
files

(5) remote read

Reduce
phase

Output
files

Fig. 17 Execution overview of MapReduce [5]

calls. The intermediate data are then sorted by the intermediate keys, so that all
occurrences of the same key are grouped together. The sorting is needed because
typically many different keys map to the same reduce task. If the amount of inter-
mediate data is too large to fit in memory, an external sort is used.

• The reduce worker iterates over the sorted intermediate data and for each unique
intermediate key encountered, it passes the key and the corresponding set of
intermediate values to the reduce function. The output of the reduce function
is appended to a final output file for this reduce partition.

• When all map tasks and reduce tasks finish, the master wakes up the user program.
At this point, the MapReduce call in the user program returns back to the user
code.

Hive [12] translates the incoming queries to executable jobs formulated using
the previous MapReduce framework. The translation is performed by the Planner
component (Fig. 4), which converts the query tree into an operator tree that repre-
sents the required data processing operations. To allow for parallel query evaluation,
the Planner determines for each operator whether it requires its input records to be
partitioned based on some criteria or not. If an operator requires partitioned inputs,
a ReduceSink operator is inserted before the operator to indicate the need to parti-
tion the input data in a particular way before processing. For example, A GroupBy
operator requires a ReduceSink operator to be inserted in the data pipeline before the
GroupBy to inform the MapReduce execution engine that rows need to be partitioned
based on the grouping key to allow for parallel execution of GroupBy operator.

Big Data Query Engines 211

The Hive operator tree is then passed to the MapReduce task compiler, where oper-
ations are broken to multiple stages represented by executable tasks. The MapReduce
task compiler generates a directed acyclic graph of Map/Reduce tasks assembled in
MapReduce jobs based on an operator tree. In the execution of a Map/Reduce task,
operators inside a task are first initialized and then they process rows fetched by the
MapReduce engine in a pipelined fashion.

6.3 Parallel Databases Execution Engines

We discuss the query execution techniques adopted by a number of parallel database
systems. The main objective of parallel execution is achieving load balance by uti-
lizing available resources in the compute cluster to provide the best possible query
throughput. In these systems, different parts of the query plan can execute in different
processes, both within a single host, and across different hosts. In a shared-nothing
MPP architecture, processes within the same host share a common filesystem, while
processes in different hosts communicate through a network.

Greenplum Database. In Greenplum database [23], the query optimizer produces
parallel query plan by utilizing special query operators, called Motion operators,
which implement the Volcano’s Exchange operator [7]. Each Motion operator acts
as both sender and receiver of data. It also defines the boundaries of what is known
as a ‘slice’ in query execution plan. A query plan slice is a process that runs on a
particular node and exchanges data with other processes running on other nodes.

The goal of Motion operators is to establish a given data distribution. For example,
to establish a hashed distribution on column x, an instance of Redistribute(x) Motion
operator, running on node n, sends tuples on n to other nodes based on the hash value
of x, and also receives tuples from other Redistribute(x) operator instances running, in
parallel, on other nodes. Similarly, a Broadcast Motion and Gather Motion operators
are used to establish replicated and singleton distributions, respectively.

Figure 18 shows how query plan is sliced in Greenplum database for an example
query. In this example, the plan is split into three slices using the Motion nodes as
the slice boundaries. On a given node, three processes are active in parallel. The first
process scans table customer (slice 3), the second process performs the join with
table orders (slice 2), while the third process gathers the final results to the master
node, where query results need to be returned to client (slice 1).

Figure 19 shows the interaction of plan slices during query execution. Slice 3
hashes input data based on the column cust_id, and sends the hashed data to other
nodes based on the computed hash value. Slice 2 receives data from scan processes
running on other nodes, and also sends the join results to slice 1, where the final
query results are gathered.

VerticaDatabase. The Vertica execution engine [16] executes parallel query plans on
MPP cluster. An example of Vertica query plan is shown in Fig. 20. Query execution
in Vertica is multi-threaded and pipelined. At a given time, multiple operators can be

212 M.A. Soliman

Fig. 18 Sliced query plan in Greenplum database [23]

Fig. 19 Parallel query execution in Greenplum database [23]

running in parallel on different nodes. Within each operator, multiple threads could
also be running in parallel.

The execution engine of Vertica is vectorized, where each block of row is requested
and processed as a unit. This execution model is different from the traditional iter-
ator model, where single rows are requested and processed one by one. Each query
operator can use one of several possible physical implementations. The choice of
which implementation is suitable at each query plan operator is controlled by the
query optimizer.

In a Vertica query plan, the Send and Recv operators are used to move data across
the nodes in the cluster. Send operator redistributes tuples from one node to other
nodes, while Recv operator receives and processes the incoming data. Two types of

Big Data Query Engines 213

Fig. 20 Parallel query
execution in Vertica [16]

tuple redistribution are supported: broadcast, where tuple is sent to all nodes, and
hashed, where tuple is sent to a node based on some hash expression.

Each Send and Recv pair retains the order of tuples in the input stream. The send
operator hashes its outgoing tuples, such that identical values end up at the same
node in the computing cluster. This allows the operator running on each node to
produce the full results independently of other nodes. Data on the same node can
also be partitioned and processed by multiple threads utilizing separate cores to keep
all cores fully utilized. Figure 20 shows multiple GroupBy operators that are running
in parallel requesting data from the Storage Union operator which repartitions the
data such that the GroupBy is able to produce complete results.

The execution engine of Vertica also leverages sideways information passing
techniques to improve the performance of query execution. In these techniques,
a scan operator is extended with auxiliary filters that are used to improve query
performance. These auxiliary filters early-prune tuples that will not contribute to the

214 M.A. Soliman

Fig. 21 Multi-level query execution in Dremel [18]

results of later operations like join. This allows avoiding the overhead of scanning
and processing unnecessary data.

Dremel Database. Dremel [18] uses a multi-level serving tree to execute queries.
Figure 21 shows the tree execution model. A root server receives incoming queries,
reads metadata from the tables, and routes the queries to the next level in the serving
tree. The leaf servers communicate with the storage layer or access the data on local
disk.

When the root server receives a query request, it determines all horizontal par-
titions of the tables involved in the query. At the root level of the processing tree,
the query is logically rewritten as a union of queries that operate on table partitions.
Each intermediate level in the processing tree performs a similar rewriting. When
the queries reach the tree leaves, the involved tables are scanned in parallel.

When query results are propagated upward in the processing tree, the intermedi-
ate servers perform parallel aggregation of partial results. This execution model is
suitable for aggregation queries returning small and medium-sized results, which are
a very common class of interactive queries. Other classes of queries, such as joins
or large aggregations, may need to exchange data between servers at the same level
before producing the intermediate results. Other mechanisms in of parallel query
execution need to be leveraged in this case.

6.4 Code Generation

Query execution can largely benefit from reducing the number of CPU instructions
during query evaluation. Code generation is a technique used by query execution
engines [15, 19] to convert some intermediate representation of query plan elements

Big Data Query Engines 215

Fig. 22 Code generation in Impala [14]

into machine code. Code generation can boost query performance by directly per-
forming low-level operations using native machine code, rather than high level oper-
ations that still need to be compiled into machine instructions. For example, when a
loop contains a function call, the function could be executed a large number of times
(e.g., for every tuple). Optimizing this function by generating code that avoids some
instructions in the function body can have a great impact on query performance.

One of the code generation tools that have been studied in the context of query
engines is LLVM [17]. LLVM is a library and a compiler that allows users to write
applications using a modular design, and have just-in-time (JIT) compilation within
a running process. LLVM abstracts the details of CPU registers to simplify program-
ming. The generated machine instructions are portable across different architectures.

In impala [14], query specific versions of functions are generated using LLVM
to improve query performance. For example, when the type of an object instance
is known at runtime, code generation can be used to replace virtual function calls
with direct calls to the correct function, which can be inlined. This is useful when
evaluating expression trees, as illustrated in Fig. 22. Each expression type is imple-
mented by overriding a virtual function in the expression base class. Many of these
expression functions are quite simple, e.g., adding two numbers. By resolving the
virtual function calls with code generation and then inlining the resulting function
calls, the expression tree can be evaluated directly with no function call overhead.

Presto [3] is written in Java. The Presto engine dynamically compiles certain
portions of the query plan down to byte code which allows the Java virtual machine
to optimize and generate native machine code. Through careful use of memory and
data structures, Presto avoids typical issues of Java code related to memory allocation
and garbage collection.

216 M.A. Soliman

7 Summary

This chapter presents an overview of big data query engines. We discussed the
implications of big data on the design and architecture of current query engines.
We described the system architectures of some examples of MPP query engines,
Hadoop query engines as well as hybrid systems that integrate the technologies of
MPP database systems and Hadoop.

We gave a detailed description of the design of some of the available query engines,
and highlighted their main similarities and differences. We presented a number of
research problems in the areas of query optimizations and query execution, and
discussed how these problems are addressed by current solutions.

References

1. L. Antova, A., El-Helw, M.A., Soliman, Z., Gu, M. Petropoulos, Waas, F. Optimizing queries
over partitioned tables in MPP systems, in Proceedings of the 2014 ACM SIGMOD Interna-
tional Conference on Management of Data (2014)

2. M. Armbrust, R.S. Xin, C. Lian, Y. Huai, D. Liu, J.K. Bradley, X. Meng, T. Kaftan, M.J.
Franklin, A. Ghodsi, M. Zaharia, Spark SQL: relational data processing in spark, inProceedings
of the 2015 ACM SIGMOD International Conference on Management of Data (2015)

3. L. Chan, Presto: Interacting with petabytes of data at Facebook (2016). http://prestodb.io
4. L. Chang, Z. Wang, T. Ma, L. Jian, L. Ma, A. Goldshuv, L. Lonergan, J. Cohen, C. Welton,

G. Sherry, M. Bhandarkar, Hawq: a massively parallel processing SQL engine in hadoop, in
Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data
(2014)

5. J., Dean, S. Ghemawat, MapReduce: simplified data processing on large clusters, in OSDI
(2004), pp. 10–10

6. A. El-Helw, V. Raghavan, M.A. Soliman, G. Caragea, Z. Gu, M. Petropoulos, Optimization of
common table expressions in MPP database systems, in Proceedings of the VLDB endowment
(2015)

7. G. Graefe, Encapsulation of parallelism in the volcano query processing system, in SIGMOD
(1990)

8. G. Graefe, Query evaluation techniques for large databases. ACM Comput. Surv. 25(2), 73–169
(1993)

9. G. Graefe, The cascades framework for query optimization. IEEE Data Eng. Bull. 18(3), 19–29
(1995)

10. Z. Gu, M.A. Soliman, F.M. Waas, Testing the accuracy of query optimizers, in DBTest (2012)
11. HBase: Apache HBase (2016). https://hbase.apache.org
12. Huai, Y., Chauhan, A., Gates, A., Hagleitner, G., Hanson, E.N., O?Malley, O., Pandey, J., Yuan,

Y., Lee, R., Zhang, X.: Major technical advancements in apache hive, in SIGMOD (2014)
13. JSON: JSON (2016). http://www.json.org/
14. M. Kornacker, J. Erickson, Cloudera Impala: Real-Time Queries in Apache Hadoop,

for Real (2012). http://www.cloudera.com/content/cloudera/en/products-and-services/cdh/
impala.html

15. K. Krikellas, S. Viglas, M. Cintra, in ICDE (2010)
16. A. Lamb, M. Fuller, R. Varadarajan, N. Tran, B. Vandiver, L. Doshi, C. Bear, The vertica

analytic database C-store 7 years later. VLDB Endow 5(12), 1790–1801 (2012)

http://prestodb.io
https://hbase.apache.org
http://www.json.org/
http://www.cloudera.com/content/cloudera/en/products-and-services/cdh/impala.html
http://www.cloudera.com/content/cloudera/en/products-and-services/cdh/impala.html

Big Data Query Engines 217

17. C. Lattner, V. Adve, Llvm: a compilation framework for lifelong program analysis and transfor-
mation, inProceedings of the International Symposium on Code Generation and Optimization:
Feedback-directed and Runtime Optimization (2004)

18. S. Melnik, A. Gubarev, J.J. Long, G. Romer, S. Shivakumar, M. Tolton, T. Vassilakis, Dremel:
interactive analysis of web-scale datasets. PVLDB 3(1), 330–339 (2010)

19. Neumann, T.: Efficiently compiling efficient query plans for modern hardware, in Proceedings
of the VLDB Endow

20. Orca Open Source (2016). https://github.com/greenplum-db/gporca
21. A. Pavlo, E. Paulson, A. Rasin, D.J. Abadi, D.J. DeWitt, S. Madden, M. Stonebraker, A com-

parison of approaches to large-scale data analysis, in SIGMOD 2009 (2009)
22. Pivotal: Apache HAWQ (2016). https://blog.pivotal.io/big-data-pivotal/products/introducing-

the-newly-redesigned-apache-hawq
23. Pivotal: Greenplum Database (2016). http://greenplum.org/
24. Pivotal: HAWQ (2016). http://hawq.incubator.apache.org/
25. PostgreSQL: PostgreSQL (2016). http://www.postgresql.org/
26. Qubole: Presto as a service (2016). https://www.qubole.com/
27. M.A. Soliman, L. Antova, V. Raghavan, A. El-Helw, Z. Gu, E. Shen, G.C. Caragea, C. Garcia-

Alvarado, F. Rahman, M. Petropoulos, F. Waas, S., Narayanan, K. Krikellas, R. Baldwin, Orca:
a modular query optimizer architecture for big data, in Proceedings of the 2014 ACM SIGMOD
International Conference on Management of Data (2014)

28. M. Stonebraker, D.J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Ferreira, E. Lau, A. Lin, S.
Madden, E.J., O’Neil, P.E., O’Neil, A. Rasin, N. Tran, S.B. Zdonik, C-Store: a column-oriented
DBMS, in VLDB (2005)

29. Teradata (2013). http://www.teradata.com/
30. A. Thusoo, J.S. Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang, S. Anthony, H. Liu, R. Murthy,

Hive - a petabyte scale data warehouse using hadoop, in ICDE (2010)
31. R.S. Xin, J. Rosen, M. Zaharia, M.J. Franklin, S. Shenker, I. Stoica, Shark: SQL and rich

analytics at scale, in SIGMOD (2013)
32. Yarn: Yarn (2016). http://hortonworks.com/hadoop/yarn/
33. M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M.J. Franklin, S. Shenker,

I. Stoica, Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster com-
puting, in NSDI 2012 (2012)

https://github.com/greenplum-db/gporca
https://blog.pivotal.io/big-data-pivotal/products/introducing-the-newly-redesigned-apache-hawq
https://blog.pivotal.io/big-data-pivotal/products/introducing-the-newly-redesigned-apache-hawq
http://greenplum.org/
http://hawq.incubator.apache.org/
http://www.postgresql.org/
https://www.qubole.com/
http://www.teradata.com/
http://hortonworks.com/hadoop/yarn/

Large-Scale Data Stream Processing Systems

Paris Carbone, Gábor E. Gévay, Gábor Hermann, Asterios Katsifodimos,
Juan Soto, Volker Markl and Seif Haridi

Abstract In our data-centric society, online services, decision making, and other
aspects are increasingly becoming heavily dependent on trends and patterns extracted
from data. A broad class of societal-scale data management problems requires sys-
tem support for processing unbounded data with low latency and high throughput.
Large-scale data stream processing systems perceive data as infinite streams and are
designed to satisfy such requirements. They have further evolved substantially both
in terms of expressive programming model support and also efficient and durable
runtime execution on commodity clusters. Expressive programming models offer
convenient ways to declare continuous data properties and applied computations,
while hiding details on how these data streams are physically processed and orches-
trated in a distributed environment. Execution engines provide a runtime for such
models further allowing for scalable yet durable execution of any declared computa-
tion. In this chapter we introduce the major design aspects of large scale data stream
processing systems, covering programming model abstraction levels and runtime
concerns. We then present a detailed case study on stateful stream processing with

P. Carbone (B) · S. Haridi
KTH Royal Institute of Technology, Stockholm, Sweden
e-mail: parisc@kth.se

S. Haridi
e-mail: haridi@kth.se

G.E. Gévay · G. Hermann · A. Katsifodimos · J. Soto · V. Markl
TU Berlin, Berlin, Germany
e-mail: gevay@tu-berlin.de

G. Hermann
e-mail: mail@gaborhermann.com

A. Katsifodimos
e-mail: asterios.katsifodimos@tu-berlin.de

J. Soto
e-mail: juan.soto@tu-berlin.de

V. Markl
e-mail: volker.markl@tu-berlin.de

© Springer International Publishing AG 2017
A.Y. Zomaya and S. Sakr (eds.), Handbook of Big Data Technologies,
DOI 10.1007/978-3-319-49340-4_7

219

220 P. Carbone et al.

Apache Flink, an open-source stream processor that is used for a wide variety of
processing tasks. Finally, we address the main challenges of disruptive applications
that large-scale data streaming enables from a systemic point of view.

1 Introduction

Today’s modern societies are increasingly employing big data analytics systems
(BDAS) to analyze data and enable sound judgment. Among them are the data
stream processing systems (DSPS). DSPS are specially designed systems that are
able to manage infinite streams of data with low latency and high throughput. They
are widely employed in active database, complex event processing, and publish-
subscribe system applications and rooted in database systems, data warehouses, and
information flow programming systems. Gradually, they have incorporated addi-
tional technological capabilities, including (Map-Reduce-like) scalability, declara-
tivity, and expressivity (akin to relational programming models, such as SQL), and
the efficiency of data warehousing technologies. In this chapter, we analyze the state
of the art of this ecosystem from two distinct perspectives: (i) programming models
for scalable data stream processing, (ii) systems and runtimes that can execute appli-
cations expressed in these models. Furthermore, we will reason behind architectural
choices and semantics, and finally provide an analysis of emerging problems and
solutions within this domain (Fig. 1).

In this section, we first categorize in Sect. 1.1 the main system precursors and
ideas that have influenced the current state of the art in data stream processing. In

Fig. 1 Evolution of data stream processing systems

Large-Scale Data Stream … 221

Sect. 1.2 we provide a synopsis of the ecosystem of data stream processing, followed
by the distinctive features of these systems from both the programming model and
execution perspectives, in Sect. 1.3. We should highlight that the main focus of this
chapter is systems and programming models, thus, we will omit algorithmic aspects
or domain-specific use cases in data streaming.

1.1 Stream Processing and Its Precursors

Modern data-stream processing systems, which we will call stream processors (or
SPs for short), are rooted in several well established topic areas of data management
such as active databases, complex event processing, publish-subscribe systems, and
data-stream management systems. To put stream processing into the greater context
of data management, next we present a brief description of each of these domains.

Active Database Systems (ADS) are an explicit form of event-based database sys-
tems, implemented originally as extensions to existing DBMSs. HiPac [41], Snoop
[71], and Samos [48] enriched traditional relational query support with event-based
actions, conditionally applied to data upon ingestion time. The usage of ADS (and
the heavy use of database triggers) ranged from basic Extract-Transform-Load oper-
ations (ETL) to more sophisticated event-based detection tasks. The latter category
of queries is also known as standing or continuous queries, and they were typically
queries that were used tomonitor database entries for specific conditions. NiagaraCQ
[37] and OpenCQ [65] are two noteworthy examples of systems supporting continu-
ous queries. One of the major downsides of ADS was their limitation to centralized,
non-scalable execution engines, an inherent property of the monolithic DBMSs that
hosted this technology. Furthermore, they were tightly coupled to specific DBMSs,
thus, limiting broader adoption. Another downside of ADS was their limited expres-
sivity when it comes to defining complex patterns for event processing, an ability that
Complex Event Processing (CEP) systems were created to cover. Nevertheless, the
impact of ADS in the development of SPs is undoubtedly noteworthy. We often see
modern, large-scale stream processing systems committing to a similar architecture
such as S-Store [31], an in-memory scalable stream processing system that is built
on top of H-Store [58], a shared-nothing distributed relational database with strong
transactional properties.

Complex Event Processing (CEP) systems [40] are among some of the most related
technologies to modern SPs and are in use throughout several enterprise applica-
tions such as sensor-network monitoring, intrusion detection systems, and high-
performance financial systems. Complex rule-based pattern matching is a first-class
citizen in CEP systems, with a plethora of open-source and proprietary solutions,
each exposing a distinct rich, declarative event-based language. One of the major
contributions of the CEP ecosystem (e.g., Cayuga [24], Esper [20], and STREAMS
[13]) is the introduction of sliding window semantics, among others. Windows are
used to group event sequences into evolving views or sets, upon which aggregations

222 P. Carbone et al.

and patterns can be evaluated. Streaming windows are now an integral part of many
SPs [10, 64, 75]. Despite their rich semantics, the architecture of most CEP sys-
tems remains monolithic and centralized. Thus unnameable for large-scale, highly
available deployments in clusters environments [25].

Publish-subscribe systemsweremainly developed and used as distributedmessaging
middleware, which routes messages from data producers to data consumers [66] i.e.,
subscribers. In addition to trivial topic-based routing, subscriptions in several publish-
subscribe systems can be expressed through complex rules such as event sequences
and repetitions (e.g., Siena [29]) or even through arbitrarily complex queries [59].
Publish-subscribe systems served as a basis for the development of large-scale event-
processing systems that run continuous queries. Moreover, they heavily influenced
the development of modern messages queues and distributed log systems such as
Apache Kafka [60] which adopt a similar subscription-based pattern for distributed
data stream ingestion.

Data StreamManagement Systems (DSMS) introducedmany architectural primitives
that reside at the core of many SPs today. Systems such as Aurora* [38], Borealis
[7], and StreamBase [80] allowed for distributed, managed deployments of stream
processing pipelines, consisting of tasks and data dependencies in a dataflow graph
defined by the user through a graphical interface. A scheduler managed the deploy-
ment of parallel tasks which could be later re-optimised for improved latency or
throughput, depending on dynamic properties such as the current workload. At the
same time, other DSMSs focused on expressivity and integration with DBMSs by
enriching SQL with windowing semantics, CQL [15] being a noteworthy example
of such an effort. In general, DSMSs were mainly developed as research prototypes,
yet, they went on to influence the emerging data stream processing field.

1.2 Large-Scale Data Stream Processing
on Commodity Clusters

MapReduce [43] and the development of open source software stacks for distributed
data processing on commodity clusters (e.g., Apache Hadoop [1], Apache Spark
[89]) initially covered a major need for batch or offline data processing. However,
low-latency and high-throughput computing emerged as an open problem. To this
end, a new class of SPs targeting low-latency workloads started to evolve.

Some of the first open source SPs for commodity clusters were Yahoo S4 [74] and
Twitter Storm [5]. S4 and Storm integrated seamlesslywith the rest of the open source
ecosystem, such as distributed logs (e.g., Apache Kafka [60]), message queues, and
distributed file systems (e.g., HDFS). In addition, S4 and Storm offer low-level
distributed dataflow programming models, suitable for engineering arbitrary task
pipelining while hiding basic physical implementation concerns (e.g., distributed
data exchange). More SPs gradually emerged in the same ecosystem and provided

Large-Scale Data Stream … 223

richer semantics and higher-level programming abstractions for data streams in order
to simplify the writing of data stream analysis applications. Examples of such sys-
tems are Apache Flink [26], Beam [10], Samza [3], Spark Streaming [90], APEX
[82], and more recently Kafka Streams [56]. The development of this latter class of
SPs provided more declarative programming semantics such as custom windowing,
functional programming primitives and stream SQL queries being heavily inspired
by research projects such as Stratosphere [11], Naiad [73], and FlumeJava [32]. At
the same time they provided stronger processing guarantees such as exactly-once
operator state access and high-availability, thus, making them suitable for critical
production deployments.

1.3 Distinctive Features of Data Stream
Processing Systems

In order to facilitate the description and categorization of various stream-processing
systems throughout this chapter, we first list a number of distinctive features that SPs
exhibit.
– Continuous Uninterrupted Execution. The ability of a system to execute a con-
tinuous query or stream topologywithout inducing additional delays such as queuing,
re-scheduling, halting, etc. This is the norm in shared-nothing stream processors, as
we show later in this chapter.
–Durability. Aswith every distributed system, process or network failures are bound
to happen, especially often in a long-running operators. These failures need to be
handled transparently to system users. Systems differ in terms of their assumptions
(e.g., repeatable persistent sources) and in the guarantees they can offer to applica-
tions under failures. A plethora of techniques have been studied in the past [9, 17, 27,
73] in order to deal with failures in continuous processing, each of them imposing
additional computational and resource overhead to offer certain properties.
– Low Latency. Data-stream processors have the ability to process data and make
incremental computations at ingestion rate. This drops end-to-end latency by orders
of magnitude compared to batch executions or typical daily database integration
jobs. Low latency processing can serve critical applications where timely and thus
actionable knowledge is paramount. For that reason it serves as a major incentive for
using SPs today. Moreover, low latency or response time is considered as a common
benchmarking measurement [14, 19], used to stress and compare the performance
of different SPs.
– Explicit State Management. State summarizes results of computation that results
ran on a stream processor (e.g. a counter). From a systems perspective, state needs to
be declared and managed explicitly in order to enable fault tolerance and repartition-
ing capabilities in a transparent manner [47]. Alternatively, when state is managed
in the application layer (e.g. when programming in Apache Storm v0.10), there is
a need for custom synchronization with external storage systems. However, a state-

224 P. Carbone et al.

agnostic approach disables prospects for state reconfiguration and efficient native
fault tolerance mechanisms [9, 27, 30].
– Programming Primitives. Systems provide primitives in their APIs that aid pro-
grammers with built-in implementations for common tasks. For example, aggre-
gations [6], like summations could be implemented with low-level dataflow API
by using custom managed state. However, stream processing applications typically
contain parts where values must be aggregated. Thus, some systems provide an
aggregation primitive to aid the development process. There are similar primitives
[90] in many system APIs for other frequent cases, such as filtering or grouping by a
key. Most frameworks also provide windowing primitives [6, 10, 28, 64] that group
data points based on time. Frameworks are introducing more and more higher-level
abstractions in their APIs for advanced expressivity [12].
– Efficient Plan/Topology Execution. As with database queries, executing a contin-
uous stream processing query in a SP as declared by the user could lead to potentially
redundant resource usage and inefficient pipelining of operators. Thus, several SPs
optimize the execution of certain queries in order to eliminate redundancy, increase
the efficiency of resource utilization and throughput,while also reducing latency [55].
As with programming languages, most optimisations are applied transparently upon
query translation to physical dataflow operators or some other intermediate-level
representation of the computation at hand. Typical optimisations that are adopted
in several SPs are: operator fusion (also known as superbox scheduling), operator
reordering, state sharing, and batching [55].
– Elasticity and Dynamic Reconfiguration. A stream processor can potentially
execute a job for weeks or years continuously. The workloads of such long-running
jobs can change considerably over time. Thus, it is handy for such a system to be able
to adapt resource consumption (e.g., workers, memory) dynamically, according to
changing demands. This requires general support for reconfiguration and additional
monitoring of several runtime parameters. Furthermore, physical operators should
allow for partionable state (when that is applicable) in order to scale in or out [30]
according to the workload.
– Sustainable Flow Control. Network channels and in-memory buffers that reside
within stream processors have a finite capacity, which places certain constraints on
the ingestion throughput. In the most general case, data is being pulled at ingestion
points in a pipeline (e.g., stream sources) and pushed throughout different compu-
tation tasks. In order to sustain an overall continuous ingestion, despite throughput
imbalance among operators, an SP can either discard events [6] or trigger a flow
control mechanism such as back-pressure [61]. Back-pressure allows SPs to “keep
up” with processing at sustainable rates. This is a highly important property, which
is missing in several existing stream processing solutions (e.g., Apache Storm [5]).

Large-Scale Data Stream … 225

1.4 Chapter Overview

In order to provide a clear picture of the current state of the art of open source
SP technology we present a snapshot of the most distinct, and perhaps the most
sophisticated modern stream-processing systems, alongside their core features. In
this analysis, we exclude academic projects (e.g. STREAM [13], Amos II [45],
Aurora [6], TelegraphCQ [34], Cayuga [24], FLUX [77], S-Store [31]) and several
proprietary systems (e.g., IBM SPL [54], Microsoft Trill [33] and FlumeJava [32]),
either due to the lack of sufficient information about their internals or because they
do not operate in a distributed scale-out setting, which is the main interest in our
study. It is important to state that many of these systems have a pioneering role in
establishing the fundamentals of modern data stream processing.

The rest of the chapter is structured as follows: in Sect. 2 we introduce the com-
mon denominators of programming primitives used throughout different stream
processing frameworks categorized by their abstraction level (i.e., low-level dataflow
programming primitives and higher-level functional APIs). We further present win-
dowing semantics and their usage, along with different notions of time. In Sect. 3
we analyze the characteristics of the most common large-scale stream processing
engines. We further provide a clear description of processing guarantees, flow con-
trol and other important problems that arise in a sustainable execution of stream
computations along with solutions. Next, in Sect. 4 we present the Apache Flink
stack, a case study of a fault-tolerant, large-scale stream processing platform, along-
side a detailed overview of its asynchronous snapshotting mechanism. Finally, in
Sect. 5 we enumerate several application domains where advances in data stream
processing technology have offered tremendous impact, followed by Sect. 6 where
we conclude this chapter with an outlook of the data stream processing field.

2 Programming Models

In this section, we discuss different models for developing data-stream processing
applications. Currently, there is a wealth of frameworks and systems that enable data-
stream processing on commodity clusters, offering various capabilities and program-
ming interfaces. As stated in the introduction (Sect. 1), we do not discuss research
projects or proprietary systems. Instead, we concentrate on large-scale, open-source
stream processing frameworks, namely, Storm [5], Heron [61], APEX [82], Flink
[26], and Spark Streaming [4, 90].

The goal of this section is to provide a brief overview of these programming
abstractions, and show how a set of seemingly different programming concepts can
share a set of common fundamentals. The structure of this section is as follows:
first, we describe different levels of programming abstractions for stream processing
(Sect. 2.1), then we discuss these levels in more detail (Sects. 2.2 and 2.3), finally we
discuss windowing (Sect. 2.4), a programming abstraction that we can find in most
stream processing APIs, regardless of how declarative they are.

226 P. Carbone et al.

Fig. 2 Abstraction levels of
streaming applications

2.1 Programming with Streams

There are different abstraction levels that a programmer can use to express streaming
computations. Figure2 depicts how these abstractions build upon each other. Behind
these abstractions, stream processing frameworks hide execution details from the
programmers, and manage them in the background.

Low-Level Dataflow Programming. Historically, stream-processing engines such
as Aurora [6], implemented the execution model of a dataflow program. In short,
a dataflow program is represented as a directed graph, whose nodes (or, operators)
represent a computation and whose edges represent connections among dataflow
nodes. The programmers can, in principle, construct arbitrarily complex dataflow
programs by implementing operators and by connecting them via dataflow graph
edges.Modern stream-processing systems, such as Storm [5] andAPEX[82], provide
a dataflow programming abstraction, where a stream-processing application can be
expressed using a dataflow graph and whose operators are provided by a programmer
in the form of imperative user-defined functions and thus may contain arbitrarily
complex business logic. A stream-processing system distributes a dataflow graph
across multiple machines and is responsible for managing the partitioning of data,
the network communication, as well as program recovery in case of machine failure.

Dataflow programming offers programmers complete freedom to programmers
to implement their business logic, but require them to have good knowledge of the
execution internals. This is because dataflowprogramming reveals the internals of the
underlying execution engine, which handles the execution of the dataflow graph. As a
result, programmers need to manually specify execution strategies in their programs
and have to change their implementation whenever data statistics (e.g., distribution
of values or data rate) or the size of the deployment changes (e.g., running the same
program in a larger cluster). Moreover, common use cases, such as aggregation and

Large-Scale Data Stream … 227

stream-windowing (Sect. 2.4) have to be manually implemented by the programmer.
More details on dataflow programming can be found in Sect. 2.2.

Functional APIs. Instead of forcing programmers to manually specify low-level
dataflow graphs, stream-processing frameworks such as Spark [4] or Flink [26] offer
higher-level functionalAPIs. TheseAPIs aremoredeclarative than low-level dataflow
programming by giving programmers the ability to specify data-stream programs as
transformations on data-streams. In functional APIs, common tasks such as aggre-
gating values (e.g., calculating the sum of numbers in a stream) can be specified very
concisely, relieving programmers from having to write large amounts of boilerplate
code found in low-level dataflow programs.

High-Level Declarative Languages. In the past, several research projects in stream
processing, such as CQL [15] and TelegraphCQ [34] have proposed a declarative
SQL-like language for data stream processing. At the time of writing, there are
ongoing efforts for providing a similar declarative language for large-scale stream
processing systems. Such a declarative language offers less control to programmers
for low-level execution strategies. Declarativity has the disadvantage of limiting the
opportunities for fine-tuning the performance of applications. However, a declarative
language allows for automatic optimization and shifts the responsibility of optimiza-
tion from the programmer to the system. It also allows inexperienced users to write
streaming applications without knowledge of the system’s internals. Since there is
no high-level language implementation on top of the systems we discuss here, we
will omit discussing high-level languages.

In the sequel, we describe dataflow programming and functional APIs.

2.2 Lower-Level Dataflow Programming

Dataflow programming has been used by research projects such as Aurora [6] to
express streaming programs. Later on, it turned out that dataflow programming is
useful for parallelizing and executing programs in a distributed setting [38, 53].More
recent systems, such as Storm [5, 86], Samza [3], and APEX [82], apply ideas from
past research and provide similar dataflow abstractions. In this section, we show a
logical dataflow programming model (with pseudocode examples) resembling the
APIs of these three frameworks and we explain what details should be specified by
the programmer concerning distributed execution.

Logical Dataflow. A dataflow program is represented as a directed graph of opera-
tors, and a set of edges connecting those operators. The resulting graph is typically
referred to as a dataflow graph. Operators are independent processing units defined
by the programmer, which take input and produce output. The programmer has to
implement an operator by defining a computational routine for each input record.
The dataflow graph that connects the operators represents the data flowing through
the program; edges between operators in the graph represent unidirectional data

228 P. Carbone et al.

(a) An example of a logical dataflow.

(b) The physical dataflow associated with the above logical one.

Fig. 3 An example logical dataflow of the word count program (top) and its physical execution
graph (below)

exchange and define how the outputs of some operators become the inputs of other
operators.

Figure3a shows a simple example of a logical dataflow program. The task here
is to count the occurrences of words received on the input. This is the widely known
word count example popularized by the paper onMapReduce [43]. Besides the input
and output, there are two operators, namely Split and Count, which are defined by
the programmer. Split takes a text line and splits it into words, and Count counts the
occurrences. The operators are independent: they can only communicate with each
other by their input and output connections.

In Fig. 4 we show how the Split operator is written using Java-like pseudocode.
The function onArrivingDataPoint is an event handler. Each input record is
passed to this handler via a distinct invocation, whereas the output of each call is a
collection of records the operator emits. This example splits a string line into words
using a space delimiter and puts the words into an array. Each word in the array is
then emitted, one by one, to the operator’s output via a “Collector” interface. Bear in
mind that the output elements i.e., the words might not be in the return value of the
method. Instead, dataflow-level APIs typically provide a Collector to the event
handler, which can be used to emit output records one by one, via its emitmethod.

Physical DataflowA logical dataflowgraph is deployed in a distributed environment,
in the form a physical dataflow graph. Before execution, systems typically create
several parallel instances of the same operator, which we refer to as tasks. A system

Large-Scale Data Stream … 229

Fig. 4 Pseudocode of a dataflow operator that splits its input lines into words

is able to scale out by distributing these tasks across many machines, akin to a
MapReduce execution. In Fig. 3b we can see a physical dataflow of the word count
example. The circles represent task instances of the operators, which may be located
on different machines.We can reason about execution similarly to a logical dataflow:
the data flows through these tasks, every task receives input elements from tasks
corresponding to the previous operator and produces outputs to the tasks forwarding
them to the next operator.

In low-level dataflow programming, the programmers can control the physical
dataflow execution such as the degree of parallelism (e.g. in Fig. 3b, three tasks are
assigned to the Split operator and two to the Count operator).

Stateful Operators. Unlike a simple operator such as Split, certain operators need
to keep mutable state. For instance, in the word counting example, counting the
word occurrences received by an operator, requires storing the words received thus
far along with their respective counts. Thus, the Count operator must keep a state
of the current counts. In contrast, the Split operator is stateless because a line can
be split without any prior knowledge (i.e., independent of any previously received
lines). In Fig. 5, we show how the Count operator can be implemented via a special

Fig. 5 Pseudocode of a stateful dataflow operator that counts occurrences of words

230 P. Carbone et al.

class provided by the framework, KeyValueState, which can store key-value
pairs. The state is read (get method) and updated (put method) in every call of
the onArrivingDataPoint event handler. Explicit mutable state [47] is often a
requirement, thus, several APIs with higher-level abstractions (e.g., Flink and Spark)
provide an interface for that purpose.

Although it is often feasible to specify state without making the system aware of
it, it is not recommended to do so. Since the systems we discuss are built on a JVM
(Java Virtual Machine), operator logic is usually implemented as a custom event
handler that implements a Java interface. This class could have a member variable
for storing the state. For instance, we could store the word counts in a simple Java
HashMap. However, the system would not know that we are maintaining a state in
our operator and this would raise problems. First, if we store a bigger state (e.g.,
a data structure like a Java HashMap), then we have to manually take care of the
situation when this data structure grows too large. If we assume that this will never
happen, but our application becomes more popular than expected, then the system
might run out of memory. Second, checkpointing a large state that the system knows
nothing about can be problematic (see Sect. 4.3). Using the state abstractions of the
APIs enables the runtime systems to deal with larger states and take care of making
them fault tolerant.

Partitioning Strategies in Physical Dataflows. Partitioning strategies determine
the allocation of records between the parallel tasks of two connected logical opera-
tors. Thus, they give control over data exchange patterns that fundamentally occur in
physical dataflow. There are several standard strategies [49] tailored to data stream-
ing in particular, each of them offering certain benefits. With random partitioning
each output record of a task is shipped to a uniformly random assigned task of a
receiving operator, distributing the workload evenly among tasks of the same oper-
ator. Broadcast is another typical strategy, which can be used to send records to
every parallel task of the next operator. Furthermore, partitioning by key guarantees
that records with the same key (e.g., declared by the user) are sent to the same par-
allel task of consuming operators, similar to the shuffle phase of the well-known
MapReduce model [43]. We should keep in mind that most system APIs allow for
user-defined partitioning functions as well, which can dynamically select the parti-
tion (e.g., parallel task) for each output record. Custom partitioning functions can be
used to implement application-specific partitioning functions (e.g., geo-partitioning
[57] or machine learning model selection [42]).

Since the operator state is also distributed among parallel stateful tasks and no
global state is maintained or accessed, it is particularly crucial to have control of the
partitioning at stateful operators. An example of this need can be observed in Fig. 3b,
where it is necessary to ship records of the same word to the same task between
the Split and the Count operators. This is necessary to compute the correct state
(e.g., complete count per word). In that case, partitioning by key is the preferred
partitioning strategy, where the key is the word (e.g., first element of each tuple). As
in MapReduce, the same words end up at the same task, hence on the same machine,
so that counting can be done locally.

Large-Scale Data Stream … 231

Table 1 Dataflow abstraction terminology

Dataflow graph Operator Task

Storm 0.10.x [5] Topology Bolt Task

Samza 0.9.x [3] Dataflow graph Job Task

APEX 3.2.x [82] DAG (Logical) operator Physical operator

Differences Between APIs.Although all systemswith a dataflowAPI discussed here
use this same programming model of a logical dataflow with configurations for the
physical dataflow (like parallelism hints and partitioning) there are slight differences.
Each system has a distinct terminology, so we summarize the naming of the main
concepts in Table1. Differences also arise in various other aspects apart from the
terminology (e.g., state management interface). However, we omit them here for
practical reasons and leave the discussion of specific features to the documentation
of the respective systems.

2.3 Functional APIs

Several frameworks provide more declarative APIs than the ones discussed in the
previous section. This means that certain details of how to execute the computations
can be omitted, and programmers need only specify what should be computed.

Collection Abstractions for Streams. In order to make APIs comparable to regular
collection APIs (e.g., List in Java or Scala), some stream-processing frameworks
(e.g., Spark [4], Flink [26], and Trident [85]) introduce a collection type representing
data streams, which supports operations that resemble those of regular collections.

For example, consider the following map operation on a Scala list:

val list1 = List(1, 2, 3)
val list2 = list1.map(x => x + 1)

map applies the given function to each element of the given list, and returns a new list
containing the results. Here, list2will contain (2, 3, 4). Functions like map,
are higher-order functions: in addition to taking data as their input, they also take
other functions.1 Functions that are passed as arguments to higher-order functions
by programmers are calledUser Defined Functions (or UDFs in short). For example,
the “x => x + 1” is a User Defined Function, which adds 1 to its argument.

TheAPIs of streamprocessing frameworks borrowedmanyhigher-order functions
from the standard libraries of functional programming languages. For example, the
flatMap operation takes a UDF that maps each element of the input stream to
a collection of (zero or more) elements per invocation. A typical example is word

1Generally in functional programming, higher-order functions might also produce functions as their
outputs, but this does not appear in stream processing.

232 P. Carbone et al.

Fig. 6 Word count example in pseudocode using a functional data stream processing API

count (Figs. 4 and 5) when the input elements are lines of text, but we want to
process individual words instead. We can see how to implement the same program
in a functional collection API in Fig. 6. The program takes input from a TCP socket
and simply prints the counts to standard output. We use a flatMap to split lines
and amap to create (word,count) pairs (we later describe how keyBy and sum
work). Note that theword “flat” ismeant to say that the output is not a nested structure
(e.g., a stream of collections), but the output collections of the UDF are “flattened”
into a single stream.

The functions map and filter are special cases of flatMap: map always
emits exactly one output element for each input element and filter always emits
either zero or one output element for each input element. This allows making their
UDFs slightly simpler: the output type need not be a collection, but only a single
element in the case of map and a Boolean value in the case of filter (indicating
whether the current input element should be “filtered out”).

Notice that in the low-level dataflow model introduced in Sect. 2.2, all operators
act like flatMaps: for every input element, they can emit any number of output
elements.

Aggregations.Aggregations are one of themost commonoperations on data streams.
For example, we might need to compute a rolling sum or maximum aggregate value
from all the input elements that have arrived so far (or count them like in the word
count example in Sect. 2.2). A rolling aggregation means that the current aggregate
is emitted after every input element, thereby creating a stream of intermediate aggre-

Large-Scale Data Stream … 233

gates. For example, if the input elements are 1, 2, 3, 4, . . . then a rolling sum emits
1, 3, 6, 10, This is in contrast to aggregations that we can see in batch processing,
where the entire input needs to be ingested to produce a final aggregate value.

Stream records often contain a key field upon which users intend perform a rolling
aggregation separately for each distinct key that occurs, similar to an aggregate over
a groupBy in SQL. This type of aggregation is also known as keyed aggregation.
For example, imagine that we are operating some online game, where a player can
play a game at any time and achieve some separate score in each game.Wewould like
to record the highest score achieved by each of our players separately and produce a
high score table. Let us assume that stream records in that application are (playerID,
achieved score) pairs, referring to occurrences of players with unique IDs playing a
game and achieving a certain score. A rolling max aggregation per player ID would
produce an output stream that has elements of the form (playerID, highest score ever
achieved by this player). Then to produce the high score table, we need a further
(non-keyed) aggregation operation that maintains the top-K input elements, which
is an example of a more complicated application logic occurring as an aggregation
function.

Figure6 shows a version of the word count application, written in a functional
data stream processing API, which uses a keyed aggregation. Contrary to the low-
level dataflow version of word count presented in Figs. 4 and 5, only two higher
level operations are required to achieve the same result, namely declaring the key
used to partition the stateful computation (via partitionByKey) and applying an
aggregation function (sum on the second field).2 In contrast, the low-level
dataflow version of the same application requires the programmer to provide manual
task-level behavior and state handling, which can often be avoided by using high
level primitives.

2.4 Stream Windows

Stateless maps, flatMaps, and filters deal with one element at a time, whereas aggre-
gations take the entire stream into account. Thus, none of these options satisfy our
needs if we are interested in hourly, daily, or maybe yearly statistics. This can be
the case, for example, if we are counting the clicks that a certain webpage received:
what we are probably interested in is the number of clicks during some custom time
periods of a certain granularity and not since our data processing application first
started to operate. To satisfy this need, we can use windowing techniques to logi-
cally group records of an infinite stream into finite sets, upon which we can perform
aggregations or other custom operations. Windows are typically declared in terms of
predefined templates (e.g., time and count [15, 90]). However, there are directions

2Mind that sum in this example is a pre-defined aggregation function, however, a UDF can also be
typically provided to declare an incremental computation.

234 P. Carbone et al.

towards more complex compositional window definitions such as delta-based [53],
session [10] and user-defined windows [28], among others [44].

Notions of Time.One of the commonways of specifying windowing is through time
intervals. However, time can often be an ambiguous measure in data stream process-
ing. We first introduce the different notions of time that are typically considered in
streaming applications. The input events of an application are usually created by an
external source prior to their processing. Therefore, the following two notions of
time can be identified [23, 79]:

• Event time: The time corresponding to when an event was generated externally.
It is commonly provided by a timestamp field using the local clock of its source
(e.g., a sensor).

• Processing time: The time corresponding to when a system processes the event
(measured by the system local clock).

Notice that the event time of the records are a property of the input, whereas the
exact processing time of events depends on the actual execution of our application,
which can be affected by arbitrary network delays, system workload changes, and
other factors. It is evident that processing time is not a consistent metric for progress
in distributed stream processing due to an inherent absence of a global synchronized
clock. Thus, event time is typically a preferable choice to specify time-based opera-
tions in an application (e.g., parallel time windows) given that there is a known clock
skew among the sources of the data streams.

Tumbling and Sliding Windows. The simplest type of window is the tumbling time
window, where we can specify the window size in some time units and the stream is
split into non-overlapping, adjacent time intervals that have a given size. We can see
an illustration of 3 second tumbling windows in Fig. 7a.

For example, imagine that we run an e-shop and we would like to know the sum
of the prices of sales and we create a stream processing application to calculate it.
One way to implement this is to use a higher-level API discussed before by applying
an aggregation on a stream of sales containing their price. However, what we need
is probably not the sum of every price since the start of our analytics program: we
would not like to sum prices of items ordered two years ago because that data is not
so important anymore. Instead we might be interested in the sum of the prices of
orders every three hours (or days, weeks, etc.), which we can obtain by specifying a
tumbling window and then applying the sum aggregation on it.

We often want more frequent updates than the window size, in which case we
can use a sliding window: in addition to a window size, we also specify a slide size,
which declares the frequency of our window computation (see Fig. 7b). Note that
here the windows might overlap if the slide size is smaller than the window size or
there might be “gaps” between the windows, if it is bigger. In fact, tumbling windows
are a special case of sliding windows, where the slide size is the same as the window
size. These basic types of windows are supported by almost every stream processing
API, even lower-level ones, such as APEX.

Large-Scale Data Stream … 235

(a) Tumbling windows.

(b) Sliding windows.

Fig. 7 a Tumbling windows. b Sliding windows

3 System Support for Distributed Data Streaming

In the previous section we went through different programming models and unique
high level concepts involved in distributed data stream processing. The focus of this
section is the fundamentals of systems that implement such concepts, which we will
call stream processors or SPs for brevity. The main purpose is to give an anatomy of
existing systems, offer insights, and reason about different design considerations.

Perhaps themain property that differentiates a system architecture tailored for data
streams is its ability for continuous, non-interrupted execution. An inherent benefit
of a system that is built for continuous processing is the ability to subsume all other
known types of computation (e.g., data-intensive batch processing or database query
processing) in a universal way [84]. We will cover some of these concepts in this
chapter, but before that, we describe all components and mechanisms that currently
reside within open source stream processing systems today.

236 P. Carbone et al.

Table 2 A comparison of stream processing execution engines

Execution
Model

Processing
Guarantees

Plan
Optimiser

Managed
State

Dynamic
Configura-
tion

Flow
Control

Storm
0.10.x [5]

stream at least 1 ✗ ✗ ✗ ✗

Heron [61] stream at least 1 ✗ ✗ ✗ ✓

Samza 0.9.x
[3]

stream at least 1 ✗ ✓ ✗ ✓

APEX 3.2.x
[82]

stream exactly 1 ✓ ✓ ✓ ✓

Flink 1.0
[26]

stream exactly 1 ✓ ✓ ✗ ✓

Spark 1.6.x
[90]

micro-batch exactly 1 ✓ ✓ ✗ ✗

MillWheel
[9]

stream exactly 1 ✗ ✓ ✓ ✓

3.1 An Analysis of Large-Scale Stream
Processing Systems

We describe the internals of current state of the art stream processing systems by
discussing the execution model and main features of several open-source large-scale
SPs.As alreadymentioned in the introduction (Sect. 1),we exclude academic projects
and several proprietary systems from our discussion. In Sect. 2 we summarized the
main systems of interest alongside their adoption of distinctive features. We will
cover most of the features illustrated in the table above in the following sections in
greater detail.

The execution model operates at the heart of a stream processor and encapsu-
lates the coordination of any streaming computation. In fact, SPs exhibit alternative
design considerations that enable continuous processing. However, any system can
be categorized under two principal architectures: I) Stream-Dataflow and II) Micro-
batching. In Fig. 8 we visualize these two main architectures in an abstract way.
The stream-dataflow approach naturally distributes stream processing among pre-
allocated processes (also known as long-running tasks) throughout a cluster that
typically map to event-handling entities in a respective programming model along
withmutable local state. On the other hand, micro-batching emulates stream process-
ing on top of a batch-centric execution, orchestrated through an infinite sequence of
input batches. Consequently, applications which are executed on a stream-dataflow
architecture can react to every incoming record at the time of its ingestion on a paral-
lel task whereas in the micro-batch model the application will have to react to sets of
events when a batch eventually gets scheduled and processed. Both designs are used
widely for different reasons, which we will analyze in more detail further below.

Large-Scale Data Stream … 237

Fig. 8 Distributed data stream processing architectures

3.2 Execution Models

The Stream-Dataflow Approach. The stream-dataflow approach provides a more
direct mapping of semantics and execution entities, as alreadymentioned in Sect. 2.1.
According to that architecture, an application is specified and given to the system
for execution in the form of a dataflow graph. A dataflow graph, is in most cases a
Directed Acyclic Graph (DAG), which consists of stateful tasks and data dependen-
cies i.e., between them. Tasks are independent processing entities and dependencies
represent data streams of records. A task encapsulates the logic of a predefined oper-
ator (e.g., filter, map, window, aggregate, join) or a routine with user-specified logic.
A data stream between two operators simply represents an infinite sequence of data
elements/events produced by a task, which are available for further consumption.

Typically, a driver or master node receives a dataflow graph, and schedules tasks
among the available cluster resources, which will be invoked once, and executed
continuously throughout the possibly infinite lifetime of an application. Each task
maintains and accumulates state independently (managed locally or externally) while
processing data records from subscribed streams on-the-fly. This practically means
that encapsulated operators in a physical task are repeatedly invoked for every respec-
tive record that is delivered for consumption. Depending on the dataflow system
design, the dataflow can also contain control events (e.g., synchronization barriers)
that trigger system specific actions, and are thus hidden from the operator logic. Tasks
are the finest grain elements of computation, however, they might also encapsulate
a chain of multiple operators as we describe further in Sect. 3.5.

The stream-dataflow architecture has been adopted by a plethora of systems
throughout the large-scale computing open source ecosystem such as Apache Storm
[5], Samza [3], Flink [26], APEX [82], Heron [61] and proprietary SPs alike, such
as Google’s MillWheel [9] (a precursor of Google Cloud Dataflow [50], the cloud
runner of Apache Beam [10, 83]).

Discussion: There are certain fundamental benefits that the stream-dataflowapproach
offers. First and foremost, it supports event-based granularity for any customprocess-

238 P. Carbone et al.

ing task. This means that users can define arbitrary processing logic that can be
applied in each individual event of an infinite sequence. This imposes no restriction
(e.g., flexible windowing) whatsoever in the type of operations that can be declared,
thus, it can accommodate a rich ecosystem of applications. Furthermore, the dataflow
architecture is proven to be capable of delivering sub-second processing latencies.
This is mainly because everything is automatically pipelined, without intermediate
scheduling and additional communication between master and worker nodes, as we
have seen in the batch processors designs (e.g., Hadoop [1] master, Spark driver
[4, 89]).

Themain arguments against stream-dataflow approaches [90] are their complexity
when it comes to flow control mechanisms and fault tolerance but also the increased
complexity of applying flexible runtime reconfiguration (e.g., auto-scaling or state
sharding), all due to the nature of long-running tasks. Events are delivered and con-
sumed in arbitrary order across parallel tasks, and as a result, there is a lack of a
coarse-grain unit for transactional processing. Initial efforts to provide fault toler-
ance in the stream-dataflow design [17] enforce costly decentralized communication
and state management mechanisms that can impose heavy overhead to the execu-
tion of the stream application, such as active replication [77] or passive backup
with acknowledgments. However, recent advances in this domain circumvent a large
portion of such overhead by lifting assumptions to repeatable, durable data sources
[2, 3] with snapshotting [27] and lightweight transactional processing mechanisms
that can guarantee consistent, yet non-disruptive, processing.

Flow control can also be challenging in the stream-dataflow architecture, due
to the skew between the processing and ingestion rates [61]. This is typically han-
dled via combining network channel and data source back-pressure. Finally, runtime
reconfiguration is pending downside of stream-dataflow systems. First, because a
reconfiguration process can violate important continuous processing and latency con-
straints, and secondly, due to the difficulty of repartitioning local state in operators
at runtime. Several recent approaches in tackling these problems in dataflow-based
SPs are covered further in this chapter (Sects. 3.3 and 4.3).

The Micro-Batch Approach. Micro-batching is a solution that enables process-
ing data streams on batch processing systems. It is a simple concept that became
mainstream through the widespread use of the Apache Spark stack [90]. With micro-
batching we can treat a “stream” computation as a sequence of transformations
on bounded sets by discretizing a distributed data stream into batches, and then
scheduling these batches sequentially in a cluster of worker nodes. Discretization
typically follows a user-specified time-interval [90], which reflects the granularity
at which the input data will be partitioned in terms of processing time. When such
a timeout occurs all input records collected during that interval are replicated (for
durability), and then scheduled together as a single unit (e.g., RDDs on Spark [4])
for batch transformations.

The idea of re-using batch processing apparatus for processing data streams is
very attractive due to the existing ecosystem of batch processing frameworks and
systems, and has been approached before with Comet [52], Hadoop Online [39] and

Large-Scale Data Stream … 239

CBP [67]. However, Spark’s approach is a noteworthy contribution in fault-tolerant
data streaming, regardless of its limitations.

Discussion: There are several benefits to micro-batching, some of which are not yet
highlighted or tackled by other architectures. First and foremost, it exploits native
fault tolerance in batch computing out-of-the-box and thus eliminates the need for any
additional control apart from data replication at the ingestion phase [90]. Secondly,
it can gracefully handle stragglers, thus, eliminating the need for sophisticated flow
control and simply rely on the ability to execute redundant processing. Straggler
elimination is, again, an ability inherited from the batch-processing runtime (e.g.,
Hadoop [1] and Spark [89]). Finally, micro-batching blends by definition batch and
stream processing, thus, allowing intermediate results from batch applications to be
joined with micro-batch transformations trivially to aid pipelining.

Perhaps the most critical performance-related downside of micro-batching is the
discretization latency. Discretized data ingestion imposes a fixed lower bound on
the processing overhead, which reaches an order of several seconds at a minimum
[90], excluding the additional replication and scheduling times. This makes micro-
batching rather less attractive for use-cases that rely on timely computations. Fur-
thermore, during ingestion across consecutive batches, computational resources are
not actively used, which might result in under-utilization of a certain degree. Finally,
micro-batching restricts the granularity and thus expressibility of programmingmod-
els that are built on top, to a batch level in contrast to dataflow systems that allow for
record-level operations.

3.3 Processing Guarantees Upon Failure

The general terms people refer to when talking about processing guarantees and
fault tolerance for different stream processors are at-least-once, at-most-once, and
exactly-once processing. Unfortunately, even these terms lack clarity on what they
actually mean in practice which often results in some general confusion. Since this is
a rather important concept (but not as complicated as it might seem) we will attempt
to elaborate on their actual meaning and hopefully offer some fundamental insights
and reasons behind mainstream state management mechanisms.

First and foremost, processing guarantees refer to the state of an application.
For example, when a system ensures exactly-once processing guarantees, it verifies
that any application it runs will consume its input without record losses whereas
all declared internal states will be updated once per record, even in the presence of
failures. Bear in mind that this does not mean that the output of the application will
be consistent under failures. Output guarantees are beyond the focus of this study and
typically require strict transactional processing and version control between process-
ing and storage systems to eventually be achieved, in addition to other assumptions
such as deterministic processing and idempotency [9].

240 P. Carbone et al.

Fig. 9 Task actions and
guarantees

Preliminaries. We approach the general problem from the perspective of a physical
dataflow graph. Asmentioned earlier, from amacroscopic point of view an execution
is modeled in the general case as a DAG of tens or hundreds of tasks interconnected
by streams. The main problem here is that any task can fail at any time, thus, the
system should deal with such a failure in order to satisfy the promised guarantees.
Before going further into guarantees, we will first go back to a microscopic level and
observe task behavior.

As seen in Fig. 9, a physical task is an independent entity (e.g., a process or a JVM
thread) that executes the following steps per input event:

1. Receives an input record,
2. Updates its state,
3. Optionally emits output records.

With those steps in mind, followed by every task managed by an SP, we propose
the composition of processing guarantees simply by using the following two distinct
properties, each task should eventually satisfy:

� Property I: Guaranteed Processing. All records in a task’s input dependencies
should be eventually delivered to the task and fully processed (i.e., steps 1–3)
at-least-once.

� Property II:Consistent State Updates.Each input record should lead to exactly
one state update.

Network Assumptions. Throughout this overview we will make the following
assumptions when it comes to the network links between every two tasks: no dupli-
cate records are delivered, and all events sent are eventually delivered through a
channel in the same order that they were sent. This is typically satisfied by perfect
FIFO links, which network protocols such as TCP can guarantee.

Process and Failure Assumptions. We assume that every task that has not failed
follows a correct behavior, i.e., it executes steps 1–3 described in Fig. 9 for every
input record that it receives. Failures can normally happen before record delivery
or upon executing any of these steps. In any of these cases we consider the task as
having failed and the record that triggers the task computation as not having been
fully processed.

Now that we have seen the basic properties let us go deeper into processing
guarantees.

Large-Scale Data Stream … 241

At-Most-Once Processing. This means that neither property I or II are guaranteed.
A system that is turned off can still guarantee this, since zero records delivered and
processed satisfy at-most-once processing. It is often fine to go with no guarantees.
For example, a system can discard tuples when the input rate is too much to handle
(e.g., an approach adopted by Aurora [6]). This is also the case for any existing
system that runs with state management mechanisms turned off. For example, tasks
inApache Storm can re-start from scratchwith a null state, which is fine in certain use
cases such as approximate streaming. One can argue that this approach eliminates
the reason for using an SP, however, several applications can still operate with no
processing guarantees such as approximate stream analytics and best-effort complex
event processing. The downside of “no guarantees” is countered by crucial benefits
such as low latency and maximum throughput, since no mechanism needs to alter
the execution of the application to enforce “correct” results so data flows through the
system with no disruptions.

At-Least-Once. When a system offers at-least-once processing guarantees it means
that property I is satisfied (no input loss) given the aforementioned network and
process guarantees. Duplicate processing of a task’s input can still occur. This can
be fine in many situations where we are just interested in processing everything
and do not care whether we process a few records (and their productions in the
dataflow graph) more than once such as searching for a specific tweet during the
day or generally executing any idempotent operator. It is also a fine compromise
between high throughput, low latency, and correctness. We have seen at-least-once
guarantees in two different flavors in the existing ecosystem today: relying on a
repeatable logging system or natively through record acknowledgments and source-
level replication. The two approaches work as follows:

Repeatable stream logs. A repeatable stream log, such as Apache Kafka [60], com-
pletely persists distributed streams from its producers and additionally allows for
“repeating” stream consumption from a given offset. Repeatability unlocks the abil-
ity to replay any distributed sequence of records and thus guarantee processing (prop-
erty I). Several systems, such as Apache Samza [3] and Kafka Streams [56] build
natively on-top of a repeatable log to satisfy at-least-once processing. This way they
redirect the materialization of every intermediate output stream to the log system. In
the case of a task failure, an input is replayed from a previous offset and potentially
re-process records (so property II is not guaranteed). This approach is modular, ele-
gant but unfortunately incurs heavy overhead in order to persist intermediate streams
or state into a persistent log (that in turn replicates data for durability).

Record Acknowledgments This approach makes no assumptions about persis-
tent logs and thus implements input persistence and execution monitoring natively.
Apache Storm [5] employed this strategy from its very early development stages. The
mechanism of Storm relies on creating a bookkeeping entry per record r seen at the
sources and eventually removing it when r and all its productions (subsequent out-
put consumptions) in the dataflow graph have been completed. A hand-tuned timer,
which is set by the user, alerts the sources in case a record bookkeeping entry takes

242 P. Carbone et al.

Fig. 10 Exactly-once processing in micro-batching systems

too much to be using an alarm. That can happen due to failed tasks that “break” the
dataflow graph or often due to heavy load incurred by the application. In any case,
when the alarm triggers for a record it is being resubmitted to the dataflow graph for
execution. The benefit of using record acknowledgments is that upstream backup at
the sources eliminates the need for external dependencies such as a repeatable log.
However, bookkeeping incurs heavy computational andmemory overheadwhile also
enforcing explicit association between input and output records on each task from
the programming model.

Exactly-Once Processing. This brings us to one of the most challenging concepts in
distributed stream processing: exactly-once processing guarantees. To achieve this,
each task has to satisfy both property I (guaranteed processing) and II (consistent
state updates). Before we dig into how stream-dataflow systems can achieve that, we
will recap the approach of micro-batch systems regarding fault tolerance.

Peeking into Guarantees in Micro-batching. Micro-batch stream processing sys-
tems (e.g., D-Streams [90]) provide exactly-once processing guarantees as an inher-
ent property of the host system. To illustrate this, we depict how an execution of
a discretized stream works in Fig. 10. As mentioned earlier, an input data stream
is pre-partitioned into batches. Each batch first gets replicated and then scheduled
for transformation as an atomic transaction that either completes or not. If a worker
fails, then the batch that is currently processed (or most specifically that respected
partition) is rescheduled and eventually the computation completes.

This guarantees exactly-once processing and satisfies the two core properties.
Property I (no loss) is satisfied, since each input batch is durably replicated and
thus no input in a batch is lost. Property II (consistent state updates) is harder to
notice since we have not talked about state in the micro-batch model. In micro-batch
systems such as the case of Apache Spark [90] all state updates are encoded as
immutable transformations between two consecutive batches, thus, they can either
succeed completely or not (in the latter case the full computation is repeated). That
automatically satisfies property II and makes micro-batching inherently capable of
exactly-once processing.

Among the major benefits of fault-tolerance with micro-batching we should high-
light that the processing rate of every batch is constant and periodic, thus, durability
mechanisms yield a constant overhead in the overall execution. On top of this, recov-

Large-Scale Data Stream … 243

Fig. 11 Exactly-once processing for distributed dataflows

ery can be executed in parallel in a cluster environment since all worker tasks are
stateless and available resources can be harnessed maximally.

Exactly-once Stream-Dataflow Systems

In the area of stream-dataflow systems, exactly-once processing techniques have
evolved from very strict transactional-processing approaches [17] such as two-phase
commit alternatives (e.g., in FLUX [78]) to lightweight snapshots [27].

Active Replication

Active replication [17] is a costly approach of handling failures in distributed dataflow
processing, with heavy resource utilization and associated protocol complexity. This
technique was incorporated by FLUX [77], the DPC Borealis protocol [16], and
other approaches [25] where non-interruptive, highly available execution is the main
concern.

As illustrated in Fig. 11a the basic idea is that all computation is duplicated into
pairs of identical tasks. This yields a fault tolerant execution where at least one
replica of each task is considered to be running at any time. Along with twice the
computational resources, network traffic can even reach up to quadruple amounts of
records in transit [25]. Furthermore, the need for message-intensive two-phase com-
mit protocols and acknowledgments during the execution (for state synchronization)
can negatively impact throughput [90].

With active replication, property I is satisfied, since all input is buffered and even-
tually processed on at least one of the replicas (garbage collection handles unneeded
input records). Property II is also granted since at least one replica processes all
inputs streams (exactly-once) and updates its state at any given time.

The main benefit of this approach is that recovery is trivial and high availability
is guaranteed from the fact that at least one replica is running at a time among each
task pair. Finally, tolerance on the number of failed tasks can be further increased by
increasing the number of active replicas accordingly.

244 P. Carbone et al.

Atomic Transactions

This approach strives to achieve, at the task granularity, properties I and II in themost
direct way possible as illustrated in Fig. 11b. The single assumption is the availability
of an external persistent, high throughput, key-value store (e.g., Cassandra [63] or
BigTable [36]). It is employed by Google’s MillWheel [9] and Trident [85] (an
experimental processing layer on Storm). The main concept is simple. Everything
is logged in a key-value store or rather every record consumption and state change
on every task is logged in an atomic commit at the store. This guarantees property I
(no input loss) but not II since duplicate records can be emitted upon task recovery
and processed by consumers in the dataflow graph. Duplicate processing leads to
inconsistent state updates which violates property II. There are several ways of
dealing with duplicate elimination and thus, satisfy exactly-once processing. For
example, as we have seen in Google’s MillWheel system, bloom filters can be used
to mark duplicate input records effectively.

Furthermore, several optimisations are still possible with atomic transactions such
as batching updates together in a single transaction, acknowledging record senders
for garbage collection and better flow control and using sophisticated key value
stores such as BigTable [36] with blind write support and high append-throughput
[9]. This technique also allows for task-level recovery which is considerably more
efficient than restarting for example the whole dataflow graph, especially when the
number of tasks is too large to reconfigure. However, this approach is often rather
complicated and hard to achieve in an average setup using lower-end commodity
cluster infrastructure with limited memory and storage capacity for all required logs
alongside a high-throughput transactional key-value store.

Consistent Snapshots

The concept of distributed snapshots is not a new one. Chandy and Lamport [35]
originally conceived the idea of encapsulating the complete “picture” of a distrib-
uted system and be able to use it in order to potentially re-execute it from there or
simply use it to find out more about its previous execution (i.e., safety and liveness
properties). Snapshots in distributed systems can be used to revert the whole state of
an arbitrary execution back to a savepoint and that is typically enough to guarantee
exactly-once semantics. As illustrated in Fig. 11c, imagine taking periodic snapshots
of a distributed dataflow graph (think of auto-saving in video games). For any task
failure that can possibly happen we can eagerly roll back the whole dataflow graph
to the last saved savepoint by resetting task states back to their saved values. Addi-
tionally, it is also required to be able to replay the input stream from the snapshot
upon recovery, which is trivial given a durable repeatable log such as Apache Kafka
[2, 60].

One of the recently adopted approaches in the domain of stream processors is
to asynchronously execute a snapshott phase during the regular operation of the
systemand thus avoid disrupting continuous processing.Weprovide a comprehensive
analysis of the original algorithm (ABS) [27] that was implemented in Apache Flink
(more in Sect. 4.3).ApacheStorm’s v.1.0 is planned to incorporateABS, thus,making
it the most popular technique for exactly once processing. Additionally, the Apache

Large-Scale Data Stream … 245

APEX system [82] takes a very similar route when it comes to snapshots, however, it
uses the samemechanism to draw snapshots and applywindowing and thus enforces a
batch-like execution that could otherwise be avoided. The main known downside for
employing dataflow graph snapshots as a fault tolerance mechanism is the recovery
granularity. That is because the whole dataflow graph has to reset back to a savepoint,
however, partial recovery is still possible and considered as an improvement [27].

3.4 Flow Control

Any system has limits in the data rates that it can sustain, and stream processors are
no exceptions. Thus, it is often required to regulate the data ingestion rate due to the
imbalance between the data source rate and the processing rate that the system can
handle at any time. Unfortunately, this is a highly dynamic problem, since both input
and processing rates might vary considerably during a live execution.

Data spikes are common for several data sources such as mobile devices that
suddenly get access to a wireless network and transmit events that they have buffered
during the day. The same applies to logging systems in big data centers that transmit
historical logs periodically in spikes when their cache is full or a file has finished.

Stream processors can also exhibit variable processing capacities during their exe-
cution. For example, heavy-load routines such as garbage collection or snapshotting
to disk can introduce staleness periods, which can in turn affect continuous process-
ing. Finally, workload imbalance across different tasks within a dataflow execution
itself makes flow control mechanisms crucial for sustainable processing in order to
avoid situations where network buffers are overflown.

There are two main strategies for enforcing flow control in such situations [61]:
dropping data or employing back-pressure.

Dropping records. This is a common and effective strategy used by several systems
that do not have strong processing guarantees such as Apache Storm. Simply put,
when an input network buffer in a task gets full (no available resources to deserialize
incoming records from the network) the task discards new records that might arrive.
The discarded records either get lost forever (which works for at-most-once guaran-
tees) or resent (combined with record acknowledgments and upstream backup in an
at-least-once approach). As expected, this strategy does not work with exactly-once
processing guarantees.

Backpressure Mechanisms. There are several types of backpressure used in pro-
duction systems today, often employed in combination. An evident approach is to
utilize TCP backpressurewhichwas used in Twitter’s Heron [61] among others.With
TCP windowing, sender and receiver nodes adjust their processing rates depending
on the size of the send/receive network buffers. Gradually, backpressure is realized
from the congestion point back to the sources of the dataflow graph and the overall
execution graph rate is calibrated. In practice, this mechanism can be too aggres-
sive and potentially slow down additional tasks in the topology than the ones that

246 P. Carbone et al.

are actually needed such as the successors of the congested tasks in the dataflow
graph [61]. This is mainly due to the fact that network buffers are multiplexed and
shared among arbitrary tasks in the topology. Thus, the flow control in this case is
non-selective and is applied collectively with potentially high impact in the general
throughput.

Another strategy that has proven to be more effective is source backpressure. The
main idea is that we selectively inform the dataflow sources to go into “backpressure
mode”. In this mode the sources are halted and thus data injection stops until back-
pressure is off. The cost of this approach is the introduction of additional control
messages and protocols which is generally not recommended. However, this is a
more direct way and happens to work well in harmony with repeatable and durable
logging systems such as Apache Kafka. An alternative approach involves the iden-
tification of different stages in an execution graph and employ this strategy at the
beginning of each stage.

Discussion: Backpressure mechanisms are crucial in data stream processing. A gen-
erally good practice is to use a combination of TCP and source-based backpressure
to have a well regulated and adaptive traffic flow in the system [61].

When it comes to micro-batch systems, the problem resides solely at the driver
node that discretizes a stream. Under time periods with high input spikes, the system
might be out of resource capacity to replicate batches and then schedule them for
further processing in the same constant rate. However, a form of source backpressure
strategy can be possibly employed at the ingestion point of the input stream and
coordinated through the driver that configures the execution.

3.5 Execution Plan Optimisations

There is a long list of possible optimisations that can be employed by SPs [55]. Most
of such optimisations occur during an intermediate compilation phase from a logical
to a physical plan. Many types of such optimisations require explicit declaration of
the data types and processing logic that is being executed in each step. However,
there are certain optimization strategies that can be applied without any semantical
knowledge. In the context of general dataflow graphs, operators can be collocated,
when applicable, in order to utilize less resources while achieving better throughput.
This class of optimisations is used in several dataflow processing systems such as
Apache Flink and Apache APEX and is known as “operator fusion”.

Operator Fusion. Fusion, also known as chaining is inspired by “Loop Fusion”, a
well known compiler optimisation technique that replaces multiple loops that iterate
over the same sequence with a single loop and thus potentially improve runtime
performance due to data locality [72]. In the context of distributed dataflow graphs,
this translates into merging multiple operators into a single execution task instead
of allocating several parallel tasks. In addition to resource savings this has proven
to improve performance considerably mainly due to reusing input data and avoiding
network channels. In addition to open source system adaptation, Google’s managed

Large-Scale Data Stream … 247

Fig. 12 Examples of fusion in dataflow execution graphs

cloud executor system for the Dataflow Model [50] is utilizing operator fusion. This
is an inherent optimisation technique adopted from Google’s FlumeJava [32], an
internal dataflow pipeline processing system and a precursor of the Dataflow model.
This has proven to result in cost savings for the users of the service while increasing
throughput.

In brief, there are two common scenarios where operator fusion can be applied
de facto [32] during a physical plan translation: producer-consumer and sibling
fusion. We depict both of these optimisation strategies in Fig. 12. As illustrated,
producer-consumer fusion is applicable when there is a one-to-one parallelism and
data dependency between two subsequent tasks in the execution graph, for example
f and g. In that case, only a single fused task f ◦ g is created instead. This way,
in practice, we avoid redundant record serializations, deserializations and network
latencies that we would otherwise have between tasks f and g. In the case of sibling
fusion, we can merge two or more tasks, for example g and h, into a composite
task, since g and h are consumers of the same data. Again, this way we transmit and
serialize records once for each partition, which gives a significant benefit to execution
efficiency.

4 Case Study: Stream Processing with Apache Flink

The domain of big data processing is undergoing disruptive paradigm shifts and
trends. We have witnessed an unavoidable shift from an era where database man-
agement systems were the dominant means of storing and analyzing data at small
scale to the MapReduce paradigm, where large scale processing replaced centrally
indexed data with a partitioned view.

Distributed file systems such as the Hadoop Distributed File System (HDFS)
became the norm for storing data in a scalable manner and a proliferation of sev-
eral batch-based data processing frameworks, such as Apache Spark [89] served as
dedicated endpoints to distributed data management and analysis. The recent adop-

248 P. Carbone et al.

tion of resilient, scalable logging systems, such as Apache Kafka [2] increased the
awareness and need for continuous and incremental processing of data, with several
dedicated stream processors such as Apache Storm [5], Samza [3] and Flink [26]
entering the big picture. This eventually led to a “split-brain” problem in hundreds of
data centers, where people had tomanage andmaintain data in both static and stream-
centricmanner. Several design patterns had been put forward towardsmanaging these
fundamentally different workloads under a structurally coherent architecture, with
the most popular being the “Lambda Architecture” [70]. Concepts such as batch,
speed and serving layer were used to categorize the overly increasing ecosystem of
data processing platforms primarily based on timely needs. However, the complexity
of using different batch and streaming runtime architectures together increased the
complexity of writing and maintaining data management pipelines.

The Kappa architectural pattern proposal [84] strived to provide an answer to
this problem by fusing the “batch” and “stream” layers together and using streams
as a first class citizen. The basic idea is that streams can be used to generate sets,
tables or other static data representations and subsume batch processing by pipelining
computation seamlessly.

Apache Flink [26] is a general unified data processing framework and a materi-
alization of the ideas behind the Kappa architecture. In this section we offer a brief
overview of the Apache Flink stack, the main entities that implement the core sys-
tem properties and some further insights behind its lightweight snapshot-based fault
tolerance mechanism.

4.1 The Apache Flink Stack

The Apache Flink system [26] offers a complete software stack of libraries for pro-
gramming and executing distributed dataflow applications as depicted in Fig. 13a.
At the core of the programming model, there are two main building blocks, exposed
as abstract data types, one for streams (DataStream API) and one for finite sets

Fig. 13 An overview of the Apache Flink stack and architecture

Large-Scale Data Stream … 249

(DataSet API). In Sect. 2, we offered a brief overview of the capabilities of func-
tional APIs like the DataStream API, alongside other known programming models;
whereas herewewill focus on the big picture first and then explain how such a system
is architectured by analyzing in more detail its snapshotting capabilities.

The users of Apache Flink can either specify data transformations using the core
APIs or declare computation logic using one of the higher level libraries. The high
level programming libraries of Flink are an example of the capabilities of a dataflow
processing system, by exposing data representations such as relational, graph, event-
based (complex event processing) and machine learning constructs over a single run-
time. Programs written in any of these domain specific libraries translate into stream
or set transformations. From there, all transformations are analyzed and translated
further into logical dataflow operators and finally into an optimized, physical graph
of tasks.

4.2 The Apache Flink System Architecture

There are three main runtime components involved in the compilation and execution
of a dataflow graph, as sdepicted in Fig. 13b. The general architecture resembles
characteristics from other principal system designs such assssss Hadoop [1]. First, a
client component is responsible for compiling and optimizing operators (e.g., map,
reduce, window) into dataflow tasks and then submitting an execution graph for exe-
cution at the Job Manager. The Job Manager has the role of the master node, as in
most typical distributed computing systems and handles job execution and monitor-
ing. It schedules individual tasks to Task Managers and collects meta-information
about the execution. The Task Managers are the workers and are responsible for
managing local resources such as slots and memory allocation throughout the con-
tinuous execution of a dataflow job. Tasks can snapshot their internal state as we
will see next in Sect. 4.3, and Flink provides a modular pluggable interface for many
types of storage back-ends that can be used for that purpose (e.g., Native RocksDB,
HDFS, in-memory). Finally, Flink guarantees high availability at the Job Manager
level (which suffices for maintaining a continuous uninterrupted execution). That
means that the Job Manager is not a single point of failure, and standby processes
can take over its role at any time whenever it fails. The distributed coordination and
crucial state needed for recovering all job executions are both handled by Zookeeper,
a distributed open-source system that is used for coordinating distributed operations
that involve locking and leader election.

4.3 Lightweight Asynchronous Snapshots

Aswehave seen in Sect. 3, there are different solutions for fault tolerance in streaming
dataflow systems. As a fault tolerance example, we show how state snapshotting

250 P. Carbone et al.

Fig. 14 Distributed snapshots as cuts

works in Flink. We briefly describe preliminary concepts (e.g., snapshots, cuts and
halting snapshots), then the asynchronous snapshotting algorithm (ABS) applied by
Flink.

Snapshots as Cuts. Chandy and Lamport first defined distributed snapshots [35] in
themost general case as cuts in the timeline of events exchangedbetween independent
processes. We depict some example cuts in Fig. 14. Each line depicts the timeline of
a process, and arrows represent messages sent and delivered across processes. A cut
can, therefore, be depicted as a line that crosses all process timelines. The content
of a snapshot is the current internal state of each process at the point in its timeline
that the cut crosses.

If a distributed snapshot is taken “correctly,” one can simply reset a full distributed
system from that exact snapshot seamlessly. A correct snapshot, however, needs a
more precise definition. Intuitively, the state we persist within a cut should reflect
a valid execution for a correct snapshot. According to Chandy and Lamport [35]
that can be only true when all prior actions that resolve into a process state are also
reflected in the cut. These prior actions are also known as “causal dependencies.”
Figure14 illustrates what a consistent cut is, in a simplistic way. The first (green)
cut in Fig. 14 is correct, since all causal dependencies are reflected in the state, i.e.,s
every event that was received had also been sent according to that cut. The second
cut is incorrect, since the snapshotted state of process p5 depends on receiving an
event that was never sent by p1 according to the same cut.

Halting Snapshots. This notion of distributed snapshots is fundamentally suitable
for dataflow graphs. Microsoft’s Naiad [73] was one of the first known distributed
dataflow systems that applied snapshotting to implement fault tolerance. The idea
was to halt the whole graph execution, then persist all process states and events
in transit, and finally continue back to normal execution. The problem with that
approach is, evidently, that it violates the most important property of streaming
systems: continuous, uninterrupted processing.

Asynchronous Snapshots. The problem of execution halting motivated the idea of
AsynchronousBarrier Snapshotting (ABS) [27], the algorithmbehindApacheFlink’s
fault tolerance mechanism. As the name implies, the goal is to take a consistent
snapshot asynchronously, without halting the system execution. To do this under
regular data ingestion, one has to superimpose the snapshotting process while tasks

Large-Scale Data Stream … 251

Fig. 15 Halting versus asynchronous snapshots

consume and process records. The ABS algorithm achieves that while minimizing
the size of the required state. The basic idea is to intermix data records with barriers
that are injected at the sources of the dataflow graph, and then subsequently visit
the rest of the tasks in topological order while triggering state writes to external
persistent storage.

The difference between Naiad’s halting approach and the ABS approach can be
seen in Fig. 15. One important property visualized in the figure is that no records
in transit are part of the cut, i.e. no arrow is being overwritten by the cut line. That
is a pleasant side effect of the ABS algorithm, and occurs because the snapshotting
process is pipelined topologically, thus there is no need for buffering pending records
while waiting for any termination condition (see Chandy and Lamport’s approach
[35]).

The asynchronous snapshotting algorithmwas first implemented onApache Flink
and is managed by the Job Manager node. Periodically, the Job Manager initiates
a snapshot phase for each running execution graph. The special barriers mentioned
before are injected into each respective partitioned data stream starting from the
sources and all tasks independently snapshot their state and acknowledge the com-
pletion of their local snapshot to the Job Manager, along with a reference to their
replicated state (which can be datastore specific). Once all tasks have acknowledged
their success, the Job Manager marks the snapshot as complete, and can consider it
as a valid savepoint for recovery.

We depict the whole snapshotting process in detail in Fig. 16. In that figure we
visualize all steps and state that is involved during checkpointing. On the left we
can see a distributed data stream of records enriched with checkpoint barriers (in
that case the barriers of the n + 1 snapshot). The current tasks in the DAG that have
already checkpointed their internal state in the current snapshot (n) have a red color
while the pending tasks are yellow.

One important detail in the algorithm is its aligning phase. When tasks have
multiple inputs, they “align” their input consumption, by blocking channels where
they have already received barriers. This way they ensure that all causal dependencies
are consumed before proceeding to snapshotting and propagating the barriers further.
In the example of Fig. 16 the two last tasks of the DAG (known as sinks) have entered
their aligning phase. When a global snapshot is complete it is being persisted and
available at the system runtime’s disposal in case a rollback is needed. On the right

252 P. Carbone et al.

Fig. 16 An illustration of the ABS algorithm in Apache Flink

side of Fig. 16we can observe a number of global snapshots that are beingmaintained
at the Job Manager (in the form of metadata).

Recovering from Snapshots The recovery process from a snapshot is straightfor-
ward. The JobManager first selects the latest, complete snapshot and then injects the
state handles to the newly scheduled tasks. Every task retrieves its old state before
starting its regular execution, which it sets as its initial state. Finally, all dataflow
sources have to start generating records from where they were left during their snap-
shot. A typical approach to solve this problem is to use a persistent log such as Kafka
and store the current offset read so far to the task state.

For example, consider again Fig. 16. If a task failure occurs while executing snap-
shot n, the systemwill instantly restart the execution graph from the states pinpointed
by snapshot n − 1, since it is the last complete savepoint the systemhas at that point in
time. In addition, it is required by the sources of the execution graph to rollback their
ingestion to the input stream offset that they once had saved upon persisting snapshot
n − 1. Background tasks of the system execute any appropriate garbage collection
by removing older snapshots while also asynchronously persisting in Zookeeper all
the meta-information required to fully recover the Apache Flink master with a valid
view of the pipelines executed.

5 Applications, Trends and Open Challenges

Data stream processing is still a rapidly evolving domain in data management. At
one hand, systems incorporate new abilities that enable new types of applications
and services to build on top. On the other hand, new types of applications and needs
inspire the development of more sophisticated features both related to programming
models and system abilities and guarantees.

Large-Scale Data Stream … 253

Perhaps the most well-known trends in data stream processing systems are the
unification of batch and streamprocessors, efficient pipelining, and stream state expo-
sure. However, in this section, we will focus on a few unconventional, yet emergent
challenges in data stream processing hidden behind the spotlight, and offer further
insights and directions on how to achieve them.

5.1 Graph Stream Processing

The domain of graph analytics efforts are currently split between dynamic graph
database management systems (e.g., Neo4j [87]) and static graph processing frame-
works (e.g., GraphX [88], Pregel [69] and GraphChi [62]). The most significant
downside of the current state of the art is the focus on static graph snapshots, disre-
garding the fundamentally dynamic nature of graph-structured data. One can easily
spot the potential for a direct, continuous ingestion of a graph (e.g., as a stream
of edges)ssssss. Users in social networks relate to other users via actions such as
likes, reposts, tweet mentions, friend requests etc. Such actions can be processed and
pipelined within a composite and complex graph processing task.

The idea of processing graph data in a streaming fashion has been studied exten-
sively in the past under different contexts, the semi-streaming model [18, 46, 81]
being one of the most studied ones. According to that model, several common graph
properties can be derived in a single pass. Some examples of common properties
and aggregations where this applies are: bipartiteness checks, shortest paths estima-
tion, degrees, triangle and triangle counts, among others. The best-effort, low-latency
computation of such complex properties can offer many benefits in the future. For
example, we can achieve efficient adaptive routing in software defined networks
(SDNs), hotspot and fraud detection in network security, and influence or epidemics
estimation in very large networks of human-generated data.

This paradigm shift in graph analytics can be achieved through two main direc-
tions: efficient summary data structures for graph data, and effective integration
and support in existing data stream processing systems. For summaries and data
structures, there is a plethora of existing approaches to be leveraged and extended,
each targeting different graph approximations such as spanners and sparsifiers
[8, 76]. The general idea is that by using such internal representationswe can compact
and continuously update compressed graph state while also maintaining some spe-
cific properties. For example, graph spanners [76] are sparse subgraphs that preserve
approximate distance information between each pair of vertices that have appeared
in the graph thus far.

As always, for implementing and extending such novel graph processing tech-
niques, there should be proper system support. Current stream processors lack even a
basic programmingmodel for incorporating graph stream semantics. Existing graph-
centered programming models and libraries such as Pregel [69] and GraphX [88] are
architected around iteratively processing finite sets of data such as adjacency lists,
which makes the adaptation of a stream-centered model hard to achieve. A few initial

254 P. Carbone et al.

approaches such as CellIQ [57] and Chronos [51] present an intermediate step for
incremental graph processing, that is based on continuous snapshots under coarse
window processing constraints. Nevertheless, there is as of yet no programming
model that operates at the granularity of individual events that allows for flexible
graph state representations and aggregations. We strongly believe that such a direc-
tion can impact the graph processing domain and change the way we think about
complex data.

5.2 Online Learning

Machine learning (ML) techniques are becoming increasingly mainstream and an
integral part of modern analytics pipelines. The streaming execution poses several
attractive benefits in ML such as low latency in model building, however, it also
brings new challenges. First and foremost, the majority of existing ML techniques
that originally operate on static data sets are inapplicable. That is mainly due to their
bounded data assumptions (e.g., ss knowing all possible data points for clustering,
or the inability to incorporate concept drift adaptation when dynamic changes occur
in the data)sss.

Among systems for online learning, Weka Online, MOA [22] and Apache
SAMOA [42] serve as specialized programming libraries and offer a collection
of known algorithm implementations such as Vertical Hoeffding Trees and stream
clustering. Unfortunately, despite their unique features, the limited scope of these
frameworks, combinedwith exposure of non-declarative low-level system constructs
make their general adoption and integration with wider analytical pipelines a chal-
lenging task. Apache SAMOA is the only system currently that achieves large scale
deployments for online ML, and it does so by using known dataflow-based stream
processors as runners (e.g.,s Apache Storm, Flink and Samza).

Finally, upcoming programming models for online ML should incorporate con-
cept drift as a first class citizen, that is, the gradual change in the distribution of
values exhibited as a stream. That is a vital property for ML system pipelines that
can potentially operate continuously. Many classes of online learning algorithms
would need to be revisited and designed with that concept in mind. There are a few
noteworthy examples towards that direction such as adaptive stream windows [21],
which consider concept drift in discretizing evolving streams based on data trends.

5.3 Complex Event Processing

To derive useful information from data streams, we often have to detect patterns in
events. A mobile phone network operator can benefit from building a custom stream
processing application that analyzes the operation of its systems. Cellular networks

Large-Scale Data Stream … 255

consist of lots of different types of network nodes, which all produce network logs in
different formats. Manually making sense of all of that information when debugging
a problem can be hard.

Complex event processing (CEP) aids the development of such applications [68]. It
focuses on identifying important events, such as failures and business opportunities,
and reacting to them as soon as possible. At a network operator, for instance, it
could be important to detect the situation when there are lots of call drops in a
certain geographical area. A CEP application might generate an alert to the engineers
working in the network operations center, and it can even supply themwith additional
information. For example, it can take all log entries that contain information about
call drops, group them by a reason code field, and perform a counting aggregation
to help with identifying the root cause of the problem.

Distributed data stream processing systems could help managing a large amount
of such event data. Future work in this area includes providing a rich set of features
for CEP for the open source systems discussed here. However, there are efforts in that
direction. For example, Apache Flink now provides a CEP API in their 1.0 version.

6 Conclusions and Outlook

In this chapter we focused on data stream processing, an increasingly popular para-
digm in the general field of data management. The applications of stream processing
are vast and vary from computing rolling aggregations to building extremely complex
data pipelines consisting of asynchronous microservices. The emergence of distrib-
uted, durable logs and their universal adoption in modern data processing backends
inspired the creation of sophisticated stream processors with strong processing guar-
antees and rich programming models. Modern stream processing systems are able
to manage application state fault tolerance as well as efficient partitioning transpar-
ently without human intervention. Furthermore, many data stream processing sys-
tems today can support different notions of time and serialize operations consistently
under such time assumptions.

We have shown programming abstractions for implementing distributed stream
processing applications: a programming model for lower-level dataflows, a model
for higher-level functional APIs, and windowing abstractions, which help processing
infinite datasets by partitioning them into finite subsets.

We have also seen in detail a universal executionmodel for data streamprocessing,
the dataflow graph, which models stateful operators and data dependencies between
them. However, we have seen that continuous processing can also be emulated on
widespread batch processing systems using time-discretized micro-batching tech-
niques. Existing runtime engines for data stream processing can effectively deal
with the need for flow control using backpressure mechanisms and often can opti-
mize the physical execution of dataflow graph by applying several optimisations such
as operator sharing and task fusion.

256 P. Carbone et al.

Wemade a deep dive intoApache Flink, one of themost popular streamprocessing
systems today, and reasoned about its architecture. Flink is an example of using a
stream processing architecture as the basis for any distributed computation, including
the execution of batch processing tasks efficiently. We further motivated the need for
lightweight state management mechanisms and offered some deep intuition behind
ABS,Apache Flink’s snapshottingmechanism. The combination of durable logswith
repeatable computations in stream processing systems suffices to achieve exactly
once processing guarantees. Recovery from distributed state snapshots achieves that
in a lightweight way.

Finally, we went through different future directions in the field and analyzed a
few special cases with eminent challenges. We envisioned on-line graph process-
ing capabilities that can currently be implemented in several modern systems for
stream processing. A combination of efficient approximate data structures for graph
processing with rich expressive capabilities for streaming computation by modern
stream processors can offer disruptive solutions in the field of graph and complex
data analytics. Online machine learning (ML) and stream mining can also benefit
from several recent developments in the field. A need for declarative MLmodels and
proper integration with high level stream processing semantics are needed in order
to achieve a broader integration with analytical pipelines. Furthermore, concept drift
is a crucial aspect of stream mining that needs to be an integral part in new potential
programming model.

The evolution of stream processors is far from done. In the following years we
are going to see more standardization and broader integration of such systems for
general use in analytics pipelines. Furthermore, dedicated programming libraries for
graph processing, complex event processing and other domain-specific usages will
proliferate, thus, shifting many processing tasks from bulk to low latency streaming.
We foresee a great interdisciplinary benefit of adopting stream processors in the
industry. We also expect a potential, yet gradual replacement of database and batch
processing technologies with unified data stream processing systems. The generality
and simplicity of distributed dataflow systems can be a main driver for adoption
and a good solution to the highly diverse and complex data processing ecosystem
nowadays.

References

1. Apache Hadoop project, https://hadoop.apache.org/
2. Apache Kafka project, http://kafka.apache.org/
3. Apache Samza project, http://samza.apache.org/
4. Apache Spark project, http://spark.apache.org/
5. Apache Storm project, http://storm.apache.org/
6. D.J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, M. Stonebraker,

N. Tatbul, S. Zdonik, Aurora: a new model and architecture for data stream management, in
VLDBJ (2003)

https://hadoop.apache.org/
http://kafka.apache.org/
http://samza.apache.org/
http://spark.apache.org/
http://storm.apache.org/

Large-Scale Data Stream … 257

7. D.J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M. Cherniack, J.H. Hwang, W. Lindner,
A. Maskey, A. Rasin, E. Ryvkina et al., The design of the Borealis stream processing engine,
in CIDR (2005)

8. K.J. Ahn, S. Guha, A. McGregor, Graph sketches: sparsification, spanners, and subgraphs, in
Proceedings of the 31st symposium on Principles of Database Systems. ACM (2012), pp. 5–14

9. T. Akidau, A. Balikov, K. Bekiroglu, S. Chernyak, J. Haberman, R. Lax, S. McVeety, D. Mills,
P. Nordstrom, S. Whittle, MillWheel: Fault-tolerant stream processing at internet scale, in
VLDB (2013)

10. T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R.J. Fernández-Moctezuma, R. Lax,
S. McVeety, D. Mills, F. Perry, E. Schmidt et al, The dataflow model: a practical approach
to balancing correctness, latency, and cost in massive-scale, unbounded, out-of-order data
processing, in VLDB (2015)

11. A. Alexandrov, R. Bergmann, S. Ewen, J.C. Freytag, F. Hueske, A. Heise, O. Kao, M. Leich,
U. Leser, V. Markl et al., The Stratosphere platform for big data analytics. VLDB J. - Int. J.
Very Large Data Bases 23(6), 939–964 (2014)

12. A. Alexandrov, A. Kunft, A. Katsifodimos, F. Schüler, L. Thamsen, O. Kao, T. Herb, V. Markl,
Implicit parallelism through deep language embedding, in ACM SIGMOD (2015), pp. 47–61

13. A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. Datar, K. Ito, R. Motwani, U. Srivastava, J.
Widom, Stream: The stanford data stream management system, Book chapter (2004)

14. A. Arasu, M. Cherniack, E. Galvez, D. Maier, A.S. Maskey, E. Ryvkina, M. Stonebraker, R.
Tibbetts, Linear road: a stream data management benchmark. in Proceedings of the Thirtieth
International Conference on Very Large Data Bases, VLDB Endowment, vol. 30 (2004), pp.
480–491

15. A. Arasu, S. Babu, J. Widom, The CQL continuous query language: semantic foundations and
query execution, in VLDBJ (2006)

16. M. Balazinska, H. Balakrishnan, S.R. Madden, M. Stonebraker, Fault-tolerance in the Borealis
distributed stream processing system. ACM Trans. Database Syst. (TODS) 33(1), 3 (2008)

17. M. Balazinska, J.H. Hwang, M.A. Shah, Fault-tolerance and high availability in data stream
management systems., in Encyclopedia of Database Systems (Springer, 2009), pp. 1109–1115

18. L. Becchetti, P. Boldi, C. Castillo, A. Gionis, Efficient semi-streaming algorithms for local
triangle counting in massive graphs, in Proceedings of the 14th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (ACM, 2008), pp. 16–24

19. Benchmarking streaming computation engines at Yahoo! https://yahooeng.tumblr.com/post/
135321837876/benchmarking-streaming-computation-engines-at

20. T. Bernhardt, A. Vasseur,Esper: Event StreamProcessing andCorrelation. ON-Java (O’Reilly,
Springfield, 2007)

21. A. Bifet, R. Gavaldà, Adaptive learning from evolving data streams, in Advances in Intelligent
Data Analysis VIII (Springer, Berlin, 2009), pp. 249–260

22. A. Bifet, G. Holmes, R. Kirkby, B. Pfahringer, Moa: Massive online analysis. J. Mach. Learn.
Res. 11, 1601–1604 (2010)

23. I. Botan, R. Derakhshan, N. Dindar, L. Haas, R.J.Miller, N. Tatbul, Secret: Amodel for analysis
of the execution semantics of stream processing systems, in VLDB (2010)

24. L. Brenna, A. Demers, J. Gehrke, M. Hong, J. Ossher, B. Panda, M. Riedewald, M. Thatte, W.
White, Cayuga: a high-performance event processing engine, in Proceedings of the 2007 ACM
SIGMOD International Conference on Management of Data (ACM, 2007), pp. 1100–1102

25. P. Carbone, K. Vandikas, F. Zaloshnja, Towards highly available complex event processing
deployments in the cloud, in Seventh International Conference on Next Generation Mobile
Apps, Services and Technologies (NGMAST) (IEEE, 2013), pp. 153–158

26. P. Carbone, S. Ewen, S. Haridi, A. Katsifodimos, V. Markl, K. Tzoumas, Apache Flink: Stream
and batch processing in a single engine. IEEE Data Engineering Bulletin (2015)

27. P. Carbone, G. Fóra, S. Ewen, S. Haridi, K. Tzoumas, Lightweight asynchronous snapshots for
distributed dataflows (2015). arXiv preprint arXiv:1506.08603

28. P. Carbone, J. Traub, A. Katsifodimos, S. Haridi, V. Markl, Cutty: Aggregate sharing for user-
defined windows, in Proceedings of the 25th ACM International on Conference on Information
and Knowledge Management (ACM, 2016)

https://yahooeng.tumblr.com/post/135321837876/benchmarking-streaming-computation-engines-at
https://yahooeng.tumblr.com/post/135321837876/benchmarking-streaming-computation-engines-at
http://arxiv.org/abs/1506.08603

258 P. Carbone et al.

29. A. Carzaniga, D.S. Rosenblum, A.L. Wolf, Design and evaluation of a wide-area event notifi-
cation service. ACM Trans. Comput. Syst. (TOCS) 19(3), 332–383 (2001)

30. R. Castro Fernandez, M. Migliavacca, E. Kalyvianaki, P. Pietzuch, Integrating scale out and
fault tolerance in stream processing using operator state management, in Proceedings of the
2013 ACM SIGMOD international conference on Management of data (ACM, 2013), pp. 725–
736

31. U. Cetintemel, J. Du, T. Kraska, S. Madden, D. Maier, J. Meehan, A. Pavlo, M. Stonebraker, E.
Sutherland, N. Tatbul et al., S-store: A streaming newSQL system for big velocity applications.
Proc. VLDB Endow. 7(13), 1633–1636 (2014)

32. C. Chambers, A. Raniwala, F. Perry, S. Adams, R.R. Henry, R. Bradshaw, N. Weizenbaum,
FlumeJava: easy, efficient data-parallel pipelines, in ACM Sigplan Notices, vol. 45 (ACM,
2010), pp. 363–375

33. B. Chandramouli, J. Goldstein, M. Barnett, R. DeLine, D. Fisher, J.C. Platt, J.F. Terwilliger, J.
Wernsing, Trill: A high-performance incremental query processor for diverse analytics. Proc.
VLDB Endow. 8(4), 401–412 (2014)

34. S. Chandrasekaran, O. Cooper, A. Deshpande, M.J. Franklin, J.M. Hellerstein, W. Hong, S.
Krishnamurthy, S.R.Madden, F. Reiss,M.A. Shah, TelegraphCQ: continuous dataflowprocess-
ing, in Proceedings of the 2003 ACM SIGMOD International Conference on Management of
Data (ACM, 2003), pp. 668–668

35. K.M. Chandy, L. Lamport, Distributed snapshots: determining global states of distributed
systems. ACM Trans. Comput. Syst. (TOCS) 3(1), 63–75 (1985)

36. F. Chang, J. Dean, S. Ghemawat,W.C. Hsieh, D.A.Wallach,M. Burrows, T. Chandra, A. Fikes,
R.E. Gruber, Bigtable: A distributed storage system for structured data. ACM Trans. Comput.
Syst. (TOCS) 26(2), 4 (2008)

37. J. Chen, D.J. DeWitt, F. Tian, Y. Wang, Niagaracq: A scalable continuous query system for
internet databases, in SIGMOD Record (ACM, 2000)

38. M.Cherniack,H.Balakrishnan,M.Balazinska,D.Carney,U.Cetintemel,Y.Xing, S.B. Zdonik,
Scalable distributed stream processing. CIDR. 3, 257–268 (2003)

39. T. Condie, N. Conway, P. Alvaro, J.M. Hellerstein, K. Elmeleegy, R. Sears, Mapreduce online.
NSDI. 10, 20 (2010)

40. G. Cugola, A. Margara, Processing flows of information: From data stream to complex event
processing. ACM Comput. Surv. (CSUR) 44(3), 15 (2012)

41. U. Dayal, B. Blaustein, A. Buchmann, U. Chakravarthy, M. Hsu, R. Ledin, D. McCarthy, A.
Rosenthal, S. Sarin, M.J. Carey et al., The HiPAC project: Combining active databases and
timing constraints. ACM Sigmod Rec. 17(1), 51–70 (1988)

42. G. De FrancisciMorales, A. Bifet, Samoa: Scalable advancedmassive online analysis. J.Mach.
Learn. Res. 16(1), 149–153 (2015)

43. J. Dean, S. Ghemawat, Mapreduce: simplified data processing on large clusters. Commun.
ACM 51(1), 107–113 (2008)

44. N. Dindar, N. Tatbul, R.J. Miller, L.M. Haas, I. Botan, Modeling the execution semantics of
stream processing engines with secret. VLDB J. 22(4), 421–446 (2013)

45. D. Elin, T. Risch, Amos II java interfaces. Uppsala University report (2000)
46. J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, J. Zhang, On graph problems in a semi-

streaming model. Theor. Comput. Sci. 348(2), 207–216 (2005)
47. R.C. Fernandez, M. Migliavacca, E. Kalyvianaki, P. Pietzuch, Making state explicit for imper-

ative big data processing, in Proceedings of the 2014 USENIX Annual Technical Conference
(USENIX ATC 14) (2014), pp. 49–60

48. S. Gatziu, K.R. Dittrich, Samos: An active object-oriented database system. IEEE Data Eng.
Bull. 15(1–4), 23–26 (1992)

49. B. Gedik, Partitioning functions for stateful data parallelism in stream processing. VLDB J.
23(4), 517–539 (2014)

50. Google Cloud Dataflow, https://cloud.google.com/dataflow/
51. W. Han, Y. Miao, K. Li, M.Wu, F. Yang, L. Zhou, V. Prabhakaran, W. Chen, E. Chen, Chronos:

a graph engine for temporal graph analysis, in Proceedings of the Ninth European Conference
on Computer Systems (ACM, 2014), p. 1

https://cloud.google.com/dataflow/

Large-Scale Data Stream … 259

52. B. He, M. Yang, Z. Guo, R. Chen, B. Su, W. Lin, L. Zhou, Comet: batched stream processing
for data intensive distributed computing, in Proceedings of the 1st ACM Symposium on Cloud
Computing (ACM, 2010), pp. 63–74

53. M.Hirzel,H.Andrade,B.Gedik,V.Kumar,G. Losa,M.Nasgaard,R. Soule,K.Wu, SPL stream
processing language specification. NewYork: IBMResearchDivisionTJ. WatsonResearchCen-
ter, IBM ResearchReport: RC24897 (W0911–044) (2009)

54. M. Hirzel, H. Andrade, B. Gedik, G. Jacques-Silva, R. Khandekar, V. Kumar, M. Mendell, H.
Nasgaard, S. Schneider, R. Soulé et al., IBM streams processing language: analyzing big data
in motion. IBM J. Res. Develop. 57(3/4), 7–1 (2013)

55. M. Hirzel, R. Soulé, S. Schneider, B. Gedik, R. Grimm, A catalog of stream processing opti-
mizations. ACM Comput. Surv. (CSUR) 46(4), 46 (2014)

56. Introduction to Kafka Streams, http://www.confluent.io/blog/introducing-kafka-streams-
stream-processing-made-simple

57. A. Iyer, L.E. Li, I. Stoica, CellIQ: real-time cellular network analytics at scale, in 12th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 15) (2015), pp. 309–322

58. R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S. Zdonik, E.P. Jones, S. Madden, M.
Stonebraker, Y. Zhang et al., H-store: a high-performance, distributedmainmemory transaction
processing system. Proc. VLDB Endow. 1(2), 1496–1499 (2008)

59. K. Karanasos, A. Katsifodimos, I. Manolescu, Delta: Scalable data dissemination under capac-
ity constraints. Proc. VLDB Endow. 7(4), 217–228 (2013)

60. J. Kreps, N. Narkhede, J. Rao et al, Kafka: A distributed messaging system for log processing.
NetDB (2011)

61. S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg, S. Mittal, J.M. Patel, K. Ramasamy,
S. Taneja, Twitter Heron: Stream processing at scale, in ACM SIGMOD (2015)

62. A. Kyrola, G. Blelloch, C. Guestrin, Graphchi: Large-scale graph computation on just a pc, in
Presented as part of the 10th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 12) (2012), pp. 31–46

63. A. Lakshman, P. Malik, Cassandra: a decentralized structured storage system. ACM SIGOPS
Oper. Syst. Rev. 44(2), 35–40 (2010)

64. J. Li, D. Maier, K. Tufte, V. Papadimos, P.A. Tucker, Semantics and evaluation techniques for
window aggregates in data streams, in ACM SIGMOD (2005)

65. L. Liu, C. Pu, W. Tang, Continual queries for internet scale event-driven information delivery.
IEEE Trans. Knowl. Data Eng. 11(4), 610–628 (1999)

66. Y. Liu, B. Plale et al., Survey of publish subscribe event systems. Computer Science Dept,
Indian University 16 (2003)

67. D. Logothetis, C. Olston, B. Reed, K.C. Webb, K. Yocum, Stateful bulk processing for incre-
mental analytics, in Proceedings of the 1st ACM Symposium on Cloud Computing (ACM,
2010), pp. 51–62

68. D. Luckham, The power of events, vol. 204 (Addison-Wesley Reading, Boston, 2002)
69. G. Malewicz, M.H. Austern, A.J. Bik, J.C. Dehnert, I. Horn, N. Leiser, G. Czajkowski, Pregel:

a system for large-scale graph processing, in Proceedings of the 2010 ACM SIGMOD Interna-
tional Conference on Management of Data (ACM, 2010), pp. 135–146

70. N.Marz, J.Warren,BigData: Principles and Best Practices of Scalable RealtimeData Systems
(Manning Publications Co., Greenwich, 2015)

71. D. Mishra, SNOOP: an event specification language for active database systems. Ph.D. thesis,
University of Florida (1991)

72. S.S. Muchnick, Advanced Compiler Design Implementation (Morgan Kaufmann, Burlington,
1997)

73. D.G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, M. Abadi, Naiad: a timely dataflow
system, in ACM SOSP (2013)

74. L. Neumeyer, B. Robbins, A. Nair, A. Kesari, S4: Distributed stream computing platform, in
Proceedings of the 2010 IEEE International Conference on Data Mining Workshops (IEEE,
2010), pp. 170–177

http://www.confluent.io/blog/introducing-kafka-streams-stream-processing-made-simple
http://www.confluent.io/blog/introducing-kafka-streams-stream-processing-made-simple

260 P. Carbone et al.

75. K. Patroumpas, T. Sellis, Window specification over data streams, in Current Trends in Data-
base Technology–EDBT 2006 (Springer, Berlin, 2006), pp. 445–464

76. D. Peleg, A.A. Schäffer, Graph spanners. J. Graph Theory 13(1), 99–116 (1989)
77. M.A. Shah, J.M. Hellerstein, S. Chandrasekaran, M.J. Franklin, Flux: An adaptive partitioning

operator for continuous query systems, in Proceedings of the 19th International Conference
on Data Engineering (IEEE, 2003), pp. 25–36

78. M.A. Shah, J.M. Hellerstein, E. Brewer, Highly available, fault-tolerant, parallel dataflows, in
Proceedings of the 2004 ACM SIGMOD International Conference on Management of Data
(ACM, 2004), pp. 827–838

79. U. Srivastava, J. Widom, Flexible time management in data stream systems. in Proceedings
of the Twenty-Third ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems (ACM, 2004), pp. 263–274

80. StreamBase I: Streambase: Real-time, low latency data processing with a stream processing
engine (2006)

81. J. Thaler, Semi-streaming algorithms for annotated graph streams (2014). arXiv preprint
arXiv:1407.3462

82. The Apache APEX project, https://www.datatorrent.com/apex/
83. The Apache Beam System, https://wiki.apache.org/incubator/BeamProposal
84. The Kappa Architecture by Jay Kreps, http://milinda.pathirage.org/kappa-architecture.com/
85. The Trident Stream Processing Programming Model, http://storm.apache.org/releases/0.10.0/

Trident-tutorial.html
86. A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J.M. Patel, S. Kulkarni, J. Jackson, K.

Gade, M. Fu, J. Donham et al, Storm @ Twitter, in Proceedings of the 2014 ACM SIGMOD
International Conference on Management of Data (ACM, 2014), pp. 147–156

87. J.Webber, A programmatic introduction toNeo4j, inProceedings of the 3rd Annual Conference
on Systems, Programming, and Applications: Software For Humanity (ACM, 2012), pp. 217–
218

88. R.S. Xin, J.E. Gonzalez, M.J. Franklin, I. Stoica, GraphX: A resilient distributed graph sys-
tem on Spark, in First International Workshop on Graph Data Management Experiences and
Systems (ACM, 2013), p. 2

89. M. Zaharia, M. Chowdhury, M.J. Franklin, S. Shenker, I. Stoica, Spark: Cluster computing
with working sets. HotCloud 10, 10–10 (2010)

90. M. Zaharia, T. Das, H. Li, S. Shenker, I. Stoica, Discretized streams: an efficient and fault-
tolerant model for stream processing on large clusters, in Proceedings of the 4th USENIX
Conference on Hot Topics in Cloud Ccomputing (USENIX Association, 2012), pp. 10–10

http://arxiv.org/abs/1407.3462
https://www.datatorrent.com/apex/
https://wiki.apache.org/incubator/BeamProposal
http://milinda.pathirage.org/kappa-architecture.com/
http://storm.apache.org/releases/0.10.0/Trident-tutorial.html
http://storm.apache.org/releases/0.10.0/Trident-tutorial.html

Part II
Semantic Big Data Management

Semantic Data Integration

Michelle Cheatham and Catia Pesquita

Abstract The growing volume, variety and complexity of data being collected for
scientific purposes presents challenges for data integration. For data to be truly useful,
scientists need not only to be able to access it, but also be able to interpret and
use it. Doing this requires semantic context. Semantic Data Integration is an active
field of research, and this chapter describes the current challenges and how existing
approaches are addressing them. The chapter then provides an overview of several
active research areas within the semantic data integration field, including interactive
and collaborative schema matching, integration of geospatial and biomedical data,
and visualization of the data integration process. Finally, the need tomove beyond the
discovery of simple 1-to-1 equivalencematches to the identification ofmore complex
relationships across datasets is presented and possible first steps in this direction are
discussed.

1 An Important Challenge

The world around us is an incredibly complex and interconnected system – one
filled with phenomena that cannot be understood in isolation. At the same time, the
volume and complexity of the data, theory, and models established to explain these
phenomena have led scientists to specialize further and further, to the point where
many researchers now spend their entire careers on extremely narrow topics, such as
the characteristics of oneparticular class of star, or the habits of a single species of fish.
While such specialization is important to increase humanity’s depth of knowledge
about many subjects, some of the greatest leaps forward in our understanding come
at the intersection of traditional scientific disciplines. These advances require the

M. Cheatham (B)
DaSe Laboratory, Wright State University, Dayton, OH, USA
e-mail: michelle.cheatham@wright.edu

C. Pesquita
Universidade de Lisboa, Lisbon, Portugal
e-mail: cpesquita@di.fc.ul.pt

© Springer International Publishing AG 2017
A.Y. Zomaya and S. Sakr (eds.), Handbook of Big Data Technologies,
DOI 10.1007/978-3-319-49340-4_8

263

264 M. Cheatham and C. Pesquita

integration of data from many different scientific domains, and this integration must
be done in a way that preserves the detail, uncertainty, and above all the context of
the data involved.

Preserving these properties can be achieved through semantic data integration,
a process through which semantically heterogeneous data can be integrated with
minimal loss of information. This type of data integration is particularly relevant
in domains where data models are diverse and entity properties are heterogeneous.
For instance, health information systems, and in particular medical records employ a
diversity of vocabularies to describe relevant entities. Health care facilities routinely
use different software providers for different aspects of their functioning (outpatient,
emergency, surgery, laboratory, billing, etc), each with their own set of vocabularies
that many times employ different labels and assign different properties to the same
entities. Moreover, the controlled vocabularies many times lack the information nec-
essary to understand the data they describe. For instance, if during an emergency
room visit the patient is assigned a primary diagnostic of “Acute upper respiratory
infection” using ICD-10, how can we understand that the results of the lab test “Virus
identified in Nose by Culture” coded using LOINC, are relevant for the diagnosis?
Semantic data integration can provide the means to achieve the meaningful integra-
tion of data necessary to support more complex analysis and conclusions.

Unfortunately, semantic data integration is a challenging proposition, particularly
for scientific data. Many obstacles stand in the way of synthesizing all of the data
about an entity.One of themost obvious of these is accessing the data in the first place.
Much of the data underpinning past and present scientific publications is not readily
accessible – it exists only in isolated databases, as files on a grad student’s computer,
or in tables within PDF documents. Moreover, there can be various obstacles to
retrieving this data, particularly due to a lack of consistency. For instance, some
repositories might be accessible via websites or structured query mechanisms while
others require a login and use of secure file transfer or copy protocols. Financial and
legal concerns also inhibit data integration. Some data might be stored in proprietary
databases or file formats that require expensive software licenses to read, and licenses
indicating what users are allowed to do with the data can be missing or restrictive,
resulting in legal uncertainty. These types of concerns led to a push towards Linked
Open Data, which is described in the next section.

Of course, accessibility is only the first step to semantic data integration. For data
to be truly useful, scientists need to be able to interpret and use it after they acquire
it. Doing this requires semantic context. By semantic context, we mean the situation
in which a term or entity appears. As a simple example, ‘chair’ would be considered
a piece of furniture if it was seen in close proximity to ‘couch’ and ‘table’, but as a
person if used in conjunction with ‘dean’ and ‘provost’. Similarly, if temperature is
included in a dataset that contains entirely Imperial units, it might be assumed to be
in Fahrenheit rather than Celsius, particularly if the values correspond to what might
be expected (e.g. values near 98◦ for body temperatures). In relational databases and
spreadsheets, semantic context is sometimes lacking because important information
about what the various data fields mean and how they relate to one another is often
implicit in the names of database tables and column headers, some of which are

Semantic Data Integration 265

incomprehensible to anyone other than the dataset’s creator. What is needed is a way
to express the semantic connections between different pieces of data in a way that is
expressive enough to capture nuanced relationshipswhile at the same time formalized
and restrictive enough to allow software as well as humans to make inferences based
on the links. Ontologies, described in Sect. 1.2, have been proposed for this purpose.

Even when data is made accessible by following the Linked Open Data prin-
ciples and is organized according to a machine-readable ontology, challenges still
remain. An ontology imposes order on a domain of interest, but order is in the eye
of the beholder: if five different publishers of the same type of data were tasked to
develop an ontology with which to structure their data, the result would very likely
be five different ontologies. One obvious approach is to try to get all data publishers
from a domain to agree on a single ontology. This tends to be unfeasible in many
instances, for example due to a provider’s data causing a logical inconsistency when
it is shoe-horned into the agreed upon ontology. A “one ontology to structure them
all” approach also conflicts with the inherently distributed paradigm championed by
the Semantic Web. An alternative to this strategy is to allow data providers to create
or choose whatever ontology best suits their data, and then to establish links that
encode how elements of this ontology relate to those within other ontologies.

Establishing semantic links between ontologies and the data sets that they organize
can be very difficult, particularly if the datasets are large and complex, as is routinely
the case in scientific domains. The fields of ontology alignment and co-reference
resolution seek to develop tools and techniques to facilitate the identification of links
between datasets. Scientific datasets are particularly challenging to align for several
reasons. Perhaps most obviously, such datasets can be extremely large, often over a
petabyte of data, which is more than enough to swamp most existing data integration
techniques. Additionally, scientific datasets generally have a spatiotemporal aspect,
but current alignment algorithms struggle with finding relationships across this type
of data because of the variety of ways to express it. For example, spatial regions
can be represented by geopolitical entities (whose borders change over time), by
the names of nearby points of interest, or by polygons whose points are given via
latitude and longitude. Similarly, issues pertaining to measurement resolution, time
zones, the international dateline, etc. can confuse the comparison of timestamps
of data observations. Furthermore, scientific datasets frequently involve data of very
differentmodalities, from audio recordings of dolphin calls to radar images of storms,
to spectroscopy of cellular organisms. Such data is also collected at widely differing
scales, from micrometers to kilometers. And oftentimes the data that needs to be
integrated is from domains with only a small degree of semantic overlap, as is the
case with, for example, one dataset containing information about NSF project awards
and another with the salinity values for ocean water collected during oceanography
cruises, several of which were funded by NSF.

We have identified a number of challenges in semantic data integration, namely:
the accessibility of the data; providing data with semantic context to support its inter-
pretation; and the establishment of meaningful links between data. These challenges

266 M. Cheatham and C. Pesquita

are expanded in the following subsections. Section2 addresses several state of the
art topics in semantic data integration, while Sect. 3 lays out the path forwards in this
area.

1.1 Linked Data

TimBerners-Lee originally envisioned a world wide web that is equally accessible to
both humans and computers [5]. Unfortunately, even after several decades we have
yet to make this vision a reality. When we look at a webpage today, say, one that
presents data about the publications of a group of researchers,we are likely to find that
data within an HTML table with columns containing headers such as “Researcher”,
“Title”, “Journal”, “Publication Year”, etc. If we additionally want to know which
researchers are publishing in journalswith a high impact factor,wewouldneed to look
for the journal’s title in the appropriate column of the table, search for the journal’s
website using a search engine, and find the impact factor on the journal’s website by
looking for it (hopefully) on the journal’s homepage. This is tedious for humans, but
extremely difficult for computers. For example, recognizing that the table contains
information about researchers’ publications and identifying the meaning of each of
the columns requires background knowledge and natural language processing, as
does realizing that a journal’s impact factor is not in the table. Pulling the journal’s
title out of the HTML table and submitting it to a search engine requires writing code
that depends on the format of the table and the API of the search engine, both of
which are likely to break if the website or search engine provider makes any changes
to those resources. After the query has been made, determining if a particular query
result actually contains the impact factor for the journal in question again requires
natural language processing. Furthermore, the provider of the data concerning these
researchers’ publications may not consent to its use for the type of analysis we seek
to perform.

Publishing information as linked data alleviates many of these challenges. Linked
data builds upon existing web standards such as HTTP, RDF, and URIs to create web
pages that are machine-readable and, ideally, machine-understandable. According to
Berners-Lee,1 the four rules of linked data are:

1. Use URIs to denote things.
2. Use HTTP URIs so that these things can be referred to and looked up (“derefer-

enced”) by people and user agents.
3. Provide useful information about the thing when its URI is dereferenced, lever-

aging standards such as RDF and SPARQL.
4. Include links to other related things (using their URIs) when publishing data on

the Web.

1http://www.w3.org/DesignIssues/LinkedData.html.

http://www.w3.org/DesignIssues/LinkedData.html

Semantic Data Integration 267

Linked data is generally published as RDF subject-predicate-object triples.
For instance, the following triple indicates an article with the URI cspublica-
tions.org/TheSemanticWeb was written by Tim Berners-Lee.

<www.w3.org/People/Berners-Lee>

swrc:author

<cspublications.org/TheSemanticWeb> .

Similarly, the triples below specify that the article is titled “The Semantic Web”,
that it was published in 2001, and that the journal it was published in has the URI
cspublications.org/ScientificAmerican.

<cspublications.org/TheSemanticWeb>

swrc:title

"The Semantic Web"@en .

<cspublications.org/TheSemanticWeb>

swrc:year

"2001"ˆˆxsd:date .

<cspublications.org/TheSemanticWeb>

swrc:journal

<scientificamerican.com> .

The expectation is that following the URI scientificamerican.com allows us to
learn more information about the journal in which this article was published even if
that information comes from an entirely different data source.

Publishing data as RDF rather than HTML separates information about data’s
meaning and context from information about how to format it for presentation. This
enables software applications to easily access the data. Additionally, it is possible to
express the terms of use for a data set as linked data as well, thus allowing software
agents to read and respect these constraints. While this detail is often overlooked,
legal issues are often as big of a hindrance to data re-use as technical concerns.
Fortunately, addressing this issue is not difficult. Many commonly used licenses have
already been encoded in RDF, and datasets can simply add the appropriate triple to
refer to them. For example, the triple below indicates that this dataset is available
according to the conditions of version 3.0 of the Creative Commons “Share-Alike”
license.

<cspublications.org/publications.rdf>

cc:license

<http://creativecommons.org/licenses/by-sa/3.0/> .

A very large amount of data has already been published as linked open data:
according to the most recent survey, there are hundreds of linked datasets, which

268 M. Cheatham and C. Pesquita

contain billions of facts about a wide variety of subjects, from music, to biology,
to social networks [93]. The website www.linkeddata.org contains pointers to many
such datasets. As the linked open data cloud continues to grow, the ability of data
providers to contextualize their data by linking it to already-existing data will encour-
age the creation of more linked data, creating a virtuous feedback loop.

Keeping with our example of medical records, recent work has transformed a
clinical datawarehouse into a semantic clinical datawarehouse by applying theLinked
Data principles [78]. This enabled clinical data to be integratedwith publicly available
biomedical repositories, enabling for instance the identification of disease genes.

1.2 Ontologies

Tom Gruber, one of the early voices on knowledge representation (and the creator of
Siri), defines an ontology as a “specification of a conceptualization.” He elaborates
that an ontology defines the concepts and relationshipswithin a domain [35]. Figure1
shows a snippet of the Semantic Web for Research Communities (SWRC) ontology
[105]. The subset of entities shown represent key concepts within the publication
domain. The entities shown in ovals, such as Person and Publication are called
classes. A class represents a grouping of objects with similar characteristics. Classes
are often arranged in a hierarchy using subclass relationships. For instance, in our

author editor

subClassOfsubClassOf

series

title year

hasName hasEmail

cites

worksAt

isAbout

Fig. 1 A snippet from the Semantic Web for resource community ontology

Semantic Data Integration 269

exampleArticle andProceedings are both subclasses ofPublication (i.e. everyArticle
is a Publication but not every Publication is an Article). An instance (also sometimes
called an individual) is a particular object. An instance has a type that is some class
within the ontology. For example, an instance of type Article may be Weaving the
Semantic Web and an instance of type Person may be Tim Berners-Lee. This is
somewhat analogous to classes and instances of those classes in object-oriented
programming languages. Relationships between instances, such as hasName and
author, are called properties. All properties are directed binary relations that map an
instancewith a type from the domain to something in the range. These are represented
as labeled arrows in Fig. 1, with the arrow pointing from the domain to the range.
Properties that map an instance to another instance (e.g. editor, which maps an
instance of type Person to an instance of type Proceedings) are object properties,
whereas properties that map an instance to a literal value (e.g. year, which maps an
instance of type Publication to a date value) are datatype properties. Common data
types include integers, doubles, strings, and dates. Both object properties and data
properties must involve an instance. A third type of property, called an annotation
property, can be used to describe relationships between any types of entities (e.g.
instances, classes or other properties).

Critically, an ontology should not require an agent, either human or computer, to
understand the entity labels in order to leverage the ontology for data publication or
consumption. Labels are human-centric, and the underlying goal of the SemanticWeb
is to put humans andmachines on equal footing. Instead of relying on labels to convey
meaning, the ontology designer should constrain the possible interpretation of entity
labels through judicious use of logical axioms. For example, DBPedia, the linked data
version of Wikipedia, contains a property called hasGender. The vast majority of
uses of this property are to express a person’s gender. However, because the domain
and range of this property are very vague (i.e. any Thing can have a gender), some
of the uses of hasGender are very different. For instance, DBPedia asserts that the
name “Alexander” hasGender “Alexandria” and that a secondary school in England
hasGender “unisex education.” This can cause difficulty for software applications
that are attempting to use the hasGender property.Misunderstandings can be avoided
if the axioms are added to the ontology to constrain the possible meaning of the terms
it uses. In this case, the domain of hasGender could be changed to be something like
LivingThing, as shown below.

dbpedia:hasGender rdfs:domain dbpedia:LivingThing .

Constraints on ontology entities expressed through axioms, together with instance
data published relative to those entities, enables a piece of software called a reasoner
to infer additional facts that are not actually in the data. For example, if the dataset
contained the fact that Tim Berners-Lee wrote “The Semantic Web” and the knowl-
edge base contained an axiom stating that the domain of the propertywrote isPerson,
a reasoner would be able to infer that Berners-Lee is a person, even if that fact was not
explicitly in the knowledge base. A query to return all of the Persons in the knowl-
edge base would then correctly include Tim Berners-Lee among the results. This is

270 M. Cheatham and C. Pesquita

accomplished without any natural language processing, which can be error-prone in
many situations.

Because constraints make the meaning of entity names and relationships more
precise, they hold great potential to facilitate accurate data integration.Unfortunately,
many existing ontologies do not contain significant numbers of axioms. However, as
we will see in the next section, many existing data and schema integration systems
are already capable of leveraging such axioms when they do exist.

There is a balance to be struck here: too few axioms can lead to many differ-
ent interpretations of entities, making the ontology less useful; however, too many
axioms can constrain the ontology so much that is only applicable in a narrow set
of circumstances. For instance, it may seem reasonable to create an axiom that man-
dates that a LivingThing has exactly one gender, this is not the case for some beings.
Ontologies are often encoded in the Web Ontology Language (OWL) [69]. Besides
property domain and range and cardinality constraints, OWL allows one to state
that two entities are equivalent or disjoint, that a property is reflexive, symmetric,
transitive, or functional, or that one property is the inverse of another. All of this infor-
mation: classes, properties, and axioms that restrict their interpretation, is called the
schema, or T-box (for terminology), of the ontology. Conversely, the instance data,
or A-box (for assertions), contains assertions about individuals using data from the
T-box.

A more formal and extensive treatment of ontology design and representation can
be found in [41]. Many ontologies exist today. Some of these, such as the Suggested
Upper Merged Ontology (SUMO) [82] and the Descriptive Ontology for Linguistic
and Cognitive Engineering (DOLCE) [32] begin modelling the world at the high-
est level of abstraction and working towards more detail. The top-level entities in
DOLCE, for instance, are Entity, Endurant, Perdurant, and Abstract. There are also
numerous domain-specific ontologies, such as the Gene Ontology, which models
the structure and molecular processes of eukaryotic cells [2], and NASA’s Seman-
tic Web for Earth and Environmental Terminology (SWEET) ontology [86]. In the
clinical domain, many providers have begun migrating from simple terminologies
(such as ICD-10) to more complex ones that have an ontological foundation (such
as SNOMED-CT) [14]. Lately many researchers have also begun to publish ontol-
ogy “snippets,” sometimes referred to as ontology design patterns, that model much
more constrained topic areas. The website ontologydesignpatterns.org currently has
dozens of ontology snippets, including models of a Hazardous Situation, a Species
Habitat, and a Chess Game.

1.3 Ontology and Data Alignment

While the amount of linked data available on theSemanticWebhas grown continually
for more than a decade, the links between different datasets have not gown at the
same rate. These links provide the context that makes the data more useful. The
fields of ontology and data alignment attempt to discover links between datasets in

Semantic Data Integration 271

an automatic or semi-automatic way. Ontology alignment systems tend to focus on
finding relationships between schema-level entities, while co-reference resolution
systems attempt to identify cases in which the same individual is referred to via
different URIs.

1.3.1 Ontology Alignment

Engineering new ontologies is not a deterministic process – many design decisions
must be made, and the designers’ backgrounds and the application they are targeting
will influence their decisions in different ways. The end result is that even two
ontologies that represent the same domain will not be the same. They may use
synonyms for the same concept or the same word for different concepts, they may be
at different levels of abstraction, they may not include all of the same concepts, and
they may not even be in the same language. And this is in the best case. In real-world
datasets there are often problems with missing information, inconsistent use of the
T-box when describing individuals, and logically inconsistent axioms. The goal of
ontology alignment is to determine when an entity in one ontology is semantically
related to an entity in another ontology (for a comprehensive discussion of ontology
alignment, including a formal definition, see [23]).

An alignment algorithm takes as input two ontologies and produces a set of
matches consisting of a URI specifying one entity from each ontology, a relationship,
and an optional confidence value that is generally in the range of 0–1, inclusive. For
example, Fig. 2 shows a second ontology describing publications. This ontology was

isOrganizerOf
employs

isAuthorOf

describesProject

isRelatedTo

hasTopic

references/
isReferencedBy

isChairAt

hasTopic

isWrittenBy

Fig. 2 A subset of the scientific publications ontology from the MAPEKUS project

272 M. Cheatham and C. Pesquita

Fig. 3 General structure of an ontology alignment system

created as part of theMAPEKUS project.2 An alignment system given the ontologies
in Figs. 1 and 2 might produce matches including:

mapekus:Person, swrc:Person, =, 1.0

mapekus:Publication, swrc:Publication, =, 0.9

mapekus:references, swrc:cites, =, 0.8

mapekus:IndexTerm, swrc:Topic, <, 0.6

Note that matches can relate any type of entities, including classes (e.g. Person)
and properties (e.g. references, cites). Additionally, a match can indicate a vari-
ety of relationships. The most common are to state that two things are equivalent
(e.g. all mapekus:Publications are swrc:Publications and all swrc:Publications are
mapekus:Publications) or that one subsumes the other (e.g. all mapekus:IndexTerms
are swrc:Topics but all swrc:Topics are notmapekus:IndexTerms). Though not neces-
sary, in practice alignments are often interpreted under the closed world assumption,
in the sense that any entity pairs not mentioned in an alignment are assumed to have
no relationship.

Many alignment systems share a common general organization, shown in Fig. 3.
Because ontologies can contain millions of entities, it is often infeasible to compare

2http://mapekus.fiit.stuba.sk.

http://mapekus.fiit.stuba.sk

Semantic Data Integration 273

every entity in one ontology to every entity in the other. Therefore, alignment sys-
tems sometimes employ a filtering or hashing step to determine which entities to
compare [20, 40]. Alignment systems typically use a combination of three different
approaches to evaluate entity similarity: syntactic, semantic, and structural similarity
metrics. Entity similarity is related to how much two entities have in common; it can
be thought of as a measure of the degree one class, property, or individual could
be used in place of another. Syntactic metrics compare entities from each of the
ontologies to be aligned based on strings associated with the entities. The strings are
generally the entity label, but can also include comments or other annotations of the
entity. Semantic similarity metrics attempt to use the meanings of entity labels rather
than their spellings. External resources such as thesauri, dictionaries, encyclopedias,
and web search engines are often used to calculate semantic similarity [46, 107].
Structural techniques consider the neighborhoods of two entities when determining
their similarity. For instance, two entities with the same superclass that share some
common instances are considered more similar than entities that do not have these
things in common. Graph matching techniques are often used for this [18, 31]. An
alignment system may use zero or more of each type of similarity metric. The values
frommultiple approaches may be combined to form a single measure of similarity, or
theymay be used in a serial fashion to filter potential matches down to themost likely
candidates. At some point, a final list of related entities is generated, frequently by
including any matches with a confidence (similarity) value higher than some thresh-
old. Additionally, alignment systems may use some form of inconsistency checking
and repair after the matching process in order to ensure a merged ontology produced
using the alignment is logically consistent [62, 83, 90].

Each year since 2005, the Ontology Alignment Evaluation Initiative has invited
researchers to compare the performance of their alignment systems on a set of bench-
mark tasks. Current alignment systems have become very proficient at finding 1-to-1
equivalence relationships between classes and instances (the type of matches con-
tained within the benchmarks). In fact, the top-performing systems now attain a 0.75
f-measure on one of the OAEI test sets that is designed to reflect real-world matching
tasks [13]. This is nearing the level of consensus that humans familiar with ontology
design have for alignment tasks involving this test set [11]. Unfortunately, the per-
formance on finding relationships between properties is not nearly as good as that
for classes and instances [12]. Additionally, there is some evidence that most of the
accuracy of existing alignment systems is due to basic string similarity measures
[10], which raises some concern that further gains may be more difficult to achieve.

1.3.2 Coreference Resolution

Coreference resolution algorithms attempt to determine when the same instance (i.e.
individual) is referred to using different URIs. Note that because the term “ontology
alignment” can either refer to aligning an entire ontology (the T-box and the A-box)
or just the T-box, this section uses the term “schema alignment system” to refer to
something that attempts to map only the T-box of an ontology.

274 M. Cheatham and C. Pesquita

Coreference resolution differs from schema alignment in several ways. One key
difference is that the relationships sought by coreference resolution algorithms are
only 1-to-1 equivalences: two individuals are either the same or distinct, whereas
schema elements involve sets of individuals and can therefore have all of the tra-
ditional relationships that exist between sets, including subsumption, disjointness,
and partial overlap. Another important contrast between coreference resolution and
schema alignment is that the A-box of an ontology is often an order of magnitude
larger than the T-box. This makes efficiency concerns even more important for coref-
erence resolution algorithms than for schema alignment systems. Another distinction
is that, while there is interplay in both directions between coreference resolution and
schema alignment, it can be argued that coreferences generally placemore constraints
on schema alignments than the other way around. This is because many existing
schema alignment systems employ some extensional comparators in the mapping
process, i.e. they determine the likelihood that two schema elements are related by
the degree of overlap between their instances. For example, if it is determined that
data1: Tim_Berners_Lee in one dataset is equivalent to data2: TimothyLee in another
dataset, and data1: Tim_Berners_Lee is a data1: Scientist while data2: TimothyLee
is a data2: ComputerProgrammer, a schema alignment algorithm is more likely
to conclude that the classes data1: Scientist and data2: ComputerProgrammer are
related in some way (i.e. that they are not disjoint). This is done for classes in [22]
and for properties in [36]. Because equality cannot be defined extensionally for indi-
viduals, questions about what it fundamentally means for two things to be identical
tend to arise in coreference resolution research [37]. Coreference resolution can be
thought of as data de-duplication, which has been an area of research for decades.
For instance, there has been extensive research regarding recognizing the duplicate
records, stretching back to at least 1969 [30]. Many of the approaches currently
employed to resolve coreferences on the Semantic Web are adapted from techniques
that were established decades ago in database integration systems. A good survey of
such techniques can be found in [21].

Of course, there are obviously differences between databases and linked data
published according to an ontology. The most obvious of these is that databases
operate under the “closedworld” assumption,meaning that if something is not present
in the database, it is assumed not to exist. In contrast, the SemanticWeb uses an open
world assumption.Also, asCastano andhis colleagues point out in [9], the structure of
a linked dataset can differ greatly from a relational database that represents the same
domain due to the expressiveness of ontology specification languages such as OWL
compared to database table definition and column constraint capabilities. The more
complex relationships expressible in ontologies may convey implicit knowledge that
can be inferred by a reasoner. This additional information is not generally available
when integrating two databases. In terms of focus specifically on integrating linked
data, schema alignment has more of a research history than coreference resolution.
For example, the annual Ontology Alignment Evaluation Initiative has existed since

Semantic Data Integration 275

title year

author

name

hasTitle

isWrittenBy

hasName

first

last

Fig. 4 A potential coreference

2005, but it has only had a track dedicated to evaluating performance on coreference
resolution tasks since 2009.3

The general decisions made by the designer of a coreference resolution system
are: what instances to compare, how to compare them, and how to determine if the
result of that comparison implies that the two instances are equivalent.

Asmentioned previously, there are generallymanymore instances in a dataset than
schema entities. As a result, it is not considered feasible to compare every instance in
one dataset to every instance in the other in order to determine if they are the same.
Instead, some method of deciding whether two instances are “close enough” that
they are worth comparing must be established. The choice of this method reflects a
trade-off between recall and utility, i.e. an overly zealous filtering algorithmmaymiss
some equivalences, while a conservative filtering approach may cause the system to
take a long time to generate results.

If the filtering step has decided that two instances are close enough to warrant
further scrutiny, the algorithm will compare them based on a selection of features.
In most current coreference resolution systems, these features are either property
values alone or property values together with property names. There is also a ques-
tion of how deep within an instance’s semantic neighborhood to go when extracting
features. For an example, in Fig. 4 there are two instances, from different datasets.

3http://oaei.ontologymatching.org.

http://oaei.ontologymatching.org

276 M. Cheatham and C. Pesquita

A coreference resolution algorithm could either compare the values only (e.g. com-
pare “The Semantic Web” and “Tim Berners-Lee” from the instance on the left with
“The Semantic Web”, “Timothy” and “Berners-Lee” from the instance on the right),
or it could compare both the values and the property names. In the latter case, for
example, rather than an exact match on the title, the similarity would be slightly less
than perfect because the property for the title of an article is called “title” in the left
instance and “hasTitle” in the right.

Regardless of what features are compared, the most common method for com-
paring them is via string similarity metrics. This is because even when a property
is a non-string datatype, such as a date or URL, it is often expressed as a string in
datasets. Different string metrics are employed, primarily depending on the length
of the strings to be compared. A survey of string metrics commonly used by these
systems is provided in [10]. Note that global metrics, which based decision on char-
acteristics of the overall distribution of values in the dataset, are not generally feasible
due to the size of the A-box, but they may be employed based on a random selection
of the A-box. A decision must also be made on how much to weight each feature.
Various methods have been proposed for this, including both supervised [87] and
unsupervised [73] machine learning approaches.

Finally, the coreference resolution systemmust take the outcome of a comparison
of two instances andmake a decision onwhether or not those instances are equivalent.
This is often done by specifying thresholds and other parameters of the algorithm.
This is a somewhat neglected area of research – it is common for researchers to
report that these values were “determined empirically” for the particular datasets
being aligned. Among the small amount of work on this topic is an exploration
by Paulheim and his colleagues of using interactive techniques to configure the
threshold by asking a user targeted questions regarding the validity of potential
matches with confidence values on either side of the current threshold and updating
it accordingly [81].

2 Current State-of-the-Art

In the face of the performance plateau on current alignment benchmarks, many
researchers have created innovative new alignment techniques that focus on various
aspects or subproblems under the general umbrella of semantic data integration. This
section explores a selection of this current work.

2.1 Interactive and Collaborative Approaches

While the performance of automated alignment systems is becoming quite good for
certain types of mapping tasks, in practice no existing system generates alignments
that are completely correct. Alignments tend to either lack some correct mappings,

Semantic Data Integration 277

contain some incorrect mappings, or both. As a result, there is significant ongoing
research on alignment systems that allow users to contribute their knowledge and
expertise to the mapping process. These systems exist on a spectrum ranging from
entirely manual approaches to semi-automated techniques methods that ask humans
to chime in only when the automated system is unable to make a definitive decision.
Because entirely manual alignment is feasible only for small datasets, most current
research in this area focuses on semi-automated approaches. In contrast to fully man-
ual approaches, semi-automated systems interact with the user(s) only intermittently,
and then attempt to leverage this human-supplied knowledge to improve the scope
and quality of the alignment. Interactive systems of this type differ in terms of what
questions they ask users and how theymake use of the responses. In addition to being
judged on precision (howmany of the mappings they generate are correct) and recall
(how many of the correct mappings they generate), these systems are also generally
gauged based on how much effort they require from the humans interacting with
the system, in terms of the number of questions they must answer and the difficulty
inherent in coming up with each answer.

An obvious approach to leveraging user input in an alignment system is to first
use an automated approach to generate an alignment and then ask the user to verify
(a subset of) the matches that were created. Invalid matches can then be pruned
from the final alignment. ServOMBI implements this approach [52]. Clearly, this
approach is capable of improving precision, particularly if the user is asked about
matches that the automated system is most in doubt about, perhaps evidenced by
confidence values near the threshold. However, since the user involvement comes
at the end of the alignment process, this method cannot improve recall over what
the automatic component achieves. On the other hand, this approach is suitable for
adding an interactive component to anymatching system, because it only require the
end product of the tool.

A variation of this technique is to move the interactive questioning to within the
matching process rather than conducting it at after the fact. This can have a very
large impact on both precision and recall because most alignment system will only
match an entity to one other entity, so any match that is incorrect may be doubly
bad by causing the correct match to be missed. Furthermore, when a match is found,
many algorithms use a technique called similarity flooding [63] to thoroughly explore
the neighborhoods of both of the entities involved, sometimes with relaxed match
criteria on the theory that things related to equivalent entities are more likely to also
be equivalent. The general idea behind similarity flooding is that two entities that are
connected to similar things are most likely similar themselves. For example, assume
there is a class in one ontology called Man that is a subclass of Human and the
domain of a property called hasAge, and there is class in a second ontology called
Male that is a subclass of Person and the domain of a property called hasYears. If
Human and Person and hasAge and hasYears have already been found to be highly
similar, similarity flooding will increase the similarity value betweenMan andMale.
When using similarity flooding, an incorrect decision during the matching process
can cascade to cause a host of other incorrect decisions.

278 M. Cheatham and C. Pesquita

Several interactive systems attempt to ask the user for guidance at critical decision
points (and only these points) during the mapping process in order to maximize their
accuracy. One such system is LogMap 2, which arranges all potential mappings that
it is unsure about in partial order based on the value of similarity metrics employed
by the system. Starting at the beginning of this list, the system asks the user whether
each potential mapping is valid, until the end of the list is reached or the user halts the
process. When a user approves a match for an entity, any other potential matches for
that entity are discarded. Any matches suggested by the algorithm that are logically
inconsistent with the user-approved match are also discarded. Experimental results
indicate that this interactive technique improves performance as long as the user
responds accurately at least 70% of the time [50].

The AgreementMaker alignment system takes a different approach to integrating
user feedback into the alignment process. Rather than choosing which mappings to
ask the user about based on a single or aggregate similarity score, AgreementMaker
asks about potential mappings on which its constituent matchers disagree. Specifi-
cally, the system uses four syntactic matchers, a structural matcher, and a semantic
matcher (according to the terminology presented in Sect. 1.3). If the matchers are
divided on a particular mapping, the user is asked to provide a decision. This deci-
sion is then used to update the certainty values on other potential mappings with
the same pattern of matcher agreement/disagreement, and this update is considered
when deciding what question to ask the user next. In this manner the system is able to
significantly improve the alignment accuracy while asking relatively few questions
overall [17].

TheOAEI established an interactivematching track in 2013. Participating systems
can make a programmatic call to an “oracle” that consists of a pair of URIs and
a relation (currently limited to either equivalence or subsumption) and receive a
true or false reply indicating whether or not the relation holds between the two
entities.4 Beginning in 2015, the track included tests with an imperfect oracle, i.e.
the oracle was either correct all of the time, correct 90% of the time, 80% of the
time, or 70% of the time. Also in 2015, the alignment tasks were expanded from
ontologies related to conference organization to other tasks, includingmapping larger
biomedical ontologies. Four alignment systems have participated in this track each
year (though not always the same four), and the results have improved annually. In
2013, the average performance of the system when interactions were possible was
actually 3% worse in terms of f-measure than in a fully automatic setting. The best
system performed 8% better, for an f-measure of 0.72. Two years later, the average
performance was 20% better with interactions, and the best system performed 11%
better, for an f-measure of 0.818. The number of requests to the oracle required to
achieve these results has also decreased markedly since the first year [19, 34].

While the introduction of the interactive alignment track to the OAEI has clearly
been productive in terms of encouraging research in this area and driving the improve-
ment of interactive alignment systems, this is not a perfect approach to evaluating
such systems. In particular, the type of queries that systems can pose to the oracle

4http://oaei.ontologymatching.org/2013/interactive/index.html.

http://oaei.ontologymatching.org/2013/interactive/index.html

Semantic Data Integration 279

is limited to asking yes or no questions regarding a particular match. One can easily
think of many other types of questions that would be worthwhile, such as how certain
a user is that a particular match is correct or how a user arrived at their decision on the
correctness of a match. As Paulheim and his colleagues point out, the questions that
are asked of a user and the way in which they are asked impact the size of the burden
placed on the user. For instance, asking a user what relationship holds between two
entities (or what other entity is equivalent to a given entity) is likely a more difficult
question for a user to answer than whether a particular relationship holds [81]. Oth-
ers have conducted more extensive evaluations of interactive matching systems for
the bioinformatics domain, including usability, time requirements, and user satisfac-
tion [55]. This type of user study is time consuming however, and it has not been
performed in a standardized way for a large number of general matching systems.

Of course, the issuewith the abovemethods is that ontology engineers and domain
experts are generally very busy people, and they may not have much time to devote
to manual or semi-automated data integration projects. As a result, some ontology
alignment researchers have turned to generic large-scale crowdsourcing platforms,
such as Amazon’s Mechanical Turk.

Amazon publicly released Mechanical Turk in 2005. It is named for a famous
chess-playing “automaton” from the 1700s. The automaton actually concealed a
person inside who manipulated magnets to move the chess pieces. Similarly, Ama-
zons Mechanical Turk is based on the idea that some tasks remain very difficult for
computers but are easily solved by humans. Mechanical Turk therefore provides a
way to submit these types of problems, either through a web interface or program-
matically using a variety of programming languages, to Amazons servers, where
anyone with an account can solve the problem. In general, this person is compen-
sated with a small sum of money, often just a cent or two. The solution can then be
easily retrieved for further processing, again either manually or programmatically.
While there are few restrictions on the type of problems that can be submitted to
Mechanical Turk, they tend towards relatively simple tasks such as identifying the
subject of an image, retrieving the contents of receipts, business cards, old books, or
other documents that are challenging for OCR software, transcribing the contents of
audio recordings, etc. As of 2010, 47% of Mechanical Turk workers, called Turk-
ers, were from the United States while 34% were from India. Most are relatively
young (born after 1980), female, and have a Bachelors degree [44]. It is possible
for individuals asking questions via Mechanical Turk (called Requesters) to impose
qualifications on the Turkers who answer them. For instance, Requesters can specify
that a person lives in a particular geographic area, has answered a given number of
previous questions, has had a given percentage of their previous answers judged to
be of high quality, or pass a test provided by the Requester. In addition, Requesters
have the option to refuse to pay a Turker if they judge the Turkers answers to be of
poor quality.

A group of researchers from Stanford University has recently published several
papers on usingMechanical Turk to verify relationshipswithin biomedical ontologies
[66–68, 77]. Their results show that general purpose crowdsourcing platforms can
be used to answer questions about the relationships between ontology entities, even

280 M. Cheatham and C. Pesquita

if the domain modeled by the ontology is quite scientific. Mechanical Turk has
also been used to validate existing alignments [11, 12]. Additionally, there is an
interactive alignment systemcalledCrowdMap that usesMechanical Turk to generate
alignments between two ontologies [92] (Fig. 5).

All of these systems reported good results, though some were hampered by scam-
mers that answered questions randomly or with some other time-saving strategy in
order to maximize their profit-to-effort ratio [77, 92]. Additionally, there is some
indication that the way in which questions about potential mappings are asked may
have a large impact on the utility of the general crowdsourcing approach. In the work
described in [12], questions about potential equivalent properties were presented in
the following form: “Does property label A mean the same thing as property label
B?” Respondents were instructed to choose one of four options: they mean the same
thing, one is a more general or more specific term than the other, they are related
in some other way, or there is no relation. In order to provide some context, the

Fig. 5 An engraving of the original Mechanical Turk by Karl Gottlieb vonWindisch. TheMechan-
ical Turk was a famous chess-playing “automaton” from the 1700s that was actually operated by a
human nestled inside the cabinet. It is the namesake of Amazon’s Mechanical Turk platform, which
allows developers to harness a plethora of human workers to solve tasks that remain difficult for
computers

Semantic Data Integration 281

questions provided information about the domain and range of each property and
up to five examples of instances with values for each property. The initial results
showed that the general response on these nuanced verification questions were not
very reliable. In all cases, the researchers responded by qualifying Turkers based on
their performance on a small simple set of questions regarding possible mappings
in order to gain access to the full range of tasks. This strategy proved reasonably
effective.

Another strategy for dealing with scammers is to take money out of the equation.
Instead of paying individuals to contribute to an alignment, the work can be packaged
as a game that the user plays in order to earn a good score. This is the approach taken
by the game SpotTheLink [109]. The game involves teaming up two random players,
presents them both with an entity from the source ontology along with a description
and image of the entity, if available, and asking them to collaboratively find an entity
in the target ontology that is related and how it is related (equivalent, subclass, or
superclass). Players only get points when they both agree. This game was built on
top of OntoGame, which is a Java plug-in framework that provides services such as
user login, randomly pairing users, and keeping score [99].

Another possible approach for avoiding scammers when crowdsourcing data
alignments is to require people who wish to make sure of that data resource to
first answer questions that contribute to its growth and quality (or to improve a sepa-
rate, related data resource). This is the approach suggested by [60]. McCann and his
colleagues point out that for this technique to work, the data resource must either not
be available with no strings attached elsewhere, or it must be of a higher quality than
alternative sources for the information. Additionally, the users must only be asked a
limited number of questions, and they must have some control over when they will
answer those questions.

2.2 Visualizing the Data Integration Process

Involving humans in the data integration process, as described in the previous section,
requires some type of interface to enable those individuals to understand what ques-
tions are being asked of them, be aware of the context necessary to accurately answer
those questions, and understand the implications of their answers. These needs lead to
a set of requirements for data alignment interfaces. Several researchers have worked
to enumerate these requirements. One of the first steps towards this was work by Fal-
coner [25], which was then built upon by several others. There are several recurring
points of emphasis in this work, which are addressed throughout the remainder of
this section.

2.2.1 Presentation of Candidate Mappings

Users need a way to quickly see the mappings suggested by the automated mapping
component, why they have been selected, and which mappings have been validated,

282 M. Cheatham and C. Pesquita

refused, or remain to be considered. Because the number of candidate mappings may
be quite large, there needs to be some way to manage them, for instance by clustering
or by filter-based searching [33]. Logically organizing these potential mappings is
key, because often validating one mapping enables a user to validate many additional
mappings that have a similar underlying rationale [97].

VOAR is an application for working with ontology alignments that illustrates
several of these concepts [96]. VOAR does not have a built-in automated alignment
algorithm, but rather can call any such algorithm that implements a standard interface.
Users can also load in multiple existing alignments and merge them or compute the
intersection (i.e. only mappings that occur in all alignments are kept). When the user
is validating and/or creating mappings, the class hierarchies are shown on either side
of the interface, and a table of mappings, including the associated confidence value,
is in the middle. Clicking on a mapping will highlight the relevant entities in the
trees. VOAR also has another mode that allows users to visualize the alignment as a
whole (Fig. 6). This shows which entities are involved in mappings, indicating areas
within each ontology that are densely or sparsely related to the other. This view lists
all entities from each ontology along the sides of the interface and connects related

Fig. 6 A screenshot of the VOAR ontology alignment visualizaton tool. The entities from each
ontology that are involved in mappings are listed along the edges, and the lines between them
indicate equivalence relations

Semantic Data Integration 283

entities with a line. To assist the user in following these correspondences when there
are many mappings, related entities and the line connecting them are color-coded.

BioMixer, a tool designed to visualize mappings among more than two biomed-
ical ontologies at once, takes a different approach to showing an overview of all
mappings within an alignment [111]. This tool provides several different ways to
view mappings, including a matrix view in which the terms from each ontology are
listed in alphabetical order along the top and left side of the matrix, and a colored
square within the matrix indicates a mapping. This highlights clusters of mappings
for similarly-named terms (which often serve as anchor points upon which to build
more complete alignments). A different view enables the user to drill down into the
part of the ontology surrounding a particular entity. This part of the tool uses displays
the entity, its neighbors in the ontology, and its relationship to entities in the other
ontology as a graph. The user is able to understand an entity’s context and potentially
identify missing mappings.

2.2.2 Presentation of the Ontologies

Presentation of the ontologies is also important. Most individuals will confirm the
validity of a mapping based upon the neighbors surrounding the entities in both
ontologies, and once they validate one mapping they are often able to confirm several
others involving related entities [25]. For this reason, it is helpful to enable quick
navigation between the list of potential mappings and the relevant entities in both
ontologies. Further, by showing the entities in both ontologies that are involved in one
ormore potentialmapping, the user can focus on these areas first and thereby improve
their efficiency. Users also need to be able to add mappings that were missing from
the list of suggestions. This necessitates the ability to navigate across both ontologies
at varying levels of abstraction, including drilling down to view the details of any
entity, and filtering on a wide range of criteria [33]. This is the area of visualization
research that has received the most attention, as we will see later in this section.

A tree-based presentation of an ontology is only capable of displaying hierarchical
information, such as the class hierarchy within an ontology. Other types of informa-
tion contained in an ontology’s axioms, such as property domain and range and
cardinality constraints, are lost in a tree representation. This is particularly problem-
atic for aligning the properties within ontologies [12]. To avoid this, many ontology
visualization applications use a graph to display the ontologies. Kow and his col-
leagues take this approach in [53]. In this tool, candidate mappings are shown in a list
that allows the user to accept or reject them. As with BioMixer, selecting a mapping
in the list displays the relevant entities and their neighbors within the ontologies in a
detailed graph view. While limiting the graph to the nearby neighbors of the entities
in question keeps them from becoming cluttered, the overall context of the ontology
is lost. Away to navigate across the ontologies at a high level of abstraction is needed.
Kow’s application enables this through a global view they call an “information land-
scape”. This view shows all of the entities from both ontologies (color-coded red or
green according to which ontology they belong), with similar concepts placed near

284 M. Cheatham and C. Pesquita

one another. Clumps of entities are labeled with terms describing the group. The
user can select areas of interest that seem likely to contain related entities, which
automatically filters the mappings shown in the list. This method of filtering allows
users to systematically explore an ontology at a high level of detail without losing
track of the big picture.

2.2.3 Demonstration of Mapping Implications

The individual mappings that together make up an alignment are not independent of
one another; there are some cases in which only one of two mappings can possibly
be true. Sometimes mappings will result in a class being unsatisfiable, meaning that
it is not possible for an instance to meet all of the requirements to be a member of
that class. In other cases, one or more mappings, when taken together, may lead to
an unintended and undesired inference. Visualization systems need to convey the
implications of a potential mapping to users. Potential ways to achieve this include
highlighting the relationships between mappings, allowing the user to temporarily
add a mapping and observing its impact [45], and providing a mechanism for the
user to indicate that a particular mapping is uncertain or subjective [25].

ContentMap is one application that attempts to provide details about the implica-
tions ofmappings to users [49]. ContentMapuses several existing ontology alignment
algorithms to generate a set of candidate mappings, which users can either accept
or reject. The system then computes the logical difference between the entailments
before and after the mappings are applied. Entailments that ContentMap suspects
may be unintended (because they hold in the merged ontology but not in the indi-
vidual ontologies) are presented to the user, who can indicate which ones are in fact
undesired. The system then runs a mapping repair algorithm that attempts to remove
the minimum number of axioms to alleviate the unintended entailments while pre-
serving the entailments the user indicated were valid. Because computing the logical
difference is quite difficult over expressive ontologies (there is no algorithm to do
this for OWL 2 or OWLDL), ContentMap focuses only on alignments consisting
entirely of subclass, equivalence, and disjointness relations.

Another data integration tool, MappingAssistant, takes a different approach to
providing feedback to the user regarding the implications of a mapping [103]. Map-
pingAssistant is based on the intuition that domain experts, who are not necessarily
familiar with formal modeling constructs like ontologies or with logical entailments,
nevertheless have a detailed understanding of the instance data. The system therefore
conveys the implication of schema-level mappings to the user by selecting (using a
clustering algorithm) a set of instances affected by the mapping rule and displaying
them. Users can then indicate any instances that have been incorrectly classified, and
the application will present a series of questions (expressed in natural language) to
the user in order to determine which mapping has led to the incorrect classification.

Semantic Data Integration 285

2.2.4 Scalable to Large Ontologies

Assisting user in aligning ontologies with a large number of entities or many axioms
constraining the relationships between entities can be particularly challenging for a
visual interface. A myriad of issues come into play. For instance, many alignment
systems display the class hierarchies as tree structures on either side of an interface,
with lines between the trees indicating potential mappings. If the number of potential
mappings is very large, users can quickly be overwhelmed by such a presentation
[25]. Other interfaces display the ontologies and potential mappings in a graph, but
again, the size and complexity of the graph grows with that of the ontologies, and
the user can find this representation unwieldy [57]. Ivanova’s work on requirements
for large-scale ontology alignment make it clear that whatever strategy is used to
represent the ontologies and potential mappings, it must not only “scale” visually,
but also computationally – users cannot be made to wait after each interaction for the
interface to update [45]. Users also cannot always be expected to align large ontolo-
gies by themselves in one setting. Consequently, tools should allow users to save
their progress and to divide up the alignment task among multiple contributors [33].

One approach to dealing with the overwhelming complexity of a graph-based
global view of an ontology is through employing a clustering algorithm to raise
the level of abstraction at which the ontology is shown in the graph. Even though
AlViz, developed in 2006, is older than many of the other visualization applications
discussed in this section, we use it as an example of this approach since new work
in the field still frequently cites it as a source of inspiration [57]. AlViz shows
each ontology in its own graph and uses color coding of nodes to indicate areas of
similarity and difference between the two. A slider on the side of each graph controls
the level of abstraction. The size of a node gives an indication of the number of
entities aggregated within it. Nodes are aggregated based on the similarity metric of
an integrated alignment algorithm. Small world graphs such as those used by AlViz
typically use a spring layout, which is known to have a cubic time complexity. Still,
the original AlViz system was capable of displaying ontologies with 1000 entities
and respond to user interactions without a lag.

The alignment systemAML employs a different strategy to handle the complexity
of graph-based views [85]. AML combines both ontologies and mappings in a single
graph. However, instead of showing the full ontologies and alignment, it shows only
a subgraph centered on a selected mapping, for which the neighborhood of classes
and mappings between them can be shown up to five edges distance. This allows for
a better understanding of neighboring mappings than typical tree-based visualiza-
tions, and is particularly relevant in the visualization of biomedical ontologies where
multiple inheritance and the existence of different kinds of relations between classes
is common. Users can then navigate the list of mappings to visualize the different
subgraphs, mark mappings as correct or incorrect, and add new mappings.

The alignment system SAMBO implements several features to assist users in
aligning large ontologies [56]. In particular, the tool allows users to cease calculations
ofmapping suggestions at any time and begin to approve or reject any of themappings
that have been suggested at that point. The user can also save their work and resume it

286 M. Cheatham and C. Pesquita

later. Each saved session contains information about how many mappings have been
validated, how many remain, and the last date the user worked on the alignment.
Users also have the option to preprocess data in between sessions, to save time
when they resume their work. The preprocessing step uses the class hierarchies of
both ontologies to partition the ontologies into “mappable parts” such that the set of
entities from the first ontology that are in a partition are highly likely to be mapped
to an element from the second ontology that is also in the same partition. As a result,
similarity metrics do not have to be applied between all pairs of entities, but only
between those in the same partition. Furthermore, users can focus their attention
on one partition rather than being overwhelmed by the entire ontologies. While the
authors do not state this, these partitions might also be a way to divide the mapping
validation task among multiple people.

Several researchers who have considered the requirements for a visualization
system intended to facilitate data integration have also mentioned the need to allow
users to annotate a particular mapping with its rationale and additional metadata as
required for the particular use case, and a mechanism to debate or vote on mappings
[33, 45]. Unfortunately, this information is not collected in as anything other than
free text by most data integration tools. This issue is the subject of Sect. 3.3.

2.3 Integrating Geospatial Data

Many data sets, from user reviews of hotels and restaurants, to oceanographic mea-
surements, to economic data, have a spatial component. Integrating data based on
location can lead to important cross-domain insights relevant to a particular region.
However, as mentioned in the introduction, spatial data is particularly difficult to
align. There are many reasons for this. Of course, spatial data sets have all of the
normal issues related to schema. For instance, one data set may refer to a building’s
location using the property “Address” while another one may use two properties:
“City” and “State.” There are also challenges specifically related to spatial data
because of the many ways to express it. For example, location can be specified with
an address, with latitude and longitude, or in reference to a nearby point of interest.
There are also many ways to express a spatial region. For example, spatial regions
can be represented by geopolitical entities (whose borders change over time), by
polygons whose points are given via latitude and longitude, or by a point and a
radius. Another issue is that spatial data is collected at widely different scales and
with different resolution and coverage, which raise quality concerns when integrat-
ing several data resources. Furthermore, for both technical and social reasons, many
spatial data sets are stored in relational databases, as images, or as vector data. These
different representation formats necessitate different approaches to integration. This
section surveys some of the current research related to integrating geospatial data.

Semantic Data Integration 287

2.3.1 Representing Geospatial Data

Many geospatial datasets have been published on the Semantic Web. Two of the
largest and most well-known are GeoNames and LinkedGeoData. GeoNames has
information about over 8 million geographic entities from around the world, includ-
ing place name, coordinates, elevation and population. Much of the data was origi-
nally imported from official public sources, but it can now be edited by individuals.
GeoNames is organized according to a relatively simple ontology involving nine
features and 645 feature codes.5 LinkedGeoData is based on the data from the Open-
StreetMap project. OpenStreetMap’s goal is to build a geographic knowledge base
from the ground up, by allowing contributors to use aerial imagery and GPS devices
to create and verify information.6 GeoNames and LinkedGeoData are interlinked
with one another and with DBPedia. Other geospatial datasets are region-specific.
For instance, the UKOrdnance Survey, Great Britain’s national mapping agency, has
published gazetteer and administrative boundary information as linked data as part of
the “Making Public Data Public” initiative within that country.7 Publishing geospa-
tial data according to the linked open data principles allows it to be integrated more
easily. Consequently, useful applications that leverage linked geospatial data have
begun to emerge, including for disaster management [80] and wildlife monitoring
[54].

Much of the geospatial data that is currently available is represented using the
Geography Markup Language (GML).8 GML was created by the Open Geospatial
Consortium (OGC) and has become an ISO standard. The schema is centered on the
class Feature. A Feature can have a Geometry, such as point, line, polygon, curve
or surface. GML also supports specifying a Feature’s location, using a coordinate
reference system. Another way to represent geospatial data is using GeoSPARQL,
which is an RDF vocabulary and a set of extensions to SPARQL to support spatial
queries.9 The GeoSPARQL vocabulary currently leverages many elements of GML,
togetherwithwell-known text (WKT), to represent vector geometry objects on amap;
simple feature, which contains spatial relationships such as intersects and within;
region connected calculus (RCC8), to represent relationships between two regions
such as tangential or partially overlapping; and DE-9IM, to represent topology.

Other OGC standards are closely related, including Keyhole Markup Language
(KML) to specify how display geographic information on a map or other visualiza-
tion.10 Several ontologies have also been developed to represent higher-level concepts
with a strong spatial element, such as a “Semantic Trajectory” to describe movement
through space [43] and “Stimulus-Sensor-Observation” to model observations of
phenomena collected at a particular time and place [47].

5www.geonames.org.
6http://linkedgeodata.org.
7http://data.ordnancesurvey.co.uk.
8http://www.opengeospatial.org/standards/gml.
9http://www.opengeospatial.org/standards/geosparql.
10http://www.opengeospatial.org/standards/kml.

www.geonames.org
http://linkedgeodata.org
http://data.ordnancesurvey.co.uk
http://www.opengeospatial.org/standards/gml
http://www.opengeospatial.org/standards/geosparql
http://www.opengeospatial.org/standards/kml

288 M. Cheatham and C. Pesquita

2.3.2 Querying Geospatial Data

One way to query geographical data is by using the Web Feature Service (WFS).11

This OGC standard can return results in GML or as shapefiles, a vector format
dictated by the Environmental Systems Research Institute (Esri) and used by the
popular GIS software platform ArcGIS. Examples of WFS queries are: “return the
name of all towns that are along this line” and “return the name of all mountains
within this bounding box.” GeoSPARQL supports these types of queries as well, but
over the full RDF vocabulary expressed in the GeoSPARQL standard.

Many datasets with a geospatial component are stored in relational databases
rather than published as linked data. There are several reasons for this: databases are
often an established part of a scientist’s workflow, existing data analysis tools may
require the data to be stored in a database, or collection systems may automatically
publish to a database. However, there is still a need to incorporate semantics into
queries of this data. One approach to achieving this is to allow users of the data to
query it based on an ontology, and then to translate those queries into the language
required by the database. This area of research is sometimes knownas ontology-based
data access (OBDA). An example of this is the work of Zhao and his colleagues,
described in [114]. Their system uses an RDF ontology to enable semantic queries
on a standard relational database containing geospatial data. Their approach is to
translate queries based on their RDF ontology to WFS queries on the underlying
database. There are some limitations to this approach. In particular, the ontology
needs to be created manually for each dataset and application domain, and a table in
the database can onlymap to one class in the ontology. Also, the ontology is specified
in RDF rather thanOWL in order to simplify the query rewriting. Later work supports
more complex queries while extending this semantic querying capability to multiple
geospatial datasets stored as GML [110].

2.3.3 Coreference Resolution and Alignment

Regardless of how it is stored, coreference resolution of geospatial data is partic-
ularly challenging due to noise and difference in coverage and resolution. Even
extracting appropriate features on which to base the data integration task can be dif-
ficult, though recent work in that area by projects such as Brainwash show promise
[1]. Once features have been collected, it has been common to use machine learning
approaches to weight features of geospatial datasets such as location name, location
type (e.g. mountain, desert, island) and coordinates, which are then used in standard
classifiers such as SVMs and linear regression models [95]. More recent work takes
a very similar approach. For instance, McKenzie and his colleagues integrate data
from FourSquare and Yelp using a weighted combination of location name, loca-
tion category (e.g. seafood restaurant, casual dining), geographic location, and an
unstructured textual description. Their results were impressive, with 98% of places

11http://www.opengeospatial.org/standards/wfs.

http://www.opengeospatial.org/standards/wfs

Semantic Data Integration 289

of interests correctly aligned. An interesting element of their work was that a system
based only on geographic coordinates was only 57% accurate. They indicate that
this may be due to inaccuracies of mobile devices using GPS or wireless to calculate
position [61]. Similarly, Li et al. merged point of interest data from Baidu (a search
engine) and Sina (a social networking site) based on name, category and location.
Their weighting method was based on the entropy of the various attributes. This
method was chosen because the attribute values exhibited a non-linear similarity
metric characteristic [58].

Aligning the schema of geospatial datasets can actually be somewhat easier than
in the more general case. While geospatial datasets often have different labels for the
same properties (e.g. “state” versus “administrative district”), labels of geospatial
properties are selected from a smaller domain than are general properties. Further-
more, geospatial datasets typically have a large A-box, making extensional matching
techniques useful when aligning the T-Box. For example, if one dataset has a prop-
erty called “CensusCount” and another has a property called “Population,” values
for particular cities contained in both datasets allow an automated alignment system
to conclude that these properties are likely equivalent.

2.3.4 Assessing Quality

When integrating data frommultiple sources, quality becomes an important concern.
This is particularly important for geospatial datasets.Whenever any continuous entity
is measured, there will be inaccuracies inherent in the measured values due to limita-
tions of coverage and resolution. Typical quality indicators include lineage, positional
accuracy, attribute accuracy, logical consistency and completeness [7]. Additionally,
interviews with consumers of geospatial data indicate the importance of metadata
when assessing quality, such as the reputation of the data provider and the number of
citations. Unfortunately, the majority of geospatial datasets do not have any quality
information associated with them [59].

There have been some efforts to automatically derive quality information for
geospatial datasets that lack it. For instance, work by Thakkar et al. is targeted
toward situations in which many geographical datasets are being integrated, and only
some of them have associated quality metrics. Quality is based upon completeness
and positional accuracy. Completeness is the percentage of features that the source
contains information on. Thakkar gives the following example: if there are 100
hospitals in an area and a source contains 25 of them, then the source is 25%complete.
Positional accuracy is determined based on the number of features within a given
bound, i.e. the location of 40% of the hospitals is accurate to within 10m. They
automatically assess the quality of an unknown data source by identifying a source
with known quality that provides the same attribute and has at least some instances in
common. The quality of the new source is then based upon comparison of a sample
of the common subset. Once that source’s quality has been evaluated, it can then
be checked for overlap with any other sources within the system whose quality was
previously unknown and used to assess their quality [108].

290 M. Cheatham and C. Pesquita

There has also been considerable research on assessing the quality of volunteered
geographic information. For example, in 2010 Mooney and his colleagues evaluated
OpenStreetMap data from 11 European countries based on sampling density and
metadata tagging and their utility in correctly representing the shape of features such
as lakes and forests (and found the quality to be quite low overall) [65]. Ballatore
and Zipf take a higher level approach and consider the quality of the schemas used
to organize the geospatial data. They argue that maintaining conceptual quality is
straightforward when data producers and consumers are all colleagues, but that qual-
ity suffers when producers and consumers don’t know one another, as is the case with
volunteered geographic information. Their framework includes accuracy (existence
of entities, categories and attributes necessary to accurately describe the geospatial
features of interest), granularity (ability to describe the features at the desired level
of abstraction), completeness (ability to describe all the features of interest), consis-
tency (similar features are described with similar classes and properties), compliance
(agreement of this schema with another one), and richness (number and variety of
dimensions with which to describe a feature) [4].

2.4 Integrating Biomedical Data

Massive amounts of multimodal and diverse data are currently being generated by
researchers, hospitals and mobile devices around the world, and their combined
analysis presents unique opportunities for healthcare, science and society. The data
can range from molecular to phenotypic, behavioral to clinical, individual to pop-
ulation, genetic to environmental. Maximizing the potential of this data through its
meaningful integration can enable new directions for research, for instance discov-
ering new drugs or determining the factors causing human disease.

BiomedicalBigData goeswell beyond the recognized challenges in handling large
volumes of data or large numbers of data sources, and presents specific challenges
pertaining to the heterogeneity and complexity of data as well as to the complexity
of its subsequent analysis. The availability of over 500 open biomedical ontologies
in BioPortal [76] and dozens of biomedical datasets as Linked Open Data represents
a unique opportunity to integrate clinical and biomedical data.

A first step in supporting the semantic integration of biomedical data is by making
it available as Linked Data and having the entities and relationships referred to in
the Linked Data defined according to ontologies. Exposing datasets as Linked Data
enables the interconnection of distinct data items across providers, facilitating the
integration of high volume and heterogeneous data sources (i.e. experimental data,
libraries, databases) and also provides an aggregated view of biomedical data in a
way that is machine interpretable and reusable, as well as semantically-enriched via
links to ontologies. These links support the classification of data according to the
concepts defined by a given ontology, which provides a perspective on the data.

The same data can be described under different ontologies, which provide dif-
ferent perspectives. For instance, patient data described under the Disease Ontology

Semantic Data Integration 291

[94] will provide a view of the diseases and disorders affecting the patient, while the
same patient data described under the Symptom Ontology [3], will provide infor-
mation about signs and symptoms but not the underlying causes. However, even
when focusing on a single perspective, lets say diseases, the multitude of ontologies
and controlled vocabularies currently in use to describe them impedes the seam-
less integration of data. Multiple ontologies for the same or closely related domains
can and do exist, due to several reasons ranging from disconnected development,
to development focusing on particular applications. This is especially true in the
biomedical domain where there are for instance nine ontologies that describe neu-
rological disease, ranging from highly specific ontologies covering a single disease
(e.g. epilepsy, Alzheimers) to ontologies covering all kinds of human disease, such as
the Disease Ontology. This results in several ontologies describing the same concepts
under slightly different models.

These challenges are being addressed at several levels by the application of
Semantic Web technologies.

2.4.1 Linked Biomedical Data

There have been several efforts to expose biomedical data as Linked Data, with
the aim of providing structured and integrated access to the massive amounts of
biomedical data distributed in numerous repositories [8, 64, 88, 89, 112]. This is
a challenging endeavor since each biomedical dataset has a unique structure and
vocabulary.

TheBio2RDFproject [8] defines a set of simple conventions that allow the creation
of a knowledge space of RDF documents as Linked Data. It uses a mashup approach
that leverages normalized URIs and a common ontology, integrating publicly avail-
able data from some of the most popular databases in bioinformatics. However, few
biomedical repositories expose their data as RDF, so the project built a toolbox to
generate RDF files from locally stored databases or directly from HTML documents
accessed via http requests. Although Bio2RDF facilitates the integration of heteroge-
neous datasets, achieving a complete syntactic and semantic normalization is not yet
a reality. One of the reasons behind this, is that Linked Data serialized as RDF does
not support the complex formal semantics that allow the inference of relationships
between data items from heterogeneous datasets. This prevents a fuller integration,
namely at the level of relations or types.

Another related project is Neurocommons [88], which is dedicated to creating an
open source knowledge management platform for biological research and is specif-
ically working on an open knowledge base of annotations to biomedical abstracts
(in RDF) and the integration of major neuroscience databases into the annotation
graph. Neurocommons is grounded in SemanticWeb technologies, integrating OWL
ontologies, RDF and SPARQL endpoints.

BioPortal also publishes their ontologies as RDF [89]. This dataset contains over
190 million triples, representing both metadata and content of the ontologies. It also

292 M. Cheatham and C. Pesquita

publishes over 10 million mappings between ontologies, generated via both manual
and automatic methods.

2.4.2 Cross-References and Mappings

To promote and facilitate integration, some biomedical ontologies already provide
cross-references to equivalent or related concepts in other ontologies. These can be
used not only for integrating ontologies, but also for the integration of data items
described with the ontologies.

One notable effort in increasing the interoperability of biomedical ontologies has
been the creation of logical definitions [71]. This is an initiative of the Open Biomed-
ical Ontologies Foundry [101], a collective of ontology developers whose mission is
to develop a family of interoperable ontologies that are both logically well-formed
and scientifically accurate.One issue of biomedical ontologies is that although almost
all classes have a textual definition, which can be interpreted by a human user, this
is not accessible to a computer without sophisticated natural language processing.
Therefore, efforts have been made to transform these definitions into a computable
form as a set of logical definitions. Such logical definitions facilitate automated
access to an ontology and complement text definitions. They could also potentially
be used to reason over an ontology or to automatically derive relationships between
classes, thus contributing to the integration of different ontologies. Developing and
maintaining these computable definitions requires a lot of manual labor, leading to
the development of strategies to partially automate the process [70]. More recently,
the definition of composite relations as class expressions has also been explored
through the alignment of classes in biomedical ontologies with foundational classes
in a top-level ontology [42].

Another relevant resource is the UMLS [6], which provides a mapping structure
among over 100 controlled vocabularies in the biomedical sciences, covering over 1
million biomedical concepts and 5 million concept names. UMLS is not originally
available as RDF, but BioPortal through its UMLS2RDFproject [89] has transformed
the UMLS MySQL release into RDF triples. BioPortal also provides a set of 3.1
million mappings between the terms in UMLS vocabularies.

While these projects are contributing to the utility of biomedical data on the
Semantic Web by establishing links between datasets, in many cases such mappings
are unavailable, giving rise to the need to derive them automatically using ontology
matching techniques.

2.4.3 Ontology Matching for Biomedical Ontologies

The specific characteristics of biomedical ontologies need to be taken into account
when developing tools and techniques to explore them:

Semantic Data Integration 293

• large size: biomedical ontologies commonly have thousands of classes, which can
represent both a computational and a visualization challenge. In Bioportal there
are over fifty ontologies with more than ten thousand classes.

• complex vocabulary: biomedical ontologies typically encode several names for
the same class, including one main label and several synonyms of different kinds
(e.g., narrow synonym, broad synonym). This represents a challenge for lexical
matchers, which need to be able to handlemultiple labels and at different closeness
degrees.

• multiple related domains with different points of view: it is fairly common
to have the same biomedical domain being described according to different
models. This can cause logical incoherences when two ontologies with dif-
ferent models are integrated. For instance, Fig. 7 illustrates a logical incoher-
ence caused by two mappings between the National Cancer Institute Thesaurus
Ontology and the Foundation Model of Anatomy Ontology. The logical incoher-
ence arises because upon integration, Fibrilar_Actin becomes a subclass of both
Anatomic_Structure_System_or_Substance andGene_Product, which are disjoint
classes. Solving these incoherences is far from trivial [83]

• rich axioms: biomedical ontologies have been evolving towards greater semantic
richness establishing different kinds of relations between classes (e.g., regulates,
adjacent to, participate in) and complex axioms (e.g., ‘human patient and (has Age
some float [>= 8]) participant in’WHO standard treatment for human brucellosis
in adults and children eight years of age and older). Typically, ontology matching
systems either just focus on taxonomic relations, or do not differentiate between
different types of relations. This is especially relevant for structural matchers.

Fig. 7 Alignment between portions of the National Cancer Institute Thesaurus Ontology and the
Foundation Model of Anatomy Ontology illustrating a logical incoherence

294 M. Cheatham and C. Pesquita

The relevance of ontology matching for biomedical ontologies has been recog-
nized by the community, and the Ontology Alignment Evaluation Initiative [13]
currently contains two tracks dedicated to biomedical ontologies: the anatomy track,
and the large biomedical ontologies track. Both tracks illustrate the above mentioned
challenges, and in the last few years some ontology matching systems have been
quite successful in addressing the challenges of matching biomedical ontologies.

Regarding size and scalability, a well studied challenge [51], systems have had to
evolve from the traditional encoding of the matching problem as a matrix of similar-
ities to more efficient data structures. For instance, AgreementMaker [15], a system
successfully used for matching biomedical ontologies [16] struggled with more than
a few thousand classes, which inspired the development of AgreementMakerLight
(AML) [27], based onmore scalable data structures that can handle over 100 thousand
classes in an ontology.

The complexity of thevocabulary in biomedical ontologies has alsobeen addressed
by several systems, which combine several matchers capable of exploiting different
string and lexical similarities [15, 27, 72]. Some systems take this further by leverag-
ing external resources as a source of synonyms. For instance, AML includes specif-
ically tailored approaches to exploiting the rich synonyms of biomedical ontologies
[84], that can use cross-references to extend synonyms and apply lexical techniques
to derive new synonyms. It also contains high performing strategies to automati-
cally select and utilize external ontologies as background knowledge [29]. Other
systems use pre-defined external resources. For instance LogMap [48] makes use of
external lexicons to derive spelling variants, and GOMMA [39] can explore external
ontologies for synonyms.

Regarding the ability to handle logical incoherence, few ontology systems cur-
rently support it, and even fewer at a scale conforming to biomedical ontologies’
typical size. The most basic approach is filters out any mappings that violate a series
of semantic rules (e.g. [72]). More sophisticated approaches rely on automated pro-
cedures which are able to identify the mappings involved in the logical incoherence
and select which ones to remove to achieve coherence. Both AML [91] and LogMap
support this, and their application to themappings in BioPortal has proven successful
[28].

Finally, the ability to process rich axioms is still not a focus of current ontol-
ogy matching systems. Despite the growing complexity of biomedical ontologies,
systems are still lacking in this respect. A recent effort in this area has been the
development of a compound matching approach [79], that is able to capture equiv-
alence mappings between one class from one ontology and an expression involving
two classes from two other ontologies, forming a ternary mapping. For example,
HP : aorticStenosis is equivalent to an FMA : aorta that is PATO : constricted This
novel matching paradigm needs to be able to handle the much larger search space
(three ontologies instead of two) and be able to not only identify the equivalence
mapping but compose the expression as well.

Semantic Data Integration 295

3 The Path Forward

Work such as that described in Sect. 2 has already begun to pay dividends. Techniques
for semantic data integration have reached a level of maturity that has allowed them
to be incorporated into commercial and open source tools from organizations such as
Oracle, Apache andMicrosoft. For example, Oracle 11g provides support for storing
data as RDF, querying data from disparate sources seamlessly via SPARQL, and per-
forming reasoning via SWRL-like rules [113]. Various aspects of the performance of
these industry systems is being evaluated by the academic community [98] as well
as utilized for domain-specific research [26, 100]. Additionally, these systems are
being used by other commercial enterprises for applications ranging from entertain-
ment media management to national intelligence [113]. However, many challenges
clearly stand in the way of accurate and efficient data integration in the general case.
This section considers some research threads that could potentially lead to future
breakthroughs in semantic data integration.

3.1 Moving Beyond 1-to-1 Equivalence Mappings

Ideally, alignment systems should be able to uncover any entity relationships across
two ontologies that can exist within a single ontology. Such relationships have a wide
range of complexity, as shown in Fig. 8. The simplest type of relationship is 1-to-1
equivalence or disjointness of two entities (i.e. all instances of A are also instances
of B or an instance of A is definitely not an instance of B). Assume that we have
two ontologies, ont1 and ont2, that model a university. The relation ont1:Course =
ont2:Class is an example of a 1-to-1 equivalence match, while ont1:registeredFor
disjoint ont2:Teaching (i.e. someone cannot both register to take a course and teach
it) is an example of a 1-to-1 disjointness relationship. The next complexity level

1:
1

eq
ui

va
le

nc
e

1:
1

di
sjo

in
tn

es
s

1:
1

su
bs

um
pt

io
n

1:
m

 e
qu

iva
le

nc
e

1:
m

 s
ub

su
m

pt
io

n
n:

m
 e

qu
iva

le
nc

e
n:

m
 s

ub
su

m
pt

io
n

n:
m

 a
rb

itr
ar

y
re

la
tio

ns
hi

p

We are here

Fig. 8 Complexity range of entity relationships between ontologies

296 M. Cheatham and C. Pesquita

is subsumption relationships, i.e. that an entity in one ontology is a subclass or
superclass of an entity in another ontology. ont1:Faculty ⊂ ont2:Employee is an
example of this. Even harder to find are 1-to-many equivalence or subsumption
relationships between entities, such as the union of ont2:AsstProf, ont2:AssocProf,
and ont2:FullProf is equivalent to ont1:Professor. This causes a complexity problem.
To find 1-to-1 relationships, an exhaustive search needs to compare every entity in
the first ontology to every entity in the second ontology, which may be feasible
for small ontologies. To find 1-to-m relationships an exhaustive approach would
need to compare each entity in the first ontology to all possible combinations of m
entities in the second ontology, which is not generally possible. Finding arbitrary
n-to-m relationships is the most complex alignment task. By “arbitrary,” we mean
any type of relationship, not restricted to equivalence, disjointness, or subsumption.
An example of this might be that a ont1:Professor with an ont1:hasRank value of
“Assistant” is equivalent to an ont2:AsstProf. Such complex relationshipswould need
to be expressed as logical rules or axioms.

Nearly all existing alignment systems fall at the simplest end of this scale. A few
systems, includingBLOOMS [46] and PARIS [104], are capable of finding subsump-
tion relationships across ontologies. CSR [102] and TaxoMap [38] attempt to find
1-to-m equivalence and subsumption relationships. There has also been some prelim-
inary explorations into identifying ternary compound mappings across biomedical
ontologies [79]. In general though, most research activity in the field of ontology
alignment remains focused on finding 1-to-1 equivalence relations between ontolo-
gies.

As mentioned previously, the performance of current alignment systems on tasks
that focus on the identification of 1-to-1 equivalence relations has become quite
good. However, alignment research may be in danger of becoming stuck in a “local
maximum”, and it might be time to make a concerted push towards discovering more
complex semantic relationships. The computational complexity of this task makes it
very unlikely that existing approaches to mapping discovery can be used to discover
complex relationships. It is possible that existing algorithms from the fields of data
mining and machine learning might be applied for this purpose, but significant effort
will likely be required to identify appropriate techniques and tailor them for this
application.

3.2 Advancing Alignment Evaluation

The Ontology Alignment Evaluation Initiative (OAEI) is now over a decade old, and
it has been extremely successful bymany different measures: participation, accuracy,
and the variety of problems handled by alignment systems have all increased, while
runtimes have decreased [24]. The OAEI benchmarks have become the standard for
evaluating general-purpose (and in some cases domain-specific or problem-specific)
alignment systems. In fact, you would be hard-pressed to find a publication on an
ontology alignment system in the last ten years that did not use these benchmarks.

Semantic Data Integration 297

They allow researchers to measure their systems performance on different types of
matching problems in a way that is considered valid by most reviewers for publi-
cation. They also enable comparison of a new systems performance to that of other
alignment systems without the need to obtain and run the other systems. This is a
huge boon for ontology alignment research.

Of course, benchmarks need to evolve over time in order to remain relevant. The
OAEI suite of benchmarks contains eight tracks that test alignment systems in a range
of contexts in which they might be used, but currently none of these tracks contain
any complex relationships. In addition, the details of some of the test sets have led to
the incorporation of behaviors in some alignment systems that may not be optimal.
For instance, in several OAEI tracks an entity can be involved in at most one match,
which may not be realistic for some real-world datasets. Similarly, entities are only
matched to other entities of the same type in some tracks, e.g. classes to classes,
instances to instances, etc. This is not realistic in all cases, particularly when the
decision of when to represent something as an instance versus a class is not always
clear cut.

As a specific example of the limitations of current alignment benchmarks, con-
sider the case of property matching. Performance of current alignment systems on
matching classes is on average three times better than on matching properties [12].
Researchers have suggested various reasons for this, including that the parts-of-
speech used in property names differs from that used for class names [106], that
taxonomies of properties are much less common that those of classes [74, 106], and
that properties are reified in different cases than are classes [74]. Perhaps uncoinci-
dentally, only one of the eight OAEI tracks involves any matches between properties,
and those matches make up a small percentage of the total. This is a big cause for
concern because many influential real-world linked datasets, such as DBPedia (the
linked data version of Wikipedia) and YAGO, are strongly property-centric.

The OAEI is a community-driven effort, and its organizers are very willing to
incorporate new benchmarks into the evaluation. Establishing new benchmarks is far
from easy, however. Some of the existing OAEI testsets are synthetic, which means
that the reference alignments are completely accurate. Synthetic benchmarks may
not accurately reflect the type of challenges alignment systems face “in the wild”
though. On the other hand, several of the OAEI testsets are based on real-world
ontologies. The reference alignments were developed primarily by three graduate
students, with feedback from “Consensus Workshops” held after each OAEI for
several years. This method of benchmark creation is very resource-intensive and is
therefore only feasible for small ontologies. In order to create the large reference
alignments comprised of complex mappings needed to drive the field forward, more
scalable methods of benchmark construction need to be explored.

As mentioned in Sect. 2.1, some researchers have turned to crowdsourcing plat-
forms such as Amazon’s Mechanical Turk to facilitate scalable ontology alignment.
It may be possible to use such platforms to generate alignment benchmarks as well.
However, there is some well-founded skepticism regarding the trustworthiness of
crowdsourced alignment benchmarks. In particular, there is concern that the results
may be very sensitive to how the question is asked. For instance, how much con-

298 M. Cheatham and C. Pesquita

text from each ontology are users provided with? Are they able to rush through the
work, or does some mechanism force or encourage them to give due consideration to
each potential match? Does the best method for question presentation depend on the
characteristics of the ontologies being aligned? How does the amount of monetary
payment and bonuses affect performance? These are all very important questions,
and if researchers in the ontology alignment field are going to accept work on com-
plex alignments evaluated via crowdsourcing or a crowdsourced benchmark as valid,
they must be addressed.

Another obstacle is that when creating an ontology alignment benchmark, one has
to start from somewhere. It is too resource intensive to try to verify every potential
relationship across all entities in both ontologies, even in the 1-to-1 equivalence
case. This is a complete non-starter for complex alignments. The standard approach
to this problem is to employ an ensemble of existing high-performing alignment
systems to align the ontologies and then manually refine the results to create the
reference alignment for the benchmark [92]. Unfortunately, this approach is not
feasible for the creation of some types of benchmarks due to the lack of current
alignment systems that attempt to the type of relationships required. It is something
of a chicken-and-egg problem. For instance, it is very difficult to create a benchmark
containing complex relationships when there are no alignment systems capable of
identifying such relationships that can be used to create the benchmark. Solving this
problem is an open area of research in this field.

3.3 Contextualizing Alignments

Data and schema integration is done for some purpose, and the mappings that should
be included in a particular alignment are a function of that purpose. For example,
alignments can be done to support distributed querying, or they can be used for logical
reasoning. The characteristics for each type of alignment are different. For querying,
recall (i.e. returning the relevant results) is generally an important aspect of the
application using the alignment. This means that alignments to support query-centric
applications arguably need to err on the side of expressing relationships that generally
hold, even if some outliers lead those relationships to cause logical inconsistencies
that confound reasoners. Conversely, applications that intend to employ a reasoner
on the integrated data cannot generally make use of an alignment that contains any
logical inconsistencies

Current alignment systems support these different use cases to some degree. For
instance, AgreementMakerLight has the ability to detect and repair mapping incon-
sistencies, but it is also capable of leaving these in place [91]. However, there is
currently no way to express in an alignment, after it has been created, which use case
was targeted. It can be argued that the user of the alignment can simply check to
see if it contains any inconsistencies, but this assumes that the user is employing the
alignment, which may be only for the T-box of the ontologies, to the same A-box
that was in place when the alignment was created, and that the A-box hasn’t changed

Semantic Data Integration 299

over time. Additionally, there aremany applications that an alignment may have been
created for beyond the simple query-versus-reasoning divide. A way to express the
situations in which an alignment applies is needed.

In addition to a mechanism for expressing the applicability of an alignment, a
standardized way to represent the rationale behind individual mappings within an
alignment is also needed. For example, if an alignment asserts that Johnathan Smith
who works at IBM is the same person as John Smith who organized the ABC Con-
ference, it is helpful for the consumers of that alignment to know how this was
determined. Perhaps in this case it is known that IBM was the primary sponsor of
the ABC Conference and that John is a common nickname for Johnathan. Making
this type of provenance available at the level of individual mappings is important
for enabling consumers to make informed decisions about how to use the mappings
within an alignment and how much confidence to place in them. While this need has
been noted by both researchers and practitioners [75, 97], how best to represent this
information is not currently clear.

By far the most common manner in which ontology alignment and coreference
resolution systems represent their results is the Alignment API format. In this repre-
sentation, each relationship between two ontologies (cell) is a “first-class citizen. In
particular, each cell contains the URI of the entity that is the source of the relation-
ship, the URI of the target entity, the relationship that holds between them (equality,
subsumption, etc.), and the strength of that relationship (a decimal value between 0
and 1, inclusive). However, it also seems obvious that storing provenance informa-
tion regarding who created a coreference and when would also be extremely useful.
The creators of the Alignment API intended for such provenance information to be
stored at the alignment level rather than at the level of individual cells. This is not
well suited to projects in which coreferences may come from a variety of sources,
including both people and automated algorithms, over a period of weeks, months,
or years. Noy and her colleagues came to the same conclusion while collecting
community-based mappings for the BioPortal ontology collection [75]. That work
also reified coreferences, but it stored significantly more provenance information
about the individual relations, including discussion and user comments, application
context (conditions under which the relationship holds), mapping dependency (to
express that this mapping holds if and only if some other mapping holds), mapping
algorithm, creation date, creator (the personwhouploaded themapping), and external
references (e.g. relevant publications). Unfortunately, this information is currently
encoded largely as free-text, which violates the underlying Semantic Web principle
that information about data and how it relates should be accessible to both humans
and machines. Establishing an appropriate method for representing provenance and
contextual information for alignments and individualmappings remains an important
challenge for the field of semantic data integration.

Acknowledgements This work was supported in part by the National Science Foundation award
1440202 GeoLink - Leveraging Semantics and Linked Data for Data Sharing and Discovery in the
Geosciences. It was also partially supported by Fundaç ão para a Ciência e Tecnologia (PTDC/EEI-
ESS/4633/2014).

300 M. Cheatham and C. Pesquita

References

1. M.R. Anderson, D. Antenucci, V. Bittorf, M. Burgess, M.J. Cafarella, A. Kumar, F. Niu,
Y. Park, C. Ré, C. Zhang, Brainwash: a data system for feature engineering, in CIDR (2013)

2. M. Ashburner, C.A. Ball, J.A. Blake, D. Botstein, H. Butler, J.M. Cherry, A.P. Davis, K.
Dolinski, S.S. Dwight, J.T. Eppig et al., Gene ontology: tool for the unification of biology.
Nat. Genet. 25(1), 25–29 (2000)

3. K. Baclawski, C.J. Matheus, M.M. Kokar, J. Letkowski, P.A. Kogut, Towards a symptom
ontology for semantic web applications, The Semantic Web–ISWC 2004 (Springer, NewYork,
2004), pp. 650–667

4. A. Ballatore, A. Zipf, A conceptual quality framework for volunteered geographic informa-
tion, Spatial Information Theory (Springer, New York, 2015), pp. 89–107

5. T. Berners-Lee, J. Hendler, O. Lassila et al., The semantic web. Sci. Am. 284(5), 28–37 (2001)
6. O. Bodenreider, The unified medical language system (UMLS): integrating biomedical ter-

minology. Nucleic Acids Res. 32(suppl 1), D267–D270 (2004)
7. A.T. Boin, G.J. Hunter, Do spatial data consumers really understand data quality information,

in 7th International Symposium on Spatial Accuracy Assessment in Natural Resources and
Environmental Sciences (Citeseer, 2006), pp. 215–224

8. A.Callahan, J. Cruz-Toledo, P.Ansell,M.Dumontier, Bio2RDF release 2: improved coverage,
interoperability and provenance of life science linked data, The Semantic Web: Semantics and
Big Data (Springer, New York, 2013), pp. 200–212

9. S.Castano,A. Ferrara, S.Montanelli, G.Varese,Ontology and instancematching,Knowledge-
Driven Multimedia Information Extraction and Ontology Evolution (Springer, New York,
2011), pp. 167–195

10. M. Cheatham, P. Hitzler, String similarity metrics for ontology alignment, The Semantic
Web–ISWC 2013 (Springer, New York, 2013), pp. 294–309

11. M. Cheatham, P. Hitzler, Conference v2. 0: an uncertain version of the OAEI conference
benchmark, The Semantic Web–ISWC 2014 (Springer, New York, 2014), pp. 33–48

12. M. Cheatham, P. Hitzler, The properties of property alignment, inProceedings of the 9th Inter-
national Conference on Ontology Matching-Volume 1317 (2014), pp. 13–24. http://CEUR-
WS.org

13. M. Cheatham, Z. Dragisic, J. Euzenat, D. Faria, A. Ferrara, G. Flouris, I. Fundulaki,
R. Granada, V. Ivanova, E. Jiménez-Ruiz et al., Results of the ontology alignment evaluation
initiative 2015, in 10th ISWCWorkshop on Ontology Matching (OM) (2015), pp. 60–115 (No
commercial editor)

14. R. Cornet, N. de Keizer, Forty years of SNOMED: a literature review. BMC Med. Inform.
Decision Mak. 8(Suppl 1), S2 (2008)

15. I.F. Cruz, F.P. Antonelli, C. Stroe, Agreementmaker: efficient matching for large real-world
schemas and ontologies. Proc. VLDB Endow. 2(2), 1586–1589 (2009)

16. I.F. Cruz, C. Stroe, C. Pesquita, F.M. Couto, V. Cross, Biomedical ontology matching using
the agreementmaker system, in ICBO (2011)

17. I.F. Cruz, C. Stroe, M. Palmonari, Interactive user feedback in ontology matching using
signature vectors, in IEEE 28th International Conference onData Engineering (ICDE) (IEEE,
2012), pp. 1321–1324

18. B. Di Martino, Semantic web services discovery based on structural ontology matching. Int.
J. Web Grid Serv. 5(1), 46–65 (2009)

19. Z. Dragisic, K. Eckert, J. Euzenat, D. Faria, A. Ferrara, R. Granada, V. Ivanova, E. Jiménez-
Ruiz, A.O. Kempf, P. Lambrix et al., Results of the ontology alignment evaluation initiative
2014, inProceedings of the 9th International Conference onOntologyMatching-Volume 1317
(2014), pp. 61–104. http://CEUR-WS.org

20. S. Duan, A. Fokoue, O. Hassanzadeh, A. Kementsietsidis, K. Srinivas, M.J. Ward, Instance-
basedmatching of large ontologies using locality-sensitive hashing, The Semantic Web–ISWC
2012 (Springer, New York, 2012), pp. 49–64

http://CEUR-WS.org
http://CEUR-WS.org
http://CEUR-WS.org

Semantic Data Integration 301

21. A.K. Elmagarmid, P.G. Ipeirotis, V.S. Verykios, Duplicate record detection: a survey. IEEE
Trans. Knowl. Data Eng. 19(1), 1–16 (2007)

22. J. Euzenat, Brief overview of t-tree: the tropes taxonomy building tool. Adv. Classif. Res.
Online 4(1), 69–88 (1993)

23. J. Euzenat, P. Shvaiko, Ontology Matching, vol. 18 (Springer, Heidelberg, 2007)
24. J. Euzenat, C. Meilicke, H. Stuckenschmidt, P. Shvaiko, C. Trojahn, Ontology alignment

evaluation initiative: six years of experience, Journal on Data Semantics XV (Springer, New
York, 2011), pp. 158–192

25. S.M. Falconer, M.-A. Storey, A Cognitive Support Framework for Ontology Mapping
(Springer, New York, 2007)

26. Z. Fan, S. Zlatanova, Exploring ontologies for semantic interoperability of data in emergency
response. Appl. Geomat. 3(2), 109–122 (2011)

27. D. Faria, C. Pesquita, E. Santos, M. Palmonari, I.F. Cruz, F.M. Couto, The agreementmak-
erlight ontology matching system, On the Move to Meaningful Internet Systems: OTM 2013
Conferences (Springer, New York, 2013), pp. 527–541

28. D. Faria, E. Jiménez-Ruiz, C. Pesquita, E. Santos, F.M. Couto, Towards annotating potential
incoherences in bioportal mappings, The Semantic Web–ISWC 2014 (Springer, New York,
2014), pp. 17–32

29. D. Faria, C. Pesquita, E. Santos, I.F. Cruz, F.M. Couto, Automatic background knowledge
selection for matching biomedical ontologies. PloS One 9(11), e111226 (2014)

30. I.P. Fellegi, A.B. Sunter, A theory for record linkage. J. Am. Stat. Assoc. 64(328), 1183–1210
(1969)

31. B. Gallagher, Matching structure and semantics: a survey on graph-based pattern matching.
AAAI FS 6, 45–53 (2006)

32. A. Gangemi, N. Guarino, C. Masolo, A. Oltramari, L. Schneider, Sweetening ontologies with
DOLCE,Knowledge Engineering andKnowledgeManagement: Ontologies and the Semantic
Web (Springer, New York, 2002), pp. 166–181

33. M. Granitzer, V. Sabol, K.W. Onn, D. Lukose, K. Tochtermann, Ontology alignment a survey
with focus on visually supported semi-automatic techniques. Future Internet 2(3), 238–258
(2010)

34. B.C. Grau, Z. Dragisic, K. Eckert, J. Euzenat, A. Ferrara, R. Granada, V. Ivanova, E. Jiménez-
Ruiz, A.O. Kempf, P. Lambrix et al., Results of the ontology alignment evaluation initiative
2013, inProceedings of the 8th International Conference onOntologyMatching-Volume 1111
(2013), pp. 61–100. http://CEUR-WS.org

35. T.R. Gruber, A translation approach to portable ontology specifications. Knowl. Acquis. 5(2),
199–220 (1993)

36. K. Gunaratna, K. Thirunarayan, P. Jain, A. Sheth, S. Wijeratne, A statistical and schema
independent approach to identify equivalent properties on linked data, in Proceedings of the
9th International Conference on Semantic Systems (ACM, New York, 2013), pp. 33–40

37. H. Halpin, P.J. Hayes, When owl: sameas isn’t the same: an analysis of identity links on the
semantic web, in LDOW (2010)

38. F. Hamdi, B. Safar, N.B. Niraula, C. Reynaud, Taxomap alignment and refinement modules:
results for OAEI 2010, in Proceedings of the 5th International Workshop on Ontology Match-
ing (OM-2010)Collocatedwith the 9th International SemanticWebConference (ISWC-2010),
CEUR-WS (2010), pp. 212–220

39. M. Hartung, A. Gross, T. Kirsten, E. Rahm, Effective mapping composition for biomedical
ontologies, in Proceedings of Semantic Interoperability in Medical Informatics (SIMI-12),
Workshop at ESWC, vol. 12 (2012)

40. M. Hartung, L. Kolb, A. Groß, E. Rahm, Optimizing similarity computations for ontology
matching-experiences from gomma, in Data Integration in the Life Sciences (Springer, New
York, 2013), pp. 81–89

41. P. Hitzler, M. Krotzsch, S. Rudolph, Foundations of Semantic Web Technologies (CRC Press,
Boca Raton, 2011)

http://CEUR-WS.org

302 M. Cheatham and C. Pesquita

42. R. Hoehndorf, M. Dumontier, A. Oellrich, D. Rebholz-Schuhmann, P.N. Schofield, G.V.
Gkoutos, Interoperability between biomedical ontologies through relation expansion, upper-
level ontologies and automatic reasoning. PloS One 6(7), e22006 (2011)

43. Y. Hu, K. Janowicz, D. Carral, S. Scheider, W. Kuhn, G. Berg-Cross, P. Hitzler, M. Dean,
D. Kolas, A geo-ontology design pattern for semantic trajectories, Spatial Information Theory
(Springer, New York, 2013), pp. 438–456

44. P.G. Ipeirotis, Demographics of mechanical turk (2010)
45. V. Ivanova, P. Lambrix, J. Åberg, Requirements for and evaluation of user support for large-

scale ontology alignment, The Semantic Web. Latest Advances and New Domains (Springer,
New York, 2015), pp. 3–20

46. P. Jain, P. Hitzler, A.P. Sheth, K. Verma, P.Z. Yeh, Ontology alignment for linked open data,
The Semantic Web–ISWC 2010 (Springer, New York, 2010), pp. 402–417

47. K. Janowicz, M. Compton, The stimulus-sensor-observation ontology design pattern and its
integration into the semantic sensor network ontology, in Proceedings of the 3rd International
Conference on Semantic Sensor Networks-Volume 668 (2010), pp. 64–78. http://CEUR-WS.
org

48. E. Jiménez-Ruiz, B.C. Grau, Logmap: logic-based and scalable ontology matching, The
Semantic Web–ISWC 2011 (Springer, New York, 2011), pp. 273–288

49. E. Jiménez-Ruiz, B.C. Grau, I. Horrocks, R.B. Llavori, Logic-based ontology integration
using contentmap, in JISBD (Citeseer, 2009), pp. 316–319

50. E. Jiménez-Ruiz, B.C. Grau, Y. Zhou, I. Horrocks, Large-scale interactive ontologymatching:
algorithms and implementation. ECAI 242, 444–449 (2012)

51. E. Jiménez-Ruiz, C. Meilicke, B.C. Grau, I. Horrocks, Evaluating mapping repair systems
with large biomedical ontologies

52. N. Kheder, G. Diallo, ServOMBI at OAEI (2015)
53. W.O. Kow, V. Sabol, M. Granitzer, W. Kienrich, D. Lukose, A visual SOA-based ontology

alignment tool, in Proceedings of the Sixth International Workshop on Ontology Matching
(OM 2011), vol. 10 (2011)

54. K.Kyzirakos,M.Karpathiotakis,G.Garbis,C.Nikolaou,K.Bereta, I. Papoutsis, T.Herekakis,
D.Michail,M.Koubarakis, C.Kontoes,Wildfiremonitoring using satellite images, ontologies
and linked geospatial data.Web Semant. Sci. Serv. AgentsWorldWideWeb 24, 18–26 (2014)

55. P. Lambrix, A. Edberg, Evaluation of ontology merging tools in bioinformatics. Pac. Symp.
Biocomput. 8, 589–600 (2003)

56. P. Lambrixa, R. Kaliyaperumalb, A session-based ontology alignment approach for aligning
large ontologies

57. M. Lanzenberger, J. Sampson, AIViz-a tool for visual ontology alignment, in Tenth Interna-
tional Conference on Information Visualization, IV 2006 (IEEE, 2006), pp. 430–440

58. L. Li, X. Xing, H. Xia, X. Huang, Entropy-weighted instance matching between different
sourcing points of interest. Entropy 18(2), 45 (2016)

59. V. Lush, L. Bastin, J. Lumsden, Geospatial data quality indicators (2012)
60. R.McCann,W. Shen,A.Doan,Matching schemas in online communities: aweb 2.0 approach,

in IEEE 24th International Conference on Data Engineering, ICDE, 2008 (IEEE, 2008), pp.
110–119

61. G. McKenzie, K. Janowicz, B. Adams, A weighted multi-attribute method for matching user-
generated points of interest. Cartogr. Geogr. Inf. Sci. 41(2), 125–137 (2014)

62. C. Meilicke, Alignment incoherence in ontology matching. Ph.D. thesis, Universitätsbiblio-
thek Mannheim (2011)

63. S. Melnik, H. Garcia-Molina, E. Rahm, Similarity flooding: a versatile graph matching algo-
rithm and its application to schema matching. In 18th International Conference on Data
Engineering, Proceedings (IEEE, 2002), pp. 117–128

64. V. Momtchev, D. Peychev, T. Primov, G. Georgiev, Expanding the pathway and interaction
knowledge in linked life data, inProceedings of International SemanticWebChallenge (2009)

65. P. Mooney, P. Corcoran, A.C. Winstanley, Towards quality metrics for openstreetmap, in
Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic
Information Systems (ACM, New York, 2010), pp. 514–517

http://CEUR-WS.org
http://CEUR-WS.org

Semantic Data Integration 303

66. J.M. Mortensen, Crowdsourcing ontology verification, The Semantic Web–ISWC 2013
(Springer, New York, 2013), pp. 448–455

67. J.M. Mortensen, M.A. Musen, N.F. Noy, Crowdsourcing the verification of relationships in
biomedical ontologies, in AMIA Annual Symposium (Submitted, 2013) (2013)

68. J.M. Mortensen, M.A. Musen, N.F. Noy, Ontology quality assurance with the crowd, in First
AAAI Conference on Human Computation and Crowdsourcing (2013)

69. B. Motik, P.F. Patel-Schneider, B. Parsia, C. Bock, A. Fokoue, P. Haase, R. Hoekstra, I. Hor-
rocks, A. Ruttenberg, U. Sattler et al., Owl 2 web ontology language: structural specification
and functional-style syntax. W3C Recomm. 27(65), 159 (2009)

70. C.J. Mungall, Obol: integrating language and meaning in bio-ontologies. Comp. Funct.
Genomics 5(6–7), 509–520 (2004)

71. C.J.Mungall, G.V.Gkoutos, C.L. Smith,M.A.Haendel, S.E. Lewis,M.Ashburner, Integrating
phenotype ontologies across multiple species. Genome Biol. 11(1), R2 (2010)

72. D. Ngo, Z. Bellahsene, Yam++: a multi-strategy based approach for ontology matching task,
Knowledge Engineering and Knowledge Management (Springer, New York, 2012), pp. 421–
425

73. A. Nikolov, M. dAquin, E. Motta, Unsupervised learning of link discovery configuration, The
Semantic Web: Research and Applications (Springer, New York, 2012), pp. 119–133

74. N.F. Noy, C.D. Hafner, The state of the art in ontology design: a survey and comparative
review. AI Mag. 18(3), 53 (1997)

75. N.F. Noy, N. Griffith, M.A. Musen, Collecting Community-Based Mappings in an Ontology
Repository (Springer, New York, 2008)

76. N.F. Noy, N.H. Shah, P.L. Whetzel, B. Dai, M. Dorf, N. Griffith, C. Jonquet, D.L. Rubin,
M.-A. Storey, C.G. Chute et al., Bioportal: ontologies and integrated data resources at the
click of a mouse. Nucleic Acids Res. gkp440 (2009)

77. N.F. Noy, J. Mortensen, M.A. Musen, P.R. Alexander, Mechanical turk as an ontology engi-
neer?: using microtasks as a component of an ontology-engineering workflow, in Proceedings
of the 5th Annual ACM Web Science Conference (ACM, New York, 2013), pp. 262–271

78. D.J. Odgers, M. Dumontier, Mining electronic health records using linked data. AMIA Sum-
mits Transl. Sci. Proc. 2015, 217 (2015)

79. D. Oliveira, C. Pesquita, Compound matching of biomedical ontologies. Proc. Int. Conf.
Biomed. Ontol. 2015, 87–88 (2015)

80. J. Ortmann, M. Limbu, D. Wang, T. Kauppinen, Crowdsourcing linked open data for disaster
management, in Proceedings of the Terra Cognita Workshop on Foundations, Technologies
and Applications of the Geospatial Web in conjunction with the ISWC (Citeseer, 2011), pp.
11–22

81. H. Paulheim, S. Hertling, D. Ritze, Towards evaluating interactive ontology matching tools,
The Semantic Web: Semantics and Big Data (Springer, New York, 2013), pp. 31–45

82. A. Pease, I. Niles, J. Li, The suggested upper merged ontology: a large ontology for the
semanticweb and its applications, inWorkingNotes of theAAAI-2002WorkshoponOntologies
and the Semantic Web, vol. 28 (2002)

83. C. Pesquita, D. Faria, E. Santos, F.M. Couto, To repair or not to repair: reconciling correctness
and coherence in ontology reference alignments, in OM (2013), pp. 13–24

84. C. Pesquita, D. Faria, C. Stroe, E. Santos, I.F. Cruz, F.M. Couto,Whats in a nym? Synonyms in
biomedical ontology matching, The Semantic Web–ISWC 2013 (Springer, New York, 2013),
pp. 526–541

85. C. Pesquita, D. Faria, E. Santos, J.-M. Neefs, F.M. Couto, Towards visualizing the alignment
of large biomedical ontologies, Data Integration in the Life Sciences (Springer, New York,
2014), pp. 104–111

86. R.G. Raskin, M.J. Pan, Knowledge representation in the semantic web for earth and environ-
mental terminology (sweet). Comput. Geosci. 31(9), 1119–1125 (2005)

87. S. Rong, X. Niu, E.W. Xiang, H. Wang, Q. Yang, Y. Yu, A machine learning approach for
instancematching based on similarity metrics, The SemanticWeb–ISWC 2012 (Springer, New
York, 2012), pp. 460–475

304 M. Cheatham and C. Pesquita

88. A. Ruttenberg, J.A. Rees, M. Samwald, M.S. Marshall, Life sciences on the semantic web:
the neurocommons and beyond. Brief. Bioinform. bbp004 (2009)

89. M. Salvadores, P.R. Alexander, M.A. Musen, N.F. Noy, Bioportal as a dataset of linked
biomedical ontologies and terminologies in RDF. Semant. Web 4(3), 277–284 (2013)

90. E. Santos, D. Faria, C. Pesquita, F. Couto, Ontology alignment repair through modularization
and confidence-based heuristics (2013). arXiv:1307.5322

91. E. Santos, D. Faria, C. Pesquita, F.M. Couto, Ontology alignment repair through modulariza-
tion and confidence-based heuristics. PloS One 10(12) (2015)

92. C. Sarasua, E. Simperl, N.F. Noy, Crowdmap: crowdsourcing ontology alignment with micro-
tasks, The Semantic Web–ISWC 2012 (Springer, New York, 2012), pp. 525–541

93. M. Schmachtenberg, C. Bizer, A. Jentzsch, R. Cyganiak, Linking open data cloud diagram
(2014)

94. L.M. Schriml, C. Arze, S. Nadendla, Y.-W.W. Chang, M. Mazaitis, V. Felix, G. Feng, W.A.
Kibbe, Disease ontology: a backbone for disease semantic integration. Nucleic Acids Res.
40(D1), D940–D946 (2012)

95. V. Sehgal, L. Getoor, P.D. Viechnicki, Entity resolution in geospatial data integration, in
Proceedings of the 14th Annual ACM International Symposium on Advances in Geographic
Information Systems (ACM, New York, 2006), pp. 83–90

96. B. Severo, C. Trojahn, R. Vieira, VOAR: a visual and integrated ontology alignment environ-
ment (2014)

97. A. Shepherd, C. Chandler, R. Arko, Y. Chen, A. Krisnadhi, P. Hitzler, T. Narock, R. Groman,
S. Rauch, Semantic entity pairing for improved data validation and discovery, EGU General
Assembly Conference Abstracts, vol. 16 (2014), p. 2476

98. H. Shi, K. Maly, S. Zeil, M. Zubair, Comparison of ontology reasoning systems using cus-
tom rules, in Proceedings of the International Conference on Web Intelligence, Mining and
Semantics (ACM, 2011), p. 16

99. K. Siorpaes, M. Hepp, Ontogame: Weaving the Semantic Web by Online Games (Springer,
New York, 2008)

100. S. Sizov, Geofolk: latent spatial semantics in web 2.0 social media, inProceedings of the Third
ACM International Conference on Web Search and Data Mining (ACM, 2010), pp. 281–290

101. B. Smith, M. Ashburner, C. Rosse, J. Bard, W. Bug, W. Ceusters, L.J. Goldberg, K. Eilbeck,
A. Ireland, C.J. Mungall et al., The OBO foundry: coordinated evolution of ontologies to
support biomedical data integration. Nat. Biotechnol. 25(11), 1251–1255 (2007)

102. V. Spiliopoulos, G.A. Vouros, V. Karkaletsis, On the discovery of subsumption relations for
the alignment of ontologies. Web Semant. Sci. Serv. Agents World Wide Web 8(1), 69–88
(2010)

103. H. Stuckenschmidt, J. Noessner, F. Fallahi, A study in user-centric data integration. ICEIS 3,
5–14 (2012)

104. F.M.Suchanek, S.Abiteboul, P. Senellart, Paris: probabilistic alignment of relations, instances,
and schema. Proc. VLDB Endow. 5(3), 157–168 (2011)

105. Y. Sure, S. Bloehdorn, P. Haase, J. Hartmann, D. Oberle, The SWRC ontology–semantic web
for research communities, Progress in Artificial Intelligence (Springer, New York, 2005), pp.
218–231

106. V. Svátek, O. Šváb-Zamazal, V. Presutti, Ontology naming pattern sauce for (human and
computer) gourmets, inWorkshop on Ontology Patterns (2009), pp. 171–178

107. J.M. Taylor, D. Poliakov, L.J. Mazlack, Domain-specific ontology merging for the semantic
web,Fuzzy Information Processing Society, 2005. NAFIPS 2005. AnnualMeeting of the North
American (IEEE, 2005), pp. 418–423

108. S. Thakkar, C.A. Knoblock, J.L. Ambite, Quality-driven geospatial data integration, in Pro-
ceedings of the 15th Annual ACM International Symposium on Advances in Geographic
Information Systems (ACM, 2007), p. 16

109. S. Thaler, E.P.B. Simperl, K. Siorpaes, Spotthelink: a game for ontology alignment. Wissens-
management 182, 246–253 (2011)

http://arxiv.org/abs/1307.5322

Semantic Data Integration 305

110. S. Tschirner, A. Scherp, S. Staab, Semantic access to inspire, in Terra Cognita 2011Workshop
Foundations, Technologies and Applications of the Geospatial Web (Citeseer, 2011), p. 75

111. E. Voyloshnikova, B. Fu, L. Grammel, M.-A.D. Storey, Biomixer: visualizing mappings of
biomedical ontologies, in ICBO (2012)

112. A.J. Williams, L. Harland, P. Groth, S. Pettifer, C. Chichester, E.L. Willighagen, C.T. Evelo,
N. Blomberg, G. Ecker, C. Goble et al., Open phacts: semantic interoperability for drug
discovery. Drug Discov. Today 17(21), 1188–1198 (2012)

113. A. Wu, X. Lopez, Building enterprise applications with oracle database 11g semantic tech-
nologies, Presentation at Semantic Technologies Conference (San Jose, 2009)

114. T. Zhao, C. Zhang,M.Wei, Z.-R. Peng, Ontology-based geospatial data query and integration,
Geographic Information Science (Springer, New York, 2008), pp. 370–392

Linked Data Management

Manfred Hauswirth, Marcin Wylot, Martin Grund, Paul Groth
and Philippe Cudré-Mauroux

Abstract The size of Linked Data is growing exponentially, thus a Linked Data
management system has to be able to deal with increasing amounts of data. Addi-
tionally, in the Linked Data context, variety is especially important. In spite of its
seemingly simple datamodel, LinkedData actually encodes rich and complex graphs
mixing both instance and schema-level data. Since Linked Data is schema-free (i.e.,
the schema is not strict), standard databases techniques cannot be directly adopted
to manage it. Even though organizing Linked Data in a form of a table is possible,
querying a giant triple table becomes very costly due to the multiple nested joins
required typical queries. The heterogeneity of Linked Data poses also entirely new
challenges to database systems, where managing provenance information is becom-
ing a requirement. Linked Data queries usually include multiple sources and results
can be produced in various ways for a specific scenario. Such heterogeneous data
can incorporate knowledge on provenance, which can be further leveraged to pro-
vide users with a reliable and understandable description of the way the query result
was derived, and improve the query execution performance due to high selectivity of
provenance information. In this chapter, we provide a detailed overview of current
approaches specifically designed for Linked Data management. We focus on storage
models, indexing techniques, and query execution strategies. Finally, we provide an
overview of provenance models, definitions, and serialization techniques for Linked
Data. We also survey the database management systems implementing techniques
to manage provenance information in the context of Linked Data.

1 Introduction

The nature of the World Wide Web has evolved from a web of linked documents to a
web including LinkedData [45]. Traditionally, wewere able to publish documents on
theWeb and create links between them. Those links however, allowed only to traverse
the document space without understanding the relationships between the documents

M. Hauswirth · M. Wylot (B) · M. Grund · P. Groth · P. Cudré-Mauroux
Technical University of Berlin (TU Berlin), Berlin, Germany
e-mail: m.wylot@tu-berlin.de

© Springer International Publishing AG 2017
A.Y. Zomaya and S. Sakr (eds.), Handbook of Big Data Technologies,
DOI 10.1007/978-3-319-49340-4_9

307

308 M. Hauswirth et al.

and without linking to particular pieces of information. Linked Data allows to create
meaningful links between pieces of data on the Web [7]. The adoption of Linked
Data technologies has shifted the Web from a space connecting documents to a
global space where pieces of data from different domains are semantically linked
and integrated to create a global Web of Data [45]. Linked Data enables operations
to deliver integrated results as new data is added to the global space. This opens new
opportunities for applications such as search engines, data browsers, and various
domain-specific applications. Web of Linked Data allows applications to operate on
a machine processable unbound space of semi-structured data thus it enables them
to deliver more complete answers as new data appears on the Web [45]. Moreover,
this allows applications to join data from multiple independent and distributed data
collections.

TheWeb of Linked Data is rapidly growing from a dozen data collections in 2007
to a space of hundreds data sources in April 2014 [5, 9, 65]. The number of linked
datasets doubled between 2011 and 2014 [65], which shows an accelerating trend
of data integration on the Web. The Web of Linked Data contains heterogeneous
data coming from multiple sources, various contributors, produced using different
methods, degrees of authoritativeness, and gathered automatically from independent
and potentially unknown sources. Figure1 shows the Linking Open Data cloud dia-
gram created in April 2014; it depicts the scale and heterogeneity of Linked Data
on the Web. Such data size and heterogeneity bring new challenges for Linked Data

Linked Datasets as of August 2014

Uniprot

Alexandria
Digital Library

Gazetteer

lobid
Organizations

chem2
bio2rdf

Multimedia
Lab University

Ghent

Open Data
Ecuador

Geo
Ecuador

Serendipity

UTPL
LOD

GovAgriBus
Denmark

DBpedia
live

URI
Burner

Linguistics

Social Networking

Life Sciences

Cross-Domain

Government

User-Generated Content

Publications

Geographic

Media

Identifiers

Eionet
RDF

lobid
Resources

Wiktionary
DBpedia

Viaf

Umthes

RKB
Explorer

Courseware

Opencyc

Olia

Gem.
Thesaurus

Audiovisuele
Archieven

Diseasome
FU-Berlin

Eurovoc
in

SKOS

DNB
GND

Cornetto

Bio2RDF
Pubmed

Bio2RDF
NDC

Bio2RDF
Mesh

IDS

Ontos
News
Portal

AEMET

ineverycrea

Linked
User

Feedback

Museos
Espania
GNOSS

Europeana

Nomenclator
Asturias

Red Uno
Internacional

GNOSS

Geo
Wordnet

Bio2RDF
HGNC

Ctic
Public

Dataset

Bio2RDF
Homologene

Bio2RDF
Affymetrix

Muninn
World War I

CKAN

Government
Web Integration

for
Linked
Data

Universidad
de Cuenca
Linkeddata

Freebase

Linklion

Ariadne

Organic
Edunet

Gene
Expression
Atlas RDF

Chembl
RDF

Biosamples
RDF

Identifiers
Org

Biomodels
RDF

Reactome
RDF

Disgenet

Semantic
Quran

IATI as
Linked Data

Dutch
Ships and

Sailors

Verrijktkoninkrijk

IServe

Arago-
dbpedia

Linked
TCGA

ABS
270a.info

RDF
License

Environmental
Applications

Reference
Thesaurus

Thist

JudaicaLink

BPR

OCD

Shoah
Victims
Names

Reload

Data for
Tourists in

Castilla y Leon

2001
Spanish
Census
to RDF

RKB
Explorer

Webscience

RKB
Explorer
Eprints
Harvest

NVS

EU Agencies
Bodies

EPO

Linked
NUTS

RKB
Explorer

Epsrc

Open
Mobile

Network

RKB
Explorer
Lisbon

RKB
Explorer

Italy

CE4R

Environment
Agency

Bathing Water
Quality

RKB
Explorer
Kaunas

Open
Data

Thesaurus

RKB
Explorer
Wordnet

RKB
Explorer

ECS

Austrian
Ski

Racers

Social-
semweb

Thesaurus

Data
Open
Ac Uk

RKB
Explorer

IEEE

RKB
Explorer

LAAS

RKB
Explorer

Wiki

RKB
Explorer

JISC

RKB
Explorer
Eprints

RKB
Explorer

Pisa

RKB
Explorer

Darmstadt

RKB
Explorer
unlocode

RKB
Explorer

Newcastle

RKB
Explorer

OS

RKB
Explorer

Curriculum

RKB
Explorer

Resex

RKB
Explorer

Roma

RKB
Explorer
Eurecom

RKB
Explorer

IBM

RKB
Explorer

NSF

RKB
Explorer

kisti

RKB
Explorer

DBLP

RKB
Explorer

ACM

RKB
Explorer
Citeseer

RKB
Explorer

Southampton

RKB
Explorer
Deepblue

RKB
Explorer
Deploy

RKB
Explorer

Risks

RKB
Explorer

ERA

RKB
Explorer

OAI

RKB
Explorer

FT

RKB
Explorer

Ulm

RKB
Explorer

Irit

RKB
Explorer
RAE2001

RKB
Explorer

Dotac

RKB
Explorer
Budapest

Swedish
Open Cultural

Heritage

Radatana

Courts
Thesaurus

German
Labor Law
Thesaurus

GovUK
Transport

Data

GovUK
Education

Data

Enakting
Mortality

Enakting
Energy

Enakting
Crime

Enakting
Population

Enakting
CO2Emission

Enakting
NHS

RKB
Explorer

Crime

RKB
Explorer
cordis

Govtrack

Geological
Survey of

Austria
Thesaurus

Geo
Linked
Data

Gesis
Thesoz

Bio2RDF
Pharmgkb

Bio2RDF
SabiorkBio2RDF

Ncbigene

Bio2RDF
Irefindex

Bio2RDF
Iproclass

Bio2RDF
GOA

Bio2RDF
Drugbank

Bio2RDF
CTD

Bio2RDF
Biomodels

Bio2RDF
DBSNP

Bio2RDF
Clinicaltrials

Bio2RDF
LSR

Bio2RDF
Orphanet

Bio2RDF
Wormbase

BIS
270a.info

DM2E

DBpedia
PT

DBpedia
ES

DBpedia
CS

DBnary

Alpino
RDF

YAGO

Pdev
Lemon

Lemonuby

Isocat

Ietflang

Core

KUPKB

Getty
AAT

Semantic
Web

Journal

OpenlinkSW
Dataspaces

MyOpenlink
Dataspaces

Jugem

Typepad

Aspire
Harper
Adams

NBN
Resolving

Worldcat

Bio2RDF

Bio2RDF
ECO

Taxon-
concept
Assets

Indymedia

GovUK
Societal

Wellbeing
Deprivation imd

Employment
Rank La 2010

GNU
Licenses

Greek
Wordnet

DBpedia

CIPFA

Yso.fi
Allars

Glottolog

StatusNet
Bonifaz

StatusNet
shnoulle

Revyu

StatusNet
Kathryl

Charging
Stations

Aspire
UCL

Tekord

Didactalia

Artenue
Vosmedios

GNOSS

Linked
Crunchbase

ESD
Standards

VIVO
University
of Florida

Bio2RDF
SGD

Resources

Product
Ontology

Datos
Bne.es

StatusNet
Mrblog

Bio2RDF
Dataset

EUNIS

GovUK
Housing
Market

LCSH

GovUK
Transparency
Impact ind.
Households

In temp.
Accom.

Uniprot
KB

StatusNet
Timttmy

Semantic
Web

Grundlagen

GovUK
Input ind.

Local Authority
Funding From
Government

Grant

StatusNet
Fcestrada

JITA

StatusNet
Somsants

StatusNet
Ilikefreedom

Drugbank
FU-Berlin

Semanlink

StatusNet
Dtdns

StatusNet
Status.net

DCS
Sheffield

Athelia
RFID

StatusNet
Tekk

Lista
Encabeza
Mientos
Materia

StatusNet
Fragdev

Morelab

DBTune
John Peel
Sessions

RDFize
last.fm

Open
Data

Euskadi

GovUK
Transparency

Input ind.
Local auth.
Funding f.

Gvmnt. Grant

MSC

Lexinfo

StatusNet
Equestriarp

Asn.us

GovUK
Societal

Wellbeing
Deprivation Imd
Health Rank la

2010

StatusNet
Macno

Oceandrilling
Borehole

Aspire
Qmul

GovUK
Impact

Indicators
Planning

Applications
Granted

Loius

Datahub.io

StatusNet
Maymay

Prospects
and

Trends
GNOSS

GovUK
Transparency

Impact Indicators
Energy Efficiency

new Builds

DBpedia
EU

Bio2RDF
Taxon

StatusNet
Tschlotfeldt

Jamendo
DBTune

Aspire
NTU

GovUK
Societal

Wellbeing
Deprivation Imd

Health Score
2010

Lotico
GNOSS

Uniprot
Metadata

Linked
Eurostat

Aspire
Sussex

Lexvo

Linked
Geo
Data

StatusNet
Spip

SORS

GovUK
Homeless-

ness
Accept. per

1000

TWC
IEEEvis

Aspire
Brunel

PlanetData
Project

Wiki

StatusNet
Freelish

Statistics
data.gov.uk

StatusNet
Mulestable

Enipedia

UK
Legislation

API

Linked
MDB

StatusNet
Qth

Sider
FU-Berlin

DBpedia
DE

GovUK
Households

Social lettings
General Needs

Lettings Prp
Number

Bedrooms

Agrovoc
Skos

My
Experiment

Proyecto
Apadrina

GovUK
Imd Crime
Rank 2010

SISVU

GovUK
Societal

Wellbeing
Deprivation Imd
Housing Rank la

2010

StatusNet
Uni

Siegen

Opendata
Scotland Simd

Education
Rank

StatusNet
Kaimi

GovUK
Households

Accommodated
per 1000

StatusNet
Planetlibre

DBpedia
EL

Sztaki
LOD

DBpedia
Lite

Drug
Interaction
Knowledge

Base

StatusNet
Qdnx

Amsterdam
Museum

AS EDN LOD

RDF
Ohloh

DBTune
artists
last.fm

Aspire
Uclan

Hellenic
Fire Brigade

Bibsonomy

Nottingham
Trent

Resource
Lists

Opendata
Scotland Simd
Income Rank

Randomness
Guide

London

Opendata
Scotland

Simd Health
Rank

Southampton
ECS Eprints

FRB
270a.info

StatusNet
Sebseb01

StatusNet
Bka

ESD
Toolkit

Hellenic
Police

StatusNet
Ced117

Open
Energy

Info Wiki

StatusNet
Lydiastench

Open
Data
RISP

Taxon-
concept

Occurences

Bio2RDF
SGD

UIS
270a.info

NYTimes
Linked Open

Data

Aspire
Keele

GovUK
Households
Projections
Population

W3C

Opendata
Scotland

Simd Housing
Rank

ZDB

StatusNet
1w6

StatusNet
Alexandre

Franke

Dewey
Decimal

Classification

StatusNet
Status

StatusNet
doomicile

Currency
Designators

StatusNet
Hiico

Linked
Edgar

GovUK
Households

2008

DOI

StatusNet
Pandaid

Brazilian
Politicians

NHS
Jargon

Theses.fr

Linked
Life
Data

Semantic Web
DogFood

UMBEL

Openly
Local

StatusNet
Ssweeny

Linked
Food

Interactive
Maps

GNOSS

OECD
270a.info

Sudoc.fr

Green
Competitive-

ness
GNOSS

StatusNet
Integralblue

WOLD

Linked
Stock
Index

Apache

KDATA

Linked
Open
Piracy

GovUK
Societal

Wellbeing
Deprv. Imd
Empl. Rank

La 2010

BBC
Music

StatusNet
Quitter

StatusNet
Scoffoni

Open
Election

Data
Project

Reference
data.gov.uk

StatusNet
Jonkman

Project
Gutenberg
FU-Berlin

DBTropes

StatusNet
Spraci

Libris

ECB
270a.info

StatusNet
Thelovebug

Icane

Greek
Administrative

Geography

Bio2RDF
OMIM

StatusNet
Orangeseeds

National
Diet Library

WEB NDL
Authorities

Uniprot
Taxonomy

DBpedia
NL

L3S
DBLP

FAO
Geopolitical

Ontology

GovUK
Impact

Indicators
Housing Starts

Deutsche
Biographie

StatusNet
ldnfai

StatusNet
Keuser

StatusNet
Russwurm

GovUK Societal
Wellbeing

Deprivation Imd
Crime Rank 2010

GovUK
Imd Income

Rank La
2010

StatusNet
Datenfahrt

StatusNet
Imirhil

Southampton
ac.uk

LOD2
Project

Wiki

DBpedia
KO

Dailymed
FU-Berlin

WALS

DBpedia
IT

StatusNet
Recit

Livejournal

StatusNet
Exdc

Elviajero

Aves3D

Open
Calais

Zaragoza
Turruta

Aspire
Manchester

Wordnet
(VU)

GovUK
Transparency

Impact Indicators
Neighbourhood

Plans

StatusNet
David

Haberthuer

B3Kat

Pub
Bielefeld

Prefix.cc

NALT

Vulnera-
pedia

GovUK
Impact

Indicators
Affordable

Housing Starts

GovUK
Wellbeing lsoa

Happy
Yesterday

Mean

Flickr
Wrappr

Yso.fi
YSA

Open
Library

Aspire
Plymouth

StatusNet
Johndrink

Water

StatusNet
Gomertronic

Tags2con
Delicious

StatusNet
tl1n

StatusNet
Progval

Testee

World
Factbook
FU-Berlin

DBpedia
JA

StatusNet
Cooleysekula

Product
DB

IMF
270a.info

StatusNet
Postblue

StatusNet
Skilledtests

Nextweb
GNOSS

Eurostat
FU-Berlin

GovUK
Households

Social Lettings
General Needs

Lettings Prp
Household

Composition

StatusNet
Fcac

DWS
Group

Opendata
Scotland

Graph
Simd Rank

DNB

Clean
Energy
Data

Reegle

Opendata
Scotland Simd
Employment

Rank

Chronicling
America

GovUK
Societal

Wellbeing
Deprivation

Imd Rank 2010

StatusNet
Belfalas

Aspire
MMU

StatusNet
Legadolibre

Bluk
BNB

StatusNet
Lebsanft

GADM
Geovocab

GovUK
Imd Score

2010

Semantic
XBRL

UK
Postcodes

Geo
Names

EEARod

Aspire
Roehampton

BFS
270a.info

Camera
Deputati
Linked
Data

Bio2RDF
GeneID

GovUK
Transparency

Impact Indicators
Planning

Applications
Granted

StatusNet
Sweetie

Belle

O'Reilly

GNI

City
Lichfield

GovUK
Imd

Rank 2010

Bible
Ontology

Idref.fr

StatusNet
Atari

Frosch

Dev8d

Nobel
Prizes

StatusNet
Soucy

Archiveshub
Linked
Data

Linked
Railway

Data
Project

FAO
270a.info

GovUK
Wellbeing

Worthwhile
Mean

Bibbase

Semantic-
web.org

British
Museum

Collection

GovUK
Dev Local
Authority
Services

Code
Haus

Lingvoj

Ordnance
Survey
Linked
Data

Wordpress

Eurostat
RDF

StatusNet
Kenzoid

GEMET

GovUK
Societal

Wellbeing
Deprv. imd
Score '10

Mis
Museos
GNOSS

GovUK
Households
Projections

total
Houseolds

StatusNet
20100

EEA

Ciard
Ring

Opendata
Scotland Graph

Education
Pupils by

School and
Datazone

VIVO
Indiana

University

Pokepedia

Transparency
270a.info

StatusNet
Glou

GovUK
Homelessness

Households
Accommodated

Temporary
Housing Types

STW
Thesaurus

for
Economics

Debian
Package
Tracking
System

DBTune
Magnatune

NUTS
Geo-
vocab

GovUK
Societal

Wellbeing
Deprivation Imd
Income Rank La

2010

BBC
Wildlife
Finder

StatusNet
Mystatus

Miguiad
Eviajes
GNOSS

Acorn
Sat

Data
Bnf.fr

GovUK
imd env.

rank 2010

StatusNet
Opensimchat

Open
Food
Facts

GovUK
Societal

Wellbeing
Deprivation Imd

Education Rank La
2010

LOD
ACBDLS

FOAF-
Profiles

StatusNet
Samnoble

GovUK
Transparency

Impact Indicators
Affordable

Housing Starts

StatusNet
CoreyavisEnel

Shops

DBpedia
FR

StatusNet
Rainbowdash

StatusNet
Mamalibre

Princeton
Library

Findingaids

WWW
Foundation

Bio2RDF
OMIM

Resources

Opendata
Scotland Simd

Geographic
Access Rank

Gutenberg

StatusNet
Otbm

ODCL
SOA

StatusNet
Ourcoffs

Colinda

Web
Nmasuno
Traveler

StatusNet
Hackerposse

LOV

Garnica
Plywood

GovUK
wellb. happy

yesterday
std. dev.

StatusNet
Ludost

BBC
Program-

mes

GovUK
Societal

Wellbeing
Deprivation Imd

Environment
Rank 2010

Bio2RDF
Taxonomy

Worldbank
270a.info

OSM

DBTune
Music-
brainz

Linked
Mark
Mail

StatusNet
Deuxpi

GovUK
Transparency

Impact
Indicators

Housing Starts

Bizkai
Sense

GovUK
impact

indicators energy
efficiency new

builds

StatusNet
Morphtown

GovUK
Transparency

Input indicators
Local authorities

Working w. tr.
Families

ISO 639
Oasis

Aspire
Portsmouth

Zaragoza
Datos

Abiertos

Opendata
Scotland

Simd
Crime Rank

Berlios

StatusNet
piana

GovUK
Net Add.
Dwellings

Bootsnall

StatusNet
chromic

Geospecies

linkedct

Wordnet
(W3C)

StatusNet
thornton2

StatusNet
mkuttner

StatusNet
linuxwrangling

Eurostat
Linked
Data

GovUK
societal

wellbeing
deprv. imd

rank '07

GovUK
societal

wellbeing
deprv. imd
rank la '10

Linked
Open Data

of
Ecology

StatusNet
chickenkiller

StatusNet
gegeweb

Deusto
Tech

StatusNet
schiessle

GovUK
transparency

impact
indicators
tr. families

Taxon
concept

GovUK
service

expenditure

GovUK
societal

wellbeing
deprivation imd

employment
score 2010

Fig. 1 The diagram shows the interconnectedness of datasets (nodes in the graph) that have been
published by heterogeneous contributors to the linking open data community project. It is based on
research conducted in April 2014

Linked Data Management 309

management systems (i.e., systems which allow to store and to query Linked Data).
While small amounts of Linked Data can be handled in-memory or by standard rela-
tional database systems, big Linked Data graphs, which we nowadays have to deal
with, are very hard to manage. Modern Linked Data management systems have to
face large amounts of heterogeneous, inconsistent, and schema-free data.

2 Background Information

Wenow briefly introduce the basic concepts underpinning LinkedData technologies.
We present a data model, vocabularies, and a data exchange format. Nevertheless, we
expect the reader to be familiar with a number of basic techniques from the Database
Systems, Linked Data, and Provenance areas. We refer the reader to the following
books for an introduction to the fields related to this work:

• “Readings in database systems.” Hellerstein, JosephM., andMichael Stonebraker.
MIT Press, 2005 [47].

• “Database systems: the complete book.” Garcia-Molina, Hector. Pearson Educa-
tion India, 2008 [31].

• “Linked data: Evolving the web into a global data space.” Heath, Tom, and Chris-
tian Bizer. Synthesis lectures on the semantic web: theory and technology 1.1
(2011): 1–136 [46].

• “Provenance: an introduction to PROV.” Moreau, Luc, and Paul Groth. Synthesis
Lectures on the Semantic Web: Theory and Technology 3.4 (2013): 1–129 [54].

Linked Data extends the principles of the World Wide Web from linking docu-
ments to linking pieces of data and create aWeb ofData; it specifies data relationships
and provides machine-processable data to the Internet. It is based on standard Web
techniques but extends them to provide data exchange and integration. The four main
principles of the Web of Linked Data, as defined by Tim Berners-Lee [6], are:

1. Use URIs (Uniform Resource Identifier)1 as names for things.
2. Use HTTP (Hypertext Transfer Protocol)2 URIs so that people can look up those

names.
3. When someone looks up a URI, provide useful information, using standards

(Resource Description Framework,3 SPARQL Query Language4).
4. Include links to other URIs, so that they can discover more things.

LinkedData uses RDF, theResourceDescription Framework, as basic datamodel.
RDF provides means to describe resources in a semi-structured manner. The infor-
mation expressed using RDF can be exchanged and processed by applications. The

1http://www.w3.org/Addressing/.
2http://www.w3.org/Protocols/.
3http://www.w3.org/RDF/.
4http://www.w3.org/TR/sparql11-query/.

http://www.w3.org/Addressing/
http://www.w3.org/Protocols/
http://www.w3.org/RDF/
http://www.w3.org/TR/sparql11-query/

310 M. Hauswirth et al.

Fig. 2 An exemplary graph of triples [21]

ability to exchange and interlink data on the Web means that it can be used by
applications other than those for which it was originally created, and that it can be
linked to further pieces of information to enrich existing data. It is a graph-based
format, optionally defining a data schema, to represent information about resources.
RDF allows to create statements in the form of triples consisting of Subject, Predi-
cate, Object. Subjects and Objects represent nodes on a graph while Predicates are
labeled directed edges (Figs. 2 and 3). A statement expresses a relationship (defined
by a predicate) between resources (subject and object). The relationship is always
from subject to object (it is directional). The same resource can be used in multiple
triples playing the same or different roles, e.g., it can be used as the subject in one
triple and as the object in another. This ability enables to define multiple connec-
tions between the triples, hence creating a connected graph of data. The graph can
be represented as nodes representing resources and edges representing relationships
between the nodes. Figures2 and 3 depict simple examples of RDF graphs.

Elements appearing in the triples (subjects, predicates, objects) can be of one of
the following types:

IRI (International Resource Identifier) identifies a resource. It provides a global
identifier for a resource without implying its location or a way to access it. The
identifier can be re-used by others to identify the same resource. IRI is a general-
ization of URI (Uniform Resource Identifier) allowing non-ASCII characters to
be used. IRI can appear at all three positions in a triple (subject, predicate, object).

Literal is a basic string value that is not an IRI. It can be associatedwith a datatype,
thus can be parsed and correctly interpreted. It is allowed only as the object of a
triple.

Linked Data Management 311

Fig. 3 Example showing an RDF sub-graph using the subject, predicate, and object relations given
by the sample data

Blank node is used to denote a resource without assigning a global identifier with
an IRI, it is a local unique identifier used within a specific RDF dataset. It is
allowed as the subject and the object in a triple.

The framework provides means to co-locate triples in a subset and to associate
such subsets with an IRI [20]. A subset of triples constitutes an independent graph of
data. In practice, it provides data managers with a mechanism to create a collection
of triples. A dataset can consist of multiple named graphs and no more than one
unnamed (default) graph.5

Even though RDF does not require any naming convention for IRIs and does not
impose any schema on data, it can be used in combinationwith vocabularies provided
by RDF Schema language [22]. RDFS is a semantic extension of RDF enabling to
specify semantic characteristics of RDF data. It provides a data-modeling vocabulary
for RDF data. It enables to state that an IRI is a property and that a subject and an
object of the IRI have to be of a certain type. RDF schema allows to classify resources
with categories, i.e. classes, types. Classes allow to regroup resources. Members of
a class are called instances, while classes are also resources and can be described
with triples. RDFS allows classes and properties to be hierarchical, as a class can
be a sub-class of a more generic class. In the same way, properties can be defines
as a specific property (sub-property) of a more generic one. RDFS enables also to
specify a domain and a range of a predicate, i.e., types of resources allowed as
subjects and objects. Properties are also resources that can be described by triples.
An instance can be associated with several independent classes specifying different

5https://www.w3.org/TR/rdf11-concepts/#section-dataset.

https://www.w3.org/TR/rdf11-concepts/#section-dataset

312 M. Hauswirth et al.

sets of properties. RDFS defines also a set of utility properties allowing to link pieces
of data, e.g., seeAlso to indicate a resource providing additional information about
the resource of a subject.

Richer vocabularies (e.g., OWL) enable to express logical constraints on Web
data. The OWL 2Web Ontology Language [17] allows to define ontologies to give a
semantic meaning to the data. An ontology models entities and interactions between
them in a particular domain, it provides classes, properties, and data values. An ontol-
ogy is exchanged along with the data as an RDF document, and defines vocabularies
and relationships between terms, often covering a specific domain shared by a com-
munity. An ontology can also be seen as an RDF graph, where terms are represented
by nodes and relationships between them are expressed by edges, thus they can be
stored and indexed in the same way as RDF data.

Linked Data in general is a static snapshot of information, though it can express
events and temporal aspects of entities with specific vocabulary terms [19]. A snap-
shot of the state can be seen as a separate (named) RDF graph containing a cur-
rent state of the universe. Changes in data typically concern relationships between
resources; IRIs and Literals are constant and rarely change their value.

LinkedData allows to combine and process data frommany sources [6]. The basic
triple representation of pieces of data combined together results in large RDF graphs.
Such large amounts of data are made available as Linked Data where datasets are
interlinked and published in the Web.

Linked Data can be serialized in a number of formats that are logically equivalent.
The data can be stored in the following formats:

N-Triples provides a simple, plain-text way to serialize Linked Data. Each line
in a file represents a triple, the period at the end signals the end of a statement
(triple). This format is often used to exchange large amount of Linked Data and
for processing graphs with stream-oriented tools.

N-Quads is a simple extension of N-Triples. It allows to add a fourth optional
element in a line denoting a named graph IRI, which the triple belongs to.

Turtle is an extension of N-Triples; it introduces a number of syntactic shortcuts,
such as prefixes, lists, and shorthands for datatyped literals. It provides a trade-off
between ease of writing, parsing, and readability. It does not support the notion
of named graphs.

TriG extends Turtle to support multiple named graphs.
JSON-LD provides a JSON syntax for Linked Data. It can be used to transform

JSON documents into Linked Data, and offers universal identifiers for JSON
objects and a way in which a JSON document can link to an object in another
document.

RDFa is a syntax used to embed Linked Data in HTML and XML documents.
This enables to aggregate data from web pages and use it to enrich search results
or presentation.

RDF/XML provides an XML syntax for Linked Data.

To facilitate querying andmanipulating LinkedData on theWeb, a semantic query
language is needed. Such a language, named SPARQL Protocol and RDF Query

Linked Data Management 313

Language (shortly SPARQL), was introduced by the World Wide Web Consortium.
SPARQL [18] can be used to formulate queries ranging from simple graph patterns
to very complex analytic queries. Queries may include unions, optionals, filters,
value aggregations, path expressions, subqueries, value assignment, etc. Apart from
SELECT queries, the language also supports:

ASK queries to retrieve binary “yes/no” answer to a query,
CONSTRUCT queries to construct new RDF graphs from a query result.

All standards and Linked Data concepts are defined and explained in detail in
documents published by the World Wide Web Consortium. We refer the reader to
the following recommendations for further detail:

• RDF 1.1 Primer [21]
• RDF 1.1 Concepts and Abstract Syntax [19]
• RDF Schema 1.1 [22]
• RDF 1.1: On Semantics of RDF Datasets [20]
• OWL 2 Web Ontology Language [17]
• SPARQL 1.1 Overview [18]

This chapter is built on the PhD thesis “Efficient, Scalable, and Provenance-Aware
Management of LinkedData” [70] and our previous papers on processing provenance
in a native RDF store [73, 75].

3 Native Linked Data Stores

In this section, we first describe native RDF storage and query execution strategies.
We define a native RDF systems as a system that was designed to store exclusively
RDF data and thus that is fully optimized for persisting and querying this data.
Naturally, traditional database design and architecture have had some impact on the
design of native RDF stores. Moreover, a number of well-known techniques, (e.g.,
join processing) were adjusted for querying RDF data as we explain in the following.

In the area of nativeRDFstores,wedistinguish threemain systems trends:Quadru-
ple stores (Sect. 3.1), Index-Permuted stores (Sect. 3.2) and Graph stores (Sect. 3.3).
We first examine systems that store the data in table-like structures, storing additional
information per triple, thus maintaining quadruples that keeps information related
to the specific sub-graph the triples belong to. Then, we analyze index-permuted
storage systems, which use a multiplicity of indexes to support high-performance
query execution for arbitrary queries. Finally, we move on to graph stores, which
represent one of the most natural ways to represent RDF data. Nodes represent, in
this context, subjects and objects, while labeled edges represent predicates. In order
to query a graph, an input query is translated into some graph pattern (see Fig. 16)
that is matched against the full graph. Even for simple patterns, this can result in full
traversals of the complete graph and thus may require significant processing time.
Due to the fact that graphmatching, especially against large graphs, is a very complex

314 M. Hauswirth et al.

and time-consuming task, all existing approached trying to deal with the problem in
fact partition graphs into subgraphs. Although here are few different techniques for
doing that, we can distinguish two main trends. The first one uses classic graph parti-
tioning algorithms like GGGP [52] used by [11] or METIS used by [49]. The second
way to tackle graph partitioning is to try to discover recurring patterns/templates in
the RDF graph to create subgraphs containing nodes describing certain topics within
a defined scope, like what was proposed in [71, 72, 79]. All approaches proposes
also a different way of indexing subgraphs, but the general trend is that there is one
main index that allows to find certain subgraphs where the remaining part of the data
can be found. More specific indices are also proposed for specific types of queries,
like Dogma_ipd and Dogma_epd [10].

3.1 Quadruple Systems

The traditional way to persist RDF triples is to store triple statements directly in
a table-like structure. By exploiting semantic information from the complete RDF
graph, additional data can by annotated per triple and stored as a fourth element for
each input triple. To improve query execution performance on top of this structure,
various indexes can be built. In this section, we present systems and architectures
that deal with persisting RDF triples in a most direct way.

Data Storage and Partitioning Virtuoso [28] by Erlin et al. stores data as RDF
quads consisting of a graph element id, subject, predicate, and object. All the quads
are persisted in one table. Each of the attributes can be indexed in differentways. From
a high-level perspective, Virtuoso is comparable to a traditional relational database
with enhanced RDF support. Virtuoso adds specific types (URIs, language and type-
tagged strings) and indexes optimized for RDF. To partition the data in a clustered
environment, Virtuoso uses hash-partitioning based on the subject of a triple. Since
the number of resulting partitions is significantly higher than the number of worker
nodes in the cluster environment, one node might receive multiple partitions. The
distribution of the individual partitions can either be simply round-robin or follow
more elaborate models to account for different hardware capacities of the nodes. The
system allows moving partitions between nodes and insures data consistency during
the process. To provide fault tolerance, Virtuoso allows each logical partition to be
placed on multiple nodes.

In [40], Harris et al. propose a system called 4store. The system applies a sim-
ple storage model: it stores quads of (model, subject, predicate, object). In 4store,
the model attribute is equivalent to Virtuoso’s graph. Data is partitioned as non-
overlapping sets of records among segments sharing a subject. To distribute segments
across the cluster, round-robin is used allowing each node of the cluster to store one
or more segments. To cover failing nodes in the cluster, 4store allows to increase the
replication of the partitions. The number of replicas in the cluster corresponds to the
number of nodes which can fail without causing any significant issue.

Linked Data Management 315

Indexing In Virtuoso, Erling et al. implement two indexes.6 The default index (set as
a primary key) corresponds to GSPO (graph, subject, predicate, object). In addition,
it provides an auxiliary bitmap index (OPGS). The indexes are stored in compressed
form. The GSPO index is used to deal with queries where the subject is known, e.g.:

select ∗ from <lubm> where {<Professor1> ub:AdvisorOf ?y }

The auxiliary bitmap index is is applied to cases with known object and unknown
subject, e.g.:

select ∗ from <lubm> where {?x ub:AdvisorOf <Student1> }

As strings are themost common values in the database, for example inURIs, Virtuoso
compresses these strings by eliminating common prefixes. The system does not
precalculate optimization statistics7; instead it samples data at query execution time.
It also does not compute the exact statistics but just gets rough numbers of elements
and estimates query cost to pick an optimal execution plan.

Harris et al. propose to store each of the quads in three indexes; in addition, they
store literal values separately. 4store maintains a hash table of graphs where each
entry points to lists of triples in the graph (M-Index in Fig. 4). Literals are indexed in
a separate hash table (R Index in Fig. 4) and they are represented as (SPO). Finally,
they consider two predicate-based indexes, referred to as P-Indices in Fig. 4. For each
predicate, two radix tries are used where the key is either a subject or object, and
respectively object or subject and graph are stored as entries. These indices can be
used to select all quads having a given predicate and their subject/object. They can
be seen as traditional predicate indices (P → OS and P → SO).

Query Execution To build query execution plans Virtuoso divides query execution
into multiple steps where each step takes as input the output from the previous step.
Their query execution plan can hence be seen as a pipeline of steps. Most of the steps
are individually executed. Sometimes, steps can be joined and executed as a unit.
Most queries use predicate indices (P-Indices) in order to merge elements:

select ∗ from <lubm> where
{?x a ub:Professor . ?x teacher_of <student> }

The query is executed as an intersection of elements from P-Indices (P:OS) a and
< teacher_of >; elements for< Prof essor > are joined with elements related to
< student >.

select ∗ from <lubm> where
{ ?x a ub:Professor . ?x teaches_course ?c }

The second query is executed as a loop through Professor’s (bitmap OPGS index);
then, courses given by each professor are retrieved (from the GSPO index).

6In databases indexes are used to locate data without scanning the entire dataspace, thus to improve
the speed of retrieval operations. For more details about database concepts we refer the reader to
the positions in the literature introduced in Sect. 2.
7Optimization statistics are used in databases to choose the best execution plan for a query. They
contain information describing distribution of various objects in a database.

316 M. Hauswirth et al.

Fig. 4 4Store: system architecture [40]

select ∗ from <lubm> where
{ ?x a ub:Professor . ?x ub:AdvisorOf ?y}

Such query is executed in four steps, one to translate URIs to IDs, a second one to
get professors, a third one for students the professors advise. The last step translates
results form IDs into URIs, since internally the system encode all strings as IDs to
save space.

select ∗ from <lubm> where
{ ?x a ub:Professor ; ub:advisorOf ?y ; ub: telephone ? tel }

The last query is also executed in four steps since the two properties are retrieved
at the same tame, they are co-located because they have the same subject (GSPO
partitioned on subject).

Linked Data Management 317

Fig. 5 BitMat: sample bit matrix [4]

3.2 Index Permuted Stores

The approach of index-permuted RDF storage exploits and optimizes traditional
indexing techniques for storing RDF data. As most of the identifiers in RDF are
URIs strings, one optimizations is to replace these arbitrary long strings with unique
integers. As the data is sparse and many URIs are repetitive, this technique, allows
to save memory. To increase the resulting performance, the indexes are built based
on shorter encoded values rather than the uncompressed values.

Indexing and Data Storage One of the first approaches to exhaustive indexing
was proposed by Harth et al. for a system called YARS [41]. The authors take into
consideration quads of (Subject, Predicate, Object, Context8). Exhaustive indexing
based on these attribute requires a total of 16 indexes. Harth et al. propose to use
six indexes covering all major access patterns [SPOC, POC, OCS, CSP, CP, OS].
Their indexing approach leverages the property that B+tree indexes can be queried
for range and prefix queries (see [31] Sect. 14.2 for more details on B-trees). If the
key to such index is the full quad of subject, predicate, object and context, it becomes
possible to query only a prefix of the key and use the remaining keys as values.

Atre et al. propose a system called BitMat [4] where they store data in com-
pressed inverted index structures. They leverage the fact that RDF triples are fixed
3-dimensional entities. They propose a 3-dimensional bit-cube where each cell rep-
resents a unique triple and the cell value denotes the presence or absence of the triple.
Figure5 shows some sample RDF data and a corresponding bit matrix. The data is

8From the database perspective a context can be seen as a graph, thus there is no difference between
those two concepts in terms of data management. Here, we keep the original terminology of the
authors of each approach.

http://dx.doi.org/10.1007/978-3-319-49340-4_14

318 M. Hauswirth et al.

Fig. 6 Exhaustive indexing

then compressed using D-gap compression9 on each row level. In this first approach,
the authors only store S-O matrices, however in their next work [3] they introduce
also a transposed matrix of O-P. Furthermore, they also slice out rows along the S
and O dimension and store also P-S and P-O matrices.

Janik et al. introduce a systemcalledBRAHMS [50],whose storagemodel evolves
around permuted indexes. They store data in three hash tables (S-OP, O-SP, P-SO).
The hash tables are organized in a logically contiguous memory block which can be
dumped and loaded from disk during startup and shutdown, though the system itself
works in-memory.

Several pieces of work like [59, 69] show that it is possible to use a new storage
model that applies exhaustive indexing. The foundation for this approach is that
any query on the stored data can be answered by a set of indices on the subject,
predicates, and objects in different orders, namely all their permutations as shown in
Fig. 6. In contrast to the concept of property tables where the table is only sorted by
the subject [1], this allows fast access to all parts of the triples by sorted lists and fast
merge-joins (see [31] Sect. 15.4.8 for more details on merge-join) on the elements.

The Hexastore index structure presented in [69] can be described as shown in
Fig. 7. In this example, a spo index is described. The first level of the index is a
sorted list of all subjects where each subject is associated to a list of sorted predicates.
Each predicate links to a list of sorted objects. Queries that require many joins and
unions in other storage systems can be answered directly by the index. In the case
where the query requests a list of subjects that are related to two particular objects
through any property, the answer can be computed by merging the subject lists of
a osp index. Since the subject list of this osp index is sorted, this can be done in
linear time.

The architectural drawback of this approach is the increase in memory consump-
tion. Since every combination of possible query patterns is indexed, additional space
is required due to the duplication of data. As the authors of [69] point out, less
than a six-fold increase in memory consumption is required; the approach yields a
worst-case five-fold increase since for the set of spo, sop, osp, ops, pso, pos
indexes, one part can always be re-used: the initial sorted list of subjects, objects
and predicates. Due to the replication of the data into the different index structures,
updating and inserting into the index can become a second bottleneck.

Neumann et al. present RDF-3X [58] that relies on the same processing scheme
with exhaustive indexing but further optimizes the data structures. As in Hexastore,

9http://bmagic.sourceforge.net/dGap.html.

http://bmagic.sourceforge.net/dGap.html

Linked Data Management 319

Fig. 7 Hexastore index structure, figure after [69]

they use dictionary encoding to replace variable-sized values by fixed integer IDs.
In RDF-3X, the index data is stored in clustered B+ trees in lexicographic order.

The values inside the B+ tree are delta encoded (computed difference/delta
between the ID attributed to the slot in the tree and the ID attributed to the pre-
vious slot) to further reduce the required amount of main memory to persist all data.
Each triple (in one of the previously defined orders of spo, sop,...) is stored as
a block of maximum 13 bytes. Since the triples are sorted lexicographically, the
expected delta between two values is low, i.e., only a few bytes are consumed. Now
the header of the value block contains two pieces of information: First a flag that
identifies if value1 and value2 are unchanged and the delta of value3 is small enough
to fit in the header block; second, if this flag is not set, it then identifies a case number
of how many bytes are needed to decode the delta to the previous block. In Fig. 8,
we illustrate this example. The upper part of the illustration shows the general block

Fig. 8 RDF-3X compression example [58]

320 M. Hauswirth et al.

Fig. 9 BitMat: simple query execution [4]

structure and the lower half an explicit case. Here, the flag is set to 0 meaning more
than value3 changed. Case 7 identifies that for value1, value2, and value3 exactly
one byte changed. Using this information, the deltas can be extracted and the actual
value of the triple can be decoded. In addition to the full index, RDF-3X stores
additional aggregated indices to maintain information about how often a relation
between two values occurs. This can be used to increase the query performance of
those queries where unbound variables are used in the triple pattern, but are not pro-
jected and therefore can be used as multipliers for the output of result patterns. These
count-aggregated index structure add another nine indexes to the previous indexes,
six indexes for all pairs of two values, and three indexes for all single values.

In [62] Owens et al. propose a new storage model for Jena10 called TDB. The
approach stores data in three B+-tree indexes. They use SPO, POS, and OSP permu-
tations. Each index contains all elements of all triples. The string values are encoded
as 64bit identifiers.

Query Execution To execute simple queries, Harth et al. [41] evaluate which of the
six indexes fits best to answer the query. Selecting the index depends on the access
pattern; if a subject is specified in the query, the SPOC index should be used. If
only a predicate is given in the query, the POC index should be used instead. More
complex queries connected with logical operators require typical relational query
optimization like reordering to efficiently execute all kinds of joins.

To execute the queries in BitMat, Atre et al. [4] use bitwiseANDandORoperators
on rows in their bit matrices, which results in a binary intersection of elements. The
operations are performed directly on compressed data. To perform a simple single
join query, they first filter by subject rows from matrices containing only triples
satisfying a given query patterns (S1 and S2 rows in Fig. 9). The result rows are
folded on objects, so that if any object is present for the SP pairs, the value is set to 1.
Figure9 shows two rows for S1 and S3 (3 cells for each predicate P1, P2, P3) without
any specified object. In the example (Fig. 9) all cells have their value set to 1 for both

10https://jena.apache.org/documentation/tdb/.

https://jena.apache.org/documentation/tdb/

Linked Data Management 321

subjects. Only the pair S3 and P2 are set to 0, because in the previously selected row
for S2, for all objects related to P2 we had value of 0, i.e., there is no triple (S1, P2,
X). The following step performs AND operation on those two rows, which results
in a row containing 1s for predicates which are present for both rows (“Result” in
Fig. 9, P1 and P3 are set to 1). Subsequently, the inverse operations are performed,
i.e., between the initially selected rows for S1 and S3 and the result row from the
previous step. An AND operation is applied on cells related to each predicate. This
gives two rows for S1 and S3 containing the same values for predicates P1 and P3,
but cleared values (set to 0) for predicate P2 and all objects related to P2. The two
rows are combined it the same way as before with the initial matrix, which gives the
final result. The rows for S1 and S3 are those which define the result, and since in
the first step the S2 row was not selected its values are cleared.

The authors also propose different algorithm to perform multiple-join operations,
where first they create multi-join graphs capturing join variables. Then, for each join
variable, they fold matrices associated to all possible triple patterns containing the
variable. They perform bitwise AND on bitarrays. The final result is unfolded and
in the end a result BitMat is generated by OR operations on all matrices associated
with the triple pattern.

Janik et al. focus in their work [50] on the semantic association discovery problem.
The problem itself refers to finding a semantic connection between two objects.
Tackling this issue, they had to overcome the fact that, at that time, SPARQL did
not fully support that kind of queries. It supported queries only with fixed distance,
whereas to discover association one was interested in any association independently
of a distance between objects (arbitrary transitive closures, which were not supported
by SPARQL at the time). In BRAHMS, they mainly leveraged two graph algorithms
to answer queries: depth-first search and breadth-first search.

TDB [62] divides a query into basic graph patterns [63], which are then matched
onto the stored RDF data. Subsequently, the other operations are executed by replac-
ing all known values for the variables. This is optimized by favoring elements that are
expected to yield the fewest elements, based on statistics. Matching triple patterns
is performed by choosing the most appropriate index. The system then performs a
range scan of the index for finding particular elements.

3.3 Graph-Based Systems

RDFnaturally forms graph structures, hence oneway to store and process it is through
graph-driven data structures and algorithms. Many graph algorithms are however
known to be very computationally complex. In this section we present approaches
trying to apply ideas from the graph processing world to efficiently handle RDF data.

Data Storage and Partitioning In TripleT [29], Fletcher et al. introduce the term of
atom around which triples are co-located. A key k, regardless of its role in the triples,
is selected and then all triples where k occurs are co-located together it improve data

322 M. Hauswirth et al.

Fig. 10 gStore: adjacency list table [79]

Fig. 11 gStore: signature
graphs [79]

0010 1000 1000 0100

1000 0001

0001 1000
0000 0001

001 002

003

004
005

1000 1000
006

0001 0100
008

0000 1000 1000 0000

Query Signature Graph

Data Signature Graph

0100 0100007

*Q

*G

10000
00010

01000

00010

0010000010

00001

00010

10000

locality. For example, for k three buckets are created. One containing pairs (p,o)
where k is subject, one containing pairs (s,o) where k is predicate, one containing
pairs (s,p) where k is object. All those pairs are sorted. The storage model itself has
an index with keys corresponding to subjects and objects.

Das et al. in their system called gStore [79], organize data in adjacency list tables.
Each vertex is represented as an entry in the table with a list of outgoing edges and
neighbors (Fig. 10). The entries take the following form [vID, vLabel, adjList], where
vID is the ID of the vertex, vLabel is an URI and adjList is a list of outgoing edges
and neighbors, which in fact results in shapes that are similar to the atoms proposed
in TripleT. As a following step, a bitstring signature is assigned to each vertex (see
Fig. 11).

Brocheler et al. [10] propose a system called DOGMA. Their approach is based
on a balanced binary tree where each node is located on one disk page. Since the
page size is fixed, the size of the subgraph located on a page is limited also. There can
be many different indexes built for the same RDF database; the authors of DOGMA
focuse on minimizing potential cross edges between subgraphs located on different
pages. Supposing we have two nodes N1 and N2, the fewer cross edges we have,
the more independent the nodes become. When answering a query, we will most
probably not have to open/read both of those subgraphs (see Fig. 12).

Linked Data Management 323

Fig. 12 DOGMA: index [10]

Topartition graphs, the authors use the algorithmproposed in [52]. Their algorithm
takes as input a weighted graph and partitions it in the way that the total weight of
cross edges (between subgraphs) is minimized and the sum of the weights in each
subgraph is approximately equal. They start by assigning a weight of 1 to each vertex
and edge in an RDF graph and then coarsen the graph into a subgraph so that the
latter contains about half of the vertices from the former, and so on with each of the
subgraphs until each of the subgraphs has no more than the predefined number of
vertices (i.e., to fit into a disk page). The coarsening algorithm randomly picks one
vertex (v), then selects a maximally-weighted node (m). It merges the neighbors of
the nodem andm itself into one node, updates theweights and removes v. Edges from
m to its neighbors are also removed. This process is rerun until the subgraph contains
half or less vertices as the initial graph. Then, the index is built for all subgraphs.

One of the key innovations of Diplodocus [71, 72] revolves around the use of
declarative storage patterns [24] to co-locate large collections of related values on
disk and in main-memory. When setting-up a new database, the database admin-
istrator may give Diplodocus a few hints as to how to store the data on disk: the
administrator can give a list of triple patterns to specify the root nodes, both for the
template lists and the molecule clusters (see for instance Fig. 17, where “Student”
is the root node of the molecule, and “StudentID” is the root node for the template
list). Cluster roots are used to determine which clusters to create: a new cluster is
created for each instance of a root node in the database. The clusters contain all triples
departing from the root node when traversing the graph, until another instance of a
root node is crossed (thus, one can join clusters based on the root nodes). Template
roots are used to determine which literals to store in template lists. In case the admin-
istrator gives no hint about the root nodes, the system inspects the templates created

324 M. Hauswirth et al.

Fig. 13 Diplodocus: a molecule template along with one of its RDF molecules [72]

by the template manager and takes all classes as molecule roots and all literals as
template roots.

Based on the storage patterns, the template manager handles two main opera-
tions in the system: (i) it maintains a schema of triple templates in main-memory
and (ii) it manages template lists. Whenever a new triples enters the system, it is
passed to the template manager, which associates template IDs corresponding to
the triple by considering the type of the subject, the predicate, and the type of the
object. Each distinct list of “(subject-type, predicate, object-type)” defines a new
triple template. The triple templates play the role of an instance-based RDF schema
in our system. In case a new template is detected (e.g., a new predicate is used), then
the template manager updates its in-memory triple template schema and inserts new
template IDs to reflect the new pattern it discovered. Figure13 gives an example of
a template. In case of very inhomogeneous data sets containing millions of different
triple templates, wildcards can be used to regroup similar templates (e.g., “Student -
likes - *”).

The triple is then passed to the Cluster Manager, which inserts it in one or several
molecules. If the triple’s object corresponds to a root template list, the object is also
inserted into the template list corresponding to its template ID. Templates lists store
literal values along with the key of their corresponding cluster root. They are stored
compactly and segmented in sublists, both on disk and in main-memory T.

Indexing Das et al. [79] build an S-tree for all vertices in their adjacency list table to
reduce the search space (Fig. 14). The tree leafs correspond to vertices from the initial
graph (G*), and each intermediate (parent) node is formed by performing bitwise
OR operation on all children signatures. However, S-trees cannot support multi-
way join processing; to solve this issue, the authors propose a VS-tree extension.
Given an S-tree, leafs are linked according to the initial graph, and new edges are
introduced depending on whether certain leafs are connected in G*. Specifically,
two leafs in S-tree (001 and 002 in Fig. 14) are linked if there is an edge in G*
between vertices corresponding to them. On the upper level in S-tree, super-edges
are introduced between nodes if there is at least one connection between the children
of those nodes. In other words, if there is a link between two leafs which does not

Linked Data Management 325

Fig. 14 gStore: S-tree [79]

0010 1000
1000 0100

001
002

1000 0001
003

0100 0100007 0001 0100
0080000 0001

005
1000 1000

006

0001 1000
004

0010 1001 1100 0100 1001 0101 1001 1000

1110 1101 1001 10012
1d 2

2d

3
1d

3
2d

3
3d

3
4d

2
1d 1111 11 01

Fig. 15 gStore: VS-tree [79]

0010 1000

1000 0100 1000 0001

0100 0100 0001 0100
0000 0001

1000 1000

0001 1000

0010 1001

1100 0100
1001 0101

1001 1000

1110 1101 1001 1001

1111 1101

1G

2G

3G

*G

2
1d 2

2d

3
2d

3
3d

3
4d

1
1d

10000
00010

01000

00010

00100

00010

00001

00010

3
1d 10010

00001
00010

01000
00010

00010

00100

00110

01011

10010

11111

DiedIn 00001
Rdf:type 00010

hasCapital 00100
LocatedIn 01000
bornIn 10000

Super Edge
Parent-Child Relation

Hash Function:

001

005

002

007

003

001

008

004

006

share a parent, a link between their parents is then created. Bitwise “O” operations
over connecting edge labels of the children are performed to assign labels to such
super-edges (see Fig. 15).

In the approach proposed by Brocheler et al. the storage model itself is an index
mostly, though the authors also propose two additional indexes to help pruning the
result candidates. The DOGMA internal partition distance (IPD) index stores, for
each vertex v in node N, the distance to edge of the subgraph corresponding to N.
During query execution, for two vertices (v, u) the algorithm looks for nodes for
which the vertices belong (N!=M). N and M are at the same level of the tree and
closest to the root. If such nodes do not exist, because the vertices are in the same
leaf node of the tree, then the distance between them is set to 0, otherwise it is set
to the maximal distance from each of them to the border of the subgraph the vertex
belongs to (formally: d(u, v) = max(i pd(v, N), i pd(u,M))). The idea behind the
DOGMA external partition distance (EPD) index is to maintain distances to other
subgraphs. For each lowest-level subgraph, a color is assigned. For each vertex and

326 M. Hauswirth et al.

(a) (b)

Fig. 16 DOGMA: Example RDF graph (a) and query (b) [10]

color, the shortest distance from v to a subgraph colored with c is stored. Figure16
illustrates how this method can be used to further prune result candidates. Basically,
if the distance to the subgraph where a candidate lies is bigger than the distance
between constant and variable vertices, the candidate can be pruned.

The storage system in Diplodocus [71, 72] can be seen as a hybrid structure
extending several of the ideas from above. The system is built on three main struc-
tures: RDFmolecule clusters (which can be seen as hybrid structures borrowing both
from property tables and RDF subgraphs), template lists (storing literals in compact
lists as in a column-oriented database system) and an efficient hash-table indexing
URIs and literals based on the clusters they belong to.

Figure17 gives a simple example of a few molecule clusters—storing informa-
tion about students—and of a template list—compactly storing lists of student IDs.
Molecules can be seen as horizontal structures storing information about a given
object instance in the database (like rows in relational systems). Template lists, on
the other hand, store vertical lists of values corresponding to one type of object (like
columns in a relational system).

Molecule clusters are used in two ways in the system: to logically group sets
of related URIs and literals in the hash-table (thus, pre-computing joins), and to
physically co-locate information relating to a given object on disk and in main-
memory to reduce disk and CPU cache latencies. Template lists are mainly used for
analytics and aggregate queries, as they allow to process long lists of literals.

Query Execution In TripleT, [29] Fletcher et al. try to minimize complex subject-
object joins which in table-oriented systems involve many self-join operations.
Thanks to their indexing scheme, they can perform a join as a single look-up on

Linked Data Management 327

Fig. 17 Diplodocus: the two main data structures: molecule clusters, storing in this case RDF
subgraphs about students, and a template list, storing a list of literal values corresponding to student
IDs [72]

a common join variable (same value for subject and object) and then merge values
related to the subjects and the objects.

To answer queries, gStore employs a top-down strategy over a VS-tree to find the
match of a query (Q*) over a graph (G*). First, the system finds the top-matches of
Q* in the VS-tree, and queues those matches. Then, it pops up one match from the
queue and expands it to its children (all descendant and the node) and for each of
them checks if it matches Q*. All valid matches are queued back again. This process
is iterated until reaching the leaf entries of the VS-tree. Finally, the system finds
matches of Q* over leaf entries in VS-tree, i.e., matches of Q* over G*.

To answer a queryBrocheler et al. inDOGMAfirst retrieve for all variable vertices
in Q* a set of result candidates w.r.t. the vertices (see Fig. 18). The sets are initialized
with vertices that are connected to a defined vertex with a defined predicate. Then,
for the vertex with the lowest cardinality of result candidates, each candidate is set
as a value of the vertex, such that there is a new constant vertex. The algorithm
can be rerun to prune result candidates for other vertices, and so on until the final
result is found. The basic algorithm presented above is efficient enough for simple
queries on neighboring vertices. Considering vertices located in different nodes,
additional indices to help prune the result candidates would be needed. The authors
propose a second algorithm, which verifies if two vertices are “in range”. Let v be a
variable vertex with set of result candidates, and c a constant vertex with a long range

328 M. Hauswirth et al.

(a) (b)

Fig. 18 DOGMA: execution of DOGMA_basic [10]

dependency on v. Then any result candidate of vmust not be further away from c than
the distance between c and v in the query (more formally d(v, c) >= d(T (v), s)).
Any other candidate can be pruned. While the result candidates are initialized, the
algorithm ensures that each element satisfies this constraint. To efficiently look up for
a d(v, c), a distance index is introduced through two lower-bound distance indexes
(see Sect. 3.3).

Query processing in Diplodocus [71, 72] is very different from previous
approaches to execute queries on RDF data, because of the three peculiar data struc-
tures in the system: a hash-table associating URIs and literals to template IDs and
cluster lists, clusters storing RDF molecule clusters in a compact fashion, and tem-
plate lists storing compact lists of literals. Triple patterns in Diplodocus are resolved
by looking for a bound-variable (URI) in the hash-table, retrieving the correspond-
ing cluster numbers, and finally retrieving values from the clusters when necessary.
Since the RDF nodes are logically grouped by clusters in the hash-table, it is typi-
cally sufficient to read the corresponding list of clusters in the hash table (e.g., for
“return all students following Course0”), or to intersect or take the union of several
lists of clusters in the hash table (e.g., for “return all students following Course0
whose last names are Joe”) to answer the queries. In most cases, no join operation is
needed since joins are implicitly materialized in the hash-table and in the clusters.
Whenmore complex join occurs, Diplodocus resolves them using standard hash-join
operators.

Diplodocus [71, 72], to dealwith star-like queries invokes the hash-table to find the
corresponding cluster, which contains then all the corresponding values. For bigger
scopes, the system can join clusters based on the various root nodes they contain.

Many analytic queries can be solved in Diplodocus [72] by first intersecting lists
of clusters in the hash-table, and then looking up values in the remaining molecule
clusters. Large analytic or aggregate queries on literals can be resolved by taking
advantage of template lists (containing compact and sorted lists of literal values for a
given template ID), or by filtering template lists based on lists of cluster IDs retrieved
from the hash-table.

Linked Data Management 329

4 Provenance for Linked Data

Understanding where and how a piece of data is produced (its provenance) has long
been recognized as an important factor in determining the quality of a data item
particularly in data integration systems [68]. Thus, it is no surprise that provenance
has been of concern within the Linked Data community where a major use case is
the integration of data sets published by multiple different actors [45].

The work on provenance and linked data builds upon prior work in the database,
e-science and distributed systems communities.Moreau provides an extensive review
of that literature contextualizing it with respect to the Web [55]. Instead of provid-
ing a comprehensive overview of the work, we provide a framework for situating
provenance work with respect to linked data and then drill down into those works
that have focused on provenance-aware linked data management systems.

Following [38], one can categorize work into three areas: content, management,
and use.Work in the content area has focused on representations andmodels of prove-
nance. In management, the work has focused on collecting provenance in software
ranging from scientific databases [23] to operating systems or large scale workflow
systems as well as mechanisms for querying it. Finally, provenance is used for a
variety of applications including debugging systems, calculating trust and checking
compliance.

With respect to provenance within linked data management systems, we first dis-
cuss the representations of provenance primarily for interoperable interchange (i.e.
content), we then more heavily discuss provenance in linked data management sys-
tems (management). The usage of provenance, while important, is often application
or domain specific.

4.1 Provenance Representations

Because data processing takes place across systems, there is a need to be able to
interchange information about data was combined, recombined and processed. This
has led to the development of a number of ontologies for the representation of that
information including, Dublin Core,11 the Proof Markup Language (PML) [25],
Provenir [64], Provenance Authoring and Versioning [16], Provenance Vocabu-
lary [42], and OPMV [76]. These ontologies shared many common capabilities to
describe various types of information about how data was combined and processed
including:

• how software executed to consume and produce data,
• that data was derived from other data,
• that data were composed of other data,
• who was involved in the manipulation or construction of data.

11http://dublincore.org/documents/dcmi-terms/.

http://dublincore.org/documents/dcmi-terms/

330 M. Hauswirth et al.

These common characteristics were also evident to the broader provenance com-
munity through the development of the the Open ProvenanceModel [56]. Given this,
the World Wide Web Consortium formed a working group that developed a recom-
mendation for the interchange of provenance on the web called PROV [39]. PROV
incorporates the concepts from above and establishes a baseline for the interchange
of provenance. We recommend the PROV Primer [33] as a good introduction to the
concepts of PROV. A book length introduction is in given byMoreau and Groth [54].
For an in-depth description of how PROV came to be and the design decisions behind
it, see [57]. Many of the ontologies described above that were pre-cursors to PROV
have now been revised to extend PROV including PML12 and PAV [15]. Furthermore,
there is a mapping between PROV and Dublin Core.

The key realization here is that these ontologies provide the vocabulary to rep-
resent provenance information at differing level of details to enable interchange
between systems. Thus, when developing a linked data management system, it’s
important to be aware that there is a difference between these sort of external, inter-
changeable representations and those used internally to manage data.

These representations all use the common Linked Data formats and importantly
rely on the URL as identifiers to point to pieces of data and describe the provenance.
At the dataset level, provenance is often attached to a dataset descriptor [35] often
embedded in aVocabulary of InterlinkedDataset file (VoID) [2]. VoID is an important
part of Linked Data provenance as it allows one to define what constitutes a dataset
and its associated metadata. The Dataset Descriptions: HCLS Community Profile13

provides excellent guidance on what metadata (inclusive of provenance) should be
provide by linked datasets.

Within linked data, provenance is attached using either reification [44] or named
graphs [12]. Widely used datasets such as YAGO [48] reify their entire structures to
facilitate provenance annotations. Indeed, provenance is one reason for the inclusion
of named graphs in the current version of RDF 1.1 [77]. Other approaches, such as
nanopublications [37], extensively use named graphs to enable subsets of linked data
to be referred to and for their provenance to be described [37].

Tracking and generating these representations is the subject of the next section.

4.2 Provenance in Data Management Systems

Provenancewithin linked datamanagement systems builds heavily on thework of the
database systems community. See [14] for an extensive review. Here, we introduce
some important concepts and relevant work.

Miles defined the concept of provenance query [53] in order to only select a rele-
vant subset of all possible resultswhen looking up the provenance of an entity. A good
example of a classic database system that handles provenance is Perm [34], which can

12http://inference-web.org/wiki/PML_3.0.
13http://www.w3.org/TR/hcls-dataset/.

http://inference-web.org/wiki/PML_3.0
http://www.w3.org/TR/hcls-dataset/

Linked Data Management 331

compute, store, and query relational. Provenance was computed by using standard
relational query rewriting techniques. Perm supports the calculation of provenance
both when queried for (the lazy approach) or when a new relation is created or data
is inserted (the eager approach) depending on settings. Recently, Glavic showed that
the provenance captured within such a standard relational system can be represented
and interchanged using PROV [61].

An important point is that these traditional database approaches [8, 51] assume a
strict relational schema, whereas RDF data is by definition schema free. To address
these issues, a number of authors have adopted the notion of annotated RDF [30,
67]. This approach assigns annotations to each of the triples within a dataset and
then tracks these annotations as they propagate through either the reasoning or query
processing pipelines. Formally, these annotated relations can be represented by the
algebraic structure of communicative semirings, which can take the form of polyno-
mials with integer coefficients [36]. These polynomials represent how source tuples
are combined through different relational algebra operators (e.g., UNION, JOINS).
Theoharis et al. [66] provide a comprehensive theoretical foundations of tracing
provenance in SPARQL workload. In terms of formalization, SPARQL poses, how-
ever, difficulties because of the OPTIONAL operator, which implies negation. The
detailed explanation of theoretical basics goes beyond the scope of this chapter.

Zimmermann et al. [78] propose to annotate a triple with temporal data and a
provenance value. Such provenance value refers to the source of a triple. The authors
use a standard triple-oriented data model and include temporal and provenance anno-
tation. A triple take the form of (Subject, Predicate, Object, Annotation), i.e., N-
Quad (Sect. 2). Such statements can be stored in any triplestore supporting N-Quads.
Zimmermann et al. proposes also a model to describe provenance of inferred triples
with the logical operators ∨ and ∧. Consider the following data:

(chadHurley; worksFor; youtube) : chad
(chadHurley; type ; Person) : chad
(youtube; type ; Company) : chad
(Person; sc ; Agent) : foaf
(worksFor; dom; Person) : wrokkend
(worksFor; range ; Company) : workont

It is possible to infer the following triple:

(chadHurley; type ; Agent) : (chad ∧ foaf ∧ workont)
∨ (chad ∧ foaf)

Which logically is equivalent to:

(chadHurley; type ; Agent) : chad ∧ foaf

The proposed method to describe provenance of inferred triples could be possi-
bly leveraged to trace provenance in query execution, however this avenue was not
explored by the authors. Zimmermann et al. propose also a query language which
allows to incorporate provenance information in the query execution. The basic idea
to query over provenance values is similar to named graphs in SPARQL. The query

332 M. Hauswirth et al.

incorporates information on the annotation, which is then taken into account during
the execution.

A similar is described by Udrean et al. [67]. The authors extend the RDF schema
for temporal, uncertainty, and provenance annotations. The main focus of this work
is to develop a theoretical model to manage such metadata information. The authors
propose also a query language which allows to query over such meta data. Con-
trary to the previous solution, here the authors annotate predicates with provenance
information. In a similar way Nguyen et al. [60] propose to use a singleton property
instead of RDF reification or named graphs to describe provenance. A triple take
then a form of (Subject, Predicate: Annotation, Object). Such annotation added to a
predicated could be later tracked to deliver a trace of the query execution, however
it is not included in the work. Udrean et al. [67] in their work propose also a query
language to include provenance information in the query execution process. A query
then take a form similar to their annotated triple i.e., (Subject, Predicate : Annotation,
Object). Query schema proposed in this work in not fully compatible with SPARQL.
Queries can by expressed in SPARQL but the annotations are not taken into account
in such case.

Flouris et al. [30] instead of annotating triples with URIs assign a color to each
triplewhich allows to trace the provenance of the results. Their storagemodel is based
on a statement table where they store all triples along with their colors. The statement
table is extended for a fourth column which in result gives N-Quads (Sect. 2). During
the query execution they trace all colors involved in the process and provide them as
a provenance trace. The final lineage is delivered as a list of unique colors.

Ding et al. consider tracking provenance from the database perspective at a mole-
cule level [27]. They define RDFmolecule as the finest and lossless sub-graph result-
ing from the graph decomposition. Which boils down to triples if there are no blank
nodes involved. In case the data set contains blank nodes, triples sharing the same
blank node are placed in the same molecule. They consider provenance at document
level which means that molecules are annotated with the URI they source from. Sim-
ilarly to the previous approaches, in their implementation, they store data in a form
of quads in a statement table. Likewise, the final output of their system consist of
query results and a list of documents (URIs) which provided the triples used in the
query execution.

The RDFProv [13] system allows to manage and query provenance that results
from scientific workflows. RDFProv proposes a solution to manage scientific work-
flow provenance with the means of Semantic Web, i.e., represented as triples.
Chebotko et al. [13] propose two algorithms to map a provenance ontology into
relational database system. The first algorithm uses database views, the second one
instead of using views uses tables, thus it replicates all data and result in more com-
plex update operations since all independent relations have to bemodified separately.
Tomap an ontology, first of all, they store all data in a statement table, additionally for
each t ype (class of resources) they create three auxiliary views/relations co-locating
triples to address different kind of workloads. The three views are as flows:

Linked Data Management 333

• a view for all instances of the t ype
• Subject(i,p,o) for triples whose subjects belong to the t ype
• Object(s,p,i) for triples whose objects belong to the t ype

To optimize the execution they create B+-tree indexes on columns (s,p,o), (s,o), and
(p) of the statement table. Similar indexes are created on the auxiliary relations in
case tables are employed.

As Damásio et al. have noted [26], many of the annotated RDF approaches do
not expose how-provenance (i.e., how a query result was constructed). The most
comprehensive implementations of these approaches are [67, 78]. However, they
have only been applied to small datasets (around 10 million triples) and are not
aimed at reporting provenance polynomials [36] (i.e., algebraic structures represent-
ing, using relational algebra operators, how data is combined) for SPARQL query
results, focusing instead on inferred triples. Annotated approaches have also been
used for propagating trust values [43]. Other recent work, e.g., [26, 32], has looked
at expanding the theoretical aspects of applying such a semiring based approach to
capturing SPARQL.

Contrary to the previous approaches, TripleProv [73] extends a native triple-
store [72] to allow storing, tracing, and querying provenance information in process-
ing RDF queries. TripleProv returns a description of the way the results of an RDF
query were derived; specifically it gives an explanation which pieces of data and how
were combined to produce the answer of a query. The system allows as well to tailor
query execution with provenance information [75]. The user can input a provenance
specification of the data he wants to use to derive the answer. For example, if he is
interested with articles about “Obama”, but he wants the answer to come only from
sources attributed to “US News”.

As an input to the system the user provides a query he wants to execute (workload
query) and an RDF query describing provenance of the data he wants to be used in
query processing (provenance query) (Fig. 19). The query execution process can vary
depending of the strategy. Typically the system starts with executing the provenance
query, then it optionally pre-materializes or co-locates data. Afterwards, TripleProv
executes the workload queries, at the same time it collects information of entities
used during the query execution and the way they are combined. The system returns:

Fig. 19 TripleProv: executing provenance-enabled queries; both a workload and a provenance
query are given as input to a triplestore, which produces results for both queries and then combine
them to obtain the final results and the provenance polynomial [74]

334 M. Hauswirth et al.

Fig. 20 TripleProv:
provenance polynomial
represents how the data is
combined to derive the query
answer using different
relational algebra operators
(e.g., UNION, JOINS) [74]

• results of the workload queries, restricted to those which are following the prove-
nance specification;

• the provenance polynomial describing the way the results were derived.

TripleProv provides detailed information on each piece of data used to produce the
answer and the exact way it contributed to the results. To express this information the
system uses the notion of a provenance polynomial (Fig. 20), which is an algebraic
structure describing how the data was combined. A provenance polynomial provided
by TripleProv allows to pinpoint and trace back the exact pieces of data used to
produce the answer and the exact way how those pieces of data were combined. In
order to express the way the pieces of data were combined TripleProv uses two basic
algebraic operators. The first one (⊕) to represent a union, and the second (⊗) to
represent a join.

The Fig. 20 shows a simple star query (Basic Graph Pattern) and a provenance
polynomial pinpointing how each part of the query is tackled. In this example the
first triple pattern is satisfied with lineage l1, l2 or l3, while the second has been
satisfied with l4 or l5, third was processed with elements having a lineage of l6 or l7,
and the last one was processed with elements from l8 or l9. The triples were joined
on variable ?a, which is expressed by the join operation (⊗) in the polynomial.

TripleProv allows to tailor RDF queries with provenance information [75]. The
user can provide to the system a description of the data which will be used in the
query processing. Such description (provenance query) is expressed in the same way
as the workload query. Together the workload query and the provenance query give
a provenance-enabled query. Such provenance-enabled query returns results of the
workload query, limited to those derived from the data described by the provenance
query.

Considering the query from Fig. 20, which is a workload query, we would like
to retrieve results of this query, but using only data attributed to government, and
verified by the Paris Tourist Office. The following provenance query can express
such description of data:

SELECT ? c t x WHERE {
? c t x prov : wasAt t r i bu t edTo <government > .
? c t x prov : wasVeryfiedBy < P a r t i s T o u r i s t O f f i c e > .

}

Linked Data Management 335

Sending those two queries to TripleProv will give to the user information about
geolocation of Eiffel Tower in France, the information will be obtained from the data
following the provenance description. Additionally, TripleProv will provide a trace
of how particular pieces of data were combined to deliver the results.

Provenance is a central part of linked data management. Systems should be able
to both maintain provenance but also interchange using common vocabularies and
data formats.

References

1. D.J. Abadi, A. Marcus, S. Madden, K.J. Hollenbach, Scalable semantic web data management
using vertical partitioning, in Proceedings of the 33rd International Conference on Very Large
Data Bases, University of Vienna, Austria, 23–27 September 2007 (ACM, 2007), pp. 411–422

2. K. Alexander, M. Hausenblas, Describing linked datasets — on the design and usage of void,
the vocabulary of interlinked datasets, in In Linked Data on the Web Workshop (LDOW 09),
in Conjunction with 18th International World Wide Web Conference (WWW 09) (2009). http://
richard.cyganiak.de/2008/papers/void-ldow2009.pdf

3. M. Atre, V. Chaoji, M.J. Zaki, J.A. Hendler, Matrix “Bit” loaded: a scalable lightweight join
query processor for RDF data, in Proceedings of the 19th International Conference on World
Wide Web, WWW 2010, Raleigh, North Carolina, USA, 26–30 April 2010 (ACM, 2010), pp.
41–50

4. M. Atre, J.A. Hendler, BitMat: a main memory bit-matrix of RDF triples, in The 5th Interna-
tional Workshop on Scalable Semantic Web Knowledge Base Systems (SSWS2009) (Citeseer,
2009), p. 33

5. S. Auer, J. Demter, M. Martin, J. Lehmann, Lodstats-an extensible framework for high-
performance dataset analytics, in Knowledge Engineering and Knowledge Management
(Springer, Berlin, 2012), pp. 353–362

6. T. Berners-Lee, Linked data-design issues (2006)
7. T. Berners-Lee, J. Hendler, O. Lassila et al., The semantic web. Sci. Am. 284(5), 28–37 (2001)
8. O. Biton, S. Cohen-Boulakia, S.B. Davidson, Zoom*userviews: querying relevant provenance

in workflow systems, in Proceedings of the 33rd International Conference on Very Large Data
Bases, VLDB ’07 (VLDB Endowment, 2007), pp. 1366–1369

9. C. Bizer, A. Jentzsch, R. Cyganiak, State of the lod cloud. Version 0.3 (September 2011) 1803
(2011). http://lod-cloud.net/state/

10. M. Bröcheler, A. Pugliese, V. Subrahmanian, DOGMA: a disk-oriented graph matching algo-
rithm for RDf databases, in The SemanticWeb-ISWC 2009 (Springer, Berlin, 2009), pp. 97–113

11. M. Bröcheler, A. Pugliese, V.S. Subrahmanian, DOGMA: a disk-oriented graphmatching algo-
rithm for RDF databases, in Proceedings of the Semantic Web - ISWC 2009, 8th International
Semantic Web Conference, ISWC 2009, Chantilly, VA, USA, October 25–29, 2009 (Springer,
Berlin, 2009), pp. 97–113

12. J.J. Carroll, C. Bizer, P. Hayes, P. Stickler, Named graphs, provenance and trust, in Proceedings
of the 14th International Conference on World Wide Web (ACM, 2005), pp. 613–622

13. A. Chebotko, S. Lu, X. Fei, F. Fotouhi, RDFProv: a relational RDF store for querying and
managing scientific workflow provenance. Data Knowl. Eng. 69(8), 836–865 (2010)

14. J. Cheney, L. Chiticariu, W.C. Tan, Provenance in Databases: Why, How, and Where (Now
Publishers Inc., Breda, 2009)

15. P. Ciccarese, S. Soiland-Reyes, K. Belhajjame, A.J. Gray, C. Goble, T. Clark, Pav ontology:
provenance, authoring and versioning. J. Biomed. Semant. 4(1), 1–22 (2013). doi:10.1186/
2041-1480-4-37

http://richard.cyganiak.de/2008/papers/void-ldow2009.pdf
http://richard.cyganiak.de/2008/papers/void-ldow2009.pdf
http://lod-cloud.net/state/
http://dx.doi.org/10.1186/2041-1480-4-37
http://dx.doi.org/10.1186/2041-1480-4-37

336 M. Hauswirth et al.

16. P. Ciccarese, E. Wu, G. Wong, M. Ocana, J. Kinoshita, A. Ruttenberg, T. Clark, The swan
biomedical discourse ontology. J. Biomed. Inf. 41(5), 739–751 (2008). doi:10.1016/j.jbi.2008.
04.010

17. Consortium WWW, OWL 2 Web Ontology Language (2012)
18. Consortium WWW, SPARQL 1.1 Overview (2013)
19. Consortium WWW, RDF 1.1 Concepts and Abstract Syntax (2014)
20. Consortium WWW, RDF 1.1: On Semantics of RDF Datasets (2014)
21. Consortium WWW, RDF 1.1 Primer (2014)
22. Consortium WWW, RDF Schema 1, 1 (2014)
23. P. Cudré-Mauroux, H. Kimura, K.T. Lim, J. Rogers, R. Simakov, E. Soroush, P. Velikhov, D.L.

Wang, M. Balazinska, J. Becla, D.J. DeWitt, B. Heath, D. Maier, S. Madden, J.M. Patel, M.
Stonebraker, S.B. Zdonik, A demonstration of SciDB: a science-orientedDBMS. PVLDB 2(2),
1534–1537 (2009)

24. P. Cudré-Mauroux, E.Wu, S.Madden, The case for rodentstore, an adaptive, declarative storage
system, in Biennial Conference on Innovative Data Systems Research (CIDR) (2009)

25. P.P. da Silva, D.L. McGuinness, R. Fikes, A proof markup language for semantic web services.
Inf. Syst. 31(4), 381–395 (2006). doi:10.1016/j.is.2005.02.003

26. C.V. Damásio, A. Analyti, G. Antoniou, Provenance for sparql queries, in Proceedings of the
11th International Conference on The Semantic Web - Volume Part I, ISWC’12 (Springer,
Berlin, 2012), pp. 625–640. doi:10.1007/978-3-642-35176-1_39

27. L. Ding, Y. Peng, P.P. da Silva, D.L. McGuinness, Tracking RDF graph provenance using RDF
molecules, in International Semantic Web Conference (2005)

28. O. Erling, I. Mikhailov, Towards web scale RDF, in Proceedings of the SSWS (2008)
29. G.H.L. Fletcher, P.W. Beck, Scalable indexing of RDF graphs for efficient join processing, in

Proceedings of the 18th ACMConference on Information and Knowledge Management, CIKM
2009, Hong Kong, China, November 2–6, 2009 (ACM, 2009), pp. 1513–1516

30. G. Flouris, I. Fundulaki, P. Pediaditis, Y. Theoharis, V. Christophides, Coloring RDF triples to
capture provenance, in Proceedings of the 8th International Semantic Web Conference, ISWC
’09 (Springer, Berlin, 2009), pp. 196–212. doi:10.1007/978-3-642-04930-9_13

31. H. Garcia-Molina, Database Systems: The Complete Book (Pearson Education, India, 2008)
32. F. Geerts, G. Karvounarakis, V. Christophides, I. Fundulaki, Algebraic structures for capturing

the provenance of sparql queries, in Proceedings of the 16th International Conference on
Database Theory, ICDT ’13 (ACM, New York, 2013), pp. 153–164. doi:10.1145/2448496.
2448516

33. Y. Gil, S. Miles, K. Belhajjame, H. Deus, D. Garijo, G. Klyne, P. Missier, S. Soiland-Reyes,
S. Zednik (eds.), in PROV model primer. W3C Working Group Note NOTE-prov-primer-
20130430, World Wide Web Consortium (2013). http://www.w3.org/TR/prov-primer/

34. B. Glavic, G. Alonso, The perm provenance management system in action, in Proceedings
of the 2009 ACM SIGMOD International Conference on Management of Data, SIGMOD ’09
(ACM, New York, NY, USA, 2009), pp. 1055–1058

35. A.J. Gray, Dataset descriptions for linked data systems. IEEE Internet Comput. 18(4), 66–69
(2014). doi:10.1109/MIC.2014.66

36. T.J. Green, G. Karvounarakis, V. Tannen, Provenance semirings, in Proceedings of the Twenty-
Sixth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (ACM,
2007), pp. 31–40

37. P. Groth, A. Gibson, J. Velterop, The anatomy of a nanopublication. Inf. Serv. Use 30(1–2),
51–56 (2010). http://dl.acm.org/citation.cfm?id=1883685.1883690

38. P. Groth, Y. Gil, J. Cheney, S. Miles, Requirements for provenance on the web. Int. J. Digit.
Curation 7(1), 39–56 (2012). doi:10.2218/ijdc.v7i1.213

39. P. Groth, L. Moreau (eds.), PROV-overview. An overview of the PROV family of documents,
in W3C Working Group Note NOTE-Prov-Overview-20130430, World Wide Web Consortium
(2013). http://www.w3.org/TR/2013/NOTE-prov-overview-20130430/

40. S. Harris, N. Lamb, N. Shadbolt, 4store: the design and implementation of a clustered rdf store,
in5th InternationalWorkshoponScalable SemanticWebKnowledgeBase Systems (SSWS2009)
(2009), pp. 94–109

http://dx.doi.org/10.1016/j.jbi.2008.04.010
http://dx.doi.org/10.1016/j.jbi.2008.04.010
http://dx.doi.org/10.1016/j.is.2005.02.003
http://dx.doi.org/10.1007/978-3-642-35176-1_39
http://dx.doi.org/10.1007/978-3-642-04930-9_13
http://dx.doi.org/10.1145/2448496.2448516
http://dx.doi.org/10.1145/2448496.2448516
http://www.w3.org/TR/prov-primer/
http://dx.doi.org/10.1109/MIC.2014.66
http://dl.acm.org/citation.cfm?id=1883685.1883690
http://dx.doi.org/10.2218/ijdc.v7i1.213
http://www.w3.org/TR/2013/NOTE-prov-overview-20130430/

Linked Data Management 337

41. A. Harth, S. Decker, Optimized index structures for querying RDF from the web, in IEEE
LA-WEB (2005), pp. 71–80

42. O. Hartig, Provenance information in the web of data, in LDOW (2009). http://ceur-ws.org/
Vol-538/ldow2009_paper18.pdf

43. O. Hartig, Querying trust in RDF data with tSPARQL, in Proceedings of the 6th European
Semantic Web Conference on The Semantic Web: Research and Applications, ESWC 2009
Heraklion (Springer, Berlin, 2009), pp. 5–20. doi:10.1007/978-3-642-02121-3_5

44. P. Hayes, B. McBride, RDF semantics, inW3C Recommendation (2004)
45. T. Heath, C. Bizer, Linked Data: Evolving theWeb into a Global Data Space.Morgan and Clay-

pool (Morgan & Claypool Publishers, 2011). doi:10.2200/S00334ED1V01Y201102WBE001
46. T. Heath, C. Bizer, Linked data: evolving the web into a global data space. Synth. Lectures

Semant. Web: Theory technol. 1(1), 1–136 (2011)
47. J.M.Hellerstein,M. Stonebraker,Readings inDatabase Systems (MITPress, Cambridge, 2005)
48. J. Hoffart, F.M. Suchanek, K. Berberich, G. Weikum, YAGO2: a spatially and

temporally enhanced knowledge base from wikipedia. Artif. Intell. 194(0), 28–61
(2013). doi:10.1016/j.artint.2012.06.001, http://www.sciencedirect.com/science/article/pii/
S0004370212000719 (Artificial Intelligence, Wikipedia and Semi-Structured Resources)

49. J. Huang, D.J. Abadi, K. Ren, Scalable SPARQL querying of large RDF graphs. PVLDB 4(11),
1123–1134 (2011)

50. M. Janik,K.Kochut, BRAHMS: aworkbenchRDF store and high performancememory system
for semantic association discovery, in Proceedings of the The Semantic Web - ISWC 2005, 4th
International Semantic Web Conference, ISWC 2005, Galway, Ireland, November 6–10, 2005
(Springer, Berlin, 2005), pp. 431–445

51. G. Karvounarakis, Z.G. Ives, V. Tannen, Querying data provenance, in Proceedings of the 2010
ACM SIGMOD International Conference on Management of Data (ACM, 2010), pp. 951–962

52. G. Karypis, V. Kumar, A fast and high quality multilevel scheme for partitioning irregular
graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998)

53. S. Miles, Electronically querying for the provenance of entities, in Provenance and Annotation
of Data, vol. 4145, ed. by L. Moreau, I. Foster. Lecture Notes in Computer Science (Springer,
Berlin, 2006), pp. 184–192. doi:10.1007/11890850_19

54. M. Luc, G. Paul, Provenance: An Introduction to PROV (Morgan and Claypool, 2013). http://
eprints.soton.ac.uk/356858/

55. L.Moreau, The foundations for provenance on theweb. Found. TrendsWebSci. 2(2–3), 99–241
(2010). doi:10.1561/1800000010, http://eprints.ecs.soton.ac.uk/21691/

56. L. Moreau, B. Clifford, J. Freire, J. Futrelle, Y. Gil, P. Groth, N. Kwasnikowska, S.
Miles, P. Missier, J. Myers, B. Plale, Y. Simmhan, E. Stephan, J.V. den Bussche, The
open provenance model core specification (v1.1). Future Gener. Comput. Syst. 27(6), 743–
756 (2011). doi:10.1016/j.future.2010.07.005, http://www.sciencedirect.com/science/article/
pii/S0167739X10001275

57. L. Moreau, P. Groth, J. Cheney, T. Lebo, S. Miles, The rationale of PROV. Web Semant.:
Sci. Serv. Agents World Wide Web 35, Part 4, 235–257 (2015). http://dx.doi.org/10.1016/j.
websem.2015.04.001, http://www.sciencedirect.com/science/article/pii/S1570826815000177

58. T. Neumann, G. Weikum, RDF-3X: a RISC-style engine for RDF. Proc. VLDB Endow.
(PVLDB) 1(1), 647–659 (2008)

59. T. Neumann, G. Weikum, The RDF-3X engine for scalable management of RDF data. VLDB
J. 19(1), 91–113 (2010)

60. V. Nguyen, O. Bodenreider, A. Sheth, Don’t like RDF reification? Making statements about
statements using singleton property, in Proceedings of the 23rd International Conference on
World Wide Web. International World Wide Web Conferences Steering Committee (2014), pp.
759–770

61. X.Niu, R.Kapoor, B.Glavic, D.Gawlick, Z.H. Liu, V.Krishnaswamy,V. Radhakrishnan, Inter-
operability for provenance-aware databases using PROV and JSON, in Proceedings of the 7th
USENIX Conference on Theory and Practice of Provenance, TaPP’15 (USENIX Association,
Berkeley, CA, USA, 2015), p. 6. http://dl.acm.org/citation.cfm?id=2814579.2814585

http://ceur-ws.org/Vol-538/ldow2009_paper18.pdf
http://ceur-ws.org/Vol-538/ldow2009_paper18.pdf
http://dx.doi.org/10.1007/978-3-642-02121-3_5
http://dx.doi.org/10.2200/S00334ED1V01Y201102WBE001
http://dx.doi.org/10.1016/j.artint.2012.06.001
http://www.sciencedirect.com/science/article/pii/S0004370212000719
http://www.sciencedirect.com/science/article/pii/S0004370212000719
http://dx.doi.org/10.1007/11890850_19
http://eprints.soton.ac.uk/356858/
http://eprints.soton.ac.uk/356858/
http://dx.doi.org/10.1561/1800000010
http://eprints.ecs.soton.ac.uk/21691/
http://dx.doi.org/10.1016/j.future.2010.07.005
http://www.sciencedirect.com/science/article/pii/S0167739X10001275
http://www.sciencedirect.com/science/article/pii/S0167739X10001275
http://dx.doi.org/10.1016/j.websem.2015.04.001
http://dx.doi.org/10.1016/j.websem.2015.04.001
http://www.sciencedirect.com/science/article/pii/S1570826815000177
http://dl.acm.org/citation.cfm?id=2814579.2814585

338 M. Hauswirth et al.

62. A. Owens, A. Seaborne, N. Gibbins, et al., Clustered TDB: a clustered triple store for jena
(2008)

63. E. Prud’Hommeaux, A. Seaborne, et al., Sparql query language for RDF. W3C Recommenda-
tion (2008)

64. S.S. Sahoo, A. Sheth, Provenir ontology: towards a framework for escience provenance man-
agement, in Microsoft eScience Workshop (2009). http://knoesis.wright.edu/library/resource.
php?id=741

65. M. Schmachtenberg, C. Bizer, H. Paulheim, Adoption of the linked data best practices in
different topical domains, in The Semantic Web–ISWC 2014 (Springer, 2014), pp. 245–260

66. Y. Theoharis, I. Fundulaki, G. Karvounarakis, V. Christophides, On provenance of queries on
semantic web data. IEEE Internet Comput. 15(1), 31–39 (2011). doi:10.1109/MIC.2010.127

67. O. Udrea, D.R. Recupero, V. Subrahmanian, Annotated RDF. ACM Trans. Comput. Log.
(TOCL) 11(2), 10 (2010)

68. Y.R. Wang, S.E. Madnick, A polygon model for heterogeneous database systems: the source
tagging perspective, in Proceedings of the Sixteenth International Conference on Very Large
Databases (Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1990), pp. 519–533.
http://dl.acm.org/citation.cfm?id=94362.94604

69. C. Weiss, P. Karras, A. Bernstein, Hexastore: sextuple indexing for semantic web data man-
agement. Proc. VLDB Endow. (PVLDB) 1(1), 1008–1019 (2008). http://doi.acm.org/10.1145/
1453856.1453965

70. M. Wylot, Efficient, scalable, and provenance-aware management of linked data. Ph.D. thesis,
University of Fribourg (Switzerland) (2015)

71. M. Wylot, P.C. Mauroux, Diplocloud: Efficient and Scalable Management of RDF Data in the
Cloud (2015)

72. M.Wylot, J. Pont, M.Wisniewski, P. Cudré-Mauroux, dipLODocus[RDF] - short and long-tail
RDF analytics for massive webs of data, in International Semantic Web Conference (2011),
pp. 778–793

73. M. Wylot, P. Cudre-Mauroux, P. Groth, TripleProv: efficient processing of lineage queries
in a native RDF store, in Proceedings of the 23rd International Conference on World Wide
Web, WWW ’14. International World Wide Web Conferences Steering Committee, Republic
and Canton of Geneva, Switzerland (2014), pp. 455–466

74. M. Wylot, P. Cudré-Mauroux, P. Groth, A demonstration of tripleprov: tracking and querying
provenance over web data. Proc. VLDB Endow. 8(12), 1992–1995 (2015)

75. M.Wylot, P.Cudré-Mauroux, P.Groth, Executing provenance-enabled queries overwebdata, in
Proceedings of the 24rd International Conference onWorldWideWeb,WWW’15. International
WorldWideWebConferences SteeringCommittee, Republic andCantonofGeneva, Switzerland
(2015)

76. J. Zhao, Guide to the Open Provenance Model Vocabulary (2010). http://open-biomed.
sourceforge.net/opmv/opmv-guide.html

77. J. Zhao, C. Bizer, Y. Gil, P. Missier, S. Sahoo, Provenance requirements for the next version of
RDF, inW3C Workshop RDF Next Steps (2010)

78. A. Zimmermann, N. Lopes, A. Polleres, U. Straccia, A general framework for representing,
reasoning and querying with annotated semantic web data. Web Semant. 11, 72–95 (2012).
doi:10.1016/j.websem.2011.08.006

79. L. Zou, J.Mo, L. Chen,M.T. Oezsu, D. Zhao, gStore: answering SPARQL queries via subgraph
matching. PVLDB 4(8), 482–493 (2011)

http://knoesis.wright.edu/library/resource.php?id=741
http://knoesis.wright.edu/library/resource.php?id=741
http://dx.doi.org/10.1109/MIC.2010.127
http://dl.acm.org/citation.cfm?id=94362.94604
http://doi.acm.org/10.1145/1453856.1453965
http://doi.acm.org/10.1145/1453856.1453965
http://open-biomed.sourceforge.net/opmv/opmv-guide.html
http://open-biomed.sourceforge.net/opmv/opmv-guide.html
http://dx.doi.org/10.1016/j.websem.2011.08.006

Non-native RDF Storage Engines

Manfred Hauwirth, Marcin Wylot, Martin Grund, Sherif Sakr and
Phillippe Cudré-Mauroux

Abstract The proliferation of heterogeneous Linked Data requires data manage-
ment systems to constantly improve their scalability and efficiency. Linked Data can
be stored according to many different data storage models. Some of these attempt to
use general purpose database storage techniques to persist Linked Data, hence they
can leverage existing data processing environments (e.g., big Hadoop clusters). We
therefore look at the multiplicity of Linked Data storage systems which we cate-
gorize into the following classes: relational database-based systems, NoSQL-based
systems, massively parallel systems.

1 Introduction

RDF data can be stored in a multiplicity of different storage engines. Some of these
presented in a previous chapter are more tailored for storing RDF data while others
try using general purpose database storage engines to persist RDF data. We define
a non-native RDF storage engines as a specific engine that uses either traditional
relational storage concepts or builds on these concepts to integrate storing and query
execution on RDF data. The biggest differentiation to native RDF storage solutions

M. Hauwirth · M. Wylot (B)
Open Distributed Systems, TU Berlin, Berlin, Germany
e-mail: m.wylot@tu-berlin.de

M. Hauwirth · M. Wylot
Open Distributed Systems, Fraunhofer FOKUS, Berlin, Germany
e-mail: manfred.hauswirth@fokus.fraunhofer.de

M. Grund · P. Cudré-Mauroux
eXascale Infolab, University of Fribourg, Fribourg, Switzerland
e-mail: pcm@unifr.ch

S. Sakr
University of New South Wales, Kensington, Australia
e-mail: ssakr@cse.unsw.edu.au

© Springer International Publishing AG 2017
A.Y. Zomaya and S. Sakr (eds.), Handbook of Big Data Technologies,
DOI 10.1007/978-3-319-49340-4_10

339

340 M. Hauwirth et al.

is hereby the translation of the RDF concepts into concepts that are native to the
underlying engine instead of working directly with the RDF data. In this chapter, we
therefore look at amultiplicity ofRDF storage systems that leverage existing database
systems to support the processing of RDFdata.We categorize them into the following
set of groups: relational database-based systems, NoSQL-based systems, massively
parallel systems.

2 Storing Linked Data Using Relational Databases

Relational database management systems (RDBMSs) have been the backbone of
almost all applications, ranging from traditional enterprise like applications to mod-
ernwebapplications. Theyhave repeatedly shown that they are very efficient, scalable
and successful in hosting types of datawhich have formerly not been anticipated to be
stored inside relational databases. In addition, RDBMSs have shown their ability to
handle vast amounts of data very efficiently using powerful indexing mechanisms. In
this section,we present various relational-based approaches [39] for storing, indexing
and querying RDF data.

2.1 Statement Table

The general data structure that is represented by a set ofRDF triples is an edge-labeled
directed graph. Figure1 shows a subset of nodes from a sample dataset inspired by the
data model from the Berlin SPARQL Benchmark [7]. In this representation, subjects
and objects are stored as nodeswith an edge and an associated edge property assigned:
[S] − P → [O]. As stated by [4, 8], subjects and objects can be interchanged. In
addition, all triples are unordered [4].

Since RDF does not describe any specific schema for the graph, there is no easy
way to determine a set of partitioning or clustering criteria to derive a set of tables
to store the information. In addition, there is no definite notion of schema stability,
meaning that at any time the data schema might change, for example when adding a
new subject-object edge to the overall graph.

A trivial way for adopting a relational data structure to store RDF data is to store
the input data as a linearized list of triples, storing them as ternary tuples [39]. In [4],
this approach is called the “generic” approach. The RDF specification states that
the objects in the graphs can be either URIs, literals, or blank nodes. Properties
(predicates) always are URI references. Subject nodes can only be URIs or blank
nodes. This allows to specify the underlaying data types for storing subject and
predicate values. For storing object values this becomes a little more complex since
the data type of the object literal is defined by the XML schema that is referenced
by the property. A common way is to store the object values using a common string

Non-native RDF Storage Engines 341

representation and perform some type conversion whenever necessary. An example
table showing the same data set as in Fig. 1 is shown in Fig. 2.

An example on Statement Table approach is Jena1 [30]. Jena1 for relational
databases stores data in a statement table. The URI and String are encoded in ID and
two separate dictionaries are maintained for literals and resources/URIs. To distin-
guish literals from URI in the statement table there are two columns. In Jena2 [48]
the schema is denormalized and URIs and simple literals are directly stored in the

Fig. 1 Example showing an RDF sub-graph using the subject, predicate, and object relations given
by the sample data

Fig. 2 A simple RDF storage scheme using a linearized triple representation. The illustration uses
schema elements from the Berlin SPARQL benchmark [7]

342 M. Hauwirth et al.

statement table. The dictionary tables are used only to store long strings (exceeding
a threshold). This allows to perform filters operation directly on the statement table,
however it results also higher storage consumption, since string values are stored
multiple times.

2.2 Optimizing Data Storage

Storing the triples as a linear list of triples is very simple and yet powerful, since
it captures the complete essence of RDF data. However, the problem with this data
structure is that additional information that is crucial for query processing needs to
be analyzed at query run-time even though it is not likely to change. Examples of
this issue are whether or not the object is a literal or a URI or if the edge is inferred
or an original edge.

One disadvantage of storing the data inside a large triple table is that all fields in
this table must be encoded as string with variable length. This generates additional
overhead during data storage and data processing. The standardMySQL table storage
format, for example, uses an 8 bit or if required 16 bit length identifier followed by
the actual string. To process a set of fields it is not possible to perform a direct offset
into the set of tuples, and the database storage engine has to interpret the complete
row, or requires additional data structure for pointers into the variable length fields.

One possible way to optimize the storage structure is to apply dictionary encoding
on the resources and literal values.Dictionary encoding allows to replace the variable-
length string representation of a literal or resource by a fixed-length integer value.
There are several possible ways to generate such an integer values. In order to avoid
issues with duplicates, Harris et al. [22] proposed to use a hash function that allows
hashing of all literal and resource values. The actual values are replaced with the hash
value and the hash and the value is stored in an additional table for later reference.
Figure3 illustrates this scheme.

The downside of using a hash function to generate the encoded values lays within
the properties of the hash function. Even though the probability of a hash collision
can be low—depending on the actual hash implementation–they still can occur. As
a consequence, the import system has to perform validity checks for all imported

Fig. 3 Logical database design of the triple table in 3store. Illustration after [22]

Non-native RDF Storage Engines 343

literals and resources to evaluate if the generated hash value generates a collision.
While it is easy to handle such collisions during insertion time as described by Harris
et al. [22] it becomes more complicated to handle collisions at runtime when new
triples are inferred based on the existing knowledge-base. If a collision happens, it is
almost impossible to handle this without modifying the inferred value to generate a
different hash value. In addition, Harris et al. [22] use a cryptographic hash function
to calculate a hash key that has as few collisions as possible. The disadvantage of
this approach is that computing a cryptographic hash consumes more CPU cycles
compared to a simpler hash-function. In their example, the calculation of the MD5
hash takes about 1,000 CPU cycles. This limits a single CPU core on a modern
2.5GHz CPU to calculating 2.5M hashes per second. Using such an expensive hash
function can thus lead to CPU-bound behaviors even though the database does not
operate at optimal speed.

To further reduce the probability of collisions, Harris et al. [22] use two differ-
ent buckets to store hashes and values. One bucket for literals and one bucket for
resources. An Entity-Relationship diagram showing the dependency for the two dif-
ferent triple types is shown in Fig. 4. Another advantage of using the MD5 hash
function to represent resources or literals is that during query processing the actual

Fig. 4 Dependency for the two different triple types [22]

344 M. Hauwirth et al.

lookup of a value is not performed by joining the resources hash table with the triple
table as the query processor can directly use the built-in MD5 hash function.

2.3 Property Tables

Storing RDF triples in a single large statement table presents a number of disadvan-
tages when it comes to query evaluation. In most cases, for each set of triple patterns
that is evaluated in the query, a set of self-joins on the table is necessary to evaluate
the graph traversal. Since the single statement table can become very large, this can
have a negative effect on query execution. While the horizontal storage of seman-
tic data has been first introduced by Agrawal et al. in [3], the authors of Jena and
Sesame propose different ways to alleviate this problem by introducing the concept
of property tables in [8, 48]. Instead of building one large table for all occurrences
of all properties, they propose two different strategies that can be distinguished into
two different concepts: clustered and normalized property tables.

Clustered Property Tables The goal of clustered property tables is to cluster com-
monly accessed nodes in the graph together in a single table to avoid expensive
joins on the data. In [49], the use of clustered property tables is proposed for data
that is stored using the Dublin Core schema.1 In the example of the dataset of the
Berlin SPARQL benchmark shown in Fig. 5, one property table for all products and
a statement table for all other triples are considered. For efficiency reasons, a product
record and all affected triples can only appear in the property table.

The advantage of this storage format is that querying the database using triple
patterns that are materialized in the property can be evaluated using simple filter
predicates instead of performing self-joins on the statement table. Given the query in
Listing 10.1, the transformation to SQL would require two joins, one for each triple

Fig. 5 Example illustrating clustered property tables. Frequently co-accessed attributes are stored
together

1http://dublincore.org/.

http://dublincore.org/

Non-native RDF Storage Engines 345

pattern. However, if the metadata defines that all triples of the type bsbm:Product
are stored in a property table, this can be translated into a simple predicate evaluation
as shown in Listing 10.2.

Listing 10.1 Example SPARQL Query
SELECT ? a
WHERE (? a r d f : t ype bsbm : Produc t) ,

(? a bsbm : Numer icProper ty1 10)

Listing 10.2 Translation of the SPARQL Query in the Listing 10.1 to SQL using the clustered
property table approach
SELECT t . s u b j e c t FROM c l u s t e r e d _ p r o d u c t s as t
WHERE t . Numer icProper ty1 = 10 ;

The consequences of this approach are that the schemamust be known in advance.
If the properties for a materialized type change during runtime, this requires table
alternations that are costly and often require explicit table-level locking. In addition,
multi-valued attributes cannot be easily represented using a clustered property table.
If multi-valued attributes must be considered, designer has to choose either to not
materialize the path of the attribute or, if the sequence of the attribute is bounded, to
include all possible occurrences in the materialized clustered property table.

Properties tables were also implemented in Jena2 [48] together with a statement
table. In that context, multiple-values properties are clustered in a separate table.
The system also allows to specify the type of the column in the underlying database
system for the property value. This can be further leveraged for range queries and
filtering. For example, the property age can be implemented as an integer, which can
then be efficiently filtered.

Normalized Property Table In this second approach of property tables, the database
choses to store triples based on the occurrence of single properties. In RDF for each
triple s p o a number of triples s srdf:stype rdf:Property can be inferred.2

Based on this knowledge, the database can now select a subset of triples that will
be materialized in these special normalized property tables. All other triples will
be stored in a general statement table. Figure6 shows an example for this pattern
where all instances of srdf :type | and s | rdfs:textttlabel| are separated in
distinct tables. Abadi et al. present in [1] an extension to this model where all distinct
occurrences for a single property will be stored in a decomposed way in a property
table. In particular, this approach, called as SW-Store [1], stores RDF data using a
fully decomposed storage model (DSM) [14]. In this approach, the triples table is
rewritten into n two-column tables where n is the number of unique properties in the
data. In each of these tables, the first column contains the subjects that define that
property and the second column contains the object values for those subjects while
the subjects that do not define a particular property are simply omitted from the table

2https://www.w3.org/TR/2014/REC-rdf11-mt-20140225/.

https://www.w3.org/TR/2014/REC-rdf11-mt-20140225/

346 M. Hauwirth et al.

Fig. 6 Example illustrating RDF property tables. For each existing predicate one subject-object
table exists

for that property. Each table is sorted by subject, so that particular subjects can be
located quickly, and that fastmerge joins can be used to reconstruct information about
multiple properties for subsets of subjects. For a multi-valued attribute, each distinct
value is listed in a successive row in the table for that property. One advantage of this
approach is that while property tables need to be carefully constructed so that they
are wide enough but not too wide to independently answer queries, the algorithm
for creating tables in the vertically partitioned approach is straightforward and need
not change over time. Moreover, in the property-class schema approach, queries
that do not restrict on class tend to have many union clauses while in the vertically
partitioned approach, all data for a particular property is located in the same table
and thus union clauses in queries are less common. The implementation of SW-
Store relies on a column-oriented DBMS, C-store [44], to store tables as collections
of columns rather than as collections of rows. In standard row-oriented databases
(e.g., Oracle, DB2, SQLServer, Postgres, etc.) entire tuples are stored consecutively.
The problem with this is that if only a few attributes are accessed per query, entire
rows need to be read into memory from disk before the projection can occur. By
storing data in columns rather than rows, the projection occurs for free only where
those columns that are relevant to a query need to be read (Fig. 7).

2.4 Query Execution

Query execution in relational RDF engines pushes all computational logic of RDF
query evaluation to the database to achieve the best performance and leverage avail-
able optimization strategies. In [13], Chong et al. present a system that builds on an
Oracle relational database management system. Instead of supporting the complete
syntax of an RDF query language like SPARQL focuses on themost important subset
of these languages which is matching RDF triples. Therefore, they implement a table

Non-native RDF Storage Engines 347

Fig. 7 Example illustrating clustered property tables. In this example, only commonly used pred-
icates are clustered in property tables

function [13] that allows to rewrite a set of RDF triple filters to SQL. Figure8 shows
an example of a translation of a simple triple pattern query into the matching SQL
query that is then issued against the database system.

The general processing schema using the s |RDF_MATCH()| function is based
on self-joins on the statement table. Since the runtime of queries increases with the
size of this statement table, Chong et al. propose using the built-in materialized join-
view functionality of the underlaying database management system. Therefore, they
allow defining a set of materialized views in the form of s |subject-subject|,
s |subject-property|, s |ubject-object|, s |property-property, s
|property-object|, and s |object-object| as long as the storage require-
ments are met. In addition to these generic materialized join-views, they propose
defining an additional set of subject- property matrix materialized join views, which
are basically a adaptation of the previously-described clustered property tables from
section“Clustered Property Tables”. While this allows to increase the query perfor-
mance, since for each materialized join in the matrix table one less self-join has to
be performed, selecting the optimal properties to build the matrix materialized join
view is non-trivial and heavily workload and data dependent.

The advantage of using database inherent materialized views is that they are fully
integrated to the tuple life-time process and can thus be automatically dropped and

SELECT t . a age
FROM TABLE(RDFMATCH(

‘ (? r Age ?a) ‘ ,
RDFModels (’ r ev i ewer ’) ,

NULL)) t
WHERE t . a < 25 ;

SELECT t . a age
FROM (

SELECT u1 . UriValue a , u1 . Type ,
FROM I dTr i p l e s t1 , UriMap u1
WHERE t1 . PropertyID=29 AND

t1 . ModelId=1 AND
u1 . UriID = t1 . SubjectID) t

WHERE t . a < 25 ;

Fig. 8 The above listing shows a translation of the triple definition using the RDF_MATCH() table
function into SQL

348 M. Hauwirth et al.

rebuilt if required. Materialized views are as well independent of semantic schema
changes, because they only have to be rebuilt in case the RDFmodel changes and can
be considered as secondary storage. Jena1 [30] simply rewrites SPARQL query to
a single SQL query which is then executed over the statement table. In Jena2 [48],
it is often impossible to construct one SQL query to satisfy all triple patterns over
multiple tables (conjunction of statement and property tables), thus the system first
generates a group of SQL queries, one for each set of patterns that can be evaluated
with a singe table, and the second containing patterns that span tables. The two groups
of queries are then joined in nested loops.

3 No-SQL Stores

In this sectionwe present different approaches regrouped under theNoSQLumbrella.
The systems we present were not specifically tailored to handle RDF data in the first
place, though theywere adapted.We chose systems that represent a variety ofNoSQL
system types: document databases, key-value/column stores, and query compilation
for Hadoop. The systems described in this section were are available online3 and
were benchmarked in [15].

Data Storage and Indexing The first system described in [17] is JenaHBase com-
bines the Jena RDF query engine and the HBase data storage system. Apache
HBase4 is an open source, horizontally scalable, row consistent, low latency, ran-
dom access data store inspired by Google’s BigTable [10]. It relies on the Hadoop
Filesystem (HDFS)5 as a storage back-end and on Apache Zookeeper6 to provide
support for coordination tasks and fault tolerance. Its datamodel is a column oriented,
sparse, multi-dimensional sorted map. The basic logical unit in HBase is a column.
Several columns compose a row, which is uniquely addressed by a row key. A set
of rows composes a table and all rows within a table are sorted lexicographically by
the key. Columns are grouped into column families. An important distinction is that
column families have to be specified at schema design time, while columns can be
dynamically added. All the coordinates and data in HBase are an uninterpreted array
of bytes.

The four basic operations in HBase are similar to most NoSQL stores: Put, Get,
Scan, Delete. A Put operation inserts or updates a single row in a table. If the
row key already exists, the cell value is updated with the new one. Similarly a Get
operation retrieves a single row and a Delete operation removes a single row. The
Scan operation provides an iterator over a set of rows, which can be retrieved in
increments as the iterator progresses. The scope of each of these operations can be

3http://ribs.csres.utexas.edu/nosqlrdf/.
4http://hbase.apache.org/.
5http://hadoop.apache.org/hdfs.
6http://zookeeper.apache.org/.

http://ribs.csres.utexas.edu/nosqlrdf/
http://hbase.apache.org/
http://hadoop.apache.org/hdfs
http://zookeeper.apache.org/

Non-native RDF Storage Engines 349

Fig. 9 The architecture of H2RDF system [34]

reduced by optionally specifying a column family, column or timestamp.7 In practice,
there are a number of benefits in using HBase for storing RDF. First, HBase has
a proven track-record for scaling out to clusters containing roughly 1000 nodes.8

Second, it provides considerable flexibility in schema design. This is important,
because different applications have different access patterns. For example, one can
choose a schema suited for read-writes when supporting RDF streaming or only for
reads in a typical triple store environment. Finally, HBase is well integrated with
Hadoop, a large scale MapReduce computational framework. This can be leveraged
for efficiently bulk-loading data into the system and for running large-scale inference
algorithms [46].

The HBase schema employed is based on the optimized index structure for quads
presented by Harth et al. [23]. The authors use only triples so they build 3 index
tables: SPO, POS and OSP. They map RDF URIs and most literals to 8-byte ids and
use the same table structure for all indices: the row key is built from the concatenation
of the 8-byte ids, while column qualifiers and cell values are left empty. This schema
leverages lexicographical sorting of the row keys, covering multiple triple patterns
with the same table. For example, the table SPO can be used to cover the two triple
patterns: subject position bound i.e. (s ? ?), subject and predicate positions bound
i.e. (s p ?). Additionally, this compact representation reduces network and disk I/O,
so it has the potential for fast joins. As an optimization, they do not map numerical
literals, instead they use a number’s Java representation directly in the index. This
can be leveraged by pushing down SPARQL filters and reading only the targeted
information from the index. Two dictionary tables are used to keep the mappings to
and from 8-byte ids (Fig. 9).

7In HBase timestamp adds an additional dimension to each cell besides column family and column.
8see e.g.,http://www.youtube.com/watch?v=byXGqhz2N5M.

http://www.youtube.com/watch?v=byXGqhz2N5M

350 M. Hauwirth et al.

H2RDF [33] is another distributed RDF store that has been built on top of HBase.
H2RDF creates three RDF indices (spo, pos and osp) over the HBase store. During
the data loading into the system, H2RDF collects all the required statistics which
get utilized by the join planner algorithm during query processing. During query
processing, the Join Planner iterates over the query graph and greedily chooses the
join that needs to be executed, according to the selectivity and the cost of all pos-
sible joins. H2RDF uses a join executor module that, for any given join, selects the
most advantageous join scenario, choosing between centralized and fully distributed,
through theHadoop framework.H2RDF+ [32, 34] extended the approach ofH2RDF
by maintaining all permutations of RDF indexing (spo, pso, pos, ops, osp and sop).
Using this indexing scheme, all SPARQL triple patterns can be answered efficiently
using a single index scan on the corresponding index. In addition, it guarantees that
every join between triple patterns can be done using merge joins that can effectively
exploit the pre-computed orderings.

Haque et. al in [21] proposes to use HBase with Apache Hive.9 Hive is a SQL-like
data warehousing tool that allows for querying using MapReduce. A property table
is employed as the HBase schema. For each row, the RDF subject is compressed
and used as the row key. Each column is a predicate and all columns reside in a
single HBase column family. The RDF object value is stored in the matching row
and column. Property tables are known to have several issues when storing RDF
data [2]. However, these issues do not arise in the authors’ HBase implementation.
They distinguishmulti-valued attributes from one another by their HBase timestamp.
These multi-valued attributes are accessed via Hive’s array data type. An advantage
of property tables is the pre-computation of self-joins. In a traditional triple-table, a
query with n triple patterns will require n − 1 self-joins. This holds true when each
triple pattern contains the same subject. However, in a property table, a query with
n triple patterns with the same subject will require a single row access, as opposed
to n − 1 joins.

CumulusRDF10 originally described and proposed in [26] by Ladwig and Harth
is an RDF store which provides triple pattern lookups, a linked data server and
proxy capabilities, bulk loading, and querying via SPARQL. The storage back-end
of CumulusRDF is Apache Cassandra [27], a NoSQL database management system
originally developed by Facebook [28]. Cassandra provides decentralized data stor-
age and failure tolerance based on replication and failover. Cassandra’s data model
consists of nestable distributed hash tables. Each hash in the table is the hashed key
of a row and every node in a Cassandra cluster is responsible for the storage of rows
in a particular range of hash keys. The data model provides two more features used
by CumulusRDF: super columns, which act as a layer between row keys and column
keys, and secondary indices that provide value-keymappings for columns. The index
schema of CumulusRDF consists of four indices [23] (SPO, PSO, OSP, CSPO) to
support a complete index on triples and lookups on named graphs (contexts). The
indices provide fast lockup for all variants of RDF triple patterns. The indices are

9http://hive.apache.org/query.
10http://code.google.com/p/cumulusrdf/.

http://hive.apache.org/query
http://code.google.com/p/cumulusrdf/

Non-native RDF Storage Engines 351

stored in a “flat layout” utilizing the standard key-value model of Cassandra [26].
CumulusRDF does not use dictionaries to map RDF terms but instead stores the
original data as column keys and values. Thereby, each index provides a hash based
lookup of the row key, a sorted lookup on column keys and values, thus enabling
prefix lookups.

The Rya system [35] has been implemented on top of Accumulo,11 a distrib-
uted key-value and column-oriented NoSQL store that provides sorting of keys in
lexicographical ascending order. Accumulo sorts and partitions all key-value pairs
based on the Row ID part of the key. Rows with similar IDs are grouped into the
same tablet/server for faster access. Rya stores the RDF triple (subject, predicate,
and object) in the Row ID part of the Accumulo tables. In addition, it indexes the
triples across three separate tables (SPO, POS, and OSP) that satisfy all the permuta-
tions of the triple pattern. These tables store the triple in the Accumulo Row ID and
order the subject, predicate, object differently for each table. This solution utilizes
the row-sorting scheme of Accumulo to efficiently store and query triples across
multiple Accumulo tablets.

Couchbase12 is a document-oriented, schema-less distributed NoSQL database
system, with native support for JSON documents. Couchbase is intended to
run in-memory mostly, and on as many nodes as needed to hold the whole dataset in
RAM. It has a built-in object-managed cache to speed-up random reads and writes.
Read and write operations first go to the in-memory object-managed cache, and
defaults to fetching data from disk when the targeted document is not in cache.
Updates to documents are first made in the in-memory cache, and are only later per-
sisted to disk using the eventual consistency paradigm. The authors tried to follow
the document-oriented philosophy of Couchbase when implementing our approach.
To load RDF data into the system, they map RDF triples onto JSON documents.
For the primary copy of the data, they put all triples sharing the same subject in
one document (i.e., creating RDF molecules), and use the subject as the key of that
document. The document consists of two JSON arrays containing the predicates and
objects. To load RDF data, they parse the incoming triples one by one and create new
documents or append triples to existing documents based on the triples’ subject.

AMADA [5] has been presented as a platform for storing and querying RDF
data which is full based on the Amazon Web Services (AWS) cloud infrastruc-
ture. AMADA operates in a Software as a Service (SaaS) approach, allowing users
to upload, index, store, and query the RDF data. In particular, the RDF data is
stored using Amazon Simple Storage Service (S3), the AWS store for large objects.
AMADAbuilds its own data indexes using SimpleDB, a simple database system sup-
porting SQL-style queries based on a key-value model that supports single-relation
queries, i.e., no joins. In AMADA, The query execution is performed using virtual
machineswithin theAmazonElastic ComputeCloud (EC2). In practice, once a query
submitted to the system, it get sent to a query processor module, running on an EC2
instance, which performs a look-up to the indexes in SimpleDB in order to find out

11https://accumulo.apache.org/.
12http://www.couchbase.com/couchbase-server/architecture.

https://accumulo.apache.org/
http://www.couchbase.com/couchbase-server/architecture

352 M. Hauwirth et al.

the relevant indexes for answering the query, and evaluates the query against them.
Results are written in a file stored in S3, whose URI is sent back to the user to retrieve
the query answers.
Query Execution In JenaHBase, the Jena SPARQL engine executes a query over
HBase. Jena represents a query plan through a tree of iterators. The iterators, corre-
sponding to the tree’s leafs, use the HBase data layer for resolving triple patterns e.g.
(s ? ?), which make up a Basic Graph Pattern (BGP). For joins, the authors use the
strategy provided by Jena, which is indexed nested loop joins. As an optimizations,
they pushed down simple numerical SPARQL filters, i.e., filters which compare a
variable with a number, translating them into HBase prefix filters on the index tables.
They used these filters, together with selectivity heuristics [45], to reorder subqueries
within a BGP. In addition, they enabled joins based on ids, leaving the materializa-
tion of the ids after the evaluation of a BGP. Finally, they added a mini LRU cache
in Jena’s engine, to prevent the problem of redundantly resolving the same triple
pattern against HBase.

For the second HBase approach (with Hive), at the query layer, the authors use
Jena ARQ to parse and convert a SPARQL query into HiveQL. The process consists
of four steps. Firstly, an initial pass of the SPARQL query identifies unique subjects
in the query’s BGP. Each unique subject is thenmapped onto its requested predicates.
For each unique subject, a Hive table is temporarily created. It is important to note
that an additional Hive table does not duplicate the data on disk. It simply provides a
mapping fromHive toHBase columns. Then, the join conditions are identified.A join
condition is defined by two triple patterns in the SPARQL WHERE clause, (s1 p1 s2)
and (s2 p2 s3), where s1 �= s2. This requires two Hive tables to be joined. Finally,
the SPARQL query is converted into a Hive query based on the subject-predicate
mapping from the first step and executed using MapReduce.

CumulusRDF uses the Sesame query processor13 to provide SPARQL query
functionality. The Sesame [9] query processor translates SPARQL queries to index
lookups on the distributed Cassandra indices; Sesame processes joins and filter oper-
ations on a dedicated query node.

The Couchbase implementation provides MapReduce views on top of the stored
JSON documents. The JavaScript Map function runs for every stored document and
produces 0, 1, or more key-value pairs, where the values can be null (if there is no
need for further aggregation). The reduce function aggregates the values provided by
the Map function to produce results. The query execution implementation is based
on the Jena SPARQL engine to create triple indices similar to the HBase approach
described above. The authors implement Jena’s Graph interface to execute queries
and hence provide methods to retrieve results based on triple patterns. They cover all
triple pattern possibilitieswith only threeCouchbase views, on (?p?) (??o) and (?po).
For every pattern that includes the subject, we retrieve the entire JSON document
(equivalent to molecule [50, 51]), parse it, and provide results at the Java layer. For
the query optimization, similar to the HBase approach above, selectivity heuristics
are used. This approach is quite generic and relatively simple. They have not pushed

13http://www.openrdf.org/.

http://www.openrdf.org/

Non-native RDF Storage Engines 353

simple numerical filtering in the case of Couchbase. The authors also designed spe-
cific materialized views that are produced and updated using MapReduce functions.
They produce a view for each type of query they execute. For example, they had
a view on [ProductT ype, propertyNumeric1]. Since Couchbase allows range
queries, with this index, they can obtain all products of a certain product type having
a value greater than a given value. They can then retrieve all the documents that sat-
isfy the condition and check if the other documents satisfy the remaining conditions
of the query (e.g., for Product Feature1 and Product Feature2). This sits on a
Java layer on top of their implementation.

4 Massively Parallel Processing for Linked Data

With ever larger data sets, distributing RDF data across multiple nodes becomes an
important requirement. Instead of designing and implementing custom distributed
RDF storage systems, one approach is to reuse existing infrastructure like Hadoop
MapReduce and the Hadoop File System.

MapRedude is specifically designed to process large amounts of data. Processing
RDF data withMapReduce based on a relational table-like storagemodel can be very
demanding due to possibly high numbers of joins in RDF queries. If the joins pro-
duce large intermediate results, these must be distributed across the executor nodes
requiring additional storage and network traffic. However, the advantage of Hadoop
MapReduce and HDFS is that both systems are established on proven infrastructure
systems being able to scale to thousands of nodes and almost arbitrary dataset sizes.
As a consequence, optimizing data storage and query execution becomes a challeng-
ing and interesting aspect of native RDF database systems. The goal of this section is
to present systems that leverage MapReduce and HDFS for large scale RDF storage
and query execution.

4.1 Data Storage and Partitioning

Rohloff et al. in their work [38] propose a system called SHARD. While they do
not introduce any novel storage model, they nevertheless expect data to be stored
in a specific format (not ordinary triples). In the datafile, they expect each line to
correspond to a star-like shape centering around a subject and all edges from this
node. The files containing all the data is stored directly onHDFSwithout any specific
partitioning scheme, by exploiting the replication factor of the underlying distributed
file system.

Kurt owns car0 livesIn Cambridge
car0 a car madeBy Ford madeIn Detroit
Detroit a city Cambridge a city

354 M. Hauwirth et al.

Fig. 10 RAPID: RDFMap representing a TripleGroup [38]

The example above represents the following RDF triples:

<Kurt> <owns> <car0> .
<Kurt> <livesIn> <Cambridge> .
<car0> <a> <car> .
<car0> <madeBy> <Ford> .
<car0> <madeIn Detroit> .
<Detroit> <a> <city> .
<Cambridge> <a> <city> .

Ravindra et al. implement their system (RAPID+) [37] on top of Apache Pig.14

They leverage a nested HashMap called RDFMap. Data is grouped in TripleGroup
(implemented using a native bag data structure from Pig) around a subject which is
a first-level key in the map, i.e., the data is co-located for a shared subject which is
a hash value in the map. The nested element (i.e., the value from the previous map)
(propMap) is a hash map with predicates as keys and objects as values. Figure10
shows an exampleRDFMap. In fact, it forms a star-like substructures around subjects.
They are in addition indexed on the first level by subject and on the second level by
predicate.

The PigSPARQL [41] is another system that compiles SPARQL queries into the
query language of Pig [31], a data analysis platform on top of the Hadoop framework.
Pig language uses a fully nested data model and provides relational style operators
(e.g., filters and joins). As illustrated in Fig. 11, in PigSPARQL, a SPARQL query is
parsed to generate an abstract syntax tree which is then translated into a SPARQL
algebra tree.Using this tree, PigSPARQLapplies various optimizations on the algebra
level such as the early execution of filters and the reordering of triple patterns by
selectivity. Finally, PigSPARQL traverses the optimized algebra tree bottom up and
generate for every SPARQL algebra operator an equivalent sequence of Pig Latin
expressions. For the query execution, Pig automatically maps the resulting Pig Latin
script into a sequence of Hdoop jobs. An advantage of PigSPARQL as intermediate
layer that uses Pig between SPARQL and Hadoop is being independent of the actual
Hadoop version or implementation details.

14https://pig.apache.org/.

https://pig.apache.org/

Non-native RDF Storage Engines 355

Fig. 11 The architecture of
PigSPARQL system [41]

Huang et al. [24] propose a hybrid solution combining a single node RDF-store
(RDF-3X, see above) and Hadoop MapReduce to provide horizontal scalability. To
distribute triples across nodes, they leverage theMETIS graph partitioning system.15

Hence, they co-locate triples forming a subgraph (star-like structure) on a particular
node. This enables to maximize the number of operations performed in parallel
on separate processing nodes avoiding expensive centralized cross-nodes joins. All
this allows reducing the amount of data that is transferred over the network for
intermediate results. Figure12 shows the architecture of the system. Data is loaded
and partitioned on the master node while triples are distributed among workers. On
each node in the Hadoop cluster, there is an installation of the native RDF store
which receives and loads subsets of triples. The authors partition graph vertexes so
that each worked receives a subset of those vertexes that are close to each other in
the graph. Having all vertexes partitioned, the system assigns triples to worker in the
way that the triple is placed on the machine if its subject is among vertexes owned by
the worker. The process consist in two steps. First, the system divides vertices into
disjoint subsets. Then, it assigns triples to workers. Before partitioning vertices, the
system removes all triples where the predicate isrdf:type. Following this step, the
system prepares an input list of edges and vertices (an undirected graph) for METIS.
As an output fromMETIS, the system receives partitions of vertexes that are disjoint.
Having all vertexes partitioned, the system starts placing triples on nodes in a cluster.
The basic idea is to place a triple on a partition if its subjectis among the vertices
assigned to the partition; this forms 1-hop star-like subgraph. This can be extended

15http://glaros.dtc.umn.edu/gkhome/views/metis.

http://glaros.dtc.umn.edu/gkhome/views/metis

356 M. Hauwirth et al.

Fig. 12 MapReduce + RDF-3X: system architecture [24]

to further hops so that objects of triples are extended with triples considering them
as subjects. The triple placement can also be performed on an undirected graph such
that triples containing the vertex assigned to a partition as an object are also placed in
it. Both of these extensions are trade-offs between duplicating data on worker nodes
and query execution performance (the more extended the sub-graphs are, the less
joins have to be performed in the final step).

CliqueSquare [16, 18] is anotherHadoop-basedRDFdatamanagement platform
for storing and processing big RDF datasets. With the centeral aim of minimizing
both the number of MapReduce jobs and the data transfer between nodes during
query execution, CliqueSquare exploits the built-in data replication mechanism of
the Hadoop Distributed File System (HDFS), each partition is has three replicas by
default, to partition the RDF dataset in different ways. In particular, for the first
replica, CliqueSquare partitions triples based on their subject, property, and object
values. For the second replica, CliqueSquare stores all subject, property, and object
partitions of the same value within the same node. Finally, for the third replica,
CliqueSquare groups all the subject partitions within a node by the value of the prop-
erty in their triples. Similarly, it groups all object partitions based on their property
values. In addition, CliqueSquare implements a special treatment to triples where
the property is rdf:type by translating them into an unwieldy large property parti-

Non-native RDF Storage Engines 357

tion. CliqueSquare then splits the property partition of rdf:type into several smaller
partitions, according to their object value.

S2RDF16 (SPARQL on Spark for RDF) [42] introduced a relational partitioning
schema for encoding RDF data called ExtVP (Extended Vertical Partitioning) that
extends the Vertical Partitioning (VP) schema introduced by Abadi et al. [1] and uses
a semi-join based preprocessing to efficiently minimize query input size by taking
into account the possible join correlations between underlying encoding tables of
the RDF data, join indices [47]. In particular, ExtVP precomputes the possible join
relations between partitions (i.e. tables) of VP. The main goal of ExtVP is to reduce
the unnecessary I/O, comparisons and memory consumption during executing join
operations by avoiding the dangling tuples in the input tables of the join operations,
i.e. tuples that do not find a join partner. Apparently, ExtVP comes at the cost of addi-
tional storage overhead in comparison to the basic VP encoding. Therefore, ExtVP
does not use an exhaustive precomputations for all the possible join operations.
Instead, an optional selectivity threshold for ExtVP can be specified to material-
ize only the tables where reduction of the original VP tables is large enough. This
mechanism allows to control and reduce the size overhead while preserving most
of its performance benefit. Therefore, during query execution, S2RDF can use the
precomputed semi-join tables, if they exist, or alternatively uses the base encoding
tables. S2RDF is built on top of Spark,17 a general-purpose in-memory distributed
data processing system, and execute SPARQL queries by translating them into SQL
queries which are evaluated using Spark SQL [6], an SQL query processor based
on Spark [52], over ExtVP encoding. S2RDF uses the Parquet18 columnar storage
format for storing the RDF data on the Hadoop Distributed File System (HDFS).

SparkRDF [11, 12] is another Spark-based RDF engine which splits the RDF
graph into MESGs(Multi-layer Elastic SubGraph) based on relations (R) and classes
(C) by creating 5 kinds of indexes(C,R,CR,RC,CRC) with different grains to sup-
port efficient evaluation for the diverse query triple patterns(TP). These index files
are modeled as RDSG(Resilient Discreted SubGraph), a collection of in-memory
semantic subgraph objects partitioned across machines. SPARQL queries are evalu-
ated over these indices using a series of basic operators (e.g., filter, join). All inter-
mediate results, which are also represented as the RDSG, are also maintained in the
distributed memory to support further fast joins. SparkRDF uses a selectivity-based
greedy algorithm to design a optimal execution order of query triple patterns (TPs)
that aims of effectively reduce the size of intermediate results. In addition, it uses a
location-free prepartitioning strategy that avoids the expensive shuffling cost for the
distributed join operations. In particular, it ignores the partitioning information of
index files, while repartitioning the datawith the same join key to the same node.S2X
(SPARQL on Spark with GraphX) engine [40] RDF engine has been implemented
on top of GraphX [19], an abstraction for graph-parallel computation was added
to Spark [52]. It combines graph-parallel abstraction of GraphX to implement the

16http://dbis.informatik.uni-freiburg.de/S2RDF.
17http://spark.apache.org/.
18https://parquet.apache.org/.

http://dbis.informatik.uni-freiburg.de/S2RDF
http://spark.apache.org/
https://parquet.apache.org/

358 M. Hauwirth et al.

graph pattern matching part of SPARQL with data-parallel computation of Spark to
build the results of other SPARQL operators. Similar approach has been followed by
Goodman and Grunwald [20] for implementing an RDF engine on top the GraphLab
framework, another graph-parallel computation platform [29].

Trinity.RDF [53] is a distributed in-memory RDF system which is based on Trin-
ity [43], a distributed in-memory key-value store and a custom communication proto-
col based on theMessagePassing Interface (MPI) standard. In particular, Trinity.RDF
builds a graph interface on top of the key-value store. It randomly partitions an RDF
graph across a cluster of commodity machines by hashing on the nodes. Thus, each
machine holds a disjoint part of the graph. For any SPARQL query, a user submits his
query to a proxy. Trinity.RDF performs parallel search on each machine where the
machines may need to exchange data as a query pattern may span multiple partitions.
In particular, Trinity.RDF decomposes a SPARQL query into a set of triple patterns
and conduct a sequence of graph traversal to generate bindings for each of the triple
pattern. The proxy generates a query plan and delivers the plan to all the Trinity
machines which hold the RDF data. Each machine executes the query plan under the
coordination of the proxy. When the bindings for all the variables are resolved, all
Trinity machines return the bindings to the proxy where the final result is constructed
and returned back to the user.

4.2 Query Execution

Ravindra et al. propose an intermediate algebra called Nested Triple Group Algebra
(NTGA) to optimize their query execution process [37]. This approach minimizes
the number of MapReduce cycles to answer the query. It also introduces algorithms
to postpone the decompression of intermediate results so they can be kept in compact
form, which in result reduces the number of I/O operations. The fundamental concept
of NTGA is a TripleGroup [36], which is a group of triples sharing the same subject
or object (star-like structure). Within one MapReduce operation, they pre-compute
all possible star substructures, thus materializing all possible first-hop joins. Having
computed all star-like structures, the system filters-out those stars that do not fulfill
query constrains. In the next step, if necessary, the system joins stars. Figure13 shows
an example query and its execution plan. The first step (LOLoad) loads all data and at
the same time also applies value-basedfilters on the data to avoid processing irrelevant
triples. Then, during one Reduce operation, the LOCogroup operator groups triples
and applies constrains on the groups, such that all irrelevant “stars” are filtered out.
The last step in the flow is joining stars based on subjects or objects, which is achieved
with the LORDFJoin operator.

Rohloff et al. introduce, in their SHARD system, a clause iteration algorithm [38]
the main idea of which is to iterate over all clauses and incrementally bind variables
and satisfy constrains (Fig. 14). During the first step, they identify all edges matching
to a clause and remove duplicates. The output collection consists of keys (which are
variable bindings from the clause) and NULL values. The following step identifies

Non-native RDF Storage Engines 359

s1 :label o1 .
s1 :country o1.
s2 :vendor o2 .
(...)

SELECT
?vlabel ?prod ?price
where {

?v :label ?vlabel .
?v :country ?vcountry .

?o :vender ?v .
?o :price ?itsprice .
?o :delivDays ?days .
?o :product ?prod .

?r :reviewFor ?prod .
?r :rating1 ?rat1 .

FILTER (?days <= 2
&& ?vcountry = "US"
&& ?rat1 >= 4)
}

LOLoad

TripleStorage:
CoalescedLOFilter

LOCogroup

Structural Filter

LORDFJoin

LOForEach

LOStore

TripleStorage

(...)
(repeat above ones if required

(a) SPARQL Query (b) Logical Plan (c) Physical/MapReduce Plan

POLocalRearrange

PORDFGenPack

Structural Filtering

Filter out incomplete TG

s1 :vendor o1
s1 :price o2
s1 :delivDay o3
s1 :product o4

PORDFJoinAnnotator

PORDFJoinPackage

POForEach

Fig. 13 RAPID+: query execution in [25]

Algorithm 1 SHARD: Iteration algorithm [38].
Require: triples, query
1: mr Output ←− NU L L
2: mr I nput ←− tr i ples
3: firstClauseMapReduce(mrInput, mrOutput, query.clause(0))
4: boundV ars ←− quer y.clause(0).getV ars()
5: for i ← 1 to quer y.numClauses − 1 do
6: mr I nput ←− union(tr i ples,mr Output)
7: cur V ars ←− quer y.clause(i).getV ars()
8: comV ars ←− intersection(boundV ars, cur V ars)
9: intermediateClauseMapReduce(mrInput,mrOutput, query.clause(i), comVars)
10: end for
11: mr I nput ←− mr Output
12: selectMapReduce(mrInput, mrOutput, query.select())
13: return mr Output

edges matching to the remaining clauses (in the sameway as previously). It also joins
them with sub-graphs corresponding to the previously matched edges. The final step
filters variables to obtain those requested in the SELECT clause. Algorithm 1 runs a
firstClauseMapReduceMapReduce job to perform the first step. As an output,
it returns sets of possible assignments to the variables of the first clause.boundVars
tracks variables that were bound during this step. For the following example query:

SELECT ? per son WHERE {
? per son : owns ? ca r .
? c a r : a : c a r .

360 M. Hauwirth et al.

Fig. 14 SHARD: a schema
of the clause iteration
algorithm [38]

Graph Data

Map: Assign variables for 1st clause
Reduce: Remove duplicates

Map:
1. Assign variables for next clause
2. Map past partial assignments, Key

on common variable

Reduce:

1. Join partial assignments on com-
mon variable

2. Remove duplicates

Map: Filter or SELECT variables
Reduce: Remove duplicates

iterate
over

clauses

? ca r : madeIn : D e t r o i t . }

variables ?person and ?car are bound and set to boundVars. The iterating step
runs theintermediateClauseMapReduceMapReduce job to perform the sec-
ond step. It identifies triples matching to each clause (one by one) and then performs
joins over intermediate results of this step and all previous steps. For instance, after the
very first step, the system gets a set of bound variables <(?car car0), null>;
after the first iteration, it gets a map of variables bound during the second and
first steps <(?car car0), (?person, Kurt)>. The reduce phase combines
those two and returns <(?car car0 ?person, Kurt)>.

Non-native RDF Storage Engines 361

Huang et al. [24] take advantage of their partitioning scheme and of their back-
end triplestore. Queries are decomposed into chunks executed in parallel and then
reconstructed with MapReduce. They push as much of query processing as possible
to the triplestore while the remaining part is consolidated by Hadoop. The system
divides queries into two kinds. First, those that can be executed on a node, meaning
that each node has sufficient data to generate complete result tuples. The second kind
of query has to be decomposed into sub-queries executed on nodes, whose results
are finally collected and joined at the master node.

The of query processing of CliqueSquare [16, 18] relies on a clique-based algo-
rithm which produces query plans that minimize the number of MapReduce stages.
The algorithm is based on the variable graph of a query and its decomposition into
clique subgraphs. The algorithm works in an iterative way to identify cliques and
collapse them by evaluating the joins on the common variables of each clique. The
process ends when the variable graph consists of only one node. During the physical
query execution, CliqueSquare exploits the different partitions RDF datasets to per-
formmost common types of RDF queries locally at each node and minimize the data
transfer through the network. In particular, it allows thatmost of the incoming queries
to be processed in a single MapReduce job which enables a significant performance
competitive advantage.

References

1. D.J. Abadi, A. Marcus, S. Madden, K.J. Hollenbach, Scalable semantic web data management
using vertical partitioning, in Proceedings of the 33rd International Conference on Very Large
Data Bases, University of Vienna, Austria, September 23–27, 2007 (ACM, New York, 2007),
pp. 411–422

2. D.J. Abadi, A. Marcus, S.R. Madden, K. Hollenbach, Scalable semantic web data management
using vertical partitioning, in Proceedings of the 33rd International Conference on Very Large
Data Bases, VLDB ’07 (2007), pp. 411–422

3. R. Agrawal, A. Somani, Y. Xu, Storage and querying of E-commerce data, in VLDB 2001,
Proceedings of 27th International Conference on Very Large Data Bases, September 11–14,
2001, Roma, Italy (Morgan Kaufmann, Burlington, 2001), pp. 149–158

4. S. Alexaki, V. Christophides, G. Karvounarakis, D. Plexousakis, On Storing voluminous RDF
descriptions: the case of web portal catalogs, in WebDB (2001), pp. 43–48

5. A. Aranda-Andújar, F. Bugiotti, J. Camacho-Rodríguez, D. Colazzo, F. Goasdoué, Z. Kaoudi,
I. Manolescu, AMADA: web data repositories in the amazon cloud, in 21st ACM International
Conference on Information and Knowledge Management, CIKM’12, Maui, HI, USA, October
29 - November 02, 2012 (2012), pp. 2749–2751. doi:10.1145/2396761.2398749

6. M. Armbrust, R.S. Xin, C. Lian, Y. Huai, D. Liu, J.K. Bradley, X. Meng, T. Kaftan, M.J.
Franklin, A. Ghodsi, M. Zaharia, Spark SQL: relational data processing in spark, in SIGMOD
(2015), pp. 1383–1394. doi:10.1145/2723372.2742797

7. C. Bizer, A. Schultz, The Berlin SPARQL benchmark. Int. J. Semant. Web Inf. Syst. 5(2), 1–24
(2009)

8. J. Broekstra, A. Kampman, F. van Harmelen, Sesame: a generic architecture for storing and
querying RDF and RDF schema, in The Semantic Web - ISWC 2002, First International Seman-
tic Web Conference, Sardinia, Italy, June 9-12, 2002, Proceedings (Springer, Heidelberg, 2002),
pp. 54–68

http://dx.doi.org/10.1145/2396761.2398749
http://dx.doi.org/10.1145/2723372.2742797

362 M. Hauwirth et al.

9. J.Broekstra,A.Kampman, F.Harmelen, Sesame: a generic architecture for storing andquerying
RDFandRDFschema, inThe Semantic Web ISWC 2002, by eds. I.Horrocks, J.Hendler, Lecture
Notes in Computer Science, vol. 2342 (Springer, Heidelberg, 2002), pp. 54–68. doi:10.1007/
3-540-48005-6-7

10. F. Chang, J. Dean, S. Ghemawat,W.C. Hsieh, D.A.Wallach,M. Burrows, T. Chandra, A. Fikes,
R.E. Gruber, Bigtable: a distributed storage system for structured data. ACM Trans. Comput.
Syst. 26(2), 4:1–4:26 (2008). doi:10.1145/1365815.1365816

11. X. Chen, H. Chen, N. Zhang, S. Zhang, SparkRDF: elastic discreted RDF graph processing
engine with distributed memory, in Proceedings of the ISWC 2014 Posters and Demonstrations
Track a track within the 13th International Semantic Web Conference, ISWC 2014, Riva del
Garda, Italy, October 21, 2014 (2014), pp. 261–264. http://ceur-ws.org/Vol-1272/paper_43.
pdf

12. X. Chen, H. Chen, N. Zhang, S. Zhang, SparkRDF: elastic discreted RDF graph processing
engine with distributed memory, in IEEE/WIC/ACM International Conference on Web Intelli-
gence and Intelligent Agent Technology, WI-IAT 2015, Singapore, December 6-9, 2015, vol. I
(2015), pp. 292–300. doi:10.1109/WI-IAT.2015.186

13. E.I. Chong, S. Das, G. Eadon, J. Srinivasan, An efficient SQL-based RDF querying scheme,
in Proceedings of the 31st International Conference on Very Large Data Bases, Trondheim,
Norway, August 30 - September 2, 2005 (ACM, New York, 2005), pp. 1216–1227

14. G.P. Copeland, S. Khoshafian, A decomposition storage model, in Proceedings of the ACM
SIGMOD International Conference on Management of Data (1985), pp. 268–279

15. P. Cudr–Mauroux, I. Enchev, S. Fundatureanu, P. Groth, A., Haque, A. Harth, F.L. Keppmann,
D. Miranker, J. Sequeda, M. Wylot, NoSQL databases for RDF: an empirical evaluation, in
International Semantic Web Conference (2013)

16. B. Djahandideh, F. Goasdoué, Z. Kaoudi, I. Manolescu, J. Quiané-Ruiz, S. Zampetakis,
Cliquesquare in action: flat plans for massively parallel RDF queries, in 31st IEEE Inter-
national Conference on Data Engineering, ICDE 2015, Seoul, South Korea, April 13-17, 2015
(2015), pp. 1432–1435. doi:10.1109/ICDE.2015.7113394

17. S. Fundatureanu, A scalable RDF store based on HBASE. Master’s thesis, Vrije University
(2012). http://archive.org/details/ScalableRDFStoreOverHBase

18. F. Goasdoué, Z. Kaoudi, I. Manolescu, J. Quiané-Ruiz, S. Zampetakis, Cliquesquare: flat plans
for massively parallel RDF queries, in 31st IEEE International Conference on Data Engineer-
ing, ICDE 2015, Seoul, South Korea, April 13–17 (2015), pp. 771–782 (2015). doi:10.1109/
ICDE.2015.7113332

19. J.E. Gonzalez, R.S. Xin, A. Dave, D. Crankshaw, M.J. Franklin, I. Stoica, GraphX: graph
processing in a distributed dataflow framework, in 11th USENIX Symposium on Operat-
ing Systems Design and Implementation, OSDI ’14, Broomfield, CO, USA, October 6–
8, 2014 (2014), pp. 599–613. https://www.usenix.org/conference/osdi14/technical-sessions/
presentation/gonzalez

20. E.L. Goodman, D. Grunwald, Using vertex-centric programming platforms to implement
SPARQL queries on large graphs, in Proceedings of the 4th Workshop on Irregular Appli-
cations: Architectures and Algorithms, IA3 ’14 (IEEE Press, Piscataway, NJ, USA, 2014), pp.
25–32. doi:10.1109/IA3.2014.10

21. A. Haque, L. Perkins, Distributed RDF triple store using HBase and Hive (2012)
22. S. Harris, N. Gibbins, 3store: efficient bulk RDF storage, in PSSS1 - Practical and Scalable

Semantic Systems, Proceedings of the First International Workshop on Practical and Scalable
Semantic Systems, Sanibel Island, Florida, USA, October 20, 2003 (CEUR-WS.org, 2003)

23. A. Harth, S. Decker, Optimized index structures for querying RDF from the Web, in IEEE
LA-WEB (2005), pp. 71–80

24. J. Huang, D.J. Abadi, K. Ren, Scalable SPARQL querying of large RDF graphs. PVLDB 4(11),
1123–1134 (2011)

25. H. Kim, P. Ravindra, K. Anyanwu, From sparql to mapreduce: the journey using a nested
triplegroup algebra. PVLDB 4(12), 1426–1429 (2011)

http://dx.doi.org/10.1007/3-540-48005-6-7
http://dx.doi.org/10.1007/3-540-48005-6-7
http://dx.doi.org/10.1145/1365815.1365816
http://ceur-ws.org/Vol-1272/paper_43.pdf
http://ceur-ws.org/Vol-1272/paper_43.pdf
http://dx.doi.org/10.1109/WI-IAT.2015.186
http://dx.doi.org/10.1109/ICDE.2015.7113394
http://archive.org/details/ScalableRDFStoreOverHBase
http://dx.doi.org/10.1109/ICDE.2015.7113332
http://dx.doi.org/10.1109/ICDE.2015.7113332
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/gonzalez
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/gonzalez
http://dx.doi.org/10.1109/IA3.2014.10

Non-native RDF Storage Engines 363

26. G. Ladwig, A. Harth, CumulusRDF: linked data management on nested key-value stores, in
The 7th International Workshop on Scalable Semantic Web Knowledge Base Systems (SSWS
2011) (2011), p. 30

27. A. Lakshman, P. Malik, Cassandra: a decentralized structured storage system. SIGOPS Oper.
Syst. Rev. 44(2), 35–40 (2010). doi:10.1145/1773912.1773922

28. A. Lakshman, P. Malik, Cassandra: a decentralized structured storage system. SIGOPS Oper.
Syst. Rev. 44(2), 35–40 (2010). doi:10.1145/1773912.1773922

29. Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, J.M. Hellerstein, Distributed
GraphLab: a framework for machine learning in the cloud. PVLDB 5(8), 716–727 (2012).
http://vldb.org/pvldb/vol5/p716_yuchenglow_vldb2012.pdf

30. B. McBride, Jena: a semantic web toolkit. IEEE Int. Comput. 6(6), 55–59 (2002)
31. C. Olston, B. Reed, U. Srivastava, R. Kumar, A. Tomkins, Pig Latin: a not-so-foreign language

for data processing, in Proceedings of the 2008 ACM SIGMOD International Conference on
Management of Data (ACM, New York, 2008), pp. 1099–1110

32. N. Papailiou, I. Konstantinou, D. Tsoumakos, P. Karras, N. Koziris, H2RDF+: high-
performance distributed joins over large-scale RDF graphs, in Proceedings of the 2013 IEEE
International Conference on Big Data, 6-9 October 2013 (Santa Clara, CA, USA, 2013), pp.
255–263. doi:10.1109/BigData.2013.6691582

33. N. Papailiou, I. Konstantinou, D. Tsoumakos, N. Koziris, H2RDF: adaptive query processing
on RDF data in the cloud, in WWW (Companion Volume)

34. N. Papailiou, D. Tsoumakos, I. Konstantinou, P. Karras, N. Koziris, H2rdf+: an efficient data
management system for big RDF graphs, in International Conference on Management of Data,
SIGMOD 2014, Snowbird, UT, USA, June 22–27, 2014 (2014), pp. 909–912. doi:10.1145/
2588555.2594535

35. R. Punnoose, A. Crainiceanu, D. Rapp, SPARQL in the cloud using Rya. Inf. Syst. 48, 181–195
(2015). doi:10.1016/j.is.2013.07.001

36. P. Ravindra, V.V. Deshpande, K. Anyanwu, Towards scalable RDF graph analytics on mapre-
duce, in Proceedings of the 2010 Workshop on Massive Data Analytics on the Cloud (ACM,
New York, 2010), p. 5

37. P. Ravindra, H. Kim, K. Anyanwu, An intermediate algebra for optimizing RDF graph pattern
matching on MapReduce, in The Semanic Web: Research and Applications - 8th Extended
Semantic Web Conference, ESWC 2011, Heraklion, Crete, Greece, May 29 - June 2, 2011,
Proceedings, Part II (Springer, Heidelberg, 2011), pp. 46–61

38. K. Rohloff, R.E. Schantz, Clause-iteration with mapreduce to scalably query datagraphs in
the shard graph-store, in Proceedings of the Fourth International Workshop on Data-intensive
Distributed Computing (ACM, New York, 2011), pp. 35–44

39. S. Sakr, G. Al-Naymat, Relational processing of RDF queries: a survey. SIGMOD Rec. 38(4),
23–28 (2009). doi:10.1145/1815948.1815953

40. A. Schätzle, M. Przyjaciel-Zablocki, T. Berberich, G. Lausen, S2X: graph-parallel querying of
RDF with GraphX, in 1st International Workshop on Big-Graphs Online Querying (Big-O(Q)
(2015)

41. A. Schätzle, M. Przyjaciel-Zablocki, T. Hornung, G. Lausen, Pigsparql: A SPARQL query
processing baseline for big data, in Proceedings of the ISWC 2013 Posters and Demonstrations
Track, Sydney, Australia, October 23, 2013 (2013), pp. 241–244. http://ceur-ws.org/Vol-1035/
iswc2013_poster_16.pdf

42. A. Schätzle, M. Przyjaciel-Zablocki, S. Skilevic, G. Lausen, S2RDF: RDF querying with
SPARQL on spark. CoRR (2015). http://arxiv.org/abs/1512.07021

43. B. Shao, H.Wang, Y. Li, Trinity: a distributed graph engine on a memory cloud, in Proceedings
of the 2013 International Conference on Management of Data (ACM, New York, 2013), pp.
505–516

44. M. Stonebraker, D.J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Ferreira, E. Lau, A. Lin, S.
Madden, E.J. O’Neil, P.E. O’Neil, A. Rasin, N. Tran, S.B. Zdonik, C-Store: a column-oriented
DBMS, inProceedings of the 31st International Conference on Very Large Data Bases (VLDB)
(2005), pp. 553–564

http://dx.doi.org/10.1145/1773912.1773922
http://dx.doi.org/10.1145/1773912.1773922
http://vldb.org/pvldb/vol5/p716_yuchenglow_vldb2012.pdf
http://dx.doi.org/10.1109/BigData.2013.6691582
http://dx.doi.org/10.1145/2588555.2594535
http://dx.doi.org/10.1145/2588555.2594535
http://dx.doi.org/10.1016/j.is.2013.07.001
http://dx.doi.org/10.1145/1815948.1815953
http://ceur-ws.org/Vol-1035/iswc2013_poster_16.pdf
http://ceur-ws.org/Vol-1035/iswc2013_poster_16.pdf
http://arxiv.org/abs/1512.07021

364 M. Hauwirth et al.

45. P. Tsialiamanis, L. Sidirourgos, I. Fundulaki, V. Christophides, P. Boncz, Heuristics-based
query optimisation for SPARQL, in Proceedings of the 15th International Conference on
Extending Database Technology

46. J. Urbani, S. Kotoulas, J. Maassen, N. Drost, F. Seinstra, F.V. Harmelen, H. Bal, Webpie: a
web-scale parallel inference engine, in Third IEEE International Scalable Computing Chal-
lenge (SCALE2010), held in conjunction with the 10th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGrid) (2010)

47. P. Valduriez, Join indices. ACM Trans. Database Syst. 12(2), 218–246 (1987). doi:10.1145/
22952.22955

48. K.Wilkinson, C. Sayers, H.A. Kuno, D. Reynolds, Efficient RDF storage and retrieval in jena2,
in SWDB’03 (2003), pp. 131–150

49. K. Wilkinson, K. Wilkinson, Jena property table implementation, in International Workshop
on Scalable Semantic Web Knowledge Base Systems (SSWS) (2006)

50. M. Wylot, P.C. Mauroux, Diplocloud: Efficient and Scalable Management of RDF Data in the
Cloud (2015)

51. M.Wylot, J. Pont, M.Wisniewski, P. Cudré-Mauroux, dipLODocus[RDF] - short and long-tail
RDF analytics for massive webs of data, in International Semantic Web Conference (2011),
pp. 778–793

52. M. Zaharia, M. Chowdhury, M.J. Franklin, S. Shenker, I. Stoica, Spark: cluster computing with
working sets, in 2nd USENIX Workshop on Hot Topics in Cloud Computing, HotCloud’10,
Boston, MA, USA, June 22, 2010 (2010). https://www.usenix.org/conference/hotcloud-10/
spark-cluster-computing-working-sets

53. K. Zeng, J. Yang, H. Wang, B. Shao, Z. Wang, A distributed graph engine for web scale RDF
data. PVLDB 6(4), 265–276 (2013). http://www.vldb.org/pvldb/vol6/p265-zeng.pdf

http://dx.doi.org/10.1145/22952.22955
http://dx.doi.org/10.1145/22952.22955
https://www.usenix.org/conference/hotcloud-10/spark-cluster-computing-working-sets
https://www.usenix.org/conference/hotcloud-10/spark-cluster-computing-working-sets
http://www.vldb.org/pvldb/vol6/p265-zeng.pdf

Exploratory Ad-Hoc Analytics
for Big Data

Julian Eberius, Maik Thiele and Wolfgang Lehner

Abstract In a traditional relational database management system, queries can only
be defined over attributes defined in the schema, but are guaranteed to give single,
definitive answer structured exactly as specified in the query. In contrast, an informa-
tion retrieval system allows the user to pose queries without knowledge of a schema,
but the result will be a top-k list of possible answers, with no guarantees about the
structure or content of the retrieved documents. In this chapter, we present Drill
Beyond, a novel IR/RDBMS hybrid system, in which the user seamlessly queries
a relational database together with a large corpus of tables extracted from a web
crawl. The system allows full SQL queries over a relational database, but addition-
ally enables the user to use arbitrary additional attributes in the query that need not
to be defined in the schema. The system then processes this semi-specified query
by computing a top-k list of possible query evaluations, each based on different
candidate web data sources, thus mixing properties of two worlds RDBMS and IR
systems.

1 Exploratory Analytics for Big Data

While the term Big Data is most often associated with the challenges and oppor-
tunities of today’s growth in data volume and velocity, the phenomenon is also
characterized by the increasing variety of data [36]. In fact, data is collected in more
and more different forms from increasingly heterogeneous sources. The spectrum of
additional data sources ranges from large-scale sensor networks, over measurements
from mobile clients or industrial machinery, to the log- and click-streams of ever

J. Eberius · M. Thiele (B) · W. Lehner
Faculty of Computer Science, Database Technology Group,
Technische Universität Dresden, 01062 Dresden, Germany
e-mail: maik.thiele@tu-dresden.de

J. Eberius
e-mail: julian.eberius@tu-dresden.de

W. Lehner
e-mail: wolfgang.lehner@tu-dresden.de

© Springer International Publishing AG 2017
A.Y. Zomaya and S. Sakr (eds.), Handbook of Big Data Technologies,
DOI 10.1007/978-3-319-49340-4_11

365

366 J. Eberius et al.

Data Mart

Data Mart

Machine
GenerateData

(Logs, …)

Textual Data
(Customer
Emails, …)

Web Data,
Open Data,

Social Media

Opera onal
Data Store

ERP

CRM

ETL
Extract

Transform
Load

Data Warehouse

Data Mart

OLAP

Repor ng

Data Mining

Text
Analysis

Predic ve
Analy cs

…

Data Lake
Loose collec on of (un-
/semi-) structure data

Da
ta

 W
ar

eh
ou

se
 La

nd
sc

ap
e

Bi
g

Da
ta

 La
nd

sc
ap

e

Exploratory
Analy cs

Fig. 1 The growing big data analytics landscape

more complex software architectures and applications. In addition, there is more
publicly available data, such as social network data, as well as Web and Open Data.
More and more organizations strive to efficiently harness all forms and sources of
data in their analysis projects to gain new insights, or enable new features in their
products.

However, conventional data warehouse infrastructures (upper part of Fig. 1)
assume controlled ETL processes with well-defined input and target schemata, that
define the data pipelines in the organization. The data sources typically are opera-
tional databases and common enterprise IT systems, such as Customer Relationship
Management (CRM) and Enterprise Resource Planning (ERP) systems. Tradition-
ally, the data sink in such an architecture has been thewarehouse or datamarts, whose
schemata define what is immediately queryable for an analyst. If there is an ad-hoc
information need that can not be satisfied with the current schema because external
information has to be integrated, an intricate process has to be followed. Because
the warehouse is a crucial piece of infrastructure, it is highly controlled: ad-hoc inte-
gration and analytics is not a feature that it is designed for. Still organizations today
aim at generating value from all available data, which includes novel internal, but
also increasingly external sources. Consider the lower part of Fig. 1, which depicts
key changes to the traditional architecture. Beside the continued growth of data vol-
ume and its increasing heterogeneity, there are also changes at the data consumption
side, where we can see a development towards agile and exploratory data analy-
sis overcoming inflexible data warehouse infrastructures. Instead, new information
management principles such as data lake [44, 47] MAD [12] arise, that aim to easily
ingest, transform, and analyze data in an exploratory and agile manner. In addition,
information needs are often ad-hoc or situational [42], or require the use of hetero-

Exploratory Ad-Hoc Analytics for Big Data 367

geneous or unstructured data that are not integrated in a data warehouse. An instant
integration of Big Data is not even desirable, as the future use cases of the data is not
known. Implementing the data lake principle allows to store the mentioned variety
of data sources. However, while a new wealth of data is available, the integration
of a large variety of sources is still a complicated, laborious and mostly manual
process that has to be performed by experts and that is required before queries on the
combined data can be issued. This limits the ability of non-expert users to include
more data into their analysis tasks in exploratory manner. Without additional tool
support, the effort of data integration will most likely prevent those users from taking
advantage of the wealth of Big Data today.

To illustrate the problems with today’s data management tool let us consider the
following scenario: Imagine you are a working in the marketing department of a
company and you need to select customers that should be targeted by a specific
campaign. To achieve this you have to group your customers according to different
properties of the their home countries. While the customer master data is part of
your enterprise data warehouse detailed country information, e.g. population, life
expectancy, GDP, debt, etc., is missing. To get this data you need to identify relevant
data sources manually, for example through a regular search engine. Then, the data
has to be extracted and cleaned, i.e., converted into a form that is usable in a regular
database. In a next step, it needs to be integrated into an existing database, which
includes mapping of corresponding concepts, but may also include instance-level
transformations. Only after this process is finished, the original query can be issued.
Still, the result may not be what the user originally desired, or the user may want
to see the query result when using a different Web data source. In this case, another
iteration of the process is necessary. The overall process is extremely cumbersome
and you will be likely miss a large fraction of all relevant data sources that are
available on the Web [37].

To solve this problem we propose a novel method for Top-k Entity Augmentation
(Sect. 2), that enables us to enrich a given set of entities with additional attributes
based on a large corpus of heterogeneous data. This allows for ad-hoc data search
and integration in Big Data environments with large collections of heterogeneous
data such as data lakes or publicly available data. We extend this approach to an
Exploratory Ad-Hoc Analytics System called DrillBeyond (Sect. 3), where we incor-
porate entity augmentation into traditional relational DBMS, to enable their efficient
use in analytical query contexts. This enables users to issue analytical ad-hoc queries
on a database while referencing data to be integrated as if it were already defined
in the database, without providing specific sources or mappings. In case of our mar-
keting scenario the country properties would be seamlessly integrated during query
execution and instantly used to answer the user request.

In the remainder of this section, we will derive requirements (Sect. 1.1) for a novel
data management architecture focused on ad-hoc integration of heterogeneous data
sources with traditional data management systems. Given that, we will propose an
architectural blueprint (Sect. 1.2) that also serves as the outline for the rest of the
chapter.

368 J. Eberius et al.

Parts of the material presented in this chapter have already been published in [22]
and [21].

1.1 Requirements

To put it succinctly, we identify two trends: first, we observe an ever increasing
amount and diversity of available data sources, both inside organizations and outside.
Organizations are stockpiling data in a quantity and of a variety not seen in the
past. At the same time, developments such as the Open Data trend and sophisticated
technologies forWeb data extraction lead to higher availability of public data sources.
As a consequence, there is an increasing demand to enhance and enrich data by
integrating it with external data sources which introduces additional complexity.
Second, there is a growing demand for exploratory analytics and ad-hoc integration,
driven by the broadening spectrum of data users. This demands that the tools and
processes of data integration become simpler, and able to cater to a larger audience.
While data processing and analysis traditionally were the domain of IT departments
and BI specialists, more and more users from other departments are becoming active
data users and require easy access to all valuable data sources, both inside and
outside organizational boundaries. In addition, the focus of data use has broadened:
Traditional BI processes focused on defined data flows, typically from source systems
to a data warehouse, and aimed at producing well-defined reports or dashboards.
However, a new type of investigative data analysis, often associated with the role of
the data scientist, increases the demand for ad-hoc integration of the variety of data
sources mentioned above.

Still, even with all these new sources for data, the focus of most of the analysis
tasks is on the respective core data of each organization. This most valuable data will
still be stored in controlled data warehouse environments with defined schemata.
Therefore, new ad-hoc data integration techniques need to take this analytics con-
text into account. From these observations, we derive requirements for a novel data
management architecture focused on fulfilling the need for exploratory analytics.

Exploratory Integration and AnalyticsThe novel data sources discussed above do not
lend themselves to classical data integration with centralized schemata and expert-
defined mappings and transformations. Data fromWeb and Open sources, as well as
from heterogeneous management platforms such as data lakes, should be integrated
dynamically at the time it is needed by a user. The volume and variety of data sources
in these scenarios makes single, centralized integration effort infeasible. Instead of
consolidating all available sources as soon as they are available, sources should be
retrieved and integrated based on a specific analytical need. In such a scenario, data
search takes the place of exhaustive schemata covering all available information.
We therefore propose methods and systems to enable exploratory analysis over large
numbers of heterogeneous sources.

Exploratory Ad-Hoc Analytics for Big Data 369

Minimal Up-front User EffortWhen developingmethods for answering ad-hoc infor-
mation needs, an important factor is theminimization of up-front costs for the user. In
other words, our ambition is to minimize the user effort necessary before first results
become available. Specifically, we want to reduce the reliance on IT personnel and
integration experts, or the need to search data repositories or master integration tools
before external sources can be included in a data analysis scenario. In the ideal case,
a user should be able to declaratively specify the missing data and be presented with
workable answers automatically. To facilitate this, we propose keyword queries that
allow to specify the users’ information need and which can be iteratively refined
during an analytical session. While this approach minimizes the user effort it also
introduces ambiguities that need to be resolved by the underlying retrieval system.

TrustworthyAutomated IntegrationThe two goals introduced above amount to reduc-
ing user effort and time-to-result in data search and integration. As a consequence,
we propose novel methods for automating these highly involved processes. How-
ever, exact data integration has been called an “AI-complete” problem [30], and is
generally considered not to be automatically solvable in the general case. In fact, all
proposed methods return results with varying confidence values, instead of perfect
answers, requiring human validation in many cases. We therefore introduce methods
that automatize the data search and integration processes as much as possible, while
also facilitating user understanding and verification of the produced results.

System Integration Finally, ad-hoc integration queries should not introduce an iso-
lated, new class of systems into existing datamanagement architectures.As discussed
above, the wealth of Big Data collected by organizations or found on theWeb is very
promising. However,most analytical taskswill still focus on the core databases inside

n_name gdp avg(o_totalprice)

Germany 3.73 29.1

US 16.77 48.9

France 2.80 27.4

n_name gdp avg(o_totalprice)

Germany 3.73 29.1

US 16.77 48.9

France 2.80 27.4

Web Table Index Web Table Store

Data Source Management
indexes

Top-k En ty Augmenta on System

API (JSON and REST-based)

RDBMS

DrillBeyond

n_name gdp avg(o_totalprice)

Germany 3.73 29.1

US 16.77 48.9

France 2.80 27.4

Open World SQL Top-k Result

Fig. 2 Architecture overview of a combined database and information retrieval engine

370 J. Eberius et al.

organizations, with ad-hoc integrated sources supplementing, not replacing, them.
Therefore, methods developed to support ad-hoc integration can not be deployed in
a vacuum, but need to work hand in hand with systems managing core data. In detail,
we propose an RDBMS/IR system hybrid system that allows querying and analyzing
a regular relational database while using additional attributes for which the values
could be found only in external data sources (Fig. 2).

1.2 Architecture Overview

In the following, we provide an architectural blueprint of a combined database and
information retrieval engine in order to perform powerful queries over DBMS and
heterogeneous data sources in an efficient, easy-to-use and seamless manner that
fulfills the requirements outlined in Sect. 1.1. Our proposed architecture consists of
a series of layers providing increasingly higher-level services. We assume a large
collection of external tabular structured data, e.g. a corpus of Web tables, i.e., data-
carrying tables extracted from the open Web, datasets published on an Open Data
platform, or spreadsheets part of a corporate data lake [44].Without limiting the gen-
erality of the proposed systemwe utilizeWeb tables for the remainder of this chapter,
since they are freely available such as Dresden Web Table Corpus (DWTC) [19],
that consists of 125M Web tables extracted from a public Web crawl. This corpus
is indexed by an industry-standard document index server such as Solr1 or Elastic-
Search.2

On top of the inverted index we propose an Entity Augmentation System (EAS)
that forms the basic building block for ad-hoc data integration. EAS’s aim at extend-
ing a given set of entities with an additional, user-requested attribute that is not yet
defined for them. In Sect. 2, we will present a novel approach to the problemwhich is
especially suited for analytical uses cases. It is based on an extended version of the set
cover problem, called top-k consistent set covering for which we introduce several
algorithms. The EAS consists of a Data Source Management System providing stor-
age and indexing facilities for Web tables, enabling the higher layers to retrieve raw
Web tables based on keyword matches in data, schema or other metadata. Further it
orchestrates several schema and instance matching systems, knowledge repositories
and ranking schemes to create a candidate dataset D given an augmentation query.
Finally, it includes a JSON-based REST API, which enables other systems to easily
integrate with it and pose entity augmentation queries.

On top of that, we propose an RDBMS/IR system hybrid system called DrillBe-
yond (see Sect. 3), that allows querying and analyzing a regular relational database
while using additional attributes not defined in said database. Therefore, we propose
a new type of database queries, which we denote asOpen World Queries. In short, in
an Open World SQL, the user is allowed to reference arbitrary additional attributes

1http://lucene.apache.org/solr/.
2https://www.elastic.co/.

http://lucene.apache.org/solr/
https://www.elastic.co/

Exploratory Ad-Hoc Analytics for Big Data 371

not defined in this database. An exemplary query is shown in Fig. 8. The goal is to
enable users to specify information needs requiring external data declaratively, just
as if only local data was used, without having to integrate data up-front. Leveraging
the Entity Augmentation System a database can be augmented at query time with
Web data sources providing those attributes. The system will not respond to Open
World Queries with a single, perfect result, as it would be the case with normal
database queries. Instead, it should produce a ranked list of possible answers, each
based on different possible data sources and query interpretations. The users can
then pick the result most suitable to their information need. To this end, our system
tightly integrates regular relational processing with new data retrieval and integration
operators that encapsulate our novel augmentation techniques. In Sect. 3 we describe
the challenges in processing this new query type, such as efficient processing of
multi-result SQL queries, and present how our novel DrillBeyond system solves
them.

2 A Top-K Entity Augmentation System

In the previous section, we discussed the need to support ad-hoc information needs in
analytical scenarioswith tools for exploratorydata search and lightweight integration.
Specifically, we want to enable a user working on a dataset to effortlessly retrieve
and integrate other relevant datasets from a large pool of heterogeneous sources. One
compelling type of query in this context are so-called entity augmentation queries, or
EAQ. These queries are definedby a set of entities, for example a set of companies, and
an attribute that has been undefined so far for these entities, for example “revenue”.
The result of the query should then associate each of the entities with a value for the
queried attribute, by automatically retrieving and integrating data sources that can
provide them. We will call this attribute the augmentation attribute, and the system
processing such queries EntityAugmentation System, orEAS. The user has to specify
the augmented attribute just by a keyword, while the EAS decides on how to lookup
data sources, how to match them to the existing data, and possibly how to merge
multiple candidate sources into one result. This makes entity augmentation queries
both powerful and user-friendly, and thus interesting for exploratory data analysis.
Effectively, an EAS aims at automating the process of data search, as well as the
following integration step.

In principle, any type of data source could be used for answering entity aug-
mentation queries. For example, a large ontology such as YAGO [52] could answer
some EAQ rather easily, though only if the augmentation attribute is defined in this
knowledge base. In recent related work, several systems that process such queries
on the basis of large Web table corpora have been proposed, for example InfoGather
[56, 57], theWWT system [48, 50], and theMannheim Search Join Engine [37]. An
advantage of methods using tables extracted from the Web is that they offer more
long tail information, and do not rely on the queried attribute being defined in a
central knowledge base. Methods based on Web tables as their data source can, in

372 J. Eberius et al.

principle, also be used with any other large collection of heterogeneous data sources.
The techniques for automatic data search and integration introduced there could be
applied to enterprise data lakes [44, 47] as well. In fact, many challenges, such as
identifying relevant datasets in light of missing or generic attribute names, bridging
semantic or structural differences, or eliminating spurious matches, have already
been tackled by existing augmentation systems, which we review in Sect. 2.4.

Though solving these fundamental issues of data integration remains the most
important factor for the success of an EAS, we argue that several other challenges
are still unanswered in entity augmentation research. These challenges, are discussed
in Sect. 2.1 and used to derive design requirements for a novel entity augmentation
method in Sect. 2.2. Next, in Sect. 2.3, we will map the entity augmentation problem
to an extended version of the Set Cover problem, which we call Top-k Consistent Set
Cover and provide basic Greedy algorithm that solves this problem. Finally, we will
survey related work in Sect. 2.4.

Parts of the material presented in this chapter have already been published in [22].

2.1 Motivation and Challenges

In this section, we will discuss an exemplary entity augmentation scenario based on a
heterogeneous table corpuswith partially overlapping sources. Our example scenario
is depicted in Fig. 3, with the query represented as a table on the top, and the available
candidate data sources below it. The query table consists of a set of five companies,
and the augmentation attribute “revenue”. The candidate data sources depicted below
the query table vary in coverage of the query domain, the exact attribute they provide,
and their context. They are further annotated with their relevance with respect to the
query, which is depicted as a numeric score on each source. In [22] we provide
detailed scores and similarity measurements to compute the overall relevance score
of the candidate data sources.

As an introductory example let us assumean algorithm that picks, for everyqueried
entity, the respective value from the source with the highest relevance score. In our
example, this naïve algorithmwould pick values from the sources S7 for “Rogers”, S8
for “AT&T”, S5 for “Bank of China” and “ChinaMobile”, and finally S3 for “Banco
do Brasil”, using the highest ranked available source for each queried entity. This
means that the algorithm picks a large number of data sources, almost one distinct
source for each entity. More sophisticated methods for pruning candidate tables
and picking values from the remaining candidates can be used, such as correlating
or clustering sources, mapping sources to knowledge bases, or quality-weighted
majority voting (again, see Sect. 2.4). However, these methods do not fundamentally
change the fact that the integration is performed on a by-entity basis, which leads
to a large number of distinct sources being used to construct the result. It has been
argued that in data integration, and especially selection of sources to integrate, “less
is more” [18]. Choosing too many sources not only increases integration cost, but
may even deteriorate result quality if low quality sources are added. For example,

Exploratory Ad-Hoc Analytics for Big Data 373

Fig. 3 Example augmentation scenario: query table and candidate data sources

adding S8 to the example result made the result inconsistent: In contrast to the other
sources, this one is, in fact, concerned with US revenue only. This is just one intuitive
example of a problem introduced by inadequate source selection and combination in
the augmentation process. In the following, we will identify specific challenges that
are insufficiently solved with existing by-entity fusion methods.

Trust and Lineage Our first argument is concerned with the usability of an entity
augmentation result. In many application domains, the user can not blindly trust an
automatic integration result, no matter how sophisticated the method used is. Rather,
the result will serve as a starting point in a semi-automatic integration process,
where the user will manually check the sources proposed by the system, correct
errors made by the automated integration techniques, and even switch some of the
sources for others. Choosing a large number of sources therefore increases the users’
verification effort. We argue that existing fuse-by-entity models diminish trust and
hinder understanding of data lineage, two properties that are important in the overall
process of working with data, because the number of distinct sources they fuse is not
considered in source selection. In this chapter, we therefore investigate methods that
produce not only consistent augmentation results from several sources, but minimal
augmentations, i.e., augmentations that use a minimal number of sources to facilitate
the usage of the result. In the running example, such a result would be S2, S3, as
it only uses two sources to augment all entities, even though the sources’ average
score is slightly worse than the score of the naïve solution introduced above. To
summarize, when coercing a large number of data sources into one result, properties

374 J. Eberius et al.

important for data analysis such as transparency, lineage and trustworthiness of the
result are diminished.

Attribute Variations Another problem that we identified with related work is the
underlying assumption of a single true value for any combination of entity and
augmentation attribute. This single-truth idea, however, does not reflect the complex
realities. For example, the augmentation attribute in our scenario was given simply as
“revenue”. However, the concept is actually more complex, with many variants such
as “US revenue” or “emerging markets revenue” (S8 and S9) and derived attributes
such as “revenue growth” (S5 and S6). Furthermore, many types of values come
with temporal or spatial constraints, such as different years of validity, or may have
been measured in different ways, for example using different currencies. Therefore,
we argue that even when only sources of high relevance are picked, they may be
correct and of high quality when considered on their own, but still do not form a
consistent result for the overall query domain when combined. The differences in
precise semantics can, in most cases, not be decided based on the extracted attribute
values, but on the level of data sources, for example by considering the context of
a table. Even though better methods for creating consistent augmentations for some
important dimensions such as time and unit of measurement have been proposed
[50, 57], source consistency is not considered as a general dimension in entity aug-
mentation so far. To summarize the argument: due to the existence of subtle attribute
variations, the notion of source consistency needs to be taken into account when
combining several sources to a single augmentation result.

Unclear User Intent Extending our argument based on the intricacies of attribute
variations, we will discuss an additional challenge: the problem of unclear user
intent. In entity augmentation queries, the information need of the user is relatively
underspecified, especially when compared to queries on a database with a defined
schema. Even though entity augmentation also operates on structured data, for exam-
ple on a large-scale Web table corpus, the user is still forced to pose queries on data
whose extent or schema is unknown to him or her. Forming precise queries may
therefore not always be possible, especially in the presence of attribute variations.
In turn, the entity augmentation system may not always be able to pinpoint the exact
attribute the user is interested in. To give one example, in the scenario in Fig. 3 it
is unclear whether the user is interested in any specific year, or just in the highest
ranked sources. In this example, a solution based on the sources S1, S4 may be more
useful than the higher-ranked solution S2, S3 proposed above, because both sources
explicitly state a certain year of validity. However, which solution the user would
prefer can not be decided from the query alone.

Exploratory Search Even if the user can specify a precise query, in the case of
situational or ad-hoc analysis, they may not even yet know which attribute variant is
themost relevant. In those situations, the underspecifiednature of entity augmentation
queries may even be turned into an advantage. For example, a user may want to
stumble over new aspects of his or her information need, similarly to the way it
may happen with a Web search engine. In the example scenario, the user may have

Exploratory Ad-Hoc Analytics for Big Data 375

queriedonly for “revenue”, but a solution showing “revenuegrowth”basedon sources
S5, S6 may, in some situations, give the ongoing analysis process a new perspective
or direction. However, such serendipitous query answering is not supported with
current augmentation systems. One partial exception is theMannheim Search Engine
[37], which allows so-called unconstrained queries, in which the system returns
augmentations for all attributes it can retrieve from all available sources. However,
this may leave the user with an unfocused, large and hard-to-comprehend result that
is not connected to the information need at hand. In other words, the exploratory
nature of entity augmentation queries is not done justice in current approaches.

Error Tolerance Finally, we note that all existing augmentation systems are based
on techniques for automated schema matching, entity resolution and automated rele-
vance estimation. All these components by themselves have a certain margin of error
that, no matter how sophisticated the underlying methods become, can never be fully
eliminated. In combining these systems to higher-level service such as entity aug-
mentation, the individual errors will evenmultiply. Still, none of the existing systems,
while of course striving to optimize their precision in various ways, offer explicit
support for tolerating possible errors.

2.2 Requirements

Having introduced and discussed five significant open challenges in entity aug-
mentation, we now want to discuss requirements for a novel entity augmentation
method that alleviates these challenges. First, let us discuss the challenges lineage
and attribute variants. We already discussed that using a large number of sources
impedes the user’s understanding. Further, we discussed that, to detect and correctly
exploit the existing variants of the queried attribute, we need to take consistency
between sources into account. Therefore, we investigate methods that produce both
augmentation results that are both consistent and minimal, i.e., augmentations that
use a minimal number of distinct sources, with each of them representing the same
attribute variant. To determine this consistency of datasets, it is possible to measure
the similarity between their attribute names, compare global properties of their value
sets, or analyze the associated metadata such as dataset titles and context. We will
discuss our notion of consistency in more detail and also give formal definitions in
the following sections.

Now let us consider two further challenges: unclear user intent and error toler-
ance. Both of these challenges result from various forms of uncertainty: The first
from uncertainty about the user intent, the second from uncertainty of the utilized
basic methods such as schema matching and entity resolution, and the third from
uncertainty in the sources. Information retrieval systems solve this problem by pre-
senting not one exact, but a top-k list of possible results. For example, errors in
relevance estimation are tolerable, as long as some relevant documents are included
in the top-k result list. Unclear user intent or ambiguities in the query keywords can

376 J. Eberius et al.

be resolved by returning documents based on multiple interpretations of the query,
instead of focusing exclusively on the most likely interpretation [3]. Furthermore,
the challenge of exploratory search can also be solved in a top-k setting by means of
result list diversification, as is common practice in Web search [5] or recommender
systems [58]. We argue that for entity augmentation a similar argument can be made:
It is advantageous to provide not only one solution, but allow the user to choose
from a ranked list of alternative solutions. In other words, we aim at extending entity
augmentation to diversified top-k entity augmentation.

Let us reconsider our running example shown in Fig. 3. Instead of returning only
one result based on S2, S3 as discussed above, one alternative would be a result
based on S1, S4. It has a worse average score, but has clearly marked year in both
sources, which may be more useful for the user on manual inspection, because of
the clearly marked year information in the context.

Another aspect are attribute variations, which, due to the exploratory nature of
entity augmentation queries, may also be of interest to the user. An example would
be a third result based on S6 and the second column of S5 which represents changes
in revenue instead of absolute revenue. Yet another exploratory result could be com-
prised of just S9, which does not cover all entities, but might give the users’ analysis
a new direction.

Note however, that we want to generate solutions that are real alternatives, such as
the three examples above. Because of copying effects on theWeb [13, 38], using only
the most relevant sources for creating all k augmentation results however would lead
to many answers being created from structurally and semantically similar sources.
Furthermore, because we fuse results from several sources, naïve solutions would
use the same, most relevant sources multiple times in various combinations, leading
to redundancy in the result list. In the example, one such redundant result would
be S1, S7. However, since S7 differs only superficially from source S4, the results
S1, S4 and S1, S7 are very similar. We want to avoid slight variations of one solution
as this would add little information to the top-k result. A meaningful top-k list needs
to consider a diverse set of sources, exploring the space of available data sources
while still creating correct and consistent answers. This has been recognized a long
time ago in information retrieval [10], but has recently been explored for structured
queries [14, 32], and even for Web table search [46], which is highly related to entity
augmentation. We will define the notion of result diversity for our specific problem,
as well as our means to achieve it, in the following sections.

In a nutshell, we can derive the following two goals: We aim at providing a
diversified top-k list of alternative results, which are composed of consistent and
minimal individual results.

2.3 Top-k Consistent Entity Augmentation

In this section we will describe our novel method of Top-k Consistent Entity Aug-
mentation. Initially, we will formalize augmentation queries and the optimization

Exploratory Ad-Hoc Analytics for Big Data 377

objectives of our method in Sect. 2.3 and introduce top-k consistent set covering as
an abstract framework for solving our problem in Sect. 2.3.

Entity Augmentation QueriesWe will now formalize our notion of Top-k Consis-
tent Entity Augmentation, and introduce the optimization objectives that we aim at.
First, consider a general entity augmentation query definition.

Definition 1 (Entity Augmentation Query) Let E(a1, . . .a n) denote a set of entities
with attributes a1, . . . , an , and a+ denote the augmentation attribute requested by the
user. Then, an augmentation query is of the form:

QEA(a+, E(a1, . . . , an)) = E(a1, . . . , an, a+)

In other words, the result of such a query is exactly the set of input entities with the
augmented attribute added. To create this new set of entities, the EAS has to retrieve
values for attribute a+ for each entity e ∈ E , which we will denote ve. These values
will be retrieved from a corpus of data sources D managed by the EAS, from which
it selects a relevant subset D for each query QEA.

Sources d ∈ D can provide a+ values for some subset of E , denoted cov(d),
i.e., they cover E only partially in the general case. Individual values provided by
a source d for an entity e are denoted d[e] with e ∈ cov(d). Given a heterogeneous
corpus of overlapping data sources, an augmentation system will potentially retrieve
multiple values for an entity e, the set of which we will denote by Ve = ⋃

di∈D di [e].
Finally, the EAS assigns each data source a relevance score rel : D → [0, 1] with
respect to the query. To determine this relevance score, various measures can be
combined. Examples include the similarity between the queried attribute name and
the respective attribute’s name in the data source, or the quality of the match between
the queried instances and those found in the data source. In addition, global measures
for the quality, such as the PageRank of the source page, can be integrated.

As we described in Sect. 2.1, most systems from literature assume that they can
reconcile the set of values Ve into a single correct augmentation value ve for each
entity. An example for such a fusion method would be majority voting, or clus-
tering values and then picking a representative from the highest ranked cluster as
in [37, 56].

As motivated in Sect. 2.2, our notion of an entity augmentation query differs in
several aspects: First, instead of individual values, it picks subsets of sources that
cover E , and second, it returns an ordered list of alternative solutions. In other words,
its basic result is a list of top-k alternative selections of sources.

Definition 2 (Top-k Source Selections) Given a set D of relevant data sources, and
a number k of augmentations to create, a top-k Source Selection is defined as:

QEA(a+, E, k) = [c1, . . . , ck | ci ⊂ D ∧ cov(ci) = E] (1)

We call one such set ci a cover or an augmentation, and the list of these augmentations
the query result.

378 J. Eberius et al.

Fig. 4 MaxRelevance

Fig. 5 MinSources

Definition 3 (Cover/Augmentation)Acover is an ordered subset of D that covers E ,
i.e., c = [di , . . . , dx]with⋃

d∈c cov(d) = E . If multiple data sources provide values
for a distinct e, i.e., if ∃e(e ∈ cov(di) ∩ cov(d j)), the augmented value for e is decided
by the order of the sources in c, i.e., ve = di [e] with i = min({i | e ∈ di ∧ di ∈ c}).
As discussed in Sect. 2.2, the aim is to enable the user to choose the most promising
augmentation from the ranked list of alternatives. This leads to the question of how
to construct these subsets ci ⊂ D, in order to create a valuable list of alternatives for
the user.Wewill now introduce the individual dimensions of this problem, relevance,
minimality, consistency and diversity, discussing exemplary baseline strategies that
optimize for one of each dimension.

Exploratory Ad-Hoc Analytics for Big Data 379

Fig. 6 MaxConsistency

Relevance One naïve baseline strategy, which we call MaxRelevance, is depicted
in Fig. 4. Starting from the highest ranked data source, it picks all the values it
provides for entities that do not have a value yet, then continues to the next most
relevant source, according to the relevance function introduced above. While this
strategy obviously maximizes the average relevance of the created augmentation, a
large number of distinct sources might be picked. This makes it harder for the user
to understand the query result and assess its quality, and also has a high chance of
producing inconsistencies between sources.

Minimality A naïve approach to solve the latter problem would be to prioritize data
sources with large coverage of the queried entities. This strategy, calledMinSources,
is illustrated in Fig. 5. As is illustrated in this particular example, while solutions
created this way use a minimal number of distinct sources, the other objectives, such
as relevance, can be arbitrarily bad.

ConsistencyNext, consider the strategyMaxConsistency, inwhich sources are chosen
based on ameasure of source similarity, i.e., a function sim : D × D → [0, 1], which
is depicted usingdashed arrows inFig. 6. This function captures our notion of attribute
variant consistency as discussed in Sect. 2.1. Utilizing such a function to guide source
selection will increase the overall consistency of the created augmentations, but
will create augmentations that are not necessarily minimal nor highly relevant. It
is calculated from measures such as the similarity between the two data source’s
attribute names, their value sets, and by comparing the associated metadata such as
dataset titles and context.

Diversity In addition, we will have to devise a method that is able to create multiple
meaningful alternative solutions. A naïve solution would be to create one cover c
from sources D, and then iteratively set D′ = D \ c and create the next cover from
D′. This approach, called NoReuse, is illustrated in Fig. 7. It has two problems:

380 J. Eberius et al.

Fig. 7 NoReuse

Firstly, each data source can be used in only one alternative, even though several
combinations of good sources might be possible. Secondly, just prohibiting reuse
of specific datasets does not necessarily lead to diversified solutions, as there may
be data sources so that ∃di ,d j |di 	= d j ∧ sim(di , d j) ≈ 1.0. This occurs, for example,
due to frequent copying-effects on theWeb [13, 38]. Since we aim at minimizing the
pairwise similarity of covers in the query result, we introduce a similarity function
sim : D × D → [0, 1] that compares covers instead of data sources. This lifts the
similarity function to the domain of covers simA : C × C → [0, 1], whereas the
aggregation function A can be an average or max.

We consider these four dimensions to be the decisive factors for a useful top-k
entity augmentation result.Whatwe therefore need, is a strategy that creates complete
covers, while jointly optimizing all mentioned objectives.

Definition 4 (Top-k Consistent Entity Augmentation) A top-k Consistent Entity
Augmentation query produces a top-k Source Selection (Definition 2) that is opti-
mizedwith respect to the relevance,minimality, consistency, and diversity objectives.

In the next section, we will introduce our algorithmic approach to processing top-k
Consistent Entity Augmentation queries.

Ranked Consistent Set Covering We propose a new approach for constructing
entity set augmentations by modeling it as an extended form of the Weighted Set
Cover Problem, one of Karp’s original 21 NP complete problems [34].

Definition 5 (Weighted Set Cover) Given a universe of elements U and a family of
subsets of this universe S, each associated with a weightwi , the Weighted Set Cover
problem is to find a subset s ⊂ S with

⋃
s = U , such that

∑
i∈s wi is minimized.

Intuitively speaking, the aim is to cover all elements in U using sets from S with
minimal cost. In our problem domain, the algorithm input consists of a set of entities

Exploratory Ad-Hoc Analytics for Big Data 381

E that are to be augmented, corresponding to U in the original problem, and a set
of data sources D = {d1, . . . dn}, as retrieved and matched by the underlying entity
augmentation system, corresponding to S. The relevance score assigned to each
datasource by rel(d) is used in place of the weights w.

So far, we could trivially map our problem to the well known Set Cover prob-
lem. Specifically, the Relevance andMinimality objectives defined in section“Entity
Augmentation Queries” correspond closely to the objective

∑
i∈s wi in the set cover

problem. Still, there are some crucial differences: In contrast to the original problem,
where only a singleminimal cover is required, the output we aim for is a ranked list of
covers, denotedC = [c1, . . . , cn]. Furthermore, as illustrated in section“Entity Aug-
mentation Queries”, the entity augmentation use case does not only require small
covers with high individual relevance, but consistent covers, as defined in the consis-
tency objective. And lastly, we also introduced the diversity objective, i.e., the covers
should not consist of the same or similar datasets throughout the top-k list, but be
complementary alternatives.

We will now incrementally develop our proposed algorithms for top-k consistent
set covering. We start from the well known greedy algorithm for the Weighted Set
Cover problem, which, given a universe U , a set of sets S with weights w, and a set
of yet uncovered elements F , iteratively picks the set:

argmin
Si∈S

wi

|Si ∩ F | (Greedy Set Cover Algorithm Step)

The algorithm chooses sets Si until F = ∅, at which point a complete cover has been
formed. Although the greedy algorithm does not create optimal covers, it is still the
most frequently employed algorithm for the set covering problem. In fact, it has been
shown that the algorithm, achieving an approximation ratio of H(s ′) = ∑n

k=1
1
k is

essentially the best possible polynomial-time approximation algorithm for the set
cover problem.

Coverage and Relevance.We therefore also initially base our algorithm on the greedy
set covering algorithm. With an initially empty cover c and a free entity set F = E ,
we can use the original greedy Set Cover algorithm to produce an ordered subset of
D, by picking in each iteration the dataset d that maximizes:

argmax
di∈D

rel(di) · |cov(di) ∩ F | (2)

until F = ∅. Note that we maximize scores instead of minimizing weights as this is
more intuitive for the problem domain.

An augmentation constructed in this way would roughly correspond to a middle
ground strategy between the MaxRelevance and MinSources strategies discussed in
section“Entity Augmentation Queries”. This implies, however, that it can potentially
create augmentations from very heterogeneous data sources.

Cover Consistency. To counteract this effect, we explicitly model consistency
between the datasets that make up a cover. We utilize the similarity function

382 J. Eberius et al.

between datasets sim : D × D → [0, 1], as defined in section“Entity Augmentation
Queries”, which models the consistency between data sources. Given an initially
empty cover c and an aggregation functionA such as average ormax, we can greed-
ily generate covers using consistent datasets by picking in each iteration the dataset
d that maximizes:

argmax
d∈D rel(d) · |cov(d) ∩ F | · simA(d, c) (3)

This means we encourage picks of data sources that are similar to data sources
that were already picked for the current cover. We assume as a special case that
simA(di ,∅) = 1, which implies that the first data source chosen will be the same
as in regular set covering. Subsequent choices on the other hand will be influenced
by already selected sources. This also implies that datasets with a low relevance or
coverage, that are not picked initially, may still be chosen in a later iteration, if they
fit well with those chosen so far. Since we require |cov(d) ∩ F | to be greater than
zero, the algorithm will still make progress with every step, as only datasets that
provide at least one new value can be selected.

Using objective function (3), the algorithm picks datasets to create covers that
are not only highly relevant to the query, but also fit well together according to
sim : D × D.

However, using only this objective function, there is still no intuitive way of cre-
ating useful top-k augmentations. The naïve approach re-running the same algorithm
with D \ c as the set of candidate data sources would not lead to useful alternative
solutions, as discussed in Sect. 2.3.

Top-k Results and Diversity. Let C denote the set of previously created covers, with
|C | ≥ 1. This set could be initialized with a single cover created, for example, using
the greedy algorithm and objective function (3). Our core idea is to perform con-
secutive runs of the greedy algorithm using the same input datasets, with each run
placing greater emphasis on datasets that are dissimilar to datasets picked in pre-
vious iterations, i.e., dissimilar to datasets in

⋃
C . Implementing this idea naïvely

however, for example by dividing function (3) by
∑

di∈⋃
C
sim(d, di) does not yield

the expected results. While the second iteration might then choose datasets from a
different part of the similarity space than the first iteration, the term becomes increas-
ingly meaningless with more iterations as

⋃
C grows. This is because newly picked

datasets are compared to a larger and larger subset of the candidate set D, leading to
an increasingly uniform value for

∑
di∈⋃

C
sim(d, di).

Instead, we introduce a more complex dissimilarity metric based on individual
entities in E and the datasets that were used to cover them in previous iterations.
We define a function coveredBy(e,C) which yields the datasets that were used to
augment the entity e in covers C created in previous iterations.

coveredBy(e,C) = {d | ∃c ∈ C : d ∈ c ∧ e ∈ cov(d)} (4)

We can then define our final scoring function as

Exploratory Ad-Hoc Analytics for Big Data 383

Algorithm 1 Top-k consistent set covering: Greedy
function Greedy- TopK- Covers(k, E, D)

C ← ∅

U ←
⎛

⎜
⎝

0 . . . 0
.
.
.
. . .

.

.

.

0 . . . 0

⎞

⎟
⎠

|E |×|D|

� Usage matrix

while |C | < k do
c ← Cover(E, D,U)

for all (e → d) ∈ c do � Update Usage Matrix
U [e, d] ← U [e, d] + 1

if c /∈ C then � Remove duplicates
C ← c

return C

function Cover(E, D,U)
c ← ∅
F ← E � Free set, uncovered entities
while |F | > 0 do

d ← argmaxd∈D rel(d)·|cov(d)∩F |·simA(d,c)
redundancy(d,D,F,U)

for all e ∈ F ∩ cov(d) do
F ← F \ e � Update free set
c ← c ∪ (e → d) � Update cover

return c

function redundancy(d, D, F,U)
r, norm = 0, 0
for all e ∈ F ∩ cov(d) do � Coverable by d

u ← U [e] � Sources used to cover e
r ← r + ∑|u|

i=0 u[i] ∗ sim(d, D[i])
norm ← norm + ∑

u

return r
norm

argmax
d∈D

rel(d) · |cov(d) ∩ F | · simA(d, c)
redundancy(d, F,C)

(5)

where
redundancy(d, F,C) =

∑

e∈F∩cov(d)
simA(d, coveredBy(e,C)) (6)

In other words, we penalize picks that would cover entities with data sources that are
similar to datasets that were already used to cover these entities in previous iterations.
By penalizing similarity to previous covers, we avoid using the same similar datasets
repeatedly for all covers in the top-k list, but we also do not strictly disallow the
re-use of data sources in new combinations. Objective function (5) forms the core of
our proposed entity augmentation algorithms, which we will introduce in the next
sections.

384 J. Eberius et al.

Basic Greedy Algorithm and Extensions With the scoring function in place, we
can construct a greedy consistent set covering, shown in Algorithm 1, that produces
consistent individual augmentations, as well as diversified solutions when run with
k > 1. In Algorithm 1, the function Greedy-TopK-Covers produces k covers by call-
ing the function Cover k times, while keeping an |E | × |D| matrix called U as state
between the calls.While theCover function performs the basic greedy set cover algo-
rithmwith the objective function defined above, the main function updates thematrix
U after each iteration by increasing the entry for each entity/dataset combination that
is part of the produced cover. The function coveredBy used in the redundancy term
of objective function (5) is realized in the algorithm by summing up the matrix row
values U [e], which record the datasets used to cover e in previous covers. Note that
the main function also discards duplicate solutions, which may occur if the influence
of the redundancy function is not strong enough to steer the search away from an
already existing solution. Still, the matrix U is updated even if a solution is redis-
covered, so that further choices of the same data sources become more and more
penalized, guiding the search into a different part of the solution space.

The greedy approach, while being easy to implement and fast to execute, will
not necessarily construct the best possible list of solutions, as our evaluation in [22]
shows. This is mainly due to exploring only a small part of the search space, i.e.,
considering only k different covers. Therefore, we developed two further algorithms
as extensions of the basic framework: the first one is based on the observation that the
first k solutions produced by Algorithm 1 may not necessarily be the best solutions.
After the first solution has been produced the search is mainly guided by using
different datasets for each solution, and thus new combinations of previously used
data sets are often not considered in the basic greedy algorithm.One simple extension
is called Greedy*-algorithm, which uses the basic greedy algorithm to create more
covers than requested, and then introduces a second phase to the query processing
called Select, in which the k best solutions are selected from a pool of s × k possible
solutions, with s being the scale factor. In comparison to the Greedy algorithm, the
Greedy* approach should find better solutions as it searches a larger portion of the
search space, at the cost of a runtime that increases with the scale factor s, plus some
overhead for the selection phase. However, the way it explores the solution space
is relatively naïve. For this reason, we also developed a genetic approach which
naturally fits to our problem as it intrinsically generates a pool of solutions from
which k can be picked, and both consistency and diversity of the results can be
modeled intuitively. Specifically, consistency can be modeled as part of the fitness
function, and diversity can be introduced through a suitable population replacement
strategy.

A detailed evaluation and comparison of all three algorithms is provided by [22].

Exploratory Ad-Hoc Analytics for Big Data 385

2.4 Related Work

Entity Augmention An early publication on Web table-based entity augmentation is
[8], which is concerned with automating the search for relevant Web tables. The
paper does not aim at fully automated table extension, but proposes a set of operators
that are to be used in a semi-automatic process, enabling the user to search for
tables, extract their context, but also to extend a found table with information from
a related table. This last operator, called extend, corresponds to our notion of entity
augmentation. The paper proposes an algorithm called MultiJoin, that attempts to
find matching Web tables for each queried entity independently, and then clusters
the tables found to return the cluster with the largest coverage. However, it does not
try to construct consistent solutions, but returns the set of possible values for each
entity.

A strongly related work is the InfoGather system [56], and its extension Info-
Gather+ [57]. The first system introduces Web table-based entity augmentation, as
well as related operations such as attribute name-based table queries. InfoGather
improved the state of the art especially by identifying more candidate tables than a
naïvematching approach, while eliminatingmany spuriousmatches at the same time.
They also introduce methods for efficiently computing the similarity graph between
all indexed tables offline. InfoGather+ improves the system by tackling similar con-
sistency issues as our work: it assigns labels for time and units of measurements
to tables, and propagates these labels along the similarity graph described above to
other tables where such labels can not be found directly. While InfoGather+ tackles
the problem of producingmore consistent results from various possibleWeb sources,
it does not produce top-k results, or minimize the number of sources used.

The basic problem that there will be more than one correct answer for many
augmentation queries, e.g., multiple revenue values for a single company because
of different years of validity, is also explored in [50]. Specifically, the work targets
quantity queries, i.e., queries for a numeric attribute of a certain entity. The earlier
InfoGather+ already allows the user to specify a unit of measurement and a year-
of-validity, and will only try to retrieve a single attribute value with these specific
constraints. The QEWT system presented in [50], on the other hand, solves this
problem bymodeling the query answer as a probability distribution over the retrieved
values, and then returning a ranked list of intervals as the final query answer. This
work is similar in spirit to ours, in that it does not try to simplify complex real-world
attributes into single values, but deals with the uncertainty of data explicitly.

In [37], a table augmentation system calledMannheim SearchJoin Engine is pro-
posed that, in addition to entity augmentation given a specific attribute, also supports
unconstrained queries, i.e., queries in which, given only a set of entities, all possible
augmentation attributes are to be retrieved. Their method of dealing with multiple,
possibly conflicting sources, by merging values using clustering andmajority voting,
is similar to [56].

In [45] a comprehensive system for so-called transformation queries, that largely
correspond to entity augmentation queries, is envisioned. The paper’s main con-

386 J. Eberius et al.

tribution is that it proposes a system, named DataXFormer, that includes multiple
transformation subsystems, based on Web tables, wrapped Web forms, as well as
crowdsourcing, although it does not give specific methods of combining the subsys-
tems. Furthermore, it also relies on returning a single value for each queried attribute.

Set Covering The set covering problem as one of Karp’s original 21 NP complete
problems [34] implies the need for heuristic solutions and led to many optimiza-
tion techniques. Our methods for generating top-k covers are inspired by multi-start
optimization methods [43], such as GRASP [26] and Meta-RaPS [15], which have
been applied to the set cover problem among others in [7, 35]. On a high level, these
methods combine multiple iterations of a randomized construction phase and a local
improvement phase. In the first phase, a solution is created using some heuristic,
e.g., the Greedy approach, but applying some form of randomization. The random-
ization allows the algorithm to create slightly different results in multiple runs. This
is achieved for example by randomly making non-optimal decisions in the individual
steps of the respective algorithm.

A second inspiration for our top-k approach is tabu search [27], in which an initial
solution is the starting point for multiple iterations of a neighborhood search aimed
at improving the solution. The distinguishing feature is the tabu list, which stores
already visited parts of the solution space. It is used to prohibit the algorithm from
returning to an already visited part of the solution space, unless a so-called aspiration
criterion is met, or a certain amount of iterations has passed. In this way, the search
is prevented from getting stuck in, or repeatedly revisiting, the same local optima.
Our approach tracks which entities have already been covered by which datasets in
previous solutions by using a usage matrix (see Algorithm 1 in Sect. 2.3). Similarly
to tabu lists, this matrix is then used to discourage the algorithm from making those
choices again, preventing future iterations from creating similar covers. This was
partly inspired by the concept of tabu lists, except that our approach does not prohibit
certain choices, but only adjusts their weights.

Fig. 8 Exemplary Open
World SQL query, ad-hoc
integrated attributes gdp and
creditRating highlighted

Exploratory Ad-Hoc Analytics for Big Data 387

3 DrillBeyond – Processing Open World SQL

So far, we only studied top-k entity augmentation queries (see Sect. 2) in an isolated
context, i.e. for a single table and simple attribute queries QEA(E, a+, k). However, it
is natural to assume that ad-hoc data integration will be most useful in analytical Big
Data scenarios, in which the user works with complex databases, and the augmen-
tation query is only one step in a chain of analytical operations. We will exemplify
this on a data analytics scenario illustrated in Fig. 8. There, we see a TPC-H query
with two highlighted augmentation attributes “GDP” and “creditRating” that are not
defined in the TPC-H schema, i.e. the query is not immediately processable in a
traditional relational system with a closed schema. A possible way to approach the
above query would be to export the “nation” relation, and feed it into a stand-alone
augmentation system, such as the REA system introduced in the previous chapter.
However, part of our solution to these challenges is to introduce the top-k entity
augmentation paradigm, in which the system produces several alternative solutions
from which the user has to choose from. This process would therefore result in a
top-k list of possible augmentations for the exported table. Since a standard DBMS
can not process the query based on amulti-valued augmentation, the user would have
to choose one of the augmentations while in the independent context of the augmen-
tation system, and then re-import the selected augmentation into the DBMS. Again,
iterations of this process may be necessary if the initial result is not satisfactory.

In the next section, we will discuss the challenges that arise when entity augmen-
tation is utilized in analytical scenarios involving traditional database management
systems. From the identified challenges, we will derive the need for closer inte-
gration of top-k EA systems and RDBMS, and derive requirements for a hybrid
system in Sect. 3.2. In Sect. 3.3, we will introduce the system architecture of our
DrillBeyond system, and describe its core, the DrillBeyond plan operator. We will
also discuss peculiarities of hybrid augmentation/relational query processing, and
introduce Drillbeyond’s ways of dealing with them. Finally, we will survey related
work in Sect. 3.5.

Parts of the material presented in this chapter have already been published
in [20, 21].

3.1 Motivation and Challenges

We already introduced how top-k entity augmentation can be applied in analytics
scenarios to fulfill ad-hoc information needs. However, we also argued that in com-
plex analytical scenarios, using a standalone entity augmentation system to answer
ad-hoc information needs has several deficiencies that should be discussed in the
following

Context-Switching First, there is a cost associated with context-switching, both with
respect to user effort, but also with respect to data locality. The user would be

388 J. Eberius et al.

required to move the data that is to be augmented into the specialized data search and
integration system, such as REA presented in Sect. 2, inspect and verify the solution
in this context, and then move the data back into the actual analytics system. On
the one hand, this introduces a considerable overhead into the analysts workflow,
requiring additional effort that may even discourage from performing certain ad-hoc
exploratory queries at all. On the other hand, it also introduces physical overhead
of moving the data between systems. This overhead may be negligible if a small
dimension table, e.g. the “Nation” table in the example, is to be augmented. For
larger tables, however, data transfer times can be significant, and further impede an
interactive analytics workflow.

Incompatible Query Model A second challenge when introducing top-k entity aug-
mentation into a traditional analytics workflow is the mismatch in query models.
Augmentation systems such as REA produce top-k results, while other parts of the
environment, such as DBMS, work with exact, single results. In this respect, top-k
augmentation systems are more similar to information retrieval systems that handle
the uncertainty of their results by producing a list of possible results. However, a
traditional DBMS is not natively prepared to handle multi-variant data. This gap
needs to be bridged in order to enable effective combination of the two system types.

Loss of Context Information Third, by using a separate system for augmentation
queries, the broader context associated with the analytical task is not taken into
account. A generic entity augmentation system uses only the set of entities and
the augmentation attribute as input to guide its data search and integration process.
However, the query context may contain valuable hints that can improve the aug-
mentation system performance or precision, if the systems were able to exploit them.
For example, in an SQL query, other tables that are joined with the augmented table
may provide useful context for the data source retrieval and matching process in the
augmentation system. Similarly, predicates used in the original query add semantics
that can be used to improve the precision of downstream augmentation system. In
an optimal combination of DBMS and entity augmentation system, such context
information incurring in one system would be utilized in the other.

Unused Optimization Potential Finally, by using separate systems, query optimiza-
tion potential is wasted. For example, DBMS use cardinalities and estimated selec-
tivities to choose an optimal join order for a given query. If a manual entity augmen-
tation has to be performed before the query can be executed, then the cardinality of
the augmented relation, or the selectivity of predicates on the augmented attribute
can not be exploited in this optimization process. Depending on the exact circum-
stances, it can be beneficial to intermingle the normal DBMS query processing and
the augmentation query processing to achieve optimal performance.

Exploratory Ad-Hoc Analytics for Big Data 389

3.2 Requirements

From the challenges we identified in Sect. 3.1, it is easily recognizable that a closer
integration of the two system types DBMS and EAS (Entity Augmentation System)
is necessary. In this section, we will introduce requirements for a hybrid system that
is able to close this gap.

DBMS-integrated Entity Augmentation In the previous section, we discussed how
the lack of integration between DBMS and EAS systems leads to an increased user
effort for situational one-of analysis queries. This effort could be reduced if the
DBMS would directly support looking up and integrating Web data sources as part
of its query processing, and allow the specification of such queries declaratively in
SQL. However, there are several differences to bridge. First, the two system types
differ in the type of data they manage: DBMS deal with structured and cohesive
databases, while EAS deal primarily with large heterogeneous corpora of Web data
sources. Further, DBMS work with fully specified queries in a structured language,
while EAS, lacking a defined schema, accept keyword queries. We therefore require
a design that blurs the line between these classes of systems in all three aspects
mentioned above: type of data managed, query language used, and nature of the
query result. The resulting hybrid system should be able process mixed SQL/EA
queries, which we will call Open World SQL queries. In these queries, the user may
reference arbitrary additional attributes not defined in the schema. We will use Fig. 8
as our running example for such a query. The system will associate values of these
additional attributes to instances at query processing time, avoiding an explicit data
retrieval and integration step. This is achieved by executing top-k entity augmentation
queries at runtime,which are integrated as a new type of subquery of regular relational
queries. Since a top-k augmentation query will return multiple augmentations as
described in Sect. 2.3, anOpenWorld SQLquerywill, instead of returning a definitive
query answer, return multiple alternative query results as well. Figure9 gives an
intuitive overview of our goal. It illustrates how an Open World query is processed
by integrating entity augmentation into query processing, producing k alternative
SQL query results.

In conclusion, the system should produce structured results of exactly the form
specified by the user query, just as a regular DBMS would, but also presents several
possible versions of the result, similarly to an information retrieval system. How-
ever, producing multiple alternative SQL results for a single query has performance
implications, which we will discuss next.

Efficient Multi-result Query Processing A naïve approach to bridging the different
querymodels of DBMS and top-k EA systems would be to process the EA query, and
then process the SQL querymultiple times. For example, if k possible augmentations
are requested, the runtime of the SQL query is increased by this factor k. This is not
acceptable, since in many Open World SQL queries, the majority of the processing
time will still be spent processing local data, which does not change between runs
of the query. For example, consider again the example Open World SQL depicted
in Fig. 8. Here, a large part of the work consists of local joins between the relations

390 J. Eberius et al.

Fig. 9 RDBMS-integrated top-k augmentations using web tables

Customer and Order, and aggregation of the local attribute o_totalprice.
When processing this query multiple times based on different augmentations, only
the set of nations that pass the predicate on gdp, as well as the order of result tuples
would change, but not the aggregates for the individual nations. Consequently, the
hybrid system should process Open World SQL queries in a way that minimizes
duplicate work between query variant executions.

OpenWorldQueryPlanningThe third requirement arises from the fact that properties
of data sources used in augmentation are not fully known at plan-time. For instance,
estimating the selectivity of a predicate over an augmentation attribute is not easy,
as the set of data sources that will be used is not known at planning-time. The same

Exploratory Ad-Hoc Analytics for Big Data 391

holds for determining the open attributes’ metadata, such as the data type, since we
do not require the user to specify it in the query. Therefore, the system should be
able to plan queries even if some attributes are only fully known at run-time.

With these requirements established, we will introduce the DrillBeyond system
and its entity augmentation operator in the following section.

3.3 The DrillBeyond System

To solve the challenges identified in Sect. 3.1 and enable entity augmentation queries
as part of relational query processing, we designed the DrillBeyond system. It is
an RDBMS/EAS hybrid, that embeds entity augmentation sub-queries into standard
RDBMS query processing. The next sections will detail the required changes to the
RDBMS architecture to realize this mixed query processing.

System Architecture Processing open world SQL queries requires a top-k entity
augmentation system, including a data sourcemanagement system, aswell asmodifi-
cations to three core RDBMS components: the analyzer, the planner and the executor.
Figure10 gives an overview of the modified and the novel components, and further
includes a high level description of the changes in control flow. The core augmenta-
tion functionality is introduced through the new DrillBeyond plan operator, which
will be discussed in detail in Sect. drillbeyond:sec:DrillBeyondspssystem. In the fol-
lowing, we will first give a general overview of all the novel or modified DBMS
components in DrillBeyond.

Data Source Management System A standard RDBMS is tailored to manage a rel-
atively small set of relations that form a coherent schema. An EAS, on the other
hand, manages a large corpus of heterogeneous individual Web data sources. We
aim at enabling one system to process both kinds of data. The DrillBeyond system
does not make assumptions regarding the nature of the data sources and system
that they are managed by. A generic system that exposes an interface for keyword-
based dataset search is sufficient. For example, when using our proposed EAS (see
Sect. 2), an industry-standard document index server such as Solr3 or ElasticSearch4

is sufficient. The necessary source selection, matching and integration operations are
performed in the integrated entity augmentation system, which we discuss next.

Entity Augmentation System This component implements the actual top-k entity aug-
mentation processing inside the DBMS. It interfaces with the data source manage-
ment system to retrieve Web data sources, and with the core RDBMS components to
provide augmentation services to the executor and the planner. DrillBeyond extends
the generic augmentation query definition (see Definition 1) using query context
hints H , which are extracted from the respective outer SQL query. These hints are
used to guide the search and the ranking of Web data sources. For example, if the

3http://lucene.apache.org/solr/.
4https://www.elastic.co/.

http://lucene.apache.org/solr/
https://www.elastic.co/

392 J. Eberius et al.

Fig. 10 System architecture and high level control flow

outer SQL query includes a numeric predicate on the augmentation attribute, this fact
can be used as a query hint by instructing the augmentation system to only retrieve
data sources that provide numeric values. We discuss the exact nature and usage of
these context hints in section“Pushing SQL Query Context”. The complete interface
used by the executor is therefore QEA(a+, E, k, H). Having introduced the novel
components necessary for entity augmentation in the DrillBeyond system, we will
now give an overview of the modifications to existing RDBMS core components.

Query Analyzer The first step in DrillBeyond query processing is triggered by the
query analyzer,whichmaps tokens in the SQLquery string to objects in the database’s
metadata catalog. Unrecognized tokens, such as gdp lead to an error in a typical
RDBMS. In the DrillBeyond system, we take a minimally invasive approach: we
introduce transient metadata for the duration of the query, so that the regular analysis
can continue. The query is then rewritten to include an additional join with a transient

Exploratory Ad-Hoc Analytics for Big Data 393

relation, effectively introducing a source for the missing attribute into the query
processing, and also paving the way for the DrillBeyond operator to be placed by
the regular join order planning mechanisms of the DBMS. The analyzer is also
responsible for determining the type of all expressions in the query. In the case
of augmentation attributes, which are not represented with a type in the database
catalog, we include a type inference mechanism. It first tries to infer the data type
syntactically, by considering filter and join predicates the attribute is used in, and
comparing it with the types of regular attributes and constants in these expressions.
If syntactic inference is not possible, DrillBeyond infers a type statistically. It uses
the augmentation system to determine the most common data type occurring for
attributes named a+ in the dataset corpus using a fast probe query. Having created
the necessary querymetadata, the analyzed statement canbepassedon to themodified
query planner.

Query Planner In DrillBeyond, the query planer has several new tasks to perform
compared to a regular RDBMS. First, it needs to place the DrillBeyond operator
in the query plan. This placement is crucial to the execution time of the query but
also influences the augmentation quality. Furthermore, while regular query plans
are created to be optimal for a single execution, multi-solution processing requires
plans that minimize the overhead of creating multiple result variants based on top-k
augmentations. This is impeded by the lack of plan-time knowledge about the data
sources, requiring plan adaption.

Executor The executor is modified to repeatedly execute the planned operator trees,
creating the top-k query result. In each iteration, it orders the DrillBeyond operators
to augment incoming tuples with values from a different augmentation. It further
tags the SQL results produced with a distinct augmentation id, by adding a column
carrying this id to each finished result. This allows external tools using the top-k SQL
result to distinguish between the tuples belonging to alternative results. The majority
of new functionality, however, is part of the DrillBeyond operator itself, which we
will detail in the next section.

TheDrillBeyondOperator In its basic form, theDrillBeyond plan operator, denoted
ω, is designed to resemble a join operator, which facilitates integration with the exist-
ing system architecture. Specifically, it acts like an outer join: it adds new attributes
to its input tuples based on join keys, but will not filter original tuples if no partner is
found. Instead, it adds null values if the augmentation system can not produce a value.
In this way, the part of the query operating on local data can still be processed. How-
ever, in contrast to a regular join, only one of the joined tables is known at plan-time,
while the other table, as well as the join keys, are decided at query processing time.
These run-time decisions are made by the entity augmentation system based on the
input tuples of the operator. Specifically, the operator extracts distinct combinations
of textual attributes from input tuples, as these are used to functionally determine the
values of the augmented attribute.

Algorithm 2 shows the specifics of the state kept in the operator and the implemen-
tations of its iterator interface and helper functions. DrillBeyond uses a traditional

394 J. Eberius et al.

Algorithm 2 DrillBeyond operator
function Init

state ← ‘collecting′
tuplestore ← ∅
augMap ← HashMap()
n ← 0 � Current Iteration, runs from 0 to k − 1

function Next

if state = ‘collecting′ then
Collect()
Augment()
state ← ‘projecting′

return Project()

function Collect

while true do � Retrieve all tuples
t ← Next(child Plan)
if t = NULL then

break
tuplestore ← t
augKey ← textAttrs(t)
if augKey /∈ augMap then

augMap[augKey] ← ∅

function Augment

augReq ← (∀k ∈ augMap | augMap[k] = ∅)
for all augKey, [augValues...] ∈ Send(augReq) do

augMap[augKey] ← [augValues...]

function Project

t ← Next(tuplestore)
if t = NULL then return NULL
augKey ← textAttrs(t)
t[a+] = augMap[augKey][n]
return t

function Rescan

state ← ‘collecting′
tuplestore ← ∅

function NextVariant

ReScan(tuplestore)
n ← n + 1

row-based iterating executor. The conventional interface functions Init(), Next() and
ReScan(), as well as the novel NextVariant() function, are called by the DBMS dur-
ing regular query processing. The other functions shown in Algorithm 2 are used
internally by the operator.

The Init() function, which is called by the RDBMS executor before processing the
query the first time, initializes operator state. This includes a tuple store for material-

Exploratory Ad-Hoc Analytics for Big Data 395

izing the lower operator’s output, a hash table mapping local textual attribute values
to augmented values called augMap, and two variables state and n, determining
the behavior of the operator when Next() is called.

TheNext() function is called by the executor and produces augmented tuples. This
is done in three phases:Collect(), Augment() and Project(). On the first call toNext(),
since no augmented values are available, the first two phases are triggered. In the
Collect() phase, the operator pulls and stores all tuples that the lower plan operator
can produce, making DrillBeyond a blocking operator. The reasons for blocking
are discussed in section“Augmentation Granularity”. In this phase, the operator also
stores the textual attributes originating from the augmented relation and its context in
a hash table, to obtain all distinct combinations of textual values in the input tuples.
In the Augment() phase, all entries in the augmentation map that do not yet have
values associated with them are passed to augmentation system as one augmentation
context. After successfully retrieving values for all collected tuples, the operator
is put into the projecting state, and produces the first output tuple. Output tuples
are produced in the Project() function by replaying the stored tuples and filling the
augmentation attribute by looking up values in the hash table.

The ReScan() function is called by the DBMS executor when subtrees have to
be re-executed, e.g., in dependent subqueries or below a nested loop join. Here, the
operator empties its tuplestore and changes state to collect new input, but keeps
its augmentation hash table, to prevent expensive re-augmentation for values that
have already been seen. Finally, NextVariant() is an interface extension not seen in
typical RDBMS operators, which is necessary for producing the multi-variant query
results as discussed in Sect. 3.2. When called, the operator’s tuplestore is prepared
for another iteration over the stored tuples usingReScan(), and the iteration counter n
is incremented. This makes sure that in a new execution of the query plan, operators
below theDrillBeyond operator are not called again. Instead theirmaterialized output
will be replayed, and augmented with the next augmentation variant in the Project()
function.

Fig. 11 Example augmentation problem

396 J. Eberius et al.

The functions Init() and Next() are part of the traditional iterator interface used in
RDBMS and are called by the executor in regular query processing. The NextVari-
ant() function is different however, and requires novel functionality in the executor.
Specifically, when the top operator of the plan returns null, the executor usually
assumes that all data has been sent and stops the processing. DrillBeyond however,
keeps a global iteration count n, running from 1 to k, to track the number of produced
alternative results. In case the plan has finished, n is increased,NextVariant() is called
on the DrillBeyond operator, and then the whole plan is restarted. In case there is
more than one augmentation attribute, and thus more than one DrillBeyond operator,
the system produces a crossproduct of alternative results. This is achieved by sys-
tematically calling NextVariant() only one operator in each iteration, to iteratively
produce all combinations of possible results for all augmented attributes.

Having introduced the basic operator functionality, and the way it is called by
the DBMS executor, we will discuss the operator characteristics in the following
subsections.

AugmentationGranularityAnaïve entity augmentation operator working tuple-at-
a-timewould be most compatible to the iterator-based query processing used in most
traditional RDBMS operators. However, augmenting each tuple on its own implies
looking up and matching Web data sources for each tuple individually. Consider the
simplified augmentation example shown in Fig. 11, where the table to be augmented
is on top, and the available Web data sources at the bottom. With the tuple-at-a-time
style, the augmentation system may choose ds1, ds2 and ds4 for the USA, Russia,
and UK tuples respectively. These sources match each individual tuple best, and the
individual tuples are what the augmentation system can process in this case.

Still, we can see that the augmentation system can not perform optimally with
regard to the query as a whole, as it is not provided with the overall query context.
While the chosen sources are the best fitting for each individual tuple, they donot form
a consistent joint result, as the units of currency do not match. If the augmentation
system is instead provided with the set the complete set of tuples as the input for one
augmentation query, the more consistent solution comprised of ds1 and ds3 can be
constructed, even though the individual entity matches are slightly worse. This is a
similar argument to thosewementioned in Sect. 2 about result consistency. Extending
single tuples individually would correspond to the By-Entity Fusion augmentation
strategy as introduced in section“Entity Augmentation Queries” leading to results
with similar deficiencies as discussed there. In [22], we showed that our approach
to entity augmentation leads to higher quality results, but requires all entities to be
queried in a group. Otherwise, the consistency of the source selection can not be
ensured. We conclude that for reasons of result quality, the DrillBeyond operator
needs to be a blocking operator, i.e. it consumes tuples from underlying operators
until they are exhausted, then hands them over to the augmentation system, and
produces the first result tuple only when it returns. Referring back to Algorithm 2,
this blocking behavior is realized in the state “collecting” in function Next().

Context-Dependent ResultsHaving established the DrillBeyond operator as block-
ing, we will now consider the question of where to place it in a query plan. Let us

Exploratory Ad-Hoc Analytics for Big Data 397

assume two queries. The first one performs the augmentation directly after the scan
of the TPC-H Nation table, while in the second query ω is executed after Nation
has been joined with table Region and was filtered for European countries only.
In the first case, the augmentation system will retrieve, match, rank, and combine
datasets for all countries in the local database. In the second case, the local join will
remove tuples about non-European nations, so the results of the entity augmentation
will be more likely to be based on data sources specifically about Europe. Further-
more, completing the join with the Region table does not only limit the scope of
the query, it also adds context to each tuple by adding Region’s attributes. So even
if the join would not act as a filter limiting the number of tuples, adding information
about the region name will improve the accuracy of the augmentation system. For
example, while augmenting a set of City tuples may be hard and error-prone because
of the ambiguity of common city names such as “Springfield”, augmenting after a
join with a State will be a more realistic task for the augmentation system. We have
identified the following property of the ω operator:

Definition 6 (Selection Dependency) The DrillBeyond operator is not associative
with respect to selection in the general case. When augmenting relation R with
attributea+ and selectingwith predicate p on R, thenωR,a+(σp(R)) 	= σp(ωR,a+(R)).

Note that the augmentation system uses only the textual attributes text Attr(R) for
matching withWeb data sources. Therefore, in the special case that the set of distinct
textual attribute values is invariant under predicate p, the augmentation results are
also invariant under selection with p. For example, if a selection σp(Nation) returns
at least one tuple for each Nation in its result set, then ωNation,a+(σp(Nation)) =
σp(ωNation,a+(Nation)). This however, is not the general case, and can not be relied
upon.

A similar dependency property holds for another form of query context, namely
for the set of attributes of the input tuples of an operator ω. As mentioned, the key
for searching matching Web datasets for R are its textual attributes text Attr(R).
For example, not projecting the attribute n_name of the TPC-H Nation relation,
possibly because it is not part of the desired query result, will make augmentation
impossible. No Web data source can be found if the natural key of the relation, the
nation’s name, is not part of ω’s input.

Definition 7 (Projection Dependency) TheDrillBeyond operator is associative with
respect to projections only if it includes all textual attributes of R. Formally, when
augmenting relation R with attribute a+, and projecting to a set of attributes A with
A ∩ text Attr(R) 	= text Attr(R), then ωR,a+(πA(R)) 	= πA(ωR,a+(R)).

Given that the result of ωR,a+ changes under projection and selection, we define the
following placement rule that defines bounds on the placement of the operator.

Definition 8 (Placement Bounds) The DrillBeyond operator augmenting a relation
R can only be placed with respect to the following conditions:

1. after all operators filtering R such as joins and selections
2. before any projection removing textual attributes of R

398 J. Eberius et al.

In other words, the DrillBeyond operator ω is always applied to the minimum num-
ber of distinct combinations of textual column values in the tuples of R, as these
determine the matching process and its result.

Pushing SQL Query Context As mentioned in Sect. 3.1, context from the outer
SQL query can be used as filter to improve the accuracy and runtime of the inner
entity augmentation query, when compared to isolated augmentation. These filters
work implicitly to improve the augmentation quality by narrowing the scope of the
augmentation operation, and do not require any changes to the augmentation system
or its API. However, we can further improve the augmentation by explicitly pushing
additional query knowledge to augmentation system. Specifically, we push two types
of information: type information and predicates on augmented attributes.

Type Information Though the user can specify a data type such as text or double for
open attributes using SQL syntax, we do not expect those annotations to be provided.
However, in many cases it is possible to infer the type of the open attributes from
the surrounding query by applying methods of type inference to SQL. As mentioned
in section“System Architecture”, we integrated a type inference mechanism that
determines an open attribute’s data type both from the query expressions it takes
part in, and from the Web data corpus used. We can pass type information to the
augmentation system, which in turn uses this type information to restrict the set of
candidate data sources to those matching the open attribute’s type. Consider again
the query shown in Fig. 8. From the constraint on the gdp attribute it can be inferred
that it must be of a numeric type. This allows the augmentation system both to reduce
its runtime and increase precision by pruning non-numeric candidate sources.

Predicates on augmented attributes In addition to the data type of open attributes,
we can also push-down the predicates on open attributes themselves. This allows a
similar, butmore sophisticated, candidate pruning.We assume that users expect some
filtering on the database instance level to happen when specifying a predicate, i.e.,
we assume that some domain-knowledge is encoded in the predicate. With the query
shown in Fig. 8, the user clearly intends to filter low GDP countries, and has given
a relatively large integer number as the specific condition. Though the user query is
given only with the very general keyword GDP, by also considering the predicate,
the augmentation system can improve its data source ranking. In the example, all
candidate datasets that give the GDP as a percentage or rank can be ranked lower,
because those datasets will not discriminate the entities with respect to the predicate.
In other words, given the predicate above, using a dataset that provides GDP rank
values will lead to all entities being filtered, which is clearly not the user-intent. To
improve the augmentation systems ranking, we can therefore check how well the
data source’s values fit to the predicate that will be applied, i.e., how well the data
source discriminates the entities with respect to the predicate. Additionally, we check
whether the predicate value and the average of the data source’s values are in the
same order or magnitude. Again, the intent is measuring whether the data source is
fit to evaluate the given predicate.

The improvements in precision and runtime of the EAS when considering predi-
cate and type information are shown in [21].

Exploratory Ad-Hoc Analytics for Big Data 399

Cost Model and Initial Placement Strategy The observations from the previous
three sections might suggest that the DrillBeyond operator should be placed as late
as possible in the query plan, to maximize the context knowledge available in the
intermediate result. However, in addition to quality considerations, there are also
performance considerations to be made. As mentioned, the operator is modeled
to resemble a join from the perspective of the DBMS. We can therefore reuse the
existing join optimizationmachinery to place theDrillBeyond operator. This however
depends on a model for the operator runtime and the operator’s output cardinality.

Output Cardinality In the most basic case, the operator produces exactly as many
tuples as its input relation, as it just adds a single attribute to each tuple. However, we
also must consider selectivity of possible predicates on augmented attributes, and the
value of k, i.e., the number of alternative augmentations that are to be processed. Since
at plan-time we do not assume any knowledge about whichWeb data sources will be
used to augment an attribute, correctly estimating selectivity is almost impossible.
A well-known solution to processing queries with unknown selectivities is run-time
plan adaptation [33]. We therefore initially use the DBMS’ default selectivities for
different types of predicates, and employ run-time optimizations to compensatewhen
more information is available. The variable k on the other hand is known at plan-
time, and could be part of the cost model. However, with our execution strategy, the
operator does not produce k tuples for each input tuple, but just a different one in
each of k query executions. We therefore do not consider k at this point, but create
optimal plans for single execution, and then later optimize their re-execution.

Cost Model The operator’s runtime depends on three components: The first part is
incoming tuple processing, the second entity augmentation, and the third is projecting
tupleswith the augmented attribute (seeAlgorithm2). Sincewe designed the operator
as blocking, the first part consists of reading all tuples from lower plan nodes, storing
them, and computing all distinct combinations of all textual attributes, which are
needed by the entity augmentation system for matching. In the second phase, the
distinct combinations are then submitted to the augmentation system. The third phase
then consists of iterating all stored tuples, and projecting the new attribute based on
the combination of textual attributes found in each tuple.

We can estimate the cost of the operator using a similar model as for a hash join,
as phases one and three, hashing the child relation, and then probing it against the
augmented hash table correspond to the phases of a hash join. Additionally, there is
the cost of phase two, the actual augmentation, which depends not on the number
of tuples, but on the number of distinct entries in the augmentation hash table. The
processing cost per entry depends on the augmentation algorithms, and is therefore
not easy to model in the context of a generic DBMS cost model. However, we can
assume that the cost per entry is in a different order of magnitude than the per-tuple
cost of the relatively primitive database operations such as comparison or hashing.
For our cost model we therefore assume an additional large constant factor C which
is learned from previous executions of our augmentation system (see Sect. 2).

400 J. Eberius et al.

Fig. 12 Plan invariants

3.4 Processing Multi-result Queries

So far, we have considered the DrillBeyond operator in a single query result setting.
However, as discussed in Sect. 3.2, we aim at translating the top-k result returned by
the augmentation system into a top-k SQL result. The naïvemethod, given our opera-
tor, is to simply re-execute the query plan k times, and after each execution trigger the
projection of a new augmentation result from the operator via the NextVariant() API
depicted in Algorithm 2. This obviously leads to duplicated work, as only the output
of the DrillBeyond operator changes between executions, while the other parts of
the query plan operate the same way. Consider the query plan in Fig. 12. Here, only
the values of the gdp attribute would change between query runs, while the other
operations, notably themore expensive joins with the Customer and Orders rela-
tions, would not change. This means that simple re-execution would increase time
to compute the query k-fold, with most of the effort being inefficient duplicate work.
Our first approach to this problem is to identify and then maximize invariant parts of
the multiple executions, preventing their re-execution by materializing intermediate
results. As a first observation, note that all tuple flows below the DrillBeyond opera-
tor can actually never change between executions: in the example shown in Fig. 12,
these operators are highlighted. The cost of those operations can be minimized by
materializing the input to the DrillBeyond operator. This elementary optimization
is already included in the basic operator implementation shown in Algorithm 2, in
the form of the tuple store created by the operator. However, the changing augmen-
tation output may influence the result of other operators further up the query plan.
In the example, the aggregation of the gdp attribute will change its output in each
iteration based on the augmentation values provided by the DrillBeyond operator. In
addition, even the aggregation of the regular attribute totalprice is influenced
by the changing gdp values: Since the selectivity of the predicate on gdpmay vary

Exploratory Ad-Hoc Analytics for Big Data 401

using different augmentations, the set of Orders-tuples that has to be aggregated
may vary in different executions as well.

In [21]we introduced a series of optimization strategies for these problems includ-
ing invariant caching, augmentation operator splitting, selection pull-up, projec-
tion pull-up partial selection and run-time reoptimization. We also implemented the
described system in PostgreSQL and evaluated it on modified TPC-H queries [21].
The evaluation shows the effectiveness of various optimizations in minimizing the
runtime overhead of producing multiple SQL query results based on alternative aug-
mentations. Finally, we showed that pushing SQL query context into the EA system
can improve quality and performance of the EA processing compared to standalone
processing.

The tight integration of augmentation and relational query processing and its
various optimizations provided byDrillBeyond, enables the use of ad-hoc data search
and integration in new contexts, and greatly increase the practicality of the entity
augmentation methods.

3.5 Related Work

To the best of our knowledge, there is no previous work that allows the user to
augment a relational database with external data at query-time by simply adding
arbitrary new attributes to an SQL query. However, there are considerable amounts
of works that can be related to the various individual aspects of DrillBeyond.

Self-service BI andMashup ToolsAwork closely related in spirit to ours is [2]. In this
paper, the authors discuss their vision for self-service BI, in which an existing data
cube can be semi-automatically extendedwith so-called situational data in the course
of an interactive OLAP session. However, in contrast to thework at hand, it is a vision
paper, and does therefore not present a concrete system design. In [40], a vision for
ad-hoc BI based on data extracted from the textual Web content is presented. They
envision using cloud-computing and parallelized information extraction methods to
answer OLAP queries over the general Web, e.g., by enabling ad-hoc extracting
of product data, reviews and customer sentiments from the general Web. Further,
there is a considerable amount of work aimed at bridging traditional OLAP and
semantic Web technologies to enable novel, agile forms of business intelligence. [1]
gives a comprehensive survey of these efforts to utilize the semantic Web to acquire
and integrate relevant external data with internal warehouse data. For example, [25]
propose a RDFS vocabulary for expressing multidimensional data cubes, so-called
Web Cubes over semantic Web data, and show how traditional OLAP operations can
be performed over combined internal and Web cubes.

One of the central properties of our proposed Open World Queries is their declar-
ative nature: users specify their information need simply by an attribute name, i.e.,
a keyword query. While this approach is sufficient in many use cases, more com-
plex Web data integration problems may require more sophisticated, programmatic

402 J. Eberius et al.

specifications. One class of approaches to this problem, calledMashup tools, aims at
allowing users with only basic programming knowledge to easily compose various
data sources to higher level services [16]. Many of these tools have been proposed,
which differ in their level of abstraction, community features, user interfaces, or
support for discovery of data sources and mashups [28]. Similarly to our work, most
research on mashups uses public Web data sources because of their general avail-
ability. However, mashups have also been recognized as a lightweight form of data
integration for the enterprise context, which is exemplified by systems such as IBM’s
Damia [51]. In [54], a framework for mashup construction with strong focus on data
integration is proposed. It adds more complex data transformation operators, such as
a fuse operator for automatic object matching, and an aggregation operator to reduce
multiple matches that result from a fuse operation to a concise representation. Fur-
thermore, it introduced entity search strategies that minimize the number of queries
that need to be issued to data sources such as entity search engines or Deep Web
databases. These strategies where explored in more detail in [23], where different
query generators are combined with query ranking and selection strategies to form
an adaptive querying process, which also utilizes initial query results to optimize
the choice of further queries. In [24], this feature set is further extended to include
efficient, pipelined executionof suchqueryprocesses, enabling stream-basedprocess-
ing and quick presentation of initial integration results. By combining approaches
such as the ones outlined here, mashup tools can become a powerful alternative to
traditional data integration processes. While they are more expressive than Open
World Queries, they are only applicable in situations where the sources to be inte-
grated are known, and a user with programming knowledge is available to define the
mashup and necessary source adapters.

Hybrid DB/IR Systems A closer integration between the worlds of database and IR
research has long been a goal of both communities [4, 11, 55]. There are several
classes of DB/IR integration, and multiple system architectures for achieving them.
First, there are works that aim at including IR capabilities, such as full text search
into database engines, e.g., to support keyword queries on textual attributes of a
database. Such systems have already been available in commercial RDBMS for some
time [17, 31, 41].

Of course, the other direction of system integration is also possible: extending
information retrieval systems with more database-like features. The authors of [49]
proposed a method for processing semi-structured keyword queries over large, Web-
extracted knowledge bases is presented. One novel aspect is the query language,
which only adds a minimal amount of structure compared to pure keyword queries,
but still allows users to formulate precise information needs without having to under-
stand the large, heterogeneous schema of the underlying knowledge base. The other
aspect is the disambiguation of the keywords in the query with respect to the concepts
and relations in the knowledge base. It may be worthwhile to apply their method for
graph-based query disambiguation to DrillBeyond.

Similar work has been done in the area of XML databases, where a large class of
work is aimed at enabling ranked retrieval over collections of XML documents. A

Exploratory Ad-Hoc Analytics for Big Data 403

recent overview over this extensive field is given in [53]. The problems this research
faces are related to those faced byDrillBeyond: underspecified, but structured queries
have to be mapped to a large heterogeneous collection of datasets.

In [6], a hybrid DB/IR query type called context sensitive prefix search is intro-
duced. Given a set of documents forming a context, and a word prefix, this query type
aims at retrieving documents containing words with the given prefix, conditioned on
the words also occurring in the context document set. The authors show how, by
introducing further structure through special markup keywords, this abstract opera-
tor can be applied to implement many database and expressive information retrieval
operations, including joins and aggregation.

Other works aim at processing structured queries based on Web information
extraction, e.g., [9], or even at decomposing structured queries to keyword queries
that can be posed to an information retrieval system [39]. The idea in this case is to
enrich the structured query result with relevant documents.

In general, the large amount of related work in DB/IR hybrid technologies shows
the necessity of fusing the two paradigms formany applications. By integrating entity
augmentation directly into relational query processing, DrillBeyond also aims at sup-
porting scenarios that require a combination of structured and semi-structured data.

4 Summary and Future Work

In the era of Big Data, the number and variety of data sources is increasing every
day. However, not all of this new data is available in well-structured databases or
warehouses. Rather, data is collected at a rate that often precludes traditional integra-
tion with ETL processes and global schemata. Instead, heterogeneous collections of
individual datasets are becoming more prevalent, both inside enterprises in the form
of data lakes, and in public spaces such asWeb data sources. This newwealth of data,
though not integrated, has enormous potential for generating value in exploratory or
ad-hoc analysis processes,which are becomingmore commonwith increasingly agile
datamanagement practices. However, in today’s databasemanagement systems there
is a lack of support for ad-hoc data integration of such heterogeneous data sources.
Instead, integration of new sources into existing data management landscapes is a
laborious process that has to be performed ahead-of-time, i.e., before queries on the
combined data can be issued.

In this chapter, we introduced a combined database and information retrieval sys-
tem that enables users to query a database as well as a heterogeneous data repository
in a seamless and integrated way with standard SQL. Relevant sources are automat-
ically retrieved and integrated at query processing-time, without further input from
the user. The ambiguity resulting from the coarse query specification, as well as the
uncertainty introduced by relying on automatically integrated data is compensated
by returning a ranked list of possible results, instead of a single deterministic result
as in a regular SQL query. This allows the user to choose the best alternative for the
problem at hand.

404 J. Eberius et al.

To achieve that, we introduced a novel method for Top-k Entity Augmentation
(Sect. 2) which is able to construct a top-k list of consistent integration results from
a large corpus of heterogeneous data sources. This technique forms the basis for
our DrillBeyond system (Sect. 3), which provides hybrid augmentation/relational
query processing capabilities. This enables the use of ad-hoc data integration for
exploratory data analysis queries, and improves both performance and quality when
compared to using separate systems for the two tasks.

In conclusion, we introduced novel, automatic data augmentation methods that
harness the large variety of data sources, while requiring minimal user effort and
incorporated thosemethods into traditional relational DBMS, to enable their efficient
use in analytical query contexts. To conclude this chapter, we will finally sketch
opportunities to extend and build on our contributions in future work.

4.1 Future Work

In the current work, we applied the Top-k Entity Augmentation to Web tables only.
However, we argue that underlying top-k consistent set covering is a general tech-
nique that can be applied to many different forms of data sources. For example,
there we discussed related work on augmentation based on information extraction
from general Web page text. Applying our approach to generate minimal but diverse
covers based on Web pages instead of Web tables would be a promising approach
to increase coverage. Furthermore, our approach does not yet consider correlations
between sources as a factor of trust. Approaches from data fusion literature that
detect and utilize such source correlations could be combined with our set covering
approach to increase the precision of the generated covers.

With respect to the DrillBeyond system, a possible avenue for future work would
be to investigate which parts of the concept could be adapted to modern analytical
RDBMS architectures to increase efficiency. In our current work, we integrate entity
augmentation with a classical, single-node row store DBMS. However, in many con-
temporary scenarios, analytical queries are executed on highly parallel, distributed
column stores. Investigating how our proposed architecture and optimizations apply
to these systems would increase our method’s practical applicability. Furthermore,
DrillBeyond so far only allows the usage of additional attributes, i.e., it allows only
horizontal table augmentation. However, methods for vertical augmentation, or in
other words, the ad-hoc integration of further tuples of an existing relation, have also
been discussed in related work [29, 48]. These approaches could be integrated with
relational query processing as well. Similarly, the materialization of completely new
relations from Web Data using just a schema description has also been studied in
isolation, but could be integratedwith general query processing aswell. Furthermore,
although DrillBeyond does support joins over open attributes, we did not study the
optimization of such joins. In summary, in future work the idea of Open World SQL
queries could be generalized from additional attributes to all aspects of SQL and
relation query processing.

Exploratory Ad-Hoc Analytics for Big Data 405

References

1. A. Abello, O. Romero, T. Bach Pedersen, R. Berlanga, V. Nebot, M. Aramburu, A. Simitsis,
Using semantic web technologies for exploratory olap: a survey. IEEE Trans. Knowl. Data
Eng. 27(2), 571–588 (2015)

2. A. Abelló, J. Darmont, L. Etcheverry, M. Golfarelli, J.N. Mazón, F. Naumann, T.B. Pedersen,
S. Rizzi, J. Trujillo, P. Vassiliadis, G. Vossen, Fusion cubes: towards self-service business
intelligence. Int. J. Data Wareh. Mining (IJDWM) (2012). (accepted)

3. R. Agrawal, S. Gollapudi, A. Halverson, S. Ieong, Diversifying search results. In: Proceedings
of the Second ACM International Conference on Web Search and Data Mining, WSDM ’09
(ACM, New York, 2009), pp. 5–14

4. S. Amer-Yahia, P. Case, T. Rölleke, J. Shanmugasundaram, G. Weikum, Report on the db/ir
panel at sigmod 2005. ACM SIGMOD Rec. 34(4), 71–74 (2005)

5. P. André, J. Teevan, S.T. Dumais, From x-rays to silly putty via Uranus: serendipity and its role
in web search. In: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (ACM, New York, 2009), pp. 2033–2036

6. H. Bast, I. Weber, The complete search engine: Interactive, efficient, and towards IR and db
integration, in CIDR 2007: 3rd Biennial Conference on Innovative Data Systems Research, ed.
by G. Weikum (VLDB Endowment, Asilomar, CA, USA, 2007), pp. 88–95

7. J. Bautista, J. Pereira, A grasp algorithm to solve the unicost set covering problem. Comput.
Oper. Res. 34(10), 3162–3173 (2007)

8. M.J. Cafarella, J. Madhavan, A. Halevy, Web-scale extraction of structured data. SIGMOD
Rec. 37(4), 55–61 (2009)

9. M.J. Cafarella, C. Re, D. Suciu, O. Etzioni, M. Banko, Structured querying of web text, in
3rd Biennial Conference on Innovative Data Systems Research (CIDR) (Asilomar, California,
USA, 2007)

10. J. Carbonell, J. Goldstein, The use of MMR, diversity-based reranking for reordering docu-
ments and producing summaries, in Proceedings of the 21st Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR ’98 (ACM, New
York, NY, USA, 1998), pp. 335–336

11. S. Chaudhuri, R. Ramakrishnan, G. Weikum, Integrating DB and IR technologies: what is the
sound of one hand clapping, in CIDR (2005), pp. 1–12

12. J. Cohen, B. Dolan, M. Dunlap, J.M. Hellerstein, C. Welton, Mad skills: new analysis practices
for big data. Proc. VLDB Endow. 2, 1481–1492 (2009)

13. N. Dalvi, A. Machanavajjhala, B. Pang, An analysis of structured data on the web. Proc. VLDB
Endow. 5(7), 680–691 (2012)

14. E. Demidova, P. Fankhauser, X. Zhou, W. Nejdl, Divq: Diversification for keyword search
over structured databases, in Proceedings of the 33rd International ACM SIGIR Conference on
Research and Development in Information Retrieval, SIGIR ’10 (ACM, New York, NY, USA,
2010), pp. 331–338

15. G.W. DePuy, R.J. Moraga, G.E. Whitehouse, Meta-raps: a simple and effective approach for
solving the traveling salesmanproblem.Transp.Res. Part ELogist. Transp.Rev. 41(2), 115–130
(2005)

16. G. Di Lorenzo, H. Hacid, Hy Paik, B. Benatallah, Data integration in mashups. SIGMOD Rec.
38(1), 59–66 (2009)

17. P. Dixon, Basics of oracle text retrieval. IEEE Data Eng. Bull. 24(4), 11–14 (2001)
18. X.L. Dong, B. Saha, D. Srivastava, Less is more: selecting sources wisely for integration, in

Proceedings of the 39th international conference on Very Large Data Bases, PVLDB’13, VLDB
Endowment (2013), pp. 37–48

19. J. Eberius, K. Braunschweig, M. Hentsch, M. Thiele, A. Ahmadov, W. Lehner, Building the
dresden web table corpus: a classification approach, in 2nd IEEE/ACM International Sympo-
sium on Big Data Computing, BDC (2015)

20. J. Eberius, M. Thiele, K. Braunschweig, W. Lehner, DrillBeyond: enabling business analysts
to explore the web of open data, in PVLDB (2012)

406 J. Eberius et al.

21. J. Eberius, M. Thiele, K. Braunschweig, W. Lehner, Drillbeyond: processing multi-result open
world SQL queries, in Proceedings of the 27th International Conference on Scientific and
Statistical Database Management, SSDBM ’15 (ACM, New York, NY, USA, 2015), pp. 16:1–
16:12

22. J. Eberius,M. Thiele, K. Braunschweig,W. Lehner, Top-k entity augmentation using consistent
set covering, in Proceedings of the 27th International Conference on Scientific and Statistical
Database Management, SSDBM ’15 (ACM, New York, NY, USA, 2015), pp. 8:1–8:12

23. S. Endrullis, A. Thor, E. Rahm, Entity search strategies for mashup applications, in 2012 IEEE
28th International Conference on Data Engineering (ICDE) (IEEE, New Jersey, 2012), pp.
66–77

24. S. Endrullis, A. Thor, E. Rahm, Wetsuit: an efficient mashup tool for searching and fusing web
entities. Proceedings of the VLDB Endowment 5(12), 1970–1973 (2012)

25. L. Etcheverry, A. Vaisman, Enhancing olap analysis with web cubes, in The Semantic Web:
Research and Applications, vol. 7295, Lecture Notes in Computer Science, ed. by E. Simperl, P.
Cimiano, A. Polleres, O. Corcho, V. Presutti (Springer, Berlin Heidelberg, 2012), pp. 469–483

26. T.A. Feo, M.G. Resende, Greedy randomized adaptive search procedures. J. Glob. Optim. 6(2),
109–133 (1995)

27. F. Glover, Tabu search-part i. ORSA J. Comput. 1(3), 190–206 (1989)
28. L. Grammel, M.A. Storey, A survey of mashup development environments, in The Smart

Internet, Lecture Notes in Computer Science vol. 6400 (2010), pp. 137–151
29. R. Gupta, S. Sarawagi, Answering table augmentation queries from unstructured lists on the

web. Proc. VLDB Endow. 2(1), 289–300 (2009)
30. A. Halevy, A. Rajaraman, J. Ordille, Data integration: the teenage years, in Proceedings of

the 32nd International Conference on Very Large Data Bases, VLDB ’06, VLDB Endowment
(2006), pp. 9–16

31. J.R. Hamilton, T.K. Nayak, Microsoft SQL server full-text search. IEEE Data Eng. Bull. 24(4),
7–10 (2001)

32. M. Hasan, A. Mueen, V. Tsotras, E. Keogh, Diversifying query results on semi-structured data,
in Proceedings of the 21st ACM International Conference on Information and Knowledge
Management, CIKM ’12 (ACM, New York, NY, USA, 2012), pp. 2099–2103

33. Z.G. Ives, D. Florescu, M. Friedman, A. Levy, D.S. Weld, An adaptive query execution system
for data integration, in Proceedings of the 1999 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’99 (ACM, New York, NY, USA, 1999), pp. 299–310

34. R.M. Karp, Reducibility among combinatorial problems, in Complexity of Computer Compu-
tations (1972)

35. G. Lan, G.W. DePuy, G.E. Whitehouse, An effective and simple heuristic for the set covering
problem. Eur. J. Oper. Res. 176(3), 1387–1403 (2007)

36. D. Laney, 3d data management: controlling data volume, velocity and variety. META Group
Res. Note 6, 70 (2001)

37. O. Lehmberg, D. Ritze, P. Ristoski, R. Meusel, H. Paulheim, C. Bizer, The mannheim search
join engine, inWeb Semantics: Science, Services and Agents on the World Wide Web (2015)

38. X. Li, X.L. Dong, K. Lyons, W. Meng, D. Srivastava, Truth finding on the deep web: is the
problem solved? in Proceedings of the 39th International Conference on Very Large Data
Bases, PVLDB’13, VLDB Endowment (2013), pp. 97–108

39. J. Liu, X. Dong, A.Y. Halevy, Answering structured queries on unstructured data, in WebDB,
vol. 6 (Citeseer, 2006), pp. 25–30

40. A. Löser, F. Hueske, V. Markl, Situational business intelligence, in Business Intelligence for
the Real-Time Enterprise, vol. 27, Lecture Notes in Business Information Processing, ed. by
M. Castellanos, U. Dayal, T. Sellis (Springer, Berlin, 2009), pp. 1–11

41. A. Maier, D.E. Simmen, DB2 optimization in support of full text search. IEEE Data Eng. Bull.
24(4), 3–6 (2001)

42. G. Marchionini, Exploratory search: From finding to understanding. Commun. ACM 49(4),
41–46 (2006)

Exploratory Ad-Hoc Analytics for Big Data 407

43. R. Martí, M.G. Resende, C.C. Ribeiro, Multi-start methods for combinatorial optimization.
Eur. J. Oper. Res. 226(1), 1–8 (2013)

44. H. Mohanty, P. Bhuyan, D. Chenthati, Big Data: A Primer (Springer, India, 2015)
45. J. Morcos, Z. Abedjan, I.F. Ilyas, M. Ouzzani, P. Papotti, M. Stonebraker, Dataxformer: an

interactive data transformation tool, in Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data (ACM, New Jersey, 2015), pp. 883–888

46. T.T. Nguyen, Q.V.H. Nguyen, M. Weidlich, K. Aberer, Result selection and summarization for
web table search, in 2015 IEEE 31st International Conference on Data Engineering (ICDE)
(2015), pp. 231–242

47. D.E. O’Leary, Embedding ai and crowdsourcing in the big data lake. IEEE Intell. Syst. 29(5),
70–73 (2014)

48. R. Pimplikar, S. Sarawagi, Answering table queries on the web using column keywords, in
Proceedings of the 36th Int’l Conference on Very Large Databases (VLDB) (2012)

49. J. Pound, I.F. Ilyas, G. Weddell, Expressive and flexible access to web-extracted data: a
keyword-based structured query language, in Proceedings of the 2010 ACM SIGMOD Interna-
tional Conference on Management of Data, SIGMOD ’10 (ACM, New York, NY, USA, 2010),
pp. 423–434

50. S. Sarawagi, S. Chakrabarti, Open-domain quantity queries on web tables: Annotation,
response, and consensus models, in Proceedings of the 20th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, KDD ’14 (ACM, New York, NY, USA,
2014), pp. 711–720

51. D.E. Simmen, M. Altinel, V. Markl, S. Padmanabhan, A. Singh, Damia: data mashups for
intranet applications, in Proceedings of the 2008 ACM SIGMOD international conference on
Management of data, SIGMOD ’08 (ACM, New York, NY, USA, 2008)

52. F.M. Suchanek, G. Kasneci, G. Weikum, Yago: a core of semantic knowledge, in Proceedings
of the 16th International Conference on World Wide Web, WWW ’07 (ACM, New York, NY,
USA, 2007), pp. 697–706

53. M.A. Tahraoui, K. Pinel-Sauvagnat, C. Laitang, M. Boughanem, H. Kheddouci, L. Ning, A
survey on tree matching and XML retrieval. Comput. Sci. Rev. 8, 1–23 (2013)

54. A. Thor, D. Aumueller, E. Rahm, Data integration support for mashups, in Workshops at the
Twenty-Second AAAI Conference on Artificial Intelligence (2007)

55. G. Weikum, DB and IR: both sides now, in Proceedings of the 2007 ACM SIGMOD Interna-
tional Conference on Management of Data (ACM, New Jersey, 2007), pp. 25–30

56. M. Yakout, K. Ganjam, K. Chakrabarti, S. Chaudhuri, Infogather: entity augmentation and
attribute discovery by holistic matching with web tables, in Proceedings of the 2012 ACM
SIGMOD International Conference on Management of Data, SIGMOD ’12 (ACM, New York,
NY, USA, 2012), pp. 97–108

57. M. Zhang, K. Chakrabarti, Infogather+: semantic matching and annotation of numeric and
time-varying attributes in web tables, in Proceedings of the 2013 International Conference on
Management of data, SIGMOD ’13 (ACM, New York, NY, USA, 2013), pp. 145–156

58. C.N. Ziegler, S.M. McNee, J.A. Konstan, G. Lausen, Improving recommendation lists through
topic diversification, in Proceedings of the 14th International Conference on World Wide Web,
WWW ’05 (ACM, New York, NY, USA, 2005), pp. 22–32

Pattern Matching Over Linked Data Streams

Yongrui Qin and Quan Z. Sheng

Abstract This chapter leverages semantic technologies, such as LinkedData, which
can facilitatemachine-to-machine (M2M) communications to build an efficient infor-
mation dissemination system for semantic IoT. The system integrates Linked Data
streams generated from various data collectors and disseminates matched data to
relevant data consumers based on triple pattern queries registered in the system by
the consumers. We also design two new data structures, TP-automata and CTP-
automata, to meet the high performance needs of Linked Data dissemination. We
evaluate our system using a real-world dataset generated from a Smart Building
Project. With the new data structures, the proposed system can disseminate Linked
Data faster than the existing approach with thousands of registered queries.

Keywords Internet of things · Linked data · Pattern matching

1 Overview

The Internet is a global system of networks interconnecting computers using the
standard Internet Protocol (IP) suite. It has created a significant impact to theworld by
serving billions of users worldwide. Millions of private, public, academic, business,
and government networks, of local to global scope, all contribute to the formation
of the Internet.The traditional Internet has a focus on computers and can be called
the Internet of Computers. In contrast, the Internet of Things (IoT) aims to connect
everyday objects, such as coats, shoes, watches, ovens, washing machines, bikes,
cars, even humans, plants, animals, and changing environments, to the Internet to
enable communications/interactions between these objects [1]. The ultimate goal of

Y. Qin (B)
School of Computing and Engineering, University of Huddersfield,
Huddersfield HD1 3DH, UK
e-mail: y.qin2@hud.ac.uk

Q.Z. Sheng
School of Computer Science, The University of Adelaide, Adelaide, SA 5005, Australia
e-mail: michael.sheng@adelaide.edu.au

© Springer International Publishing AG 2017
A.Y. Zomaya and S. Sakr (eds.), Handbook of Big Data Technologies,
DOI 10.1007/978-3-319-49340-4_12

409

410 Y. Qin and Q.Z. Sheng

IoT is to enable computers to see, hear and sense the real world. It is predicted by
Ericsson that the number of Internet-connected things will reach 50 billion by 2020.
In the era of IoT, it is envisioned that smart objects collect and share data at a global
scale via the Internet.

As of 2012, 2.5 quintillion (2.5 × 1018) bytes of data were being created daily.1

In IoT, connecting all of the things that people care about in the world becomes pos-
sible. However, all these things will produce much more data than nowadays. The
volumes of data are vast, the generation speed of data is fast and the data/information
space is global. By exploiting such data in IoT, cities will become smarter and more
efficient. Some promising IoT applications in future smart cities include resources
management issues for modern cities [2], and effective urban street-parking man-
agement for reducing traffic congestion and fuel consumption [3]. Indeed, IoT is one
of the major driving forces for big data analytics.

Given the scale of IoT, topics such as distributed processing, real-time data stream
analytics, and event processing are all critical, and need to be revisited in order to
improve upon existing technologies for applications of this scale [4, 5]. In this con-
text, semantic technologies such as Linked Data (see http://linkeddata.org/), which
aim to facilitate machine-to-machine (M2M) communications, play an increasingly
important role [6]. Linked Data is part of a growing trend towards highly distrib-
uted systems, with thousands or potentially millions of independent sources provid-
ing structured data. Due to the large amount of data produced by various kinds of
things, one challenging issue is how to efficiently disseminate data to relevant data
consumers.

In this chapter, we focus on studying the Internet of Things (IoT) from a data
perspective. As in IoT, data is processed differently compared with the processing in
the traditional Internet environments (i.e., Internet of Computers). In the Internet of
Computers, both themain data producers and consumers are human beings.However,
in the Internet of Things, the main actors become things, which means things are
the majority of data producers and consumers. Therefore, in IoT, addressable and
interconnected things, instead of humans, act as the main data producers, as well as
the main data consumers. Computers will be able to learn and gain information and
knowledge to solve real world problems directly with the data fed from things. As
an ultimate goal, computers enabled by IoT technologies will be able to sense and
react to the real world for humans.

To deal with such challenge, it is imperative to efficiently retrieve the most
relevant data from the big data generated in IoT and effectively extract useful infor-
mation (e.g., in the process converting “data” into “information” or “knowledge”).
We propose in this chapter an efficient data dissemination system for semantic IoT
by leveraging semantic technologies, such as Linked Data. Our system will be very
helpful and efficient in the retrieval of relevant data from the deluge of IoT data,
which can then facilitate the extraction of required information. The system firstly
integrates data generated from various data collectors. Then it transforms all the
data into Linked Data streams in Resource Description Framework (RDF) format

1http://www-01.ibm.com/software/data/bigdata/.

http://linkeddata.org/
http://www-01.ibm.com/software/data/bigdata/

Pattern Matching Over Linked Data Streams 411

(see www.w3.org/RDF). Meanwhile, data consumers can register their interests in
the form of Basic Graph Patterns (BGPs) composed of simple triple patterns in the
system. Based on these BGPs, the system disseminates matched Linked Data to rel-
evant users. After receiving relevant data, these users can further make use of the
data to extract information for their own purposes, such as environment monitoring,
event detection, complex event processing, and so on. It should be noted that we will
not discuss the data processing at the user side, instead we focus ourselves on how
to efficiently match a large number of BGP queries against Linked Data streams in
batch mode. We highlight our main contributions in the following.

• We identify new Linked Data dissemination needs in the context of the Inter-
net of Things, which requires to process continuous data requests in batch mode
efficiently.

• We develop two new data structures, Triple Pattern automata (TP-automata) and
Conjunctive Triple Pattern automata (CTP-automata), for efficiently matching
Linked Streams against a large number of single or conjunctive triple pattern
queries based on automata techniques. We also develop novel techniques to eval-
uate these queries efficiently.

• We conduct extensive experiments using a real-world dataset generated in a Smart
Building Project. The results show that: (1) when processing single triple pat-
terns using TP-automata, the system can disseminate Linked Data at one million
triples per second with 100,000 registered user queries, which is several orders
of magnitude faster than existing techniques; (2) when processing conjunctive
triple patterns using CTP-automata, the system can disseminate Linked Data at a
speed of an order of magnitude faster than the existing approaches with thousands
registered conjunctive queries.

The rest of this chapter is organized as follows. We present the framework and
the technical details of our approach in Sect. 2. In Sect. 3, we report the results of
an extensive experimental study. In Sect. 4, we review the related work. Finally, we
present some concluding remarks in Sect. 5.

2 Linked Data Dissemination System

In order to disseminate high-quality information and provide high-performance
matching services to data consumers (or subscribers), we aim to design a system
that will not return false-negative match results. Therefore, we investigate pattern
matching in this article. Pattern matching performs individual component matching
between RDF triples and BGPs. It does not consider semantic relatedness between an
RDF triple and a BGP. It may return false positive matching results but not false neg-
ative ones. Recent work on pattern matching includes Linked Data stream processing
[7] and stream reasoning [8]. However, since these solutions are mainly designed
for optimizations of individual query evaluations, they are not quite suitable for
processing a large number of concurrent queries.

www.w3.org/RDF

412 Y. Qin and Q.Z. Sheng

Fig. 1 System overview

An example of pattern matching is that pattern (?s, :is, :Student) will match triple
(:James, :is, :Student) but will not match (:James, :is, :PhDStudent). Other types
of matching include match estimation and semantic matching, both of which may
return false-negative results. Again, take pattern (?s, :is, :Student) as an example.
Inmatch estimation, themain task is to estimatewhich datasetmatches pattern (?s, :is,
:Student) the best by using some summarization techniques among multiple datasets
[9] to avoid querying all known datasets directly. In contrast, semantic matching
will match semantically related triples compared to a specified pattern [10]. For
example, pattern (?s, :is, :Student) may match (:James, :is, :PhDStudent) since the
term :Student in the pattern is semantically related to :PhDStudent in the triple.

2.1 System Overview

Figure1 shows an overview of our system in the smart city scenario. We assume
that data generated by all kinds of things will be represented in the form of Linked
Data streams using RDF (for the purpose of facilitating (M2M communications).
Our system consists of two main components: the matching component and the
index construction component. Data consumers (humans and/or smart things in the
city) can register their interests as user queries in the system. The index construction
component constructs an index for all user queries. The matching component evalu-
ates the incoming Linked Data streams against the constructed index for efficiently
matching triples to the user queries. Finally, the system disseminates the matched
data to relevant data consumers for their further processing.

User Queries. Similar to [11, 12], triple patterns are adopted as the basic units of
user queries in our system. A triple pattern is an expression of the form (s, p,
o) where s and p are URIs or variables, and o is a URI, a literal or a variable.
The eight possible triple patterns are: (1) (#s, #p, #o), (2) (?s, #p, #o),
(3) (#s, ?p, #o), (4) (#s, #p, ?o), (5) (?s, ?p, #o), (6) (?s, #p,
?o), (7) (#s, ?p, ?o), and (8) (?s, ?p, ?o). Here, ? denotes a variable

Pattern Matching Over Linked Data Streams 413

while # denotes a constant. Similar to data summaries in [9], we can also apply hash
functions2 to map these patterns into numerical values.

When a user query contains only one triple pattern, such queries are called single
triple pattern queries.Meanwhile, a user query can also be expressed as a conjunctive
triple pattern query composed ofmultiple triple patterns [11, 12]. Conjunctive queries
can express data needs much more accurately compared with single triple pattern
queries. A conjunctive query q has the form of:

?x1, . . . , ?xn : (s1, p1, o1) ∧ (s2, p2, o2) ∧ · · · ∧ (sn, pn, on)

where ?x1, . . . , ?xn are variables, each (si , pi , oi) is a triple pattern, and each variable
?xi appears in at least one triple pattern (si , pi , oi). Variables will always start with
the ‘?’ character. Variables ?x1, . . . , ?xn are also called answer variables in order to
distinguish them from other variables in the query.

Representations of Queries and Triples. In our Linked Data dissemination system,
when the user queries (in the form of single or conjunctive triple pattern queries) are
registered, all queries are transformed into numerical values. The reason for this is that
the comparisons between numbers are faster than strings [9]. Note that, in such case,
we will have three numbers for the three components in a query as described above.
Then a suitable index can be constructed for efficient evaluation between Linked
Data streams and user queries. Before a matching process starts, RDF triples in the
data streams will be mapped into numerical values as well. Then, these numerical
represented tripleswill bematchedwith conjunctive queries represented as numerical
values in the constructed indexes.

2.2 TP-Automata for Single Triple Pattern Query Matching

Automata techniques have been adopted to process XML data streams [13]. They are
mainly based on languages with SQL-like syntax, and relational database execution
models adapted to process streaming data. In our system, to support patternmatching,
we also apply automata to match each individual component of a triple with its
counterparts of triple patterns in single triple pattern queries efficiently. We call this
approach Triple Pattern automata (TP-automata).

As mentioned, operating on numbers is more efficient than operating on strings.
Note that when we map triple patterns into numerical values, we treat variables in a
triple pattern as a universal match indicator, e.g., represented by “?”. This indicator
will be mapped into a fixed and unique numerical value but not the whole range of
a specific coordinate axis. This unique numerical value will be treated differently as
well later in the triple evaluation process.

2There are many different hash functions that are suitable for this purpose. For more details, please
refer to [9].

414 Y. Qin and Q.Z. Sheng

Fig. 2 Structure of TP-automata

Figure2 depicts the construction process of TP-automata. Firstly, user queries
will be transformed into triple pattern state machines as shown in the middle of
Fig. 2. As can be seen from the figure, each triple state machine contains an initial
state, two internal states, one final state and three transitions. In the figure, the first
circle of a state machine represents the initial state, the next two circles represent the
two internal states and the doubled circle represents the final state. The three arrows
associated with conditions are three transitions between different states. Similar to
[13], these state machines can be combined into one machine by exploiting shared
common stateswith same transitions. The combinedmachine, TP-automata, is shown
on the right of Fig. 2. The shaded circles represent combined states.

To perform pattern matching over TP-automata, triples in the Linked Data stream
will be firstly mapped into numerical values. For example, suppose a triple (s, p, o)
is mapped into a 3D point (a, b, c). The system will match it against TP-automata in
the following process. It firstly checks the initial state of TP-automata and looks for
state transitions with condition a or condition ?. Following the state transitions, state
1 and state 2 become the current active states at the same time. It then looks for state
transitions with condition b or ? from state 1 and state 2. Following the transitions,
state 3 and state 4 become active states. Finally, following transitions with condition
c or ? from state 3 and state 4, two final states, state 5 and state 7, are reached. By
checking both final states, the system returns q1, q2, q4 as the matching results. It
should be noted that q3: (a, b, d) will not match the input triple (a, b, c) as its object
component’s pattern is d, which does not match with c. The match process stops if
and only if all current active states are final states or states with no satisfied transition.

2.3 CTP-Automata for Conjunctive Triple Pattern
Query Matching

We also apply automata to match each individual component of a triple with its
counterparts of triple patterns in conjunctive triple pattern query efficiently. Similarly,
we call this approach Conjunctive Triple Pattern automata (CTP-automata).

Pattern Matching Over Linked Data Streams 415

Fig. 3 Index structure and conjunctive constraints of CTP-automata

Construction of CTP-automata. Figure3 depicts the construction process of CTP-
automata. There are two conjunctive queries, q1 : (?x1, b, c) ∧ (?x1, d, e) and q2 :
(?x2, b, c) ∧ (?x2, d, e) ∧ (a, d, ?x2). Accordingly, there are two triple patterns in
q1 and three triple patterns in q2. Firstly, all the triple patterns in the conjunctive
queries will be transformed into triple pattern state machines as shown in the middle
of Fig. 3. As can be seen from the middle part of the figure, each triple state machine
contains an initial state, two internal states, one final state, and three transitions. In
the figure, the first circle of a state machine represents the initial state, the next two
circles represent the two internal states and the doubled circle represents the final
state. The three arrows associatedwith conditions represent three transitions between
different states.

Suppose there are n conjunctive queries for the construction of CTP-automata
and each query contains p patterns on average. Then the time complexity of the
CTP-automata construction process will be O(np). This is because we can add each
pattern into the CTP-automata in an incremental manner and each patternwill require
constant time to be inserted (we can adopt hashing based data structures to achieve
constant time insertion of each pattern).

It is worth mentioning that we ignore variable names at this stage due to the fact
that when processing triples in the Linked Data stream, at the first step, we have to
evaluate these triples one by one and that variable naming does not have any relation-
ships between different conjunctive queries. For example, (?x1, b, c) ∧ (?x1, d, e)
and (?x2, b, c) ∧ (?x2, d, e) actually refer to the same conjunctive query. However,
the variable naming does matter within the same conjunctive query. For example,
in (?x1, b, ?x2) ∧ (?x2, d, e), variables ?x1 and ?x2 refer to different triple compo-
nents.We leave the resolution of different variable nameswithin the same conjunctive

416 Y. Qin and Q.Z. Sheng

query in the later stage, called Conjunctive Constraints Resolution
(CCR) stage. Before that, we need to evaluate each triple against each single triple
state machine first, which is the Triple Pattern Matching (TPM) stage.

Similar to [13], the multiple single triple state machines shown in Fig. 3 can be
combined into one triple state machine by exploiting shared common states with
same transitions. The combined machine, CTP-automata, is shown on the right of
Fig. 3. The shaded circles represent combined states. We can see from the figure that,
although we have five single triple state machines, after the combination, the number
of single triple state machines drops to three, which have been labeled asm1,m2 and
m3, respectively.

Matching Triple Streams against CTP-automata. During the TPM stage, in order
to perform pattern matching over CTP-automata, when a triple (a, b, c) arrives,
our system firstly checks the initial state of CTP-automata and looks for state tran-
sitions with condition a or condition ?. Following the state transitions, state 1 and
state 2 become the current active states at the same time. It then looks for state tran-
sitions with condition b or ? from state 1 and state 2. Following the transitions, only
state 3 becomes active state and there is no transition triggered from state 2. Finally,
following the transition with condition c or ? from state 3, one final state, state 6, is
reached. By checking this final state, the system returns {m1} as the matching result.
The matching process stops if and only if all current active states are final states or
states with no satisfied transition.

At this TPM stage, the matching results are only intermediate results and the
matched triples are just possible candidates which may satisfy some conjunctive
queries. In order to determine which conjunctive queries have been satisfied, we need
to further evaluate some conjunctive constraints, which will be detailed
next.

Conjunctive Constraints Resolution (CCR) of CTP-automata. It should be noted
that in order to match q1 and q2 in Fig. 3, all triple patterns they contain must be
matched first. Take query q1 : (?x1, b, c) ∧ (?x1, d, e) as an example. Suppose that
triples t1 and t2 match triple patterns (?x1, b, c) and (?x1, d, e), respectively. To
ensure that query q1 can be satisfied by t1 and t2, we need to check first that whether
we have t1.s = t2.s. We call such conditions as conjunctive constraints of a conjunc-
tive query. All conjunctive constraints must be satisfied before we can assure that
a conjunctive query is satisfied. As mentioned before, the conjunctive constraints
checking occurs at the CCR stage.

In this chapter, we have identified ten conjunctive constraints, including SS, PP,
OO, SO, OS, SSPP, SSOO, PPOO, SOPP, OSPP. Constraint SS means that the sub-
jects of two candidate triples must be matched. More details are shown in Table1.
These constraints can be used to determine whether a conjunctive query has been
satisfied or not so far in the stream.

For example, in Fig. 3, query q1’s conjunctive constraint ism1m2 →SS and query
q2’s conjunctive constraints are m1m2 →SS, m1m3 →SO and m2m3 →SO. Sup-
pose that triples t1, t2, t3 match triple pattern machines m1,m2,m3, respectively.

Pattern Matching Over Linked Data Streams 417

Table 1 Conjunctive constraints

Conjunctive
constraints

Description Checking details

SS The subjects of two candidate triples must be
matched

t1.s = t2.s

PP The predicates of two candidate triples must be
matched

t1.p = t2.p

OO The objects of two candidate triples must be
matched

t1.o = t2.o

SO The subject of a candidate triple in the first
pattern machine matches the object of a
candidate triple in the second pattern machine

t1.s = t2.o

OS The object of a candidate triple in the first
pattern machine matches the subject of a
candidate triple in the second pattern machine

t1.o = t2.s

SSPP The conjunction of both SS and PP constraints t1.s = t2.s and t1.p = t2.p

SSOO The conjunction of both SS and OO constraints t1.s = t2.s and t1.o = t2.o

PPOO The conjunction of both PP and OO constraints t1.p = t2.p and t1.o = t2.o

SOPP The conjunction of both SO and PP constraints t1.s = t2.o and t1.p = t2.p

OSPP The conjunction of both OS and PP constraints t1.o = t2.s and t1.p = t2.p

According to Table1, for t1, t2 to satisfy q1, we need to have t1.s = t2.s. Similarly,
for t1, t2, t3 to satisfy q2, we need to have t1.s = t2.s, t1.s = t3.o and t2.s = t3.o.

Dynamic Maintenance of the Matching Candidate List. In order to check con-
junctive constraints, triples in the stream that match some triple pattern machines
will be buffered for this purpose. Since the Linked Stream can be considered infinite,
the buffered triple lists for triple pattern machines may grow all the time. To avoid
this issue, we need to specify a sliding window to confine our matching scope. That
is, we only consider matching within the sliding window.

Figure4 shows two sliding windows with size T :w1 andw2, where only the most
recent T triples will be considered for our matching. In order to evaluate conjunctive
constraints, we need to update the buffered candidate triple list each time a triple
arrives in or leaves the window. In Fig. 4, for w1, we have got matching results for
all three single triple pattern machines, m1,m2,m3, in Fig. 3. After receiving a new
tripe, ti+T , the oldest triple ti will be removed from all candidate lists that contain ti .
In this example, only candidate list for m1 contains ti and hence ti will be removed
from that candidate list. Further, suppose the new arriving triple ti+T will be matched
with machine m3. Then ti+T will be added to the candidate list for m3. It is obvious
that, each time when the sliding window moves forward by one triple, we should
consider all the buffered lists affected by the leaving triple and the joining triple in
the sliding window to verify conjunctive constraints.

418 Y. Qin and Q.Z. Sheng

Fig. 4 Maintenance of candidate triple list

3 Experimental Evaluation

In this section, we report our experimental evaluation of the proposed approach. We
will first describe the experimental settings, and then report the experimental results.

3.1 Experimental Setup

Thedataset used in our experimentswas generated in aSmartBuildingEnergyProject
[14]. The energy readings were collected from 4–19 August 2014. In total, there are
around 6.2 million triples in the dataset. An event example is depicted in Fig. 5. This
event is a power consumption event, showing the real-time power consumption in
Room01 of building01. As shown in the event, the power consumption in Room01
at the moment of “2014 08 12T18:17:18” was 171.87 watts.

We evaluated the performance of our approach in terms of average construction
time (in milliseconds) of the indexes and average throughput (in number of triples
per second). We compared hash-based implementation (i.e., mapping triples and
queries into numerical values, denoted as HashMat in the figures) with string-based
implementation (i.e., using triples and queries as it is, denoted as StringMat in the
figures). We also compared our methods with an existing approach, CQELS [7],
which supports parallel query evaluation on Linked Data streams. Both TP-automata
and CTP-automata engines, and CQELS,3 were all implemented on Java Platform
Standard Edition 7 running on Linux (Ubuntu 12.10, 64-bit Operating System), with

3The source code and documentation of CQELS can be obtained via http://code.google.com/p/
cqels/.

http://code.google.com/p/cqels/
http://code.google.com/p/cqels/

Pattern Matching Over Linked Data Streams 419

Fig. 5 An event example

quad-core CPU@2.20GHz and 4 GB main memory. We ran each experiment 10
times in order to ensure consistency of results and reported the average experimental
results.

3.2 Evaluation of TP-Automata

As an initial work, we used simple BGPs that contain only a single triple pattern in
a query as queries in the experiment. We randomly generated BGPs using the seven
patterns mentioned in Sect. 2 based on our dataset. We did not consider (?s, ?p, ?o)
in our experiment as it requires every triple in the Linked Data stream. In such case,
no query index is needed. We generated from 10,000 queries to 100,000 queries.

Firstly, average construction time is compared in Fig. 6. The construction times
for both hash-based TP-automata and string-based TP-automata are similar to each
other in most settings. For larger numbers of queries, such as 75 and 100k queries,
the construction of string-based indexes takes slightly longer time. Normally, the
construction can be completed within a few hundred milliseconds. However, the
construction time of CQELS takes much longer, which normally requires around ten
thousand milliseconds.

Throughput performance of pattern matching is depicted in Fig. 7. It shows some
large differences between CQELS and TP-automata based approaches (HashMat and
StringMat). Generally, HashMat and StringMat can achieve throughput at the speed
of nearly a million triples per second and are about four orders of magnitude faster
than CQELS. The main reason for this is that CQELS is a much more comprehen-
sive system focusing on optimizing evaluation of queries with complex operators and
semantics but not on evaluation of a large set of concurrent and simple queries over
Linked Data streams. In this regard, our approach can also be adapted to comple-
ment CQELS for dealing with our Linked Data dissemination scenario. Regarding
HashMat and StringMat, in most cases, HashMat is about twice throughput speed
compared with StringMat.

420 Y. Qin and Q.Z. Sheng

Fig. 6 Average construction
time of TP-automata

10k 25k 50k 75k 100k
100

101

102

103

104

105

106

C
on

st
ru

ct
io

n
Ti

m
e

(M
ill

is
ec

on
ds

) CQELS
StringMat
HashMat

Fig. 7 Average throughput
evaluation of TP-automata

10k 25k 50k 75k 100k
100

102

104

106

108

Th
ro

ug
hp

ut
 (#

 o
f T

rip
le

s)

CQELS
StringMat
HashMat

Finally, we also investigated the matching quality of hash-based TP-automata
(HashMat) via Precision, Recall and F1 Score [15]. This is because collisions are
difficult to avoid in any hash-based approaches and false positives exist in hash-based
TP-automata,which affectsmatching quality. Specifically,we look into Precision and
F1 Score when the Recall is 100%. As can be seen in Table2, the Precision and F1
Score are 100% when the number of queries is 10 or 25k. For larger numbers of
queries (e.g., 50, 75 and 100k), both Precision and F1 Score are still greater than
99.99950%. This demonstrates that HashMat provides very high matching quality.

Pattern Matching Over Linked Data Streams 421

Table 2 Matching quality of hashmat (when the recall is 100%) in TP-automata

Queries (k) Recall (%) Precision (%) F1 Score (%)

10 100 100 100

25 100 100 100

50 100 99.99975 99.99987

75 100 99.99982 99.99991

100 100 99.99960 99.99980

Table 3 Workload parameters for the experiments of CTP-automata

Parameter Range Default Description

Query number 100 to 2000 1000 The number of conjunctive triple
pattern queries

Pattern number 1 to 5 3 The maximum number of triple
patterns in a query

Window size 10 to 500 100 The window size, in terms of
number of triples, for the
evaluation of conjunctive triple
pattern queries

3.3 Evaluation of CTP-Automata

Again, we used random walk method to generate conjunctive triple pattern queries
in the experiments according to the data graph of the event data. The details of
parameterswe used for generating these queries are shown in Table3. The parameters
include query number, pattern number, and window size.

Construction Time. The average construction times of CTP-automata engines and
CQELS engine is presented in Fig. 8. The construction times for both hash-based
CTP-automata matching engine (HashMat) and string-based CTP-automata match-
ing engine (StringMat) are close to each other in most settings and are always under
50 milliseconds. The construction of the string-based indexes takes slightly longer
time. By contrast, the construction times of CQELS are much longer than CTP-
automata engines. The main reason is that CQELS has to parse the conjunctive triple
pattern queries using a SPARQL-like parser and then register the parsed queries in
the processing engine. As shown from Fig. 8, the construction times of CQELS grow
linearly with the number of conjunctive queries. When the query number is 100, the
construction time is around 400 milliseconds. When the number of queries increases
to 2000, the construction time reaches above 1610 milliseconds. This indicates that
the construction of our CTP-automata engines is very fast.

Throughput. The throughput performance of pattern matching under varying query
numbers is depicted in Fig. 9. It shows some similarities between HashMat and
StringMat. In most cases, HashMat shows slightly better throughput speed compared

422 Y. Qin and Q.Z. Sheng

Fig. 8 Average construction
time of CTP-automata

100 250 500 750 1000 2000
0

200

400

600

800

1000

1200

1400

1600

1800

Query Number

C
on

st
ru

ct
io

n
Ti

m
e

(M
ill

is
ec

on
ds

) CQELS
StringMat
HashMat

Fig. 9 Average throughput
evaluation of CTP-automata
(varying query number)

100 250 500 750 1000 2000
0

1

2

3

4

5

6

7 x 104

Query Number

of

 T
rip

le
s

P
er

 S
ec

on
d

CQELS
StringMat
HashMat

with StringMat. This indicates that although comparisons on strings are slower than
those on numbers, the differences betwen HashMat and StringMat are negligible.
The main reason for this is that the evaluation process of conjunctive queries spends
a large proportion of time to evaluate the conjunctive constraints on each query and
both HashMat and StringMat use the same strategy to evaluate all these conjunctive
constraints.

However, when comparedwith CQELS, bothHashMat and StringMat outperform
CQELS significantly. To be specific, when the number of conjunctive queries is 100,
the throughput of HashMat and StringMat is more than 64,000 triples per second, and
for CQELS, just slightly more than 3,000. When the number of conjunctive queries
is 2,000, the throughput of HashMat and StringMat drops to slightly below 3,000
triples per second while CQELS has a throughput about just 50 triples per second.
From Fig. 9, we can observe that (1) HashMat and StringMat are normally 20 to 50
times faster than CQELS; (2) the throughput of HashMat, StringMat and CQELS all

Pattern Matching Over Linked Data Streams 423

Fig. 10 Average throughput
evaluation of CTP-automata
(varying pattern number)

1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5 x 104

Pattern Number

of

 T
rip

le
s

P
er

 S
ec

on
d

CQELS
StringMat
HashMat

Fig. 11 Average throughput
evaluation of CTP-automata
(varying window size)

10 50 100 250 500
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Window Size

of

 T
rip

le
s

P
er

 S
ec

on
d

CQELS
StringMat
HashMat

drops greatly when increasing the number of conjunctive queries. This also indicates
that the evaluation of conjunctive constraints on each query takes a large amount of
time and is difficult to share evaluation results between different conjunctive queries.

Figure10 further demonstrates this finding. In the figure, we vary the maximum
number of patterns of each conjunctive query. For the same amount of conjunctive
queries, when the pattern number is only 1, the throughput ofHashMat and StringMat
is around 30,000 triples per second and for CQELS, it is around 1,200 triples per
second, which is more than 20 times slower. When the pattern number is set to 5, the
throughput of HashMat and StringMat drops to slightly lower than 3,000 triples per
second and for CQELS, it drops to around 300 triples per second. This confirms that
the evaluation of conjunctive constraints is time consuming. Similarly, HashMat and
StringMat are both around an order of magnitude faster than CQELS.

Finally, Fig. 11 depicts the effect of window size, which is varied from 10 to 500.
From the figure, we can observe that when the window size increases from 10 to 50,
the throughput of HashMat and StringMat drops from 9,500 triples per second to

424 Y. Qin and Q.Z. Sheng

around 6,200 triples per second. But when the window size increases from 50 to 500,
the throughput of HashMat and StringMat only drops to around 4,500 triples per
second. This indicates that the window size does not affect the throughput heavily
like query number and pattern number. Similar effect of window size can be found
on CQELS. When the window size increases from 10 to 500, the throughput of
CQELS drops from around 500 triples per second to slightly lower than 300 triples
per second. Still, HashMat and StringMat are both an order of magnitude faster than
CQELS.

From our experimental study, we can conclude that CTP-automata indexes for
conjunctive queries can be constructedmuch faster than the query registration process
in CQELS.More importantly, CTP-automata (HashMat and StringMat) significantly
outperforms CQELS in terms of throughput. Further, by using hashing techniques,
HashMat performs slightly better than StringMat.

3.4 Limitations

From the experiments, we can see that our system can match Linked Data streams
with single triple pattern queries at high performance, e.g., arriving at close to one
million triples processed per second with 100,000 user queries registered in the
system. However, our system cannot scale well when processing conjunctive triple
pattern queries. As for conjunctive queries, the throughput of our system can only
reach a few thousand triples processed per second with only 2,000 user queries
registered. Such findings in our experiments suggest that there is an imperative need
for developing more advanced techniques for handling a large number of conjunctive
queries in Linked Data streams dissemination systems.

4 Related Work

Recent work on data summaries on Linked Data [9] transforms RDF triples into
a numerical space. Then data summaries are built upon numerical data instead of
strings as summarizing numbers is more efficient than summarizing strings. In order
to transform triples into numbers, hash functions are applied on the individual com-
ponents (s, p, o) of triples. Thus a derived triple of numbers can be considered
as a 3D point. In this way, a set of RDF triples can be mapped into a set of points in a
3D space. To facilitate query processing over data summaries, a spatial index named
QTree [9], which is evolved from standard R-tree [16], is adopted as the basic index.
Data summaries are designed mainly for indexing various Linked Data sources and
used for identifying relevant sources for a given query. However, data summaries
are not suitable for our Linked Data dissemination system. Firstly, techniques on
data summaries, such as QTree, do not consider variables in the BGPs but only RDF
triples with concrete strings. Further, since data summaries are concise and imprecise

Pattern Matching Over Linked Data Streams 425

representations of data sources [9], they just providematch estimation. Hence, query
evaluation on them would return false negative results, which is not allowed in our
system.

Pattern matching over streams has been studied in [17]. In order to represent
each pattern query, a new query evaluation model is designed for processing pattern
matching over RFID streams, by employing a new type of automaton that comprises
a non-deterministic finite automaton (NFA) and a match buffer, named NFAb. How-
ever, their techniques are not directly applicable to Linked Data stream processing
as they do not specifically consider the characteristics of RDF data and conjunctive
triple pattern matching.

In terms of triple patternmatching, a large body ofworkwhich focuses on optimiz-
ing individual query processing has also been put forward [12, 18–20]. Specifically,
the problem of evaluating conjunctive triple pattern queries is studied in [12] in the
context of Peer-to-Peer (P2P) networks. In [18], an indexing technique for efficient
join processing on RDF graphs is proposed. The index is constructed upon RDF
data directly but not join queries. Similarly, the work in [19] focuses on optimiz-
ing the processing of conjunctive triple pattern queries, especially star-shaped group
based queries individually. Furthermore, optimization on RDF graph pattern match-
ing on MapReduce is also studied in [20]. However, the common problem shared by
these research efforts is that, they have not considered the scenarios of optimizing
conjunctive triple pattern queries in batch mode, which is the focus of our work
in this chapter.

Semantic matching has also been studied, which aims to match semantically
related RDF triples against BGPs. It may provide false positive match results
but not false negative. Both approximate event matching [10] and thematic event
processing [21] apply semantic matching. Similarly, all these techniques will return
false-negative matching results, which is not allowed in our system.

Some existing work on pattern matching of Linked Data, such as stream reason-
ing [8] and Linked Data stream processing [7], does not support large-scale query
evaluation but focuses on the evaluation of a single query or a small number of
parallel queries over the streaming Linked Data. Other existing work only studies
pattern matching of multiple single triple patterns [22, 23], but not multiple conjunc-
tive triple patterns. Therefore, the issue of supporting pattern matching over a large
number of conjunctive triple patterns against Linked Data streams still remains open
in these approaches.

5 Summary

In this chapter, we have leveraged semantic technologies, such as Linked Data, to
build an efficient information dissemination system for semantic IoT. Firstly, in order
to efficiently match a large number of user queries that contain only single triple
patterns against Linked Data streams, we have proposed TP-automata, an automata
basedmethod designed for efficient patternmatching. In our evaluation, we show that

426 Y. Qin and Q.Z. Sheng

TP-automata can disseminate Linked Data at the speed of nearly one million triples
per second with 100,000 registered user queries and is several orders of magnitude
faster in terms of both index construction time and throughput compared with the
state-of-the-art technique. Further, using hash-based TP-automata, the throughput
is doubled compared with string-based TP-automata with high matching quality.
Secondly,wehave also investigated how to handle user querieswith conjunctive triple
patterns. In order to efficiently match a large number of conjunctive triple pattern
queries against LinkedData streams in batchmode, similarly,we have proposedCTP-
automata. In our evaluation, we show that CTP-automata can disseminate Linked
Data an order of magnitude faster than the existing approaches. This confirms the
efficiency and effectiveness of our proposed approach.

Acknowledgements Wewould like to thank the following researchers for their insightful feedback
on our work: Edward Curry, Nickolas J.G. Falkner, and Ali Shemshadi.

References

1. Y. Qin, Q.Z. Sheng, N.J.G. Falkner, S. Dustdar, H. Wang, A.V. Vasilakos, When things matter:
a survey on data-centric internet of things. J. Netw. Comput. Appl. (JNCA) (2016)

2. J. Gao, L.J. Guibas, N. Milosavljevic, D. Zhou, Distributed resource management and match-
ing in sensor networks, in Proceedings of the 8th International Conference on Information
Processing in Sensor Networks (IPSN) (IEEE, San Francisco, 2009), pp. 97–108

3. S. Mathur, T. Jin, N. Kasturirangan, J. Chandrasekaran, W. Xue, M. Gruteser, W. Trappe,
Parknet: drive-by sensing of road-side parking statistics, inProceedings of the 8th International
Conference on Mobile Systems, Applications, and Services (MobiSys) (ACM, San Francisco,
2010), pp. 123–136

4. A.E. James, J. Cooper, K.G. Jeffery, G. Saake, Research directions in database architectures
for the internet of things: a communication of the first international workshop on database
architectures for the internet of things (DAIT 2009), inProceedings of the 26th British National
Conference on Databases (BNCOD) (Springer, Birmingham, 2009), pp. 225–233

5. P.M. Barnaghi, A.P. Sheth, C.A. Henson, From data to actionable knowledge: big data chal-
lenges in the web of things. IEEE Intell. Syst. 28(6), 6–11 (2013)

6. P.M. Barnaghi, W. Wang, C.A. Henson, K. Taylor, Semantics for the internet of things: early
progress and back to the future. Int. J. Semant. Web Inf. Syst. 8(1), 1–21 (2012)

7. D.L. Phuoc, M. Dao-Tran, J.X. Parreira, M. Hauswirth, A native and adaptive approach for
unified processing of linked streams and linked data, in Proceedings of the 10th International
Semantic Web Conference (ISWC) (2011), pp. 370–388

8. D. Anicic, P. Fodor, S. Rudolph, N. Stojanovic, EP-SPARQL: a unified language for event
processing and stream reasoning, in Proceedings of the 20th International Conference on
World Wide Web (WWW) (2011), pp. 635–644

9. A. Harth, K. Hose, M. Karnstedt, A. Polleres, K.-U. Sattler, J. Umbrich, Data summaries for
on-demand queries over linked data, inWWW (2010), pp. 411–420

10. S. Hasan, E. Curry, Approximate semantic matching of events for the internet of things. ACM
Trans. Internet Techn. 14(1), 1–23 (2014)

11. A. Seaborne, RDQL - a query language for RDF, in W3C Member Submission (2001)
12. E. Liarou, S. Idreos, M. Koubarakis, Evaluating conjunctive triple pattern queries over large

structured overlay networks, in ISWC (2006), pp. 399–413
13. Y.Diao,M.Altinel,M.J. Franklin,H.Zhang, P.M.Fischer, Path sharing andpredicate evaluation

for high-performance XML filtering. ACM Trans. Database Syst. 28(4), 467–516 (2003)

Pattern Matching Over Linked Data Streams 427

14. E. Curry, S. Hasan, S. O’Riain, Enterprise energy management using a linked dataspace for
energy intelligence, in SustainIT (2012), pp. 1–6

15. D. Christopher, Manning, Prabhakar Raghavan, and Hinrich Schütze, Introduction to Infor-
mation Retrieval (Cambridge, Cambridge University Press, 2008)

16. A. Guttman. R-trees: a dynamic index structure for spatial searching, in SIGMOD (1984), pp.
47–57

17. J.Agrawal,Y.Diao,D.Gyllstrom,N. Immerman, Efficient patternmatching over event streams,
in Proceedings of the ACM SIGMOD International Conference on Management of Data (SIG-
MOD’08) (2008), pp. 147–160

18. G.H.L. Fletcher, P.W. Beck, Scalable indexing of RDF graphs for efficient join processing, in
CIKM (2009), pp. 1513–1516

19. M.-E. Vidal, E. Ruckhaus, T. Lampo, A. Martínez, J. Sierra, A. Polleres, Efficiently joining
group patterns in SPARQL queries. ESWC, Part I, 228–242 (2010)

20. P. Ravindra, H.S. Kim,K.Anyanwu, An intermediate algebra for optimizingRDF graph pattern
matching on mapreduce. ESWC, Part II, 46–61 (2011)

21. S. Hasan, E. Curry, Thematic event processing, in Proceedings of the 15th International Mid-
dleware Conference, Bordeaux, France, December 8-12, 2014 (2014), pp. 109–120

22. Y. Qin, Q.Z. Sheng, N.J.G. Falkner, A. Shemshadi, E. Curry, Towards efficient dissemination of
linked data in the internet of things, in Proceedings of the 23rd ACM International Conference
on Conference on Information and Knowledge Management (CIKM) (2014), pp. 1779–1782

23. Y. Qin, Q.Z. Sheng, E. Curry, Matching over linked data streams in the internet of things. IEEE
Internet Comput. 19(3), 21–27 (2015)

Searching the Big Data: Practices
and Experiences in Efficiently Querying
Knowledge Bases

Wei Emma Zhang and Quan Z. Sheng

Abstract Knowledge bases (KBs) are computer systems that store complex struc-
tured and unstructured facts, i.e., knowledge. KB are described as open shared data-
base of the world’s knowledge and typically use the entity-relational model. Most
of the existing knowledge bases make their data in the RDF format. Tools including
querying, inferencing and reasoning on facts are developed to consume the knowl-
edge. In this chapter, we introduce a client-side caching framework aiming at acceler-
ating the overall query response speed. In particular, we improve a suboptimal graph
edit distance function to estimate the similarity of SPARQL queries and develop
an approach to transform the SPARQL queries to feature vectors. Machine learning
algorithms are leveraged using these feature vectors to identify similar queries that
could potentially be the subsequent queries. We adapt multiple dimensional reduc-
tion algorithms to reduce the identification time. We then prefetch and cache the
results of these queries aiming to improve the overall querying performance. We
also develop a forecasting method, namely Modified Simple Exponential Smooth-
ing, to implement the cache replacement. Our approach has been evaluated by using
a very large set of real world queries. The empirical results show that our approach
has great potential to enhance the cache hit rate and accelerate the querying speed
on SPARQL endpoints.

1 Introduction

Knowledge Bases (KB) are widely used as one of the fundamental components
in Semantic Web applications as they provide facts and relationships that can be
automatically understood bymachines (e.g., computer programs). Knowledge-based
QA(KB-QA) systems are poweredbyknowledgebases and can automatically answer
questions posed in natural languages. The knowledge bases usually use Resource

W.E. Zhang · Q.Z. Sheng (B)
The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
e-mail: michael.sheng@adelaide.edu.au

W.E. Zhang
e-mail: wei.zhang01@adelaide.edu.au

© Springer International Publishing AG 2017
A.Y. Zomaya and S. Sakr (eds.), Handbook of Big Data Technologies,
DOI 10.1007/978-3-319-49340-4_13

429

430 W.E. Zhang and Q.Z. Sheng

Description Framework (RDF) as the data representation model. RDF allows the
sharing and reuse of data across boundaries. SPARQL is the standard query language
for RDF data [32]. In a KB-QA, a natural-language question is typically answered
in two steps: (1) The question is transformed into a structured query (e.g., SPARQL
query); and (2) The structured query is executed against a KB and the answers
are returned [1, 2, 9, 41]. Many open KB provide interfaces to users. SPARQL
endpoint is one of the widely used ways. SPARQL endpoints are interfaces that
enable users to query these publicly accessible knowledge bases. As the SPARQL
1.1 specification introduces the SERVICE keyword, federated queries can be realized
by using SERVICE to access data offered by other SPARQL endpoints. However,
network instability and latency affect the query efficiency. Therefore, themost typical
way for consumers who want to query public data is to download data dump and set
up their own local SPRAQL endpoint. But data in a local endpoint is not up-to-date
and hosting an endpoint requires expensive infrastructural support.

Many research efforts have been dedicated to circumvent this problem [24, 25, 36,
38, 40] and caching is one of the popular directions [34]. While most research efforts
focus on providing a server-side cachingmechanism, being embedded in triple stores,
client-side caching has not been fully explored [25]. Our work provides a domain-
independent client-side caching framework for SPARQL endpoints to facilitate the
query answering process. Our approach is based on the observation that end users
who consume RDF-modelled knowledge typically use programmatic query clients,
e.g., software or services to retrieve information fromSPARQLendpoints [24]. These
queries usually have repetitive query patterns and only differ in specific elements of a
triple pattern (a triple pattern includes three elements: subject, predicate and object),
such as resources or literals. Moreover, they are usually issued subsequently. We
illustrate two example queries in Fig. 1 to demonstrate two similar queries. Query 1
retrieves start year (i.e., the year their acting careers started) from the actors of the
movie Rain Man and the year should be later than 1980. Query 2 requests the same
information but for a different movie (Eyes Wide Shut). The differences between
these two queries are the movie name (the underlined terms), which is the subject
element of triple pattern “movie dbpedia-owl:starring ?actor” and the year in the Filter

Fig. 1 Example of similar
queries. The queries only
differ in the movie name and
year

Searching the Big Data: Practices and Experiences … 431

expression. We call the different element (movie name here) the replacing element.
Thus, the similar queries are defined in our work as queries with same pattern and
different replacing elements in its triple patterns.

By considering these observations, we propose a caching mechanism that is based
onproactive fetching (i.e., prefetching) the query results of similar queries in advance.
Since these similar queries are potentially subsequent queries, the cached results can
accelerate the subsequent queries as the results are returned immediately rather than
being retrieved from SPARQL endpoints. Thus, the average query response time will
be reduced if the subsequent queries are already in the cache (cache hit). The key
challenge to improve the hit rate centers on how to effectively generate queries that
have a high possibility of being requested subsequently. We look into this issue and
utilizemachine learning techniques to suggest similar queries.Wefirst definedistance
function tomeasure the distance betweenSPARQLqueries by considering bothBasic
Graph Patterns (BGPs) and three keywords FILTER, BIND and VALUES. Then we
develop an approach to transformSPARQLquery to vector representation (referred to
as Feature Modeling) using the distance function we defined. We train the K Nearest
Neighbour (KNN)model with the feature vectors and suggest similar queries whose
results need to be prefetched and cached. Three dimension reduction algorithms,
Canonical Correlation Analysis (CCA) [16], Principal Component Analysis (PCA)
[18] andNon-negativeMatrix Factorization (NMF) [20] are adopted to accelerate the
nearest neighbor calculations and achieve more accurate performance during KNN.

The suggestion process runs in a background thread to the query process. The
training and mining process can be performed only once as a pre-computing step if
there are records of historical queries. During the runtime, this background approach
will give suggestions for similar queries based on the queries it has already processed.
After generating similar queries, our algorithm prefetches the results of these queries
and caches the (query, results) pairs. As the cache space is limited, less useful data
should be removed from the cache. A cache replacement algorithm is introduced
for this purpose. However, techniques for relational databases [7, 26, 29] cannot
be directly applied into our client-side caching framework because our caching is
record based, rather than traditional page-based caching algorithms. Moreover, our
client-side application is not based on RDBMS and is not designed for server side
as traditional caching algorithms do. In this work, we use a time-aware frequency
based algorithm, which leverages the idea of a novel approach recently proposed
for caching in main memory databases in Online Transaction Processing (OLTP)
systems [23]. More specifically, we use Modified Simple Exponential Smoothing
(MSES) to evaluate the frequencies of cached queries and remove the ones with the
lowest scores from the cache.

The remainder of this chapter is structured as follows. We present some back-
grounds in Sect. 2 and the framework in Sect. 3. We introduce how to identify and
suggest similar queries in Sect. 4. Cache Replacement is discussed in Sect. 5. The
evaluation and experimental results are reported in Sect. 6.

432 W.E. Zhang and Q.Z. Sheng

2 Background

Recent years, academics and industry researchers have put forth increasing efforts
in knowledge bases, aiming at equipping the search engines with the understand-
ing of users’ natural language questions. With the aid of information provided by
knowledge bases, useful facts and appropriate answers are extracted and selected
automatically and more accurately from the large corpus of Web information. We
will briefly introduce knowledge bases and its key components as well some industry
involvements in this section.

2.1 Knowledge Base Preliminary

The knowledge base is originated from the expert system or called knowledge-based
system which were first developed by Artificial Intelligence (AI) researchers. A
knowledge-based system consists of two components: a knowledge base and an
inference engine. The knowledge base represents facts about theworld. The inference
engine represents logical assertions and conditions about the world [33]. The first
knowledge-based systems represented facts about the world as simple assertions
in a flat database and used rules to reason these assertions. With the evolution of
database systems, many kinds of database, such as graph database or object-oriented
database are applied in maintaining KBs. Both structured and non-structure data can
bemanaged byKBs.KBs in different field cover data fromGovernment, publications,
life sciences, media, geographic and social network etc.1 There are also KBs that
provide general information, such as DBpedia [22], Freebase [4] and YAGO [37].
Knowledge bases are recently adopted by many Semantic Web applications because
it can provide facts and relationships as well as support inference. Semantic Web,
also has name of Web 3.0, is the next major evolution in connecting information. It
enables data to be linked between sources and to be understood by computers so that
they can perform sophisticated tasks on the behalf of human beings.2 Linked Data 3

is a project to link data on the Web. It actually connects the open knowledge bases.
Recent years, many industry giants also put their research efforts on knowledge

bases. Google acquired Freebase in 2010 and applied the inference function in its
search engine. In 2014, Freebase was replaced by WikiData project which is also
a knowledge base. IBM’s DeepQA project [10] also leverages knowledge bases to
facilitate the natural language question answering.

1http://lod-cloud.net/.
2http://www.cambridgesemantics.com/semantic-university/.
3http://linkeddata.org/.

http://lod-cloud.net/
http://www.cambridgesemantics.com/semantic-university/
http://linkeddata.org/

Searching the Big Data: Practices and Experiences … 433

2.1.1 Knowledge Base Representing

RDF is widely used as data modeling language for the knowledge bases. RDF rep-
resents a relationship by a three-element tuple, i.e., triple (subject, predicate, object)
in which subject and object are connected by predicate. A knowledge base can be
represented by a set of triples which are connected to form a graph. So knowledge
base modeled by RDF can also be called knowledge graph.

SPARQL Protocol and RDFQuery Language (SPARQL) is the query language of
RDF-modeled knowledge bases. The official syntax of SPARQL1.1 considers oper-
ators OPTIONAL, UNION, FILTER, SELECT and concatenation via a dot symbol
(.) to group patterns. VALUES and BIND are to define sets of variable bindings.
We consider these operators in this work as they appear most often in real world
SPARQL queries [42, 43]. We use B, I , L , V for denoting the (infinite) sets of blank
nodes, IRIs, literals, and variables. A SPARQL graph pattern expression is defined
recursively as follows [31]:

• A valid triple pattern T ∈ (I ∪ L ∪ V ∪ B) × (I ∪ V) × (I ∪ V ∪ L ∪ B) is a
graph pattern,

• If P1 and P2 are graph patterns, then expressions (P1 AND P2), (P1 UNION P2)
and (P1 OPTIONAL P2) are graph patterns,

• If P is a graph pattern and R is a SPARQL build-in condition, then the expression
(P FILTER R) is a graph pattern.

A Basic Graph Pattern (BGP) is a graph pattern represented by the conjunc-
tion of multiple triple patterns. It is the basic component of SPARQL queries.
Although it cannot represent all features of SPARQL 1.1, it represent the core of
the queries. Let Q = (SQ, PQ) be the query where SQ is the SELECT expression
and PQ = P1 ⊕ ... ⊕ Pn is the query pattern with⊕ ∈ {AND, UNION, OPTIONAL,
FILTER, BIND, VALUES, MINUS}. When pattern feature ⊕ ∈ {AND, UNION,
OPTIONAL, MINUS}, graph pattern Pi , i ∈ [1, n] can be recursively decomposed
to sub-level graph patterns until the graph pattern is a BGP which can further be
decomposed to triple patterns as Pbgp,i = T1 ⊕ ... ⊕ Tk , where ⊕ = AND. When
pattern feature⊕ ∈ {FILTER, BIND, VALUES}, graph pattern Pi cannot be decom-
posed to BGPs and is represented as expressions. The decomposition of a SPARQL
query is a recursive process with the result that can be regarded as a hierarchi-
cal tree. Further, it is easy to observe that query Q can also be represented as
Q = (SQ, {Pbgp, Pf ilter , Pbind , Pvalue}) where Pbgp, Pf ilter , Pbind , Pvalue are BGP,
FILTER, BIND andVALUE patterns in PQ respectively. Note that each graph pattern
can appear multiple times and in different depths in a query pattern which are not
represented in our notation.

2.1.2 Querying Knowledge Base

Querying knowledge base remains a challenging topic among researchers and prac-
titioners. The existing KB-QA systems can be categorized into curated KB-QA sys-

434 W.E. Zhang and Q.Z. Sheng

tems and open KB-QA systems. A curated KB-QA system is built upon a curated KB
(e.g., Freebase and DBpedia), which is collaboratively and manually created [41].
The data schema is predefined. This type of KB-QA has long history with a num-
ber of implementations (e.g., DEANNA [39] and ParaSempre [3]). Open KB-QA
system has been recently proposed [9]. An open KB is a large collection of n-tuple
assertions that are automatically extracted fromweb corpora by means of open infor-
mation extraction (open IE) techniques [2, 8, 11, 17]. The curated KB-QA is more
precise and accurate while the open KB-QA does not require fixed schema and can
extract up-to-date information automatically.

We focus on facilitating QA against curated KB in this chapter. We will describe
a framework which works like a proxy layer between SPARQL endpoint, the knowl-
edge bases’ open interface, and the query issuer.

3 The Framework of Cache-Based Knowledge
Base Querying

Figure2 illustrates the cached-based client-side querying framework for SPARQL
endpoint. The framework consists of two processes: Querying Process and Sugges-
tion Process. The suggestion process is a background process that will not take the
resources of querying process. In querying process, when a new query q is issued,
the framework first checks if the query recording is enabled (➀). The recorded his-
torical queries will form the training queries in the suggestion process. Then the
framework will check if an identical query (either cached as an issued query or a
suggested query) has been cached (➁). If the cache is not hit (i.e., the query is not in
the cache), query result will be fetched from SPARQL Endpoint (➂). The result will
be returned to user (➃) and the (query, result) pairs will be put into cache module
(➄). If the query q is not in the cache, its result will be fetched from cache directly
(➅) and then be returned to the user (➆). The cachemodule maintains the cache and a
cache replacement algorithm. Due to the limit space of the cache, cache replacement
algorithm is applied to take care of which data should be kept in the cache and which
should be removed from the cache when it is full. In the suggestion process, similar
queries to q are suggested based on the training queries. The results of these similar
queries are prefetched (➇) and stored in the cache (➈). Training queries are part of
historical queries the user had issued and had been trained ahead of the querying and
suggestion process.

4 Similar Queries Suggestion

Cache is designed on the purpose of facilitating the overall querying speed. We
propose a framework to cache the similar queries in order to further improve the hit
rate of cache. In this section, we discuss how to suggest the similar queries to current
issued query. The three main steps in the suggestion process are as follows.

Searching the Big Data: Practices and Experiences … 435

C
ac

he
-b

as
ed

 Q
ue

ry
in

g
Fr

am
ew

or
k

SPARQL Endpoint

User

Y

N

Y

Fetch
Results

Query
is cached?

Query
recording?

Cache

Cache Replacement

Cache Module

 Fetch
Results

results query q

Record
historical
queries

results
1

2

3

5

6

4

7

Querying Process

Prefetch
Results

Training
Queries

Suggested
Queries for q

Suggestion Module

8

9

Suggestion Process

Fig. 2 Cached-based client-side querying framework for SPARQL endpoint

• Step 1:FeatureModeling. The key challenge to usemachine learning algorithms is
to model the SPARQL query to feature vector because many learning algorithms
require vector representation of input data. The feature modeling for SPARQL
query is to transform the query to a vector, where each attribute in the vector
denotes a feature of the query. Two challenges of this step are how to define the
distance function and how to transform the query to a vector.

• Step 2: Training. After obtaining the feature vectors, we need to train a suggestion
model using historical queries as the training set. A trained model is the output.

• Step 3: Suggestion. When a new query q arrives, we first transform q to a feature
vector using techniques introduced in Step 1. Then we put the vector to the trained
suggestion model. Similar queries are suggested as output of the trained model.

We will focus on the discussion of Step 1 as it is the most challenging part of the
framework and briefly discuss Step 2 and Step 3.

4.1 Query Distance Calculation

Before discussing the featuremodeling approach,wefirst define the distance function
which computes the distance between two given queries. The distance is defined by
calculating the distance between patterns of the two queries:

d
(
PQ , P

′
Q

)
= d

(
Pbgp, P

′
bgp

)
+ d

(
Pf ilter , P

′
f ilter

)
+ d

(
Pbind , P

′
bind

)
+ d

(
Pvalue, P

′
value

)

(1)

436 W.E. Zhang and Q.Z. Sheng

os? p o?s? p

(?s, p, o) (?s, p, ?o)

s:subject
p:predicate
o:object

Fig. 3 Triple patterns for example queries in Fig. 1. The two queries contain two BGPs (?s, p, o)
and (?s, p, ?o)

where PQ contains Pbgp, Pf ilter , Pbind , Pvalue and P
′
Q contains P

′
bgp, P

′
f ilter , P

′
bind ,

P
′
value. d

(
Pbgp, P

′
bgp

)
denotes the BGP distance between BGPs of the two queries.

d
(
Pf ilter , P

′
f ilter

)
, d

(
Pbind , P

′
bind

)
and d

(
Pvalue, P

′
value

)
are distances of all Filter

expression, Bind expression and Value expression of the two queries respectively.

4.1.1 Distance Between Basic Graph Patterns

SPARQL queries are graph-structured. Figure3 illustrates the graph representation
of two triple patterns (?s, p, o) and (?s, p, ?o). s denotes the subject, p denotes the
predicate and o denotes the object, The question mark indicates that the correspond-
ing component is a variable. However, it is hard to tell the differences of the two
graphs, as they are structurally identical.

In our work, we formulate the problem of modeling BGPs with structurally dif-
ferent tripe patterns as follows:

Definition 1 (BGP Graph Modeling) Given Pbgpi = {tp1, tp2, ..., tpn} denote the
BGPs of an SPARQL query, tpk, k ∈ (1, n) is a triple pattern rooted at Pbgpi .
ged (go, gd) represents the Graph Edit Distance (GED) between graph go and graph
gd . BGP graph modeling is the task that models each tpk to a graph gtpk satisfying
ged

(
gtpk , gtpl

)
> 0 when k �= l.

To address this problem, we propose to map the triple patterns to graphs that are
able to uniquely represent each of the eight triple patterns. Figure4 shows all the
eight triple patterns and the corresponding graphs that are proposed by us. The black
circles denotes conjunction nodes for clarity. They are not colored in graphmodeling.
To exemplify, we model the triple patterns of BGPs in the example queries in Fig. 1,
to a graph, which is depicted in Fig. 5.We then use GED [35] as the distance between
graphs which represent BGPs. GED between two graphs is the minimum amount
of edit operations (i.e., deletion, insertion and substitutions of nodes and edges)
needed to transform one graph to the other. We take the edit path from (?s, p, o) to
(?s, p, ?o) in Fig. 4 as an example, and the steps are shown in Fig. 6. The GED
between these two graphs is two. When d

(
PQ, PQ′

) = 0, it indicates query Q and
Q

′
are structurally the same.
The graphs of BGPs in the two example queries (Fig. 1) are the same. Their BGP

distance (i.e., GED) equals to 0, namely d
(
Pbgp1 , Pbgp2

) = 0 in this case.

Searching the Big Data: Practices and Experiences … 437

Fig. 4 Mapping triple
patterns to graphs. 8 types of
triple patterns are mapped to
8 structurally different
graphs. Black nodes are
conjunction nodes for clarity

(s, p, ?o)(?s, p, o)(s, p, o)

(s, ?p, ?o)(s, ?p, o)

(?s, p, ?o)

(?s, ?p, ?o)(?s, ?p, o)

Fig. 5 Graph modelling for
BGPs in example queries

d

(s, p,?o)

group

(?s, p,?o)

(s, p,?o)
(?s, p,?o)

Fig. 6 Graph edit path from
(?s, p, o) to (?s, p, ?o)

(?s, p, o) (?s, p, ?o)

4.1.2 Distances Between Expressions

We calculate d
(
Pf ilter , P

′
f ilter

)
, d

(
Pbind , P

′
bind

)
and d

(
Pvalue, P

′
value

)
only when

d
(
Pbgp, P

′
bgp

)
= 0. We define distance between two FILTER expressions as half of

their levenshtein distance when the variables in these two expressions are identical,
otherwise the distance is a fixed value 1. Thus the distance is in the range of [0, 0.5]
or equals to 1.

d
(
Pf ilter,i , P

′
f ilter,i

)
=

⎧
⎪⎨

⎪⎩

levenshtein(E(i),E
′
(i))

2max(length(E(i)),length(E ′
(i)))

,

i f V (i) = V
′
(i)

1, else

(2)

where E(i) and E
′
(i) represent the FILTER expression for Pf ilter,i and P

′
f ilter,i . V (i)

and V
′
(i) are variables in these two FILTER patterns respectively. When there are

multiple FILTER expressions that can be compared, the total difference is defined as:

d
(
Pf ilter , P

′
f ilter

)
=

m∑

i=1

d
(
Pf ilter,i , P

′
f ilter,i

)
(3)

438 W.E. Zhang and Q.Z. Sheng

FILTER expressions in Query 1 and Query 2 are similar as the distance is 0.05 using
Eq.3. So d

(
PQ1, PQ2

) = 0.05 (Eq.1).
We can also have similar functions for BIND and VALUE patterns.

4.2 Feature Modeling

Using the distance function introduced above (Eq.1), it is intuitive to suggest similar
queries to a given query q by calculating the distances between q and each query in
training set. Then rank the distance scores and find the top K similar ones. However,
this method is time consuming as the calculation of distances between q and each
query in training set requires large amount of computation. Therefore, we leverage
machine learning techniques to facilitate the suggestion process.

It is worth mentioning that the work in [15] proposes an approach to transform
SPARQL query to vector representation. For comparison, we firstly introduce this
approach, which we refer to as Cluster-Based Feature Modeling (Sect. 4.2.1) and
then discuss our approach, the Template-Based Feature Modeling (Sect. 4.2.2).

4.2.1 Cluster-Based Feature Modeling

In cluster-based feature modeling, distances between each pair of queries in the
training set are calculated using only BGP distance. Then k-medoids algorithm [19]
is utilized to cluster the training queries by using distance scores that are calculated.
The center queries of each cluster are selected and the distance scores between each
center query and a query q is obtained to form a feature vector of q, where each score
is regarded as an attribute of the feature of q. Thus the number of clusters equals
to the number of dimensions (i.e., the number of feature attributes) of the feature
vector of q. Figure7 illustrates the cluster-based feature modeling. di is the distance
between query q and the center query of the cluster Ci , and it represents a feature of
q. The cluster-based modeling is based on the distances among each pair of all the
training queries.

4.2.2 Template-Based Feature Modeling

Thecluster-based featuremodeling requires distances calculationbetween all queries.
Moreover, the clustering process adds additional time consumption. To reduce the
feature modeling time, we are motivated to develop a method that requires less time
for computing distances and does not require the clustering process. So we propose
to replace the center queries used in cluster-based feature modeling with represen-
tative queries that are generated by benchmark templates. Specifically, we generate
queries from 18 out of 22 valid templates in the DBPSB benchmark [27]. We refer to
these queries as template queries. By recording the distance scores between a query

Searching the Big Data: Practices and Experiences … 439

Training Queries

q...

C1

C2

Cn

d1

d2

...

dn

d1

d2

dn

D1 D2 D(n-1)n/2...

dI : Distance between q and center query of Ci

Ci : Cluster

Dj : Distance between training queries

Fig. 7 The cluster-based feature modeling

Fig. 8 The template-based
feature modeling

q

d’1

d’2

...

d’18

d’1

t1

t2

t18

d’2

d’18

DR
(CCA
PCA
NMF)

f’1

f’2

...

f’r

ti : Template query
d’i : Distance between q and ti
f’j : Feature after dimensional reduction on d’1 to d’18

q with 18 template queries, we obtain a 18-dimension feature vector for q. The
computation is then drastically reduced from O(n2) in cluster-based feature model-
ing to O(n), where n is the number of queries. Therefore, our approach is feasible
to apply to large size of training set. In addition, we further reduce the dimension
of feature vectors leveraging three dimensional reduction algorithms, namely PCA,
CCA and NMF. PCA aims to find a linear transformation to project the original data
to a lower-dimensional space which is as informative as possible to capture as much
of the variance of the original data in an unsupervised manner. CCA calculates the
coefficient among all features and chooses themost uncorrelated features. NMFfinds
approximate decomposition of original data matrix and thus reduce the dimension
by storing the two decomposed lower dimensional matrices. We implement them to
reduce the dimension of query feature matrix.

Figure8 depicts the template-based featuremodeling. t1 to t18 are template queries.
d1

′ tod18′ are distances betweenqueryq and18 template queries. f1′ to fr
′ are features

that are obtained after applying dimensional reduction algorithm (i.e., CCA, PCA or
NMF), where r < 18.

After the feature vectors are obtained from Step 1, we train a suggestion model
with the feature vectors of training queries in Step 2. KNN is selected as the sugges-
tion model because it outperforms Support Vector Machine Regression (SVR) [15].
Specifically, KNN is modified to a clustering algorithm and for each cluster, a KNN

440 W.E. Zhang and Q.Z. Sheng

model is trained. In each KNN, Euclidean Distance is the distance measurement and
a K Dimensional Tree (KD Tree) [12] is built to compute the nearest neighbors.
When a new query is issued, we choose its K nearest neighbors obtained from Step
2 as suggested queries in Step 3.

5 Cache Replacement

Given the similar queries for a query q, we prefetch the results of these queries and
put the (qi , ri) pairs into the cache during the caching process. As the cache has limit
space, the obsolete data should be removed from the cache to give space to new data.
In this work, we consider the recently most hit queries in the cache as hot queries.
Hot queries will be kept in the cache, whereas queries in the cache that do not belong
to hot queries are considered as obsolete, which will be removed from the cache.
In this section, we focus on cache replacement and discuss how we realize cache
replacement. We first introduce Exponential Smoothing (ES) and our modification
Modified Simple Exponential Smoothing (MSES). Then we use MSES to process
the historical queries in a forward way to compute hit frequencies for each query.
According to the estimation, we rank the frequencies and consider those with the
lowest values as obsolete, which will be removed from cache (Sect. 5.1). During the
query processing, a new estimation will be made both for queries that are in the
estimation record and for new queries. To update the cache, we develop two cache
replacement strategies (Sect. 5.2).

5.1 Modified Simple Exponential Smoothing

The Exponential Smoothing (ES) is a technique to produce a smoothed data presen-
tation, or to make forecasts for time series data, i.e., a sequence of observations [13].
It can be applied to any discrete set of repeated measurement and is currently widely
used in smoothing or forecasting economic data in the financial markets. Equation4
shows the simplest form of exponential smoothing. This equation is also regarded as
Simple Exponential Smoothing (SES).

Et = α ∗ xt + (1 − α) ∗ Et−1 (4)

where Et stands for the smoothed observation of time t , xt stands for the actual
observation value at time t , and α is a smoothing constant with α ∈ (0, 1). From this
equation, it is easy to observe that SES assigns exponentially decreasing weights as
the observation becomes older, which meets the requirement of selecting the most
frequently and recently issued queries. In our approach, we exploit SES to estimate
access frequencies of queries. The reason behind our choice of SES is its simplicity
and effectiveness [23]. Here xt represents whether the query is hit at time t , thus it
is either 1 if a cache hit; or 0 otherwise. Therefore we can modify the Eq.4 to:

Searching the Big Data: Practices and Experiences … 441

Et = α + Etprev ∗ (1 − α)tprev−t (5)

where tprev represents the time when the query is last hit and Etprev denotes the
previous frequency estimation for the query at tprev [23]. The accuracy of ES can be
measured by its standard error.We give the derivation of the standard error according
to Eq.5 and provide a theoretical proof that SES achieves better hit rates than the
most used cache replacement algorithm LRU-2 in [43].

Weperform cache replacement based on the estimation score calculated byMSES.
Each time a new query is executed, we examine the frequency of cache hit of this
query using MSES. If it is in the cache, we update the estimate for it. Otherwise, we
just record the new estimate. We keep the estimate records for all processed queries
if query recording is enabled. When the top H estimations are changed, the cache
will be updated to reflect the new top H queries. Lower rank queries will be removed
from the cache.

5.2 Replacement Algorithms

We use a forward algorithm to identify hot queries, which has been used to identify
hot triples [43]. In this way, we regard the rest of the queries in cache are invalid. This
algorithmworks as follows. It process the historical queries from a beginning time to
an ending time.Aparameter H represents the number of queries to be classified as hot.
The output is the H hot queries thatwill be cached.When encountering a hit to a query
at time t , the algorithm updates this query’s estimation using Eq.5. When the scan is
completed, the algorithm ranks each query by its estimated frequency and returns the
H triples with the highest estimates as the hot set. There are three main advantages
of the forward algorithm. Firstly, it is simple as we only need to choose a starting
time and then calculate the new estimation when a query is hit again. Secondly,
the algorithm enables us to update the estimation and the cache immediately after
a new query is executed based on the previously recorded estimation. Thirdly, this
algorithm implements an incremental approach that helps identify thewarm-up stage
and the warmed stage of the cache.

However, this algorithm also has several drawbacks. Specifically, it requires stor-
ing thewhole estimation recordwhich is a large overhead. Furthermore, the algorithm
also consumes a significant amount of time when calculating and comparing the esti-
mation values. To solve these issues, we consider improving the algorithm in two
ways. One possible solution is that we do not keep the whole records. Instead we just
keep a record after skipping certain ones. This is a naive sampling approach.We vary
the sampling rate but it turns out that the performance of this sampling approach is
not desirable. The other possible approach is that we maintain partial records by only
keeping those within a specified range of time. Assume last_hit_time is the time a
query is last hit. We find the earliest last_hit_time: tearliest in the hot triples and only
keep the estimation records whose last_hit_time is later than tearliest . Thus we only
keep estimation records from tearliest to the hit time of currently processed query.

442 W.E. Zhang and Q.Z. Sheng

We provide two ways for cache replacement based on the two possible improved
forward algorithms, namely the Full-Records Based Replacement and the Improved
Replacement. In the full-records based replacement, each time when a new query is
executed, we examine the frequency using MSES. If it is in the cache, we update the
estimation for it. Otherwise, we record the new estimation. We keep the estimation
records for all processed triples. When the top H estimations are changed, the cache
will be updated to the new top H hot queries. In the improved replacement, we only

Algorithm 1: Algorithm for Improved Caching Replacement
Data: Records, cachedQueryies, newAccQuery
Result: Updated cachedQueryies
begin

1 tlatest ←− max(last_hit_time, cachedQueryies)
2 tearliest ←− min(last_hit_time, cachedQueryies)
3 estmax ←− max(est, cachedQueryies)
4 estmin ←− min(est, cachedQueryies)
5 Records ←− get Partial Records(tlatest , tearliest)
6 if newAccQuery in cachedQueryies then
7 calculateNewEstimation()

8 Update est, last_hit_time in Records
9 tlatest ←− newAccQuery.last_hit_time

10 tearliest ←− get Earliest (cachedQueryies)
11 remove from Records the records with last_hit_time less than tearliest

else
12 if newAccQuery in Records then
13 calculateNewEstimation()

14 Update est, last_hit_time in Records
15 if est between estmin and estmax then
16 remove from cachedQueryies the records with estmin with minimum last_hit_time
17 addToCached(newAccQuery)
18 tlatest ←− newAccQuery.last_acc_time
19 tearliest ←− get Earliest (cachedQueryies)
20 remove from Records the records with last_acc_time less than tearliest

else
21 addToRecords(newAccQuery)

keep estimation records from tearliest to the access time of the current processing
query. Algorithm 1 describes the details on updating the cache by using part of
the estimation records. The input of the algorithm is the whole estimation records,
triples in cache and a new estimated triple. Line 1–4 initialize variables that represent
the latest hit time, the earliest hit time, the minimal estimation and the maximum
estimation in cached queries (i.e., the hot queries). Then the algorithm gets partial
estimation records that are within the time range between tearliest and the hit time of
the last processed query in the log (Line 5). If the new estimated query is in the cache,
it shows a cache hit, and the algorithm updates the new estimation calculated by Eq.5
and the last_hit_time of this triple in estimation records. It calculates the new tearliest
and tlatest if the new estimated triple holds the previous tearliest and tlatest . If tearliest
is changed, estimation records with last hit time earlier than tearliest will be removed
(Line 6–11). If the new estimated query is not in the cache, which is a cache miss,

Searching the Big Data: Practices and Experiences … 443

the algorithm checks whether the new estimated query is in the estimation records.
If so, it updates its estimation and last_hit_time in records. In addition, the cache
needs to be updated if the estimation of the new estimated query is in the range of
(estmin , estmax). This means it becomes a new hot query that should be placed into
the cache. When the cache is updated, new tearliest and tlatest will be calculated, and
the estimation records outside the time range will be removed (Line 15–20). If the
new estimated query is not in the estimation records, it needs to be added to the
records (Line 21).

6 Implementation and Experimental Evaluation

This section is devoted to the validation and performance study of our proposed
approach. We first describe the setup of our evaluation environment (Sect. 6.1). Then
the experimental results are discussed, including the evaluation of the effectiveness
of our approach in terms of average hit rate, average query time and space usage
(Sects. 6.2–6.4).

6.1 Setup

6.1.1 Datasets

We used real world queries gathered from USEWOD 2014 challenge. We analyzed
the query logs from DBPedia’s SPARQL endpoint4 (DBpedia3.9) and Linked Geo
Data’s endpoint5 (LinkedGeoData). The log files from these two datasets have the
same format with 4 parts: anonymized IP address, time stamp, query, user ID. To
extract queries, we processed the original query by decoding, extracting interesting
values (IP, date, query string), identifying SPARQL queries from query strings and
removing invalid queries (i.e., incomplete queries and queries with syntax errors
according to SPARQL1.1 specification). We focused on SELECT queries in the
experiments and retrieved 198,235 valid queries from DBpedia3.9 and 1,790,047
valid queries from LinkedGeoData. Within the SELECT queries, except for patterns
which can be finally decomposed to BGPs (e.g., AND, UNION, OPTIONAL and
MINUS), FILTER, VALUES and BIND are used, especially for FILTER, which
occurs in 83.97% SELECT queries in DBpedia3.9 query logs and 50.72% SELECT
queries inLinkedGeoData [42]. This actually provides a strong evidence that FILTER
expressions should not be ignored when calculating similarity between queries.

4http://dbpedia.org/sparql/.
5http://linkedgeodata.org/sparql.

http://dbpedia.org/sparql/
http://linkedgeodata.org/sparql

444 W.E. Zhang and Q.Z. Sheng

6.1.2 The System

We set up our own SPARQL Endpoint by installing local Virtuoso server and loading
datasets into the Virtuoso. The server has the configuration of 64-bit Ubuntu 14.4
with 16GBRAMand 2.40GHz Intel Xeon E5-2630L v2 CPU. Our code runs on a PC
with 64-bit Windows 7, 8GB RAM and 2.40GHZ Intel i7-3630QM CPU using Java
SE7 and Apache Jena-2.11.2. We implemented GED using a suboptimal solution
integrated in the Graph Matching Toolkit.6

6.2 Performance of Cache Replacement Algorithm

We firstly evaluated our cache replacement algorithm MSES, because it would be
used in the following experiments. To evaluate the performance of MSES, we imple-
mented various algorithms including the forward MSES, an Improved MSES, the
Sampling MSES, and LRU-2. LRU-2 is a commonly used page replacement algo-
rithmwhichwe implemented based on record rather than page.All of LinkedGeoData
valid queries obtainedwere processed in this experiment because the size of this query
set is much larger than DBpedia3.9 query set. Thus we can observe the difference
between Improved MSES and MSES algorithms. As the Exponential Smoothing has
only one parameter α, the choice for α would affect the hit rate performance. We
have verified that when α = 0.05, the cache hit rate shows better performance [43].

Figure9a shows the hit rates achieved by the four algorithms we implemented.
It should be noted that in the experiment, the caching size was set to 20% of the
total historical queries and α was set to 0.05 for MSES and its variants. We chose
20% as the caching size because it is neither too large (e.g., >50%) to narrow the
performance differences among algorithms, nor too small (e.g., <10%) leading to
inaccurate performance evaluation due to insufficient processed data. From thefigure,
we can see that theMSES and ImprovedMSES have the same hit rate until they have
processed about 1.4 million RDF triples, after whichMSES has a higher hit rate than
Improved MSES. This is because MSES maintains the estimations for all processed
records while the Improved MSES only keeps part of the estimations. The changing
point denotes that from which, the Improved MSES maintains partial volume of
estimation records. From the figure, we can also see that the Sampling MSES does
not perform well. This figure only shows the hit rate of sampling MSES with the
sampling rate of 50%, which is expected to have a high hit rate. The LRU-2 algorithm
has the lowest hit rate of all the algorithms. The hit rates of all algorithms start from 0
and reach their first peak at certain points, and then go down and up. The direction to
the first peak shows the warm-up stage and the rest of the lines are the warmed stage.
This illustrates that we exploit an incremental approach, which includes a warm-up
stage to calculate the hit rate.

6Graph Matching Toolkit: http://www.fhnw.ch/wirtschaft/iwi/gmt.

http://www.fhnw.ch/wirtschaft/iwi/gmt

Searching the Big Data: Practices and Experiences … 445

0 2 4 6 8 10 12 14 16 18
x 105

0

10

20

30

40

50

60

70

Queries Processed

H
it

R
at

e
(%

)
MSES
Sampling MSES
Improved MSES
LRU−2

(a) Different Cache Replacement

10 20 40 50
0

100

200

300

400

500

600

700

800

900

Percentage of Hot Queries (%)

M
ax

im
um

 R
ec

or
ds

 S
iz

e
(K

B
)

MSES
Improved MSES
Hot Size

(b) Space Over head of MSES

Fig. 9 Cache replacement performance (LinkedGeoData). Different cache replacement algorithms
affect the hit rates largely (a). The improved MSES reduces the space overhead largely compared
to the MSES (b)

Figure9b gives the measurement of space usage by recording the estimations. As
discussed before, MSES performs better than the Improved MSES. However, it con-
sumesmore storage space tomaintain the estimation records for all processed triples.
It also takes longer time to check the cache. Figure9b shows the maximum space
consumption for each algorithm. Note that we used all valid LinkedGeoData queries
in this experiment. The columns are classified into four groups which represent the
four different percentages of hot queries to all processed queries respectively. In each
group, the left column represents the maximum space used by MSES, including the
hot queries and the estimation records. Themiddle column represents the space usage
of the Improved MSES that also includes the hot queries and the estimation records.
The right column represents the size of the hot queries. From this figure, we can see
that the Improved MSES consumes less space.

6.3 Comparison of Feature Modeling Approaches

In the experiments of this section, we compared our feature modeling approach (i.e.,
template-based feature modeling) with the state-of-the-art approach (i.e., cluster-
based feature modeling), and evaluated the performance under the scenarios of
applying and without applying suggestion/prefetching. We applied the dimensional
reduction algorithms on both template-based feature modeling and cluster-based
feature modeling.

Because the time consumption of cluster-based approach is tremendous, we did
not use all valid queries as the training set.We randomly chose 21,600 training queries
and 5,400 testing queries from the two query sets separately. The cache replacement
algorithm we used in all testing cases is Improved MSES and we chose α = 0.05.
Because the larger size of cache, the higher hit rate would achieve, we only show
experiment results when the number of queries in cache is set to 1,000.

446 W.E. Zhang and Q.Z. Sheng

2 3 4 5 6 7 8 9
50

55

60

65

70

75

80

85

90

Dimension

A
ve

ra
ge

 D
is

ta
nc

e
to

 T
es

t Q
ue

ry

PCA
CA
NMF

(a) Distances (DBpedia3.9)

2 4 6 8 10 12 14
40

45

50

55

60

65

70

75

80

Dimension

A
ve

ra
ge

 D
is

ta
nc

e
to

 T
es

t Q
ue

ry

PCA
CA
NMF

(b) Distances (LinkedGeoData)

Fig. 10 Performance comparison among using CCA, PCA and NMF to reduce dimension
(Template-based)

DBpedia3.9 LinkedGeoData
0

0.5

1

1.5

2

2.5

3

3.5

4 x 104

3.345e+04

2.341e+04

1109 758A
vr

ag
e

Q
ue

ry
 T

im
e

(s
ec

) Cluster−Based
Template−Based

DBpedia3.9 LinkedGeoData
0

50

100

150

200

250

300

350

400
355

234
251

158

A
vr

ag
e

Q
ue

ry
 T

im
e

(m
s)

Cluster−Based
Template−Based

(b) Average Query Time(a) Training Time on 21,600 Training Queries

Fig. 11 Time comparison on feature modeling approaches

6.3.1 Performance of Template-Based Feature Modeling

In cluster-based feature modeling, we also leveraged dimensional reduction algo-
rithms. The performance of different algorithms is shown in Fig. 10. It is shown
that NMF still outperforms other algorithms in extracting the most representa-
tive features. Figure11 gives the impact of two feature modeling algorithm on
time consumption. Figure11a compares training time on 21,600 training queries.
Cluster-based approach requires 33,446s, which is more than 9h for DBPedia3.9
queries, and 23,405s (i.e., more than 6h) for LinkedGeoData queries. Template-
based approach largely reduces the time to 1,109 and 758s, respectively. Figure11b
evaluates the average query time. Template-based approach also outperforms cluster-
based approach.

Searching the Big Data: Practices and Experiences … 447

Table 1 Performance comparison

ASQC No Cache SECF

Hit 72.63% NA 76.65%

AvgTime 264ms 625ms 251ms

Space 7.15MB NA 7.15MB/0.45KB

Table 2 Server Performance

ASQC No Cache SECF

AvgFreeMem 217.87MB 224.30MB 203.74MB

AvgIO 11.49 7.72 21.84

AvgCPU 9.37ms 10.09ms 10.68ms

6.4 Performance Comparison with the State-of-the-Art Work

We also compared our work with the Adaptive SPARQL Query Cache (ASQC)
introduced in [25], as it is the first and complete work to cache SPARQL query in a
client-side manner.

6.4.1 Systems Performance Comparison

In this experiment, we compared the average hit rate, average query time and space
usage between ourwork SECFandASQC.We also gavemeasurementwhen no cache
was used. To compare our approach with ASQC, we modified the code of ASQC7

to access our datasets. We performed the experiment on DBpedia3.9 dataset. We
used Cluster-Based Feature Modeling, and Improved MSES with α = 0.05. Table1
presents the results.ASQChave slightly lower hit rate (72.63%) thanSECF (76.26%).
ASQC takes 264ms in average for one query and SECF takes 251ms.When no cache
is implemented, the average query time increases to 625ms. We did not include
prefetching time as it is in separate thread. Space consumption evaluates how much
memory the cache uses. In SECF, the total usage (before slash) for caching 1,000
queries, as shown in Table1, includes cached queries and answers as well as the esti-
mation records for cache replacement (after slash).We used the same implementation
for cache in order to compare. The numbers indicate that most space are consumed
by cached (query, result) pairs.

7http://wiki.aksw.org/Projects/QueryCache.

http://wiki.aksw.org/Projects/QueryCache

448 W.E. Zhang and Q.Z. Sheng

6.4.2 Server Overhead Comparison

In order to evaluate the impact of cache on the endpoint server, we monitored the
memory and CPU usage as well as I/O on the server. We captured the usage every
20s until the querying ends. Table2 shows the average free memory (AvgFreeMem),
average I/O (AvgFreeMem) and average CPU time (AvgCPU) including systemCPU
and user CPU time. We only present the result on querying DBpedia3.9 dataset
due to limit space. From the result we find out that SECF and ASQC cause higher
computation overhead (I/O and CPU) and memory usage on server compared to
querying without cache and ASQC performs slightly better than SECF with more
free memory (217.87 vs 203.74MB), less I/O (11.49 vs 21.84) and less CPU time
(9.37 vs 10.68ms). It is because that SECF requires prefetching results for similar
queries from server which leads to additional overhead.

6.5 Experimental Conclusion

We conclude some key observations from experiments in this section. When apply-
ing our suggestion and caching process, the overall hit rate improves which demon-
strates the effectiveness of our caching framework. Compared to the state-of-the-art
work ASQC, our work outperforms ASQC in terms of the average query time, but
requires more system overhead on server. The new cache replacement algorithm we
proposed in this work, namely MSES, achieves greater cache hit rate than the most
used cache replacement algorithm LRU-2, thus it contributes to reduce the overall
querying time. Improved MSES further reduces the space overhead by considering
a part of estimation records without losing cache hit rate. The suggestion accuracy
(evaluated by average distances in KNN) is improved when introducing dimensional
reduction algorithms. NMF gives the best performance among the three most com-
mon algorithms. This section is devoted to the validation and performance study of
our proposed approach. We first describe the setup of our evaluation environment
(Sect. 6.1). Then the experimental results are discussed, including the evaluation of
the effectiveness of our approach in terms of average hit rate, average query time and
space usage (Sects. 6.2–6.4).

7 Related Work

Ourworkmainly addresses caching problems in two research areas, namely Semantic
Caching and Query Suggestion. In this section, we review the recent representative
works that are related to our work.

Searching the Big Data: Practices and Experiences … 449

7.1 Semantic Caching

Semantic Caching involves techniques that keep previously fetched data for past
queries. If subsequent queries use the same data, results can be returned immediately.
It was originally developed for relational databases. Godfrey and Gryz [14] present a
predicate-based caching schema in client server, which is a general logical foundation
for semantic query caching. It is a comprehensive framework that addresses multiple
issues regarding build and recover cache and the notions of semantic overlap and
independence. Dar et al. [6] present a semantic schema of caching for client-server
systems. They cache semantic regions rather than tuples or pages. They provide
distance-based cache replacement policy, in which the distance that is farthest from
the client’s current location is discarded from cache. This approach is designed for
SELECT queries.

In recent years, the semantic caching technique has been extended to triple stores
that manage SPARQL queries. The work of Martin et al. [25] is the first step towards
semantic caching for SPARQL queries, in which both the complete triple query result
and the application object are cached. The work essentially builds a proxy layer
between an application and a SPARQL endpoint. the cache layer considers only
the identical queries issued afterwards and identical application object that could
be potentially used. Shu et al. [36] improve this approach in a content-aware way
by introducing query containment checking which evaluates whether a query can be
answered by the result of a cached query. Thus not only the identical queries, but also
the queries which succeed in the containment checking can utilize the result of the
cached queries. But this method introduces large overhead on containment checking
itself. Yang andWu [40] develop an approach that caches intermediate result of basic
graph patterns in SPARQL queries. It decomposes the query into BGPs and evaluates
if the result of any BGP or join of BGPs is cached. The cached results which are
hit will be returned and joined with the other parts of the query to form the final
query result. This work does not address the impact of different join orders. Very
recently, Papailiou et al. [30] introduce canonical labeling to identify isomorphic
subgraphs in SPARQL query patterns, which are cached for subsequent querying.
This solution implements a caching layer on top of the distributed partitions and
dynamically updating the contents of the cache.

The Linked Data Fragments (LDF) approach [38] aiming at improving data avail-
ability can also be regarded as caching technique as it caches fragments of queryable
data from servers that can be accessed by clients. So that each client is able to process
SPARQL queries on replicated fragments cached from servers. This approach can
be potentially used for federated queries. However, performance degradation issue
needs to be addressed.

450 W.E. Zhang and Q.Z. Sheng

7.2 Query Suggestion

Query suggestion is an interactive approach used in search engines to better under-
stand users’ information needs. It plays an important role in improving the accuracy
of searching. Query suggestions are usually made by mining query logs and session
records of Web users’ searching history [5]. They either aim to find similar queries
in search logs and use those queries as suggestions, or identify pairs of queries which
co-occur in the same query sessions.

Researchers recently have introduced these mining techniques into SPARQL
processing. Lehmann et al. [21] propose a novel solution for querying knowledge
bases. It leverages supervised machine learning framework to suggest SPARQL
queries based on examples previously selected by users. This approach narrows
the range of possible answers asked by users. With the learning techniques, no prior
knowledge of the underlying schema or the SPARQL query language is required.
More recently, Hasan [15] uses a machine learning method to predict the perfor-
mance of SPARQL query performance. Specifically, a suggestion model is trained
with previously issued queries and then based on this, the query time for new queries
can be predicted. In ourwork,we extend this approach to suggest similarly-structured
queries and prefetch and cache their answers.

Query relaxation (also called query expansion and query augmentation) can also
be regarded as a kind of query suggestion. Its aim is to improve the recall of query. In
this way, it accelerates the overall query processing. It discovers and suggests related
information based on the expansion of original query. Features with similar meaning
need to be identified and suggested to generate expanded query. In recent years,
query expansion techniques have been used by several research efforts that focus on
topics of SPARQL queries. Elbassuoni et al. [8] propose multiple types of relaxation
to improve the recall of entity-relationship search. Lorey and Naumann [24] cluster
similar SPARQL queries to different templates in order to detect recurring patterns in
queries. These templates can be used to expand queries for query processing. Fokou
et al. [11] investigate query relaxation over RDF data and focus on identifying parts
of SPARQL query that are responsible of the failure of the query. It aims at providing
users with alternative answers instead of an empty result.

8 Discussion and Conclusion

We discuss the issues from our experience in this work to give an idea to the prospec-
tive readers. We then finally give the conclusion.

• Training Size. In the training process, the larger the size of the training data, the
better performance we can get. The reason is that more data variety is seen and
the model will be less sensitive to unforeseen queries. However, in practice, it is
time consuming to train queries of large size, although our approach has achieved
great improvements in reducing the training and suggestion time.

Searching the Big Data: Practices and Experiences … 451

• Space Overhead. As memory space is used for cache are mostly consumed by
cached (query, result) pairs, directly caching the pairs in text can be improved by
introducing data compression techniques to reduce the space consumption. How-
ever, how to effectively compress and decompress the data and provide effective
indexing algorithms requires more research effort.

• Dynamic versus Static Mining. Our approach is based on periodically training of
historical queries. Therefore, online training is left undiscussed in this work and
will be an interesting topic to put efforts on.

• Sever Overhead. Compared to the state-of-the-art work, our work introduces larger
overhead to server side. This is due to the fact that the prefetch process requests
data in an additional thread to the querying process. We do not consider how to
optimize the server performance in thiswork becauseweonly focus on accelerating
client-side querying. Thus this is out-of-scope of this work.

In summary, in this chapter, we introduce a client-side caching paradigm to
improve the overall querying performance on the SPARQL endpoint. Our method
to transform SPARQL queries to feature vectors greatly outperforms the state-of-
the-art method. Based on the feature vectors, learning based approach is utilized to
suggest queries whose results are prefetched and cached. We also design a distance
measurement that is tailored to SPARQL queries and used by the learning algorithm
to identify similar queries. Three dimensional reduction algorithms are introduced
to the learning process and proved that they contribute to the reduction of overall
query time. The proposed cache replacement algorithmMSES is evaluated effective
and efficient. All the evaluations are performed on real-world queries. The results
demonstrate the potential of our framework to speed up average querying process on
SPARQL endpoints.

References

1. J. Bao, N. Duan, M. Zhou, T. Zhao, Knowledge-based question answering as machine trans-
lation, in Proceedings of the 52nd Annual Meeting of the Association for Computational Lin-
guistics (ACL 2014), Baltimore, USA (2014), pp. 967–976

2. J. Berant, A. Chou, R. Frostig, P. Liang, Semantic parsing on freebase from question-answer
pairs, in Proceedings of the 2013 Conference on Empirical Methods in Natural Language
Processing (EMNLP 2013), Seattle, USA (2013), pp. 1533–1544

3. J. Berant, P. Liang, Semantic parsing via paraphrasing, in Proceedings of the 52nd Annual
Meeting of the Association for Computational Linguistics (ACL 2014), Baltimore, USA (2014),
pp. 1415–1425

4. K.D. Bollacker, C. Evans, P. Paritosh, T. Sturge, J. Taylor, Freebase: a collaboratively created
graph database for structuring human knowledge, in Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data (SIGMOD 2008), Vancouver, Canada (2008),
pp. 1247–1250

5. H. Cao, D. Jiang, J. Pei, Q. He, Z. Liao, E. Chen, H. Li, Context-aware query suggestion by
mining click-through and session data, in Proceeding of the 14th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining (KDD 2008), Las Vegas, Nevada, USA (2008), pp.
875–883

452 W.E. Zhang and Q.Z. Sheng

6. S. Dar, M.J. Franklin, B.T. Jónsson, D. Srivastava, M. Tan, Semantic data caching and
replacement, in Proceedings of the 22nd International Conference on Very Large Data Bases
(VLDB1996), Mumbai (Bombay), India (1996), pp. 330–341

7. P.J. Denning, The working set model for program behaviour. Commun. ACM 11(5), 323–333
(1968)

8. S. Elbassuoni, M. Ramanath, G. Weikum, Query relaxation for entity-relationship search, in
Proceedings of the 8th Extended Semantic Web Conference (ESWC 2011), Heraklion, Crete,
Greece (2011), pp. 62–76

9. A. Fader, L. Zettlemoyer, O. Etzioni, Open question answering over curated and extracted
knowledge bases, in Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD 2014), New York, USA (2014), pp. 1156–1165

10. D.A. Ferrucci, E.W. Brown, J. Chu-Carroll, J. Fan, D. Gondek, A. Kalyanpur, A. Lally, J.W.
Murdock, E. Nyberg, J.M. Prager, N. Schlaefer, C.A. Welty, Building Watson: an overview of
the DeepQA project. AI Magazine 31(3), 59–79 (2010)

11. G. Fokou, S. Jean, A. Hadjali, M. Baron, Cooperative techniques for SPARQL query relaxation
inRDFdatabases, inProceedings of the 12thExtendedSemanticWebConference (ESWC2015),
Portoroz, Slovenia (2015), pp. 237–252

12. J.H. Friedman, J.L. Bentley, R.A. Finkel, An algorithm for finding best matches in logarithmic
expected time. ACM Trans. Math. Softw. 3(3), 209–226 (1977)

13. E.S. Gardner, Exponential smoothing: the state of the art-part II. Int. J. Forecast. 22(4), 637–666
(2006)

14. P. Godfrey, J. Gryz, Answering queries by semantic caches, In Proceedings of the 10th Inter-
national Conference on Database and Expert Systems Applications (DEXA 1999), Florence,
Italy (1999), pp. 485–498

15. R. Hasan, Predicting SPARQL query performance and explaining linked data, in Proceedings
of the 11th Extended SemanticWebConference (ESWC2014), Anissaras, Crete, Greece (2014),
pp. 795–805

16. H. Hotelling, Relations between two sets of variates. Biometrika (1936), pp. 321–377
17. N.L. Johnson, A.W. Kemp, S. Kotz, Univariate Discrete Distributions, 2nd edn. (Wiley, New

Jersey, 1993)
18. I. Jolliffe, Principal Component Analysis, Wiley Online Library (2002)
19. L. Kaufman, P. Rousseeuw, Clustering by Means of Medoids, (North-Holland, Amsterdam,

1987)
20. D.D. Lee, H.S. Seung, Learning the parts of objects by non-negative matrix factorization.

Nature 401(6755), 788–791 (1999)
21. J. Lehmann, L. Bühmann, AutoSPARQL: let users query your knowledge base, in Proceedings

of the 8th Extended Semantic Web Conference (ESWC 2011), Heraklion, Crete, Greece (2011),
pp. 63–79

22. J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P.N. Mendes, S. Hellmann, M.
Morsey, P. van Kleef, S. Auer, C. Bizer, DBpedia - a large-scale, multilingual knowledge base
extracted from wikipedia. Semant. Web J. 6(2), 167–195 (2015)

23. J.J. Levandoski, P. Larson, R. Stoica, Identifying hot and cold data in main-memory databases,
in Proceedings of 29th International Conference on Data Engineering (ICDE 2013), Brisbane,
Australia (2013), pp. 26–37

24. J. Lorey, F. Naumann, Detecting SPARQL query templates for data prefetching, inProceedings
of the 10th Extended Semantic Web Conference (ESWC 2013), Montpellier, France (2013), pp.
124–139

25. M. Martin, J. Unbehauen, S. Auer, Improving the performance of semantic web applications
with SPARQL query caching, in Proceedings of the 7th Extended Semantic Web Conference
(ESWC 2010), Heraklion, Crete, Greece (2010), pp. 304–318

26. N.Megiddo, D.S.Modha, ARC: a self-tuning, low overhead replacement cache, inProceedings
of the Conference on File and Storage Technologies (FAST, San Francisco, California, USA
(2003)

Searching the Big Data: Practices and Experiences … 453

27. M. Morsey, J. Lehmann, S. Auer, A.N. Ngomo, Usage-centric benchmarking of RDF triple
stores, in Proceedings of the 26th AAAI Conference on Artificial Intelligence (AAAI 2012),
Toronto, Canada (2012)

28. J.R. Movellan, A quickie on exponential smoothing. http://mplab.ucsd.edu/tutorials/
ExpSmoothing.pdfa/

29. E.J. O’Neil, P.E.O’Neil, G.Weikum, TheLRU-Kpage replacement algorithm for database disk
buffering, in Proceedings of the International Conference on Management of Data (SIGMOD
1993), Washington, D.C., USA (1993), pp. 297–306

30. N. Papailiou, D. Tsoumakos, P. Karras, N. Koziris, Graph-aware, workload-adaptive SPARQL
query caching, in Proceedings of the International Conference on Management of Data (SIG-
MOD 2015), Melbourne, Australia (2015), pp. 1777–1792

31. J. Pérez, M. Arenas, C. Gutierrez, Semantics and complexity of SPARQL. ACM Trans. Data-
base Sys. 34(3) (2009)

32. R. Punnoose, A. Crainiceanu, D. Rapp, SPARQL in the cloud using Rya. Inf. Syst. 48, 181–195
(2015)

33. S. Reid, Knowledge-based systems concepts, Techniques, Examples. http://www.reidgsmith.
com/ (1985)

34. Q. Ren,M.H.Dunham,V.Kumar, Semantic caching and query processing. IEEETrans. Knowl.
Data Eng. 15(1), 192–210 (2003)

35. A. Sanfeliu, K. Fu, A distance measure between attributed relational graphs for pattern recog-
nition. IEEE Trans. Sys. Man Cybern. 13(3), 353–362 (1983)

36. Y. Shu, M. Compton, H. Müller, K. Taylor, Towards content-aware SPARQL query caching
for semantic web applications, in Proceedings of the 14th International Conference on Web
Information Systems Engineering (WISE 2013), Nanjing, China (2013), pp. 320–329

37. F.M. Suchanek, G. Kasneci, G. Weikum. Yago: a core of semantic knowledge, in Proceedings
of the 16th International World Wide Web Conference (WWW 2007), Banff, Canada (2007),
pp. 697–706

38. R. Verborgh, O. Hartig, B.D. Meester, G. Haesendonck, L.D. Vocht, M.V. Sande, R. Cyganiak,
P. Colpaert, E. Mannens, R.V. deWalle, Querying datasets on the web with high availability, in
Proceedings of the 13th International Semantic Web Conference (ISWC 2014), Riva del Garda,
Italy (2014), pp. 180–196

39. M. Yahya, K. Berberich, S. Elbassuoni, M. Ramanath, V. Tresp, G. Weikum, Natural language
questions for the web of data, in Proceedings of the 2012 Joint Conference on Empirical
Methods in Natural Language Processing and Computational Natural Language Learning
(EMNLP-CoNLL 2012), Jeju Island, Korea (2012), pp. 379–390

40. M. Yang, G. Wu, Caching intermediate result of SPARQL queries, in Proceedings of the 20th
International World Wide Web Conference (WWW 2011), Hyderabad, India (2011), pp. 159–
160

41. P. Yin, N. Duan, B. Kao, J. Bao, M. Zhou, Answering questions with complex semantic con-
straints on open knowledge bases, in Proceedings of the 24th ACM International Conference
on Information and Knowledge Management (CIKM 2015), Melbourne, Australia (2015), pp.
1301–1310

42. W.E. Zhang, Q.Z. Sheng, Y. Qin, K. Taylor, L. Yao, A. Shemshadi, SECF: improving SPARQL
querying performance with proactive fetching and caching, in Proceedings of the 31st ACM
Symposium on Applied Computing(SAC 2016), Pisa, Italy (2016), (To appear)

43. W.E. Zhang, Q.Z. Sheng, K. Taylor, Y.Qin, Identifying and caching hot triples for efficient RDF
query processing, in Proceedings of the 20th International Conference on Database Systems
for Advanced Applications (DASFAA 2015), Hanoi, Vietnam (2015), pp. 259–274

http://mplab.ucsd.edu/tutorials/ExpSmoothing.pdfa/
http://mplab.ucsd.edu/tutorials/ExpSmoothing.pdfa/
http://www.reidgsmith.com/
http://www.reidgsmith.com/

Part III
Big Graph Analytics

Management and Analysis of Big
Graph Data: Current Systems
and Open Challenges

Martin Junghanns, André Petermann, Martin Neumann
and Erhard Rahm

Abstract Many big data applications in business and science require the manage-
ment and analysis of huge amounts of graph data. Suitable systems to manage and to
analyze such graph data should meet a number of challenging requirements includ-
ing support for an expressive graph data model with heterogeneous vertices and
edges, powerful query and graph mining capabilities, ease of use as well as high per-
formance and scalability. In this chapter, we survey current system approaches for
management and analysis of “big graph data”. We discuss graph database systems,
distributed graph processing systems such as Google Pregel and its variations, and
graph dataflow approaches based on Apache Spark and Flink. We further outline a
recent research framework called Gradoop that is build on the so-called Extended
Property Graph Data Model with dedicated support for analyzing not only single
graphs but also collections of graphs. Finally, we discuss current and future research
challenges.

1 Introduction

Graphs are ubiquitous and the volume and diversity of graph data are strongly
growing. The management and analysis of huge graphs with billions of enti-
ties and relationships such as the web and large social networks were a driving
force behind the development of powerful and highly parallel big data systems.
Many scientific and business applications also have to process and analyze highly

M. Junghanns (B) · A. Petermann · E. Rahm
Database Research Group, Leipzig University, Leipzig, Germany
e-mail: junghanns@informatik.uni-leipzig.de

A. Petermann
e-mail: petermann@informatik.uni-leipzig.de

E. Rahm
e-mail: rahm@informatik.uni-leipzig.de

M. Neumann
Swedish Institute of Computer Science, Kista, Sweden
e-mail: mneumann@sics.se

© Springer International Publishing AG 2017
A.Y. Zomaya and S. Sakr (eds.), Handbook of Big Data Technologies,
DOI 10.1007/978-3-319-49340-4_14

457

458 M. Junghanns et al.

interrelated data that can be naturally represented by graphs. Examples of graph data
in such domains include bibliographic citation networks [29], biological networks
[18, 109] or customer interactions with enterprises [83]. The ability of graphs to
easily link different kinds of related information make them a promising data orga-
nization for data integration [85] as demonstrated by the so-called linked open data
web1 or the increasing importance of so-called knowledge graphs providing consol-
idated background knowledge [81], e.g., to improve search queries on the web or in
social networks.

The flexible and efficient management and analysis of “big graph data” holds high
promise. At the same time it poses a number of challenges for suitable implementa-
tions in order to meet the following requirements:

• Powerful graph data model: The graph data systems should not be limited to the
processing of homogeneous graphs but should support graphs with heterogeneous
vertices and edges of different types and with different attributes without requiring
a fixed schema. This flexibility is necessary for many applications (e.g., in social
networks, vertices may represent users or groups and relationships may express
friendships ormemberships) and is important to support the integration of different
kinds of data within a single graph. Furthermore, the graph data model should be
able to represent and process single graphs (e.g., the social network) as well as
graph collections (e.g., identified communities within a social network). Finally,
the graph data model should provide a set of powerful graph operators to process
and analyze graph data, e.g., to find specific patterns or to aggregate and summarize
graph data.

• Powerful query and analysis capabilities: Users should be enabled to retrieve and
analyze graph data with a declarative query language. Furthermore, the systems
should support the processing of complex graph analysis tasks requiring the iter-
ative processing of the entire graph or large portions of it. Such heavy-weight
analysis tasks include the evaluation of generic and application-specific graph
metrics (e.g., pagerank, graph centrality, etc.) and graph mining tasks, e.g., to
find frequent subgraphs or to detect communities in social networks. If a power-
ful graph data model is supported, the graph operators of the data model should
be usable to simplify the implementation of analytical graph algorithms as well
as to build entire analysis workflows including analytical algorithms as well as
additional steps such as pre-processing the input graph data or post-processing of
analysis results.

• High performance and scalability: Graph processing and analysis should be fast
and scalable to very large graphs with billions of entities and relationships. This
typically requires the utilization of distributed clusters and in-memory graph
processing. Distributed graph processing demands an efficient implementation
of graph operators and their distributed execution. Furthermore, the graph data
needs to be partitioned among the nodes such that the amount of communication

1http://lod-cloud.net/.

http://lod-cloud.net/

Management and Analysis of Big Graph Data … 459

and dynamic data redistribution is minimized and the computational load is evenly
balanced.

• Persistent graph storage and transaction support: Despite the need for an in-
memory processing of graphs, a persistent storage of the graph data and of analy-
sis results is necessary. It is also desirable to provide OLTP (Online Transaction
Processing) functionality with ACID transactions [46] for modifying graph data.

• Ease of use/graph visualization: Large graphs or a large number of smaller graphs
are inherently complex and difficult to browse and understand for users. Hence, it
is necessary to simplify the use and analysis of graph data asmuch as possible, e.g.,
by providing powerful graph operators and analysis capabilities. Furthermore, the
users should be able to interactively query and analyze graph data similar to the use
of OLAP (Online Analytical Processing) for business intelligence. The definition
of graph workflows should be supported by a graphical editor. Furthermore, there
should be support for visualization of graph data and analysis results which is
powerful, customizable and able to handle big graph data.

Numerous systems have been developed to manage and analyze graph data, in par-
ticular graph database systems as well as different kinds of distributed graph data
systems, e.g., for Hadoop-based cluster architectures. Graph database systems typi-
cally support semantically rich graph data models and provide a query language and
OLTP functionality, but mostly do not support partitioned storage of graphs on dis-
tributed infrastructures as desirable for high scalability (Sect. 2). The latter aspects
are addressed by distributed systems which we roughly separate into distributed
graph processing systems and graph dataflow systems. Distributed graph process-
ing systems include vertex-centric approaches such as Google Pregel [71] and its
variations as well as extensions including Apache Giraph [10], GPS [97], GraphLab
[69], Giraph++ [107] etc. (Sect. 3). On the other hand, distributed graph dataflow
systems (Sect. 4) are graph-specific extensions (e.g., GraphX and Gelly) of general-
purpose distributed dataflow systems such as Apache Spark [118] and Apache Flink
[4]. These systems support a set of powerful operators (map, reduce, join, etc.) which
are executed in parallel in a distributed system either separately or within analyti-
cal programs. The data between operators is streamed for a pipelined execution. The
graph extensions add graph-specific operators and processing capabilities to simplify
development of analytical programs including graph data.

Early work on distributed graph processing on Hadoop was based on theMapRe-
duce programming paradigm [96, 99]. This simple model has been used for the
development of different graph algorithms, e.g., [38, 65, 68]. However, MapReduce
has a number of significant problems [14, 75] that are overcome with the newer
programming frameworks such as Apache Giraph, Apache Spark and Apache Flink.
In particular, MapReduce is not optimized for in-memory processing and tends to
suffer from extensive overhead for disk I/O and data redistribution. This is especially
a problem for iterative algorithms that are commonly necessary for graph analytics
and can involve the execution of many expensive MapReduce jobs. For these rea-
sons, we will not cover the MapReduce-based approaches for graph processing in
this chapter.

460 M. Junghanns et al.

In this chapter, we give an overview about the mentioned kinds of graph data sys-
tems, and evaluate them with respect to the introduced requirements. In particular
we discuss graph database systems and their main graph data models, namely the
resource description framework [63] and the property graph model [93] (Sect. 2).
Furthermore we give a brief overview about distributed graph processing sys-
tems (Sect. 3) and graph dataflow systems with focus on Apache Flink (Sect. 4).
In Sect. 5, we outline a new research prototype supporting distributed graph dataflows
called Gradoop (Graph analytics on Hadoop). Gradoop implements the so-called
Extended Property Graph DataModel (EPGM) with dedicated support for analyzing
not only single graphs but also collections of graphs. In Sect. 6, we compare the
introduced system categories w.r.t. introduced requirements in a summarizing way.
Finally, we discuss current and future research challenges (Sect. 7) and conclude.

2 Graph Databases

Research on graph databasemodels started in the nineteen-seventies, reached its peak
popularity in the early nineties but lost attention in the two-thousands [7]. Then, there
was a comeback of graph data models as part of the NoSQL movement [23] with
several commercial graph database systems [6]. However, these new-generation
graph data models arose with only few connections to early rather theoretical work
on graph databasemodels. In this section, we compare recent graph database systems
to identify trends regarding used data models and their application scope as well as
their analytical capabilities and suitability for “big graph data” analytics.

2.1 Recent Graph Database Systems

Graph database systems are based on a graph data model representing data by graph
structures and providing graph-based operators such as neighborhood traversal and
pattern matching [6]. Table1 provides an overview about recent graph database sys-
tems including supported data models, their application scope and the used storage
approaches. The selection claims no completeness but shows representatives from
current research projects and commercial systems with diverse characteristics.
Supported data models: The majority of the considered systems supports one or
both of two data models, in particular the property graph model (PGM) and the
resource description framework (RDF). While RDF [63] and the related query lan-
guageSPARQL[48] are standardized, for thePGM[93] there exists only the industry-
driven de facto standard Apache TinkerPop.2 TinkerPop also includes the query lan-
guage Gremlin [92]. A more detailed discussion of both data models and their query
languages follows in subsequent paragraphs.

2http://tinkerpop.apache.org/.

http://tinkerpop.apache.org/

Management and Analysis of Big Graph Data … 461

Ta
bl

e
1

C
om

pa
ri
so
n
of

gr
ap
h
da
ta
ba
se

sy
st
em

s

D
at
a
m
od

el
Sc

op
e

St
or
ag
e

R
D
F/
SP

A
R
Q
L

PG
M
/T
in
ke
rP
op

G
en
er
ic

O
LT

P/
Q
ue
ri
es

A
na
ly
tic

s
A
pp
ro
ac
h

R
ep
lic

at
io
n

Pa
rt
iti
on

in
g

A
pa
ch
e
Je
na

T
B
D
[1
1]

�
/�

�
N
at
iv
e

A
lle
gr
oG

ra
ph

[5
]

�
/�

�
N
at
iv
e

�
M
ar
kL

og
ic
[7
2]

�
/�

�
N
at
iv
e

�
�

O
nt
ot
ex
tG

ra
ph
D
B
[4
3]

�
/�

�
N
at
iv
e

�
O
ra
cl
e
Sp

at
ia
la
nd

G
ra
ph

[8
2]

�
/�

�
N
at
iv
e

�
V
ir
tu
os
o
[3
2]

�
/�

�
R
el
at
io
na
l

�
�

T
ri
pl
eB

it
[1
17

]
�
/�

�
N
at
iv
e

B
la
ze
gr
ap
h
[1
05

]
�
/�

�
/�

�
�

N
at
iv
e
R
D
F

�
�

IB
M

Sy
st
em

G
[2
1,

11
4]

�
/�

�
/�

�
�

�
N
at
iv
e
PG

M
,W

id
e

co
lu
m
n
st
or
e

�
�

St
ar
do
g
[1
01

]
�
/�

�
/�

�
◦

N
at
iv
e
R
D
F

�
SA

P
A
ct
iv
e
In
fo
.S

to
re

[9
5]

�
/-

�
R
el
at
io
na
l

A
ra
ng
oD

B
[6
0]

�
/�

�
D
oc
um

en
ts
to
re

�
�

In
fin

ite
G
ra
ph

[5
2]

�
/�

�
N
at
iv
e

�
�

N
eo
4j

[7
7]

�
/�

�
N
at
iv
e

�
O
ra
cl
e
B
ig

D
at
a
[1
7]

�
/�

�
K
ey

va
lu
e
st
or
e

�
�

O
ri
en
tD
B
[1
13

]
�
/�

�
D
oc
um

en
ts
to
re

�
�

Sp
ar
ks
ee

[7
3]

�
/�

�
N
at
iv
e

�
SQ

L
G
ra
ph

[1
03

]
�
/�

�
R
el
at
io
na
l

T
ita

n
[1
08

]
�
/�

�
◦

W
id
e
co
lu
m
n
st
or
e,

K
ey

va
lu
e
st
or
e

�
�

H
yp
er
gr
ap
hD

B
[5
3]

�
�

N
at
iv
e

462 M. Junghanns et al.

A few systems are using generic graph models. We use the term generic to denote
graph data models supporting arbitrary user-defined data structures (ranging from
simple scalar values or tuples to nested documents) attached to vertices and edges.
Such generic graph models are also used by most graph processing systems (see
Sect. 3). The support for arbitrary data attached to vertices and edges is a distinctive
feature of generic graph models and can be seen as a strength and a weakness at the
same time.On the one hand, genericmodels givemaximumflexibility and allowusers
to model other graph models like RDF or the PGM. On the other hand, such systems
cannot provide built-in operators related to vertex or edge data as the existence of
certain features like type labels or attributes are not part of the database model.

Application scope: Most graph databases focus on OLTP workload, i.e., CRUD
operations (create, read, update, delete) for vertices and edges as well as transaction
and query processing. Queries are typically focused on small portions of the graph,
for example, to find all friends and interests of a certain user. Some of the considered
graph databases already show built-in support for graph analytics, i.e., the execution
of graph algorithms that may involve processing the whole graph, for example to
calculate the pagerank of vertices [71] or to detect frequent substructures [104]. These
systems thus try to include the typical functionality of graph processing systems by
different strategies. IBM System G and Oracle Big Data provide built-in algorithms
for graph analytics, for example pagerank, connected components or k-neighborhood
[21]. The only system capable to run custom graph processing algorithms within the
database is Blazegraph by its gather-apply-scatter (see Sect. 3) API.3 Additionally,
the current version of TinkerPop includes the virtual integration of graph processing
systems in graph databases, i.e., from the user perspective graph processing is part
of the database system but data is actually moved to an external system. However,
indicated by a circle in the analytics column in Table1, we could identify only two
systems currently implementing this functionality.

Storage techniques: The majority of the considered graph databases is using a
so-called native storage approach, i.e., the storage is tailored to characteristics of
graph database models, for example, to enable efficient edge traversal. A typical
technique of graph-optimized storage are adjacency lists, i.e., storing edges redun-
dantly attached to their connected vertices [21]. By contrast, some systems implement
the graph database on top of alternative data models such as relational or document
stores. IBM System G and Titan are offering multiple storage options. The used stor-
age approach is generally no hint for database performance [103]. Most systems can
utilize computing clusters by replicating the entire database on each node to improve
read performance. About half of the considered systems also has some support for
partitioned graph storage and distributed query processing. Systems with non-native
storage typically inherited data partitioning from the underlying storage technique
but provide no graph-specific partitioning strategy. For example, OrientDB treats
vertices as typed documents and implements partitioning by type-wise sharding.

3http://wiki.blazegraph.com/wiki/index.php/RDF_GAS_API.

http://wiki.blazegraph.com/wiki/index.php/RDF_GAS_API

Management and Analysis of Big Graph Data … 463

Fig. 1 Comparison of graph structures

2.2 Graph Data Models

A graph is typically represented by a pair G = 〈V, E〉 of vertices V and edges E .
Many extensions have been made to this simple abstraction to define rich graph data
models [6, 7]. In the following, we introduce varying characteristics of graph data
models with regard to the represented graph structure and attached data. Based on
that, we discuss RDF and the property graph model in more detail.

Graph structures: Figure1 shows a comparison of different graph structures. Graph
structures mainly differ regarding their edge characteristics. First, edges can be either
undirected or directed. While edges of an undirected graph (Fig. 1a) are 2-element
sets of vertices, the ones of a directed graph are ordered pairs. The order of vertices
in these pairs indicates a direction from source to target vertex. In drawings and
visualizations of directed graphs, arrowheads are used to express edge direction
(Fig. 1b). In simple undirected or directed graphs, between any two vertices there
may exist only one edge for undirected graphs and one edge in each direction for
directed graphs.By contrast,multigraphs allowan arbitrary number of edges between
any pair of vertices. Depending on the edge definition, multigraphs are directed or
undirected. Most graph databases use directed multigraphs as shown by Fig. 1c.

The majority of applied graph data models support only binary edges. A graph
supporting n-ary edges is called hypergraph [28]. In a hypergraph model edges are
non-empty sets of vertices, denoted by hyperedges. Figure1d shows a hypergraph
with a ternary hyperedge. From the graph databases of Table1 only HypergraphDB
supports hypergraphs by default. A graph data model supporting edges not only
between vertices but also between graphs is the hypernode model [86]. In this model
we distinguish between primitive vertices and graphs in the role of vertices, the
so-called hypervertices. Figure1e shows a graph containing hypervertices. Except
an early research prototype, there is no graph database system explicitly supporting
this data model. However, using the concept of n-quads, it is possible to express
hypervertices using RDF [22].

464 M. Junghanns et al.

Fig. 2 Different variants of data attached to vertices and edges

Vertex- and edge-specific data: Another variation of graph data models relates to
their support for data attached to the graph structure, i.e., their data content. Figure2
illustrates different ways of attaching data to vertices and edges. The simplest form
are labeled graphs where scalar values are attached to vertices or edges. For graph
data management, labels are distinguished from identifiers, i.e., labels do not have
to be distinct. An important special case of a labeled graph is a weighted graph,
where edges show numeric labels (see Fig. 2a). Further on, labels are often used to
add semantics to the graph structure, i.e., to give vertices and edges a type. Figure2b
shows a vertex-labeled graph where labels express different types of vertices. A
popular semantic model using vertex and edge labels is the Resource Description
Framework (RDF) [63], where labels may be identifiers, blank or literals. Figure2c
shows an example RDF graph.

Graph models supporting multiple values per vertex or edge are called attributed.
Figure2d shows an example vertex-attributed graph. The shown graph is homo-
geneous as all vertices represent the same type of entities and show a fixed schema
(name, age, gender). A popular attributedmodel used by commercial graph databases
is the property graph model (PGM) [93]. A property graph is a directed multigraph
where an arbitrary set of key-value pairs, so-called properties, can be attached to
any vertex or edge. The key of a property provides a meaning about its value, e.g.,
a property name:Alice represents a name attribute with value Alice. Property
graphs additionally support labels to provide vertex and edge types.

Resource Description Framework: In its core, RDF is a machine-readable data
exchange format consisting of (subject, predicate, object) triples. Considering sub-
jects and objects as vertices and predicates as edges, a dataset consisting of such

Management and Analysis of Big Graph Data … 465

triples forms a directed labeled multigraph. Labels are either internationalized
resource identifiers (IRIs), literals such as numbers and strings or so-called blank
nodes. The latter is used to reflect vertices not representing an actual resource. There
are domain constraints for labels depending on the triple position. Subjects are either
IRIs or blank nodes, predicatesmust be IRIs and objects may be IRIs, literals or blank
nodes. In contrast to other graph models, RDF also allows edges between edges and
vertices, which can be used to add schema information to the graph. For example,
the type of an edge :alice,:knows,:bob can be further qualified by another
edge :knows,:isA,:Relationship. A schema describing an RDF database
is a further RDF graph containing metadata and is often referred to as ontology [19].
RDF is most popular in the context of the semantic web where its major strengths are
standardization, the availability of web knowledge bases to flexibly enrich user data-
bases and the resulting reasoning capabilities over linked RDF data [111]. Kaoudi
andManolescu [58] comprehensively survey recent approaches tomanage largeRDF
graphs and consider additional systems not listed in Table1.

Property Graph Model: While RDF is heavily considered in research, the PGM and
its de-facto standard Apache TinkerPop found lower interest so far. However, many
commercial graph database products use TinkerPop and the approach appears to gain
public interest, e.g., in popularity rankings of database engines.4 With one exception,
all of the considered PGM databases support TinkerPop. The TinkerPop property
graph model describes a directed labeled multigraph with properties for vertices
and edges. Basically, the PGM is schema-free, i.e., there is no dependency between a
type label and the allowed property keys. However, some of the systems, for example
Sparksee, use labels strictly to represent vertex and edges types and require a fixed
schema for all of their instances. Other systems like ArangoDBmanage schema-less
graphs, i.e., labels may indicate types but can be coupled with arbitrary properties at
the same time. In most of the databases upfront schema definition is optional.

Property graphs with a fixed schema can be represented using RDF. However,
representing edge properties requires reification. In the standard way,5 a logical
relationship db:alice,schema:knows,db:bob is represented by a blank
node _:bn and dedicated edges are used to express subject, object and predicate
(e.g.,_:bn,rdf:subject,db:alice). Properties are expressed analogously to
vertices (e.g., _:bn,schema:since,2016). In consequence, every PGM edge
is expressed by 3 + m triples, wherem is the number of properties. Two of the graph
databases of Table1 store the PGM using RDF but both are using alternative, non-
standard ways of reification. Stardog is using n-quads [22] for PGM edge reification.
N-quads are extended triples where the fourth position is an IRI to identify a graph.
Used for edge reification, each of such graphs represents an PGM edge [27]. Blaze-
graph follows a further, non-standard approach to reification and implements custom
RDF and SPARQL extensions [49].

4http://db-engines.com/en/ranking/graph+dbms.
5https://www.w3.org/TR/rdf-schema/#ch_reificationvocab.

http://db-engines.com/en/ranking/graph+dbms
https://www.w3.org/TR/rdf-schema/#ch_reificationvocab

466 M. Junghanns et al.

2.3 Query Language Support

In [6], Angles named four operators specific to graph databases query languages:
adjacency, reachability, patternmatching and aggregation queries.Adjacency queries
are used to determine the neighborhood of a vertexwhile reachability queries identify
if and how two vertices are connected. Reachability queries are also used to find all
vertices reachable from a start vertex within a certain number of traversal steps or
via vertices and edges meeting given traversal constraints.Pattern matching retrieves
subgraphs (embeddings) isomorphic to a given pattern graph. Pattern matching is an
important operator for data analytics as it requires no specific start point but can be
applied to the whole graph. Figure3a shows an example pattern graph representing
an analytical question about social network data. Finally, aggregation is used to
derive aggregated, scalar values from graph structures. In contrast to Angles, we use
the term aggregation instead of summarization, as the latter is also used to denote
structural summaries of graphs [106]. Such summarization queries are not supported
by any of the considered systems.

Fig. 3 Comparison of pattern matching queries

Management and Analysis of Big Graph Data … 467

Most of the recent graph database systems either support SPARQL for RDF or
TinkerPop Gremlin for the property graph model. Both query languages support
adjacency, reachability, pattern matching and aggregation queries. Figure3c, d show
example patternmatching queries equivalent to the pattern graph of Fig. 3a expressed
in SPARQL and Gremlin. The result are pairs of Users who are member of the
same Group with name GDM. Further on, one User should be younger than 25,
member since 2016 and already knew the other user before 2016. The query was
chosen to highlight syntactical differences and involves predicates related to labels
and properties of vertices and edges. To support edge predicates, the SPARQL query
relates to edge properties expressed by standard reification. While such complex
graph patterns in SPARQL are expressed by a composition triple patterns and literal
predicates (FILTER), the Gremlin equivalent is a composition of traversal chains,
similar to the syntax of object-oriented programming languages.

Beside this, there are also some vendor-specific query languages or vendor-
specific SQL extensions. However, these languages miss patternmatching. A notable
exception is Neo4j Cypher [26]. In Cypher, pattern graphs are described by ASCII
characters where predicates related to vertices and edges are separated within a
WHERE clause. Cypher is currently exclusively available for Neo4j but it is planned
tomake it an open industry standard similar to Gremlin. Participants of the respective
openCypher6 project are i.a. Oracle and databricks (Apache Spark), which could
make Cypher available to more graph database and graph processing systems in
future. A common limitation of SPARQL, Gremlin and Cypher is the representation
of pattern matching query results in the form of tables or single graphs (SPARQL
CONSTRUCT). In consequence, it is not possible to evaluate the embeddings in
more detail, e.g., by visual comparison, and to execute any further graph operations
on query results. A recently proposed solution to this problem is representing the
result of pattern matching queries by a collection of graphs (see Sect. 5).

3 Graph Processing

Many algorithms for graph analytics such as pagerank, triangle counting or
connected components need to iteratively process the whole graph while other algo-
rithms such as single source shortest pathmight require access to a large portion of it.
Graph databases excel at querying graphs but usually cannot efficiently process large
graphs in an iterative way. Such tasks are the domain of distributed graph processing
frameworks.

In this section, we focus on dedicated distributed graph processing systems such
as Pregel [71] and its derivates. More general dataflow systems like Apache Flink or
Apache Spark, which also provide graph processing capabilities, will be discussed in
the next section. Our presentation focuses on the popular vertex-centric processing
model and its variations like partition- or graph-centric processing. To illustrate

6http://www.opencypher.org/.

http://www.opencypher.org/

468 M. Junghanns et al.

Fig. 4 Directed graph with two weakly connected components

different programming models, we show their use to compute weakly connected
components (WCC) of a graph. A connected component is a subgraph where each
pair of vertices is connected via a path. For weakly connected components the edge
direction is ignored, i.e., the graph is considered to be undirected. Figure4 shows
an example graph with two weakly connected components VC1 = {1, 2, 3, 6, 7} and
VC2 = {4, 5, 8}.

3.1 General Architecture

The different programmingmodels are based on a general architecture of a distributed
graph processing framework. The architecture uses a master node for coordination
and a set of worker nodes for the actual distributed processing. The input graph is
partitioned among all worker nodes, typically using hash or range-based partitioning
on vertex labels. In the vertex-centric model, a worker node stores for each of its ver-
tices the vertex value, all outgoing edges including their values and vertex identifiers
(ids) of all incoming edges. Figure5a shows our example graph partitioned across
four worker nodes A, B, C and D. Different frameworks extend upon this structure
such as Giraph++ [107] where each worker node also stores a copy of each vertex
that resides on a different worker but has a connection to a vertex on the worker node
(Fig. 5b).

All graph processing systems discussed in this section use a directed generic
multigraph model as introduced in Sect. 2. Vertices have a unique identifier K, e.g.,
of type 64bit-integer. Vertices and edges may store a generic value further referred
to as VV (vertex value) and EV (edge value). All frameworks allow the exchange of
messages passed along edges and denoted by M.

3.2 Think Like a Vertex

The “Think Like a Vertex” or vertex-centric approach has been pioneered by Google
Pregel in 2010 [71]. Ever since many frameworks have adopted or extended it [10,
41, 61, 67, 97, 102]. To write a program in a Pregel-like model, a so called vertex

Management and Analysis of Big Graph Data … 469

Fig. 5 Partitioned input graph for different computation models

1 long getSuperstep (); // returns the current iteration
2 void sendMsg(K id , M msg);
3 void sendMsgToAllEdges(M msg);
4 void voteToHalt ();
5 K getVertexId ();
6 VV getVertexValue ();
7 void setVertexValue(VV vertexValue);
8 Iterator <K> getNeighbors ();
9 Iterable <M> getMessages ();
10 void aggregateValue(aggregatorName , aggregatedValue);
11 AV getAggregatedValue(aggregatorName);

Listing 1.1: Subset of the Apache Giraph API used to write a vertex function.

compute function7 has to be implemented. This function consists of three steps:
Read all incoming messages, update the internal vertex state (i.e., its value) and send
information (i.e., messages) to its neighbors. Note that each vertex only has a local
view of itself and its immediate neighbors. Any other information about the graph
necessary for computation has to be sent along the edges. This paradigm is similar
to the actor-based programming model [2] as implemented by Akka [3] or Quasar
[87].

Vertex functions are executed in synchronized supersteps. In each superstep each
worker node executes the compute function for all of its active vertices, marks them
inactive if the voteToHalt() function is called and gathers their output messages.
When all workers have finished, the gathered messages are delivered synchronously.
Vertices that receive messages are then marked active. This is repeated until there
is no active vertex at the end of a superstep. Note that the synchronization barrier

7We use vertex compute function and vertex function interchangeably throughout this section.

470 M. Junghanns et al.

between supersteps ensures that each vertex will only receive messages produced in
the previous superstep. This execution model is called the bulk synchronous parallel
(BSP) model [110]. Figure6 shows an example of such an execution.

Let’s see how WCC can be implemented using Apache Giraph [10], an open-
source implementation of the Pregel model. Listing 1.1 shows a subset of Giraph’s
API that is used to implement the vertex function. The getSuperstep() function
allows to write algorithms that change behavior depending on the current superstep.
This is often used for initialization. As mentioned before, voteToHalt() tells the
framework that the vertex program should not be executed for this particular vertex
in the next superstep unless the vertex receives any messages. Note that this is vital
for the termination of the program and should be called. The other functions allow
the user to access the vertex identifier, incoming messages and neighboring vertex
identifiers.

Listing 1.2 shows a (simplified) implementation of WCC using the introduced
API. The basic idea is that vertices propagate their label along the edges until con-
vergence. After termination, each vertex stores a component id which will be equal
to the smallest vertex id that can be reached from this vertex. This value will be the
same for each vertex in a component and thus identifies a component. In superstep
0, we initialize the component id with the vertex id and send the value to all neigh-
bors. In each subsequent superstep, each vertex computes the smallest component
id among all received messages; if it is smaller than the currently stored value, it is
replaced and the new value is sent to all neighbours. Each vertex always votes to halt
at the end of each superstep. As a result, no message will be sent, if no vertex has
changed its component id within a superstep and the algorithm terminates. Figure6

1 void compute(Vertex v) {
2 if (getSuperstep () == 0)
3 v.setValue(v.getVertexID ())
4 sendMessageToAllEdges(v.getVertexValue ())
5 else
6 minValue = min(v.getMessages ())
7 if (minValue < v.getVertexValue ())
8 v.setVertexValue(minValue)
9 sendMessageToAllEdges(v.getVertexValue ())
10 v.voteToHalt ();
11 }
12
13 void combine(M message1 , M message2) {
14 return min(message1 , message2)
15 }

Listing 1.2: WCC in Apache Giraph. The vertex function will be executed for each
vertex in the graph. Messages sent by the vertices are stored at the worker and
delivered at the end of the current superstep. The execution loops until no vertex
has received any message.

Management and Analysis of Big Graph Data … 471

Fig. 6 Vertex-centricWCC computation for the graph of Fig. 4.We show the vertex value at the end
of each superstep. Initially, the vertices use their ids as initial vertex values. In any superstep, each
vertex changes its value to the minimum among all messages and its own value. However, a vertex
function will only be executed if the vertex has received any messages in the previous superstep.
Looking at vertex 1 and 7, one can see how vertex id 1 is propagated through the component. Note
that we omitted the 4th superstep that solely consists of vertex 6 processing a message received
from vertex 7

shows the WCC execution for the graph shown in Fig. 5a resulting in two connected
components represented by the identifiers 1 and 4.

Variants Various vertex-centric graph processing systems provide specific features
and optimization techniques, for example, to mutate the graph or to reduce network
traffic and computation time. In the following,wewill discuss themost differentiating
features as shown in Table2.

Aggregation: Certain graph algorithms need global knowledge in terms of aggregated
values such as the number of vertices in the graph or the total sum of all vertex values.
In the basic model, this can be achieved by creating a vertex that is connected to all
other vertices.However, this approach creates verticeswith a huge amount of incident
edges that will take longer to process than a regular graph vertex. This will decrease
performance since workers have to wait for each other at the end of each superstep.
Additionally, these special purpose edges and vertices require specific programming
logic in the vertex program which increases complexity. Many frameworks (see
column aggregation in Table2) require the user to provide a function that is run on the
master node between supersteps for this purpose. For example, to calculate the sum
of all vertex values, each vertex would send its value to the master node (API method
aggregateValue(), Listing 1.1) which aggregates them and makes the results
accessible in the next superstep (getAggregatedValue() in Listing 1.1). Note,
that for associative and commutative operations, such as counting or summation,
this can be done in an aggregation tree where the worker node will aggregate the
values of all its vertices before sending the aggregated value to the master, therefore
reducing communication costs.

Reducing network communication: A technique, similar to the one used for aggre-
gation, can also be used to reduce the number of messages between different worker
nodes. If a worker node has multiple messages addressing the same vertex, they can
potentially be combined into a single message. In some of the frameworks (Table2)
the user can define a combiner, a dedicated function that takes two messages as input

472 M. Junghanns et al.

Ta
bl

e
2

K
ey

fe
at
ur
es

of
th
e
di
sc
us
se
d
gr
ap
h
pr
oc
es
si
ng

sy
st
em

s
(n
.a
.,
no
ta
pp
lic
ab
le
)

L
an
gu
ag
e

Pr
og
ra
m
m
in
g

m
od

el
B
SP

A
sy
nc
hr
on
ou
s

G
en
er
ic

sc
he
du

le
r

A
gg
re
ga
tio

n
A
dd

ve
rt
ex
/e
dg
e

R
em

ov
e

ve
rt
ex
/e
dg

e
C
om

bi
ne
r

Pr
eg
el
[7
1]

C
+
+

Pr
eg
el

�
G
ir
ap
h
[1
0]

Ja
va

Pr
eg
el

�
�

�
�

�
G
PS

[9
7]

Ja
va

Pr
eg
el

�
�

�
M
iz
an

[6
1]

C
+
+

Pr
eg
el

�
�

�
G
ra
ph
L
ab

[6
9]

C
+
+

G
A
S

�
�

�
�

�
n.
a.

G
ra
ph
C
hi

[6
7]

C
+
+
,J
av
a

Pr
eg
el

�
�

�
�

�
n.
a.

Si
gn

al
/C
ol
le
ct

[1
02

]
Ja
va

Sc
at
te
r–
G
at
he
r

�
�

n.
a.

C
ha
os

[9
4]

Ja
va

Sc
at
te
r–
G
at
he
r

�
�

n.
a.

G
ir
ap
h+

+
[1
07

]
Ja
va

Pa
rt
iti
on
-C
en
tr
ic

�
�

�
�

�
G
ra
ph
X
[4
2]

Sc
al
a,
Ja
va

G
A
S

�
�

n.
a.

G
el
ly

[3
9]

Sc
al
a,
Ja
va

G
SA

,
Sc

at
te
r–
G
at
he
r

�
�

�
�

n.
a.

Management and Analysis of Big Graph Data … 473

and combines them into one. Listing 1.2 includes the combine function for WCC as
implemented in Giraph. In our WCC implementation, we are only interested in the
smallest value, so the combiner can discard the larger message. With this combiner,
no vertex will receive more messages than the number of worker nodes.

Powergraph [41] further extended the idea of the combiner by introducing the
Gather-Apply-Scatter (GAS) model. Instead of a single vertex compute function,
the user has to provide a gather, apply and scatter function. The gather function
has the same functionality as the combiner: it aggregates messages addressing the
same vertex on the sending worker nodes. The apply function has the incoming
messages as input and updates the vertex state. The scatter function has the vertex
state as input and produces the outgoing messages. Similar to the gather function,
the scatter function can be executed on the worker nodes. Instead of sending multiple
messages from one vertex to vertices on the same worker node, only the vertex value
is send and the messages are then created locally. This execution is transparent to
the user which only has to provide the three functions. The GAS model is especially
effective on graphs with highly skewed degree distributions. It not only reduces the
amount of network traffic, but also helps balancing the workload between worker
nodes by spreading out the computation. One downside of the GAS model is that
all information about messages that should eventually be sent needs to be part of
the vertex value. In case of WCC, we need to extend the vertex value by a boolean
field that reflects if the vertex value has changed or not to decide if messages should
be sent.

The systems Signal/Collect [102] and Chaos [94] introduced the Scatter–Gather
model. This model requires the user to provide an edge and a vertex function. The
vertex function has all incoming messages as input and can modify the vertex value.
The edge function takes the vertex value as input and can then generate a mes-
sage. Compared to the GAS model, in the scatter–gather model, the computation
is parallelized across the vertices, which may lead to unbalanced load, if the edge
degree distribution is skewed. Depending on the computation, the execution time for
high-degree vertices increases as they need to process more messages and thus the
synchronization barrier is eventually delayed.

Asynchronous execution: Looking at Fig. 6, one can see that worker node A takes
longer to compute the vertex function on all of its vertices. In consequence, the faster
working nodes B, C, and D have to wait. Not all algorithms require the strict synchro-
nization offered by the BSP execution model. Our WCC implementation in Listing
1.2 tries to find the minimum vertex id in each component. Finding the minimum of a
set does not require a specific execution order and can be executed without synchro-
nization. If a worker node is a superstep behind and does not deliver its messages
in time, the minimum of each component will eventually be found once the delayed
messages are delivered. The overall execution time can be potentially reduced since
worker nodes do not spend time waiting for other workers to finish. Furthermore,
some algorithms [16, 66] converge much faster on an asynchronous execution model
up to the point where running them in a BSP model will not converge in reasonable
time. Other graph algorithms such as Ja-be-Ja [89], a peer-to-peer inspired graph

474 M. Junghanns et al.

boolean containsVertex(K id);
boolean isInternalVertex(K id);
boolean isBoundaryVertex(K id);
Vertex <K, VV , EV , M> getVertex(K id);
Collection <Vertex <K, VV , EV , M>> internalVertices ();
Collection <Vertex <K, VV , EV , M>>
activeInternalVertices ();
Collection <Vertex <K, VV , EV , M>> boundaryVertices ();
Collection <Vertex <K, VV , EV , M>> allVertices();

Listing 1.3: Additional functions in the Giraph++ API.

partitioning algorithm, can only be implemented using an asynchronous execution
model. To address these challenges GraphLab [69], Signal/Collect and GraphChi
[67] allow for asynchronous execution. Instead of waiting for a synchronization bar-
rier, in these models, messages produced by a vertex will be delivered to the target
vertex directly. Each worker node processes its vertices in order, thus, within a par-
tition, each vertex will be executed with the same frequency. However, in Fig. 5a,
vertex 6 on worker node C might already have executed ten times while vertex 1
on worker node A has only executed once. GraphLab and GraphChi also allow the
user to provide a scheduler function that changes the execution order, for example,
to prioritize vertices with a high value. This allows to focus an algorithm on a certain
part of the graph, which can lead to faster convergence in some cases.

Note, that optimizations such as combiners or the GAS model cannot use their
full potential when executed asynchronously since messages are not necessarily
batched together. As a result, asynchronous execution generally uses more network
resources. Performance gains are hard to quantify since the speedup highly depends
on the graph structure and towhich degreework is equally distributed betweenworker
nodes. For our WCC example, each superstep might be faster due to the removal of
the synchronization barrier but the algorithm might require more steps to terminate.
In the BSP execution, the number of required steps is equal to the longest shortest
path in the graph since each vertex processes the data from all its neighbors in each
superstep. In an asynchronous execution it is possible that the message with the true
minimum is delayed so that there are additional steps finding the minimum between
larger values before the true minimum is found.

Graph mutation: Transformational algorithms such as graph coarsening or comput-
ing the minimum spanning tree need to modify the graph structure during execution.
This is a non-trivial task since it may lead to load imbalances, performance loss
and memory overflow. Currently, only few frameworks support these operations. For
example, while Giraph supports adding and removing vertices and edges, GraphLab
only allows addition. Vertices are added or removed from inside the vertex function
and the changes to the graph, similar to messages, become visible in the next super-
step. Newly created vertices are always marked as active in the superstep they appear
in and are therefore guaranteed to be executed.

Management and Analysis of Big Graph Data … 475

1 void compute () {
2 if (getSuperstep () == 0)
3 sequentialCC ();
4 for (bV in boundaryVertices ())
5 sendMsg(bV.getVertexId (), bV.getVertexValue ())
6 else
7 equiCC = new MultiMap;
8 for (iV in activeInternalVertices ())
9 minValue = min(iV.getMessages ())
10 if (minValue < iV.getVertexValue ())
11 equiCC.add(iV.getVertexValue (), minValue)
12 for (v in allVertices ())
13 minValue = equiCC.getMinFor(v.getVertexValue ())
14 if (minValue < v.getVertexValue ())
15 v.setVertexValue(minValue)
16 if (isBoundaryVertex(v.getId ())
17 sendMsg(v.getVertexId (), vertex.getVertexValue ())
18 allVoteToHalt ()
19 }
20
21 void combine(M message1 , M message2) {
22 return min(message1 , message2)
23 }

Listing 1.4: WCC in Giraph++. First each worker node finds all internal connected
components. Then it iteratively shares the information with other worker nodes that
have connected vertices.

3.3 Think Like a Graph

Instead of writing a compute function executed on each vertex, in a graph-/partition-
centric model, the user provides a compute function that takes all vertices managed
by a worker node as input. These functions are then executed using the BSP model.
This approach requires additional support structures when distributing the graph.
The input graph is distributed across worker nodes in the same way as for vertex-
centric computations. The vertices of worker node n are called internal vertices to
n. On each worker node n we then create a copy of each vertex that is not internal
to n, but is directly connected to an internal vertex of n. These vertices are called
boundary vertices and represent the cached vertex values of copied vertices. Every
internal vertex may have up to one of these boundary vertices on each worker node.
Figure5b shows the distributed graph with internal and boundary vertices on the four
worker nodes.

Listing 1.3 shows the additionalmethods of theGiraph++ [107]API.Having a par-
tition compute function instead of a vertex compute function allows direct access to
all internal and local boundary vertices and thus computing the entire subgraph. Each
worker node executes its user-defined function and afterwards sends messages from
all boundary vertices to their internal representation. The partition-centric model can
mimic a vertex centric execution by iterating through all active internal nodes once in
each superstep. Listing 1.4 shows a partition-centric implementation of WCC. In the

476 M. Junghanns et al.

Table 3 Vertex states/values in vertex-centric iteration

Vertex Step 0 Step 1 Step 2 Step 3

1 1 1 1 1

2 2 1 1 1

3 3 1 1 1

4 4 4 4 4

5 5 4 4 4

6 6 3 1 1

7 7 6 3 1

8 8 4 4 4

initialization step, a sequential connected component algorithm is executed to find all
local connected components. The locally computed component label for each bound-
ary vertex is then sent to its corresponding internal vertex. In each of the subsequent
supersteps, the algorithm processes all the incoming messages and merges labels
representing the same component. Although the implementation of this approach is
more complex, it can reduce the amount of iterations and thus improve performance.
The number of steps required to converge is smaller or equal to the longest shortest
path in the graph. The precise number of saved iteration steps depends on the graph
structure, in particular on how vertices are distributed among the worker nodes.

Tables3 and 4 show the convergence in vertex- and graph-centric iterations respec-
tively. One can see, that it takes four supersteps for a vertex-centric iterations whereas
using a graph-centric approach, the components can be computed in only two super-
steps. Notice that the reduction in supersteps depends on the partitioning of the input
graph. A partitioningwhere each component resides on a single worker node requires
zero supersteps, while the worst case partition would require the same amount of
supersteps as a vertex centric program. The performance gain can be hard to predict
and cannot justify the additional complexity of the program in all cases.

Table 4 Vertex state/values
in graph-centric iteration

Vertex Step 0 Step 1

1 1 1

2 1 1

3 1 1

4 4 4

5 4 4

6 6 1

7 7 1

8 8 4

Management and Analysis of Big Graph Data … 477

In this section we gave an overview about the different dedicated graph process-
ing frameworks available. We summarized the most common programming models
and have shown their variants. In real-world scenarios, graph processing is often
only a single step of a longer pipeline consisting of data transformations. There-
fore modern processing frameworks such as Apache Spark and Apache Flink pro-
vide graph processing libraries that can be directly integrated into a larger program.
These libraries support vertex-centric graph processing with additional graph oper-
ations that can be combined with general-purpose data operations on structured and
unstructured data.

4 Graph Dataflow Systems

In the previous section, we introduced specialized systems providing tailored pro-
gramming abstractions for the fast execution of a single iterative graph algorithm
on large graphs with billions of vertices and edges. However, complex analytical
problems often require the combination of multiple techniques, for example, to cre-
ate combined graph structures based on unstructured or structured data originated
from different sources (e.g., distributed file systems, database systems) or to com-
bine graph algorithms and non-graph algorithms (e.g., for machine learning). In such
cases, using dedicated systems for each part of an analytical program increases the
overall complexity and leads to unnecessary data movement between systems and
respective data duplication [42, 116].

By contrast, distributed in-memory dataflow systems such as Apache Spark [42,
115, 116, 118],ApacheFlink [4] orNaiad [76, 79] provide general-purpose operators
(e.g., map, reduce, filter, join) to load and transform unstructured and structured
data as well as specialized operators and libraries for iterative algorithms (e.g., for
machine learning and graph analysis). Using such a system for the implementation of
complex analytical programs reduces the overall complexity for the user andmay lead
to performance improvements since the holistic view on the whole program enables
optimizations, such as operator reordering or caching of intermediate results.

In this section, we will discuss graph analytics on distributed dataflow systems
using Apache Flink as a representative system. We briefly introduce Apache Flink
and its concept for iterations and will then focus on Gelly, a graph processing library
integrated into Apache Flink. Gelly implements the Scatter–Gather andGather-Sum-
Apply programming abstractions for graph processing and provides additional oper-
ators for graph transformation and computation. We will finish the section with a
brief comparison to GraphX, a graph library on Apache Spark.

478 M. Junghanns et al.

1 ExecutionEnvironment env = getExecutionEnvironment ();
2 DataSet <String > text = env.readTextFile ("hdfs :/// text");
3
4 DataSet <Tuple2 <String , Integer >> wordCounts = text
5 // splits the line and outputs (word , 1) tuples
6 .flatMap(new LineSplitter ())
7 // group tuples by word
8 .groupBy (0)
9 // add together the "1"s in all tuples per group

10 .sum (1);
11
12 wordCounts.print();

Listing 1.5: Word Count in Flink

4.1 Apache Flink

Apache Flink is the successor of the former research project Stratosphere [4] and
supports the declarative definition and distributed execution of analytical programs
on batch and streaming dataflows.8 The basic abstractions of such programs are
datasets and transformations. A dataset is a collection of arbitrary data objects and
transformations describe the transition of one dataset to another one. For example,
let X,Y be datasets, then a transformation could be seen as a function t : X → Y .
Example transformations aremap, where for each input object xi ∈ X there is exactly
oneoutput object yi ∈ Y , and reduce,where all input objects are aggregated to a single
one. Further transformations are well known from relational databases, e.g., join,
group-by, project, union and distinct. To express application logic, transformations
are parameterizedwith user-defined functions.AFlink programmay includemultiple
chained transformations.When executed, Flink handles programoptimization aswell
as data distribution and parallel execution across a cluster of machines.

We give an exemplary introduction to the dataset API using a simple word count
program to compute the frequency of eachword in an input text (Listing 1.5).We first
create a Flink execution environment (Line 1), which abstracts either a local machine
(e.g., for developing and testing) or a cluster. In Line 2, we define an input data
source, here a file from HDFS, the Hadoop Distributed File System.9 The resulting
dataset contains strings whereas each string represents a line in our input file. In
Line 6, we use flatMap to declare the first transformation on our input dataset. This
transformation allows us to output an arbitrary number of objects for each input
object. Here, the user-defined function LineSplitter is applied on each line
in the input dataset and splits it into words. For each word, the function outputs a
tuple containing the word and the frequency 1, for example, the line “graphs are

8In its core, Flink is a distributed streaming system and provides streaming as well as batch APIs.
We focus on the batch API, as Gelly is currently implemented on top of that.
9Flink supports further systems as data source and sink, e.g., relational and NoSQL databases or
queuing systems.

Management and Analysis of Big Graph Data … 479

Fig. 7 Iteration operators in Apache Flink [9]

everywhere” results in the tuples (“graphs”, 1), (“are”, 1) and (“everywhere”, 1). In
Line 8, we perform a group-by transformation on the output dataset of the previous
flatMap transformation to gather all tuples that represent the same word. In Line 10,
we add together the single frequencies to get the total frequency for each word using
sum, a predefined aggregation transformation. Flink programs are executed lazily,
i.e., program execution needs to be started explicitly. Here, we trigger the execution
by printing the dataset to system console (Line 12). When triggered, Flink analyzes
the program, optimizes it and executes it in the specific environment. Data lines are
read in parallel from the data source and “flow” through the transformations which
are scaled-out to all workers in the cluster.

Iterations in Apache Flink Our word count example represents a dataflow whose
execution graph is a directed acyclic graph of transformations. However, iterative
or recursive graph and machine learning algorithms require cyclic execution graphs.
To support cyclic dataflows, Flink offers two specialized operators: Bulk and Delta
Iteration [34, 35].

With Bulk Iteration (Fig. 7a), each iteration computes a new solution based on the
previous iteration result which is then used as input for the next iteration. Conceptu-
ally, Flink’s Bulk Iteration can be separated into four phases: (1) the iteration input
is the initial dataset for the first iteration; (2) the step function takes the output of
the previous iteration as input and executes an acyclic dataflow containing arbitrary
transformations on that dataset to create a new dataset; (3) the result of the step
function is the next partial solution, which is used as input for the next iteration;
(4) the iteration result is the dataset created by the last iteration and can be used
in subsequent dataflows. The convergence criterion for the Bulk Iteration is either a
maximum number of iterations or a custom convergence criterion.

With Delta Iteration, each iteration computes only incremental updates for an
evolving global solution set instead of a completely new solution set. The motivation
for this approach are algorithms where an update on one element has a direct impact
only on a small number of other elements, such that different parts of the solution
may converge at different speeds [34]. When applicable, this leads to faster conver-
gence as large parts of the solution are computed in the first iterations so that later
iterations compute on much smaller subsets. Figure7b shows the phases of Flink’s
Delta Iteration: (1) In contrast to Bulk Iteration, we now have two input datasets:
(a) the initial workset and (b) an initial solution set which evolves with each iteration;

480 M. Junghanns et al.

(2) the step function again performs an acyclic dataflow of arbitrary transformations
on both the current workset and the solution set; (3) the outputs of the step function
are (a) the update solution set, which contains incremental updates for the initial
solution set and (b) the next workset, which is the input for the next iteration; (4)
the solution set after the last iteration is the iteration result and can again be used
in subsequent dataflows. In contrast to Bulk Iteration, the iteration terminates if the
produced next workset is empty or a maximum number of iterations is reached.
However, it is also possible to define a custom convergence criterion.

With reference to the introduced programming models for graph processing in
Sect. 3, each iteration in the Bulk and Delta Iteration can be seen as a superstep in
a synchronous BSP process. Multiple instances of the step function are executed in
parallel and synchronized at the end of each iteration. In Sect. 3, we also showed that
for specific graph algorithms, for example, connected components or single-source-
shortest-path, not all vertices are necessarily active in each superstep.10 The Delta
Iteration is a good foundation for this class of algorithms which is why Gelly uses it
to implement vertex-centric programming abstractions, which we will discuss next.

4.2 Apache Flink Gelly

Flink Gelly [39] is a graph library integrated into Apache Flink and implemented on
top of its dataset API. Besides dedicated graph processing abstractions, Gelly pro-
vides a wide set of additional operators to simplify the definition of graph analytical
programs. The provided data model is a directed, labeled multigraph where vertex
and edge labels are generic, i.e., vertices and edges can carry arbitrary user-defined
payload ranging frombasic data types such as numbers and strings to complexdomain
objects. In the following, we will discuss the graph representation on Flink’s dataset
API, transformation methods and how graph processing abstractions are mapped to
the Delta Iteration.

Graph Representation Gelly uses two classes to represent the elements of a graph:
Vertex and Edge. A Vertex comprises a comparable, unique identifier (id)
and a value, an Edge consists of a source vertex id, a target vertex id and an edge
value. Identifiers and values are generic and need to be declared upon graph creation.
Internally, a graph is represented by a dataset of vertices and a dataset of edges as
shown below:

class Graph <K, VV , EV > {
DataSet <Vertex <K, VV >> vertices
DataSet <Edge <K, EV>> edges

}

The generic type K represents the vertex id type, VV the vertex value type and
EV the edge value type. Since Gelly offers methods to return the vertex and edge

10When implemented using a synchronous graph-processing system.

Management and Analysis of Big Graph Data … 481

datasets, an analytical program can combine those datasets with any other library in
Flink (e.g., for machine learning) as well as third-party libraries that are implemented
on the dataset API (e.g.,Gradoop in Sect. 5). A Gelly graph provides basic methods
for creating graphs and returning simple metrics such as vertex count, edge count or
in- and out-degrees of vertices, which result in new datasets for further processing.

GraphTransformationsGraph transformationmethods are applied on an input graph
and return a new, possibly modified graph, hence enabling the composition of multi-
ple graph transformations in an analytical program. Internally, Gelly translates each
graph transformation to a series of transformations on the vertex and edge datasets.
Similar to other graph dataflow frameworks, e.g., GraphX [42, 115, 116], Gelly
offers the following transformation methods:

• Mutation methods enable adding and removing of vertices and edges. The result
is a new graph with an updated vertex and edge dataset respectively.

• Map allows the modification of vertex and edge values by applying user-defined
transformation functions on all elements in the corresponding datasets.

• Subgraph enables the extraction of a new graph based on user-defined vertex
and edge predicates. If an element in the input graph satisfies the predicate, it is
contained in the output graph.

• Join allows the combination of vertex and edge datasets with additional input
datasets. The transformation applies a user-defined function on each matching
pair and returns a graph with a updated datasets. This can be useful to attach
external data, e.g., from a relational database, to the graph.

• Undirected can be used to transform a directed graph into an undirected graph by
cloning and reversing all edges.

• Union/Difference/Intersect enable merging of two graphs into a new graph based
on the respective set-theoretical method applied on vertex and edge datasets.

NeighborhoodMethodsNeighborhoodmethods are applied on all incident edges and
adjacent vertices of each vertex and can be used to aggregate edge and vertex values
(e.g., average/min/max values, vertex degree, etc.). Gelly provides two variants of
neighborhood methods:

• reduceOnEdges/Neighbors allow the aggregation of edge and vertex values by
providing a user-defined, associative and commutative function on pairs of values.
The methods result in a new dataset containing exactly one aggregate per vertex.

• groupReduceOnEdges/Neighbors allow the aggregation of edge and vertex val-
ues by providing a user-defined, non-associative, non-commutative function on all
respective values. This is useful, if one needs to have all values available in the
function or if more than one aggregate needs to be computed per neighborhood.
The methods result in new datasets containing an arbitrary amount of aggregates
for each vertex.

Graph Processing In Sect. 3, we introduced various programming abstractions for
graph processing. Gelly currently adopts two variants of vertex-centric iterations:

482 M. Junghanns et al.

class WCCMessenger extends MessagingFunction {
void sendMessages(Vertex <K, VV> v) {

sendMessageToAllNeighbors(vertex.getValue ())
}

}
class WCCUpdater extends VertexUpdateFunction {

void updateVertex(Vertex <K, VV> v, Iterator <VV >
messages) {

VV current = v.getValue ()
VV min = current
for (Message message in messages)

if (message < min) min = m
if (current != min) v.setValue(min)

}
}

Listing 1.6: Scatter/Messaging and Gather/Update functions for WCC.
MessagingFunction and VertexUpdateFunction are provided byGelly
and need to be extended by the user.

Scatter–Gather and Gather-Sum-Apply. Both are implemented using the Delta Itera-
tion operator and are thus executed in synchronous supersteps. In the following, we
will discuss both abstractions in further detail.

The Scatter–Gather abstraction is adopted from the Signal/Collect model [102]
and divides a superstep in two phases. In the Scatter (or messaging) phase, the
messages sent to other vertices are being produced, while in the Gather (or update)
phase each vertex updates its value using the received messages. The user needs to
implement both, a messaging and an update function, which are applied during the
computation. Picking up the running example of Sect. 3, Listing 1.6 shows a WCC
implementation using the Scatter–Gather abstraction. While the Scatter function
sends the updated vertex value to all neighbors, the Gather function searches for the
smallest value among all messages and updates the vertex value if necessary.

Figure8a illustrates the implementation of the Scatter–Gather abstraction using
Delta Iteration. Here, the initial workset and solution set is the vertex dataset. In
the step function, Scatter and Gather functions are applied using Flinks coGroup
transformation.11 First, an adjacency list is built by grouping each vertexwith all of its
incident edges. For each row in that adjacency list, Gelly applies the Scatter function
to create new messages. That messages are again grouped with the vertex values
(solution set) and fed into the Gather function. The output of that transformation is
a dataset containing all vertices that changed their value. This dataset is then used to
update the solution set and also as workset for the next iteration.

In contrast to Scatter–Gather, where information is pushed to a vertex, in the
Gather-Sum-Apply (GSA) abstraction, each vertex instead pulls information from

11The coGroup transformation groups each input dataset on one or more fields and then joins the
groups.

Management and Analysis of Big Graph Data … 483

Fig. 8 Scatter–Gather and Gather-Sum-Apply abstraction using Delta Iteration [39]. Input for
both iterations are the vertex dataset V (initial working and solution set), the edge dataset E and the
respective user-defined functions. In both cases, the output dataset V ′ contains the updated vertex
values

its neighbors.12 One iteration is divided into three phases: In the Gather phase, a
user-defined function is applied on the neighborhood of each vertex. Here, each pair
of incident edge value and corresponding adjacent vertex value produces a partial
value. In the Sum phase, a second user-defined function aggregates the partial values
for each neighborhood to a single value. In the final Apply phase, the aggregated
value and the current vertex value are used to produce a new vertex value. For a
WCC computation, the user-defined functions are presented in Listing 1.7. In the
Gather function, we select the value stored at each adjacent vertex.13 After that, we
compute the minimum among those values by reducing them pair-wise in the Sum
function. In the Apply function, we finally update the vertex value if the reduced
value is smaller than the current vertex value.

Figure8b illustrates the GSA abstraction implemented using Delta Iteration. In
contrast to the Scatter–Gather implementation, vertices are first joined with their
incident edges to construct neighbors as input for the Gather function. The latter is
applied using a map transformation and returns a value for each neighbor. Those
values are reduced for each neighborhood by applying the Sum function and finally
joined with the vertices to update their values using the Apply function. As with
Scatter–Gather, the result is a dataset of updated vertices which is used to evolve the
solution set and as workset for the next iteration.

As denoted in Sect. 3, the main difference between Scatter–Gather and GSA com-
putations is that in the Gather phase of GSA, the computation is parallelized over the
edges, while in the Scatter phase, it is parallelized over the vertices. Through this,
GSA is advantageous if the Gather phase contains expensive computation or if the
graph shows a skewed degree distribution. Also, since the Sum phase of a GSA com-
putation exploits a reduce transformation, the results computed on a singleworker are
internally combined before they are sent to other workers which decreases network

12GSA is a variant of the GAS abstraction introduced by PowerGraph [41] and discussed in Sect. 3.
13The Neighbor class allows access to the incident edge value and the adjacent vertex value.

484 M. Junghanns et al.

class GatherNeighborValues extends GatherFunction {
VV gather(Neighbor n) {

return n.getVertexValue ()
}

}
class GetMiniumValue extends SumFunction {

VV sum(VV newValue , VV currentValue) {
return (newValue < currentValue) ? newValue :

currentValue
}

}
class UpdateComponent extends ApplyFunction {

void apply(VV sumValue , VV originalValue) {
if (sumValue < originalValue) setResult(sumValue)

}
}

Listing 1.7: Gather, Sum and Apply functions for WCC in Gelly.

traffic and computation times [39]. However, in contrast to Scatter–Gather, the GSA
composition prohibits the communication between vertices that are not adjacent in
the graph.

4.3 Comparison to Other Graph Dataflow Frameworks

Another prominent implementation of a graph dataflow framework is GraphX
[42, 115, 116] which is integrated into Apache Spark [118]. GraphX provides a
similar API for graph transformation and neighborhood methods that can be com-
posed with other Spark libraries. For iterative graph processing, GraphX implements
the Gather-Apply-Scatter abstraction introduced by Powergraph [41] and discussed
in Sect. 3. LikeGelly, GraphX is built on top of the underlying batchAPI and uses two
distributed collections, so-called Resilient Distributed Datasets (RDD), to manage
vertices and edges. RDDs are similar to the concept of a dataset in Flink and sup-
port transformations (e.g., map, reduce, join) which result in new RDDs. However,
in contrast to Gelly, GraphX offers various optimizations tailored for graph analyt-
ics. One important optimizations is the partitioning of edges based on vertex-cut
algorithms like 2D hash partitioning. Here the edge collection is equally distributed
across all workers by minimizing the number of times each vertex is cut. A second
optimization is the reduction of network traffic between workers by introducing so
called mirror vertices in combination with multicast joins [42]. Here, a join operation
between vertex and edge RDD transfers only those vertices to edge partitions that
are incident to the contained edges.

Management and Analysis of Big Graph Data … 485

5 Gradoop

The distributed graph processing and graph dataflow approaches presented in the
preceding sections are well suited for scalable graph analytics, especially to exe-
cute iterative graph algorithms on large graphs. The graph dataflow approaches also
support a flexible combination of graph processing with general data transformation
operators provided by the underlying frameworks. However, the implemented graph
data models are largely generic and do not meet the requirements posed in the intro-
duction, in particular schema-flexible support for semantic graph data with vertices
and edges of different types and varying attributes. Without this support, graph oper-
ators such as evaluations on vertex or edge attributes need to be user-defined making
the analysis of heterogeneous real-world data a laborious programming task. More-
over, none of the graph systems discussed so far has built-in support to manage
collections of graphs, e.g., application-specific subgraphs such as communities in
social networks. Finally, the graph data model should provide a set of declarative
operators on graphs and graph collections that can be used for the simplified devel-
opment of advanced graph analysis programs.

The Gradoop framework (Graph data management and analytics with Hadoop)
[56, 57] aims at meeting these requirements and improving current graph dataflow
systems. It is built on the so-called Extended Property Graph Model [57] supporting
semantically rich, schema-free graph data within many distinct graphs. A set of high-
level operators is provided for analyzing both single graphs and collections of graphs.
These operators fulfill the closure property14 as they take single graphs or graph
collections as input and result in single graphs or graph collections thus enabling
their composition to complex analytical programs. Gradoop is GPLv3-licensed
and publicly available.15 In the following subsections, we will first introduce the
architecture of Gradoop and then focus on the data model including its operators.
Finally, we illustrate the capabilities of Gradoop with an exemplary analytical
dataflow program.

5.1 Architecture

Gradoop aims at providing a framework for scalable graph data management and
analytics on large, semantically expressive graphs. To achieve horizontal scalability
of storage and processing capacity, Gradoop runs on shared nothing clusters and
utilizes existing Hadoop-based software for distributed data storage and processing.

Figure9 shows the high-level architecture of Gradoop. Analysts declare graph
analytical programs using a domain specific language, called Graph Analytical Lan-
guage (GrALa). The language contains analytical operators for single graphs and

14An operator fulfills the closure property if the execution of that operator on members of an input
domain results in members of the same domain.
15http://www.gradoop.com.

http://www.gradoop.com

486 M. Junghanns et al.

Fig. 9 Gradoop high-level
architecture

graph collections as well as general operators to read and write graph data from and
to data stores. GrALa has been developed on top of the Extended Property Graph
Model (EPGM) that will be discussed in the next section.

To execute analytical programs in a distributed environment, the EPGM and
GrALa are implemented on top of Apache Flink. This way, Gradoop provides
new features for graph analytics while benefiting from existing Flink capabilities for
large-scale data and graph processing. Flink handles program optimization as well
as data distribution and parallel execution across a cluster of machines. Furthermore,
Gradoop can be easily integrated with other Flink libraries, like Gelly or Machine
Learning.

The distributed graph store offers the possibility to manage a persistent graph
database structured according to the EPGM and is implemented in Apache HBase,16

a distributed, non-relational database running on theApacheHDFS (HadoopDistrib-
uted File System). The graph store offers basic methods to read and write a database
and therefore serves as data source and sink for graph analytical programs. Addition-
ally, Gradoop allows reading from and writing to any data store which is supported
by Apache Flink (e.g., HDFS files, relational databases, NoSQL databases).

5.2 Extended Property Graph Model

The EPGM extends the popular property graph model [93] (Sect. 2.2) by support-
ing graph collections and composable analytical operators. Graph collections are a
natural way to represent logical partitions of a graph, e.g., communities in a social
network [36] or business process executions [83]. Further on, graph collections are
the result of certain graph algorithms, e.g., embeddings found bygraph patternmatch-
ing [37] or frequent subgraph mining [55]. Using GrALa, the EPGM operators for
graphs and graph collections can be used together within analytical programs. In the
following, we present the EPGM graph representation and operators in more detail.

16http://hbase.apache.org.

http://hbase.apache.org

Management and Analysis of Big Graph Data … 487

Fig. 10 Example EPGM database representing a simple social network containing two logical
graphs. Each logical graph describes a community inside the social network, for example, people
that are member of a group related to graphs form the Graphs community

Graph Representation A property graph is a directed, labeled and attributed multi-
graph. To express heterogeneity, type labels can be defined for vertices and edges
(e.g., Person or likes). Attributes have the form of key-value pairs (e.g.,
name:Alice or age:42) and are referred to as properties. Such properties are
set at the instance level without an upfront schema definition. In an extended prop-
erty graph, a database consists of multiple property graphs which are called logical
graphs. These graphs are application-specific subsets from shared sets of vertices
and edges, i.e., may have common vertices and edges. Additionally, not only vertices
and edges but also logical graphs have a type label and can have different properties.

Figure10 shows an example EPGM database DB of a simple social network. For-
mally, DB consists of the vertex set V = {v1, .., v6} and the edge set E = {e0, .., e6}
where each element has a unique identifier (e.g., [1]). Vertices represent users,
groups and interest tags, denoted by corresponding type labels (e.g., User) and
are further described by their properties (e.g., name:Alice). Edges describe the
relationships between vertices and also have type labels (e.g., memberOf) and prop-
erties. Type labels do not determine a schema, as elements with the same type label
may have different property keys, e.g., v1 and v4.

The sample database contains the set of logical graphsL = {G1,G2}, where each
graph represents a community inside the social network, in particular specific interest
groups (e.g., Graphs). Each logical graph has a dedicated subset of vertices and
edges, for example, V (G1) = {v1, v2, v4} and E(G0) = {e1, e2}. One can see that
vertex (and also edge sets) of logical graphs may overlap since V (G1) ∩ V (G2) =
{v4}. Note that also logical graphs have type labels (e.g.,Community) andmay have
properties to annotate the graphwith specificmetrics or descriptive information (e.g.,

488 M. Junghanns et al.

interest:Big Data). Logical graphs, such as those of our example, are either
declared explicitly or output of a graph algorithm, e.g., community detection or graph
pattern matching. In both cases, they can be used as input for subsequent operators.

Operators The EPGM provides operators for single logical graphs and graph col-
lections; operators may also return single logical graphs or graph collections. Here,
a graph collection G ∈ Ln is a n-tuple of logical graphs and thus may contain dupli-
cate elements. Collections are ordered to support application-specific sorting and
position-based selection of logical graphs. In the following, we use the terms collec-
tion and graph collection as well as graph and logical graph interchangeably. Table5
lists the analytical operators together with their corresponding pseudocode syntax for
calling them in GrALa. The syntax adopts the concept of higher-order functions for
several operators (e.g., to use aggregate or predicate functions as operator arguments).
Based on the input of operators, GrALa distinguishes between graph operators and
collection operators as well as unary and binary operators (single graph/collection
vs. two graphs/collections as input). There are also auxiliary operators to apply
graph operators on collections or to call specific graph algorithms. In addition to the
listed ones GrALa provides operators to create graphs, vertices and edges including
respective labels and properties. In the following, we will present a subset of avail-
able operators, a detailed discussion of all operators and their implementation can
be found in [56].
AggregationAn operator often used in analytical applications is aggregation, where a
set of values is mapped to a single value of significant meaning. The EPGM supports
aggregation at the graph level. Formally, the operator maps an input graph G to an
output graphG ′ and applies the user-defined aggregate functionα : L → A. Thus, the
resulting graph is a modified version of the input graph with an additional property k.
In the following, we show a simple vertex count example:

alpha = (g => g.V.count())
outGraph = inGraph.aggregate(’vertexCount ’, alpha)

Here, a user-defined aggregate function alpha computes the cardinality of the
vertex set g.V of an input graph g. The aggregation operator is called on the log-
ical graph referred to by the variable inGraph. The operator takes property key
vertexCount and aggregate function alpha as arguments. The resulting logical
graph is assigned to the variableoutGraph andprovides a propertyvertexCount
storing the result of alpha. Basic aggregate functions such as count, sum, min and
max are predefined in GrALa and can be applied to vertex and edge collections.

Pattern Matching A fundamental operation of graph analytics is the retrieval of
subgraphs isomorphic to a user-defined pattern graph [37]. The operator results in a
graph collection containing all embeddings of that pattern graph in the input graph.
For example, in Fig. 11a, a simple pattern graph describes the membership relation
between an arbitrary user and an arbitrary group. Applied on our example graph
in Fig. 10, the operator returns the collection shown in Fig. 11b. Each logical graph
in that collection represents a subgraph that is isomorphic to the pattern graph. To
support such queries, GrALa provides the pattern matching operator, where a pattern

Management and Analysis of Big Graph Data … 489

Ta
bl

e
5

O
ve
rv
ie
w
of

op
er
at
or
s
pr
ov
id
ed

by
th
e
do
m
ai
n
sp
ec
ifi
c
la
ng
ua
ge

G
rA

L
a

G
ra
ph

A
na
ly
tic
al
L
an
gu
ag
e

O
pe
ra
to
r

O
pe
ra
to
r
Si
gn
at
ur
e

O
ut
pu
t

U
na
ry

A
gg
re
ga
tio

n
G
r
a
p
h
.
a
g
g
r
e
g
a
t
e
(
p
r
o
p
e
r
t
y
K
e
y
,

a
g
g
r
e
g
a
t
e
F
u
n
c
t
i
o
n
)

G
r
a
p
h

T
ra
ns
fo
rm

at
io
n

G
r
a
p
h
.
t
r
a
n
s
f
o
r
m
(
g
r
a
p
h
F
u
n
c
t
i
o
n
,

v
e
r
t
e
x
F
u
n
c
t
i
o
n
,

e
d
g
e
F
u
n
c
t
i
o
n
)

G
r
a
p
h

Pa
tte

rn
M
at
ch
in
g

G
r
a
p
h
.
m
a
t
c
h
(
p
a
t
t
e
r
n
G
r
a
p
h
)

C
o
l
l
e
c
t
i
o
n

Su
bg
ra
ph

G
r
a
p
h
.
s
u
b
g
r
a
p
h
(
v
e
r
t
e
x
P
r
e
d
i
c
a
t
e
F
u
n
c
t
i
o
n
,

e
d
g
e
P
r
e
d
i
c
a
t
e
F
u
n
c
t
i
o
n
)

G
r
a
p
h

G
ro
up
in
g

G
r
a
p
h
.
g
r
o
u
p
B
y
(
v
e
r
t
e
x
G
r
o
u
p
i
n
g
K
e
y
s
,

v
e
r
t
e
x
A
g
g
r
e
g
a
t
e
F
u
n
c
t
i
o
n
,

e
d
g
e
G
r
o
u
p
i
n
g
K
e
y
s
,

e
d
g
e
A
g
g
r
e
g
a
t
e
F
u
n
c
t
i
o
n
)

G
r
a
p
h

Se
le
ct
io
n

C
o
l
l
e
c
t
i
o
n
.
s
e
l
e
c
t
(
p
r
e
d
i
c
a
t
e
F
u
n
c
t
i
o
n
)

C
o
l
l
e
c
t
i
o
n

D
is
tin

ct
C
o
l
l
e
c
t
i
o
n
.
d
i
s
t
i
n
c
t
(
)

C
o
l
l
e
c
t
i
o
n

L
im

it
C
o
l
l
e
c
t
i
o
n
.
l
i
m
i
t
(
n
)

C
o
l
l
e
c
t
i
o
n

So
rt
in
g

C
o
l
l
e
c
t
i
o
n
.
s
o
r
t
B
y
(
p
r
o
p
e
r
t
y
K
e
y
,

[
:
a
s
c
|
:
d
e
s
c
]
)

C
o
l
l
e
c
t
i
o
n

B
in
ar
y

E
qu

al
ity

G
r
a
p
h
.
e
q
u
a
l
s
(
o
t
h
e
r
G
r
a
p
h
,

[
:
i
d
e
n
t
i
t
y
|
:
d
a
t
a
]
)

B
o
o
l
e
a
n

C
om

bi
na
tio

n
G
r
a
p
h
.
c
o
m
b
i
n
e
(
o
t
h
e
r
G
r
a
p
h
)

G
r
a
p
h

E
xc
lu
si
on

G
r
a
p
h
.
e
x
c
l
u
d
e
(
o
t
h
e
r
G
r
a
p
h
)

G
r
a
p
h

O
ve
rl
ap

G
r
a
p
h
.
o
v
e
r
l
a
p
(
o
t
h
e
r
G
r
a
p
h
)

G
r
a
p
h

E
qu

al
ity

C
o
l
l
e
c
t
i
o
n
.
e
q
u
a
l
s
(
o
t
h
e
r
C
o
l
l
e
c
t
i
o
n
,

[
:
i
d
e
n
t
i
t
y
|
:
d
a
t
a
]
)

B
o
o
l
e
a
n

D
if
fe
re
nc
e

C
o
l
l
e
c
t
i
o
n
.
d
i
f
f
e
r
e
n
c
e
(
o
t
h
e
r
C
o
l
l
e
c
t
i
o
n
)

C
o
l
l
e
c
t
i
o
n

In
te
rs
ec
t

C
o
l
l
e
c
t
i
o
n
.
i
n
t
e
r
s
e
c
t
(
o
t
h
e
r
C
o
l
l
e
c
t
i
o
n
)

C
o
l
l
e
c
t
i
o
n

U
ni
on

C
o
l
l
e
c
t
i
o
n
.
u
n
i
o
n
(
o
t
h
e
r
C
o
l
l
e
c
t
i
o
n
)

C
o
l
l
e
c
t
i
o
n

A
ux
.

A
pp
ly

C
o
l
l
e
c
t
i
o
n
.
a
p
p
l
y
(
u
n
a
r
y
G
r
a
p
h
O
p
e
r
a
t
o
r
)

G
r
a
p
h

R
ed
uc
e

C
o
l
l
e
c
t
i
o
n
.
r
e
d
u
c
e
(
b
i
n
a
r
y
G
r
a
p
h
O
p
e
r
a
t
o
r
)

G
r
a
p
h

C
al
l

[
G
r
a
p
h
|
C
o
l
l
e
c
t
i
o
n
]
.
c
a
l
l
F
o
r
G
r
a
p
h
(
a
l
g
o
r
i
t
h
m
,

p
a
r
a
m
e
t
e
r
s
)

G
r
a
p
h

[
G
r
a
p
h
|
C
o
l
l
e
c
t
i
o
n
]
.
c
a
l
l
F
o
r
C
o
l
l
e
c
t
i
o
n
(
a
l
g
o
r
i
t
h
m
,

p
a
r
a
m
e
t
e
r
s
)

C
o
l
l
e
c
t
i
o
n

490 M. Junghanns et al.

Fig. 11 Example of a pattern matching execution where a represents the pattern which is applied
on the graph of Fig. 10 and b shows the resulting graph collection containing all subgraphs that
match the pattern

graphG∗ and a predicate ϕ : L → {true, f alse} are the operator arguments. Pattern
matching is applied to a graphG and returns a graph collectionG ′ = {G ′ ⊆ G | G ′ �
G∗ ∧ ϕ(G ′) = true} containing all matches, for example:

matches = db.G.match ("(a:User) -[e:memberOf]-(b:Group))")

The shown pattern graph reflects our membership query. GrALa adopts the basic
concept of describing graph patterns usingASCII characters fromNeo4jCypher [26],
where (a)-[e]->(b) denotes an edge e from vertex a to vertex b. The predicate
function ϕ is embedded into the pattern by defining type labels and properties. In the
example, we describe a pattern of two vertices and one edge, which are assigned to
variables (a,b for vertices; e for the edge). Variables are optionally followed by a
label (e.g., a:User) and properties (e.g., {name = ’Alice’}). The operator is
called for the logical graph representing the whole database DB (db.G) of Fig. 10
and returns a collection assigned to variable matches and containing four new
logical graphs.

Grouping The groupBy operator determines a structural grouping of vertices and
edges to condense a graph and thus helps to uncover insights about patterns hidden
in the graph. Let G ′ be the grouped graph of G, then each vertex in V (G ′) represents
a group of vertices in V (G); edges in E(G ′) represent a group of edges between
the vertex group members in V (G). Vertices are grouped based on selected property
values (including their type label) while edges are grouped along their incident ver-
tices and optionally by selected property values. Vertices and edges in the grouped
graph are called super vertices and super edges, respectively. Additionally, the vertex
and edge aggregate functions can be used to compute aggregated property values for
super vertices and edges, e.g., the average age of users in a group or the number of
group members. The aggregate value is stored at the super vertex and super edge,
respectively. The following example shows the application of the grouping operator:

Management and Analysis of Big Graph Data … 491

Fig. 12 Example of the grouping operator applied on the graph of Fig. 10. The graph is grouped by
vertex and edge label and a count aggregate is used to compute the number of elements represented
by each resulting super vertex/edge

1 outGraph = db.G.groupBy(
2 [: label],
3 (suVertex , vertices => suVertex[’count ’] = vertices.

count()),
4 [: label],
5 (suEdge , edges => suEdge[’count ’] = edges.count()))

The goal of this example is to group vertices and edges in the graph of Fig. 10 by
their corresponding type label. Furthermore, we want to count the number of vertices
and edges represented by each label. In line 2, we define the vertex grouping keys.
Here, we want to group vertices by their type label. However, it is also possible to
define property keys which are used to select property values for grouping (e.g., to
group users by their age). Edges are also grouped by type label (line 4). In lines 3
and 5, we define the vertex and edge aggregate functions. Both receive the super
entity (i.e., suVertex, suEdge) and the set of group members (i.e., vertices,
edges) as input. Both functions apply the aggregate function count() on the set
of grouped entities to compute the group size. The resulting value is stored as a new
property count at the super vertex and super edge respectively. Figure12 shows the
resulting logical graph of the grouping example.

Analytical Example Finally, we illustrate the capabilities of Gradoop using an
exemplary analytical program based on social network data. We assume a hetero-
geneous network including various vertex and edge types including users and their
mutual friendship relations similar to Fig. 10. Vertices and edges have properties, for
example, user vertices store the corresponding name, gender and the city the user
lives in.

The graph analytical program used for our example is shown in Listing 1.8 and
includes several operators from Table5 not discussed before. The input is an entire
social network represented as a single logical graph. Here, the graph is stored in
HBase and distributed across a cluster of machines. In line 1, we load the graph and
refer to it using the variable socialNetwork. Starting from Line 2, we define
our analytical program as a composition of GrALa operators. First, we extract the
subgraph containing only users and their mutual friendship relationships by applying
user-defined vertex and edge predicate functions. The vertices of the resulting graph
are then transformed to a representation which is limited to information necessary

492 M. Junghanns et al.

1 Graph socialNetwork = EPGMDatabase.fromHBase ().getDBGraph ()
Graph

2 result = socialNetwork
3 .subgraph(
4 (vertex => vertex[:label] == ’User ’),
5 (edge => edge[:label] == ’knows ’))
6 .transformVertices(currentVertex , transformedVertex => {
7 transformedVertex[’city ’] = currentVertex[’city ’]
8 transformedVertex[’gender ’] = currentVertex[’gender ’])
9 .callForCollection (: LabelPropagation , [:id , 5]))

10 .apply(g => g.aggregate(’vertexCount ’, (h => h.V.count())))
11 .select(g => g[’vertexCount ’] > 50_000)
12 .reduce(g, h => g.combine(h))
13 .groupBy([’city ’,’gender ’],
14 (suVertex , vertices => suVertex[’count ’] = vertices.count

()),
15 [], (suEdge , edges => suEdge[’count ’] = edges.count()))
16 .aggregate(’vertexCount ’, (g => g.V.count()))
17 .aggregate(’edgeCount ’, (g => g.E.count()))
18 result.writeAsJSON(’hdfs :/// output/’)

Listing 1.8:Analytical programwhich shows the combination of EPGMoperators.

for subsequent operators. The user-defined transformation function takes the current
vertex and a copy of that vertex with omitted label and properties as input and deter-
mines, which data gets transferred from the current to the copied vertex. Here, we
adopt only the gender and city properties. The transformed subgraph is then used
as input for the call operator in line 9. That operator allows us to call specific graph
algorithms on logical graphs (e.g., pagerank) or graph collections (e.g., common
subgraph detection). Here, we use Label Propagation [88], a community detection
algorithm that is already implemented in Flink Gelly. The algorithm propagates the
value associated with a given property key (we use the vertex id) through the graph
in five iterations. The result is a graph collection containing all found communities.
In line 10, we apply the aggregate operator on each of these communities to compute
their respective vertex counts. Then, we use the selection operator to filter communi-
ties that have more than 50K users. The filtered graphs are then combined to a single
logical graph by applying the reduce operator on the filtered collection. The result is
a single logical graph containing all vertices and edges from all graphs in the collec-
tion. We further group this graph by the vertex properties city and gender to see
the relations between those groups. Edges are grouped along their incident vertices.
By applying group-wise counting, we can find out how many vertices and edges are
represented by their respective super entities. In lines 16 and 17, we use aggregation
to compute how many super entities are contained in the resulting logical graph. As
Gradoop is build on top of Apache Flink, program execution needs to be triggered
explicitly. In the last line, we start the program by writing the resulting logical graph
to HDFS using a dedicated JSON output format.

Management and Analysis of Big Graph Data … 493

The example illustrates that Gradoop allows the combined application of graph
queries and transformations as well as the execution of graph algorithms such as for
community detection within a compact dataflow program. The entire program can
be automatically executed in parallel on distributed clusters since all operators are
implemented using Flink operators.

6 Comparison

In our introduction we stated various requirements for flexible and efficient man-
agement and analysis of big graph data. In the previous sections, we discussed three
system categories in detail: graph database, graph processing and graph dataflow sys-
tems. We now want to compare these categories based on the stated requirements.
Table6 highlights the features of the respective categories.

• Powerful graph data model: The need to process graphs with heterogeneous ver-
tices and edges of varying types and with different attributes is currently addressed
best by graph database systems that offer schema-free, flexible data models like
the PGMor RDF. From the considered distributed frameworks for graph analytics,
onlyGradoop supports such a graph data model. Its EPGM is the only data model
with versatile support for graph collections.

Table 6 Feature comparison of different approaches to graph data management and analytics

Graph
database
systems

Graph
processing
systems

Graph dataflow systems

Examples Neo4j,
Marklogic

Pregel, Giraph Gelly, GraphX Gradoop

Data model PGM/RDF Generic graph Generic
graph,
Datasets

EPGM,
Datasets

Graph
collections

No No No Yes

Query
approach

Query
languages

Vertex-
/Graph-centric
computation
models

Vertex-centric computation, dataflow programs

Scope OLTP/Queries Analytics Analytics Analytics

Scalability Up/(Out) Out Out Out

Persistency Yes No No Yes

Transactions Yes No No No

Graph
visualization

Interactive
traversal

No No No

494 M. Junghanns et al.

• Powerful query and analysis capabilities:We saw that each system category has its
own approach for querying and analyzing the graph. While declarative languages,
like Cypher or SPARQL, are unique for graph database systems, graph processing
systems provide vertex- and graph-centric programming abstractions that simplify
the implementation of distributed graph algorithms. In contrast, graph dataflow
systems combine vertex-centric computation with additional libraries and general-
purpose data operators for pre- and post-processing. While Gelly and GraphX
provide transformation and aggregation methods for single graphs, Gradoop in
addition offers operators that exploit the expressiveness of the underlying graph
data model.

• High performance and scalability: The main focus of graph database systems are
OLTP applications with demand for very low query execution times. To achieve
that, those systems focus on query optimization, indexing, efficient physical stor-
age and data replication. Graph processing and dataflow systems on the other
hand, focus on analytical programs involving graphs that span an entire cluster of
machines. Here, the focus is on balanced load distribution, reducing network traffic
and fault-tolerance in case of system-failures during long running programs.While
the architecture of graph processing as well as dataflow systems is built with data
distribution in mind, only a subset of available graph databases provides that fea-
ture. The actual system performance depends on many implementation decisions
as well as on the data and workload characteristics - an extensive benchmarking
could help clarify differences between the different approaches (see Sect. 7.2).

• Persistent graph storage and transaction support: As stated before, graph data-
bases focus on OLTP applications, hereby offering support for ACID compliant
transactions onpersistent data.Graphprocessing anddataflowsystems solely focus
on reading the graph from data sources, process it in a distributedmanner andwrite
the results back to an arbitrary data sink.Gradoop offers rudimentary support for
managing graphs in a persistent database. Those graphs can be either used in fur-
ther analytical programs or be queried directly in the graph store. However, some
graph databases, for example Titan [108], already provide APIs to execute ACID
compliant graph processing algorithms.

• Ease of use/graph visualization: The growing interest in graph-based data sys-
tems indicates that the use of graphs is intuitive for many use cases. However, if
it comes to meaningful visualization of graphs, there is only limited support in
some graph database systems for navigating through the graph. Hence, support for
versatile visualization and interactive exploration for large graphs or the results
of graph analytics is still missing and a topic for future research and development
(see Sect. 7.5).

Management and Analysis of Big Graph Data … 495

7 Current Research and Open Challenges

The development of systems for graph analytics has made great progress in the past
decade but there are still several areas requiring significant further improvement and
research. In the following,we discuss some of these areas togetherwith a brief outline
of initial results that have already been achieved.

7.1 Graph Data Allocation and Partitioning

The efficiency of distributed graph processing substantially depends on a suitable
data allocation (partitioning) of the graph data among all nodes of the processing
system. This data allocation should enable graph processingwith aminimumof inter-
node communication and data transfer while at the same time ensure a good load
balancing such that all nodes can be effectively utilized. The associated optimization
objective is to find a balanced distributed of vertices and their edges such that the each
partition includes about the same number of vertices while the sum of edges crossing
partitions is minimized (“vertex cut”). The graph partitioning problem is known to
be NP-hard and has attracted a large amount of research, in particular in graph theory
[20]. The most promising approximate solutions are multilevel approaches such as
METIS [59] that include steps for coarsening graphs to find partitions for condensed
graphs and uncoarsening to the detailed graph while keeping the partitioning from
the coarse graph [20]. Although these approaches can be run in parallel they are still
expensive and thus likely of limited scalability to very large graphs [75]. A further
problem is that even a near-perfect static data allocation is not sufficient since during
the execution of long-running analysis, e.g., in a Pregel-like system, the processing of
some partitions may have already terminated while others still have to be processed.
Furthermore, some graphs may quickly change, e.g., in social networks, so that the
data allocations needs to be quickly adapted without causing a completely new static
data allocation [51].

Current distributed graph data systems mostly follow a simple hash-based parti-
tioning of the vertices across all nodes. This approach achieves an even distribution of
vertices and thus good load balancing and does not require a data structure to locate
vertices. On the other hand, it frequently assigns neighboring vertices to different par-
titions leading to poor locality of processing and high communication overhead for
many algorithms. A number of proposals has been made to address these limitations
and also support adaptive data allocation to deal with changing graphs or load imbal-
ances during analytical processing. Stanton and Kliot [100] propose a locality-aware
data allocation that incrementally assigns vertices to the partition where most of the
already assigned neighbors have been placed without causing significant load imbal-
ances. This approach is also suitable for changing graphs to allocate new vertices.
PowerGraph [41] as well as Spark GraphX [42] support an edge-based partition-
ing rather than a vertex-driven approach so that the number of edges is balanced

496 M. Junghanns et al.

across partitions and vertices are replicated along with their edges (“vertex cut”).
Such an approach is especially valuable for graphs with a highly uneven distribution
of vertex degrees such that a large fraction of the edges is associated with few ver-
tices that could easily lead to load imbalances with a vertex-based data partitioning.
The replication of vertices has also been proposed for an adaptive data allocation for
dynamically evolving graphs [51, 78]. Furthermore, graph repartitioning approaches
based on the dynamic migration and replication of vertices have been proposed to
deal with load imbalances during analytical processing in graph processing systems
such as GPS and XPregel, but the associated overhead has not always resulted in
significantly improved execution time [75].

The discussion shows that graph data allocation is a challenging problem that
is not sufficiently solved with a single solution such as hash partitioning. This is
because a good data allocation depends on the characteristics of the graph data as
well on the intended kinds of graph analytics. It would be desirable to have support of
a spectrum of allocation approaches fromwhich the system can automatically choose
depending on the graph and workload characteristics (similar as for data allocation in
parallel database systems [80, 91]). Furthermore, it would be desirable to find a data
allocation that can deal with mixed workloads including different kinds of complex
analytical tasks as well as diverse kinds of interactive queries.

7.2 Benchmarking and Evaluation of Graph Data Systems

The large number of existing systems for analyzing graph data poses the question for
potential users of such systems which of the systems performs best for which kind
of analysis tasks, datasets and platforms. This asks for a comprehensive and com-
parative performance evaluation or benchmarking of the different implementations
under comparable conditions. Such evaluations are also expected to help identify
existing bottlenecks that may be addressed in the further development of systems. A
large number of studies has addressed these issues by comparing the performance of
selected systems, in particular for graph database and graph processing systems, e.g.,
[31, 44, 47, 70, 74, 98, 121]. While these studies have been insightful, their results
are mostly not comparable as each study has chosen a different set of systems, differ-
ent sets of real or synthetically generated graph datasets, different sets of queries and
analytical tasks (ranking from pagerank to collaborative filtering and graph coloring)
as well as different environments in terms of number of worker nodes and their char-
acteristics such as memory size and number of cores. The different studies thus have
only few observations in common such that graph processing systems significantly
outperform MapReduce-based implementations [31, 44] and that Giraph is mostly
slower than other graph processing systems such as GraphLab or GPS [44, 47, 70,
98, 121].

A few studies also considered Apache Spark [121] and Stratosphere (the pre-
decessor of Flink) [31, 44], but comparative performance evaluations for GraphX
and Gelly are still missing. Here, it is of great interest, how the underlying dataflow

Management and Analysis of Big Graph Data … 497

systems behave for graph analytical workflows involving multiple graph and non-
graph transformations as well as iterative algorithms. For example, Flink optimizes
dataflow programs with cost-based query-optimization techniques that are similar to
the ones used in database systems, e.g., to reorder transformations. As the optimizer
assumes independent datasets, such generic program optimizations may, however,
cause problems for the processing of graph data with strongly interrelated vertex and
edge datasets. It would thus be interesting to evaluate the performance of different
kinds of graph dataflow programs inmore detail and develop optimization techniques
customizable for graph processing and analysis, e.g., to automatically repartition the
graph during program execution.

In addition to the individual performance studies there are also several recent
attempts for the definition of graph analysis benchmarks, namely Linkbench [12],
LDBC [8, 33] and gMark [13]. These benchmarks specify the synthetic generation
of datasets of different sizes, the workloads and performance metrics together with
rules on how to perform the evaluation in order to achieve comparable results between
different systems. Furthermore, there are proposals for the synthetic generation of
graph datasets, e.g., for business intelligence [84]. From the mentioned benchmarks,
the LDBC (Linked Data Benchmark Council) effort is the most ambitious as it con-
sists of two benchmarks for semantic publishing and social network benchmarking
(SNB) and different sets of query and analysis workloads exhibiting several “choke
points” to stress-test the systems. Unfortunately, there are only few evaluations so
far for all benchmarks so that they could not yet demonstrate their usefulness.

7.3 Analysis of Dynamic Graphs

Previous approaches for graph analytics focus on static graphs that remain stable.
Most graphs, e.g., social networks, however are constantly changing so that the
results of analytical processes, e.g., for community detection or on metrics such as
pagerank or centrality, need to be updated or refreshed. Furthermore, there is a need
for fast, one-pass graph analysis in data streams, e.g., to quickly identify new topics
and correlations in Twitter data, to determine online recommendation for users based
on their current website usage (clickstream) or to identify potentially criminal acts
such as credit card misuse or planned terror attacks.

According to [1], dynamic graphs fall into two categories: slowly evolving graphs
(e.g., co-authorship networks) and streaming networks. In the first case, it is possible
to maintain different snapshots of the graph as the basis for an offline analysis while
in the second case a near real-time analysis is necessary. The analysis can further
focus on understanding the evolution, e.g., by comparing different snapshots, or
on refreshing previous analysis results for the new graph data. A large amount of
research has already dealt with these topics as surveyed in [1]. Typical observations
show that the number of edges grows stronger than the number of vertices leading
to increasingly denser networks (reduced distances between vertices). Many studies
focused on analyzing the evolution of communities, e.g., by applying a clustering-

498 M. Junghanns et al.

based community detection on different snapshots and analyzing the cluster changes.
Graph analysis for streamed data has also found interest already, e.g., to detect
outliers such as a new co-author link between authors of different communities
(linkage anomaly). There is also some work to incrementally update complex graph
metrics such as betweenness centrality17 for streamed data, e.g., using approximation
techniques and specific index structures [50]. The Kineograph system [25] supports
the dynamic graph-based analysis of Twitter data (correlations between users and
hashtags) by continuously creating new in-memory graph snapshots that can then be
evaluated by conventional mining approaches for static graphs, e.g., for ranking or
community detection.

Despite the relatively large body of previous theoretical and experimental work
on dynamic networks, little work has been done for big graph data utilizing current
distributed graph data platforms as discussed in this chapter. Analyzing massive
amounts of changing graph data in a distributed way poses many new algorithmic
and data management challenges including the need for adaptive data allocation
(as discussed inSect. 7.1 above).Datamanagement andgraph analytics is challenging
on a sequence of large graph snapshots as well as for streaming data and needs
much further research.Most studies for graph evolution and dynamic graph analytics
focused on structural changes such as the addition of new vertices and edges; more
work is needed for considering both changes in structure and content, e.g., new
publication topics or changing interests of users in social networks. Furthermore, the
graph changes may have to be associated with information in different data sources,
e.g., to better understand certain changes or identify potential criminal acts. The latter
aspects might imply the need to develop application-specific approaches to take the
specific kinds of changes and additional information to correlate with into account.

7.4 Graph-Based Data Integration and Knowledge Graphs

Before graph data can be analyzed it is necessary to construct and store the graphs
for further processing. As for big data analysis in general, the graph data typically
needs to be extracted from the original data sources (e.g., from social networks, web
pages, tweets, relational databases, etc.), transformed and cleaned. Furthermore, it
is often necessary to combine and interrelate data from multiple sources into the
combined graph. These steps are typically carried out within so-called ETL (extract-
transform-load) workflows that may be performed in parallel on Hadoop platforms,
e.g., using MapReduce or other frameworks such as Hive, Spark or Flink [15, 45,
62]. A particularly important and expensive step is thematching of equivalent entities
(users, products, etc.) from different sources so that they can be fused together, e.g.,
within one graph vertex. Map-reduce-based tools such as Dedoop [64] have been

17The betweenness centrality of a vertex is defined as the number of shortest paths in a network
pathing through the vertex. A high value thus indicates that a vertex is centrally located so that it
plays an important role in a network.

Management and Analysis of Big Graph Data … 499

developed for scalable entity matching. So far, relatively little work has focused
on ETL for graph data, although there are new challenges in all steps of a typical
ETL pipeline, e.g., to extract graphs from certain data sources such as relational
databases, for data cleaning and for data integration. GraphBuilder is one of the few
tools for graph ETL [54]. It utilizes MapReduce jobs to extract data from sources
based on user-defined parsers and to generate vertices and edges. It also provides
different options for distributed storage of the resulting graph data. The BIIIG system
supports the extraction of graph data from several relational databases to support a
graph-based business intelligence [83, 85].

A particularly challenging kind of graph-based data integration becomes neces-
sary for the generation and continuous maintenance of so-called knowledge graphs
[30, 81, 90] providing a large amount of interrelated information about many real-
world entities (persons, locations, ...) and their describing metadata concepts, typi-
cally extracted and combined from several other sources. Non-commercial knowl-
edge graph projects include YAGO,18 DBpedia,19 Freebase and its successor Wiki-
data.20 Companies such as Yahoo! [15], Google, Microsoft or Facebook utilize even
larger knowledge graphs [81] combining information frommore resources including
web pages and search queries. Most of the systems make use of the RDF data model
to express the contained knowledge.

A massive problem is the typically low data quality, high diversity and large
volume of the automatically extracted information to be integrated into knowledge
graphs. Dealing with these issues requires scalable and largely automatic (learning-
based) approaches for information extraction, cleaning, classification and matching
[15, 30, 90].

Low data quality including incomplete and contradicting information from the
information to be integrated into a knowledge graphs is a huge challenge to deal with
requiring scalable and largely automatic (learning-based) approaches for information
extraction, cleaning, classification and matching [15, 30, 90].

7.5 Interactive Graph Analytics

Interactive graph analytics supported by suitable visualizations is highly desirable to
put the human in the loop for exploring and analyzing graph data. However, inter-
active graph analysis is currently only supported for query processing with graph
databases (Sect. 2) while graph analytics with the discussed distributed frameworks
is largely batch-oriented. For example, Neo4j allows such an interactive and visual
exploration of the immediate neighborhood of selected vertices.21 Screen size and
human recognition capabilities limit this approach to inspecting only tens to a few

18www.mpi-inf.mpg.de/yago-naga/yago/.
19http://dbpedia.org/.
20www.wikidata.org.
21http://neo4j.com/graph-visualization-neo4j/.

www.mpi-inf.mpg.de/yago-naga/yago/
http://dbpedia.org/
www.wikidata.org
http://neo4j.com/graph-visualization-neo4j/

500 M. Junghanns et al.

hundreds of vertices at a time. More promising is the exploration and visualization of
summarizing graph data, similar to multidimensional OLAP queries for data ware-
houses. Several approaches for such graph summaries [106, 119], graph OLAP [24,
40, 112, 120] and grouping (Sect. 5.2) have already been proposed and can poten-
tially be applied for large graphs. For example, k-SNAP [106] automatically creates
summarized graphs with k vertices, where the change of parameter k enables an
OLAP-like roll-up and drill-down within a dimension hierarchy [24]. However, the
approach is not yet fully interactive as it depends on a pre-determined parameter.

To improve ease-of-use there is a strong need for extending interactive and visual
analysis to more kinds of graph analysis, from OLAP-style aggregations for single
large graphs and graph collections to exploring evolution in dynamic graphs. Fur-
thermore, it should be possible to interactively evaluate the results of expensive graph
analytics, e.g., to inspect parts of the graphs with a high centrality, certain commu-
nities of interest, etc. The currently existing separation between interactive query
processing with graph databases and batch-oriented graph analytics should thus be
overcome by providing all kinds of analysis in a unified, distributed platform with
support for interactive and visual analysis. Some of the graph databases of Sect. 2,
e.g., Blazegraph, System G and Titan, try to go into this direction, but there are still
many open issues in finding suitable visualizations and interaction forms for the dif-
ferent kinds of analysis. Furthermore, the combined processing of mixed workloads
with queries and heavy-weight graph algorithms should also be possible with the
graph processing frameworks for Hadoop-based clusters.

8 Conclusions and Outlook

The analysis of graph data has become of great interest in many applications and a
major focus of big data platforms. We have posed major requirements for big data
graph analytics and surveyed current systems in three categories: graph database sys-
tems, distributed graph processing systems and distributed graph dataflow systems.
The summarizing comparison of these system categories with respect to the posed
requirements in Sect. 6 showed that there are still big differences between the query-
focused graph database systems and the distributed platforms focusing on large-scale
iterative graph analysis. While distributed graph analysis platforms generally lack an
expressive graph data model, the distributed dataflow approach Gradoop provides
an extended property graph model with powerful support for analyzing collections
of graphs.

Despite the significant advances made in the last few years, the development
and use of distributed graph data systems are still in an early stage. Hence, the
posed requirements are not yet fully achieved and there are many opportunities for
improvement and future research. As discussed in Sect. 7, this is especially the case
for evaluating and improving the performance and scalability of graph data systems,
for graph data partitioning and load balancing, for the analysis of dynamic graph
data, for graph-based data integration, and for interactive and visual graph analytics.

Management and Analysis of Big Graph Data … 501

Acknowledgements This work is partially funded by the German Federal Ministry of Education
and Research under project ScaDS Dresden/Leipzig (BMBF 01IS14014B).

References

1. C. Aggarwal, K. Subbian, Evolutionary network analysis: a survey. ACM Comput. Surv.
(CSUR) 47(1), 10 (2014)

2. G.A.Agha,Actors: amodel of concurrent computation in distributed systemsTechnical report,
DTIC Document (1985)

3. Akka. http://www.akka.io. Accessed 10 Mar 2016
4. A. Alexandrov et al., The stratosphere platform for big data analytics. VLDB J. 23(6) (2014)
5. AllegroGraph. http://franz.com/agraph/allegrograph/. Accessed 10 Mar 2016
6. R. Angles, A comparison of current graph database models, in Proceedings of ICDEW (2012)
7. R. Angles, C. Gutierrez, Survey of graph database models. ACM Comput. Surv. (CSUR)

40(1) (2008)
8. R. Angles et al., The linked data benchmark council: a graph and RDF industry benchmarking

effort. Proc. SIGMOD 43(1) (2014)
9. Apache Flink IterationOperators. https://ci.apache.org/projects/flink/flink-docs-master/apis/

batch/index.html#iteration-operators. Accessed 09 Mar 2016
10. Apache Giraph. http://www.giraph.apache.org. Accessed 10 Mar 2016
11. Apache Jena - TBD. https://jena.apache.org/documentation/tdb/. Accessed 09 Mar 2016
12. T.G. Armstrong et al., Linkbench: a database benchmark based on the facebook social graph

(2013)
13. G. Bagan et al. gMark: Controlling Diversity in Benchmarking Graph Databases. CoRR

abs/1511.08386 (2015)
14. O. Batarfi et al., Large scale graph processing systems: survey and an experimental evaluation.

Clust. Comput. 18(3) (2015)
15. K. Bellare et al., Woo: a scalable and multi-tenant platform for continuous knowledge base

synthesis. PVLDB 6(11) (2013)
16. D.P. Bertsekas, J.N. Tsitsiklis, Parallel and distributed computation: numerical methods,

vol. 23 (1989)
17. Big Data Spatial and Graph User’s Guide and Reference. http://docs.oracle.com/cd/E69290_

01/doc.44/e67958/toc.htm. Accessed 16 Mar 2016
18. H. Bolouri, Modeling genomic regulatory networks with big data. Trends Genet. 30(5) (2014)
19. D. Brickley, L. Miller, Foaf vocabulary specification 0.98. Namespace document 9 (2012)
20. A. Buluç et al., Recent advances in graph partitioning. CoRR (2013)
21. M. Canim, Y.C. Chang, System G data store: big, rich graph data analytics in the cloud, in

IEEE Cloud Engineering (IC2E) (March 2013)
22. G.Carothers,RDF1.1N-Quads: a line-based syntax forRDFdatasets.W3CRecommendation

(2014)
23. R. Cattell, Scalable SQL and NoSQL data stores. Proc. SIGMOD 39(4) (2011)
24. C. Chen et al., Graph OLAP: towards online analytical processing on graphs, in IEEE Data

Mining (ICDM) (2008)
25. R. Cheng et al., Kineograph: taking the pulse of a fast-changing and connected world, in

Proceedings of EuroSys (2012)
26. Cypher Query Language. http://neo4j.com/docs/stable/cypher-query-lang.html. Accessed 16

Mar 2016
27. S. Das et al., A Tale of two graphs: property graphs as RDF in Oracle, in EDBT (2014)
28. R. Diestel, Graph theory, Graduate Texts in Mathematics, vol. 173, 4th edn. (2012)
29. Y. Ding, Scientific collaboration and endorsement: network analysis of coauthorship and

citation networks. J. Inform. 5(1) (2011)

http://www.akka.io
http://franz.com/agraph/allegrograph/
https://ci.apache.org/projects/flink/flink-docs-master/apis/batch/index.html#iteration-operators
https://ci.apache.org/projects/flink/flink-docs-master/apis/batch/index.html#iteration-operators
http://www.giraph.apache.org
https://jena.apache.org/documentation/tdb/
http://docs.oracle.com/cd/E69290_01/doc.44/e67958/toc.htm
http://docs.oracle.com/cd/E69290_01/doc.44/e67958/toc.htm
http://neo4j.com/docs/stable/cypher-query-lang.html

502 M. Junghanns et al.

30. X. Dong et al., Knowledge Vault: a web-scale approach to probabilistic knowledge fusion, in
Proceedings of SIGKDD (2014)

31. B. Elser, A. Montresor, An evaluation study of bigdata frameworks for graph processing, in
IEEE Big Data (2013)

32. O. Erling, I. Mikhailov, RDF support in the Virtuoso DBMS, in Networked Knowledge-
Networked Media (2009)

33. O. Erling et al., The ldbc social network benchmark: interactive workload, in Proceedings of
SIGMOD(2015)

34. S. Ewen et al., Spinning fast iterative data flows. PVLDB 5(11) (2012)
35. S. Ewen et al., Iterative parallel data processing with stratosphere: an inside look, in Proceed-

ings of SIGMOD (2013)
36. S. Fortunato, Community detection in graphs. Phys. Rep. 486(3–5) (2010)
37. B. Gallagher, Matching structure and semantics: a survey on graph-based pattern matching.

AAAI FS 6 (2006)
38. J. Gao et al., Glog: a high level graph analysis system using mapreduce, in Proceedings of

ICDE (2014)
39. Gelly: Flink Graph API. https://ci.apache.org/projects/flink/flink-docs-master/apis/batch/

libs/gelly.html. Accessed 15 Mar 2016
40. A. Ghrab et al., A framework for building OLAP cubes on graphs, in Advances in Databases

and Information Systems (2015)
41. J.E. Gonzalez et al., Powergraph: distributed graph-parallel computation on natural graphs,

in Proceedings of OSDI (2012)
42. J.E. Gonzalez et al., GraphX: graph processing in a distributed dataflow framework, in Pro-

ceedings of OSDI (2014)
43. GraphDB: At Last, the Meaningful Database. http://ontotext.com/documents/reports/PW_

Ontotext.pdf. Whitepaper July 2014
44. Y. Guo et al., How well do graph-processing platforms perform? An empirical performance

evaluation and analysis, in Proceedings of Parallel and Distributed Processing Symposium
(2014)

45. D. Haas et al., Wisteria: nurturing scalable data cleaning infrastructure. PVLDB 8(12) (2015)
46. T. Haerder, A. Reuter, Principles of transaction-oriented database recovery. ACM Comput.

Surv. 15(4) (1983)
47. M. Han et al., An experimental comparison of pregel-like graph processing systems. PVLDB

7(12) (2014)
48. S. Harris, A. Seaborne, E. Prudhommeaux, SPARQL 1.1 query language. W3C Recommen-

dation 21 (2013)
49. O. Hartig, B. Thompson, Foundations of an alternative approach to reification in RDF. Tech-

nical Report. arXiv:1406.3399 (2014)
50. T. Hayashi, T. Akiba, Y. Yoshida, Fully dynamic betweenness centrality maintenance on

massive networks. PVLDB 9(2) (2015)
51. J. Huang, D.J. Abadi, LEOPARD: lightweight edge-oriented partitioning and replication for

dynamic graphs. PVLDB 9(7) (2016)
52. InfiniteGraph: The Distributed Graph Database. http://www.objectivity.com/wp-content/

uploads/Objectivity_WP_IG_Distr_Benchmark.pdf. Whitepaper 2012
53. B. Iordanov, HyperGraphDB: a generalized graph database, in Web-Age Information Man-

agement (2010)
54. N. Jain, G. Liao, T.L. Willke, Graphbuilder: scalable graph ETL framework, in International

Workshop on Graph Data Management Experiences and Systems (2013)
55. C. Jiang et al., A survey of Frequent Subgraph Mining algorithms. Knowl. Eng. Rev. 28(1)

(2013)
56. M. Junghanns et al., GRADOOP: Scalable Graph Data Management and Analytics with

Hadoop. Technical Report. arXiv:1506.00548 (2015)
57. M. Junghanns et al., Analyzing extended property graphs with apache flink, in Proceedings

of SIGMOD Workshop on Network Data Analytics (2016)

https://ci.apache.org/projects/flink/flink-docs-master/apis/batch/libs/gelly.html
https://ci.apache.org/projects/flink/flink-docs-master/apis/batch/libs/gelly.html
http://ontotext.com/documents/reports/PW_Ontotext.pdf
http://ontotext.com/documents/reports/PW_Ontotext.pdf
http://arxiv.org/abs/1406.3399
http://www.objectivity.com/wp-content/uploads/Objectivity_WP_IG_Distr_Benchmark.pdf
http://www.objectivity.com/wp-content/uploads/Objectivity_WP_IG_Distr_Benchmark.pdf
http://arxiv.org/abs/1506.00548

Management and Analysis of Big Graph Data … 503

58. Z. Kaoudi, I. Manolescu, RDF in the clouds: a survey. VLDB J. 24(1) (2015)
59. G. Karypis, V. Kumar, Multilevel k-way partitioning scheme for irregular graphs. J. Parallel

Distrib. Comput. 48(1) (1998)
60. Key Features - ArangoDB. https://www.arangodb.com/key-features/. Accessed 10 Mar 2016
61. Z. Khayyat et al., Mizan: a system for dynamic load balancing in large-scale graph processing,

in Proceedings EuroSys (2013)
62. Z. Khayyat et al., Bigdansing: a system for big data cleansing, in Proceedings SIGMOD

(2015)
63. G. Klyne, J.J. Carroll, Resource description framework (RDF): concepts and abstract syntax

(2006)
64. L. Kolb, A. Thor, E. Rahm, Dedoop: efficient deduplication with Hadoop. PVLDB 5(12)

(2012)
65. L. Kolb, Z. Sehili, E. Rahm, Iterative computation of connected graph components with

MapReduce. Datenbank-Spektrum 14(2) (2014)
66. D. Koller, N. Friedman, Probabilistic graphical models: principles and techniques (2009)
67. A. Kyrola, G. Blelloch, C. Guestrin, GraphChi: large-scale graph computation on just a PC,

in Proceedings OSDI (2012)
68. J. Lin,M. Schatz,Design patterns for efficient graph algorithms inMapReduce, inProceedings

of 8th Workshop on Mining and Learning with Graphs (2010)
69. Y. Low et al., Distributed GraphLab: a framework for machine learning and data mining in

the cloud. PVLDB 5(8) (2012)
70. Y. Lu, J. Cheng, D. Yan, H. Wu, Large-scale distributed graph computing systems: an exper-

imental evaluation. PVLDB 8(3) (2014)
71. G. Malewicz et al., Pregel: a system for large-scale graph processing, in Proceedings of

SIGMOD (2010)
72. MarkLogic Semantics. http://www.marklogic.com/resources/marklogic-semantics-

datasheet/. Datasheet March 2016
73. N. Martinez-Bazan, S. Gomez-Villamor, F. Escale-Claveras, DEX: a high-performance graph

database management system, in Proceedings of ICDEW (2011)
74. R. McColl et al., A performance evaluation of open source graph databases, in Proceedings

of PPAAW (2014)
75. R.R. McCune, T. Weninger, G. Madey, Thinking like a vertex: a survey of vertex-centric

frameworks for large-scale distributed graph processing. ACM Comput. Surv. (CSUR) 48(2)
(2015)

76. F. McSherry et al., Composable incremental and iterative data-parallel computation with
naiad. Technical Report MSR-TR-2012-105 (October 2012)

77. J.J. Miller, Graph database applications and concepts with Neo4j, in Proceedings of Southern
Association for Information Systems Conference, vol. 2324 (2013)

78. J. Mondal, A. Deshpande, Managing large dynamic graphs efficiently, in Proceedings of
SIGMOD (2012)

79. D.G. Murray et al., Naiad: a timely dataflow system, in Proceedings of 24th ACM Symposium
on Operating Systems Principles. SOSP ’13 (2013)

80. R. Nehme, N. Bruno, Automated partitioning design in parallel database systems, in Proceed-
ings of SIGMOD (2011)

81. M. Nickel, K. Murphy, V. Tresp, E. Gabrilovich, A review of relational machine learning for
knowledge graphs. Proc. IEEE 104(1) (2016)

82. Oracle Spatial andGraph:AdvancedDataManagement. http://www.oracle.com/technetwork/
database/options/spatialandgraph/spatial-and-graph-wp-12c-1896143.pdf.Whitepaper Sep-
tember 2014

83. A. Petermann et al., BIIIG: enabling business intelligence with integrated instance graphs, in
Proceedings of ICDEW (2014)

84. A. Petermann et al., FoodBroker-generating synthetic datasets for graph-based business ana-
lytics, in Big Data Benchmarking (2014)

https://www.arangodb.com/key-features/
http://www.marklogic.com/resources/marklogic-semantics-datasheet/
http://www.marklogic.com/resources/marklogic-semantics-datasheet/
http://www.oracle.com/technetwork/database/options/spatialandgraph/spatial-and-graph-wp-12c-1896143.pdf
http://www.oracle.com/technetwork/database/options/spatialandgraph/spatial-and-graph-wp-12c-1896143.pdf

504 M. Junghanns et al.

85. A. Petermann et al., Graph-based data integration and business intelligence with BIIIG.
PVLDB 7(13) (2014)

86. A. Poulovassilis, M. Levene, A nested-graph model for the representation and manipulation
of complex objects. ACM Trans. Inform. Syst. (TOIS) 12(1) (1994)

87. quasar. http://www.paralleluniverse.co/quasar. Accessed 10 Mar 2016
88. U.N. Raghavan et al., Near linear time algorithm to detect community structures in large-scale

networks. Phys. Rev. E 76, 036106 (2007)
89. F. Rahimian et al., Distributed vertex-cut partitioning, in Distributed Applications and Inter-

operable Systems (2014)
90. E. Rahm, The case for holistic data integration, in Advances in Databases and Information

Systems (2016)
91. J. Rao et al., Automating physical database design in a parallel database, in Proceedings of

SIGMOD (2002)
92. M.A. Rodriguez, The gremlin graph traversal machine and language (invited talk), in Pro-

ceedings of 15th Symposium on Database Programming Languages (2015)
93. M.A. Rodriguez, P. Neubauer, Constructions from dots and lines. Bull. Am. Soc. Inform. Sci.

Technol. 36(6) (2010)
94. A. Roy et al., Chaos: scale-out graph processing from secondary storage, in Proceedings of

25th Symposium on Operating Systems Principles (2015)
95. M. Rudolf et al., The graph story of the SAP HANA database, in Proceedings of BTW (2013)
96. S. Sakr, A. Liu, A.G. Fayoumi, The family of mapreduce and large-scale data processing

systems. ACM Comput. Surv. (CSUR) 46(1) (2013)
97. S. Salihoglu, J.Widom, GPS: a graph processing system, in Proceedings of 25th International

Conference on Scientific and Statistical Database Management. SSDBM (2013)
98. N. Satish et al., Navigating the maze of graph analytics frameworks using massive graph

datasets, in Proceedings of SIGMOD (2014)
99. K. Shim, MapReduce algorithms for big data analysis. PVLDB 5(12) (2012)
100. I. Stanton, G. Kliot, Streaming graph partitioning for large distributed graphs, in Proceedings

of SIGKDD
101. Stardog 4 - The Manual. http://docs.stardog.com/. Accessed 10 Mar 2016
102. P. Stutz, A. Bernstein, W. Cohen, Signal/collect: graph algorithms for the (semantic) web, in

ISWC (2010)
103. W. Sun et al., SQLGraph: an efficient relational-based property graph store, in Proceedings

of SIGMOD (2015)
104. C. Teixeira et al., Arabesque: a system for distributed graph mining, in Proceedings of 25th

Symposium on Operating Systems Principles (2015)
105. The bigdata RDF Database. https://www.blazegraph.com/whitepapers/bigdata_architecture_

whitepaper.pdf. Whitepaper May 2013
106. Y. Tian, R.A. Hankins, J.M. Patel, Efficient aggregation for graph summarization, in Proceed-

ings of SIGMOD (2008)
107. Y. Tian et al., From “Think Like a Vertex” to “Think Like a Graph”. PVLDB 7(3) (2013)
108. TITAN: Distributed Graph Database. http://thinkaurelius.github.io/titan/. Accessed 10 Mar

2016
109. N.B. Turk-Browne, Functional interactions as big data in the human brain. Science 342(6158)

(2013)
110. L.G. Valiant, A bridging model for parallel computation. CACM 33(8) (1990)
111. X.H. Wang et al., Ontology based context modeling and reasoning using owl, in Pervasive

Computing and Communications Workshops (2004)
112. Z. Wang et al., Pagrol: parallel graph olap over large-scale attributed graphs, in Proceedings

of ICDE (2014)
113. Why OrientDB? http://orientdb.com/why-orientdb/. Accessed 10 Mar 2016
114. Y. Xia et al., Graph analytics and storage, in IEEE Big Data (2014)
115. R.S. Xin et al., GraphX: a resilient distributed graph system on spark, in First International

Workshop on Graph Data Management Experiences and Systems. GRADES ’13 (2013)

http://www.paralleluniverse.co/quasar
http://docs.stardog.com/
https://www.blazegraph.com/whitepapers/bigdata_architecture_whitepaper.pdf
https://www.blazegraph.com/whitepapers/bigdata_architecture_whitepaper.pdf
http://thinkaurelius.github.io/titan/
http://orientdb.com/why-orientdb/

Management and Analysis of Big Graph Data … 505

116. R.S. Xin et al., GraphX: Unifying Data-Parallel and Graph-Parallel Analytics. Technical
Report. arxiv:1402.2394 (2014)

117. P. Yuan et al., Triplebit: a fast and compact system for large scale rdf data. PVLDB 6(7) (2013)
118. M. Zaharia et al., Spark: cluster computing with working sets, in Proceedings of 2Nd USENIX

Conference on Hot Topics in Cloud Computing. HotCloud’10 (2010)
119. N. Zhang,Y. Tian, J.M. Patel, Discovery-driven graph summarization, inProceedings of ICDE

(2010)
120. P. Zhao et al., Graph cube: on warehousing and OLAP multidimensional networks, in Pro-

ceedings of SIGMOD (2011)
121. Y. Zhao et al., Evaluation and analysis of distributed graph-parallel processing frameworks.

J. Cyber Secur. Mobil. 3(3) (2014)

http://arxiv.org/abs/1402.2394

Similarity Search in Large-Scale
Graph Databases

Peixiang Zhao

Abstract Graphs are ubiquitous and play an essential role in modeling and rep-
resenting complex structures in real-world networked applications. Given a graph
database that comprises a large collection of graphs, it is fundamental and criti-
cal to enable fast and flexible search for structurally similar graphs. In this paper,
we survey recent graph similarity search techniques and specifically focus on the
work based on the graph edit distance (GED) metric. State-of-the-art approaches for
the GED based similarity search typically adopt a pruning and verification frame-
work. They first take advantage of some easy-to-compute lower-bounds of graph
edit distance, and use novel graph indexing structures to efficiently evaluate such
lower-bounds between graphs in the graph database and the query graph. This way,
graphs that violate the GED lower-bound constraints can be identified and filtered
from the graph database from further investigation. Then, the costly GED verifica-
tion is performed only for the graphs that pass the GED lower-bound evaluation. We
examine existing GED lower-bounds, graph index structures, and similarity search
algorithms in detail, and compare different similarity search methods from multi-
ple aspects including index construction cost, similarity search performance, and
applicability in real-world graph databases. In the end, we envision and discuss the
future research directions related to similarity search and high-performance query
processing in large-scale graph databases.

1 Introduction

Today’s highly networkedworld is facing numerous challenges raised in particular by
the abundance of massive, complex, and structurally correlated data, which, without
loss of generality, are often modeled and interpreted as graphs [1, 16]. The ubiquity
of graphs and information networks has ignited intensive interest in enabling effi-
cient access mechanisms and versatile querying functionalities in large collections

P. Zhao (B)
Department of Computer Science, Florida State University, 1017 Academic Way,
James Love Building, Tallahassee, FL 32306, USA
e-mail: zhao@cs.fsu.edu

© Springer International Publishing AG 2017
A.Y. Zomaya and S. Sakr (eds.), Handbook of Big Data Technologies,
DOI 10.1007/978-3-319-49340-4_15

507

508 P. Zhao

of graphs, which, in the database context, is to search relevant graphs from within
large-scale graph databases [4, 28]. For example, in chemistry, chemical molecules
are often represented as graphs that are recorded and compared for new material dis-
covery and synthesis [5, 57]. In computer vision, graphs representing hand-written
symbols, fingerprints, or medical images are retrieved and matched approximately
for identity discovery, object detection, and scene identification [6, 15]. In bioin-
formatics, similarity search tools are implemented on graph-structured data for bio-
logical pathway enumeration and protein interaction detection [40]. The principles
and methodologies of graph search have accordingly been studied in a wide range of
real-world application domains, including pattern recognition [49], drug design [5,
40, 42, 44], social network analysis [14, 32, 33], program analysis [12], and business
intelligence [48, 53], to name a few.

In order to search relevant graphs from a graph database given a user-specified,
graph-structured query, we need to evaluate the “structure relevancy” between data
graphs in the graph database and the query graph, the process of which is often
referred to as graph matching [11, 15, 20, 50]. Graph search methods based on
the exact graph matching principle are to retrieve data graphs that are isomorphic
(or subgraph/supergraph isomorphic) to the query graph [13, 25–27, 35, 56, 63].
Although exact graph searchmethods offer a rigorousway for relevant graph retrieval
in graph databases, they are too restrictive and thus only applicable in very few real-
world scenarios due primary to the following reasons:

1. Real-world graphs are typically noisy with distorted or inconsistent information
arising in different phases of graph modeling, acquisition, storage, management,
and processing [33, 57]. Exact search upon noisy, error-prone graphs oftentimes
leads tomeaningless search results in graph databases, and incurs a lot of wasteful
computation during query processing;

2. For graph database users who are not equipped with a mastery of domain knowl-
edge, they may have vague information need when formulating graph-structured
queries. In many occasions, they have to continuously modify and reformu-
late queries against graph databases, which typically results in a tedious, time-
consuming query refinement process if the rigid, exact graph search mechanism
is adopted [5, 40].

On the other hand, the flexible graph similarity search methods based on the inex-
act, fault-tolerant graph matching principle are able to cope with strong distortions
present in real-world graphs. Meanwhile, the query results turn out to be a series
of data graphs with graded similarities to the query graph. Such a relaxed, approxi-
mate search mechanism can greatly ease the pain of graph database users when they
formulate complex, structure-enriched graph queries with little or no prior knowl-
edge of the graph databases. As a result, flexible and efficient graph similarity search
methods become essential and highly desirable especially for exploratory studies
and rank-based applications in real-world, large-scale graph databases [48, 53, 54,
64, 66, 67].

There has been a rich literature on themodeling and quantification of pairwise sim-
ilarity/distance between graphs, including, but not limited to, graph edit distances [23,

Similarity Search in Large-Scale Graph Databases 509

43, 59], maximum common subgraphs [10, 48], edge/featuremisses [57, 58, 60, 68],
graph alignment [50], graph kernels [7, 39], and graph simulations [18, 38]. In this
chapter, we consider the graph similarity search problem that is defined on the graph
edit distance (GED) constraint: given a graph database G = {g1, g2, . . . , gn}, and a
query graph q, to search as output gi ∈ G (1 ≤ i ≤ n) whose graph edit distance from
q is within a user-specified GED threshold, τ . The graph edit distance, GED(g, q),
is the minimum number of graph edit operations required to transform g to q (or
vise versa), and an graph edit operation can be either vertex/edge insertion, deletion,
or relabeling. GED has proven to be one of the most significant and intuitive graph
proximity functions due to its generality, high degree of flexibility, and interpretabil-
ity, and thus has been employed in widely varying graph-based applications [23, 39].
Specifically, GED has a series of advantages for pairwise graph similarity modeling
and formulation, as follows,

1. GED is a metric applicable to virtually any type of graphs. It allows a complete
set of interpretable graph edit operations that can precisely capture both structure
and content differences between graphs [21];

2. GED defines a generic theoretical framework for graph similarity quantification,
within which many graph proximity measures or distance functions, such as
maximum common subgraphs [8] and edge misses [57], are just its special cases.

Unfortunately, the GED computation is NP-hard [22], which makes the graph
similarity search problem challenging especially in large-scale graph databases. As
a result, a systematic exploration of existing graph similarity searchmethods becomes
essential to real-world large graph databases and big networked data. Furthermore,
the solutions to the GED-based graph similarity search problem can be extended to
help address a family of graph similarity search problems that are defined on other
types of graph proximity measures.

In this chapter, wewill provide an introduction to, and an overview of, the state-of-
the-art GED-based graph similarity search solutions in large-scale graph databases.
In Sect. 2, we will brief the preliminary concepts and core definitions for GED-
basedgraph similarity search.Wewill discuss a basicpruning-verification framework
underpinning existing graph similarity search solutions, together with a cost-based
graph similarity search model in Sect. 3. In Sect. 4, we will survey the state-of-the-art
solutions to the graph similarity search problem in large-scale graph databases. We
will discuss the further work and potential research directions in Sect. 5, followed by
concluding remarks in Sect. 6.

2 Preliminaries

In the chapter, we focus our discussion on simple, undirected, labeled, and connected
graphs. It turns out that the definitions below are sufficiently flexible for a large
variety of graphs in real-world applications, and the graph similarity search methods
discussed in this chapter can be extended to other types of graphswithminor revision.

510 P. Zhao

Definition 1 (Graph) A graph g is a 4-tuple (V, E,Σ, l), where V is a finite set of
vertices; E ⊆ V × V is a set of edges; Σ is a set of labels of vertices and edges;
l : V ∪ E → Σ is a labeling function for vertices and edges of g. �

Given a graph g, we denote the number of vertices of g to be n = |V |, and the
number of edges of g to bem = |E |. For a vertex u ∈ V , we denote all its neighboring
vertices as N (u) = {v|(u, v) ∈ E, v ∈ V }. The label of the vertex u is denoted as l(u),
and the label of an edge e = (u, v) is denoted as l(e) or l(u, v). Labels inΣ represent
the vertex/edge attributes or contents, such as tags in XML documents, atoms and
bonds in chemical compounds, gene ontology (GO) terms in biological networks, or
object descriptors of images. In practical applications, labels of vertices and edges
are often defined asmultidimensional vectors depicting a series of attributes affiliated
with vertices and edges of graphs.

To perform graph search in graph databases, a common operation is to deter-
mine whether two graphs are equal or not with respect to both graph structure and
vertex/edge labels. The problem of graph equality is often formulated as graph iso-
morphism, defined as follows,

Definition 2 (Graph Isomorphism) Given two graphs g1 = (V1, E1,Σ, l1) and
g2 = (V2, E2,Σ, l2), A graph isomorphism between g1 and g2 is a bijective function
f : V1 → V2 satisfying (1) ∀u ∈ V1, l1(u) = l2(f (u)), (2) ∀(u, v) ∈ E1, there exists
an edge (f (u), f (v)) ∈ E2 such that l1(u, v) = l2(f (u), f (v)), and (3) ∀(u, v) ∈
E2, there exists an edge (f −1(u), f −1(v)) ∈ E1 such that l1(f −1(u), f −1(v)) =
l2(u, v). �

Two graphs g1 and g2 are isomorphic if there exists a graph isomorphism between
them. Although Laszlo Babai has proven that graph isomorphism can be evaluated
in quasipolynomial time [2], it is still time-demanding in practical applications.
Typically, one has to adopt a straightforward approach to examining all the possible
vertex-to-vertex correspondences, the time complexity of which is exponential in the
number of vertices of both graphs [52].

Similar to graph isomorphism, we can define subgraph isomorphism from one
graph g1 to another graph g2, denoted as g1 ⊆ g2, if there exists a subgraph g of g2
such that g1 is graph isomorphic to g. If g1 ⊆ g2, we say g1 is contained in g2, or g2
contains g1. Subgraph isomorphism has proven to be NP-complete [22].

To account for the pairwise proximity/distance of real-world graphs, we typically
take into consideration the differences of graphs from both perspectives of graph
structures and vertex/edge labels. Graph Edit distance (GED) offers an intuitive way
to integrate structure/label differences into the graph similarity modeling process
and is thus applicable to virtually any types of real-world graphs. The key idea of
GED is to model graph differences by a series of graph edit operations reflecting the
structure/label variations between two graphs. Specifically, a graph edit operation is
one of the following six basic operations that transform one graph to another [9, 19,
45],

Similarity Search in Large-Scale Graph Databases 511

1. insert an isolated labeled vertex u into a graph;
2. delete an isolated labeled vertex u from a graph;
3. change the label l(u) of a vertex u;
4. insert a labeled edge (u, v) into a graph;
5. delete a labeled edge (u, v) from a graph;
6. change the label l(u, v) of an edge (u, v).

Given two graphs g1 and g2, the sequence of graph edit operations performed
on one graph in order to get the other is called an edit path. Formally, an edit path
P = {p1, . . . , pk} is a series of k graph edit operations that transform g1 to g2.
The edit cost of such a transformation is

∑k
i=1 c(pi), where c(pi) is the cost of the

particular graph edit operation, pi . Taking the unit cost c(pi) = 1 for each graph edit
operation, an edit path of minimal length is called an optimal edit path.

Definition 3 (Graph Edit Distance (GED)) Given two graphs g1 and g2, the graph
edit distance between g1 and g2, denoted as GED(g1, g2), is the length of an opti-
mal edit path between g1 and g2. Namely, it is the minimum number of graph edit
operations required to transform g1 to g2, or vice versa. �

Example 1 Figure1 presents a toy graph database containing two sample graphs g1
and g2, and a query graph q. The graph edit distance between q and g1, GED(q, g1) =
5, indicates that 5 graph edit operations are required to transform q to g1: inserting
an isolated vertex P , inserting an edge (P,C1), inserting an edge (P,C2), relabeling
the vertex label N to S, and relabeling the edge label of (C1,C3) from single bond
to double bond. Similarly, GED(q, g2) = 2. �

With the basic operations such as insertion, deletion, and label substitution, any
graph can be transformed to another graph by iteratively applying graph edit opera-
tions. Consequently, GED can be used as an elegant and flexible similarity/distance
measure between graphs, and it has been proven that GED is a metric [21]. How-
ever, the GED computation is NP-hard [22]. The state-of-the-art GED computational
methods are based on the best-first search paradigm [19], and are only feasible for
graphs of very small sizes [23].

We finally formulate the graph similarity search problem in a graph database as
follows,

P

C1

C2

C3

C4

S

C1

C2

C3

C4

N

C1

C2

C3

C4

N

g1 g2 q

Fig. 1 Two sample graphs g1, g2 and a query graph q. Vertex labels represent atom symbols, and
edge labels are either single bond or double bond. Subscripts of labels differentiate the vertices that
share identical labels

512 P. Zhao

Definition 4 (Graph Similarity Search) Given a graph database G = {g1, g2,
. . . , gN }, a query graph q, and a graph edit distance threshold τ , the graph similarity
search problem is to search as output all the graph gi ∈ G such that
GED(gi , q) ≤ τ . �
Example 2 Consider a sample graph database G consisting of two graphs g1 and g2,
a query graph q, as shown in Fig. 1, and the GED threshold τ = 2. The graph g2 is
returned as output for the similarity search because GED(q, g2) = 2 ≤ τ . �

Because the computation of GED(gi , q) is NP-hard, it is straightforward to know
that the graph similarity search problem is also NP-hard.

3 The Pruning-Verification Framework

A naive solution to the graph similarity search problem is to iteratively examine for
each graph gi in the graph databaseG , whether the GED constraint, GED(gi , q) ≤ τ ,
satisfies or not. However, the NP-hardness of GED computation poses serious algo-
rithmic challenges to the graph similarity search problem. Furthermore, real-world
graph databases may contain a large number N of graphs, thus leading to N costly
GED computations. To ameliorate this computational bottleneck, the state-of-the-art
methods typically adopt a pruning-verification algorithmic approach. First of all, we
consider some light-weight, easy-to-compute GED lower-bounds, GED(gi , q), to
identify the graphs from the graph database G such that GED(gi , q) > τ . It is easy
to verify that

GED(gi , q) ≥ GED(gi , q) > τ.

As a result, the graphs that satisfy GED(gi , q) > τ can be safely pruned from G
without the costly GED verification. On the other hand, the graphs that pass the
pruning phase, i.e., GED(gi , q) ≤ τ , are further considered in a candidate set, C .
That is,

C = {gi |gi ∈ G ,GED(gi , q) ≤ τ }. (1)

At the second verification phase, we verify the pairwiseGED constraint, GED(gi , q),
between the query graph q and each graph gi in the candidate set, C .

The main idea of this pruning-verification framework is that, as opposed to exam-
ining N = |G | pairwise GED computations for the query graph q against the whole
graph database,G , we can just perform the costly GED verification against the candi-
date set, C . If |C | 	 |G |, the challenging graph similarity search problem becomes
feasible, even in very large graph databases. As a result, the crucial performance fac-
tors related to the graph similarity search problem are (1) the tightness of the GED
lower bounds employed in the filtering phase, and (2) the computational overhead for
the identification and filtering of graphs that fail the GED lower-bound constraints.

Formally, we consider the runtime cost, T , for graph similarity search, which is
dependent on the following critical factors: (1) TC : the runtime cost for graph pruning

Similarity Search in Large-Scale Graph Databases 513

and candidate generation, (2) |C |: the size of the candidate set, and (3) TGED: the
runtime cost for GED computation. Upon the pruning-verification framework, it is
straightforward to know that

T = TC + |C | ∗ TGED (2)

As a result, in order to improve the query performance for graph similarity search
in large-scale graph databases, the most significant issue is to reduce the size of the
candidate set, |C |, because the runtime cost TGED for pairwise GED computation is
high, and it is unlikely tomake breakthroughs in this aspect unless P=NP.To this end,
powerfulGED lower-bounds that can effectively identify andfilter unqualified graphs
from the graph database will result in a small value of |C |, and thus bring significant
speedup for graph similarity search. Meanwhile, another importance performance
factor is TC . To reduce TC , state-of-the-art solutions typically adopt efficient and
cost-effective graph indexing techniques to facilitate the process of GED lower-
bound evaluation and graph pruning before the costly GED verification is performed
upon the candidate set, C .

4 State-of-the-Art Approaches

In this section, we elaborate on the state-of-the-art solutions to the similarity search
problem in large-scale graph databases. All the methods to be discussed employ
some graph-structured patterns as cost-effective graph indexing features, and take
advantage of count-basedGED lower-bounds based on the index features for effective
graph identification and filtering.

To give readers a clear overview of these graph indexing based approaches, we
will first consider q-gram indexes as an analogy, which have been extensively studied
for the string edit distance computation [24, 36, 37, 41, 51, 61]. The main idea of
q-gram is as follows: For each letter t in a string S of length |S|, we keep explicitly
its small continuous q-grams, each of which is a substring of length q with t as
its central character. This way, the string S can be decomposed into a collection of
q-grams. As a result, we have the following important properties: (1) two identical
strings have the same q-gram collections, and (2) any string edit operation will only
affect a limited number of q-grams. These properties make it possible to perform
string edit distance based similarity search upon a large set of strings, because the
number of matched q-grams (based on string identity) is correlated with the exact
string edit distance between strings, and therefore can be effectively leveraged as a
lower-bound of string edit distance for effective pruning.

By analogy, we can adapt the same reasoning behind the q-gram methods to the
problem of similarity search in graph databases, and indeed, existing graph similarity
search solutions are primarily inspired by this idea. Essentially, the costly graph edit
distance constraint is relaxed to a weaker, count-based constraint on the number of
common graph-structured q-grams shared by both graphs, g, in the graph database

514 P. Zhao

and the query graph, q. These methods differ, however, primarily in (1) the q-grams
adopted and indexed from the graph database, (2) the count-based GED lower-bound
derived based on the q-grams, and (3) the graph indexing based filtering process for
candidate graph generation and false-positive graph pruning. Broadly, the existing
graph similarity search methods can be categorized as tree-based approaches, star-
based approaches, path-based approaches, and partition-based approaches, each of
which will be discussed in detail in the following sections.

4.1 A Tree-Based Approach: K-Adjacent Tree

Guoren Wang etc. proposed a graph indexing approach, k-Adjacent Tree (k-AT), for
similarity search in large sparse graph databases [53]. They first decompose graphs
into a series of tree-structured features, k-Adjacent Tree (k-AT for short), and then
use the number of common k-AT features derived from g ∈ G and q, respectively,
as a GED lower-bound for graph pruning. Formally, we define k-AT as follows,

Definition 5 (k-AT)Given a graph g = (V, E,Σ, l) and a vertexu ∈ V , the adjacent
tree of u in g is a breath-first search tree originated from u with the children of each
tree node being sorted by the vertex labels. The k-adjacent tree of u, denoted as
k-AT(u), is the top k-level subtree of the adjacent tree of u in g. The k-adjacent tree
of g, denoted as k-AT(g), is a multi-set of k-ATs for each vertex u ∈ V . That is

k-AT(g) = {k-AT(u) | u ∈ V } (3)

�

It is straightforward to decompose a graph g into k-AT(g), and each k-AT(u) can
be properly maintained into an index structure for efficient lookup and comparison.
Here the tree-structured k-AT serves as the basic “q-gram” for GED estimation.
Intuitively, if the number of graph edit operations exerted on g is small, there must
be a considerable number of its k-ATs remain unchanged. Formally, we can use the
number of common k-ATs of two graphs to estimate the GED lower-bound between
them, which is detailed in the following theorem.

Theorem 1 Given two graphs g1 and g2, let δ(g1) and δ(g2) be the maximum degree
of g1 and g2, respectively. If δ(g1) > 1 and δ(g2) > 1, then the number of com-
mon k-ATs of g1 and g2, |k-AT(g1) ∩ |k-AT(g2)|, and their graph edit distance,
GED(g1, g2), satisfy the following inequality:

|k-AT(g1) ∩ k-AT(g2)| ≥ |Vg1 | − GED(g1, g2) · 2(δ(g1) − 1)k−1 (4)

�

Similarity Search in Large-Scale Graph Databases 515

Namely, if q and g ∈ G are similar (GED(q, g) ≤ τ), the number of their common
k-ATs has to be no smaller than |V (g)| − 2τ(δ(g) − 1)k−1. In other words, if the
following inequality satisfies,

|k-AT(q) ∩ k-AT(g)| < |Vq | − 2τ(δ(q) − 1)k−1 (5)

g is definitely an unqualified graph, and thus can be safely pruned from the graph
database from further inspection.

During index construction, we generate all the k-ATs of each graph g from the
graph database, G , and maintain the k-ATs into an hierarchical index structure, k-AT
lattice. To further compact the k-AT lattice, each k-AT is associated with a unique
identifier, and the identifier of a small-size k-AT is reused to represent a large-size
k-AT in the lattice. Such tree-structured k-ATs are further sequentialized for compact
storage and efficient retrieval. When end-users issue a graph query q, we decompose
it into k-ATs in an analogous way. Afterwards, we examine the number of common
k-ATs between q and every graph g ∈ G in order to evaluate the inequality in Eq.5.
The graphs fail in the evaluation are put into the candidate set,C , for further pairwise
GED verification.

There are significant issues in this k-AT approach. First, the GED lower-bound is
loose if graphs of the graph database are dense, and it is difficult to further tighten
this bound [53]. Interestingly, the GED lower-bound may become equal to or even
less than zero if there is a vertex with a high degree in the graph. Such phenomenon
is often called underflowing. Second, this approach require enumerating all k-ATs
exhaustively from the graph database, whichwill introduce significant time and space
overheads. Third, it is hard to choose a proper value of k to guarantee both the filtering
capability and the compactness of the index for a large graph database. Empirically,
small values of k usually lead to limited pruning ability because small-size k-ATs
fail to capture the global structure of graphs, which are crucial in GED computation,
while large values of k may result in large-size k-ATs, within which many graph edit
operations may occur and overlap, thus yielding poor pruning power and extremely
high query processing cost.

4.2 A Star-Based Approach: SEGOS

Xiaoli Wang etc. proposed another graph indexing method, SEGOS (SEarching
similar Graphs based On Sub-units), for similarity search in graph databases [54,
59]. In this approach, each graph g ∈ G is decomposed into specialized features
called stars, each of which contains a vertex and discriminative information about
its neighboring vertices and edges.

Definition 6 (Star) A star is a labeled, single-level and rooted tree represented as
a 3-tuple s = (r, L , l), where r is the root, L is the set of leaves and l is a labeling
function. For each u in the graph g, a star can be built as su = (u, Lu, l), where Lu is

516 P. Zhao

the label set of u’s neighboring vertices. A graph g can be decomposed into its star
representation, S(g), which is a multiset of stars originating from each vertex u of g
as a root,

S(g) = {su |u ∈ Vg} (6)

�
The edit distance between two stars can be define as follows,

Definition 7 (StarEditDistance)Given two stars s1 and s2, the edit distance between
s1 and s2 is

λ(s1, s2) = T (r1, r2) + d(L1, L2) (7)

where

T (r1, r2) =
{
0 if l(r1) = l(r2)
1 otherwise

and
d(L1, L2) = ||L1| − |L2|| + M(L1, L2)

M(L1, L2) = max{|ΨL1 |, |ΨL2 |} − |ΨL1 ∩ ΨL2 |

where ΨL is the multiset of vertex labels in L . �
We then consider quantifying an estimated distance between two graphs g1 and g2

in terms of their star representations, S(g1) and S(g2), respectively. Such a distance
is defined as a mapping distance, as follows,

Definition 8 (Mapping Distance) Given two star representation S(g1) and S(g2)
with the same cardinality, and a bijective functionP : S(g1) → S(g2), the mapping
distance between them is

μ(g1, g2) = min
P

∑

si∈S(g1)

λ(si ,P(si)) (8)

where the function λ(si , s j) is the start edit distance, as defined in Eq.7. �
The computation of the mapping distance is equivalent to finding an optimal

mapping between two star representations of graphs, which can be implemented
based on the Hungarian algorithm in cubic time [34]. The weight between two stars
is the star edit distance. If two graphs are of different size, a special node ε is inserted
for normalization.

Example 3 Figure2 illustrates two graph g1 and g2 together with their star repre-
sentations S(g1) and S(g2). The bottom left matrix M(S(g1), S(g2)) is the weight
matrix between S(g1) and S(g2). Cells in gray denote the optimal matching between
S(g1) and S(g2). Namely, μ(g1, g2) = 2 + 0 + 2 + 0 + 0 + 5 = 9. To have a clear
view, two sets of stars in S(g1) and S(g2) are shown on the right, and the optimal
matching is marked with solid arrows. �

Similarity Search in Large-Scale Graph Databases 517

Fig. 2 Two graphs g1 and g2 are decomposed into their star representations S(g1) and S(g2),
respectively. The mapping distance computation between g1 and g2 is also illustrated based on the
Hungarian algorithm [54]

The mapping distance of graphs can be used effectively to derive a lower-bound,
GED(g, q), and a upper-bound, GED(g, q) of the graph edit distance [59].

Theorem 2

GED(g, q) = μ(g, q)

max{4, [max{δ(g1), δ(g2)} + 1]} ≤ GED(g, q) (9)

where δ(·) is the maximum degree of a graph, and

GED(g, q) = C(g1, g2,P) ≥ GED(g, q) (10)

where C(g1, g2,P) is the overall cost of transforming g1 to g2 using the optimal
mapping P . �

The authors further proposed a two-level inverted index framework, SEGOS, to
facilitate the computation of mapping distances and the evaluation of GED lower-
bounds for similarity search. To enhance the filtering power, the decomposed stars
from the graph database G are compared against the stars generated from the query
graph q using the Hungarian algorithm. Formulated as a weighted bipartite matching
problem, each star from G can have a partial matching with each star in q. This need
arises in order to find the stars that not only match exactly but also are highly similar
with each other.

518 P. Zhao

In this framework, a two-level inverted index is constructed based on the decom-
posed stars from the graph database, G :

• The upper-level inverted index. Given any graph g ∈ G , an inverted index for
all stars derived from g is constructed. This index is made up of two main parts:
an index for all distinct stars from G , and an inverted list below each star. Here,
the stars are sorted in alphabetical order. Each entry in the inverted lists contains
the graph identifier in G and the frequency of the corresponding star. All lists are
sorted in increasing order of the graph sizes;

• The Lower-level inverted index. The inverted index for all stars based on vertex
labels is further constructed. Specifically, a star is broken into a multiset of labels
excluding its root label. With this decomposition, it is easy to build an inverted
index for stars based on labels. The index also contains two components: a label
index in increasing order of label frequencies and inverted lists below labels record-
ing the star identifies and the frequencies of corresponding labels in the leaves of
the star. Entries in each list are first grouped based on the leaf size and then sorted
in decreasing frequencies within each group.

This two-level inverted index is preprocessed to maintain a global order for both
stars and graphs in G . This order ensures that stars or graphs can be accessed in
increasing dissimilarity to stars decomposed from the query graph q. Therefore, it is
convenient to search similar stars for a star derived from the query graph based on
the star edit distance.

Given a query graph q, the similar search follows a novel, cascaded framework:
in the lower level of the inverted index, top-k similar stars to each star of the query
can be retrieved and returned quickly; in the upper level of the inverted index, graph
pruning is carried out based on the top-k results returned from the lower level. Two
search algorithms based on the paradigm of the TA (threshold algorithm) and the
CA (combined algorithm) [17] are proposed to retrieve stars and graphs. Using the
summation of star edit distances as the aggregation function, sorted lists can be easily
constructed to guarantee the global orders on the increasing dissimilarity for graphs.
The CA based method can enhance similarity search by avoiding access to graphs
with high dissimilarity. It is clear that the top-k stars returned from the lower-level
star search can be automatically used as the input to the upper-level graph search.
Therefore, these two search stages can be easily pipelined to support continuous
graph pruning.

The star structure considered in SEGOS is exactly the same feature as the 1-AT
defined in the k-AT method, where k = 1. Unlike k-AT, SEGOS computes the new
lower and upper GED bounds, which have proven to be tighter than that of k-AT.
However, SEGOS has to invoke the Hungarian algorithm for the weighted bipartite
matching between star representations of two graphs, which is time-consuming.
Furthermore, star structures still lead to poor similarity search performance because
they are typically frequent features in a graph database and exhibit limited pruning
capabilities, thus yielding a very large candidate set, C , for similarity search.

Similarity Search in Large-Scale Graph Databases 519

4.3 A Path-Based Approach: GSimJoin

Xiang Zhao etc. proposed a different, path-based indexing approach,GSimJoin, for
similarity join in graph databases, while theirmethods can be directly applied to solve
the similarity search problem as well [65]. Distinct from the tree-based approaches,
they explore a novel perspective of utilizing paths as the basic q-grams and index
features:

Definition 9 (q-Path) A q-path is a simple path of length q, in terms of the number
of edges, in a graph g. �

Here “simple” means that there is no repeated vertex in the path. Since a path has
two ends, namely, start vertex and end vertex, two sequences can be formed by
concatenating the vertex and edge labels from both ends. Here we only consider the
lexicographically smaller one as a q-path. Since the length of a path can be zero for
the case of a single vertex, a 0-path is just a single vertex.

The path-based GED lower-bound can be derived accordingly, as follows,

Theorem 3 Consider two graphs g1 and g2, if GED(g1, g2) ≤ τ , then g1 and g2
must share at least

max(|Pg1 | − τ · Dpath(g1), |Pg2 | − τ · Dpath(g2)) (11)

common q-paths. Here Pg denotes the multiset of q-paths of g, and Dpath(g) denotes
the maximum number of q-paths that can be affected by one particular graph edit
operation. �

Compared with the tree-based approaches, such as k-AT and SEGOS, this path-
basedmethod,GSimJoin, has the advantage of presenting tighterGED lower-bounds.
As a result, it will deliver the chance of using longer q-paths in seek of greater pruning
capabilities and better similarity search performance.

GSimJoin further makes use of an inverted index to evaluate the path-based GED
lower-bounds during the candidate generation. First of all, all q-paths from the graph
database G are generated. The inverted index maps each q-path, p, to a list of
identifiers of graphs inG that contain p. Once given a query graph,we can decompose
it into a series of q-paths and probe the inverted index to produce the candidate set
C that contains all graphs sharing common q-paths with the query and satisfying the
path-based GED lower-bound, as formulated in Eq.11.

To address the main performance bottleneck in accessing long inverted lists in
the index, GSimJoin further adopts a prefix filtering idea that if two multisets of
q-paths meet the GED lower-bound constraint, they must share at least one common
q-path in their prefixes. In other words, if Pg1 and Pg2 have no common q-gram
in their prefixes, the number of their common q-grams is no more than the GED
lower-bound in Eq.11. As a result, the prefix filtering can be employed to further
reduce the candidate set, C . In practice, in order to achieve a small candidate size
and fast execution speed, rare q-paths are favored in prefixes. Therefore the multiset

520 P. Zhao

of q-paths of each graph can be sorted in ascending order of the number of graphs
of G that contain the q-paths.

Another novelty of GSimJoin is to exploit the valuable information provided
by mismatching q-paths that cannot be matched between graphs and the query.
Two filtering conditions, minimum prefix length and local labels, are accordingly
proposed so that the size of candidates can be substantially reduced.

GSimJoin still suffers from significant performance issues for similarity search
because the basic index features, k-paths, may overlap with a lot of other q-paths
within a graph, and thus a single graph edit operationwill affect many k-paths. This is
especially true in dense graphs with high-degree vertices. As a result, the path-based
GED lower-bound becomes loose and thus fails to filter unqualified graphs from the
graph database during the candidate generation.

4.4 A Partition-Based Approach: Pars

The tree-based, star-based, and path-based approaches make use of some fixed-size,
overlapping substructures of graphs as basic index features for GED lower-bound
evaluation and graph filtering. As a consequence, these approaches suffer from the
following drawbacks for similarity search: (1) They fail to take full advantage of
the global topological structure of graphs for candidate generation. The fixed-size
substructures significantly limit the selectivity of corresponding graph indexes, and
therefore become nonadaptive to large-scale graph databases and queries; (2) There
exist a lot of structure redundancy among fixed-size substructures. As a result, their
corresponding GED lower-bounds are primarily established in a pessimistic way for
false-positive graph identification and pruning, and thus are very sensitive to large
vertex degrees or large GED threshold, τ .

Xiang Zhao etc. proposed another novel graph indexing method, Pars, by decom-
posing graphs into variable-size, non-overlapping half-edge graph partitions, which
constitute the basic index features for similarity search [64]. Such partition-based
indexing scheme is not prone to large vertex degrees, and can accommodate large
distance thresholds in practice.

Definition 10 (Half-edge Graph) A half-edge graph g = (V, E,Σ, l), where E ⊆
V × (V ∪ {∗}), is a graphwith the possible half edge (u, ∗) ∈ E , which has a definite
one-end vertex u ∈ V , while the other end (and its label) is not explicitly specified,
represented as ∗. �

A half-edge graph is a general case of graphs, as defined in Definition 1. Given a
graph g, it can be partitioned into a series of half-edge graphs. This graph partitioning
can be formalized as follows,

Definition 11 (Graph Partitioning) A graph g can be decomposed into a set P of
collective exhaustive, mutually exclusive, and non-empty half-edge graphs, denoted

Similarity Search in Large-Scale Graph Databases 521

Fig. 3 The graph g on the left is partitioned into four half-edge graphs: P(g) = {p1, p2, p3, p4}
as shown on the right

as P(g) = {pi | ⋃i Vpi = Vg,
⋃

i E pi ⊆ Eg ∪ Vg × {∗}, pi
⋂

p j = ∅, ∀i, j, i =
j}.P is called a partitioning of g. �

Example 4 As shown in Fig. 3, the graph g is partitioned into four half-edge graphs,
p1, p2, p3, and p4. SoP = {p1, p2, p3, p4} is onepartitioning, amongothers, of g. �

Partitioning a graph g into a set of half-edge graph partitions has a clear advantage
in GED computation: for any graph edit operation that can be applied upon g, it can
only appear in, and thus affect, at most one graph partition. As a result, the following
partition-based GED lower bound can be derived,

Theorem 4 Consider a query graph q and a graph g ∈ G with a partitioningP(g)
of τ + 1 partitions. If GED(g, q) ≤ τ , at least one of the τ + 1 partitions is subgraph
isomorphic to q. �

Apartition pi ⊆ g is called amatching partition if it is subgraph isomorphic to the
query q, or otherwise a mismatching partition. Based on Theorem 4, if the number
of mismatching partitions of g is larger than τ , then GED(g, q) > τ . Namely, g is a
false-positive graph and thus can be safely pruned. In order to leverage this partitioned
based GED lower-bound for effective graph filtering and candidate generation, a
partition-based similarity search framework, Pars, is developed which contains two
main phases: an index construction phase that can be performed offline and a query
processing phase that support online similarity search in graph databases.

In the offline index construction phase, each graph g ∈ G is partitioned into
(τ + 1) half-edge subgraphs. An inverted index is further built to maintain for each
partition p all the graphs of G that contain p as a subgraph. The graph-structured
partitions are sequentialized into their canonical DFS-code representations [55] to
facilitate the lookup and maintenance of the indexed half-edge subgraph features
during similarity search.

Once the partitioned based index has been properly built, similarity search can
be supported in a straightforward way: Given a query graph q, we start probing the
inverted index for candidate generation. At first, we maintain a data structure, states,
which are set to uninitialized for all graphs g in the graph database G . Then, for each
partition p in the inverted index, we examine whether p is contained as a subgraph
in the query q or not. If so, each graph g with an uninitialized state in the postings
list of p are set to true and become candidate graphs in C , while the states of the

522 P. Zhao

disqualified graphs are set to false denoting that these graphs can be safely pruned
from the candidate set, C , without costly GED verification in the future.

It has been observed that the filtering performance of different similarity search
algorithms relying on inclusive logic over inverted indexes is primarily determined
by the selectivity of the index features. Fixed-size index features, such as trees, stars,
or paths, are generated irrespectively of feature frequency, and hence selectivity;
while variable-size, half-edge graph partitions offer more flexibility in constructing
the feature-based inverted index.Meanwhile, partition-based features can capture the
global structural information of graphs in the graph database, and thus can obtain sta-
tistically more selective index features than the previous, fixed-sized feature based
approaches. Furthermore, partition-based half-edge subgraphs generated from the
graph database are non-overlapping. This property restricts that an graph edit oper-
ation can affect at most one index feature, and thus, the number of features affected
by τ graph edit operations can be tremendously reduced. As a result, unlike previous
approaches, the partition-based approach does not suffer from the drawback of loose
GED bounds when handling large GED thresholds and graphs/queries with large
vertex degrees.

A critical component in Pars is how to partition a graph g into (τ + 1) half-
edge graphs. As expected, even assigned with a trivial cost function, this graph
partitioning problem is NP-hard [64]. In order to address this problem, a practical
randomized-refinement graph partitioning algorithm is proposed for a good, if not
the optimal, partitioning. First of all, it randomly picks (τ + 1) distinct vertices of g
as the initial partition pi , where 1 ≤ i ≤ τ + 1, respectively. This ensures that every
graph partition pi is non-empty and contains at least one vertex. Then, for each pi ,
we further extend it with a neighboring vertex that has not been assigned to any
existing partition. This offers each pi a chance to expand in a way that the sizes
and the selectivities of all the partitions are balanced. Finally, for all the remaining
edges e = (u, v) whose end vertices are assigned to different partitions, it randomly
assigns e to either the partition containing u or v as a half-edge. If the information
of historical query workload is available, the randomized graph partitioning can be
further refined by selecting the best option of moving vertices from one partition to
another in order to minimize the size of the candidate set, C .

Another novelty of Pars is to dynamically rearrange graph partitions to adapt
the online query by recycling and making use of the information in mismatching
partitions. The basic idea of dynamic partition filtering is to leverage themismatching
partitions and to dynamically add, if possible, additional vertices and edges to a
partition having been tested to be contained by the query q. The recycled vertices
and edges are used once the subgraph isomorphism test between the graph partition
p and the query graph q returns true. In particular, for each graph g in p’s postings
list, we append g’s recycled vertices and edges to p and perform another subgraph
isomorphism test. Only if the new partition is contained by q, g becomes a candidate
and is allocated to C . Note that if the new subgraph isomorphism test fails, the
vertices and edges can be recycled again for further evaluation.

Similarity Search in Large-Scale Graph Databases 523

Although Pars has claimed to be one of the best approaches to similarity search
in large-scale graph databases, there are still several weaknesses. First, the partition-
based GED lower bound is still not tight to filter a majority of false-positive graphs
from the graph database. Second, Pars adopts a randomized partitioning method to
generate half-edge graph partitions as basic index features, the selectivity of which,
however, are actually quite limited, and in some occasions, their pruning power
will be significantly poor because some randomly generated index features might
be matching partitions of a lot of queries. Although a sophisticated partitioning
refinement process is devised to remedy this issue, it still suffers from a laborious
process that involves a large amount of subgraph isomorphismcomputation and index
reorganization, which poses another significant performance bottleneck to similarity
search.

5 Future Research Directions

Although there have been numerous GED lower-bounds and similarity search tech-
niques proposed thus far, the topic of enabling efficient, versatile, and high-quality
search functionalities and graph access methods still stays in its infant stage, and
there exist extensive research interest and real-world need for Google-like search
functions and tools that are well tailored and highly optimized for large-scale graph
databases. In this section, we envision the potential research directions and future
frontiers that are closely related to similarity search in graph databases.

5.1 New GED Bounds and Search Algorithms

Asdiscussed above, there have beenquite a few similarity search algorithmsproposed
for similarity search in large-scale graph databases [23, 53, 54, 59, 64, 65, 67].
However, state-of-the-art solutions still suffer from severe performance issues. As
analyzed in Sect. 3, the key to boost the similarity search performance is to leverage
some powerful GED lower-bound that can effectively pre-prune false-positive graphs
from the graph database G in order to avoid the costly GED verification. However,
existing GED lower-bounds have demonstrated limited filtering capabilities, thus
resulting in the corresponding similarity search algorithms hard to deploy in real-
world graph databases. Furthermore, there is no theoretical results about the tightness
guarantee of the proposed GED lower-bounds. Therefore, the resultant similarity
search performance becomes unstable in the presence of different graph datasets
and queries of varying structures and types. More theoretical breakthroughs about
graph edit distances and new GED lower-bounds and upper-bounds are expected in
order to reduce the size of the candidate set, C . An interesting exploration will be
examining other graph-structured patterns, like trees, paths, or half-edge partitions,

524 P. Zhao

which will bring forth more powerful pruning capability and better selectivity for
similarity search.

Meanwhile, graph indexing has somehowbecome the de facto standard to evaluate
and crosscheck different GED lower-bounds for false-positive graph identification
and pruning. In this aspect, all index-related issues, such as novel graph indexing
structures, cost-effective index organizations, efficient index lookup and mainte-
nance mechanisms, and dynamic index updates become utterly important and play
an essential role in similarity search in graph databases.

5.2 Rich Semantics of Similarity Search

As discussed above, most similarity search problems in graph databases are for-
mulated as retrieving graphs g from G in a way that GED(g, q) ≤ τ , where τ is a
user-specified GED threshold. In the traditional database terminology, this is often
termed as a range query, where τ determines the range of graph edit distances tol-
erated by end-users. In some occasions, however, it is hard for users to choose the
appropriate values of τ , and if τ is not carefully determined, a tedious and time-
consuming process of query re-formulation has to be undertaken. Furthermore, the
graph indexes have to be rebuilt as most existing index structures are strongly depen-
dent on the exact values of τ . A possible and promising research direction is to
support GED-based top-k similarity search in graph databases. Namely, the objec-
tive is to retrieve k graphs from G that have the smallest graph edit distances from
the query q. This way, the query results can be naturally ranked, which are way more
interpretable to users who have little or no prior knowledge of the underlying graph
databases.

Another possibility of extension to the existing similarity search semantics lies
in the definition of GED. Here we assume all different graph edit operations play an
equal role in formulating the differences between two graphs. In practice, however,
graph edit operations may introduce varied significance in quantifying distances
between graphs. For example, the cost of relabelling a vertex might be different
from that of relabelling an edge in a graph. It means that, we can assigned weights
to graph edit operations, and such weights are primarily determined in real-world
application domains. In this new setting, the similarity search problem turns out to
be a new, weighted version, which, unfortunately, is hard to address using existing
approaches to the primitive, unweighted version. New GED lower-bounds and graph
indexing techniques are thus required in order to address the generalized, weighted
GED similarity search problem in graph databases.

Besides graph edit distances, there have been a great many proximity/distance
measures proposed thus far to quantify the similarity/distances between graphs,
including, but not limited to, maximum common subgraphs, graph alignment, ker-
nels, edge misses, and graph simulations. It will be of great interest to examine the
theoretical correlation between GED and other graph similarity measures, and it is
also beneficial to adapt existing similarity search solutions to addressing the similar-

Similarity Search in Large-Scale Graph Databases 525

ity search problem that are defined based on different graph proximity measures in
graph databases.

Similarity search is not only confined within graph databases. With the advent
and popularity of social networks, communication networks, road networks, biolog-
ical networks, and the Web, there is growing interest in searching graph-structured
patterns from within such large-scale networked data. Here we want to support sim-
ilarity search in a single graph of massive size. Namely, we need directly address the
challenging GED problem in very large graphs, which has proven to be much harder
than similarity search in a graph database. Although there have been related work
that support exact search in large-scale graphs or information networks [28, 62], the
similarity search problem in a single large graph is yet to be explored thoroughly and
a lot of research can be carried out in this direction.

5.3 Graph Query Formulation and Understanding

Due to its great power in representing and formulating complex structures in real-
world applications, graph has gradually become the first-class citizen in the data
management and mining communities. However, there still lack some high-level
query languages or tool-chains that help formulate user’s structured information need
into graph-shaped queries. Although SPARQL has been proposed to query semantic
webs [3, 46, 47], it is primarily employed to support search functionalities in graphs
formulated in theRDF format.Meanwhile, somevisual query formulation techniques
have been studied to ease the pain of constructing graph-structured queries [29–31].
However, they are primarily focused on exact queries in graph databases. As a result,
there is an urgent need to support some user-friendly graph query languages or
graph query formulation mechanisms that can enable similarity search semantics in
graph databases or large-scale networks. Consequently, a series of research topics,
such as graph query completion, suggestion, enrichment, and diversification can be
examined in order to support a full-fledged graph querying interface for real-world
graph databases.

It is interesting to note that, because graph queries can be relaxed approximately
based on theGED constraint, an immediate result is that theremight be a lot of graphs
from the graph database G returned as feasible answers to a given query q, which
can easily overwhelm the end-users. On the other hand, it would be highly desirable
to pick k representative graphs that are more comprehensible and manageable than
the complete set of query results. This problem has proven to be NP-hard [43]. New
algorithms and novel definitions of “graph representativeness” will be of special
interest in enhancing the understanding of similarity search results fromwithin large-
scale graph databases.

526 P. Zhao

6 Summary

The similarity search problem plays a fundamental and critical role in managing,
accessing, and analyzing graph-structured data, and has found widely varying appli-
cations in real-world graph databases. In this chapter, we examined the similarity
search problem under the graph edit distance (GED) constraint, and surveyed state-
of-the-art graph indexing approaches to addressing the similarity search problem in
real-world, large-scale graph databases. We envisioned and explored the potential
research directions that are closely related to the similarity search problem, which
is expected to fuse a series of fundamental and practical research in large graph
databases and real-world social and information networks.

References

1. C.C. Aggarwal, H. Wang, Managing and Mining Graph Data (Springer, US, 2010)
2. L. Babai, Graph isomorphism in quasipolynomial time. in Proceedings of the 48th Annual

ACM SIGACT Symposium on Theory of Computing (STOC’16) (2016), pp. 684–697
3. D.F. Barbieri, D. Braga, S. Ceri, E.D. Valle, M. Grossniklaus, Querying rdf streams with c-

sparql. SIGMOD Rec. 39(1), 20–26 (2010)
4. P. Barceló Baeza, Querying graph databases. in Proceedings of the 32nd Symposium on Prin-

ciples of Database Systems (PODS’13) (2013), pp. 175–188
5. H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N. Shindyalov,

P.E. Bourne, The protein data bank. Nucleic Acids Res. 28, 235–242 (2000)
6. S. Berretti, A. Del Bimbo, E. Vicario, Efficient matching and indexing of graph models in

content-based retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 23(10), 1089–1105 (2001)
7. K.M. Borgwardt, H.-P. Kriegel, Shortest-path kernels on graphs. in Proceedings of the Fifth

IEEE International Conference on Data Mining (ICDM’05) (2005), pp. 74–81
8. H. Bunke, On a relation between graph edit distance and maximum common subgraph. Pattern

Recogn. Lett. 18(9), 689–694 (1997)
9. H. Bunke, Error correcting graph matching: on the influence of the underlying cost function.

IEEE Trans. Pattern Anal. Mach. Intell. 21(9), 917–922 (1999)
10. H.Bunke,K. Shearer, A graph distancemetric based on themaximal common subgraph. Pattern

Recogn. Lett. 19(3–4), 255–259 (1998)
11. X. Chen, K.S. Candan, M.L. Sapino, P.Shakarian, KSGM: Keynode-driven scalable graph

matching. in Proceedings of the 24th ACM International on Conference on Information and
Knowledge Management (CIKM’15) (2015), pp. 1101–1110

12. H. Cheng, D. Lo, Y. Zhou, X. Wang, X. Yan, Identifying bug signatures using discriminative
graph mining. in Proceedings of the Eighteenth International Symposium on Software Testing
and Analysis (ISSTA’09) (2009), pp. 141–152

13. J. Cheng, Y. Ke, W. Ng, Efficient query processing on graph databases. ACM Trans. Database
Syst. 34(1), 2:1–2:48 (2009)

14. S. Choudhury, L. Holder, G. Chin, A. Ray, S. Beus, J. Feo, Streamworks: a system for dynamic
graph search. in Proceedings of the 2013 ACM SIGMOD International Conference on Man-
agement of Data (SIGMOD’13) (2013), pp. 1101–1104

15. D. Conte, P. Foggia, C. Sansone, M. Vento, Thirty years of graph matching in pattern recogni-
tion. Int. J. Pattern Recognit. Artif. Intell. 18(3), 265–298 (2004)

16. D.J. Cook, L.B. Holder, Mining Graph Data (Wiley, New Jersey, 2006)

Similarity Search in Large-Scale Graph Databases 527

17. R. Fagin,A.Lotem,M.Naor,Optimal aggregation algorithms formiddleware. inProceedings of
the Twentieth ACMSIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems
(PODS’01) (2001), pp. 102–113

18. W. Fan, J. Li, S. Ma, N. Tang, Y. Wu, Y. Wu, Graph pattern matching: from intractable to
polynomial time. Proc. VLDB Endow. 3(1–2), 264–275 (2010)

19. S. Fankhauser, K. Riesen, H. Bunke, Speeding up graph edit distance computation through
fast bipartite matching. in Proceedings of the 8th International Conference on Graph-based
Representations in Pattern Recognition (GBRPR’11) (2011), pp. 102–111

20. B. Gallagher, Matching structure and semantics: a survey on graph-based pattern matching. in
American Association for Artificial Intelligence (AAAI’06), vol. 6 (2006), pp. 45–53

21. X. Gao, B. Xiao, D. Tao, X. Li, A survey of graph edit distance. Pattern Anal. Appl. 13(1),
113–129 (2010)

22. M.R. Garey, D.S. Johnson, Computers and Intractability; A Guide to the Theory of NP-
Completeness (W. H. Freeman & Co., New York, 1990)

23. K. Gouda, M. Arafa, An improved global lower bound for graph edit similarity search. Pattern
Recogn. Lett. 58, 8–14 (2015)

24. L. Gravano, P.G. Ipeirotis, H.V. Jagadish, N.Koudas, S.Muthukrishnan, D. Srivastava, Approx-
imate string joins in a database (almost) for free. in Proceedings of the 27th International
Conference on Very Large Data Bases (VLDB’01) (2001), pp. 491–500

25. W.-S. Han, J. Lee, J.-H. Lee, Turboiso: towards ultrafast and robust subgraph isomorphism
search in large graph databases. in Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data (SIGMOD’13) (2013), pp. 337–348

26. W.-S. Han,M.-D. Pham, J. Lee, R. Kasperovics, J.X. Yu, Igraph in action: performance analysis
of disk-based graph indexing techniques. in Proceedings of the 2011 ACM SIGMOD Interna-
tional Conference on Management of Data (SIGMOD’11) (2011), pp. 1241–1242

27. H. He, A.K. Singh, Closure-tree: an index structure for graph queries. in Proceedings of the
22nd International Conference on Data Engineering (ICDE’06) (2006), pp. 38–49

28. H. He, A.K. Singh, Graphs-at-a-time: query language and access methods for graph databases.
in Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data
(SIGMOD’08) (2008), pp. 405–418

29. H.H. Hung, S.S. Bhowmick, B.Q. Truong, B. Choi, S. Zhou, Quble: blending visual subgraph
query formulation with query processing on large networks. in Proceedings of the 2013 ACM
SIGMOD International Conference on Management of Data (SIGMOD’13) (2013), pp. 1097–
1100

30. N. Jayaram, S. Goyal, C. Li, VIIQ: Auto-suggestion enabled visual interface for interactive
graph query formulation. Proc. VLDB Endow. 8(12), 1940–1943 (2015)

31. C. Jin, S.S. Bhowmick, X. Xiao, J. Cheng, B. Choi, GBLENDER: towards blending visual
query formulation and query processing in graph databases. in Proceedings of the 2010 ACM
SIGMOD International Conference on Management of Data (SIGMOD’10) (2010), pp. 111–
122

32. A. Khan, N. Li, X. Yan, Z. Guan, S. Chakraborty, S. Tao, Neighborhood based fast graph
search in large networks. in Proceedings of the 2011 ACM SIGMOD International Conference
on Management of Data (SIGMOD’11) (2011), pp. 901–912

33. A. Khan, Y. Wu, C.C. Aggarwal, X. Yan, NeMa: Fast graph search with label similarity. Proc.
VLDB Endow. 6(3), 181–192 (2013)

34. H.W. Kuhn, B. Yaw, The hungarian method for the assignment problem. Naval Res. Logist.
Quart. 83–97 (1955)

35. J. Lee,W.-S.Han, R.Kasperovics, J.-H. Lee,An in-depth comparison of subgraph isomorphism
algorithms in graph databases. in Proceedings of the 39th International Conference on Very
Large Data Bases (PVLDB’13) (2013), pp. 133–144

36. C. Li, J. Lu, Y. Lu, Efficient merging and filtering algorithms for approximate string searches. in
Proceedings of the 2008 IEEE 24th International Conference on Data Engineering (ICDE’08)
(2008), pp. 257–266

528 P. Zhao

37. C. Li, B. Wang, X. Yang, VGRAM: improving performance of approximate queries on string
collections using variable-length grams. in Proceedings of the 33rd International Conference
on Very Large Data Bases (VLDB’07) (2007), pp. 303–314

38. S. Ma, Y. Cao, W. Fan, J. Huai, T. Wo, Strong simulation: Capturing topology in graph pattern
matching. ACM Trans. Database Syst. 39(1), 4:1–4:46 (2014)

39. M. Neuhaus, H. Bunke, Bridging the Gap Between Graph Edit Distance and Kernel Machines
(World Scientific Publishing, Singapore, 2007)

40. H. Ogata, S. Goto, K. Sato, W. Fujibuchi, H. Bono, M. Kanehisa, KEGG: kyoto encyclopedia
of genes and genomes. Nucleic Acids Res. 27(1), 29–34 (1999)

41. J. Qin, W. Wang, Y. Lu, C. Xiao, X. Lin, Efficient exact edit similarity query processing with
the asymmetric signature scheme. in Proceedings of the 2011 ACM SIGMOD International
Conference on Management of Data (SIGMOD’11) (2011), pp. 1033–1044

42. S.A.Rahman,M.Bashton,G.L.Holliday,R.Schrader, J.M.Thornton, Smallmolecule subgraph
detector (SMSD) toolkit. J. Cheminform. 1, 1–12 (2009)

43. S. Ranu, M. Hoang, A. Singh, Answering top-k representative queries on graph databases. in
Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data
(SIGMOD’14) (2014), pp. 1163–1174

44. S. Ranu, A.K. Singh, Indexing and mining topological patterns for drug discovery. in Pro-
ceedings of the 15th International Conference on Extending Database Technology (EDBT’12)
(2012), pp. 562–565

45. K. Riesen, S. Emmenegger, H. Bunke, A novel software toolkit for graph edit distance compu-
tation. in 9th International Workshop on Graph-Based Representations in Pattern Recognition
(2013), pp. 142–151

46. S. Sakr, S. Elnikety, Y. He, G-SPARQL: A hybrid engine for querying large attributed graphs.
in Proceedings of the 21st ACM International Conference on Information and Knowledge
Management (CIKM’12) (2012), pp. 335–344

47. M. Schmidt,M.Meier, G. Lausen, Foundations of SPARQLquery optimization. inProceedings
of the 13th International Conference on Database Theory (ICDT’10) (2010), pp. 4–33

48. H. Shang, X. Lin, Y. Zhang, J.X. Yu, W. Wang, Connected substructure similarity search. in
Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data
(SIGMOD’10) (2010), pp. 903–914

49. A. Tefas, C. Kotropoulos, I. Pitas, Using support vector machines to enhance the performance
of elastic graph matching for frontal face authentication. IEEE Trans. Pattern Anal. Mach.
Intell. 23(7), 735–746 (2001)

50. Y. Tian, R.C. Mceachin, C. Santos, D.J. States, J.M. Patel, SAGA: a subgraph matching tool
for biological graphs. Bioinformatics 23(2), 232–239 (2007)

51. E. Ukkonen, Approximate string-matching with q-grams and maximal matches. Theor. Com-
put. Sci. 92(1), 191–211 (1992)

52. J.R. Ullmann, An algorithm for subgraph isomorphism. J. ACM 23(1), 31–42 (1976)
53. G. Wang, B. Wang, X. Yang, G. Yu, Efficiently indexing large sparse graphs for similarity

search. IEEE Trans. Knowl. Data Eng. 24(3), 440–451 (2012)
54. X. Wang, X. Ding, A.K.H. Tung, S. Ying, H. Jin, An efficient graph indexing method. in

Proceedings of the 2012 IEEE 28th International Conference on Data Engineering (ICDE’12)
(2012), pp. 210–221

55. X. Yan, J. Han, gSpan: graph-based substructure pattern mining. in Proceedings of the 2002
IEEE International Conference on Data Mining (ICDM’02) (2002), pp. 721–724

56. X. Yan, P.S. Yu, J. Han, Graph indexing: a frequent structure-based approach. in Proceedings
of the 2004 ACM SIGMOD International Conference on Management of Data (SIGMOD’04)
(2004), pp. 335–346

57. X. Yan, P.S. Yu, J. Han, Substructure similarity search in graph databases. in Proceedings of
the 2005 ACM SIGMOD International Conference on Management of Data (SIGMOD’05)
(2005), pp. 766–777

58. Y. Yuan, G.Wang, J.Y. Xu, L. Chen, Efficient distributed subgraph similarity matching. VLDB
J. 24(3), 369–394 (2015)

Similarity Search in Large-Scale Graph Databases 529

59. Z. Zeng, A.K.H. Tung, J. Wang, J. Feng, L. Zhou, Comparing stars: On approximating graph
edit distance. Proc. VLDB Endow. 2(1), 25–36 (2009)

60. S. Zhang, J. Yang, W. Jin, SAPPER: Subgraph indexing and approximate matching in large
graphs. Proc. VLDB Endow. 3(1–2), 1185–1194 (2010)

61. Z. Zhang,M.Hadjieleftheriou, B.C.Ooi, D. Srivastava, Bed-tree: an all-purpose index structure
for string similarity search based on edit distance. in Proceedings of the 2010 ACM SIGMOD
International Conference on Management of Data (SIGMOD’10) (2010), pp. 915–926

62. P. Zhao, J. Han, On graph query optimization in large networks. Proc. VLDB Endow. 3(1–2),
340–351 (2010)

63. P. Zhao, J.X. Yu, P.S. Yu, Graph indexing: tree + delta ≥ graph. in Proceedings of the 33rd
International Conference on Very Large Data Bases (VLDB’07) (2007), pp. 938–949

64. X. Zhao, C. Xiao, X. Lin, Q. Liu, W. Zhang, A partition-based approach to structure similarity
search. PVLDB 7(3), 169–180 (2013)

65. X. Zhao, C. Xiao, X. Lin, W. Wang, Efficient graph similarity joins with edit distance con-
straints. in Proceedings of the 2012 IEEE 28th International Conference on Data Engineering
(ICDE’12) (2012), pp. 834–845

66. X. Zhao, C.Xiao, X. Lin,W.Wang,Y. Ishikawa, Efficient processing of graph similarity queries
with edit distance constraints. VLDB J. 22(6), 727–752 (2013)

67. W. Zheng, L. Zou, X. Lian, D. Wang, D. Zhao, Graph similarity search with edit distance
constraint in large graph databases. in Proceedings of the 22nd ACM International Conference
on Conference on Information & Knowledge Management (CIKM’13) (2013), pp. 1595–1600

68. G. Zhu, X. Lin, K. Zhu, W. Zhang, J.X. Yu, TreeSpan: efficiently computing similarity all-
matching. inProceedings of the 2012ACMSIGMODInternationalConference onManagement
of Data (SIGMOD’12) (2012), pp. 529–540

Big-Graphs: Querying, Mining,
and Beyond

Arijit Khan and Sayan Ranu

Abstract Graphs are a ubiquitous model to represent objects and their relations.
However, the complex combinations of structure and content, coupled with massive
volume, high streaming rate, and uncertainty inherent in the data, raise several chal-
lenges that require new efforts for smarter and faster graph analysis. With the advent
of complex networks such as the World Wide Web, social networks, knowledge
graphs, genome and scientific databases, Internet of things, medical and government
records, novel graph computations are also emerging, including graph patternmatch-
ing and mining, similarity search, keyword search, and graph query-by-example.
These workloads require both topology and content information of the network; and
hence, they are different from classical graph computations such as shortest path,
reachability, and minimum cut, which depend only on the structure of the network.
In this chapter, we shall describe the emerging graph queries and mining problems,
their applications and resolution techniques. We emphasize the current challenges
and highlight some future research directions.

1 Introduction

Recent advances in social and information science have shown that linked data is
pervasive in the natural world around us [88]. Examples include communication and
computer systems, theWorldWideWeb, online social networks, biological networks,
transportation systems, epidemic networks, chemical networks, and hidden terrorist
networks. All these systems can be modeled as graphs, in which individual compo-
nents interact with a specific set of components, resulting in massive, interconnected,
and heterogeneous networks.

A. Khan (B)
School of Computer Science and Engineering, Nanyang Technological University,
Singapore, Singapore
e-mail: arijit.khan@ntu.edu.sg

S. Ranu
Department of Computer Science and Engineering, IIT Madras, Chennai, India
e-mail: sayan@cse.iitm.ac.in

© Springer International Publishing AG 2017
A.Y. Zomaya and S. Sakr (eds.), Handbook of Big Data Technologies,
DOI 10.1007/978-3-319-49340-4_16

531

532 A. Khan and S. Ranu

Given a network modeled as a graph, there have been several commonly-used
graph computations, such as breadth-first (BFS) and depth-first searches (DFS) [27],
shortest path [124, 129], reachability [139], subgraph isomorphism [10], PageR-
ank [14], graph partitioning [62, 78, 116], and clustering [4] — their algorithms are
also implemented using a number of graph processing libraries, e.g., LEDA [106],
BLAS [17], Parallel Boost Graph Library (PBGL) [46], and MultiThreaded Graph
Library (MTGL) [11]. Graph workloads can be broadly classified into two cate-
gories [83]. (1) Offline graph analytics usually perform computation over the entire
graph, and they require high throughput. PageRank computation, diameter estima-
tion, partitioning, and clustering belong to this category. (2)Online graph queries, on
the other hand, require very fast response time, and they often explore only a small
fraction of the entire graph dataset. Examples include reachability, shortest path, and
sub-graph isomorphism queries.

We note that the aforementioned commonly-used workloads depend only on the
graph structure, and thus may not be able to capture the rich semantics associated
with nodes, edges, and structures in the network. With the advent of complex net-
works, novel graph computations are emerging, which combine both contents and
topology information of the graph. Typical examples of these queries include graph
pattern matching [38, 40, 41] and mining [47, 85, 149], similarity search [84, 135,
136], anomaly detection [137], influence maximization [81], graph skyline [162]
and OLAP [20], ranking and expert finding [130, 131], and graph aggregation [154],
among others. In this chapter, we shall discuss graph pattern matching as the repre-
sentative of emerging online queries, and graph pattern mining as the representative
of emerging offline analytics.

As these novel queries integrate both the structure and attribute information of the
network, existing algorithms and techniques may not directly apply. Besides, when
graphs are complex and large, efficiency and scalability become an issue. Therefore,
novel indexing, pruning, sampling, and summarization techniques, as well as dis-
tributed algorithms and systems are necessary. Finally, due to lack of fixed schema,
missing type information, incomplete knowledge and uncertainty about the struc-
ture and contents of the real-life information networks, it might be infeasible to
use conventional database techniques to query these graphs. Therefore, we empha-
size on user-friendly, and often approximate, query answering and pattern mining
techniques.

We carefully limit the scope of this chapter. We consider emerging queries over
static, deterministic graphs. Querying of uncertain graphs were discussed in [82],
whereas graph stream algorithms were surveyed in [104]. In earlier tutorials [37,
95], Faloutsos et al. discussed large graph mining using matrix based methods.
In [52], Han et al. systematically introduced data mining and knowledge discov-
ery algorithms for information networks including graph clustering, ranking, and
graph OLAP. Algorithmic developments for managing and mining of graph data are
discussed in [4, 86]. There are many tutorials and surveys about recent advances
on distributed graph processing systems [6, 83, 103] and graph databases [7]. Dif-
ferent from those literature, in this chapter we present an overview of the emerg-
ing graph computations in the context of novel graph pattern matching and and

Big-Graphs: Querying, Mining, and Beyond 533

mining techniques, including approximate algorithms, their user-friendliness, and
scalability. We intend to give a first impression on their challenges, current solutions,
and related future topics.

2 Graph Data Models

The network data models have been studied since 1970s in the context of object
oriented databases, semi-structured data, knowledge base, hypertext, and semantic
web [7]. Their influence gradually died out with the popularity of other database
models, including relational, geographical, spatial, and XML. However, with the
recent emergence of complex social and information networks, the need to manage
graph data has been re-established. In the following we discuss two popularly used
graph data models: Resource Description Framework (RDF) [102] and property
graphs [112].

2.1 RDF

RDF allows descriptions of Web resources in a machine understandable format.
A Web resource can be any object with a Uniform Resource Identifier (URI), e.g.,
http://www.ietf.org/rfc/rfc2396.txt. RDF databases are collections of triples:
〈subject, predicate, object〉. Each triple models the binary relation between the sub-
ject and object which are RDF terms, e.g., URIs, literals, or blank nodes. This linking
structure forms a directed, labeled graph, where an edge depicts the relation between
two resources, represented by graph nodes. Figure1 shows the graph structure for
the following RDF triples.

Person1 isNamed "John Waters"

Person2 isNamed "Stephen Spielberg"

Person3 isNamed "Darren E. Burrows"

Movie1 hasTitle "Cry-Baby"

Movie1 hasActor Person3

Movie1 hasDirector Person1

Movie2 hasTitle "Amistad"

Movie2 hasActor Person3

Movie2 hasDirector Person2

One major advantage of the RDF data model is its semi-structured nature in com-
parison to the relational model where the entities, their attributes, and relationships
to other entities are strictly defined. In RDF, the schemamay evolve over time, which
facilitates data merging even if the underlying schemas differ.

http://www.ietf.org/rfc/rfc2396.txt

534 A. Khan and S. Ranu

Fig. 1 An example RDF
graph

SPARQL [117] is the official W3C standard query language for RDF. A simple
SPARQL query has the form:

select ?variable1 ?variable2 ...

where { pattern1. pattern2. ... }

Here, every pattern is a triple: 〈subject, predicate, object〉, and each of subject,
predicate, and object can be either a variable or an RDF term. The variables specify
the unknowns in the query, which may occur in multiple patterns, thereby requiring
join operations. The query processor finds all possible variable bindings that satisfy
the given patterns. Below we show a SPARQL query over the example RDF graph in
Fig. 1, and it retrieves all actors who appeared in both a “John Waters” movie and a
“Steven Spielberg” movie. As one may observe, in order to write a SPARQL query,
the user needs to know how the entities are connected to each other in the dataset,
e.g., the user must know that the actors and directors are connected via the movie
entities.

select ?p1

where {

?m1 hasActor ?p1 .

?m1 hasDirector ?p2 .

?m2 hasActor ?p1 .

?m2 hasDirector ?p3 .

Big-Graphs: Querying, Mining, and Beyond 535

?p2 isNamed"John Waters" .

?p3 isNamed "Stephen Spielberg" .

}

In addition to the simple SPARQL query illustrated above, operators akin to
relational join, union, left outer join, filter, selection, and projection can be combined
to construct more expressive queries. SPARQL 1.1 included path queries that extends
matching of triple pattern to arbitrary length paths.

One may note that SPARQL is a query language for RDF data. In RDF stores
with Relational database back-end (e.g., SW-Store [1]), SPARQL queries are trans-
lated into SQLqueries, which are optimized and processed by theRelational database
management system (RDBMS). On the other hand, graph-based RDF querying tech-
niques (e.g., gStore [115, 163]) convert the SPARQL query into a query graph, and
perform exact or approximate subgraph matching to evaluate the query. We shall
discuss more about graph querying techniques in Sect. 3.

2.2 Property Graph

Aproperty graph contains connected entities (i.e., nodes),which can hold any number
of attributes (also called labels). Nodes can be also tagged with types representing
their different roles. Relationships (e.g., edges) provide directed, named connections
between two nodes. Therefore, an edge can also have any number of types and
properties. We present an example property graph in Fig. 2. Property graphs are

Fig. 2 An example property
graph

536 A. Khan and S. Ranu

often referred to as entity-relationship graphs, labeled graphs, attributed graphs,
information networks, or knowledge graphs.

There are various studies on the theoretical foundation of graph query lan-
guages [147], such as conjunctive queries (CQ), e.g., [60], regular path queries
(RPQ), e.g., [108], conjunctive regular path queries (CRPQ), e.g., GraphLog [24],
Lorel [2], StruQL [42] and UnQL [18], and extended conjunctive regular path
queries (ECPRQ), e.g., SPARQLeR [89]. Various declarative (e.g., Cypher [112])
and domain-specific (e.g., Green-Marl [64]) APIs and languages also exist. One may
note that these are query languages, and the underlying query answeringmechanisms
can vary, e.g., SQL and NoSQL-based techniques, or exact and approximate graph
pattern matching, which we shall discuss in Sect. 3.

3 Pattern Matching Techniques Over Big-Graphs

3.1 SQL and NoSQL Approaches

Given the success of Relational database management systems (RDBMS) in deal-
ing with wide varieties of data such as structured, spatiotemporal, and XML
data, there have been several attempts to store and query graphs using relational
approaches [122]. In this section, we shall provide an overview of two relational
stores, namely RDF-3X [113] and SW-Store [1], and one NoSQL graph database —
Neo4J [112], and how they answer graph pattern matching queries.

RDF-3X. Many RDF data stores, including 3store [57], Oracle [22], Jena [146],
and Sesame [16] use relational DBMS, by storing the RDF triples in a giant
3-column table, called the “triple table”, i.e., having one row for each triple. Figure3
illustrates the triple table for our exampleRDFgraph in Fig. 1. Since large join queries
including star joins and chain joins are an inherent characteristics of searching RDF,

Fig. 3 Triple table for the
RDF graph in Fig. 1

Big-Graphs: Querying, Mining, and Beyond 537

triple tables incur too many expensive self-joins. Neumann and Weikum designed
the RDF-3X [113] system to overcome this difficulty of triple tables.

The RDF-3X system is workload-independent and eliminates the need for a
physical-design tuning by performing “aggressive” indexing over the RDF triples.
In particular, to ensure that it can answer every possible pattern triple by perform-
ing a single index scan, the system maintains all six permutations (SPO, SOP, OSP,
OPS, PSO, POS) of subject (S), predicate (P), and object (O) in six separate indexes.
Additionally, indexes over count-aggregated variants for all three two-dimensional
and all three one-dimensional projections are created. As RDF-3X compresses the
original RDF triples, it can store all the indexes in a space smaller than the size of
the original data. The triples in an index are sorted lexicographically, and the query
processor uses the full set of indexes on the triple tables to rely mostly on efficient
merge joins over these sorted index lists.

The query optimizer focuses on join order and applies dynamic programming
to generate the lowest-cost execution plan. In general, the semi-structured nature
of RDF data makes the query optimization problem more challenging. RDF-3X
considers the two following statistics for query optimization. (1) Histograms for all
six permutations of triples: Histograms are generic, and they can handle any kind of
triple patterns and joins. However, its disadvantage is that it assumes independence
between predicates. (2) Frequent join paths: Frequent star and chain join paths are
identified and their exact join statistics are kept. They are more accurate compared
to histogram-based statistics, but are also expensive to compute.

One major disadvantage of “aggressive” indexing in RDF-3X is that it is difficult
to update the existing RDF triples.

SW-Store. Due to the disadvantage of triple store in large join queries processing,
alternative RDF stores were designed. Jena2 [146] andOracle [22] adopted “property
table”, each containing a cluster of properties that can be defined together. Figure4
models the properties of a movie entity for the RDF graph in Fig. 1. One can observe
that property tables are good at speeding up queries that can be answered froma single
property table, for example, subject-subject self-joins over triple tables reduces to a
simple selection operation if they can be answered from the same property table.

Though property tables look similar to relational tables, they suffer from two
main disadvantages. First, due to the semi-structured nature of RDF data, not every
subject listed in a property table will have all the properties defined. In other words,
the property tables can be very sparse with many NULL values, which incur storage

Fig. 4 Property table for the movie entity in RDF graph of Fig. 1

538 A. Khan and S. Ranu

Fig. 5 Vertical partition of the RDF graph in Fig. 1

overhead and additional complexities in the query processing. Second, due to the
abundance of multi-valued attributes in RDF data, it is difficult to store them in a
tabular format, unless one uses lists, sets, or bags of attributes, which also complicate
the storage and query processing techniques.

Due of the aforementioned disadvantages of a property table, Abadi et al. intro-
duced SW-Store [1] by vertically partitioning the dataset, that is, partitioning the
triple table intom two-column tables, wherem is the number of unique properties in
the data. The first column is the subject which defines the property, and the second
column contains the object values for those subjects. Each RDF triple is inserted into
one of these m two-column tables. Figure5 demonstrates the vertical partitioning of
the RDF graph in Fig. 1.

The authors in [1] implemented SW-Store by using a column oriented DBMS
(column-store). Since a column-store vertically partitions the attributes of a relational
table, it is well-suited to store vertical partitioning of the RDF data, in addition to
inheriting the advantages of a column oriented DBMS. In summary, SW-store can
easily support multi-valued attributes, and it does not suffer due to NULL values
because NULL data does not need to be explicitly stored. It also supports efficient
merge joins. However, SW-store usually requires more number of joins than the
property table approach; and insertion can be slower, since multiple tables need to
be accessed for statements about the same subject.

Neo4J. Neo4J [112] is a NoSQL graph database that models network data in the
form of a property graph. Neo4j is disk-based, where edges are stored as first-class
objects similar to nodes. Besides, each node uses direct memory links to adjacent
nodes rather than requiring joins or key lookups. Hence, the system is efficient for
graph traversals. Neo4j also has partial ACID support for graph transactions. The
API is in Java, and it supports Java object storage. Cypher is the query language for
Neo4J, which is a declarative language for describing patterns in graphs. It allows
a user to describe what she wants to select, insert, update, or delete from a graph
database without requiring to describe exactly how to do it. Neo4J currently does
not support distributed graph processing, that is, it requires the full graph dataset to
be stored on a single machine.

Big-Graphs: Querying, Mining, and Beyond 539

The performance of Neo4J is usually better compared to RDBMS for graph tra-
versal queries [142]. However, one must note that the performance of Neo4J depends
heavily on the amount of cache available. Neo4J uses two different types of caches.
Thefile buffer cache caches the storagefile data in the same format as it is stored on the
disk. The object cache caches the nodes, edges, and properties in a format suitable for
efficient graph traversals. It was indeed shown that an in-memory graph processing
system can outperformNeo4J for traversal queries [145]. Besides, queries that access
node and edge properties can be slower in Neo4J compared to that in RDBMS [142].
This is because Neo4J uses Lucene indexing, and Lucene, by default, treats all data
as text. Thus, equivalence and inequality comparison over numerical attributes are
not very fast since a conversion to text must be done.

Two other popular NoSQL graph databases are InfiniteGraph [71] and Spark-
see [31]. Interested readers may find various graph databases in recent surveys [7,
19]. From the usability perspective, however, it is clear that a strict, structured lan-
guage (e.g., SPARQL, Cypher, and those alike) would be difficult to use for querying
graphs.Therefore, the focus now-a-days is to devisemore user-friendly query answer-
ing techniques for graph data. In this context, we shall discuss keyword search, graph
pattern matching, and graph query-by-example.

3.2 Keyword Search

Keyword search is a commonly used information retrieval technique for text data and
theWorldWideWeb. The query consists of a collection of keywords, and it retrieves
the documents containing those keywords.Due to its simpler query interface anduser-
friendly nature, keyword search is also popular over structured and semi-structured
data. As opposed to more sophisticated query languages (e.g., XQuery for XML,
SQL for Relational data, and SPARQL for RDFs), the user does not require to have
a full knowledge of the underlying schema for constructing a keyword query.

However, answering keyword queries over structured and semi-structured data is
different from that over text, because for the first two categories of data, one needs to
assemble information fromvarious locations that are inter-connected and collectively
relevant to the query. In the following, we shall introduce keyword search over XML,
Relational data, and graphs.

Keyword Search over XML. Keyword search over XML is simpler than that
over graphs and relational data, which is due to the tree-like structure of XML.
This property of XML makes the semantics of a keyword query simpler and the
query answering technique more efficient. In the literature, there are many seman-
tics on what qualifies as an answer to a keyword search query. Possibly the sim-
plest of them is the “lowest common ancestor” (LCA) which is defined as fol-
lows. Given a set of keywords {k1, k2, . . . , km}, assume that Li be the list of nodes
in the XML tree which have the keyword ki , 1 ≤ i ≤ m. Then, an answer to the
query is denoted as LC A(n1, n2, . . . , nm), which is the lowest common ancestor of

540 A. Khan and S. Ranu

Fig. 6 Keyword search
in XML

nodes n1, n2, . . . , nm , where each ni ∈ Li . As an example, both nodes n1 and n3 are
answers to the keyword query {x, y} over the XML tree in Fig. 6. This is because
Lx = {n5, n6}, Ly = {n7, n8}, and n1 = LC A(n5, n7), n3 = LC A(n6, n7).

Several other works [67, 148] instead opted for the “Smallest LCA” (SLCA)
semantics, which requires that an answer (i.e., a least common ancestor of nodes
that contain all the keywords) does not have any descendent that is also an answer.
In Fig. 6, node n1 is not an SLCA for the keyword query {x, y}, because n3 is a
descendent of n1 and n3 is an SLCA for the same keyword query.

XRank [48] adopted a different semantics called the “Exclusive Lowest Common
Ancestor” (ELCA). A node is said to be an ancestor of a keyword if that node or one
of its descendants has the keyword. According to ELCA, an answer is a node that
is ancestor of at least one occurrence of all the query keywords, after excluding its
descendent nodes that are also ancestors of all the query keywords. For example, in
Fig. 7, node n3 is ancestor of both the query keywords {x, y}.While n3 is a descendent
of n1, even after removing n3, the node n1 is still ancestor of the query keywords x (at
node n5) and y (at node n8). Therefore, according to ELCA semantics, both n1 and
n5 qualify to be answers. More generally, one can derive the following relationship.

SLC A(k1, k2, . . . , km) ⊆ ELC A(k1, k2, . . . , km) ⊆ LC A(k1, k2, . . . , km) (1)

Based on the above query semantics, many answers could be found. However,
all answers might not be equally relevant to the user. Therefore, several ranking
methods are also proposed in the literature, e.g., XRank [48] and XSEarch [23].
Below we shall demonstrate the ranking method designed in XRank. Assume that
node vt+1 has the keyword k, and there is a simple path from node v0 to vt+1 as
follows: v0, v1, . . . , vt , vt+1. Then, the rank of node vi , 0 ≤ i ≤ t , with respect to
the occurrence of keyword k at node vt+1 is given by:

r(vi , k) = ElemRank(vt) × decayt−i (2)

Here, ElemRank(vt) denotes the importance of node vt in the XML tree, and
is calculated in a way analogous to the PageRank computation. decay is a value
between 0 and 1, and therefore, it scales ElemRank(vt) based on the distance of vi
from vt . In order to compute r(vi , k), usually the closest occurrence of k from vi is

Big-Graphs: Querying, Mining, and Beyond 541

(b)

(a)

Fig. 7 DISCOVER keyword search over relational databases

considered. Finally, if there aremultiple keywords in the query Q = {k1, k2, . . . , km},
the overall ranking of a node v is defined as follows.

542 A. Khan and S. Ranu

R(v, Q) =
⎛

⎝
∑

1≤ j≤m

r(v, k j)

⎞

⎠ × p(v, k1, k2, . . . , km) (3)

The keyword proximity function p(v, k1, k2, . . . , km) measures the proximity of
the keyword occurrences, and it may range from 0 (keywords are very far apart) to
1 (keywords occur next to each other).

A baseline approach to find the top-k answers following the XRank objective
function would be to pre-compute the inverted list of each keyword, which is a
standard technique to speed up keyword query processing over text documents. In
case of XML, the inverted list of a keyword will have all the nodes that have the
keyword, aswell as its ancestor nodes.Byperforming an intersection of these inverted
lists for all query keywords, one can identify all the LCA nodes. From that set, one
still needs to find the ELCA nodes, and then rank them to output the top-k ones,
which can be expensive.

XRank, therefore, proposed amore effective indexing technique, called theDewey
Inverted List (DIL). The nodes in the XML tree are first numbered in a BFS order,
starting at the root as 0. The Dewey ID of a node n is then constructed as the
concatenation of the numbers assigned to the nodes on the path from root to n. In
this way, one can easily determine the ancestor-descendent relationships between
two nodes: Node n1 is an ancestor of node n2 if the Dewey ID of n1 is a prefix of that
of node n2. In XRank, the DIL inverted list of a keyword k consists of only those
nodes that directly have that keyword. Therefore, the DIL inverted index structure in
XRank occupies less space than that of the baseline inverted list approach discussed
earlier. The nodes in a DIL inverted list are ordered based on their ElemRank. Given
a keyword query {k1, k2, . . . , km}, an algorithm similar to the Threshold algorithm
(TA) [36] is designed to find the top-k ECLA answers. The nodes from the m sorted
DIL inverted lists corresponding to m query keywords are accessed in parallel (i.e.,
round-robin manner). For each such node, its closest ancestor (i.e., ancestor with the
longest Dewey ID) is determined which contains all the query keywords. To find this
ancestor node efficiently, each inverted list is further indexed with a B+ tree over the
Dewey ID of its constituent nodes. Therefore, finding the closest ancestor of a node
containing all the query keywords becomes equivalent to a range search query over
B+ trees of the other query keywords’ inverted lists. The stopping criterion to ensure
that the top-k ECLA nodes have been found directly follows from the TA algorithm.

The authors in [48] have empirically shown that the XRank algorithm is quite
efficient — for a query containing 5 keywords, it takes less than 2s to identify the
top 10 answers from the DBLP XML dataset (143MB) using a 2.8GHz Pentium IV
processor with 1GB of main memory and 80GB of disk space.

Big-Graphs: Querying, Mining, and Beyond 543

Keyword Search over Relational Data. Keyword search in relational databases
follows the join semantics across tables defined by foreign key relationships. Given
a keyword query {k1, k2, . . . , km}, it looks for all potential joins and verifies if there
is a tuple in the join results that contains all the query keywords. Usually, the number
of join operations is upper-bounded by a pre-defined threshold, because the relations
that are far apart might not be meaningful, and also to avoid a large number of
self-joins.

In this section, we shall highlight two systems, DBXplorer [5] and
DISCOVER [65]. Given a set of keywords, DBXplorer identifies the columns in
database tables that contain the keywords. This can be computed efficiently by lever-
aging database indexes on the columns, or by keeping an inverted index over the
rows (called the symbol table in [5]). The algorithm then enumerates all possible
join trees in order to join the corresponding tables and retrieves the relevant tuples
from those join results. One may note that several join trees as constructed above
could have some common join structures. DISCOVER, therefore, considers the prob-
lem of finding an optimal join execution order that maximizes the reuse of common
subexpressions. Since the problem isnp-hard, theDISCOVER system applies greedy
techniques.

In particular, the entire pipeline of DISCOVER [65] can be expressed as in
Fig. 7b for the example database in Fig. 7a. A database consists of a set of relations
R1, R2, . . . , Rn . The schemagraphG is a directed graph that captures the primary key
to foreign key relationships in the database schema. It has a node for each relation of
the database, and an edge Ri → R j for each primary key to foreign key relationship
from a set of attributes of Ri to a set of attributes of R j . The undirected version of G
is denoted asGu . A joining network J of tuples is a tree of tuples, where for each pair
of adjacent tuples ti , t j ∈ J , with ti ∈ Ri , t j ∈ R j , there is an edge (Ri , R j) in Gu

and (ti �	 t j) ∈ (Ri �	 R j). As an example, O1 �	 C1 �	 O2 is a joining network of
tuples from Fig. 7a. A keyword query is a set of keywords k1, k2, . . . , km . The result
of the keyword query is a set of all possible joining networks of tuples that are both
Total and Minimal.

• Total: Every keyword is contained in at least one tuple of the joining network.
• Minimal: One cannot remove any tuple from the joining network, and still have
a total joining network of tuples.

We refer to such joining networks as Minimal Total Joining Networks of Tuples
(MTJNT). Clearly, the result of a keyword query, which consists of all MTJNTs, is
unique. For example, O1 �	 C1 �	 O2 and O1 �	 C1 �	 N1 �	 C1 �	 O2 are two
MTJNTs of the keyword query: “Smith”, “Miller”.

Given a keyword query k1, k2, . . . , km , the master index component of

DISCOVER (Fig. 7b) outputs a set of basic tuple sets Ri
k j , for i = 1, 2, . . . , n and

j = 1, 2, . . . ,m. The basic tuple set Ri
k j consists of all tuples of relation Ri that

contain the keyword k j . For example, ORDER
Miller = {O2, O3}. Next, the tuple

set post-processor takes the basic tuple sets as above and produces tuple sets RK
i for

all subsets K of k1, k2, . . . , km , where

544 A. Khan and S. Ranu

RK
i = ∪

k∈K Ri
k − ∪

k∈{k1,k2,...,km }−K
Ri

k
(4)

These tuple sets, along with the database schema graph, are passed to the candidate
network generator,which outputs the candidate networks as follows.A candidate net-
work is a joining network of tuple sets that can produce one or more MTJNTs for the
keyword query. For example, ORDERSmith �	 CUST OMER{} �	 ORDERMiller

is a candidate network that produces the MTJNT: O1 �	 C1 �	 O2 for the keyword
query: “Smith”, “Miller”. Finally, the plan generator inputs a set of candidate net-
works and creates an execution plan to evaluate them. Since these candidate networks
often share common subexpressions, an efficient execution plan stores the common
join expressions as intermediate results and reuse them in evaluating the candidate
networks. However, as stated earlier, the problem of finding an optimal join execution
order that maximizes the reuse of common subexpressions is np-hard. Therefore, the
DISCOVER system applies greedy techniques. Based on empirical evidences, the
authors have shown that their greedy algorithm creates a near-optimal execution plan
to evaluate the set of candidate networks.

One may also note that both DISCOVER and DBXplorer do not provide any
ranking of the answer tuples. Later, Hristidis et al. [66] and Liu et al. [98] proposed
IR-style ranking methods for keyword search query over relational databases.

Keyword Search over Graphs. Keyword search over graphs can be classified into
twobroad categories based on the answer semantics: (1) The result is a connected sub-
tree containing all query keywords, and (2) the result is a connected sub-graph having
all query keywords. Various ranking criteria also exist to find the top-k answers, e.g.,
sum of all edge weights in the resulting tree/ graph, sum of all path weights from
root to each keyword in the tree, maximum pairwise distance among nodes, etc.

In the first category, notable algorithms are BANKS [3], bidirectional search [76],
and BLINKS [61]. BANKS follows a backward graph exploration method starting
from the query keywords, which is similar to the XRank algorithm, until the root of
the answer sub-tree is found. At any point during the backward exploration, let us
denote by Ei the set of nodes that we know they can reach the query keyword ki . We
call Ei the cluster for ki . The BANKS technique uses the two following strategies
for choosing which node to visit next.

• Equi-distance expansion in each cluster: This strategy decides which node to visit
for expanding a cluster of a keyword. Intuitively, the algorithm expands a cluster
by visiting nodes in order of increasing distance from the cluster origins, i.e., the
nodes that directly contain the keyword.

• Distance-balanced expansion across clusters: This strategy decides the frontier
of which keyword will be expanded. Specifically, the algorithm attempts to bal-
ance the distance between each cluster’s origins to its frontier, across all clusters.
Therefore, it selects the keyword cluster that has the lowest distance between its
origins and the frontier.

It was later shown in [61] that while the equi-distance expansion in each cluster is a
necessary criterion for an optimal backward search algorithm, the second strategy,

Big-Graphs: Querying, Mining, and Beyond 545

(a)

(b)

Fig. 8 BLINKS keyword search over graphs

i.e., distance-balanced expansion across clusters could result in sub-optimal perfor-
mance. Figure8a shows such an example. Assume that nodes v7 and v9 are the two
cluster origins for the keyword query: {e, f }. There are many nodes that can reach
v7 with shorter paths, but only one edge into v9 with a large weight (100). With
distance-balanced expansion across clusters, BANKS would not expand the second
cluster (for keyword f) along this edge until we have visited all nodeswithin distance
100 to node v7. It would have been unnecessary to visit many of these nodes had the
algorithm chosen to expand the second cluster earlier.

546 A. Khan and S. Ranu

In order to speed up the graph exploration process, Kacholia et al. [76] proposed
bidirectional search, which consists of both backward and forward searches. Back-
ward search, as earlier, starts from all query keywords and follows reverse edge
directions. Forward search, on the other hand, runs concurrently from the nodes that
were already explored via backward search, and it follows forward edge directions.
As an example, in Fig. 8a, if the algorithm is allowed to explore forward from node
v6 towards node v9, we can identify v6 as answer roots much faster. The bidirectional
search algorithm prioritizes over these two searches, i.e., which one will be called
next. However, the proposed method is a heuristic one, and the authors do not pro-
vide any worst-case performance guarantee. In fact, without additional connectivity
information, the forward search could be as ineffective as backward search.

BLINKS [61] proposed a novel keyword search technique based on two central
ideas. First, a new, cost-balanced strategy was developed for controlling expansion
across clusters, with a provable bound on its worst-case performance. Second, an
index based graph exploration technique was designed, which allows forward jumps
during graph exploration. For the cost-balanced expansion, the cluster Ei to expand
next is the cluster with the smallest cardinality. This approach is combined with the
equi-distance strategy for expansion within clusters: Once we decide the smallest
cluster to expand, we then select the node with the shortest distance to this cluster’s
origins. This backward exploration method is proven to be m-optimal in [61]. To
further facilitate efficient exploration, two indices are constructed — keyword-node
lists and node-keyword map (Fig. 8b), as defined below.

• Keyword-node lists: For each keyword, the shortest distances from every node
to that keyword (more precisely, to any node containing the keyword) is pre-
computed. This results in a collection of keyword-node lists. For a keyword
w, LKN (w) denotes the list of nodes that can reach keyword w, and these
nodes are ordered by their distances to w. Each entry in the list has four fields
(dist, node, f irst, knode), where dist is the shortest distance between that node
and a node containing w; knode is a node containing w for which this shortest
distance is realized; f irst is the first node on the shortest path from node to knode.

• Node-keyword map: Blinks pre-computes, for each node u, the shortest graph
distance from u to every keyword, and organizes this information in a hash table
called node-keyword map, denoted as MNK . Given a node u and a keyword w,
MNK (u, w) returns the shortest distance from u to w, or ∞ if u cannot reach any
node that contains w. The hash entry for (u, w) also contains f irst and knode,
which are defined identically as in LKN and used for the same purposes.

The keyword-node list supports the equi-distance expansion order in each cluster.
Across clusters, we pick a cluster to expand next in a round-robin manner, which
implements cost-balanced expansion among clusters. These two techniques together
ensure an m-optimal backward search. In addition, as soon as we visit a node, we
look up its distance to the other keywords using the node-keyword map. Using this
information we can immediately determine if we have found the root of an answer.
The stopping criterion that we found the top-k answer root nodes follows from the
Threshold algorithm (TA) [36]. While these two indexes can speed up the online

Big-Graphs: Querying, Mining, and Beyond 547

search mechanism, they can be expensive in terms of space requirement and offline
computation time. To address this problem, BLINKS first partitions the data graph
into multiple subgraphs, or blocks. A bi-level index is designed, which consists of a
top-level block index that stores the mapping between keywords and nodes to blocks,
and an intra-block index for each block that stores more detailed information within
a block. The authors empirically demonstrated that the total size of the bi-level index
is a fraction of that of a single-level index discussed earlier.

Under the second category of keyword search over graphs, [77, 93, 96] find
answers that are connected subgraphs containing all the query keywords. In particu-
lar, Kargar et al. [77] introduced the notion of r -clique, where the nodes in an r -clique
are separated by a distance at most r . Any r -clique having all the query keywords
can be an answer, and the authors further rank them based on the aggregation of all
node-pair distances in an r -clique. However, the problem of finding the minimum-
weight r -clique is np-hard. Therefore, [77] designed approximation algorithms with
theoretical performance guarantees.

Keyword Query Reformulation. While the aforementioned approaches directly
evaluate a keyword query, the query reformulation technique converts the keyword
query into a more structured format, e.g., SPARQL [53] or graph query [155]. Given
the set of keywords, the top-k structured queries are identified by considering term
similarity, their co-occurrences, and semantic relationships in the input graph.

3.3 Graph Matching Query

In graph matching query, the query is a graph— thereby allowing a user to input the
connectivity information among query entities, in addition to specifying keywords on
query nodes and edges. Compared to keyword queries, a query graph may provide
more information (i.e., both structure and keywords) about the query. Therefore,
the later often retrieves better quality top-k answers [79, 87]. On the other hand,
query graphs are more complex to formulate than keyword queries, they require
more sophisticated query interfaces, and the query answering technique gets more
difficult. In fact, the exact subgraph isomorphism problem and many of its variants
are np-complete. Nevertheless, as one may only look for some approximate matches
with respect to the query graph, the user does not need to know how exactly various
entities are connected in the original data graph. In other words, the query graph
constructed by a user can be slightly different than the exact answers that are present
in the data graph. This is why graph search is more flexible compared to writing a
strict SQL or SPARQL query, and it provides an intermediary querying technique
between keyword search and RDBMS.

A vast majority of literature in graph matching considers labeled (or, attributed)
graphs, i.e., graphs with labels on nodes, edges, or both. This reduces the size of
the search space, because a query node (resp. a query edge) can only be matched
with data nodes (resp. data edges) having similar labels. In general, more selective

548 A. Khan and S. Ranu

labels and structures in the query graph reduces the number of possible matches.
Therefore, with effective indexing, pruning, and query optimization techniques, one
can significantly speed up the query evaluation process for labeled graphs [84].

We next provide some formal definitions which are widely used in the literature of
graph matching. An undirected labeled graph G is defined as a triple G = (V, E, L)

where V is the set of nodes, E ⊆ V × V is the set of undirected edges, and L is
a labeling function that maps a node or an edge to a label (or a set of labels). The
following definitions, however, can easily be generalized over directed graphs.

Graph Isomorphism. Given a data graph G = (V, E, L) and a query graph Q =
(V ′, E ′, L ′), a graph isomorphism is a bijective function M : V ′ → V such that
(1) ∀v ∈ V ′, L ′(v) = L(M(v)), and (2) ∀(v1, v2) ∈ E ′, (M(v1), M(v2)) ∈ E , and
L ′(v1, v2) = L(M(v1), M(v2)).

Subgraph Isomorphism. Given a data graph G = (V, E, L) and a query graph
Q = (V ′, E ′, L ′), a subgraph isomorphism is an injective function M : V ′ → V such
that (1) ∀v ∈ V ′, L ′(v) ⊆ L(M(v)), and (2) ∀(v1, v2) ∈ E ′, (M(v1), M(v2)) ∈ E ,
and L ′(v1, v2) ⊆ L(M(v1), M(v2)).

Graph isomorphism and subgraph isomorphism are depicted in Fig. 9.

GraphHomomorphism. Given a data graphG = (V, E, L) and a query graph Q =
(V ′, E ′, L ′), a graph homomorphism is a function (not necessarily bijective) M :
V ′ → V such that (1) ∀v ∈ V ′, L ′(v) = L(M(v)), and (2) ∀(v1, v2) ∈ E ′, (M(v1),

M(v2)) ∈ E , and L ′(v1, v2) = L(M(v1), M(v2)).
Graph homomorphism is illustrated in Fig. 10a. In case of graph homomorphism,

usually the query graph is larger than the data graph.

Graph Automorphism. An automorphism of a graph G = (V, E, L) is a permuta-
tion M of the node set V such that (1) ∀v ∈ V, L(v) = L(M(v)), and
(2)∀(v1, v2) ∈ E, (M(v1), M(v2)) ∈ E , and L(v1, v2) = L(M(v1), M(v2)). In other
words, an automorphism of a graph is a graph isomorphismwith itself, that is, a map-
ping from the nodes of the given graph G back to nodes of G such that the resulting
graph is isomorphic with G.

Figure10b demonstrates a graph automorphism. It can be used to measure self-
similarity in the graph.

(a) (b)

Fig. 9 a Graph isomorphism: v1 → u2, v2 → u1, v3 → u3, v4 → u4. b Subgraph isomorphism:
v1 → u2, v2 → u1, v3 → u3. Labels on graph nodes

Big-Graphs: Querying, Mining, and Beyond 549

Graph Simulation. Graph simulation considers relations instead of functions from
one graph to another. A graph Q = (V ′, E ′, L ′) is said to be simulated by graph
G = (V, E, L) if there exists a binary relation R between the nodes of Q and the
nodes of G such that:
(1) for each node v in Q, there exists a node u in G, such that (v, u) ∈ R, and
(2) for each node pair (v, u) ∈ R, (a) L(v) = L(u), and (b) for each edge (v, v1) in Q,
there is an edge (u, u1) in G such that (v1, u1) is also in R, and L(v, v1) = L(u, u1).

If we require R to be a function, then graph simulation becomes graph homomor-
phism.

Graph Bisimulation. Given two graphs Q andG, a bisimulation is a binary relation
R between the nodes of Q and the nodes of G such that both R and R−1 are graph
simulations.

We depict graph simulation and bisimulation in Fig. 11. Note that both Fig. 11a, b
are graph simulations, as Q can be simulated by G in both. However, Fig. 11a is not
a bisimulation becauseG cannot be simulated by Q. For example, if (u2, v2) is in the
binary relation, then there is an edge (u2,C, u4) in G, but there is no corresponding
edge from v2 in Q. Thus, G cannot be simulated by Q in Fig. 11a. In Fig. 11b, since
Q can be simulated by G and G can be simulated by Q, it is a bisimulation.

The decision versions of subgraph isomorphism and graph homomorphism prob-
lems are np-complete [25], while graph isomorphism is not known to be in poly-
nomial or np-complete. Graph simulation and bisimulation, on the other hand, can

(a) (b)

Fig. 10 a Graph homomorphism: v1 → u1, v2 → u2, v′
2 → u2, v3 → u3, v4 → u4. b Graph

automorphism: v1 → v4, v2 → v2, v3 → v3, v4 → v1. Labels on graph nodes

(a) (b)

Fig. 11 a Graph simulation: (v1, u1), (v2, u2), (v′
2, u2), (v3, u3), (v4, u4). b Graph bisimulation:

(v1, u1), (v2, u2), (v2, u′
2), (v3, u3), (v,u′

3). Labels on graph edges

550 A. Khan and S. Ranu

be computed within polynomial time [32, 63]. It is important to note that the above
definitions can be extended for unlabeled graphs by assuming that all nodes and
edges have the same label.

Graph matching queries, as demonstrated in Fig. 12, can be broadly classified into
three categories: (1) Subgraph/supergraph containment query, (2) Graph similarity
search, and (3) Graph pattern matching. In the first type of query, the input data is a
graph database consisting of many graphs — however, each graph in the database is
usually small in size—and the results are all those graphs from the databasewhich are
subgraph/ supergraph of the query graph [151]. In the second category, the input data
also consists of a graph database with several graphs, and the results are those graphs
that are graph-isomorphic to the query graph [161]. In the third category, the input is
only one large graph, and the query identifies all occurrences of the query graph in
that data graph [126]. It is important to note that both exact and approximate versions
of these three queries were studied in the literature, e.g., exact subgraph containment
(gIndex [151]) versus approximate subgraph containment (Grafil [152]). While the
semantics of “exact” queries are rigid and usually follows the definitions in the earlier
paragraph, the semantics of “approximate” queries are often application specific, and
they differ significantly in the past studies. Since our focus is primarily on large-scale
graphs processing, we shall discuss graph pattern matching queries in the following.
Interested readers may look at [55, 143] for surveys and experimental comparisons
on graph containment and similarity search queries.

Exact Graph Pattern Matching. The exact graph pattern matching requires check-
ing for the subgraph isomorphism, which is np-complete. In case of labeled graphs,
if the query graph has total k nodes v1, v2, . . . , vk , and if the number of candidate
data nodes based on label matching for each query node vi is |C(vi)|, then the over-
all search space has size |C(v1)| × |C(v2)| × . . . × |C(vk)|. This can be quite large
for massive data graphs and large query graphs, as well as in the presence of less
selective query nodes. Therefore, even for labeled graphs, enumerating all possible
answer graphs within the search space can be expensive.

Algorithm 1 GenericQueryProg: Exact Graph Pattern Matching
Require: query graph Q, data graph G
Ensure: all subgraph isomorphisms of Q in G
1: M = φ

2: /* Candidate Selection */
3: for all u ∈ V (Q) do
4: C(u) = FilterCandidates(Q,G, u)

5: if C(u) = φ then
6: return
7: end if
8: end for
9: SubgraphSearch(Q,G, M)

Big-Graphs: Querying, Mining, and Beyond 551

(a) (b)

(c)

Fig. 12 Graph matching queries: Labels on graph nodes

Algorithm 2 Subroutine SubGraphSearch(Q,G,M)
1: if |M | = |V (Q)| then
2: output M
3: else
4: u = NextQueryV ertex()
5: CR = Ref ineCandidates(M, u,C(u))

6: for all v ∈ CR such that v is not yet matched do
7: if I s Joinable(Q,G, M, u, v) then
8: UpdateState(M, u, v)

9: SubgraphSearch(Q,G, M)

10: RestoreState(M, u, v)

11: end if
12: end for
13: end if

Ullmann proposed the first practical algorithm for subgraph isomorphism search
in graphs [140]. It is a backtracking algorithm which finds exact matches by incre-
menting partial solutions or abandoning them when it determines that they can-
not be completed. Algorithm 1 shows a generic subgraph isomorphism procedure,
GenericQueryProc [94]. It inputs a query graph Q and a data graph G, and it
output all subgraph isomorphic mappings (or embeddings) of Q in G. To represent
an embedding, we use a list M of pairs of a query node and a corresponding data

552 A. Khan and S. Ranu

node. For each node u in Q, GenericQueryProc first invokes FilterCandidates
to find a set of candidate nodes C(u) ⊆ V (G) such that L(u) ⊆ L(v). If C(u) is
empty, we can safely exit. After that, GenericQueryProc invokes a recursive sub-
routine, SubgraphSearch, to find mapping pairs of a query node and matching data
nodes at a time. SubgraphSearch takes as parameters a query graph Q, a data graph
G, and a partial embedding M and reports all embeddings of Q in G. The recur-
sion stopswhen the algorithmfinds the complete solution (i.e., when |M | = |V (Q)|).
Otherwise, the algorithm calls NextQueryV ertex to select a query node u ∈ V (Q)

which is not yet matched. After that, it calls Ref ine Candidates to obtain a refined
candidate node set CR from C(u) by using algorithm-specific pruning rules. Next,
for each candidate data node v ∈ CR such that v is not matched yet, the I s Joinable
subroutine checks whether the edges between u and already matched query nodes
of Q have corresponding edges between v and already matched data nodes of G.
If v is qualified, it is matched to u, and SubgraphSearch updates status informa-
tion by calling UpdateState, and the algorithm proceeds to match the remaining
query nodes of Q by recursively calling SubgraphSearch. Next, all changes done
by UpdateState are restored by calling RestoreState. The algorithm terminates
when all possible embeddings are found.

In case of Ullmann’s algorithm, FilterCandidate returns a set of data graph
nodes with a matching label with u. NextQueryV ertex returns one query node
at a time, in the order they appear in the input query graph. Ref ineCandidates
prunes all candidate nodes v ∈ C(u) that have a smaller degree than u. I s Joinable
iterates through all adjacent query nodes of u. If an adjacent query node u′ is already
matched, i.e., (u′, v′) ∈ M , then it checks whether there is a corresponding edge
(v, v′) in the data graph. Finally, UpdateState appends a pair (u, v) to M , while
RestoreState restores M by removing the pair (u, v) from M .

Recently, many algorithms such as VF2 [26], QuickSI [126], GraphQL [60],
GADDI [156], and SPath [159] are proposed for subgraph isomorphism search
in large graphs. These algorithms follow the same underlying backtracking prin-
ciple of Algorithm 1; however, they improve the efficiency by exploiting different
join orders and with smart pruning techniques (e.g., with more advanced methods
for NextQueryV ertex and Ref ineCandidates). Lee et al. empirically compared
these techniques [94] and found that QuickSI is often the most efficient method for
both small and large graphs.

Approximate Graph Pattern Matching. In bioinformatics, approximate graph
matching has been extensively studied, e.g., PathBlast [80], SAGA [135], NetAl-
ign [97], and IsoRank [128]. However, these algorithms target smaller biological
networks. It is difficult to apply them in large social and information networks.

There have been significant studies on inexact subgraph matching in large graphs.
Tong et al. [138] proposed G-Ray, which aims to maintain the shape of the query. In
contrast, NESS [84] and NeMa [87] identify the optimal matches in terms of prox-
imity among entities rather than the shape of the query graph. Tian et al. [136] pro-
posed an approximate subgraph matching tool, called TALE, with efficient indexing.
Mongiovi et al. introduced a set-cover-based inexact subgraph matching technique,

Big-Graphs: Querying, Mining, and Beyond 553

called SIGMA [109]. Both these techniques use edge misses to measure the quality
of a match. There are other works on inexact subgraph matching. An incomplete list
(see [44] for surveys) includes homomorphism based subgraph matching [39], belief
propagation based net alignment [10], edge-edit-distance based subgraph indexing
technique [158], subgraph matching in billion node graphs [132], regular expression
based graph pattern matching [9], schema [107] and unbalanced ontology match-
ing [160]. There are also works on simulation and bisimulation-based graph pattern
matching, e.g., [38, 100].

3.4 Graph Query by Example

Graph data is not easier than relational data in either query language or data model.
This largely has to dowith the sheer volume and complexity of such data.As ofMarch
2012, the Linking Open Data community had interlinked over 52 billion RDF triples
spanning over several hundred datasets. Freebase alone has over 22 million entities
and 350 million relationships in about 100 domains. Before users and developers can
do anything meaningful with the data, they are often overwhelmed by the daunting
task of attempting to even digest and understand it.While a number of graph database
systems and RDF stores have emerged in recent years, usability has not been the
focus of innovation. In retrieving data from these databases, the norm is often to use
structured query languages such as SQL, SPARQL, and those alike. In the literature
on graph querying, the starting point is virtually always a query graph, which is a
graphical representation of structured query. However, writing structured queries is
hard. It requires extensive experiences in query language and data model and good
understanding of particular datasets.

For this very reason, query by example systems over graph data has received a con-
siderable attention lately. Query by example (QBE) has a positive history in relational
databases [90], HTML tables [49], and entity sets [144]. Exemplar query [110] and
GQBE [73] were the first to adapt similar ideas over knowledge graphs. To illustrate
this point, assume that a journalist is interested in preparing an article on university
professors who have designed a programming language and also won an award in
Computer Science. She may find it difficult how to write this query, but she might
know a few relevant professor-university-award triples, such as 〈DonaldKnuth, Stan-
ford University, Turing Award〉. A query by example system will allow her to input
the above triple as a query, and will return other similar tuples that are present in the
database, such as 〈John McCarthy, Stanford University, Turing Award〉 and 〈Alan
Perlis, Yale, Turing Award〉.

In particular, GQBE follows a two-step approach. Given the input example
tuple(s), GQBE first identifies the query graph that captures the user’s query
intent. Then, it evaluates the query graph to find other relevant answer tuples.
The GQBE framework is shown in Fig. 13. Let us consider the knowledge graph
in the figure and let 〈JerryYang,Yahoo!〉 be the input query tuple. Neighbors
of the query entities up to length d are captured to form a neighborhood graph

554 A. Khan and S. Ranu

Fig. 13 The GQBE framework

Ht , which can be large. Hence, its unimportant edges are pruned. We rank the
edges by weighting them using several distance-based and frequency-based heuris-
tics. The weight w(e) of an edge e = (u, v) is (1) directly proportional to its
inverse edge frequency that captures how rare a relationship is globally in the data
graph, (2) inversely proportional to its participation that determines the number of
edges in the data graph that share the same label and one of e’s end nodes (u or
v), and (3) inversely proportional to the distance that captures the distance of edge
e from the query entities. A greedy heuristic is used to choose the maximal query
graph MQGt , which is anm-edged weakly connected subgraph of Ht containing all
query entities, while maximizing the aggregated edge weight.

We model the space of possible query graphs by a query lattice. Each query graph
in the lattice is a connected subgraph of MQGt and contains all query entities. The
bottom-most nodes in the lattice are called the minimal query trees (nodes F and
HL in Fig. 13), which together capture all relationships between the input entities.
The top-most node (FGHLP in Fig. 13) is the MQGt , and other lattice nodes have
exactly one edge more than its children. Answer graphs to these query graphs are
also subgraphs of the data graph and are structurally isomorphic to the query graph.
The score of a query graph Q is equal to the sum of all its edge weights. Given an
answer graph, nodes corresponding to the query tuple entities are projected as its
answer tuple. Thus the answer tuples are approximate answers to MQGt .

Big-Graphs: Querying, Mining, and Beyond 555

The data graph is stored in a relational database via vertical partitioning [1], that
is, wemaintain a table for each property with two columns (subj, obj), for the edges’
source and destination nodes, respectively. For efficient query processing, two in-
memory hash tables are created on each table, using subj and obj as the hash keys.
A query graph can be evaluated using a multi-way join query. We use the right-deep
hash-joins to process such a query. Let us consider the topmost join operator in a join
tree for query graph Q. Its left operand is the build relation which is one of the two
in-memory hash tables for an edge e. Its right operand is the probe relation which
is a hash table for another edge or a join subtree for Q′ = Q − e (i.e., the resulting
graph of removing e from Q). GQBE uses a best-first exploration strategy of the
lattice to obtain the top-k answers. It explores the query lattice in a bottom up way,
starting with the minimal query trees. After a query graph is processed, its answers
arematerialized in files. To process a query Q, at least one of its children Q′ = Q − e
must have been processed. The materialized results for Q′ form the probe relation
and a hash table on e is the build relation. The best-first strategy always chooses to
evaluate the most promising lattice node Qbest from a set of candidate nodes. Qbest

is the candidate with the highest upper-bound score. If processing Qbest does not
yield any answer graph, Qbest and all its ancestors are pruned and the upper-bound
scores of other candidate nodes are recalculated. The algorithm terminates when it
has obtained at least k answer tuples with scores higher than the highest possible
upper-bound score among all unevaluated nodes. The quality of the answer tuples
obtained by GQBE can be further improved by using multiple input tuples as query
to the system.

4 Mining Techniques Over Big-Graphs

The field of graph mining has emerged as one of the hottest topics in recent years
due to its wide applications in a variety of fields including social networks, computa-
tional biology, software bug localization and transportation networks. Graph mining
covers a variety of topics such as clustering and classification of graphs, anomaly
detection, link analysis, mining subgraph patterns, graph anonymization and privacy
preservation, etc. In this chapter, we discuss the problemofmining subgraph patterns.

Mining subgraph patterns has received considerable interest in the graph mining
community due to its wide-ranging applications. For example, frequent subgraph
mining has been widely used for drug discovery [91, 114, 149]. Specifically, given
a dataset of molecules that are active against a particular disease, chemists are often
interested in identifying the molecular substructures that are frequent in this set. This
same line of reasoning evolved into discriminative [133] and statistically significant
subgraph mining [59, 74, 120, 153], where the goal is to mine subgraphs that are
“over-represented” in the active dataset. Both discriminative subgraph mining and
significant subgraph mining have shown good performance in molecular activity
prediction [74, 133]. Beyond drug-discovery, subgraph mining has also been used

556 A. Khan and S. Ranu

for bug localization [21] and predicting disease susceptibility from gene expression
data in protein-protein interaction networks [33, 119].

A subgraph pattern mining problem generally has three pieces of input informa-
tion. A graph dataset D, a significance function φ(g) that quantifies the significance
of a subgraph g, and a threshold θ . Given these inputs, the goal is to identify all
subgraphs that have a significance value greater than the threshold. Mathematically,
we need to compute the set of subgraphs A

A = {g is a subgraph from dataset D|φ(g) ≥ θ} (5)

The significance function could model a variety of application specific properties
such as frequency of a subgraph, statistical significance, representative power, etc.

The main challenge in subgraph mining is to explore the exponential subgraph
search space in an efficientmanner. A graphwith n nodes could potentially contain 2n

subgraphs and evaluating each possible subgraph is not scalable. Hence, the primary
goal of all existing techniques is to develop strategies that are effective in pruning
the search space. These strategies however depend on the significance function being
used and the type of graph dataset being mined.

Generally, there are two kinds of graph datasets. In the first kind, we have a
database of objects, where each object is a graph. This setup is common while
miningmolecular repositories [120, 149] and is popularly known as the transactional
graph database. The second type of scenario is where we have a single large graph.
Such graphs are routinely used to model protein-protein interaction networks, social
networks, and road networks [33, 34, 119]. Generally, the size of the graphs are small
in the transactional setting. However, the database may contain millions of graphs.
On the other hand, in the single large graph scenario, although there is only one
graph, the graph may span millions of nodes. Typically, a graph mining algorithm
targets only one of these dataset types since each dataset type brings in their own
unique challenges.

4.1 Frequent Subgraph Mining

Frequent subgraphmining has several applications. One of themost prominent appli-
cations of frequent subgraphmining is to characterize graphs as feature vectors. In this
conversion, each frequent subgraph corresponds to a dimension and the dimension
value represents whether the subgraph occurs in the graph that is being converted to
a feature vector. In other words, a feature vector representation of a graph G encodes
the presence or absence of the frequent subgraph in G. Owing to this conversion to a
feature space, higher order operations such as classification, clustering, and querying
of graphs can be performed using traditional tools built for feature vectors. For exam-
ple, to perform graph search efficiently, Yan et al. [151] used frequent subgraph as
indexing features. Deshpande et al. [30] classifiedmolecules by considering frequent
patterns as features.

Big-Graphs: Querying, Mining, and Beyond 557

Fig. 14 a A sample graph database. b A subgraph with a frequency of 75%

Beyond conversion to feature vectors, frequent subgraphs can also explain why a
graph demonstrates certain properties. For example, Borgelt et al. [13] studied HIV-
screening molecular dataset and found active chemical structures in it by contrasting
the support of frequent subgraphs between various classes. Huan et al. [70] studied
protein structure families by applying frequent graph mining techniques.

Frequent subgraph mining has been studied both in transactional graph databases
aswell as in the single large graph setting.Wefirst discuss the problem in transactional
databases.

To formulate the problem, we first introduce some definitions. LetD = {G1, · · · ,

Gn} be a database of n graphs. The support set, Dg, of a subgraph g is the number
of graphs in the database D to which g is subgraph isomorphic. Mathematically,

Dg = {g ⊆ G| G ∈ D} (6)

where g ⊆ G denotes that g is subgraph isomorphic to G. The frequency, f req(g),
of a subgraph g is the proportion of database graphs that are included in g′s support
set. Specifically,

f req(g) = |Dg|
|D| (7)

Given a threshold θ , a subgraph g is frequent if f req(g) ≥ θ . Therefore, the
problem of mining frequent subgraphs is to identify all subgraphs that are frequent.

Example. Fig. 14a shows a graph database. The frequency of the subgraph shown
in Fig. 14b is 75% since it is present in three database graphs.

The baseline algorithm to mine frequent subgraphs is to enumerate all unique
subgraphs of the database, compute their support sets, and output those that are
frequent. This approach however does not scale due to the sheer number of sub-
graphs that exist in the search space. A crucial property of frequent subgraphs that
is employed to prune the search space is the apriori property of frequency.

Apriori property. The apriori property of frequent subgraphs means that a sub-
graph g is frequent only if all subgraphs of g are also frequent. Conversely, if g is
not frequent, none of g’s supergraphs are frequent either.

Many frequent subgraph mining techniques have been proposed [13, 68, 72,
91, 114, 141, 149]. These techniques can broadly be grouped into two categories
based on the searching strategy they follow: join-based approach [72, 91, 141] and
pattern-growth approach [13, 68, 114, 149].

558 A. Khan and S. Ranu

(a) (b)

Fig. 15 Overview of the two search exploration strategies for frequent subgraph mining

Fig. 16 Joining two k-edge subgraphs to form k + 1-edge subgraph candidates in FSG

Join-based approach. We illustrate this approach using FSG [91] as the representa-
tive technique. As outlined in Fig. 15a, FSG explores the search space in a bottom-up,
iterative manner. FSG starts by enumerating all k-edge frequent subgraphs for some
small k. These k-edge frequent subgraphs are next joined to construct k + 1-edge
subgraph candidates. These candidates are then verified to check if they are indeed
frequent. After this verification, FSG proceeds to the next iteration where k + 1-
edge frequent subgraphs are joined to form k + 2-edge candidates. This iteration
stops when no further candidates remain to be evaluated.

An important step in this approach is to join two k-edge subgraphs. Two k-edge
subgraphs can be joined if and only if they contain a common k − 1 edge subgraph.
An example of this operation is shown in Fig. 16. Note that the join of two k-edge sub-
graphs may create more than one k + 1-edge subgraph candidates. The large number
of candidates generated in the join-based approach is in fact a major computational
overhead. To overcome this weakness, the pattern-growth approach was developed.

Pattern-growth approach. Figure15b outlines the search exploration strategy of
the pattern-growth approach. We explain this approach by using gSpan [149] as the
representative technique. As in FSG, gSpan initiates search by first enumerating
all k-edge frequent subgraphs for some small value of k. Next, it picks a k-edge

Big-Graphs: Querying, Mining, and Beyond 559

Fig. 17 a The growth-rate
of the running times of
FSG [91], gSpan [149], and
Gaston [114] against the
frequency threshold

frequent subgraph and extends it by one more edge in every possible position to
create k + 1-edge frequent subgraphs. Each of these k + 1-edge frequent subgraphs
are then recursively extended in the samemanner till it cannot be extended any further
to construct a larger frequent subgraph. In other words, the search space is explored
in a depth-first manner. The pattern-growth approach does not perform expensive
subgraph joins.

One potential problem in the pattern-growth approach is that a subgraph may be
discovered multiple times. To avoid this redundant operation, gSpan develops the
idea of right-most extension. In right-most extension, edge extensions take place
only on the right-most path. A right-most path for a given graph is the shortest path
from the starting vertex v0 to the last vertex vn , according to a depth-first search on
the graph.

Generally, the pattern-growth approach has been shown to perform better than
the join-based approach. Among the existing techniques to mine frequent subgraphs,
Gaston [114] produces the best performance. Gaston also follows the pattern-growth
approach like gSpan. However, it also employs some additional heuristics to prune
the search space. Figure17 shows a comparison of running times in the AIDS antivi-
ral molecular dataset, which contains 42,689 graphs. On average, the graphs contain
26 nodes and 30 edges. As can be seen in, Gaston is almost twice as fast as gSpan.
Gaston has been shown to perform well on graph datasets containing more than
250,000 graphs. It is safe to assume that Gaston and gSpan will also scale to mil-
lion sized datasets since the running time grows linearly with dataset size. The pri-
mary weakness of these techniques however lie in their scalability with graph size.
Typically, the frequent subgraph mining techniques developed for the transactional
setting fail to scale on graphs containing more than 100 nodes. This weakness is
addressed by the techniques that are built to mine frequent subgraphs from a single
large graph [34].

Closed and Maximal frequent subgraph mining. Due to the apriori property, all
subgraphs of a frequent subgraph g are also frequent. In the worst case, a frequent
graph of size n contains 2n frequent subgraphs. Consequently, the number of frequent
subgraphs in a database grows exponentially as the frequency threshold decreases.
This ultimately results in mining a huge number of frequent subgraphs. For example,

560 A. Khan and S. Ranu

in a database of 422 graphs containingmolecules active against theHIVvirus, close to
a million frequent subgraphs are mined at 5% frequency threshold [150]. This large
volume of frequent subgraphs makes any further analysis difficult. It is therefore
critical to reduce information redundancy and present the information embedded in
frequent subgraphs in a more concise manner. Towards that goal the idea of closed
frequent subgraphs and maximal frequent subgraphs were proposed.

Closed frequent subgraphs. A subgraph g is a closed frequent subgraph if g is
frequent and there exists no supergraph g′ ⊇ g such that g′ is as frequent as g.

Maximal frequent subgraphs. A subgraph g is a maximal frequent subgraph if
g is frequent, and there exists no supergraph g′ ⊇ g such that g′ is frequent.

The set of closed frequent subgraphs is a subset of frequent subgraphs and the
set of maximal subgraphs is a subset of closed subgraphs. Note that given the set
of closed frequent subgraphs, one can generate the set of frequent subgraphs. Such
an operation is not possible from maximal subgraphs. Thus, no information is lost
when one retains only the closed patterns. CloseGraph [150] mines closed frequent
subgraphs, and Spin [69] and Margin [134] mine maximal frequent subgraphs.

Mining frequent subgraphs in a single-large graph. The problem of mining fre-
quent subgraphs from a single large graph has also been studied [15, 34, 43, 92].
The major challenge in mining frequent subgraphs from a single-large graph is the
violation of apriori property of subgraph frequency. Figure18a illustrates the issue.
As visible, g1 is a subgraph of g2. Despite this relationship between them, g1 has one
embedding within the graph compared to three embeddings of g2. In other words, the
apriori property is violated. The apriori property is violated due to overlap among
instances of a subgraph pattern. For example, although g2 occurs thrice in the graph,
the same ABC component overlaps in all of its instances.

Without the apriori property, pruning the subgraph search space is hard. Hence,
multiple definitions of subgraph frequencywere proposed.Kuramochi et al. proposed
a definition of subgraph frequency based on the idea of maximum independent sets
(MIS). Specifically, for any subgraph g, let I1, · · · , In be all instances of g. A network
N is created using these instances where each instance is a node and two instances Ii
and I j are connected by an edge if the instances overlap. The frequency of g is defined
as maximum independent set of N . It has been shown that the MIS-based frequency
follows the apriori property [43]. Kuramochi et al. proposed two algorithms to mine

Fig. 18 a Illustration of how the apriori property is violated while mining frequent subgraphs in a
single-large graph. b Counting the frequency of a subgraph

Big-Graphs: Querying, Mining, and Beyond 561

frequent subgraphs based on this definition [92], namelyHSIGRAMandVSIGRAM.
While HSIGRAM explores the search space in breadth-first manner, VSIGRAM
follows a depth-first exploration.

Subsequently, Fiedler et al. [43] proposed a definition of frequency calledHarmful
Overlap (HO). In HO, a network is constructed among the instances of a subgraph
just like in [92]. However, the definition of overlap is different. Specifically, two
instances I1, I2 of a graph g overlap if there exists at least one vertex in g that is
mapped to the same node in both I1 and I2. Figure18b illustrates the idea. Instances
I1 and I2 overlap based on the definition proposed in [92]. However, they do not
based on HO principle and hence g has a frequency of 2 according to HO and
1 based on the definition in [92]. HO follows the apriori property as well and is
closer to the true frequency than [92].

Both definitions of frequency discussed above are NP-complete to compute. To
address this weakness, Bringmann et al. defined a simpler version of frequency called
Minimum Image based frequency (MNI) [15]. In MNI, first a frequency is defined for
each vertex of a subgraph g within a graph G. The frequency of a vertex v ∈ g is the
least number of unique vertices inG to which v is mapped in some instance of g. The
frequency of g is the minimum of all vertex frequencies in g. Revisiting Fig. 18b, g
has a frequency of 2 based on MNI. MNI is not only more computationally efficient,
but also retains the apriori property.

GRAMI. The state-of-the-art technique for mining frequent subgraphs in a single-
large graph is GRAMI [34]. GRAMI uses MNI as subgraph frequency. GRAMI
models the problem of frequency evaluation of a subgraph as a constraint satisfaction
problem (CSP). A CSP is represented as a tuple (X ,D, C), where X is an ordered
set of variables, D is a set of domains corresponding to variables X , and C is a set
of constraints among the variables in X . A solution for a CSP is an assignment of
values to the variables in X from their corresponding domains such that none of the
constraints in C is violated. GRAMI maps the subgraph isomorphism problem to a
CSP as follows. Each node in a subgraph S corresponds to a variable, the domain of
each variable is the set of nodes in the target graph G on which S is being searched,
and the constraints are the following:

1. xv �= x ′
v , for all distinct variables xv, x ′

v ∈ X
2. the labels of v and xv are same
3. the labels of all edges (xv, x ′

v) in G are same as edges (v, v′) in S

GRAMI explores the search space in the depth-first manner that is used by gSpan.
Specifically, it first computes all frequent edges and then tries to extend them by
one more edge. The only difference from traditional depth-first approaches is that
the subgraph enumeration is performed using CSP, which allows higher efficiency.
GRAMI first checks the number of valid assignments in the domain of each node
of the extended subgraph. Only if the number of valid assignments for all nodes (or
variables in the CSP) is larger than the support threshold, the extended subgraph can
be frequent.

562 A. Khan and S. Ranu

GRAMI employs two heuristics to further speed-up the frequency computation
of a subgraph: push-down pruning and lazy search. In push-down pruning, GRAMI
exploits the property that any assignment thatwas invalid for a subgraphSwill remain
invalid for all of its children (supergraphs of S) as well in the depth-first search tree.
The intuition behind lazy search is that if the search for an assignment of variable
values to a CSP takes a long time, then most likely a solution does not exist for the
partial assignments that have already been made in this search. It might be better to
abandon this partial assignment and look for an alternative solution. To incorporate
this intuition, GRAMI imposes a time limit on the search for any assignment to a
CSP. If the search times out, a different assignment of variable values is initiated to
solve the CSP. The searches that are timed out are kept in memory and re-visited
only if assignments that did not time out have not yet provided θ solutions to the
CSP, where θ is the frequency threshold.

A notable feature of GRAMI is that corresponding to a frequent subgraph S,
it only stores a template of S based on the solutions to the CSP of S, and not all
instances of S itself. This allows GRAMI to scale to low frequency thresholds and
large graphs. GRAMI has been shown to perform well on a snapshot of the Twitter
network, which contains ≈11 million nodes and ≈85 million edges. In this network,
each node represents a user, and an edge represents an interaction between users.
Compared to the basic depth-first approach, GRAMI is shown to be up to 2 orders
of magnitude faster on the Twitter network. Quite naturally, the running time grows
exponentially as the frequency threshold is lowered.However, even at a low frequency
threshold of 3000, GRAMI takes less than two and half hours to complete. Recently,
the problem was also studied in dynamic networks [50], where the idea of temporal
subgraph isomorphism was proposed.

4.2 Mining Discriminative Subgraphs

Frequent subgraphs are often used as features for graph classification. The problem
has been studied in both transactional setting as well as in a single graph. We first
discuss the problem in transactional databases.

In graph classification, each graphG in the dataset is also taggedwith a class label.
To classify graphs, frequent subgraphs have been used to convert each graph into a
feature vector. Specifically, each frequent subgraph gi corresponds to dimension i ,
and G is represented as an n-dimensional binary feature vector where n is the total
number of frequent subgraphs used as features. The value in dimension i of G is set
as follows.

Gi =
{
1, if gi ⊆ G

0, otherwise
(8)

Owing to this transformation of graphs into feature vectors, any standard classifier
such as decision trees, support vector machines, etc., can be used. However, using

Big-Graphs: Querying, Mining, and Beyond 563

frequent subgraphs as features has several issues. First, since the number of frequent
subgraphs is often huge, converting graphs to feature vectors is computationally
expensive. Second, when the number of dimensions is larger than the number of
training samples, there is a chance of over-fitting. It is therefore important to reduce
the number of dimensions without losing too much information. While closed or
maximal frequent subgraphs can be used, they do not reduce the number of features
enough to address the issues outlined above. Furthermore, a high frequency does not
necessarily indicate a high discriminative power. To overcome these weaknesses, the
problem of mining discriminative subgraphs was proposed [133].

In [133], the authors develop a technique called CORK to mine subgraphs that
can discriminate between two classes of graphs. Specifically, the graph dataset D =
D+ ∪ D− contains a positive set of graphs and a negative set of graphs. The goal is
to select subgraphs such that they are present in graphs predominantly from either
the positive set or the negative set. Towards that goal, CORK defines the idea of
correspondence. Two graphs G1 ∈ D+, G2 ∈ D− form a correspondence if for all
dimensions i , Gi

1 = Gi
2. Clearly, higher the correspondence, lower is the quality of

the features. Hence, CORK first mines all frequent subgraphs using a low frequency
threshold. It then chooses a subset of these frequent subgraphs through a greedy,
iterative approach, where in every iteration, the chosen subgraph provides maximum
reduction in correspondence.

Essentially, a subgraph that reduces correspondence by a high margin is discrimi-
native in nature. Subsequent works LEAP [153] and GraphSig [120] highlighted that
for a subgraph to be discriminative, it does not need to be frequent. This observation
resulted in the problem of mining statistically significant subgraphs [59, 74, 120,
153]. However, before discussing this problem, we overview mining discriminative
subgraphs from single-large graphs.

In a single-large graph, mining discriminative subgraphs has been studied for a
class of networks called global-state networks [28, 29, 119]. A global-state network
has multiple snapshots. While the structure of each snapshot is identical, the node
labels are snapshot specific. Furthermore, each snapshot is associated with a global
class label. The goal is to predict the class label of a snapshot using the node labels
and the structure of the graph. In addition, it is desirable to predict using minimal
amount of information. Thus, instead of using the entire structure and all node labels
to predict, if a subgraph can accomplish the same task, then it is a better solution.
Towards that goal, given an accuracy threshold θ , a subgraph g is defined as dis-
criminative if a classification model can be learned from the just the structure and
node labels of g to predict the class label of any given snapshot with an accuracy of
at least θ . A subgraph g is minimally discriminative, if g is discriminative and there
does not exist any subgraph of g that is as discriminative.

The problem was formulated by Ranu et al. in [119] and an algorithm called
MINDS was developed. MINDS employs a sampling based framework to iden-
tify minimally discriminative subgraphs. Subsequently, the solution was further
improved by Dang et al. [28, 29].

564 A. Khan and S. Ranu

4.3 Mining Statistically Significant Subgraphs

The applications of mining significant patterns is same as mining discriminative
subgraphs; the only difference being it decouples frequency from the discriminative
power (or statistical significance) of a subgraph. Instead of refining frequent sub-
graphs to identify discriminative subgraphs, this group of techniques mine statisti-
cally significant subgraphs directly [59, 74, 120, 153]. Thus, the invalid assumption
that for a subgraph to be discriminative, it must be frequent as well is removed.
At the same time, since statistical significance of a subgraph does not follow the
apriori property, pruning the search space becomes a more difficult problem. In the
following discussion, we will introduce some of the seminal works in the space
of significant subgraph mining. Unlike frequent subgraph mining, these techniques
cannot be grouped into two broad classes. However, they have the common goal of
avoiding the enumeration of the complete set of frequent subgraphs while presenting
only a compact set of significant subgraph patterns. Consequently, both scalability
and higher efficacy in discriminative power are achieved.

In transactional graph databases, statistically significant subgraphmining has been
studied under two scenarios. Figure19a depicts the two cases. In the first scenario, the
graphs are tagged with a class label. Here, the goal is to mine the subgraphs that are
significantly more frequent in the positive graphs than in the negative graphs and vice
versa. Since a high difference in frequencies indicates bias towards a particular class,
these subgraphs are discriminative in nature and can be used for graph classification.
In the second scenario, class labels are absent. Here, the goal is to identify subgraphs
that are significantly more frequent than their expected frequency. The expected
frequency is computed based on some background model.

The first step in mining statistically significant subgraphs is to identify the func-
tion that quantifies the significance of a subgraph. Any of the known statistical
measures such as p-value [120], G-test score [153], and chi-square value [8] could
be used. Since statistical significance does not follow the apriori property, we need
to enumerate all possible subgraphs of the database, compute their significance, and
return those that exceed the threshold. Clearly, this two-step baseline approach is not

Fig. 19 a The two problem settings for statistically significant subgraph mining. b Illustration of
structural leap search

Big-Graphs: Querying, Mining, and Beyond 565

scalable. The bottleneck lies in the subgraph enumeration step where we generate an
exponential search space. Thus, it is critical to mine significant subgraphs without
enumerating all possible subgraphs. We discuss two of the techniques here, namely
LEAP [153] and GraphSig [120], that allows us to perform this task in a scalable
manner.

LEAP. LEAP is one of the first techniques to directly mine statistically significant
subgraphs [153] without enumerating all subgraphs. Let F(g) = f (p(g), q(g)) be
the statistical significance of subgraph g, where p(g) denotes the frequency of g in
the positive set and q(g) denotes the frequency in the negative set. LEAP allows the
usage of any f (·, ·) as long as f (·, ·) increaseswith increase in the difference between
the positive and the negative frequencies of g. One example of such a function is the
G-test score [153]. Consequently, for any supergraph g′ of g, the following upper
bound F̂(g′) on F(g′) can be provided.

F̂(g′) = max{ f (p(g), 0), f (0, q(g))} (9)

In other words, all super graphs of g can be skipped if the above upper bound
is less than the significance threshold. F̂(g′) however is often not tight and there-
fore not much effective in pruning the search space. To overcome this bottleneck,
LEAP proposes two different pruning strategies, namely structural leap search and
frequency-descending mining, to mine the subgraph with the highest G-test score.
The technique can easily be generalizes to top-k as well.

Figure19b shows the search space of significant subgraphs. Consider the two
branches A and B originating from the subgraph g. Branch A contains all supergraphs
of g � e, i.e., g extendedby someedge e. On the other hand, B contains all supergraphs
of g except those of g � e. LEAP observes that in a graph dataset if g and g � e often
occur together, then it is likely that some subgraph g′ ⊃ g in branch B occurs with
g′′ = g′ � e, where g′′ is in branch A. In other words, p(g′′) ∼ p(g′) and q(g′′) ∼
q(g′). This behavior in turn would result in F(g′′) ∼ F(g′). Extending this same line
of reasoning, when g and g � e co-occur often, the significance scores of subgraphs
in branch A and branch B are likely to be similar. Thus, if branch A has already been
searched, then B can be skipped for faster searching. Note that this strategy does not
guarantee optimality.

To formalize the above intuition, let I (G, g, g � e) be an indicator function of a
graph G where I (G, g, g � e) = 1 if for any g′ ⊇ g, if g′ ⊆ G ∃g′′ = g′ � e, such
that g′′ ⊆ G; otherwise, I (G, g, g � e) = 0. Essentially, I (G, g, g � e) = 1 means if
a supergraph g′ of g has an embedding in G, then g′ � e is also present in G. Let
D+(g, g � e) = {G ∈ D+|I (G, g, g � e) = 1} be the set of positive graphs where
this event occurs. In D+(g, g � e), g′ ⊃ g and g′′ = g′ � e have the same frequency.
Therefore, the maximum frequency difference between g′ and g′′ in the positive set
can be defined as follows.

Δ+(g, g � e) = p(g) − |D+(g, g � e)|
|D+| (10)

566 A. Khan and S. Ranu

Fig. 20 The pseudocode for structural leap search

Fig. 21 a Relationship between subgraph frequency and G-test score. b The pseudocode of
frequency-descending search

where D+ is set of positive graphs. If the difference in frequency is smaller than a
threshold σ , then the entire branch B can be “leaped” over. The pseudocode of the
structural leap search is provided in Fig. 20. Line 7 encodes the leaping condition.
The denominators in the fractions act as the normalizing factors.

Structural leap search utilizes the correlation between structural similarity and
statistical significance. LEAP notices that subgraph frequency is also correlated to
statistical significance. Consider Fig. 21a, which is a contour plot to show the cor-
relation between frequency and G-test score for subgraphs in the AIDS-antiviral
dataset [153]. The x-axis represents the frequency in the negative dataset and the

Big-Graphs: Querying, Mining, and Beyond 567

y-axis depicts the frequency in the positive dataset. The curves show the G-test
scores. As can be seen, subgraphs with high G-test scores have a high frequency in
either the positive set or the negative set. For example, the subgraph enclosed in the
red circle has the highest G-test score. As can be seen, this subgraph has a frequency
in the positive set that is higher than most.

LEAP utilizes the above observation to design an iterative frequency-descending
miningof significant subgraphs. Figure21bpresents the pseudocodeof the frequency-
descending search. It starts by mining frequent subgraphs at a threshold of 1 (line 5),
and evaluates the G-test scores of these graphs. Next, it repeats the same process with
a lower frequency threshold and this process continues till the G-test score converges.

Finally, LEAP integrates structural-leap search and frequency-descending search
into a single framework.

1. Perform structural-leap search only on subgraphs with frequency threshold of 1.
2. Repeat the above procedure with a lower threshold iteratively till the significance

of the best subgraph found so far, g∗, converges.
3. Perform structural leap search without frequency-descending mining using g∗.

Specifically, in addition to structural leap, search in a branch only if it can lead to
a subgraph with a score higher than F(g∗). This can be determined using F̂(g).

Leap has been benchmarked on a series of graph datasets from the biology domain.
Specifically, each graph corresponds to a molecule, and the graph is also labeled
with a tag denoting whether it is active or inactive against a disease such as Aids or
cancer. The sizes of these datasets range up to≈80,000 graphs. Compared to frequent
subgraph mining techniques, LEAP is considerably slower. This is expected since
the apriori property cannot be used to prune the search space. However, the proposed
heuristics of structural-leap and frequency descending mining results in a running
time that is up to two orders of magnitude faster than the naive depth-first approach.
lEAP shares several propertieswith the frequent subgraphmining techniques built for
transactional databases. First, the running time of LEAP grows linearly with dataset
size. Second, LEAP does not scale to graph sizes beyond 100 since the search space
explodes exponentially.

GraphSig. GraphSig uses p-value to quantify the statistical significance of a sub-
graph. Given a dataset of graphs D, and a p-value threshold θ , the goal is to mine the
following answer set.

A = {g|p − value(g) ≤ θ, g ⊆ G,G ∈ D} (11)

Note that a lower p-value indicates higher statistical significance.
Figure22 outlines the pipeline of GraphSig. GraphSig first converts each graph G

into a set of feature vectors. Each feature vector represents a certain subgraph within
G. Owing to the conversion of G into a feature space, the problem of mining signif-
icant subgraphs translates to the problem of mining significant sub-feature vectors.
These significant sub-feature vectors represent potential significant subgraphs in the

568 A. Khan and S. Ranu

Fig. 22 The pipeline of GraphSig

Fig. 23 Conversion of a graph into feature vectors

feature space. Thus, GraphSig develops a technique to mine these significant sub-
feature vectors and convert them back to the graph space to verify if they are indeed
statistically significant. Those that pass this check are returned as the final answer set
of significant subgraphs. GraphSig derives its pruning power from the feature space
analysis following which only a small portion of the exponential subgraph search
space is accessed for further analysis. We next explain the major steps of GraphSig.

To convert a graph into a set of feature vectors, GraphSig performs random walk
with restarts on each node. This simulates sliding a window across the graph. RWR
simulates the trajectory of a random walker that starts from a target node and jumps
from one node to a neighbor. Each neighbor has an equal probability of becoming the
new station of the walker. At each jump, GraphSig updates the edge-type traversed.
Further, with a restart probability α, the walker teleports to the starting node and
restarts the walk. For example, at α = 0.25, on average, after every four jumps, the
walker comes back to the starting node. The random walk continues till the feature
distribution converges. The feature values are finally discretized into 10 bins. An
example is shown in Fig. 23. RWR can therefore be visualized as placing a window
at each node of a graph and capturing a feature vector representation of the subgraph
within it. As a result, a graph of n nodes is represented by n feature vectors.

Next, GraphSig develops a model to compute the p-value of a feature vector.
GraphSig models the occurrence of a feature vector x in a vector generated from a
random graph. The frequency distribution of a vector is generated using the prior
probabilities of features in the background dataset. The p-value is then calculated by
comparing the observed support of x with its expected support.

For two feature vectors x = [x1, · · · , xn] and y = [y1, · · · , yn], x is a sub-feature
vector of y if and only if xi ≤ yi for i = 1, · · · , n. The relation is denoted as x ⊆ y.

Big-Graphs: Querying, Mining, and Beyond 569

The probability of x occurring in a random feature vector y = [y1, · · · , yn] is
expressed as follows.

P(x) = P(y1 ≥ x1, · · · , yn ≥ xn) (12)

where each event is the probability of a feature in the random vector y having a
higher or equal value than the same feature in x .

GraphSig assumes independence of the features. As a result, Eq. 12 is expressed
as a product of the individual probabilities.

P(x) =
n∏

i=1

P(yi ≥ xi) (13)

In other words, Eq.13 gives us the probability of finding x in a random feature
vector.

Once we know P(x), the support of x in a database of random feature vectors
is modeled as a binomial distribution. Specifically, a random vector can be viewed
as a trial and x occurring in it as “success”. A database consisting m feature vectors
will involve m trials. The support of x in the database is the number of successes.
Therefore, the probability of x having a support μ is

P(x;μ) =
(
m

μ

)

P(x)μ(1 − P(x))m−μ (14)

Therefore, given an observed support μ0 of x , its p-value is the area under the pdf
in the range [μ0,m].

p-value(x, μ0) =
m∑

i=μ0

P(x; i) (15)

GraphSigmakes the followingobservations onmonotonicity of p-values of feature
vectors, which is later used to prune the search space.

1. Given two feature vectors x and y, if x ⊆ y, then p-value(x, μ) ≥ p-value(y, μ)

for any μ.
2. Given a feature vector x , if μ1 ≥ μ2, then p-value(x, μ1) ≤ p-value(x, μ2) for

any x .

With the ability to compute p-value of a feature vector, GraphSig next focuses
on mining the set of statistically significant sub-feature vectors. Towards that goal,
GraphSig develops the significant sub-feature vector mining algorithm. Figure24
presents the pseudocode. GraphSig explores closed sub-vectors in a bottom-up,
depth-first manner. At each step, the floor of the supporting set is evaluated for
significance. Next, it moves to a state with a smaller supporting set along a branch
and repeats the evaluation process. The algorithm stops branching from a state when

570 A. Khan and S. Ranu

Fig. 24 The pseudocode of the feature vector mining algorithm

Fig. 25 A running example of the feature vector mining algorithm

all its descendants are guaranteed to have a p-value higher than the p-value threshold
(lines 10–11), or produces a duplicate state (lines 8–9). Figure25 demonstrates a
running example in a database of four vectors with a support and p-value threshold
of 1.

Given the knowledge that each significant sub-feature vector could describe a
significant subgraph, GraphSig scans the database to identify the regions where the
current sub-feature vector occurs. This involves finding all nodes described by a
feature vector f , such that f is a super-vector of the current sub-feature vector.
Each of these nodes is located in a region of interest. GraphSig isolates the subgraph

Big-Graphs: Querying, Mining, and Beyond 571

centered at each node by using a user-specified radius. This produces a candidate
set of subgraphs for each significant sub-feature vector. The cutoff radius could be
selected based on some prior knowledge about the typical size of subgraphs that
one wants to study. In the worst case, one can select the entire graph where the
node occurs. Finally, GraphSig performsmaximal frequent subgraph mining on each
candidate set with a high frequency threshold since each set is expected to contain
a common subgraph corresponding to the significant sub-feature vector. To mine
maximal subgraphs, any of the existing techniques could be used [69, 91, 134]. This
step also prunes out false positives where dissimilar subgraphs are grouped into a
set due to similar vector representations. Due to the absence of a common subgraph,
when frequent subgraph mining is performed on the set, no frequent subgraph will
be produced and as a result the set will be filtered out.

In a subsequent work, GraphSig has been extended to mine graphs with proba-
bilistic class labels [118].

In terms of efficiency, GraphSig is faster than Leap and this is largely due to
processing graphs in feature space. However, the answer sets of the two techniques
cannot directly be compared since their models to quantify statistical significance
are different. GraphSig has been applied on datasets containing ≈ 80, 000 graphs.
Due to the linear growth rate with running time, GraphSig can scale to million-sized
graph databases. However, the limitation to scale on larger graphs remains. Like
LEAP, the significant subgraphs mined by GraphSig have been employed as features
to classify graphs and have shown higher accuracy than LEAP [121].

Mining statistically significant subgraphs on a single large graph. So far, we
have discussed the problem of mining significant subgraphs only on transactional
databases. Recently, the problem has also been studied on a single large network [8].

Given an undirected, vertex-labeled graph G, Arora et al. propose a technique to
mine the top-k most statistically significant subgraphs. The statistical significance
of a subgraph is quantified using its Chi-square value. Arora et al. assume that the
vertex labels are drawn randomly and independently from amultinomial distribution.
Based on this null hypotheses, the expected support of a subgraph is computed.
By comparing the deviation from the observed support, the chi-square value of a
subgraph is calculated.

The naive approach is to enumerate all possible subgraphs and compute their
significance one by one. However, due to the exponential search space, this approach
is not scalable. Arora et al. overcome this bottleneck through a data compression
based strategy where vertices are merged into a super-vertex and a graph is built over
these super-vertices alone. Since this super-graph is significantly smaller in size, the
brute force approach is scalable.

Figure26 outlines the pipeline of the algorithm. The mining process initiates by
first constructing a super-graph from the original graph by collapsing the vertices
along contracting edges. If the vertex labels are discrete, then an edge is contracting
if the connecting vertices have the same label. On the other hand, if the vertex labels
are continuous, an edge is contracting if the chi-square value of the merged vertex
is larger than the individual vertices. The merging process ensures that any vertex

572 A. Khan and S. Ranu

Fig. 26 Pipeline of the technique to mine statistically significant subgraphs from a single large
graph [8]

that is part of a significant subgraph in the original graph, continues to be part of a
significant subgraph even in the super-graph. The reduction in the size of the super-
graph depends on the density of the original graph. If the original graph is dense, the
resulting super-graph is small enough such that the brute-force algorithm of finding
all connected subgraphs from the supergraph is feasible. Otherwise, if the original
graph is not dense enough, then the super-graph is not small enough either and further
reduction in the size of the super-graph is required. This reduction is performed by
merging vertices that have low chi-square values. Once the super-graph is reduced to
a small-enough size, the brute-force algorithm is again applied to find the statistically
significant subgraphs.

4.4 Mining Representative Subgraphs

As discussed earlier, due to the exponential subgraph search space, the number of
subgraph patterns mined is also large. Thus, it is often required to represent all
patterns through a more concise set of representative subgraphs. This problem has
been studied in the context of frequent subgraph mining by ORIGAMI [58] and
RING [157].

ORIGAMI. ORIGAMI proposes the idea of α-orthogonal, β-representative sub-
graph patterns. Given a graph dataset D and a similarity threshold α ∈ [0, 1], a
subset R ⊂ D is α-orthogonal if and only if for any G1,G2 ∈ R, sim(G1,G2) ≤ α

and for any Gi ∈ D − R, ∃G ∈ R, sim(G,Gi) > α. Given a similarity threshold
β ∈ [0, 1], G ∈ D is represented by R if ∃G ′ ∈ R such that sim(G,G ′) ≥ β. Let
S = {G ∈ D| ∃G ′ ∈ R, sim(G,G ′) ≥ β} be the set of all represented graphs. The
residue set, or the set of unrepresented graphs, is therefore D − S. The goal of
ORIGAMI is to mine the α-orthogonal, β-representative subgraphs from the set
of maximal frequent subgraphs such that the size of the residue set is minimized.
ORIGAMIshows that this problem isNP-Hard.Hence, it follows a two step approach.
First, it mines a sample of maximal frequent subgraphs. Second, it constructs a net-
work among the sampled maximal frequent subgraphs where each subgraph is a
node, and two subgraphs are connected by an edge if their similarity is bounded by
α. In this network, ORIGAMI identifies a random maximal clique and improves it
iteratively till the size of the residue set converges.

Big-Graphs: Querying, Mining, and Beyond 573

RING. Given a graph databaseD, a support threshold θ and an integer N , RING aims
to find up to N representative frequent subgraph patterns and a minimized distance
upper bound R. Specifically, for any frequent subgraph pattern g′, there must exist
a representative frequent subgraph pattern g in the representative set such that the
distance between g and g′ is no larger than R.

RING initiates the mining process by first computing the subgraph pattern dis-
tribution. For that task, RING mines a random set of frequent subgraph patterns,
clusters the patterns, and selects the centers of the clusters as the initial represen-
tative patterns. The cluster centers provide an approximate distribution of how the
frequent patterns are distributed in the subgraph search space. Clustering requires
RING to perform a large number of distance computations between subgraphs. Com-
mon subgraph distance functions such as graph edit distance and maximum common
connected subgraphs are expensive to compute. To overcome this computational bot-
tleneck, RING converts subgraphs into feature vectors. This operation is done by first
identifying a set of graph invariants. A graph invariant is some function f (g) of a
graph g such that if g1 and g2 are isomorphic, then f (g1) = f (g2). Examples include
number of vertices, diameter of the graph, minimum spanning tree, etc. An invariant
is good if the probability of f (g1) = f (g2) is low when g1 and g2 are not isomorphic
to each other and the invariant is fast to compute. RING indexes the feature space
representations of the cluster centers using R-Tree [51]. This complete the first stage
of the mining process.

In the second stage, RING performs a depth-first exploration of the search space.
For each enumerated frequent subgraph g, RING checks if it is already represented.

1. If g is not represented, RING either assigns g as a new representative or extends
the radius of one of the existing representatives so that g is now represented.

2. If g already belongs to a representative and a pattern belonging to the same
representative has been reached, then RING stops growing from g; if g is the first
pattern belonging to this representative, RING continues growing in a depth-first
manner.

5 Open Problems

With the advent of big-graphs and their applications in realworld, the last tenyears has
seen an unprecedented interest and research in designing algorithms and systems for
big-graphs. There are yet many questions that need to be investigated. We conclude
this chapter by highlighting some future research directions.

5.1 Large-Scale Graph Processing Systems

While the topologyof today’s large-scale graphsmayoftenfit on a single server [105],
adding all data associated with the graph nodes and edges can overwhelm the main

574 A. Khan and S. Ranu

memory and computation capacity of one server. In order to achieve low latency
and high throughput over massive graph datasets, various scale-out systems, such
as Pregel [101], GraphLab [99], GraphX [45], and Horton [125] (for a survey,
see [54, 83]) are designed in which the graph and its data are partitioned hori-
zontally across cheap commodity servers in the cluster. Keeping with the modern
database trends to support low-latency operations, the system designers often tar-
get fully in-memory systems, and disks are used only for durability. Nevertheless,
existing systems for big-graphs processing have some unique challenges as follows.

• Many of the existing large-scale graph processing systems follow the node centric
computation model, which severally restricts the usability and expressibility of
these systems. In particular, node centric programs are difficult to write and they
are procedural in nature (i.e., the user needs to take care of query optimization, in
addition to scheduling and locking for asynchronous node centric computation).
Besides, it is difficult to design a node centric algorithm for many graph problems
(e.g., between-ness centrality).

• Due to the interconnected nature of graph data, graph computations are irregular:
It is difficult to extract parallelism by partitioning. Unbalanced computational
workload resulting from poor partitioning and synchronization overheads reduces
scalability. For example, several graph workloads (e.g., reachability and shortest
path queries) are performed in an iterative manner and they show a varying degree
of parallelism over the course of execution. This brings to the following question.
What could be the ideal graph-partitioning scheme? Does one size fit all? Do we
need to vary the partitioning and re-partitioning strategy based on the graph data,
systems, algorithms, and even at various stages of an algorithm?

• What will be the roles of modern hardware in accelerating big-graphs processing?
In the past, there have been a few attempts to build graph-processing systems using
GPU, FPGA, and FlashSSD [56]. However, they are not widely accepted.

• Which one is a better design choice for queries on big-graphs — “scaling out” on
cheap, commodity clusters (distributed memory) versus “scaling up” with more
cores and more memory (shared memory)? Perhaps, for online graph queries,
scaling up is a better option due to their lower communication cost [127].

• Do we need stand-alone systems only for graph processing, such as Horton [125]
and GraphLab [99]? Can they be integrated with the existing big-data and dataflow
systems? There is a recent trend for such integration and several hybrid systems
have been proposed, e.g., GraphX [45] and Naiad [111].

5.2 Graph Databases, Languages, and Query Interfaces

With the emergence of complex social and information networks, many big-graph
startups came out in the last few years, such as Gephi, FlockDB, GraphBuilder,
HypergraphDB, AllegroGraph, Gremlin, and Neo4J. They usually provide their own

Big-Graphs: Querying, Mining, and Beyond 575

open-source tools, APIs, and graph databases. However, unlike the classical RDBMS
vendors, these startups are not popular yet. There are indeed many fundamental
problems in the area of graph databases that we need to resolve.

• Is the relational algebra expressive and efficient enough for querying graph data-
bases? Alternatively, do we require a separate graph algebra? Some recent works,
e.g., Horton [125] and G-SPARQL [123] proposed an operator “graph traverse”,
in addition to the classical relational algebra operators. In the presence of such
additional operators, how can one perform efficient indexing and query optimiza-
tion?

• It is important to analyze what types of transactions and consistency features a
graph database requires. Social and information networks are temporal in nature;
they evolve over time. Communication networks and social media data, on the
other hand, arrive as a continuous graph stream.

• While privacy and security is an important feature in today’s commercial RDBMS,
the aforementionedbig-graph startups hardly ensure anyprivacyguarantee for their
graph databases. Due to outsourcing of graph data, we also need to design efficient
provenance techniques to verify the correctness and completeness of the answers.

• An important aspect of graph databases is the query and the data manipulation
languages. The complexity of graph query languages makes them unsuitable for
ordinary users in a variety of domains. A usable graph querying technique could
borrow ideas from the HCI domain, such as visual [12, 75], sensory, and natural-
language interfaces, auto-query completion, personalized feedback, and re-ranking
of query results, etc.

5.3 Datasets and Benchmarks

It is important to identify standard datasets and benchmarks [35] for various graph
queries and systems. While there are several algorithmic advances in this area, lack
of standard datasets, open-source softwares, and benchmarks is often a challenging
problem in terms of comparing with previous works.

6 Conclusions

In this chapter, we discussed graph pattern matching andmining as the representative
of emerging online queries and offline analytics, respectively. Due to lack of fixed
schema, complexity of graph query languages, and also because of efficiency reasons,
the focus now-a-days is on user-friendly, and often approximate, query answering
and pattern mining techniques, that we also emphasized in this work. We concluded
by highlighting future research directions in the context of usable graph systems,
databases, and benchmarks.

576 A. Khan and S. Ranu

7 About Authors

Arijit Khan is an assistant professor in the School of Computer Engineering at
Nanyang Technological University, Singapore. His research interests span in the area
of big-data, big-graphs, and graph systems.He received his PhD from theDepartment
of Computer Science, University of California, Santa Barbara, and did a post-doc
in the Systems group at ETH Zurich. Arijit is the recipient of the prestigious IBM
PhD Fellowship in 2012–2013. He published several papers in premier database and
data-mining conferences and journals including SIGMOD, VLDB, TKDE, ICDE,
SDM, EDBT, and CIKM. Arijit co-presented tutorials on emerging graph queries,
big-graph systems, and uncertain graphs at ICDE 2012, VLDB 2014, VLDB 2015,
and served in the program committee of KDD, SIGMOD, VLDB, ICDM, EDBT,
WWW, and CIKM. Arijit served as the co-chair of Big-O(Q) workshop co-located
with VLDB 2015.

Sayan Ranu is an assistant professor in the department of Computer Science and
Engineering at IIT Madras. His research interests include spatio-temporal data ana-
lytics, graph indexing and mining, and bioinformatics. Prior to joining IIT Madras,
he was a researcher at IBM Research. He obtained his PhD from the Department of
Computer Science, University of California, Santa Barbara (UCSB) in March 2012.
He was a recipient of the “Distinguished Graduate Research Fellowship” at UCSB.
He obtained his Bachelor of Science from Iowa State University, where he received
the “Presidents top 2% of the class” award. He has published several papers in
premier database and data-mining conferences including SIGMOD, VLDB, ICDE,
KDD, ICDM, and WWW. Sayan regularly serves in the program committees and
review panels of prestigious conferences and journals including KDD, SDM, TKDE,
VLDB Journal.

References

1. D.J.Abadi,A.Marcus, S.R.Madden,K.Hollenbach, SW-Store: a vertically partitionedDBMS
for semantic web data management. VLDB J. 18(2), 385–406 (2009)

2. S. Abiteboul, D. Quass, J. McHugh, J. Widom, J.L. Wiener, The lorel query language for
semistructured data. Int. J. Digit. Libr. 1(1), 68–88 (1997)

3. B. Aditya, G. Bhalotia, S. Chakrabarti, A. Hulgeri, C. Nakhe, P. Parag, S. Sudarshan, BANKS:
browsing and keyword searching in relational databases, in VLDB (2002)

4. C. Aggarwal, H. Wang, Managing and Mining Graph Data (Springer, Berlin, 2010)
5. S. Agrawal, S. Chaudhuri, G. Das, DBXplorer: a system for keyword-based search over

relational databases, in ICDE (2002)
6. D. Ajwani, M. Karnstedt, A. Sala, Processing large graphs: representations, storage, systems,

and algorithms, in WWW (2015)
7. R. Angles, C. Gutierrez, Survey of graph database models. ACM Comput. Surv. 40(1), 1:1–

1:39 (2008)
8. A. Arora, M. Sachan, A. Bhattacharya, Mining statistically significant connected subgraphs

in vertex labeled graphs, in SIGMOD (2014)
9. P. Barceló, L. Libkin, J.L. Reutter, Querying graph patterns, in PODS (2011)

Big-Graphs: Querying, Mining, and Beyond 577

10. M. Bayati,M. Gerritsen, D.F. Gleich, A. Saberi, Y.Wang, Algorithms for large sparse network
alignment problems, in ICDM (2009)

11. J. Berry, B. Hendrickson, S. Kahan, P. Konecny, Software and algorithms for graph queries
on multithreaded architectures, in IPDPS (2007)

12. S.S. Bhowmick, B. Choi, S. Zhou, VOGUE: towards a visual interaction-aware graph query
processing framework, in CIDR (2013)

13. C. Borgelt, M.R. Berthold, Mining molecular fragments: finding relevant substructures of
molecules, in ICDM (2002)

14. S. Brin, L. Page, The anatomy of a large-scale hypertextual web search engine. Comput. Netw.
30(1–7), 107–117 (1998)

15. B. Bringmann, S. Nijssen, What is frequent in a single graph? in PAKDD (2008)
16. J. Broekstra, A. Kampman, F.v. Harmelen, Sesame: a generic architecture for storing and

querying RDF and RDF schema, in ISWC (2002)
17. A. Buluç, J.R. Gilbert, The combinatorial BLAS: design, implementation, and applications.

Int. J. High Perform. Comput. Appl. 25(4), 496–509 (2011)
18. P. Buneman, M.F. Fernandez, D. Suciu, UnQL: a query language and algebra for semistruc-

tured data based on structural recursion. VLDB J. 9(1), 76–110 (2000)
19. M. Bureli, The Current State of Graph Databases (2012). http://bigbe.su/lectures/2014/16.3.

pdf
20. C. Chen, X. Yan, F. Zhu, J. Han, P.S. Yu, Graph OLAP: towards online analytical processing

on graphs, in ICDM (2008)
21. H. Cheng, D. Lo, Y. Zhou, X. Wang, X. Yan, Identifying bug signatures using discriminative

graph mining, in ISSTA (2009)
22. E.I. Chong, S. Das, G. Eadon, J. Srinivasan, An efficient SQL-based RDF querying scheme,

in VLDB (2005)
23. S. Cohen, J. Mamou, Y. Kanza, Y. Sagiv, XSEarch: a semantic search engine for XML, in

VLDB (2003)
24. M.P. Consens, A.O. Mendelzon, Expressing structural hypertext queries in graphlogm, in

HYPERTEXT (1989)
25. S. Cook, The complexity of theorem-proving procedures, in STOC (1971), pp. 151–158
26. L.P. Cordella, P. Foggia, C. Sansone, M. Vento, A (sub)graph isomorphism algorithm for

matching large graphs. IEEE Trans. Pattern Anal. Mach. Intell. 26(10), 1367–1372 (2004)
27. T.H. Cormen, C. Stein, R.L. Rivest, C.E. Leiserson, Introduction to Algorithms (McGraw-Hill

Higher Education, New York, 2001)
28. X.H. Dang, A. Singh, P. Bogdanov, H. You, B. Hsu, Discriminative subnetworks with regu-

larized spectral learning for global-state network data, in ECML PKDD (2014)
29. X.H. Dang, H. You, P. Bogdanov, A. Singh, Learning predictive substructures with regular-

ization for network data, in ICDM (2015)
30. M. Deshpande, M. Kuramochi, N.Wale, G. Karypis, Frequent substructure-based approaches

for classifying chemical compounds. IEEE Trans. Knowl. Data Eng. 17, 1036–1050 (2005)
31. DEX/Sparksee, http://sparsity-technologies.com/
32. A. Dovier, C. Piazza, The subgraph bisimulation problem. TKDE 15(4), 1055–1056 (2003)
33. J. Dutkowski, T. Ideker, Protein networks as logic functions in development and cancer. PLoS

Comput. Biol. 7, 09 (2011)
34. M. Elseidy, E. Abdelhamid, S. Skiadopoulos, P. Kalnis, GraMi: frequent subgraph and pattern

mining in a single large graph, in VLDB (2014)
35. O. Erling, A. Averbuch, J. Larriba-Pey, H. Chafi, A. Gubichev, A. Prat, M.-D. Pham, P. Boncz,

The LDBC social network benchmark: interactive workload, in SIGMOD (2015)
36. R. Fagin, A. Lotem, M. Naor, Optimal aggregation algorithms for middleware, in PODS

(2001)
37. C. Faloutsos, G. Miller, C. Tsourakakis, Large graph mining: power tools and a practioner’s

guide, in KDD (2009)
38. W. Fan, J. Li, S. Ma, N. Tang, Y. Wu, Y. Wu, Graph pattern matching: from intractable to

polynomial time, in VLDB (2010)

http://bigbe.su/lectures/2014/16.3.pdf
http://bigbe.su/lectures/2014/16.3.pdf
http://sparsity-technologies.com/

578 A. Khan and S. Ranu

39. W. Fan, J. Li, S. Ma, H. Wang, Y. Wu, Graph homomorphism revisited for graph matching,
in VLDB (2010)

40. W. Fan, J. Li, J. Luo, Z. Tan,X.Wang,Y.Wu, Incremental graph patternmatching, in SIGMOD
(2011)

41. W. Fan, J. Li, S. Ma, N. Tang, Y. Wu, Adding regular expressions to graph reachability and
pattern queries, in ICDE (2011)

42. M.F. Fernandez, D. Florescu, A.Y. Levy, D. Suciu, Declarative specification of web sites with
STRUDEL. VLDB J. 9(1), 38–55 (2000)

43. M. Fiedler, C. Borgelt, Subgraph support in a single large graph, in ICDM Workshops, 2007
(2007)

44. B. Gallagher, Matching structure and semantics: a survey on graph-based pattern matching,
in AAAI FS (2006)

45. J.E. Gonzalez, R.S. Xin, A. Dave, D. Crankshaw, M.J. Franklin, I. Stoica, GraphX: graph
processing in a distributed dataflow framework, in OSDI (2014)

46. D. Gregor, A. Lumsdaine, The parallel BGL: a generic library for distributed graph compu-
tations, in POOSC (2005)

47. Z. Guan, J. Wu, Q. Zhang, A. Singh, X. Yan, Assessing and ranking structural correlations in
graphs, in SIGMOD (2011)

48. L. Guo, F. Shao, C. Botev, J. Shanmugasundaram, XRANK: ranked keyword search over
XML documents, in SIGMOD (2003)

49. R. Gupta, S. Sarawagi, Answering table augmentation queries from unstructured lists on the
web, in VLDB (2009)

50. S. Gurukar, S. Ranu, B. Ravindran, COMMIT: a scalable approach to mining communication
motifs from dynamic networks, in SIGMOD (2015)

51. A. Guttman, R-trees: a dynamic index structure for spatial searching, in SIGMOD (1984)
52. J. Han, Y. Sun, X. Yan, P.S. Yu, Mining knowledge from databases: an information network

analysis approach, in SIGMOD (2010)
53. L. Han, T. Finin, A. Joshi, GoRelations: an intuitive query system for dbpedia, in JIST (2011)
54. M. Han, K. Daudjee, K. Ammar, M.T. Özsu, X. Wang, T. Jin, An experimental comparison

of pregel-like graph processing systems, in VLDB (2014)
55. W.-S. Han, J. Lee, M.-D. Pham, J. Yu, iGraph: a framework for comparisons of disk-based

graph indexing techniques, in VLDB (2010)
56. W.-S. Han, S. Lee, K. Park, J.-H. Lee, M.-S. Kim, J. Kim, H. Yu, TurboGraph: a fast parallel

graph engine handling billion-scale graphs in a single PC, in KDD (2013)
57. S. Harris, N. Gibbins, 3store: efficient bulk RDF, in PSSS (2003)
58. M.A. Hasan, V. Chaoji, S. Salem, J. Besson, M.J. Zaki, ORIGAMI: mining representative

orthogonal graph patterns, in ICDM (2007)
59. M.A. Hasan, M.J. Zaki, Output space sampling for graph patterns, in VLDB (2009)
60. H. He, A. Singh, Graphs-at-a-time: query language and access methods for graph databases,

in SIGMOD (2008)
61. H. He, H. Wang, J. Yang, P.S. Yu, BLINKS: ranked keyword searches on graphs, in SIGMOD

(2007)
62. B. Hendrickson, R. Leland, Amultilevel algorithm for partitioning graphs, in Supercomputing

(1995)
63. M.R. Henzinger, T.A. Henzinger, P.W. Kopke, Computing simulations on finite and infinite

graphs, in FOCS (1995)
64. S. Hong, H. Chafi, E. Sedlar, K. Olukotun, Green-Marl: a dsl for easy and efficient graph

analysis, in ASPLOS (2012)
65. V. Hristidis, Y. Papakonstantinou, Discover: keyword search in relational databases, in VLDB

(2002)
66. V. Hristidis, L. Gravano, Y. Papakonstantinou, Efficient IR-style keyword search over rela-

tional databases, in VLDB (2003)
67. V. Hristidis, N. Koudas, Y. Papakonstantinou, D. Srivastava, Keyword proximity search in

XML trees. TKDE 18(4), 525–539 (2006)

Big-Graphs: Querying, Mining, and Beyond 579

68. J. Huan, W. Wang, J. Prins, Efficient mining of frequent subgraphs in the presence of isomor-
phism, in ICDM (2003)

69. J. Huan, W. Wang, J. Prins, J. Yang, Spin: mining maximal frequent subgraphs from graph
databases, in KDD (2004)

70. J. Huan,W.Wang, D.Bandyopadhyay, J. Snoeyink, J. Prins, A. Tropsha,Mining spatial motifs
from protein structure graphs, in Proceedings of the 8th Annual International Conference on
Research in Computational Molecular Biology (RECOMB04) (2004), pp. 308–315

71. InfiniteGraph, http://www.objectivity.com/products/infinitegraph/
72. A. Inokuchi, T.Washio, H. Motoda, An apriori-based algorithm for mining frequent substruc-

tures from graph data. Princ. Data Min. Knowl. Discov. 1910, 13–23 (2000)
73. N. Jayaram, A. Khan, C. Li, X. Yan, R. Elmasri, Querying knowledge graphs by example

entity tuples. TKDE 27(10), 2797–2811 (2015)
74. N. Jin, C. Young,W.Wang, 0010. GAIA: graph classification using evolutionary computation,

in SIGMOD (2010)
75. C. Jin, S.S. Bhowmick, X. Xiao, B. Choi, S. Zhou, GBLENDER: visual subgraph query

formulation meets query processing, in SIGMOD (2011)
76. V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan, R. Desai, H. Karambelkar, Bidirectional

expansion for keyword search on graph databases, in VLDB (2005)
77. M. Kargar, A. An, Keyword search in graphs: finding R-cliques, in VLDB (2011)
78. G. Karypis,METIS and ParMETIS, in Encyclopedia of parallel computing (Springer, Berlin,

2011)
79. Z. Kefato, M. Lissandrini, D. Mottin, T. Palpanas, Keyword Query to Graph Query. Technical

report DISI-14-003, University of Trento (2013)
80. B.P. Kelley, B. Yuan, F. Lewitter, R. Sharan, B.R. Stockwell, T. Ideker, PathBLAST: a tool

for alignment of protein interaction networks. Nucleic Acids Res. 32, 83–88 (2004)
81. D. Kempe, J.M. Kleinberg, E. Tardos, Maximizing the spread of influence through a social

network, in KDD (2003)
82. A. Khan, L. Chen, On uncertain graphs modeling and queries, in VLDB (2015)
83. A. Khan, S. Elnikety, Systems for big-graphs, in VLDB (2014)
84. A. Khan, N. Li, Z. Guan, S. Chakraborty, S. Tao, Neighborhood based fast graph search in

large networks, in SIGMOD (2011)
85. A. Khan, X. Yan, K.-L. Wu, Towards proximity pattern mining in large graphs, in SIGMOD

(2010)
86. A. Khan, Y. Wu, X. Yan, Emerging graph queries in linked data, in ICDE (2012)
87. A. Khan, Y.Wu, C. Aggarwal, X. Yan, NeMa: fast graph search with label similarity, in VLDB

(2013)
88. J. Kleinberg, Navigation in a small world. Nature 406, 845 (2000)
89. K. Kochut, M. Janik, SPARQLeR: extended sparql for semantic association discovery, in

ESWC (2007)
90. R. Krishnamurthy, S.P. Morgan, M. Zloof, Query-by-example: operations on piecewise con-

tinuous data, in VLDB (1983)
91. M. Kuramochi, G. Karypis, Frequent subgraph discovery, in ICDM (2001)
92. M. Kuramochi, G. Karypis, GREW-a scalable frequent subgraph discovery algorithm, in

ICDM (2004)
93. T. Lappas, K. Liu, E. Terzi, Finding a team of experts in social networks, in KDD (2009)
94. J. Lee, W.-S. Han, R. Kasperovics, J.-H. Lee, An in-depth comparison of subgraph isomor-

phism algorithms in graph databases, in VLDB (2013)
95. J. Leskovec, C. Faloutsos, Tools for large graph mining: structure and difference, in WWW

(2008)
96. G. Li, B.C. Ooi, J. Feng, J. Wang, L. Zhou, EASE: an effective 3-in-1 keyword search method

for unstructured semi-structured and structured data, in SIGMOD (2008)
97. Z. Liang, M. Xu, M. Teng, L. Niu, NetAlign: a web-based tool for comparison of protein

interaction networks. Bioinformatics 22(17), 2175–2177 (2006)

http://www.objectivity.com/products/infinitegraph/

580 A. Khan and S. Ranu

98. F. Liu, C. Yu, W. Meng, A. Chowdhury, Effective keyword search in relational databases, in
SIGMOD (2006)

99. Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, J.M. Hellerstein, Distributed
graphlab: a framework for machine learning and data mining in the cloud, in VLDB (2012)

100. S. Ma, Y. Cao, W. Fan, J. Huai, T. Wo, Capturing topology in graph pattern matching, in
VLDB (2012)

101. G. Malewicz, M.H. Austern, A.J.C. Bik, J.C. Dehnert, I. Horn, N. Leiser, G. Czajkowski,
Pregel: a system for large-scale graph processing, in SIGMOD (2010)

102. F. Manola, E. Miller, RDF Primer, W3C Recommendation (2004). http://www.w3.org/TR/
REC-rdf-syntax/

103. R.R. McCune, T. Weninger, G. Madey, Thinking like a vertex: a survey of vertex-centric
frameworks for large-scale distributed graph processing. ACM Comput. Surv. 48(2), 25:1–
25:39 (2015)

104. A. McGregor, Graph stream algorithms: a survey. SIGMOD Rec. 43(1), 9–20 (2014)
105. F. McSherry, M. Isard, D.G. Murray, Scalability! but at what COST? in HotOS (2015)
106. K. Mehlhorn, S. Naher, LEDA, a platform for combinatorial and geometric computing. Com-

mun. ACM 38(1), 96–102 (1995)
107. S. Melnik, H.G.-Molina, E. Rahm, Similarity flooding: a versatile graph matching algorithm

and its application to schema matching, in ICDE (2002)
108. A.O. Mendelzon, P.T. Wood, Finding regular simple paths in graph databases. SIAM J. Com-

put. 24(6), 1235–1258 (1995)
109. M. Mongiovì, R.D. Natale, R. Giugno, A. Pulvirenti, A. Ferro, R. Sharan, Sigma: a set-

cover-based inexact graph matching algorithm. J. Bioinform. Comput. Biol. 8(2), 199–218
(2010)

110. D. Mottin, M. Lissandrini, Y. Velegrakis, T. Palpanas, Exemplar queries: give me an example
of what you need, in VLDB (2014)

111. D.G.Murray, F.McSherry, R. Isaacs, M. Isard, P. Barham,M. Abadi, Naiad: a timely dataflow
system, in SOSP (2013)

112. Neo4j, https://neo4j.com/
113. T. Neumann, G. Weikum, The RDF-3X engine for scalable management of RDF data. VLDB

J. 19(1), 91–113 (2010)
114. S. Nijssen, J.N. Kok, The gaston tool for frequent subgraph mining, in Proceedings of the

International Workshop on Graph-Based Tools (2004)
115. M.T. Özsu, A survey of rdf datamanagement systems (2015). http://arxiv.org/abs/1601.00707
116. F. Pellegrini, J. Roman, SCOTCH: a software package for static mapping by dual recursive

bipartitioning of process and architecture graphs, in HPCN (1996)
117. E. Prud’hommeaux, A. Seaborne, SPARQL query language for RDF.W3C Recommendation

(2008)
118. S. Ranu, B.T. Calhoun, A.K. Singh, S.J. Swamidass, Probabilistic substructure mining from

small-molecule screens. Mol. Inform. 30(9), 809–815 (2011)
119. S. Ranu, M. Hoang, A. Singh, Mining discriminative subgraphs from global-state networks,

in KDD (2013)
120. S. Ranu, A.K. Singh, GraphSig: a scalable approach to mining significant subgraphs in large

graph databases, in ICDE (2009)
121. S. Ranu, A.K. Singh, Mining statistically significant molecular substructures for efficient

molecular classification. J. Chem. Inf. Model. 49, 2537–2550 (2009)
122. S. Sakr, G. Al-Naymat, Relational processing of RDF queries: a survey. SIGMODRec. 38(4),

23–28 (2010)
123. S. Sakr, S. Elnikety, Y. He, G-SPARQL: a hybrid engine for querying large attributed graphs,

in CIKM (2012)
124. H. Samet, J. Sankaranarayanan, H. Alborzi, Scalable network distance browsing in spatial

databases, in SIGMOD (2008)
125. M. Sarwat, S. Elnikety, Y. He, M.F. Mokbel, Horton+: a distributed system for processing

declarative reachability queries over partitioned graphs, in VLDB (2013)

http://www.w3.org/TR/REC-rdf-syntax/
http://www.w3.org/TR/REC-rdf-syntax/
https://neo4j.com/
http://arxiv.org/abs/1601.00707

Big-Graphs: Querying, Mining, and Beyond 581

126. H. Shang, Y. Zhang, X. Lin, J. Yu, Taming verification hardness: an efficient algorithm for
testing subgraph isomorphism, in VLDB (2008)

127. J. Shun, G.E. Blelloch, Ligra: a lightweight graph processing framework for shared memory,
in PPoPP (2013)

128. R. Singh, J. Xu, B. Berger, Global alignment of multiple protein interaction networks with
application to functional orthology detection. PNAS 105(35), 12763–12768 (2008)

129. C. Sommer, Shortest-path queries in static networks. ACM Comput. Surv. 46(4), 45:1–45:31
(2014)

130. H. Sun, M. Srivatsa, S. Tan, Y. Li, L.M. Kaplan, S. Tao, X. Yan, Analyzing expert behaviors
in collaborative networks, in KDD (2014)

131. Y. Sun, J. Han, X. Yan, P.S. Yu, T. Wu, PathSim: meta path-based top-K similarity search in
heterogeneous information networks, in VLDB (2011)

132. Z. Sun, H.Wang, H.Wang, B. Shao, J. Li, Efficient subgraphmatching on billion node graphs,
in VLDB (2012)

133. M. Thoma, H. Cheng, A. Gretton, J. Han, H.-P. Kriegel, A. Smola, L. Song, P.S. Yu, X. Yan,
K. Borgwardt, Near-optimal supervised feature selection among frequent subgraphs, in SDM
(2009)

134. L.T. Thomas, S.R. Valluri, K. Karlapalem, MARGIN: maximal frequent subgraph mining.
ACM Trans. Knowl. Discov. Data 4(3), 10:1–10:42 (2010)

135. Y. Tian, R. McEachin, C. Santos, D. States, J. Patel, SAGA: a subgraph matching tool for
biological graphs. Bioinformatics 23(2), 232–239 (2006)

136. Y. Tian, J.M. Patel, TALE: a tool for approximate large graph matching, in ICDE (2008)
137. H. Tong, C.-Y. Lin, Non-negative residual matrix factorization with application to graph

anomaly detection, in SDM (2011)
138. H. Tong, C. Faloutsos, B. Gallagher, T. Eliassi-Rad, Fast best-effort pattern matching in large

attributed graphs, in KDD (2007)
139. S. Trißl, U. Leser, Fast and practical indexing and querying of very large graphs, in SIGMOD

(2007)
140. J.R. Ullmann, An algorithm for subgraph isomorphism. J. ACM 23, 31–42 (1976)
141. N. Vanetik, E. Gudes, Mining frequent labeled and partially labeled graph patterns, in ICDE

(2004)
142. C. Vicknair, M. Macias, Z. Zhao, X. Nan, Y. Chen, D. Wilkins, A comparison of a graph

database and a relational database: a data provenance perspective, in ACMSE (2010)
143. S.V.N. Vishwanathan, N.N. Schraudolph, R. Kondor, K.M. Borgwardt, Graph Kernels. J.

Mach. Learn. Res. 11, 1201–1242 (2010)
144. R.C. Wang, W. Cohen, Language-independent set expansion of named entities using the web,

in ICDM (2007)
145. A. Wlc, R. Raman, Z. Wu, S. Hong, H. Chafi, J. Banerjee, Graph analysis: do we have to

reinvent the wheel? in GRADES (2013)
146. K. Wilkinson, C. Sayers, H. Kuno, D. Reynolds, Efficient RDF storage and retrieval in Jena2,

in SWDB (2003)
147. P.T. Wood, Query languages for graph databases. SIGMOD Rec. 41(1), 50–60 (2012)
148. Y. Xu, Y. Papakonstantinou, Efficient keyword search for smallest LCAs in XML databases,

in SIGMOD (2005)
149. X. Yan, J. Han, gSpan: graph-based substructure pattern mining, in ICDM (2002)
150. X. Yan, J. Han, Closegraph: mining closed frequent graph patterns, in KDD (2003)
151. X. Yan, P.S. Yu, J. Han, Graph indexing: a frequent structure-based approach, in SIGMOD

(2004)
152. X. Yan, F. Zhu, P.S. Yu, J. Han, Feature-based similarity search in graph structures. ACM

Trans. Database Syst. 31(4), 1418–1453 (2006)
153. X. Yan, H. Cheng, J. Han, P.S. Yu, Mining significant graph patterns by scalable leap search,

in SIGMOD (2008)
154. X. Yan, B. He, F. Zhu, J. Han, Top-K aggregation queries over large networks, in ICDE (2010)

582 A. Khan and S. Ranu

155. J. Yao, B. Cui, L. Hua, Y. Huang, Keyword query reformulation on structured data, in ICDE
(2012)

156. S. Zhang, S. Li, J. Yang, GADDI: distance index based subgraph matching in biological
networks, in EDBT (2009)

157. S. Zhang, J. Yang, S. Li, RING: an integrated method for frequent representative subgraph
mining, in ICDM (2009)

158. S. Zhang, J. Yang, W. Jin, SAPPER: subgraph indexing and approximate matching in large
graphs, in VLDB (2010)

159. P. Zhao, J. Han, On graph query optimization in large networks, in VLDB (2010)
160. Q. Zhong, H. Li, J. Li, G. Xie, J. Tang, L. Zhou, Y. Pan, A Gauss function based approach for

unbalanced ontology matching, in SIGMOD (2009)
161. Y. Zhu, L. Qin, J. Yu, H. Cheng, Finding top-k similar graphs in graph databases, in EDBT

(2012)
162. L. Zou, L. Chen, M.T. Özsu, D. Zhao, Dynamic skyline queries in large graphs, in DASFAA

(2010)
163. L. Zou, J.Mo, L. Chen,M.T. Özsu, D. Zhao, gStore: answering SPARQL queries via subgraph

matching, in VLDB (2011)

Link and Graph Mining in the Big Data Era

Ana Paula Appel and Luis G. Moyano

Abstract Graphs are a convenient representation for large sets of data, being
complex networks, social networks, publication networks, and so on. The grow-
ing volume of data modeled as complex networks, e.g. the World Wide Web, and
social networks like Twitter, Facebook, has raised a new area of research focused in
complex networks mining. In this new multidisciplinary area, it is possible to high-
light some important tasks: extraction of statistical properties, community detection,
link prediction, among several others. This new approach has been driven largely
by the growing availability of computers and communication networks, which allow
us to gather and analyze data on a scale far larger than previously possible. In this
chapter we will give an overview of several graph mining approach to mine and
handle large complex networks.

1 Introduction

Over thepast years the amount of data collectedhas increased substantially, especially
with the growing availability of theWorldWideWeb, expansion not only for text but
also with images and video. For instance, Facebook estimates that video exhibition
move from 1 billion in 2015 to 8 billion in 2016.

Social networks and social media are becoming a regular part of people lives,
as a person spends, in average, almost 2 hours per day in a social network. These
kind of data was studied in the past by social scientists, however in a much smaller
scale. They usually worked with hundreds of nodes to answer questions such as
which person is the most connected in the network, or which one, if removed, could
break the connection among all the individuals. Today, social networks are composed
by hundreds of million users and the analysis is different not only in the class of

A.P. Appel (B)
IBM Research, São Paulo, Brazil
e-mail: apappel@br.ibm.com

L.G. Moyano
CONICET and Facultad de Ciencias Exactas y Naturales,
Universidad Nacional de Cuyo, Mendoza, Argentina

© Springer International Publishing AG 2017
A.Y. Zomaya and S. Sakr (eds.), Handbook of Big Data Technologies,
DOI 10.1007/978-3-319-49340-4_17

583

584 A.P. Appel and L.G. Moyano

techniques but also in which type of questions we want to answer. Asking which
person will break the connection of the network does not make sense anymore, since
there could be no one to cause this kind of damage in a network of such size. This
crucial change in scale made these type of problems much more interesting and lead
to emergence of a new research field: graph mining.

These data are naturally mapped in complex networks that are represented using
graphs. Under this model, nodes are entities (e.g. people or groups of people), and
edges represent some kind of interaction between entities (e.g. friendship). Another
example is that of information networks, inwhich the nodes are information resources
such as Web pages or documents, and edges represent logical connections such as
hyperlinks, citations, or cross-references and so on.

These large volume of data makes it easy to study global phenomena that are
not discernible in smaller networks, for example, how a community is born, how
a network evolves over time, understand the importance of single node or an edge,
among many examples that were almost impossible to tackle in small networks.

Graphs are very a powerful tool to express and model mathematically complex
network structures, appearing in many domains, whenever it is useful to represent
how things are either physically or logically linked to one another in a network
structure.

A graph G is mathematically represented as G =< V, E >, on which |V| = n
represents the number of nodes (or vertex set), and |E | = m represents the number
of edges (or links), and a relation that associates with each edge two vertexes [109].
We say that two nodes are neighbors if they are connected by an edge.

The graph-based representation used for data has substantial non-trivial topo-
logical features, with patterns of connections between their elements that are nei-
ther purely regular nor purely random. For this reason this representation is usually
referred to as a Complex Network.

The study of complex networks brought to light important properties such as
power-law degree distributions [47], the Small World phenomenon [104], among
several others [109]. These patterns help us understand the interaction of people in
social networks [91, 99] as well as the dissemination of information and diseases
[36], and has other practical applications such as anomaly detection [7] and so on.

In this chapter we will navigate through several graph mining task, such as pattern
discovery using statistical properties (Sect. 2), community detection (Sect. 5), link
prediction (Sect. 4). We also will talk about how to represent networks with weight
(Sect. 7), multiple edges (Sect. 8) and temporally (Sect. 3). We also we show that
networks can be use to represent knowledge and map knowledge bases (Sect. 6.2).
We also present several platforms to store and process large graphs (Sect. 6). We
finish this chapter present what are the big challenges and open issues of this chapter
(Sect. 9) and than we conclude (Sect. 10).

Link and Graph Mining in the Big Data Era 585

2 Definitions

A graph is a useful way to specify relationships among a collection of items. A graph
consists of a set of objects called nodes, with certain pairs of these objects connected
by links called edges.We say that two nodes are neighbors if they are connected by an
edge. A complex network is modeled as a graph G = 〈V, E〉, on which V represents
the number of nodes or verticals N = |V|, and E represents the number of edges or
links M = |V|. The traditional way of represent a graph G computationally is the
adjacency matrix, which is a square matrixA = N × N whereAi,j = 1 is (vi, vj) ∈ E
and 0 otherwise [109].

A graph is undirect if (vi, vj) ∈ E ⇔ (vj, vi) ∈ E , that is, the edges are unordered
pairs.

However, in many cases, it is desirable to express asymmetric relationships and
other attributes such as weights, time or multiple relations in the links. Thus, the
graph can become directed where the presence of vj, vi ∈ E does not imply that
vi, vj ∈ E . For example, A points to B but not vice versa, which means that edges are
ordered pairs. It is possible to also have weighted networks, G = 〈V, E,W〉 where
wi ∈ W , which means that each edge will have a weight wi associated to it (weights
are discussed in more detail in Sect. 7).

The node degree τ (vi), also called neighborhood of a node, can be defined by the
amount of incident edges on node vi (Table1).

Another important measure in real complex network is called the clustering coef-
ficient, which is proportional to the total number of triangles that a node or a network
has.

A triangle Δ of a graph G is a set of three completely connected nodes where
(u, v,w) ∈ V and edges (u, v), (v,w), (w, u) ∈ E .

In many networks it is found that if vertex A is connected to vertex B and vertex
B to vertex C, then there is a high probability that vertex A will also be connected
to vertex C. In the language of network theory, a friend’s friend is likely also to be

Table 1 Symbols used in this
chapter

Symbols Description

A Adjacency matrix

G Graph

E Set of edges

V Set of nodes

vi Node

ek Edge

Δ Triangle

τ (vi) Degree of node vi

C(vi) Cluster coefficient of node vi

C(G) Cluster coefficient of G

586 A.P. Appel and L.G. Moyano

a friend. In terms of network topology, transitivity means the presence of a high
number of triangles in the network [146].

Formally, the cluster coefficient can be expressed by the following equation:

C(vi) = 2 ∗ Δ(vi)

d(vi) ∗ (d(vi) − 1)
(1)

A node vi with degree |τ (vi)| has at most τ (vi) ∗ (τ (vi) − 1)/2 edges that could
exist among them, being Δ(vi) the fraction of edges that really exist (the number of
triangles). Thus, the cluster coefficient in Eq.1 C(vi) of a node vi is the proportion
of edges among nodes that are at distance 1 if the neighborhood of vi, divided by
the total number of edges that could exist among them. Also, C(vi) is the fraction of
triangles centered at node vi which (d(vi) ∗ (d(vi) − 1))/2 triangles could exist.

The global cluster coefficient C(G) is the average of the clustering of all nodes
C(vi) from graph G, divided by the total number of nodes n.

C(G) = 1

N
∗

N∑

i=1

C(vi) (2)

Nodes are also important in real graphs to analyze degree probability distribution
[47]. We define pk to be the fraction of nodes in the network that have degree
k. Equivalently, pk is the probability that a node chosen uniformly at random has
degree k. A plot of pk for any given network can be formed by making a histogram
of the degrees of nodes. This histogram is the degree distribution for the network.
An example of degree distribution from DBLP1 is presented in Fig. 1.

In a random graph of the type studied by Erdõs and Rényi [109], each edge is
present or absent with some constant probability p. As a result, the degree distribution
is, as mentioned earlier, binomial, or Poisson in the limit of large graph size.

Real-world networks are mostly found to be very unlike the random graph in
their degree distributions [2]. Many of them asymptotically follow power-laws in
their tails: pk ≈ kα for some constant exponent α. The degrees of the nodes in most
networks are strongly right-skewed, meaning that their distribution has a long right
tail of values that are far above the mean. In the context of social networks, for
example, power-law distribution means that most of people has few friends and few
people has a lot of friends. There are several metrics that also follows a power-law in
real networks, as nodes and edges during evolution [90], triangle distribution [142]
and weights [100].

Another important characteristic observed in real networks is the small diameter.
In graph theory, the diameter is defined as been the longest path among all the
shortest paths. However, in this definition the diameter is susceptible to outliers if
the graph has a long chain. Also, to calculate the diameter in real large graphs is
computationally very expensive.

1http://dblp.uni-trier.de.

http://dblp.uni-trier.de

Link and Graph Mining in the Big Data Era 587

100

101

102

103

104

105

106

100 101 102 103 104

C
ou

nt

Degree

Fig. 1 Degree distribution from co-authorship network extract from DBLP

One of the traditional metrics for diameter is the effective diameter [79, 117],
defined as f (G) of a graph G. It is the minimum number of hops (steps or links) in
which 90% of all connected pairs of nodes can reach each other. One way to calculate
the effective diameter is build what we call a Hop Plot. The hop plot shows each
distance, starting in one, until a distance where the number of nodes reach does not
change over a very small threshold. An example of this plot is shown in Fig. 2. As we
can see, after distance 7 the number of nodes reached (y axis) do not longer increase.

106

107

108

109

1010

1011

1012

1013

 0 2 4 6 8 10 12

N
um

be
r

of
 p

ai
rs

 o
f n

od
es

Number of hops

Fig. 2 Hop Plot from co-authorship network extract from DBLP

588 A.P. Appel and L.G. Moyano

3 Temporal Evolution

One of many interesting characteristics of complex networks are the ones connected
with temporal evolution. Network evolution has attracted a lot of interest in the last
years, not only because the complex network field has reached a stable knowledge
point about the simplest case, that is the undirected, unweighted, simple network.
Thus, the next step is to start to understand special cases of networks and evolution
is one of these cases. A complex network evolves over time with the creation and
deletion of nodes and edges, for example, when people join or leave a social network,
they create or break friendship ties.

Today, there are mainly three models of temporal complex networks.
The most traditional such network is a condensate in snapshots, each one rep-

resenting a period of time. The snapshots are represented by a series of graphs
G1, ...,GT , so that Gt = (Vt, Et) represents the graph at time t. Since G1, ...,GT repre-
sent different snapshots of the samegraph,we haveVt ⊆ V andEt ⊆ E . For simplicity
most of presentation assumes that, as the graph evolves, nodes and edges are only
added and never deleted, that is, V1 ⊆ V2 ⊆ ...VT and E1 ⊆ E2 ⊆ ...ET .

The second one follows the data stream model, where a large number of edges
representing interactions are continuously received over time and are superposed
over a much larger network. An example of such a scenario would be a Twitter post
stream, in which several posts are continuously received over time [3].

Anotherway to represent temporal networks is throughTime-VaringGraphsmod-
els (TGVs) also known in the literature as temporal or time-dependent networks [29].

TGVs graphs can be easily converted in snapshots by creating a graph with an
edge between nodes, if and only if there is connection between nodes during a time
interval. A example is shown in Fig. 3 where we illustrate a network in time t0, t1 and
t2. Networks (a), (b) and (c) represents the network in each timestamp using TGV
model while networks (a’), (b’) and (c’) represents the network using snapshots
model, network (c’) being the whole network.

One of the biggest differences between the TVG and the snapshot models is how
transitivity is addressed. As we saw in previous sections, transitivity is important
in some network phenomena, for instance, in link prediction. However, in the TVG
model, the edges are not carried on from one timestamp to another, thus transitivity
can be used within a particular timestamp [81]. In the snapshot model, the edges
from one timestamp are carried to the next one, so transitivity can use the whole
past network to predict the future network. This can be true in several scenarios,
as organizations, or social networks, where an acquaintance is carried for life even
if the contact is lost. However, there are situations where the TVG model is more
suitable, as is the case of the air-transport network for example where to build a route
is necessary to take time into account [71].

In the TVG model, all the measures such as diameter, paths, triangles, etc., need
to be rethought in the sense of being “time-respectful” [72]. Another issue in this
model is how to represent the network, since one will have a different network in
each timestamp and sometimes one wants to represent an edge that repeats from one

Link and Graph Mining in the Big Data Era 589

Fig. 3 Networks in three different timestamps, using model TVG and Snapshots to represent them
in each timestamp. Network (c’) represents the whole network using snapshots model

timestamp to another. In [147], the authors propose a unifyingmodel for representing
TVG graphs. In this model a square adjacency matrix of n ∗ t (where n is the number
of nodes and t is the number of timestamps) is created and follows the same principles
of traditional adjacency matrix.

The third model considers the network as a graph data stream. These networks
are based on transient interactions, such as email or telecommunication networks.
To process a graph data stream is usually necessary real-time analytical methods [3]
as the one presented in [4].

Depending on what it is the purpose of the task, the choice of the model could
have a big impact. Also, graph data streams are far more challenging than graph
snapshots, since the first one is in general not possible to store in memory (even in
disk) for analysis.

Many interesting properties about network evolution have been studied over the
years using the snapshot model. In one case, the network presents the characteris-
tic of a shrinking diameter, i.e., in most cases the effective diameter of a network
decreases over time while the network grows. Another one is the network densifica-
tion which means the network becomes denser and the average degree increases as it
evolves [90].

|Et| ∝ |Vt|(α) (3)

590 A.P. Appel and L.G. Moyano

As shown in Eq.3 the number of nodes grows as function of number of edges.
For α = 1 there is a complex network that grows with a constant average degree
over time, while with α = 2 there is a much denser network. These helps not only to
understand real network evolution but also to discriminate them from random graph
models.

One of the most traditional ways to model evolution in network is Tensor Factor-
ization. In the most simple case, a tensor is a three dimensional matrix, where in our
contect usually one dimension is time [46]. However, tensor factorization present
scaling issues for large graphs.

Network evolution is extremely useful for complex network analysis, especially
to understand dynamic systems. How a network evolves is far from being answered
simply. Link prediction is one of few techniques that incorporates the time notion in
its definition, however time is still not being used as information that may improve
the method’s accuracy.

Other techniques, as community detection, are not directly applied in temporal
networks, and some surveys, as the one presented in [49, 129] show that despite
there being few methods that work in temporal networks, there’s still is a large gap
in techniques to solve this problem in a scalable way.

4 Link Prediction

Social networks are one of the most clear and well-known examples of complex
networks. These applications typically need to recommend connections among users,
such as the “People you may know” feature. Thus, the problem of how people get
connected is relevant not only for social network but also for a large number of use
cases such as organizations [42].

There are many reasons, sometime exogenous to the social network, why two
individuals will become friends: they may happen to be geographically close if one
moves to a city near the other’s neighborhood, or they may attend to same party, or
go to the same school, and so on. Such type of interaction can be hard to predict.

Commonly, two nodes are more likely to be connected if they are more similar.
Similarity may be based only on network structure. Thus, a large number of new
interactions are hinted at by the topology of the network: two individuals who are
close in the network will have friends in common, and this suggests that they are
more likely to become a friend in the near future.

Understanding the mechanisms by which people get connected and how networks
evolve have been addressed by what is known as the link prediction task. Link
prediction methods are based on graph snapshots as a model to support evolution.
Thus, in a formal way, link prediction can be defined as: Given a snapshot of a graph
G at time t, predict accurately which edges will appear in the network in time t + 1
[93]. Translated to the context of social networks, friends of your friends are likely
also to be your friends.

Link and Graph Mining in the Big Data Era 591

In terms of network topology, transitivity means the presence of a high number
of triangles in the network [146].

Most of traditional linking prediction methods are based on graph structural prop-
erties as assigning a connection value, called score(u, w), to pairs of unconnected
nodes< u, w > based on a desired graphG. The scores are ranked in a list in decreas-
ing order of score(u, w) and afterwards predictions are made according to this list.

Let τ (u) = (u ∈ V : ∃(v, u) ∈ E) of node u be defined as the set of nodes in V
that are adjacent to u. For a node u, let τ (u) denote the set of neighbors of u in
G. A number of link prediction approaches are based on the idea that two nodes u
and w are more likely to form a link, in the future, if their sets of neighbors τ (u)
and τ (w) have large overlap. The most direct implementation of this idea for the
link-prediction problem is the common-neighbors predictor, which may be defined
as follows:

score(u, w) = |τ (u) ∩ τ (w)|

The common-neighbors predictor captures the notion that a friend may introduce
two strangers who have a common friend. This introduction has the effect of “closing
a triangle” in the graph and feels like a common mechanism in real life. In this sense
some other measures, also neighborhood based, were propose to rank nodes that are
likely to have a link in a near future.

The Jaccard coefficient is a similaritymetric that is commonly used in information
retrieval. It is used to measure the probability that both u and w have a feature f ,
for a randomly selected feature f that either u or w has. In the case of networks, the
feature f can be a list of friends that a node has. Formally, the Jaccard predictor uses
the following measure:

score(u, w) = |τ (u) ∩ τ (w)|/|τ (u) ∪ τ (w)|

The Adamic/Adar predictor [1] evaluates the degrees of the common neighbors
and emphasizes the nodes that share neighbors with small degree. This is because
a high degree node has a higher chance to be in the common neighborhood of
other nodes. This method computes features of the nodes, and defines the similarity
between two nodes to be the following:

score(u, w) =
∑

(V∈τ (u)∩τ (w))

1

log τ (v)

While the neighborhood-based measures provide a robust estimation of the like-
lihood of a link forming between a pair of nodes, they are not quite as effective
when the number of shared neighbors between a pair of nodes is small. A particular
walk-based measure that is used commonly to measure the link-prediction strength
is the Katz [80] measure, which is arguably one of the best link predictors available
because it has been shown to outperform many other methods as showed in [93].

592 A.P. Appel and L.G. Moyano

score(u, w) =
∑∞

l=1
βl|pathl(u,w)|

Another path measured in link prediction task is Random Walking which is a
path that consisted of succession of steps chosen randomly. As showed in [94] one
difficulty with all Random-walk to link prediction is their sensitive dependence to
parts of the network far away from target nodes. For example, in a random walk
from x to y, the walker has a certain probability to go too far away from both x
and y although they may be close to each other. This may lead to a low prediction
accuracy since in most real networks nodes tend to connect with the ones nearby
rather than far away. Another algorithm for link prediction in social network based
on Random Walks is presented in [17]. As we will present in Sect. 6.2, PRA is a
random walk-based algorithm to predict relations in a Knowledge base mapped as a
network.

Link prediction can be applied in other scenarios than social networks, for exam-
ple predict interactions and collaborations among people in organizations can help
manage companies in a productive way. The task of recommending unknowns but
similar people is quite different from possible friend recommendation tasks, which
focus on recommending individuals who have friends in common [67].

In [145], the author finds that the similarity between individuals’movements, their
social connectedness and the strength of interactions between them are strongly cor-
relatedwith each other. Thus, the authors also reports that humanmobility could serve
as a good predictor for the formation of new links, yielding comparable predictive
power to traditional network-based measures.

Another challenge which remains largely open in link prediction methods is how
to effectively combine the information from the network structure with rich node
and edge attribute data. Social ties could improve link prediction metrics as the
authors show in [17] where a supervised random walk that naturally combines the
information from the network structure with node and edge level attributes.

There are manymore metrics used to produce the score between two unconnected
nodes as presented in [69, 97].

The link-prediction problem can also be related to the task of inferring missing
links in complex networks: in many domains, one constructs a network and then
tries to infer additional links that, while not directly visible, are likely to exist, as
Prophet [13] presented in Sect. 6.2 [44].

This line of work differs from link prediction problem formulation in that it works
with a static snapshot of a network, rather than considering network evolution. It also
tends to take into account specific attributes of the nodes in the network, rather than
evaluating the power of prediction methods based purely on the graph structure.

The metrics presented above for link prediction can actually be called in a more
specific way as Link Existence Prediction. The link existence problem is defined as
the problem of predict whether a link will or not exist in undirected networks, which
is the same of link prediction, since most of studies emphasize only unweighted
undirected networks.

Link and Graph Mining in the Big Data Era 593

However the link prediction problem could be extended for other problems related
to discover a link, such as direction, multiplicity and weight. Follow we define each
one of these problems are.

The link direction problem can be viewed as a link-prediction extension on
directed networks, where the link and direction will be predicted. An example of the
importance would be in a phone call network someone may want predict who-calls-
whom. However, most of the work developed predicts the direction of an existent
link [10].

Another possible extension is to apply the link prediction task in multiplex net-
works, where not only links between unconnected nodes could be predicted but also
new link between node already connected (more in Sect. 8). This is a big challenge
because links could have different meanings. Thus, most of work in this line needs
extra information other than topology. Multiplex network commonly are seen in aca-
demic, companies and social networks where relationships among individuals can
have different roles, as friend, family, co-work and so on [24].

In weighted networks, the link prediction problem can be viewed as the prediction
of both the link and the weight associated with it. The most common use of weights
in link prediction is to help predict the existence of links by combining themwith the
observed links [95]. In this case, most works adjust the metrics presented (common
neighbor, Jaccard, Adamic/Adar) from unweighted to weighted networks. Yet, how
weights improve the accuracy of a link prediction task and how to predict the weights
together (or not) with the links has not been well studied. Example of problems that
could benefit from weighted link prediction is urban or air transportation [138]. One
of the few studies, and a very interesting one, on the link prediction problem in
weighted networks is [96], where the authors find that weak links may play a more
important role than strong links.

The works presented until now are based on homogeneous networks, meaning
links are all from the same type and there are only static snapshots. When we say the
network is dynamic, we are implying that new links are constantly being added to
the network. Such new links may also arrive in the context of new nodes being added
to the network, or they may correspond to edges between already existing nodes.

Recentworks focus onheterogeneous networkswhere linkprediction are extended
for it, as co-author network [45], Location-based social networks [150], information
network [83, 133, 134].

Link prediction problem becomes extremely challenging when it is addressed to
dynamic massive heterogeneous network because of the challenges associated with
the dynamic nature of the network, and the different types of nodes and attributes
in it.

In [4] the authors present a method called “DYNALINK”, an algorithm for
dynamic link inference in temporal and heterogeneous networks. The algorithm is
able to construct link inference models for online and heterogeneous networks which
are continuously evolving over time.

Time can have a big influence in link prediction, since old links are less important
than the recent ones. For example, in a co-authorship network, new co-authors are
more important than the oldest ones in terms of indicate new co-authors. The authors

594 A.P. Appel and L.G. Moyano

in [46] show that Katz metric can be improved adding a weight in the link reflecting
how recent or how old the link is.

Another information that could be used to improve link prediction techniques
is community structure information, as in traditional data mining, where cluster
detection can be used as a pre-processing technique. In [127] the authors use the
community structure to help in link prediction. The same technique is used in [4].

An interesting type of research area that may extend research for weighted link
prediction is in signed networks. A signed network consists of a network composed
by positive and negative links, which could mean friends and foes [84], trusted and
distrusted peers [99]. A method to predict the signs of links (positive or negative) is
proposed in [89, 126], however the prediction of both the existence of a link and its
sign simultaneously has not been addressed yet.

5 Community Detection

A very important and rich research area in network theory is that of community
detection. The basic idea behind community detection is the possibility to group
nodes into larger groups with some criterion of similarity. The goal is to have a
way to capture mesoscopic structures and in some way decrease the complexity of
the original graph. This fertile research area has produced many community finding
methods and algorithms [50]. Many of these methods rely in the optimization of a
special function of the edges of the graph, usually called modularity, as we will se
next.

5.1 Modularity Maximization

Many real networks have some type of inner structure beyond local edges, but which
at the same time is different from and contained within the complete graph. For
instance, a social graph may be though locally by studying ego-networks (i.e. just the
immediate connections in a node), or may be analyzed globally, may be expressing
scale-free structure which is evidenced by the whole set of nodes and edges. But
in a social network it is also common to find friendship groups, or work groups
which are larger than ego networks and smaller than the whole graph. The aim of
community algorithms is finding these kind ofmesoscopic structures, usually refered
to as communities or modules [27, 50, 110].

Girvan and Newman [54, 112] propose an elegant way of finding these structures.
They reasoned that by analyzing edges and assuming that a set of nodes with larger
number of edges between them (compared to what would be expected if the edges
were randomly placed) could be thought to form a community. They defined an
objective function, the modularity Q, which represents the fraction of edges inside
communities minus the fraction of edges in groups if they were randomly assigned.

Link and Graph Mining in the Big Data Era 595

In a network with n nodes, one can propose a given partition of nodes between
just two communities, so as to assign si = 1 if node i belongs to one community and
si = −1 if belongs to the other community. One can express the modularity of such
setting as follows:

Q = 1

4m

∑

ij

(

Aij − kikj
2m

)

sisj, (4)

where Aij is the adjacency matrix of the network, ki is the degree of node i, and
m = 1

2

∑
i ki is the number of edges in the network. The second term in the parenthesis

represents the expected fraction of nodes if the edges where randomly assigned.
Note that this assumes a certain null-model, i.e. an idea of which structure would
the network have is it was randomly generated. This is an important point that may
influence the outcome of the final set of communities, and that needs discussion in
any kind of generalization of the concept, as will be further discussed in Sect. 8.2. The
above framework may be repeated iteratively to the found subgraphs to subsequently
find smaller communities, taking care of modifying Eq.4 to correctly account for
all edges [112]. Whenever a proposed split gives a contribution non-positive to the
total modularity, then the algorithm is carried no further. Thus, the definition of
community in the Girvan-Newman method is a subgraph that is not further divisible
for maximizing its modularityQ. The modularity method has been widely successful
and even though it has been extended in many ways it continues to be the basis of
the most robust methods for community finding [110].

5.2 The Louvain Method for Community Detection

Another successful method for finding communities in very large networks is known
as the Louvain community detection method [26], a very efficient method that has
proved extremely useful in a number of big data graphs, taking a few minutes in
regular hardware to compute communities for graphs of hundredths of millions of
nodes and a few billion edges [16]. It was originally proposed by Lefebvre,2 and later
further developed by a group of researchers led by Blondel, all which at some point
had worked at the Universit Catholique de Louvain, hence its name. The Louvain
method is a modularity optimization algorithm based in the same principle that of
the Girvan-Newman algorithm developed in [110, 112] (see previous Sect. 5.1) It
was originally defined for weighted networks by allowing the adjacency matrix Aij

to contain weights wij (as is also the case of Eq.4).
The algorithm is a heuristic greedy optimization method performed in two steps.

First the method acts locally finding small communities. Initially every node is
assigned to its own community. Next, for each node i, the node is assigned to the
community C of each of its neighbors and the corresponding change in modularity
ΔQ is computed. The expression for ΔQ may be expressed as follows:

2https://perso.uclouvain.be/vincent.blondel/research/louvain.html.

https://perso.uclouvain.be/vincent.blondel/research/louvain.html

596 A.P. Appel and L.G. Moyano

ΔQ =
[∑

in +ki,in
2m

−
(∑

tot +ki
2m

)2
]

−
[∑

in

2m
−

(∑
tot

2m

)2

−
(

ki
2m

)2
]

, (5)

where
∑

in is the sum of weights of edges in C,
∑

tot is the sum of weights of edges
incident to nodes in C, ki is the sum of weights of edges incident to node i, ki,in is the
sum of weights of edges from i to nodes inC and finallym is the total sum of weights
of edges in the network. Node i is moved to the community that contributes the most
to the total modularity (with a breaking rule in case of ties) or stays in its original
community in case no positive gain inQ is possible. This procedure is repeated until
no improvement in Q is possible.

In the second part of the algorithm a new network is built by now grouping all
nodes belonging to the communities found in the first part as new nodes in a new
network. The edges between two nodes in this new network have weights equal to
the sum of weights in edges between the original communities from the first stage.
Self-loops appear whose weights are equal to the sum of weights of all edges within
the community in the first stage of the algorithm corresponding to the new node. One
this new network is created, another pass (stages one and two) is applied to the new
network.

The Louvain community finding method is by no means the only community
finding method for large networks [39, 92], but it has proved a nice example of an
efficient and successful algorithm for networks by-product of rapidly growing— and
increasingly common—big datasets.

6 Graphs in Big Data

Graphs and networks are a fundamental concept in the context of big data, as big data
business is being driven by the possibility of quantifying relationship data. Indeed,
much of the value provided by the availability of vast quantities of data resides in the
ability to spot and quantify these relationships. Users that express an interest, friends
that stay in touch, clients that spend in a given item, all these have in common that
represent a relationship between two entities. And as we have seen in the previous
sections, relationships are susceptible to be efficiently described by networks or
graphs.

Google and Weibo funded their businesses linking users to topics and interest by
search and advertisement. Facebook linked people and of course interests, LinkedIn
connects people and professional opportunities. They all gather an enormous amount
of information from their data, so the ability to extract useful insights, in the form of
distilled bits of data, is crucial.

Many data wealthy businesses, different from social networks, are also starting to
see the fact that they could benefit greatly by the possibilities offered by graph ana-
lytics and graph methodologies in general. For instance, there is increasing interest
in graph methods applied to healthcare [118, 135].

Link and Graph Mining in the Big Data Era 597

In this section wewill lay out some important examples and use cases, and wewill
mention the most important methods, applications and tools for the kind of networks
typically found in Big Data business.

6.1 Graphs in the Big Data Era

Google’s PageRankOne of the most interesting examples of graph methods applied
to big data was the PageRank algorithm [116], a cornerstone of Google’s early suc-
cess. PageRank is the ranking algorithm originally used by Google Search to present
an ordered set of web pages to the user, and even though today has been considerably
extended, today continues to play a relevant part in Google search results.3 PageRank
represented a success factor for Googles search engine, as it performed quite accu-
rately for search results ranking. The ranking algorithm computes the “importance”
of webpages with simple notion: based on the structure of the web page graph, use
links from other pages as a proxy for the importance of the page. In essence, PageR-
ank computes the probability that a random walk will end in a given node of the
network. The algorithm is iterative, and can compute the rank of all nodes in a graph
of arbitrary size. At every iteration s, the algorithm computes the (unnormalized)
probability PR for every node i in the network:

PRt+1(i) = r + (1 − r)
∑

j

PRt(j)

koj
, (6)

where r is the probability of a step for the random walk and koj is the our-degree of
node j. Even though there has been many variations to the algorithm since its intro-
duction, it is undeniable that PageRank still remains important to Google’s business.

Facebook’s Graph Search Beginning 2013, Facebook introduced its Graph Search
product,4 as “a new way to navigate (the graph’s) connections and make them more
useful”, i.e. with the aim of improving the efficient exploration of the wealth of data
produced by their social network. Facebook Graph Search is designed for users to be
able to make semantic searches for entities and their relationships. The tool uses a
battery of techniques to deliver search results, such as named entity queries as well as
structured queries, but it also relies heavily in graph-related quantities such as graph
distance (which is fundamental to the result) in tight combination with attributes of
nodes and edges such as friendship relationships, age, gender, number of friends,
celebrity status, among others [130].

3https://www.google.com/insidesearch/howsearchworks/algorithms.html.
4http://newsroom.fb.com/news/2013/01/introducing-graph-search-beta/.

https://www.google.com/insidesearch/howsearchworks/algorithms.html
http://newsroom.fb.com/news/2013/01/introducing-graph-search-beta/

598 A.P. Appel and L.G. Moyano

6.2 Knowledge Graphs

Tom Gruber defines an ontology as follows: “An ontology is a description (like a
formal specification of a program) of the concepts and relationships that can formally
exist for an agent or a community of agents. This definition is consistent with the
usage of ontology as set of concept definitions, but more general. And it is a different
sense of the word than its use in philosophy” [64].

The RDF (https://www.w3.org/RDF/) data model, also known as RDF triples
composed by subject-predicate-object, is a standard model for data interchange on
theWeb. The subject denotes the resource, and the predicate denotes traits or aspects
of the resource and expresses a relationship between the subject and the object.
For example, one way to represent the notion “Messi plays soccer” in RDF is as
the triple: a subject denoting “Messi”, a predicate denoting “plays”, and an object
denoting “soccer”. RDF data model is naturally suited to knowledge representation
and collection of RDF statements can be represents a labeled, directed multi-graph.
Mapping a Knowledge Base as graph, categories become nodes and relations are
edges.

Over the last few years, many research projects focused on building large scale
ontological knowledge bases (OKB) have been developed, such as Google Knowl-
edge Graph based on Freebase [28], YAGO [131], DBpedia [15], Elementary/Deep-
Dive [114], Walmart [43], Microsoft Satori and a continuously learning program
called NELL (Never Ending Language Learner) [34]. These projects store their
knowledge using what we call Knowledge Bases (KBs) with millions of facts about
the world, such as information about people, places and things referred as entities.

Traditionally, an knowledge base (KB) organizes and stores knowledge in two dif-
ferent parts, namely: (i) an ontological model, where categories (city, company, per-
son, etc.) and relations (worksFor(person, company), headQuarteredIn(company,
city))) are defined, and (ii) a set of facts which are instances of categories (city
(New York), company(Disney), person(Walt Disney) and relations.

Despite their size, KB are far from complete. As showed in [44] 71% of people
in Freebase have no known place of birth, and 75% have no known nationality.
Furthermore, coverage for less common relations can be even lower.

Therefore, a new approach is necessary to further scale up knowledge base con-
struction. Such an approach should automatically extract facts from the whole Web,
to augment the knowledge we collect from human input and structured data sources.
Unfortunately, standard methods for this task often produce very noisy, unreliable
facts. To alleviate the amount of noise in the automatically extracted data, the new
approach should automatically leverage already-cataloged knowledge to build prior
models of fact correctness.

One of the biggest problems in knowledge bases is extending it by inferring new
relations. The ability to infer new knowledge may be straightforward for humans,
but is tipically very hard be done automatically by a machine, as learning programs
populates the KB from corpora or the Web, which may be a difficult task.

https://www.w3.org/RDF/

Link and Graph Mining in the Big Data Era 599

Mapping a KB as a network allows us to apply graph mining techniques to infer
new relations. Thus, one of task that are mainly used is link prediction, which
is applied to find implicit information so as to populate the KB. There are sev-
eral projects that use graph mining, such as Prophet [13] in NELL, or Knowledge
Vault [44] from Google. NELL also uses Random Walks to infer relations [86] and
PageRank for search [144].

Prophet [13] was created to be one of NELL’s components, to apply link-
prediction techniques intoNELL’s KBmaped to a graph. It executes a link-prediction
task using a metric called extra-neighbors to extend NELL’s ontology by finding new
possible relations and also it finds new instances of these relations and some possible
misplaced facts present on the KB (Fig. 4).

Knowledge Vault used PRA [86] to extend their KB that is based on Freebase.
Similar to distant supervision, PRA begins with an instance of a relation such as
(Basketball,MichaelRedd), i.e. a pair of entities, then it performs a random walk
on the graph, starting at all the subject (source) nodes. Paths that reach the object
(target) nodes are considered successful. For example [44], PRA learns that pairs
(X,Y) which are connected by a marriedTo edge often also have a path of the form

X
childOf−−−→ Z

childOf←−−− Y , since if two people share a common child, they are likely to
be married. The paths that PRA learns can be interpreted as rules.

Fig. 4 An example of rule (Sport, SportLeague) and instance (Basketball,NBA) infer by Prophet
based on three independent paths (Madison Square Garden, Michael Redd, Milwaukee Bucks)

600 A.P. Appel and L.G. Moyano

6.3 Graph Sampling

One way to work with massive amounts of data is sampling. Data sampling has been
applied over years in large data sets to extract representative small portions from
data allowing us to apply data mining techniques as clustering and classification
algorithms, usually computational expensive in the complete dataset. However, in
the context of complex networks, the question of how to extract a representative
small network from the original dataset is nontrivial. Also, one issue with graph
sampling is if one should focus on nodes, edges or both. Additionally, in non-linked
data, random sampling usually performs reasonably, however in complex network
randomsampling, be it in nodes or edges, the process usually produces a disconnected
graph [88].

It can be quite difficult to find a method to reduce the size of network and keep
all the important measures, useful for graph mining techniques as cluster and link
prediction [143].

Another area where graph sampling techniques are widely applied is in crawling.
Collecting data for analysis is a very important task and how these data are collected
is extremely important to the post analyze that will be done. The crawling process
of a graph starts from selecting one (or multiple) node(s) called seed(s). After a
node has been visited, the edges incident in this node are known and the next node
can be chosen. The policy of choosing the next node depends on the design of the
crawling. Among the possible policies are: Breadth-First, Edge based [5], Random
Walking [87, 87], Weighted edges [85], degree, triangles [119], among many other
[9, 153]. All the nodes and edges measures can be used for crawling and, of course,
for sampling, since we can extend the idea of selecting data from the original graph
(already collected) instead of collecting data [73].

If we add temporal evolution in the network, sampling becomes an even harder
problem, since now we have a timestamp as an extra information associated with the
edges. The same happens when we are dealing with multiplex networks that have
more than one link between nodes and this link could have both a weight and a
timestamp. Sampling is an important question in big data networks, but is still a very
open question without a closed solution.

6.4 Graph Analytics Tools

In this section we will briefly mention some graph tools and systems for modeling
and analytics especially suited for very large networks, i.e. with tens to hundredths
of millions of nodes and up to hundredths of billions of links. These systems are
fundamental to efficiently support Big Data applications, such as Natural Language
Processing tasks or targeted advertising.

Apache Giraph [12] is an open source distributed system for large scale graph
processing, based on Google’s proprietary Pregel [98]. It is an iterative graph system

Link and Graph Mining in the Big Data Era 601

designed for high scalability (based on Apache Hadoop’s MapReduce implementa-
tion), and it extends Pregel with a number of features such as edge-oriented output,
master computation, sharded aggregators among others. Giraph is used by Facebook
to analyze its vast social graph, and is able to process trillions of edges [37], and
new, faster extensions are being developed based on it [137, 139] as well as dedicated
machine learning libraries [59].

Another graph analytics example is PowerGraph [58], a distributed graph place-
ment and representation that exploits a know feature of social networks: their power-
law degree probability distribution. PowerGraph was shown to process PageRank
and other tasks such as LDA in data from the Twitter social network, containing
41 million nodes and 1.5 billion edges. GraphLab, a CMU initiative, and afterwards
GraphLab Create [62], an open source framework for distributed, high-performance
computation over graphs, stemmed originally from PowerGraph.

Project Pegasus [120] is another CMU-based open-source, big graph-mining sys-
tem designed for high scalability. In [78], the authorsmake an interesting comparison
between Pegasus, Pregel, GraphLab and Microsoft’s contribution, names Trinity at
the time (now GraphEngine) [123, 124]. They compare system performance in a
number of graph-oriented tasks over two big datasets, a snapshot of the World Wide
Web (2002), crawled by Yahoo! with 1.4 billion nodes (web pages) and 6.6 billion
links, and a Twitter who-follows-whom graph (2009), containing 63 million nodes
(users) and 1.8 billion links.

Another Big Graph system is Twitter’s Cassovary [35], a processing library for
the Java Virtual Machine, which is now open source. Cassovary, written in Scala, is
designed to handle large graphs such as Twitter’s and also to be space-efficient. In
[66], the authors describe some variants of recommender systems implemented in
Cassovary, and a very interesting take on the architecture design, as the entire graph is
put in a single server for optimization purposes, contrary to the mainstream tendency
of distributed architectures. There are several other initiatives for big graph analytics
and processing systems, ranging from industrial tools such as IBM System G [75],
DataStax/Aurelius Faunus [48] or Teradata’s SQL-GR Graph Analytics engine [14],
to less production-oriented such as Microsoft’s GraphEngine [61] and even more
academic research-oriented systems such as the Stanford Network Analysis Project
(SNAP) [125], Galois [51], from University of Texas, GUESS [65] as well as iGraph
[76] (in its three flavors, R, C/C++ and Python), Gephi [21, 53] and Python-based
NetworkX [70], among several others.

It is also worth mentioning a different but important class of systems, graph
databases. Graph databases are generally not relational databases and exploit graph
structure to optimize searches and semantic queries, most commonly by keeping
track of relationships among nodes, among other things. Even though their purpose
may be diverse (some are operational, while others are for analytics or development,
and so on), we will focus on these differences and instead we will just present
some of the most known solutions as of 2016. Some examples include Titan [141]
(which Amazon integrates through their NoSQL database Amazon DynamoDB),
Neo4j [108], OrientDB [115], Sparksee [128], IBM Graph [74], and GraphX [63]
(Apache Spark’s API for graphs and graph-parallel computation), among several

602 A.P. Appel and L.G. Moyano

others. Some of these have in common that they use the Apache TinkerPop graph
computing framework [140], in particular, they are able to process instructions from
the Gremlin traversal language [122], a cross-platform virtual machine and language
that supports imperative and declarative querying for graph databases and graph
analytical engines.

7 Weighted Networks

Single networks represent their connections as binary entities, i.e. an edge is present
or not. Usually, edges do not provide more information than if they are present or
not. However, links between nodes may have some describing attribute, reflecting
their intensity, capacity, duration, intimacy or exchange of services [19, 60], which
may be encoded in some variable usually known referred to as weight of the link.

The study of weighted networks has not been thorough in the last decade. Some
initial work was done in [18, 149]. Many methods developed for single networks are
not trivial to extend for weighted networks. A weighted network can be treated as
a multiplex network where the weight becomes the number of edges between two
verticals, as shown in Fig. 5.

The weights in the edges of a network help model and define week and strong
ties. One way to measure this is the so-called strength of a node Vi (Eq. 7) defined
as the sum of all weights of neighbors of node vi. The strength of a node integrates
the information both with its connectivity and the importance of the weights of its
links, and can be considered as the natural generalization of the connectivity [102].

Svi =
∑

vj∈V (Vi)

wVi,Vj (7)

In [6] the authors presentOddBall, a fast, unsupervisedmethod to detect abnormal
nodes in weighted graphs. They also show that the total weightWvi and the number of
edgesEvi ofG follow a power-lawprobability distribution. In another interestingwork
[8], the authors study theweights associate to the reciprocity inmobile phone calls and
describe several patterns found. In the particular case of link prediction, models using

Fig. 5 Weighted network W
and multiplex network W

Link and Graph Mining in the Big Data Era 603

weighted networks are usually simpler than models that use the multiplex network
framework, since it has been shown that weights can also help in the algorithm
accuracy to predict new edges [95].

8 Extending Graph Models: Multilayer Networks

There have been constant research efforts to extend networkmodels to describe more
adequately complex real life networks. As we will see, many of this efforts involve
generalizing the definition of the basic blocks that constitute a graph. In this section
we will briefly describe one of the most interesting attempts, which is to consider
graphs with several types of edges. As we will see this allows for very rich networks
models.

8.1 The Layered Point of View: Multilayer Networks

As we have mentioned Sect. 1, graphs are an extraordinarily useful representation of
real networks, i.e. any collection of entities with a given relationship between each
other. In some practical settings, it is interesting tomodel a given type of relationship,
and the definition of edge is clear. This is the case, for instance, of a co-authorship
network, where we are interested in which authors published together, so the edge
definition is simply if there exists any publication with both authors’ names.

On the other hand, other settings are much more complex, given that the two
entities may have more than one type of relevant relationship. For instance, if we
are interested in modeling a social network, it could be useful to distinguish among
family and work relationships. One way of dealing with this situation is to count
everything as a link and try to keep the nature of the edge somehow, for instance as
weights in the link. In this way, we can use these weights to restrict or filter some
calculations.

Another equivalent approach is to think about thesemultiple types of relationships
as defining different networks or subnetwork, and then connect these accordingly, as
they are defined by the same set of nodes. By this point of view, each network is char-
acterized as a layer, so a network may be represented by a number of interconnected
layers [82].

This way of framing the structure of interactions among nodes has gained a lot
of track in particular in the community of complex networks, which has termed
the concept generally as multiplex networks [56, 57, 107] or networks of networks
[40, 52].

One example of this concept in very practical scenario is the case of overlay
networks [11]. In the field of engineering and computer science, and specifically
in the context of network virtualization, an overlay network is a virtual network
created on top of an existing “substrate” network, where only some of its nodes

604 A.P. Appel and L.G. Moyano

and links are used for the virtual network. An overlay network can be used to share
infrastructure and simplify topology, defining a network with different properties
than the underlying network, in terms of routing, security, caching, or other network
functionalities. Thus, an overlay network can be though of amultiplex networkwhere
certain nodes have special types of virtual links [38]. The Internet itself started out
as an overlay network over the telephone network, and currently many services such
as VoIP applications are also defined over the Internet, and so are also work on top
of overlays.

Indeed, over the last 40 years many fields of research have in some way or another
turned their attention to the same problemunder different names:multiplex networks,
networks of networks, multidimensional networks, multislice networks, etc. In [82],
the authors make a thorough review of different approaches and a provide a complete
historic perspective, as well as the different technical aspects of the state of the art.
In the following sections we will address some points directly related to the Big Data
scenario.

8.2 Models, Methodologies and Other Tools

To get some intuition, we will consider that a multilayer network is a set of nodes
belonging to a set of layers, and where any node in any layer may be connected
by an edge [82]. (There are even more general and elaborate models of multilayer
networks [41], but for our purposes we will set with this description.)

In Fig. 6 we show a basic representation of such a construction, with only two
layers and a few nodes. Not every layer must have the same nodes, and edges may
connect any pair of nodes between layers. Layersmay have anymeaning, for instance
they could define a type od interaction, so edges have a particular meaning according
to the layer, or theymay signify a particular time frame, in fact describing the dynam-
ics of the network. These and many other choices fit in this very general definition.
Additional constraints may also be put in place, for instance, considering that the set

Fig. 6 Multilayer network
representation, showing two
layers and two single-layer
networks, with some edges
connecting nodes between
layers

Link and Graph Mining in the Big Data Era 605

of nodes is fixed for all layers (node alignment), or that edges across layers can only
connect the same node in each layer.

Generalization of single-layer algorithms Naturally, research efforts in multilayer
networks have focused on extending tools andmethods successfully used to study and
diagnose single-layer networks. New definitions have been developed for generaliz-
ing basic concepts such as node degree, neighborhoods, clustering coefficients, etc.
as well as methods and models such as community detection or diffusion dynamics.
We explore a few of these ideas next.

In the same way that single-layer networks may be represented by and adja-
cency matrix, a natural generalization for multi-layer networks is by describing them
through tensor representations [41]. Thus, oneway to represent amulti-layer network
is by providing the tensorAuvαβ , whose elements take value 1 if node u of layer α is
connected with node v of layer β, and 0 otherwise. This generalization corresponds
to multi-layer models with node alignment, but it is possible to go beyond to the
mode general case where this constraint is relaxed.

One of the most basic concepts in networks is that of degree. As we have seen, this
is simply the number of edges incident in a given node. Is it possible to generalize
the degree by having into account the weight of the node (weight degree or strength)
as well as discriminating by edge direction (in or out), for directed networks.

Generally speaking, a general procedure to transform a multi-layer network into a
single-layer network, so as to apply known (single-layer) techniques is by aggregating
layers in someway. This network aggregationmay be done in several ways according
to the study being made.

In the case of the degree, oneway to extend this concept is precisely by aggregating
through all the layers, i.e. summing all (or some) type of edges to get a value for the
degree, e.g. ku = ∑

vαβ Auvαβ . There are of course other approaches, for instance,
considering thresholds to the quantity of edges that contribute to the degree, and
also different normalizing methods [41]. The authors in [30–32] describe various
definitions of degree as well as diverse methods to compute degree centrality, which
we will comment in detail later, and other related concepts such as neighborhood.

As we have seen in Sect. 2 other central concept in network theory is that of
clustering coefficients, and, generally speaking, the notion of transitivity [111]. The
extension of these ideas to multi-layer networks has been quite challenging as there
are inherent ambiguities in the different possible definitions of these quantity. One
well known interpretation of the clustering coefficient for single-layer networks is that
is equal to the ratio of closed triples to connected triples. But the definition of triple in
multi-layer networks requires some care, as a triple may be defined in multiple ways
in this case, depending on the set of constraints that may be imposed regarding the
layers (i.e., the type of edges) allowed for consideration in the definition. Great effort
has been made in defining a suitable generalization of the clustering coefficient (see
[30, 32, 82] amongmany others). One important conclusion that onemay reach from
these efforts is that an adequate definition of the clustering coefficient is dependant
on the domain on is trying to describe, as the notion of neighborhood or path may
differ for different type of networks.

606 A.P. Appel and L.G. Moyano

A related and also central concept in single-layer networks is that of communities
or modules [111], i.e. the fact that a set of nodes within the network may be more
related between them than with other nodes not in the set (or rather, compared to
what is expected in a randomly connected network). Despite the numerous research
efforts involving some variant of multi-layer networks, few community detection
algorithms have been put forward compared to the huge number of such algorithms
for single-layer networks. One again, the additional degrees of freedom introduced
by these models makes previous definitions ambiguous and non-trivial to generalize.

One important concept in the are of community detection is the choice of a null-
model to which compare the network in order to precisely quantify the meaning of
“expected in a randomly connected network”. The authors in [20, 107] study this
problem in the case of multislice modularity, which has been used particularly for
the case of temporal networks [106] (i.e. layers representing time).

Centrality measures seek to inform about the relative importance of a given ele-
ment in the network [111]. There are several versions of centrality measures for
different contexts. Central of network science, many of these measures have already
been generalized for the case of multi-layer centrality. For instance, PageRank cen-
trality (introduced in Sect. 6.1) has been extended for the more general case through
random walker able to also traverse across layers, with suitable definitions of rank
also for the layers [113], or differentiating probabilities inside layers from those
across layers [152], or with the introduction of biased walkers [68].

8.3 Theoretical Models, Empirical Applications and Other
Examples

The possibilities open by the multi-layer formalism are indeed enormous [82]. Many
networks from different fields of study fit very well with this formalism.

For instance, Morris et al. [105] develop a two layer theoretical model for trans-
portation in spacial networks and show that different transport regimesmay be found.
In turn, Cardillo et al. [33] apply themultiplex theoretical framework to the European
Air Transportation Network, and they claim that the topology of each layer affects
the emergence of structural properties in the aggregate network.

In [106, 107], the authors show how a multislice framework may help understand
the communities developed as a function of time in a dataset of the U.S. Senate roll
call voting, from 1798 to 2008.

On a more theoretical note, the authors in [56] explore the diffusion properties in
the context of (node-aligned) multiplex networks, and explain the dynamics of the
diffusion process through the mathematical properties of the system, more specif-
ically, the spectrum of eigenvalues of a matrix built with the Laplacians of each
layer.

Link and Graph Mining in the Big Data Era 607

In [25], Bianconi proposed a statistical mechanics framework to study mutliplex
networks, on the premise that a given link between nodes in a layer may be highly
correlated to another link between in another layer. The author develops entropy
expressions for the multiplex system that may be useful tools for inference problems.

Another interesting applicationofmultiplexnetworks is in thefieldof evolutionary
game-theory, in particular the study of cooperation in the context of interacting
agents. The authors in [57] explore the Prisoner’s Dilemma (PD) game in a multiplex
setting with random (Erdös-Rényi) networks in each layer, where layers are coupled
via the payoff parameter of the PD game, which is the sum of the payoffs in all layers.
They show that the resilience of the fraction of agents which stay in the cooperation
state is boosted by the introduction of interaction between layers in the system,
an important result indicating that the multiplex character of, for instance, social
networks, could influence favorably for the emergence of stable of cooperation.

9 Open Challenges

In this chapter, we have shown the relevance and ubiquity of graphs and networks
in big data systems and applications. Graph analytics and mining provide value to
these big data systems, and the field is really starting to emerge, driven by ever new
technologies and applications [55, 148]. Naturally, this remarkable growth pushes
the state-of-the-art of current systems until limitations are reached. Next we mention
some of the future challenges of the area and some efforts to push the capabilities of
today’s systems to meet tomorrow’s needs.

StreamingAnalyticsThe data streammodel may be useful inmany situations where
data is constantly produced. Many non-trivial challenges arise when dealing with
graph data streams, such as the trade-off between data size and accuracy in the com-
putation of graph measured destined to summarize the data. In this way, streaming
methologies have become central in many applications where the real-time nature
of information flow is relevant or needed [55, 151], as well as in other issues of a
more technological origin such as how to compute graph quantities in a distributed
or parallel setting [101]. Usually, graph streaming is done typically by providing a
stream of edge information to add or subtract, and make some computation in the
resulting graph [77]. The challenge is to maintain a precise or at least approximate
picture of the network or associated summary variables. A research field strongly
connected with this type of issues is graph visualization. For example, in stream-
ing visualization of power-grid networks, the accurate and quick description of the
network may be crucial at times of failure where responsibles have minutes or even
seconds to respond [148]. In general, there is currently a research effort in this field
is focusing in algorithms for directed edges, which may be more general as most
practical examples are directed [101].

608 A.P. Appel and L.G. Moyano

Representation learning for networksGraphs are intrinsically a non-linear combi-
nation of data, not always readily summarizable in every aspect by a few parameters.
One interesting research area in network theory is how to decrease the dimension-
ality of a given graph, while at the same time preserving useful characteristics or
informative traits we are in the first place interested in. This dimension reduction
techniques play an important part in prediction tasks, such as link prediction (see
Sect. 4) or prediction of node attributes such as user interests or functional labels in
biological networks.

On the other hand, a manifest characteristic in a graph dataset is its sparseness.
Depending on the task or application one is trying to accomplish, this sparseness may
be of help or, on the contrary, become a computational burden, leading to inefficient
algorithms. For instance, statistical learning in a graph may be hindered by the
inherent sparsity of some graphs, especially as they turn into very large graphs,
typical of big data domains. Traditional dimensionality reduction methods, such
as Principal Component Analysis or Multi-Dimensional Scaling, have been studied
widely in the literature [22]. But these techniques usually involve finding eigenvalues
of the adjacencymatrix (or another equivalentmatrix), which normally does not scale
well for large graphs.

A way to go around this problem is to find latent representations of the network,
which encode what is interesting or useful from the graph but are defined in a space
withmuch lower dimensionality [23]. Versions of such latent representations based in
deep neural networks have been quite successful in the context of Natural Language
Processing [103] and have lead the way for applications in many research areas,
including graph analytics and social networks.

In [121], the authors apply this ideas to social networks with the aim of encode
social relationships in a continuous vector space, which are then easily exploited by
statistical models. The authors propose a random walk algorithm which is used to
capture neighborhood similarity, in the sense that nodes with similar neighborhoods
will finally present similar representation in vector space. In [136], the authors pro-
pose finding latent representations as an optimization problem, by carefully devicing
an objective function to capture both local and global characteristics of network
structure.

With these type of methods, the learned representations may be used to perform
classification tasks or link prediction tasks, which proves to be much more efficient
due to the decreased dimensionality. However there is still much research needed
as, to date, representation learning have been mainly proposed as heuristic methods
aiming to automatically capture useful features from networks, with not much study
as to the general validity of the results, both in types of networks and in types of
features learned.

All-pairs computationOn a related note, graphs have the inevitable characteristic of
scaling as O(n2) when taking into account all pairs of nodes. Due to this fact, some
graph analytics methods in big data recurrently find limitations whenever computa-
tions involve computing over all pairs of nodes, e.g. all-pair shortest paths, or any
other type of similar quantity. This is the case, for instance, discussed in Sect. 4 for

Link and Graph Mining in the Big Data Era 609

the Katz measure, which is based in a sequence of matrix-matrix computations [80,
132]. The usual way of bypassing this scaling limitation is to provide estimates or
approximations, which depending on the problem and the size of the data may no
longer be a satisfactory solution.

10 Conclusions

Many data sources in big data scenarios represent relationship data. Being social
data, Internet-of-things data, or even semi-structured data such as Twitter posts or
document corpora, relationships among entities are usually present, thus making it
viable to represent the data as graphs. The graph representation will not always be
necessary, but most of the times will be convenient and useful.

In this chapter we have covered many aspects of graph algorithms and network
analysis which are important, especially in the case of very large graphs. We have
shown that there is an increasing confluence of efforts towards the practical use of
graph analytics in the context of big data. One the one hand, the research community
continually provides powerful graph algorithms and methods, some of outstanding
business success such as PageRank, or the link prediction algorithms in Facebook
to grow their social base. On the other hand, a relentless developer community
yields ever more powerful software, libraries, as well as commercial and open-source
tools, focusing in the implementation of improved graph algorithms and in providing
more efficient ways to capture, handle and process large quantities of data as graph
information.

Graphs and networks are at the core of the big data era. The advent of big data
tools and systems has changed radically the access to real data, and both businesses
and the research community have benefited from this by leveraging graph analytics
and methods to produce new sources of wealth and information.

References

1. L.A. Adamic, E. Adar, Friends and neighbors on the web. Soc. Network. 25(3), 211–230
(2003)

2. L.A. Adamic, B.A. Huberman A. Barabási, R. Albert, H. Jeong, G. Bianconi, Power-law
distribution of the world wide web. Science 287(5461):2115a+ (2000)

3. C. Aggarwal, K. Subbian, Evolutionary network analysis: a survey. ACM Comput. Surv.
47(1), 10:1–10:36 (2014)

4. C. Aggarwal, Y. Xie, P.S. Yu, On Dynamic Link Inference in Heterogeneous Networks, chap.
35, pp. 415–426

5. N. Ahmed, J. Neville, R.R. Kompella, Network sampling via edge-based node selection with
graph induction (2011)

6. L. Akoglu, M. McGlohon, C. Faloutsos, Oddball: spotting anomalies in weighted graphs, in
Advances in Knowledge Discovery and DataMining, ed. byM.J. Zaki, J.X. Yu, B. Ravindran,
V. Pudi (Springer, Heidelberg, 2010), pp. 410–421

610 A.P. Appel and L.G. Moyano

7. L. Akoglu, H. Tong, D. Koutra, Graph based anomaly detection and description: a survey.
Data Min. Knowl. Discov. 29(3), 626–688 (2015). May

8. L. Akoglu, P.O.S. Vaz de Melo, C. Faloutsos, Quantifying reciprocity in large weighted
communication networks, in Proceedings of the 16th Pacific-Asia Conference on Advances in
Knowledge Discovery and Data Mining - Volume Part II, PAKDD’12 (Springer, Heidelberg,
2012), pp. 85–96

9. M. Al Hasan, M.J. Zaki, Output space sampling for graph patterns. Proc. VLDB Endow. 2(1),
730–741 (2009)

10. U.Alon,Networkmotifs: theory and experimental approaches.Nat. Rev.Genet. 8(6), 450–461
(2007)

11. D. Andersen, H. Balakrishnan, F. Kaashoek, R. Morris, Resilient overlay networks (ACM,
2001)

12. Apache Giraph, an iterative graph processing system. http://giraph.apache.org/. Accessed 10
March 2016

13. A.P. Appel, E.R.H. Junior, Prophet – a link-predictor to learn new rules on nell, in 2011 IEEE
11th International Conference on DataMiningWorkshops (ICDMW), Dec 2011, pp. 917–924

14. Aster SQL-GR Big Data Parallel Graph Analytics. http://www.teradata.com/SQL-GR-
Engine/. Accessed 10 March 2016

15. S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, Z. Ives, DBpedia: a nucleus for
a web of open data, in The Semantic Web: 6th International Semantic Web Conference, 2nd
Asian Semantic Web Conference, ISWC 2007 + ASWC 2007, Busan, Korea, 11–15 November
2007. Proceedings (Springer, Heidelberg, 2007), pp. 722–735

16. T. Aynaud, V.D. Blondel, J.-L. Guillaume, R.Lambiotte, Multilevel local optimization of
modularity, in Graph Partitioning (2013), pp. 315–345

17. L. Backstrom, J. Leskovec, Supervised random walks: predicting and recommending links in
social networks, in Proceedings of the Fourth ACM International Conference on Web Search
and Data Mining, WSDM’11 (ACM, New York, 2011), pp. 635–644

18. A. Barrat, M. Barthélemy, R. Pastor-Satorras, A. Vespignani, The architecture of complex
weighted networks. Proc. National Acad. Sci. 101, 3747–3752 (2004)

19. M. Barthélemy, A. Barrat, R. Pastor-Satorras, A. Vespignani, Characterization and modeling
of weighted networks. Physica A 346, 34–43 (2005)

20. D.S. Bassett, M.A. Porter, N.F. Wymbs, S.T. Grafton, J.M. Carlson, P.J. Mucha, Robust
detection of dynamic community structure in networks. J. Nonlinear Sci. 23(1), 013142 (2013)

21. M. Bastian, S. Heymann, M. Jacomy et al., Gephi: an open source software for exploring and
manipulating networks. ICWSM 8, 361–362 (2009)

22. M. Belkin, P. Niyogi, Laplacian eigenmaps and spectral techniques for embedding and clus-
tering. NIPS 14, 585–591 (2001)

23. Y. Bengio, A. Courville, P. Vincent, Representation learning: a review and new perspectives.
IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

24. M. Berlingerio, M. Coscia, F. Giannotti, A. Monreale, D. Pedreschi, Multidimensional net-
works: foundations of structural analysis. World Wide Web 16(5), 567–593 (2012)

25. G. Bianconi, Statistical mechanics of multiplex networks: entropy and overlap. Phys. Rev. E
87(6), 062806 (2013)

26. V.D. Blondel, J.-L. Guillaume, R. Lambiotte, E. Lefebvre, Fast unfolding of communities in
large networks. J. Stat. Mech. Theory Experiment 2008(10), P10008 (2008)

27. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.-U. Hwang, Complex networks: structure
and dynamics. Phys. Rep. 424(4), 175–308 (2006)

28. K. Bollacker, C. Evans, P. Paritosh, T. Sturge, J. Taylor, Freebase: a collaboratively created
graph database for structuring human knowledge, in Proceedings of SIGMOD (2008)

29. D. Braha, Y. Bar-Yam, Time-dependent complex networks: dynamic centrality, dynamic
motifs, and cycles of social interactions, in Adaptive Networks: Theory, Models and Applica-
tions (Springer, Heidelberg, 2009), pp. 39–50

30. P. Bródka, K.Musial, P. Kazienko, Amethod for group extraction in complex social networks,
in Knowledge Management, Information Systems, E-Learning, and Sustainability Research,

http://giraph.apache.org/
http://www.teradata.com/SQL-GR-Engine/
http://www.teradata.com/SQL-GR-Engine/

Link and Graph Mining in the Big Data Era 611

ed. by M.D. Lytras, P. Ordonez De Pablos, A. Ziderman, A. Roulstone, H. Maurer, J.B. Imber
(Springer, Heidelberg, 2010), pp. 238–247

31. P. Bródka, K. Skibicki, P. Kazienko, K. Musiał, A degree centrality in multi-layered social
network, in 2011 International Conference on Computational Aspects of Social Networks
(CASoN) (IEEE, 2011), pp. 237–242

32. P. Bródka, P. Kazienko, K. Musiał, K. Skibicki, Analysis of neighbourhoods in multi-layered
dynamic social networks. Int. J. Comput. Intell. Syst. 5(3), 582–596 (2012)

33. A. Cardillo, J.Gómez-Gardeñes, M. Zanin, M. Romance, D. Papo, F. del Pozo, S. Boccaletti,
Emergence of network features from multiplexity. Sci. Rep. 3 (2013)

34. A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E.R. Hruschka Jr., T.M. Mitchell, Toward an
architecture for never-ending language learning, in Proceedings of AAAI (2010)

35. Cassovary. https://github.com/twitter/cassovary. Accessed 10 March 2016
36. D. Chakrabarti, Y. Wang, C. Wang, J. Leskovec, C. Faloutsos, Epidemic thresholds in real

networks. ACM Trans. Inf. Syst. Secur. 10(4), 1–26 (2008)
37. A. Ching, S. Edunov, M. Kabiljo, D. Logothetis, S. Muthukrishnan, One trillion edges: graph

processing at facebook-scale. Proc. VLDB Endow. 8(12), 1804–1815 (2015)
38. N.M.K.Chowdhury,R.Boutaba,A survey of network virtualization. Comput.Network. 54(5),

862–876 (2010)
39. A. Clauset, M.E. Newman, C. Moore, Finding community structure in very large networks.

Phys. Rev. E 70(6), 066111 (2004)
40. G. D’Agostino, A. Scala, Networks of Networks: The Last Frontier of Complexity, vol. 340

(Springer, Heidelberg, 2014)
41. M. De Domenico, A. Solé-Ribalta, E. Cozzo, M. Kivelä, Y. Moreno, M.A. Porter, S. Gómez,

A. Arenas, Mathematical formulation of multilayer networks. Phys. Rev. X 3(4), 041022
(2013)

42. R.A. de Paula, A.P. Appel, C.S. Pinhanez, V.F. Cavalcante, C.S. Andrade, Using social ana-
lytics for studying work-networks: a novel, initial approach, in 2012 Brazilian Symposium on
Collaborative Systems (SBSC), Oct 2012, pp. 146–153

43. O. Deshpande, D.S. Lamba, M. Tourn, S. Das, S. Subramaniam, A. Rajaraman, V. Hari-
narayan, A. Doan, Building, maintaining, and using knowledge bases: a report from the
trenches, in Proceedings of the 2013 ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD’13 (ACM, New York, 2013), pp. 1209–1220

44. X. Dong, E. Gabrilovich, G. Heitz, W. Horn, N. Lao, K. Murphy, T. Strohmann, S. Sun,
W. Zhang, Knowledge vault: a web-scale approach to probabilistic knowledge fusion, in
Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD’14 (ACM, New York, 2014), pp. 601–610

45. Y. Dong, J. Tang, S. Wu, J. Tian, N.V. Chawla, J. Rao, H. Cao, Link prediction and rec-
ommendation across heterogeneous social networks, in Proceedings of the 2012 IEEE 12th
International Conference on Data Mining, ICDM’12 (IEEE Computer Society, Washington,
DC, 2012), pp. 181–190

46. D.M. Dunlavy, T.G. Kolda, E. Acar, Temporal link prediction using matrix and tensor factor-
izations. ACM Trans. Knowl. Discov. Data 5(2), 10:1–10:27 (2011)

47. M. Faloutsos, P. Faloutsos, C. Faloutsos, On power-law relationships of the internet topology,
in ACM SIGCOMM Computer Communication Review, vol. 29 (ACM, 1999), pp. 251–262

48. Faunus: Graph Analytics Engine. http://thinkaurelius.github.io/faunus/. Accessed 10 March
2016

49. S. Fortunato, Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010)
50. S. Fortunato, C. Castellano, Community structure in graphs, in Computational Complexity,

ed. by R.A. Meyers (Springer, Heidelberg, 2012), pp. 490–512
51. Galois: The University of Texas at Austin. http://iss.ices.utexas.edu/?p=projects/galois.

Accessed 10 March 2016
52. J. Gao, S.V. Buldyrev, S. Havlin, H.E. Stanley, Robustness of a network of networks. Phys.

Rev. Lett. 107(19), 195701 (2011)
53. Gephi: The Open Graph Viz Platform. https://gephi.org/. Accessed 10 March 2016

https://github.com/twitter/cassovary
http://thinkaurelius.github.io/faunus/
http://iss.ices.utexas.edu/?p=projects/galois
https://gephi.org/

612 A.P. Appel and L.G. Moyano

54. M. Girvan, M.E. Newman, Community structure in social and biological networks. Proc.
National Acad. Sci. 99(12), 7821–7826 (2002)

55. D.F. Gleich, M.W. Mahoney, Mining large graphs, in Handbook of Big Data (2016), p. 191
56. S. Gomez, A. Diaz-Guilera, J. Gomez-Gardeñes, C.J. Perez-Vicente, Y. Moreno, A. Arenas,

Diffusion dynamics on multiplex networks. Phys. Rev. Lett. 110(2), 028701 (2013)
57. J.Gómez-Gardeñes, I. Reinares,A.Arenas, L.M. Floría, Evolution of cooperation inmultiplex

networks. Sci. Rep. 2 (2012)
58. J.E. Gonzalez, Y. Low,H.Gu,D. Bickson, C.Guestrin, Powergraph: distributed graph-parallel

computation on natural graphs, in Presented as part of the 10th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 12) (2012), pp. 17–30

59. Grafos.ML - Empowering Giraph. http://grafos.ml/index.html. Accessed 10 March 2016
60. M. Granovetter, The strength of weak ties. Am. J. Sociol. 78(6), 1360–1380 (1973)
61. GraphEngine: serving big graphs in real-time. http://www.graphengine.io/. Accessed 10

March 2016
62. GraphLab Create - an extensible machine learning framework. https://dato.com/products/

create/. Accessed 10 March 2016
63. GraphX: Apache Spark’s API for graphs and graph-parallel computation. http://spark.apache.

org/graphx/. Accessed 10 March 2016
64. T. Gruber, What is an ontology (1993). WWW Site http://www-ksl.stanford.edu/kst/whatis-

an-ontology.html. Accessed 07 Sep 2004
65. GUESS: The graph exploration system. http://graphexploration.cond.org. Accessed 10March

2016
66. P. Gupta, A. Goel, J. Lin, A. Sharma, D. Wang, R. Zadeh, Wtf: the who to follow service at

twitter, in Proceedings of the 22nd International Conference on World Wide Web Conferences
Steering Committee (2013), pp. 505–514

67. I. Guy, S. Ur, I. Ronen, A. Perer, M. Jacovi, Do you want to know?: recommending strangers
in the enterprise, in Proceedings of the ACM 2011 Conference on Computer Supported Coop-
erative Work, CSCW’11 (ACM, New York, 2011), pp. 285–294

68. A. Halu, R.J. Mondragón, P. Panzarasa, G. Bianconi, Multiplex pagerank. PloS One 8(10),
e78293 (2013)

69. M.A. Hasan, M.J. Zaki, A survey of link prediction in social networks, in Social Network
Data Analytics, ed. by C.C. Aggarwal (Springer, Boston, 2011), pp. 243–275

70. High-productivity software for complex networks. https://networkx.github.io/. Accessed 10
March 2016

71. P. Holme, C. Edling, F. Liljeros, Structure and time-evolution of an internet dating community.
Soc. NetworK. 26, 155 (2004)

72. P. Holme, J. Saramäki, Temporal networks. Phys. Rep. 519(3), 97–125 (2012)
73. P. Hu, W.C. Lau, A survey and taxonomy of graph sampling. arXiv preprint arXiv:1308.5865

(2013)
74. IBM Graph: easy-to-use, fully-managed graph database service. https://new-console.ng.

bluemix.net/catalog/services/ibm-graph/. Accessed 10 March 2016
75. IBM System G. http://systemg.research.ibm.com/. Accessed 10 March 2016
76. igraph: The network analysis package. http://igraph.org/. Accessed 10 March 2016
77. M. Jha, C. Seshadhri, A. Pinar, A space efficient streaming algorithm for triangle counting

using the birthday paradox, in Proceedings of the 19th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining (ACM, 2013), pp. 589–597

78. U. Kang, C. Faloutsos, Big graphmining: algorithms and discoveries. ACMSIGKDDExplor.
Newslett. 14(2), 29–36 (2013)

79. U. Kang, C.E. Tsourakakis, A.P. Appel, C. Faloutsos, J. Leskovec, Hadi: mining radii of large
graphs. ACM Trans. Knowl. Discov. Data (TKDD) 5(2), 8 (2011)

80. L. Katz, A new status index derived from sociometric analysis. Psychometrika 18(1), 39–43
(1953). March

81. D. Kempe, J. Kleinberg, A. Kumar, Connectivity and inference problems for temporal net-
works, inProceedings of the Thirty-second Annual ACMSymposium on Theory of Computing,
STOC’00 (ACM, New York, 2000), pp. 504–513

http://grafos.ml/index.html
http://www.graphengine.io/
https://dato.com/products/create/
https://dato.com/products/create/
http://spark.apache.org/graphx/
http://spark.apache.org/graphx/
http://www-ksl.stanford.edu/kst/whatis-an-ontology.html
http://www-ksl.stanford.edu/kst/whatis-an-ontology.html
http://graphexploration.cond.org
https://networkx.github.io/
http://arxiv.org/abs/1308.5865
https://new-console.ng.bluemix.net/catalog/services/ibm-graph/
https://new-console.ng.bluemix.net/catalog/services/ibm-graph/
http://systemg.research.ibm.com/
http://igraph.org/

Link and Graph Mining in the Big Data Era 613

82. M. Kivelä, A. Arenas, M. Barthelemy, J.P. Gleeson, Y. Moreno, M.A. Porter, Multilayer
networks. J. Complex Network. 2(3), 203–271 (2014)

83. X. Kong, J. Zhang, P.S. Yu, Inferring anchor links across multiple heterogeneous social net-
works, in Proceedings of the 22Nd ACM International Conference on Information & Knowl-
edge Management, CIKM’13 (ACM, New York, 2013), pp. 179–188

84. J. Kunegis, A. Lommatzsch, C. Bauckhage, The slashdot zoo: mining a social network with
negative edges, in Proceedings of the 18th International Conference on World Wide Web,
WWW’09 (ACM, New York, 2009, pp. 741–750

85. M. Kurant, M. Gjoka, C.T. Butts, A. Markopoulou, Walking on a graph with a magnifying
glass: stratified sampling via weighted random walks, in Proceedings of the ACM SIGMET-
RICS Joint International Conference on Measurement and Modeling of Computer Systems
(ACM, 2011), pp. 281–292

86. N. Lao, T. Mitchell, W.W. Cohen, Random walk inference and learning in a large scale
knowledge base, in Proceedings of the 2011 Conference on Empirical Methods in Natural
LanguageProcessing (Association forComputational Linguistics, Edinburgh, 2011), pp. 529–
539

87. C.-H. Lee, X. Xu, D.Y. Eun, Beyond random walk and metropolis-hastings samplers: why
you should not backtrack for unbiased graph sampling, in ACM SIGMETRICS Performance
Evaluation Review, vol. 40 (ACM, 2012), pp. 319–330

88. J. Leskovec, C. Faloutsos, Sampling from large graphs, in Proceedings of the 12th ACM
SIGKDD International Conference on Knowledge Discovery and Data mining (ACM, 2006),
pp. 631–636

89. J. Leskovec, D. Huttenlocher, J. Kleinberg, Predicting positive and negative links in online
social networks, in Proceedings of the 19th International Conference on World Wide Web,
WWW’10 (ACM, New York, 2010), pp. 641–650

90. J. Leskovec, J. Kleinberg, C. Faloutsos, Graph evolution: densification and shrinking diame-
ters. ACM Trans. Knowl. Discov. Data 1(1) (2007)

91. J. Leskovec, L. Backstrom, R. Kumar, A. Tomkins, Microscopic evolution of social networks,
in Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD’08 (ACM, New York, 2008), pp. 462–470

92. J. Leskovec, K.J. Lang, A. Dasgupta,M.W.Mahoney, Community structure in large networks:
natural cluster sizes and the absence of largewell-defined clusters. InternetMath. 6(1), 29–123
(2009)

93. D. Liben-Nowell, J. Kleinberg, The link prediction problem for social networks, in Proceed-
ings of the Twelfth International Conference on Information and Knowledge Management,
CIKM’03 (ACM, New York, 2003), pp. 556–559

94. W. Liu, L. Lü, Link prediction based on local random walk. EPL (Europhysics Letters) 89(5),
58007 (2010)

95. L. Lü, T. Zhou, Role of weak ties in link prediction of complex networks, in Proceedings of
the 1st ACM International Workshop on Complex Networks Meet Information & Knowledge
Management, CNIKM’09 (ACM, New York, 2009), pp. 55–58

96. L. Lü, T. Zhou, Link prediction in weighted networks: the role of weak ties. EPL (Europhysics
Letters) 89(1), 18001 (2010)

97. L. Lü, T. Zhou, Link prediction in complex networks: a survey. Physica A 390(6), 1150–1170
(2011)

98. G.Malewicz,M.H. Austern, A.J. Bik, J.C. Dehnert, I. Horn, N. Leiser, G. Czajkowski, Pregel:
a system for large-scale graph processing, in Proceedings of the 2010 ACM SIGMOD Inter-
national Conference on Management of Data (ACM, 2010), pp. 135–146

99. P. Massa, P. Avesani, Controversial users demand local trust metrics: an experimental study
on epinions.com community, in Proceedings of the 20th National Conference on Artificial
Intelligence - Volume 1, AAAI’05 (AAAI Press, 2005), pp. 121–126

100. M. McGlohon, L. Akoglu, C. Faloutsos, Weighted graphs and disconnected components:
patterns and a generator, in Proceedings of the 14th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD’08 (ACM, New York, 2008), pp. 524–532

614 A.P. Appel and L.G. Moyano

101. A. McGregor, Graph stream algorithms: a survey. ACM SIGMOD Rec. 43(1), 9–20 (2014)
102. G.Menichetti, D. Remondini, P. Panzarasa, R.J.Mondragón,G.Bianconi,Weightedmultiplex

networks. CoRR, abs/1312.6720 (2013)
103. T.Mikolov, I. Sutskever, K. Chen, G.S. Corrado, J. Dean, Distributed representations of words

and phrases and their compositionality, inAdvances inNeural InformationProcessing Systems
(2013), pp. 3111–3119

104. S. Milgram, The small world problem. Psychol. Today 2(1), 60–67 (1967)
105. R.G.Morris, M. Barthelemy, Transport on coupled spatial networks. Phys. Rev. Lett. 109(12),

128703 (2012)
106. P.J. Mucha, M.A. Porter, Communities in multislice voting networks. Chaos 20(4), 041108

(2010)
107. P.J. Mucha, T. Richardson, K. Macon, M.A. Porter, J.-P. Onnela, Community structure in

time-dependent, multiscale, and multiplex networks. Science 328(5980), 876–878 (2010)
108. Neo4j: The World’s Leading Graph Database. http://neo4j.com/. Accessed 10 March 2016
109. M.E.J. Newman, The structure and function of complex networks. SIAMRev. 45(2), 167–256

(2003)
110. M.E. Newman, Modularity and community structure in networks. Proc. National Acad. Sci.

103(23), 8577–8582 (2006)
111. M. Newman, Networks: An Introduction (Oxford University Press, Oxford, 2010)
112. M.E. Newman, M. Girvan, Finding and evaluating community structure in networks. Phys.

Rev. E 69(2), 026113 (2004)
113. M.K.-P. Ng, X. Li, Y. Ye, Multirank: co-ranking for objects and relations in multi-relational

data, in Proceedings of the 17th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (ACM, 2011), pp. 1217–1225

114. F. Niu, C. Zhang, C. Ré, J. Shavlik, Elementary: large-scale knowledge-base construction via
machine learning and statistical inference. Int. J. Semant. Web Inf. Syst. 8(3), 42–73 (2012).
July

115. OrientDB: Distributed Graph Database. http://orientdb.com/. Accessed 10 March 2016
116. L. Page, S. Brin, R. Motwani, T. Winograd, The pagerank citation ranking: bringing order to

the web (1999)
117. C.R. Palmer, P.B. Gibbons, C. Faloutsos, Anf: a fast and scalable tool for data mining in

massive graphs, in Proceedings of the Eighth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (ACM, 2002), pp. 81–90

118. Y. Park,M. Shankar, B.-H. Park, J. Ghosh, Graph databases for large-scale healthcare systems:
a framework for efficient datamanagement and data services, in 2014 IEEE 30th International
Conference on Data Engineering Workshops (ICDEW) (IEEE, 2014), pp. 12–19

119. A. Pavan, K. Tangwongsan, S. Tirthapura, K.-L. Wu, Counting and sampling triangles from
a graph stream. Proc. VLDB Endow. 6(14), 1870–1881 (2013)

120. PEGASUS - Peta-scale graph mining system. http://www.cs.cmu.edu/~pegasus/. Accessed
10 March 2016

121. B. Perozzi, R. Al-Rfou, S. Skiena, Deepwalk: online learning of social representations, in
Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (ACM, 2014), pp. 701–710

122. M.A. Rodriguez, The gremlin graph traversal machine and language (invited talk), in Pro-
ceedings of the 15th Symposium on Database Programming Languages (ACM, 2015), pp.
1–10

123. B. Shao, H. Wang, Y. Li, The trinity graph engine. Microsoft Res., 54 (2012)
124. B. Shao,H.Wang,Y. Li, Trinity: a distributed graph engine on amemory cloud, inProceedings

of the 2013 ACM SIGMOD International Conference on Management of Data (ACM, 2013),
pp. 505–516

125. SNAP: Stanford Network Analysis Platform. http://snap.stanford.edu/. Accessed 10 March
2016

126. D. Song, D.A. Meyer, D. Tao, Efficient latent link recommendation in signed networks, in
Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD’15 (ACM, New York, 2015), pp. 1105–1114

http://neo4j.com/
http://orientdb.com/
http://www.cs.cmu.edu/~pegasus/
http://snap.stanford.edu/

Link and Graph Mining in the Big Data Era 615

127. S. Soundarajan, J. Hopcroft, Using community information to improve the precision of link
prediction methods, in Proceedings of the 21st International Conference on World Wide Web,
WWW’12 Companion (ACM, New York, 2012), pp. 607–608

128. Sparkse: Scalable high-performance graph database. http://www.sparsity-technologies.com/.
Accessed 10 March 2016

129. M. Spiliopoulou, Evolution in social networks: a survey, in Social Network Data Analytics,
ed. by C.C. Aggarwal (Springer, Heidelberg, 2011), pp. 149–175

130. N.V. Spirin, J. He, M. Develin, K.G. Karahalios, M. Boucher, People search within an online
social network: large scale analysis of facebook graph search query logs, in Proceedings of
the 23rd ACM International Conference on Information and Knowledge Management (ACM,
2014), pp. 1009–1018

131. F.M. Suchanek, G. Kasneci, G.Weikum, Yago: a core of semantic knowledge, in Proceedings
of WWW (2007)

132. X. Sui, T.-H. Lee, J.J. Whang, B. Savas, S. Jain, K. Pingali, I. Dhillon, Parallel clustered
low-rank approximation of graphs and its application to link prediction, in Languages and
Compilers for Parallel Computing (Springer, 2012), pp. 76–95

133. Y. Sun, R. Barber, M. Gupta, C.C. Aggarwal, J. Han, Co-author relationship prediction in
heterogeneous bibliographic networks, in Proceedings of the 2011 International Conference
on Advances in Social Networks Analysis andMining, ASONAM’11 (IEEEComputer Society,
Washington, DC, 2011), pp. 121–128

134. Y. Sun, J. Han, C.C. Aggarwal, N.V. Chawla, When will it happen?: relationship prediction
in heterogeneous information networks, in Proceedings of the Fifth ACM International Con-
ference on Web Search and Data Mining, WSDM’12 (ACM, New York, 2012), pp. 663–672

135. J. Sun,C.K.Reddy,Big data analytics for healthcare, inProceedings of the 19thACMSIGKDD
International Conference onKnowledgeDiscovery andDataMining (ACM, 2013), pp. 1525–
1525

136. J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, Q. Mei, Line: large-scale information net-
work embedding, in Proceedings of the 24th International Conference on World Wide Web
Conferences Steering Committee (2015), pp. 1067–1077

137. S. Tasci, M. Demirbas, Giraphx: parallel yet serializable large-scale graph processing, in
Euro-Par 2013 Parallel Processing, ed. by F.Wolf, B.Mohr, D. anMey (Springer, Heidelberg,
2013), pp. 458–469

138. T.T. Tchrakian, B. Basu, M. O’Mahony, Real-time traffic flow forecasting using spectral
analysis. IEEE Trans. Intell. Transp. Syst. 13(2), 519–526 (2012)

139. Y. Tian, A. Balmin, S.A. Corsten, S. Tatikonda, J. McPherson, From think like a vertex to
think like a graph. Proc. VLDB Endow. 7(3), 193–204 (2013)

140. TinkerPop: anApache2 licensedgraph computing framework for both graphdatabases (OLTP)
and graph analytic systems (OLAP). http://tinkerpop.apache.org/. Accessed 10 March 2016

141. Titan: Distributed Graph Database. http://thinkaurelius.github.io/titan/. Accessed 10 March
2016

142. C.E. Tsourakakis, Fast counting of triangles in large real networks without counting: algo-
rithms and laws, in ICDM’08 (IEEE Computer Society, Washington, DC, 2008), pp. 608–617

143. T. Wang, Y. Chen, Z. Zhang, T. Xu, L. Jin, P. Hui, B. Deng, X. Li, Understanding graph
sampling algorithms for social network analysis, inProceedings of the 2011 31st International
Conference on Distributed Computing Systems Workshops, ICDCSW’11) (IEEE Computer
Society, Washington, DC, 2011), pp. 123–128

144. W.Y. Wang, K. Mazaitis, W.W. Cohen, Programming with personalized pagerank: a locally
groundable first-order probabilistic logic, in Proceedings of the 22nd ACM International
Conference on Information and Knowledge Management (CIKM 2013) (2013, to appear)

145. D. Wang, D. Pedreschi, C. Song, F. Giannotti, A.-L. Barabasi, Human mobility, social ties,
and link prediction, in Proceedings of the 17th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD’11 (ACM, New York 2011), pp. 1100–1108

146. D.J. Watts, S.H. Strogatz, Collective dynamics of’small-world’networks. Nature 393(6684),
409–10 (1998)

http://www.sparsity-technologies.com/
http://tinkerpop.apache.org/
http://thinkaurelius.github.io/titan/

616 A.P. Appel and L.G. Moyano

147. K.Wehmuth, A. Ziviani, E. Fleury, A unifyingmodel for representing time-varying graphs. In
2015 IEEE International Conference on Data Science and Advanced Analytics, DSAA 2015,
Campus des Cordeliers, Paris, France, 19–21 October 2015 (2015), pp. 1–10, 2015

148. P.C. Wong, C. Chen, C. Gorg, B. Shneiderman, J. Stasko, J. Thomas, Graph analyticslessons
learned and challenges ahead. IEEE Comput. Graph. Appl. 5, 18–29 (2011)

149. S.H. Yook, H. Jeong, A.L. Barabasi, Weighted evolving networks. Phys. Rev. Lett. 86(25),
5835–5838 (2001)

150. J. Zhang, X. Kong, P.S. Yu, Transferring heterogeneous links across location-based social
networks, in Proceedings of the 7th ACM International Conference on Web Search and Data
Mining, WSDM’14 (ACM, New York, 2014), pp. 303–312

151. Y. Zhao, Mining Large Graphs. Ph.D. thesis, University of Illinois at Chicago (2013)
152. D. Zhou, S.A. Orshanskiy, H. Zha, C.L. Giles, Co-ranking authors and documents in a hetero-

geneous network, in Seventh IEEE International Conference on Data Mining, 2007. ICDM
2007 (IEEE, 2007), pp. 739–744

153. R. Zou, L.B. Holder, Frequent subgraph mining on a single large graph using sampling
techniques, in Proceedings of the Eighth Workshop on Mining and Learning with Graphs
(ACM, 2010), pp. 171–178

Granular Social Network: Model
and Applications

Sankar K. Pal and Suman Kundu

Abstract Social networks are becoming an integral part of the modern society.
Popular social network applications like Facebook, Twitter produces data in huge
scale. These data shows all the characteristic of Big data. Accordingly, it leads to a
deep change in the way social networks were being analyzed. The chapter describes
a model of social network and its applications within the purview of information
diffusion and community structure in network analysis.Here fuzzygranulation theory
is used to model uncertainties in social networks. This provides a new knowledge
representation scheme of relational data by taking care of the indiscernibility among
the actors as well as the fuzziness in their relations. Various measures of network
are defined on this new model. Within the context of this knowledge framework
of social network, algorithms for target set selection and community detection are
developed.Here the target sets are determinedusing the newmeasure granular degree,
whereas it is granular embeddedness, together with granular degree, which is used
for detecting various overlapping communities. The resulting community structures
have a fuzzy-rough set theoretic description which allows a node to be a member of
multiple communities with different memberships of association only if it falls in
the (rough upper - rough lower) approximate region. A new index, called normalized
fuzzy mutual information is introduced which can be used to quantify the similarity
between two fuzzy partition matrices, and hence the quality of the communities
detected. Comparative studies demonstrating the superiority of the model over graph
theoretic model is shown through extensive experimental results.

1 Introduction

Social network is a collection of social ties among friends and acquaintances. After
a child is born, (s)he gets immediately connected with the members of the family.
Over the course of time (s)he develops connections with larger networks like village,

S.K. Pal · S. Kundu (B)
Center for Soft Computing Research, Indian Statistical Institute,
Kolkata 700108, India
e-mail: suman@sumankundu.info

© Springer International Publishing AG 2017
A.Y. Zomaya and S. Sakr (eds.), Handbook of Big Data Technologies,
DOI 10.1007/978-3-319-49340-4_18

617

618 S.K. Pal and S. Kundu

school, and office. Due to the technological advancement, distance travel, global
communication and digital interaction have been growing in numbers and in effect
social networks are also growing steadily in complexity. This complex “connected-
ness” of modern society got the attention of different fields of studies.

The term “social network” was coined by the social scientists. The network was
considered as a theoretical construct to study the relationships between individuals,
groups, organizations or even the entire society. However, the recent boom in online
services related to social networks, viz Facebook, Twitter, WhatsApp, LinkedIn,
provides new research opportunities to the scholars of computer science, because the
data available from these networks are dynamic, large, diverse and complex. That
is, it shows all the characteristics of Big Data [69] such as Velocity, Volume, and
Variety. Accordingly, recent algorithms [43, 53, 61, 85] are addressing the Big Data
issues related to social networks.

Since its inception in early 20th century, social networks are represented using
graphs [58], and graph analysis has become crucial to understand the features of
these networks [24]. Due to the recent revolution in computing (processing) power,
one can now handle relatively larger real networks [67] potentially reaching millions
of vertices. Accordingly, it leads to a deep change in the way social networks were
being analyzed.

In contrast to random network, social networks shows fascinating patterns and
properties [57]. The degree distribution follows power law [5, 21] or truncated geo-
metric distribution [8]. Diameter of the network is very small compared to the size
of the network, and the network possesses high concentration of edges in its certain
parts forming groups. Such groups with high internal edge density within them-
selves and low between them characterizes the community structure (or clusters) of
the network.

Two of themajor research areas in Social NetworkAnalysis (SNA) are (a) analysis
of network values [16, 39, 96], and (b) community detection [9, 65]. The objective
of the former is to analyze the relative importance of a node in the network. One of
the major research application of this area is target set selection. In this problem,
one seeks to find a set of influential nodes for which the information diffusion over
the network is maximum. It is effectively used in viral marketing [81] through online
social networks. In addition, this can be used for finding the top stories from a
news network, spreading of social awareness or combat with deceptions spreading
over social media. Other applications of network values include study on epidemic
spreading, diffusion of innovations, homophily analysis and optimal price-setting in
market.

Several attempts [16, 35, 37, 38, 40, 76, 81, 95] were made to solve the target set
selection problem. However, these are very restrictive either in terms of performance
or in execution time, specifically for large scale social networks. For example, greedy
hill climbing algorithm of [37] provides approximationwithin a factor of (1 − 1

e − ε)
to the optimal solution. Here e is the base of natural logarithm, and ε depends on the
accuracy of Monte-Carlo estimate of influence spread. But it takes days to compute
the set of seeds, even for a moderate sized social network. In contrast to this, heuristic

Granular Social Network: Model and Applications 619

methods (e.g., [10, 11]) are fast but provides sub-optimal output as compared to the
greedy method of [37].

Community detection, on the other hand, deals with the problem of identifying
virtual groups in a network. A community is formed when a group of nodes are
more densely connected with each other compared to rest of the network. In addition
to the social implication study of such groups, the solution to this problem has
broad application in different fields. For example, in world wide web it will help to
optimize the Internet infrastructure [42], in a purchase network it can boost the sell
by recommending the appropriate products [78], and in computer network it will
help to optimize the routing table creation [84].

Scientists from several disciplines studied the community detection problem for
a long time [28, 54, 62, 63, 77, 80, 89]. These involve mainly two strategies for
finding different communities in a network. The first approach considers a partition
of the whole network into disjoint communities (i.e., a node belongs to only one
community). The second strategy, on the other hand, allows a node to be a member of
multiple communities with equal membership. However, for large-scale networks,
it is possible that a node may belong to more than one community with different
degrees of association.

Beside these, highly overlapping neighborhoods in real life big social networks
enforce uncertainties in decision making. Although the graph modeling has been in
use for social networks since its inception in 1934 [58], a better modeling to deal
with these uncertainties is in need. The new modeling may lead to a deep change in
the way social networks were being analyzed.

2 Preliminaries

2.1 Social Network Analysis

At amore precise level, a network is any collection of objects in which some pairs are
connected by links [17]. Based on configuration, different forms of relationships or
connections may be used to define links. Due to this flexible options, it is easy to find
network in different domains. Graph based modeling is a typical way to represent
social networks. Let us first explain some of the basic elements of graphs before
providing a review on modeling social network.
Graph, Nodes and Edges: Conceptually, a graph is formed by nodes (vertices) and
edges (links) connecting the nodes. Formally, a graph is an ordered pair (V, E)where
V is the set of nodes and E is the set of edges, formed by pairs of nodes.
Undirected and Directed Graphs: Edges can be symmetric such as in Fig. 1a, or
asymmetric like in Fig. 1b. The former is referred as undirected graph or simply
graph and the latter is called directed graph.
Graphs as Models of Networks: Graphs are useful in social network study as they
serve as mathematical models of network structure. Let us now replace aforesaid toy

620 S.K. Pal and S. Kundu

example Fig. 1 with a real social network of Fig. 2. It is popularly known as Zachary
karate club [92]. This network shows the friendship relations between 34members of
a US karate club in 1970s. People are represented by nodes and edges are constructed
where two people shows friendship outside the context of club. Note that the actual
placement of nodes is immaterial. All that matters is which node is connected with
which others. Statistics about the network is shown in Table1.
Paths and Cycles: A path is a sequence of nodes where each consecutive pair in the
sequence is connected by an edge. For example, in the Zachary karate club we have a
path from node 1 to 34 as 1, 14, 3, 34. A path can repeat nodes such as, 1, 4, 13, 1, 12.
Cycle is a specific kinds of path which forms a ring like structure. For example, in
Zachary karate club 11, 5, 7, 6, 11 is a cycle.
Connectivity: Whether we are dealing with small or large scale social networks, it
is natural to check if every node can reach every other node via a path. We say a
graph is connected if for every pair of nodes there exists a path between them. For
any social network it may happen that two persons are not reachable via a valid path.
This then leads to a disconnected network. For example, Fig. 3 shows a disconnected
network of metabolic cellular network.

v1

v2

v3

v4v5

(a) (b)Undirected Graph

v1

v2

v3

v4v5

Directed Graph

Fig. 1 Example: graphs, nodes, edges

Fig. 2 Zachary karate club

Granular Social Network: Model and Applications 621

Table 1 Statistics of Zachary
karate club network

Nodes 34

Edges 78

Nodes in largest Weakly Connected
Component(WCC)

34

Edges in largest WCC 78

Nodes in largest Strongly Con-
nected Component(SCC)

34

Edges in largest SCC 78

Diameter 5

Avg. clustering coefficient 0.570638

Fig. 3 Metabolic cellular network data for Oryza Sativa [33]

Components (Weakly Connected versus Strongly Connected) If a graph is not
connected it breaks apart naturally. These separate subsets are called components.
Each of the components when considered separately represents a connected graph.
For example the disconnected network in Fig. 3 has 6 connected component.

For directed social network the notion of connectivity can be expressed in two
different forms, namely, weakly connected component and strongly connected com-
ponent. A weakly connected component is a subgraph of a directed graph such that
for every pair of nodes u, v in the subgraph, there is an undirected path from u to v

and a directed path from v to u. On the other hand, a strongly connected component is
a subgraph of a directed graph such that for every pair of nodes u, v in the subgraph,
there is a directed path from u to v and a directed path from v to u.

622 S.K. Pal and S. Kundu

(a) (b)Frequency CDF

Fig. 4 Degree distribution of Zachary karate club network

Neighbors and Hop Distance: Two nodes u and v are said to be neighbors or
adjacent when they are connected with an edge, i.e., (u, v) is a valid edge in the
graph. If two nodes are not adjacent the distance along a path is usually measured
by hop count. Hop count refers to the number of nodes one needs to pass from the
source node to the destination node. That is a hop is one portion of the path from
source to destination.
Shortest Path and Diameter: One may reach to a node u from another node v

through different paths in the network. Shortest among them has significant value in
the network study. A path p between nodes u and v is said to be the shortest if no
other path between them in the network holds lesser length (in terms of hop distance)
than p.

The diameter of a network is the length of the longest of the shortest paths in the
network. In other words, among the all pairs shortest paths, the highest hop distance
is the network diameter. For real world social networks, it is found that the diameters
tend to be very small. For example, the diameter of the karate club network (Fig. 2)
is 5. This phenomenon is called small world property of the social network.
Degree and Degree Distribution: Degree of a node is measured by the number
of incident edges on it. It is denoted by d(v). For directed graphs, a node has two
different degrees, the in-degree, which is the number of incoming edges, and the
out-degree, which is the number of outgoing edges.

Degree distribution refers to the frequency distribution of the degrees of a net-
work. Degrees are usually plotted in x-axis and the frequencies are plotted in y-axis.
Figure4a shows the degree distribution of the karate club data. Similarly we can plot
cumulative distribution function (CDF) as shown in Fig. 4b.

An observation can be made from the degree distribution of the karate club data
that the number of nodes with higher degree is low as compared to the number of
nodes with lower degree values. Similar long tail can be found in most of the real
world networks. This is different from randomgraphs and due to this, social networks
are referred as scale free network.

Granular Social Network: Model and Applications 623

2.2 Fuzzy Sets

Traditional set theory deals withwhether an element “belongs to” or “does not belong
to” a set. Fuzzy set theory [93], on the other hand, concernswith the continuumdegree
of belonging, and offers a new way to observe and investigate the relation between
sets and its members. It is defined as follows:

Let X be a classical set of objects, called the universe. A fuzzy set A in X is
a set of ordered pairs A = {(x,μA(x))|x ∈ X}, where μA : X → M is called the
membership function of x in A which maps X to membership space M . Membership
μA(x) indicates the degree of similarity (compatibility) of an object x to an imprecise
concept, as characterized by the fuzzy set A. The domain of M is [0, 1]. If M = {0, 1},
i.e., the members are only assigned either 0 or 1 membership value, then A possesses
the characteristics of a crisp or classical set.

The set of all elements having positive memberships in fuzzy set A constitutes its
support set, i.e.,

Support (A) = {x |μA(x) > 0}. (1)

The cardinality of the fuzzy set A is defined as

|A| =
∑

x∈X

μA(x). (2)

Union and intersection of two fuzzy sets A and B are also fuzzy sets andwe denote
them as A ∪ B and A ∩ B respectively. The membership functions characterizing
the union and intersection of A and B are as follows:

μA∪B(x) = max(μA(x),μB(x)), x ∈ X (3)

μA∩B(x) = min(μA(x),μB(x)), x ∈ X. (4)

2.3 Rough Sets

Let X be a classical set of objects, in a universe of discourse U . Under situations
when relations exist among elements of U , X might not be exactly definable in U as
some elements of U that belong to the set X might be related to some elements of
U that do not belong to set X .

When a relation, say R, exists among elements of U , limited discernibility draws
elements of U together governed by the relation R resulting in the formulation of
granules in U . Here, a set of elements in U that are indiscernible from or related
to each other is referred to as a granule. Let us represent granules using Y and the
family of all granules formed due to the relation R using U/R.

624 S.K. Pal and S. Kundu

As mentioned earlier, the relation R among elements of U might result in an
inexact definition of X . To tackle such cases, in rough set theory, X is approximately
represented by two exactly definable set R X and �R X in U given as

R X =
⋃

{Y ∈ U/R|Y ⊆ X} (5)

�R X =
⋃

{Y ∈ U/R|Y ∩ X �= } (6)

In the above, the set R X is defined by the union of all granules that are subsets of
the set X and the set �R X is defined by the union of all granules that have non-empty
intersection with the set X . The sets R X and �R X are respectively called the lower
approximation and upper approximation of X with the imprecise concept R.

Fuzzy set and rough set are reputed to handle uncertainities arising from overlap-
ping concepts (or characters) and granularity in the domain of discourse respectively.
While the former uses the notion of class membership of an element, the latter hinges
on the concept of approximating from lower and upper side of a set defined over a
granular domain.

2.4 Granular Computing

Granular computing (GrC) is a problem solving paradigm with the basic element,
called granules. The construction of granules is a crucial process, as their sizes and
shapes are responsible for the success of granular computing based models. Further,
the inter and intra relationships among granules play an important role. A granule
may be defined as the clump of elements that are drawn together, for example,
by indiscernibility, similarity and functionality. Each of the granules according to
its shape and size, and with a certain level of granularity may reflect a specific
aspect of the problem. Granules with different granular levels may represent a system
differently.

Granulation is the process of construction, representation and interpretation of
granules. It involves the process of forming larger objects into smaller and smaller
into larger based on the problem in hand. According to Zadeh [94], “granulation
involves a decomposition of whole into parts. Conversely, organization involves an
integration of parts into whole.”

One of the realizations behind GrC is that - precision is sometimes expensive
and not very meaningful in modeling and controlling complex systems. When a
problem involves incomplete, uncertain and vague information, it may sometimes
become difficult to differentiate the individual elements, and one may find it conve-
nient to consider granules to represent a structure of patterns evolved by performing
operations on the individual patterns [26]. Accordingly, GrC became an effective
framework in designing efficient and intelligent information processing systems for
various real life decision-making applications. The said framework can be modeled,

Granular Social Network: Model and Applications 625

for example, with the principles of fuzzy sets, rough sets, neural networks, power
algebra, interval analysis [73]. For further details on the significance and various
applications of GrC, one may refer to [7, 66, 68, 70, 72, 91].

3 Literature Review

3.1 Modeling Social Networks

As mentioned in Sect. 2.1, network structures with actors and their relationships are
usually modeled as graphs. In sociology, this representation is sometime referred
as sociogram. In a sociogram, actors are represented by vertices of a graph, and
relations by edges. Graphs appear naturally here as it is useful to represent how
things are either physically or logically linked together. Sociogram was developed
by Moreno [58] to analyze the choices of preferences within a group. It was used to
diagram the structure and patterns of group interactions.

Social network data, sometime represented in two-way matrices, is termed as
sociomatrices [88]. The two dimensions of a sociomatrix are indexed by the senders
(rows) and the receivers (column) of relationships. Usually the matrix has n rows
and n columns, where n represents the number of actors in the network. Thus a
basic sociomatrix is square. Sociomatrices were first used together with sociogram
by Moreno [58] who showed how social relationship can be pictured through these.

The same network can also be represented using the relational form. Relational
algebras (also called role algebras) are used to analyze the structure of social roles by
emphasizing multiple relations rather than actors. Harrison White and his students
[6, 90] pioneered this approach as an extension to block modeling. A block model is
a representation of objects in groups based upon patterns that occur in the relations
between these objects [3]. The structure of a block model is a matrix in which the
(i, j)th entry denotes the number of directed edges from nodes in cluster i to nodes
in cluster j . A block models can represent any pattern that arises in the relations
between objects, such as bipartite relations, hierarchies, rings, bridges, and other
unique aggregate connectivity patterns between groups of vertices.

Another approach to model social networks is based on statistical modeling. The
idea of statistical modeling of network is to represent the main features of the social
network by a few parameters and express the uncertainty of those estimates by
standard error, p-value, posterior distribution etc. There are two ways for statistical
modeling of network, viz. model-based inference and design-based inference. When
a sample is drawn froma larger graph, design-basedmethod can be used. Link-tracing
technique [83] is one kind of design based method. Examples of this technique
are snowball design and random walk design. On the other hand, in model-based
inference, it is required to construct a probability model with the assumption that
the observed data can be regarded as the outcome of a random draw from this model
[25, 27]. Multiple linear regression models are an example.

626 S.K. Pal and S. Kundu

Thus several models for describing social network exist starting from 1930s.
Recently, the development on modeling social network problems using multi-agent
theory and/or game theory has been observed. In their paper [41], Kleinberg et. al.
modeled a network with n distinct agents who build link to one another based on a
strategic game. The payoff to an agent arises as a difference of costs and benefits.
Narayanamet. al. [60], on theother hand,mapped the informationdiffusionprocess of
social network to the formation of coalitions in an appropriately defined cooperative
game. In [34], authors modeled the user interactions of a network to explore the
dynamic evolutionary process of knowledge sharing among users using the agent-
based computational approach. But the focus of these researches is mostly problem
centric.

Fuzzy set theory has also received attention on social network analysis in recent
years. In their work, Nair and Sarasamma [59] analyzedmulti-modal social networks
using fuzzy graphs and referred it as fuzzy social network. Later in 2008, Davis
and Carley [14] used a stochastic model to identify fuzzy overlapping groups in
social networks. Here they modeled the fuzzy overlapping group detection using an
optimization problem. Another area where fuzzy sets have been used by different
scientists is positional analysis (finding similarities between actors in the network)
of social networks [22]. Instead of a general framework, these recent developments
of fuzzy set theoretic approach in social network are more focused on a particular
type of the network or particular application of the network.

Beside these, an attempt was made to use the concept of granular computing to
model relational database for association discovery [32]. The technique is a spe-
cialized version of the general relational data mining framework which efficiently
provides the search space for association discovery. Also, there were several research
investigations focused on a problem oriented modeling of social network using dif-
ferent soft computing tools. For example, Chen and Li [9] proposed evolutionary
computing based algorithm to detect community structures in complex networks.
Genetic algorithm based diffusion model for information cascade in a social net-
work is used in [46, 52]. For target set selection problem, Wang et al. [86] proposed
a set-based coding genetic algorithm. However, none of these techniques provides
any general framework which can serve as a generic platform, similar to sociogram
or sociomatrices, to analyze social network data in view of different problems in the
field.

Algorithm 1: Greedy Hill Climbing Algorithm
input : A Social Network G(V, E) and k
output : Set S ∈ 2V having cardinality k

initialization: S := ∅
while |S| �= k do

v∗ ← argmax
v∈V \S

σ̂(S ∪ {v}) ; /* σ̂(.) returns the estimated influence */

S ← S ∪ {v∗};

Granular Social Network: Model and Applications 627

3.2 Target Set Selection

In the area of information diffusion, finding a target set is to find the influential nodes
mainly in terms of the total influence in the network. The natural solution to the prob-
lemwill be to select those persons having higher numbers of neighbors. That is, select
the nodes based on their degree centrality scores. Domingos and Richardsonwere the
first to study the problem [16, 81] in the algorithmic aspect and proposed probabilis-
tic methods to solve it. Later, Kempe et al. formulated it as a discrete optimization
problem [37] and showed that the problem is NP hard. They proposed a greedy hill
climbing algorithm shown in Algorithm 1. In each iteration of the algorithm, mar-
ginal contribution of every non seed node (i.e., nodes in V \ S) to the information
diffusion is separately estimated and the highest contributor is selected as the next
seed. Thus the algorithmmaximizes the influence contribution during seed selection.
Hence it is able to find higher quality seeds. However, for the same reason it leads to
high computational time, specially for large scale networks. The main drawback of
the algorithm comes from the marginal contribution estimation. There is no deter-
ministic methods available till date to get the marginal contribution of a node. In their
paper, Kempe et al. [37] uses Monte Carlo simulation for the estimation os such con-
tribution. As the process of information diffusion is highly stochastic, the simulation
needs to be performed for a sufficiently large number of times to obtainmore accurate
results. It may take days to identify top 50 seeds even on a graph of moderate size
of 30K nodes [12]. To overcome this drawback, several algorithms were proposed
in last few years [11, 18, 30, 49]. Notably, in [49] Leskovec et al. presented a cost-
effective lazy forward (CELF) method which exploits the sub-modularity property
of the influence function. For any given set function σ(.), sub-modularity property
confirms that the effect of v to a subset is always higher than that of the super set.
That is, σ(S ∪ {v}) > σ(T ∪ {v}) if S ⊂ T . Authors argued in [49] that most of the
realistic outbreak detection objectives are sub-modular. Their experiments with blog
network and water network show that CELF runs 700 times faster than the greedy
algorithm of [37]. However, CELFmethod still takes hours to generate 50 seeds [11].
Improvement in execution time was also sought by considering the properties of the
underlying diffusion model. One of such popular diffusion models is Independent
cascade model. In this model of information diffusion, information propagates in
discreet time steps. In each time t , one node with the information tries to influence
one of its neighbors who does not have the information already. Success depends on a
probability called propagation probability. Irrespective of the success, the same node
will never get a chance to influence the same neighbor again. In [11], authors provide
two new greedy algorithms designed on independent cascade model of information
diffusion. One of them, NewGreedyIC, uses a random removal of edges instead of
Monte Carlo simulation to estimate a node’s marginal contribution. The random
removal uses the propagation probability to identify the edges to be removed. This
process leads to an improvement in execution time. Further they integrated the idea
of the CELF inside the NewGreedyIC and proposed improved MixGreedyIC. Goyal
et al. [30] suggested an improved version of CELF as CELF++ and showed empiri-

628 S.K. Pal and S. Kundu

cally that the algorithm is faster than CELF with insignificant amount of additional
memory usage. In CELF++, authors maintained a heap with intermediary results
of the Monte Carlo simulation, which reduces the execution time of the subsequent
iterations. A greedy sketch-based influence maximization (SKIM) was described in
[13] very recently and it is reported that it may be scaled to large social network data.

In contrary, several heuristic algorithms [10–13]were proposedwhich improve the
performance compared to the centrality measures while the execution time remains
lower than that of the greedy. One such algorithm is degree discount heuristic of
[11], which runs with the following principle. If a node u is already considered as
a seed then in later iterations a node v’s degree is calculated after discounting the
edge e(u, v). This algorithmworks verywell for undirected social networks. In 2012,
Wang et al. [87], reported a heuristicmethod named prefix excludingmaximum influ-
ence path (PMIA) where the propagation probability of a path is calculated and used
to identify a node’s contribution in the diffusion. These heuristic approaches used
underlying diffusion principles to improve the performance. Some of the heuristic
algorithms, on the other hand, are designed to perform well on specific social net-
works. For example, Chen et al. [12] proposed a liner time algorithm for directed
acyclic graphs, and Gomez- Rodriguez and Schölkopf [29] proposed probability
based methods to identify influential nodes for continuous time diffusion networks.
Similarly, Aslay et al. [4] described a target set selection algorithm for topic-aware
influence maximization queries and Li et al. [51] reported a location-aware target set
selection method using spacial-based indexes.

3.3 Community Detection

Community detection is to identify virtual groups of a network. The main challenge
is to identify the groups and possibly their hierarchical organization by only using the
network topology. One of the first studies on community identification was carried
out by Rice [80]. In the work, clusters were identified in a small political body
based on their voting patterns. Later in 1955, Jacobson [89] studied community
structure within a government agency [89]. They have separated work-groups by
removing those people who work with different groups. This idea of removing edges
is the basis of several algorithms in recent times. One such algorithm, presented
by Girvan and Newman [28], aims at the identification of the edges lying between
two communities for possible removal. These edges were identified based on their
centrality values. The concept is considered as the start of modern era in community
detection. In [63], Newman [63] proposed the modularity measure to quantify the
quality of the identified community structure. Themodularity is, up to amultiplicative
constant, the number of edges falling within groups minus the expected number in
an equivalent network with edges placed at random [64]. Modularity value can be
either positive or negative. Positive value of modularity indicates the presence of
community structures. So, onemay partition the network with the aim tomaximizing
the modularity value of the community structure. This idea of optimizing modularity

Granular Social Network: Model and Applications 629

using some optimization technique is used to identify the community structure by
Newman [62]. On the contrary, Raghavan et al. [77] described a near liner localized
community detection algorithm based on label propagation which does not optimize
any similar measures of community strength. In this method, initially each node is
assignedwith a unique label. At every iteration of the algorithm, each node adopts the
label which is used by maximum number of its neighbors. Ties are broken randomly.
At the end of the algorithm, nodes with the same label are grouped together to
form a community. Density based graph partitioning algorithm is also available in
the literature. Example of one such algorithm is by Falkowski et al. [20]. More
traditional methods such as hierarchical [31] and partition based clustering, where
vertices are jointed into groups as per their mutual similarities, are also used for
identifying communities in a social network.

All these algorithms discussed above create a crisp partition in the network. That
is, a node belongs to a single community only. However in a real life a person may
belong tomultiple groups, i.e., the existence of overlapping community structures. In
[36, 79], authors showed that overlapping is indeed a significant feature of many real
world social networks. One of the most popular overlapping community detection
algorithms, namely, clique percolation method (CPM) of [71], detects overlapping
communities by searching of adjacent cliques. The algorithm first searches for all the
cliques of size k and constructs another graph by considering a k-clique as a node. A
link is added when two cliques share k − 1 edges. Each connected component on this
newgraph is considered to be a community in the network, and k-cliques belonging to
a component are considered to be in the same community.Overlap is possible because
a node can be a member of multiple cliques. A version of the same algorithm for
weighted network was proposed by Farkas et al. [23]. Here k-cliques with weight
greater than a threshold are considered for the community. Another approach to get
overlapping community structure is to partition links instead of nodes. Ahn et al. [2]
used hierarchical clustering to partition edges of the network. In this algorithm, each
edge belongs to a unique cluster but nodes may naturally belong to different clusters.
Evans and Lambiotte [19], on the other hand, constructed a new weighted line graph
by considering links of the original graph as a node and then partition this new graph
using disjoint community detection algorithm. Although the link partitioning for
overlapping detection seems conceptually to be natural, there is no guarantee that it
provides higher quality than the node based detection does [24]. Readers may refer
to [24, 50] for review on different Community detection algorithms.

4 Fuzzy Granular Social Networks (FGSN)

Social network is nothing but a collection of relations between social actors and their
interactions. Social actors often form closely operative groups among themselves,
which are often indistinguishable. A granule is a clump of objects (points) in the
universe of discourse, drawn together, for example, by indistinguishability, similarity,
proximity or functionality [94]. So, the characteristic of indistinguishability among

630 S.K. Pal and S. Kundu

closely operative groups of the social actors may be modeled using the concepts of
granules for further processing.

Further, the basic concepts of conceptual similarities between nodes, cluster of
nodes, relations between nodes and their interactions etc. do not lend themselves
to precise definition, i.e., they have ill-defined boundaries. So, it is appropriate and
natural if a social network is viewed in terms of a collection of fuzzy granules. Based
on these notions, a new unified framework to model social networks effectively and
efficiently in the framework of granular computing is developed [44, 45]. In this
model a granule is constructed around a node with fuzzy boundary. The membership
function for computing the degree of belonging of a node to the said granule is
determined depending upon the problem in hand. Within this framework, some of
the popularly known network measures are redefined [44].

4.1 The Model

Global phenomenon of a social network always ensembles the local behaviors of
individuals as well as their closely related neighborhoods. While the concept of
neighborhoods in the network can be modeled in terms of granules, the vagueness in
term “closeness” can be quantified using fuzzy set theory. In this section, we provide
the description of the model fuzzy granular social network (FGSN).
Knowledge Representation: Let us consider the graph G(V, E) represents a social
network,whereV is the set of all nodes (or vertices) and E represents the relationships
(or edges). If I is the unit interval [0, 1], a fuzzy granular neighborhood defined over
V is a function φ : V → A(V), which assigns every node v ∈ V to a fuzzy set
A ∈ I V . When φ(v) is non empty, we call it the fuzzy neighborhood of the node v,
i.e.,φ(v) is the granule defined around the node v. Due to the complex nature of social
networks a node can be a member of different such neighborhood sets reflecting its
different degrees of association. Let family of fuzzy sets associated with the node
v ∈ V be Φ(v). Φ(v) represents the neighborhood sets of node v. A fuzzy granular
social network is represented by a triple:

S = (C,V,G) where (7)

• V is a finite set of nodes of the network

• C ⊆ V is a finite set of granule representatives

• G is the finite set of all granules,

i.e.,G = {
⋃

Φ(c)|c ∈ C}

A granule g ∈ G around a representative node (c ∈ C) is constructed by assigning
fuzzymembership values to its neighborhood nodes. Due to the overlapping nature of
the neighborhoods, a node may belong to more than one granule. Their association
with different granules may have different degrees as well. However, in case of

Granular Social Network: Model and Applications 631

directed social network, two different granules may be constructed around one single
node. One for inbound relations and other for the outbound relationships [44].

4.2 Network Measures of FGSN

A social network is analyzed based on social measures defined over its graph rep-
resentation. Similarly, several equivalent granular measures available for FGSN are
provided in this section.

Let us first see the construction of FGSN of our example network shown in Fig. 2.
Our objective here is to model the graph representation G(V, E) by a fuzzy granular
social network representationS(C,V,G). So, we need to define three sets C,V and G
from the network G(V, E).

We consider preserving the maximum information of the network inside the
FGSN. So, we constructed granules around every nodes in the network. Following
is the definition of S(C,V,G) for Zachary karate club data.

• V = {v|∀v ∈ V }
• C = {c|∀c ∈ V}
• G = {Ac|∀c ∈ C, Ac ≡

∑

v∈V
μ̃c(v)/v}.

Normalized membership value μ̃c(v) is the degree of belonging of node v in the
granule (Ac) around node c. μ̃c(v) is calculated based on the Eq.8 with minimum
hop distance as the distance metric and r = D, the network diameter.

μ̃c(v) = μc(v)
∑

i∈C μi (v)
such that

∑

i∈C
μ̃i (v) = 1 (8)

where,

(a) (b)Granule of 1 Granule of 34

Fig. 5 Color coded granules of Zachary karate club

632 S.K. Pal and S. Kundu

data
log normal
pareto

10.05.02.0 3.01.5 7.0

Granular Degree

0.80

0.85

0.90

0.95

1.00
C
D
F

(a) (b)Granular degree distribution

data
log normal
pareto

10.05.02.0 3.01.5 7.0

Granular Betweenness

0.2

0.4

0.6

0.8

1.0

C
D
F

Granular betweenness distribution

Fig. 6 FGSN features of Zachary karate club

μc(v) =
⎧
⎨

⎩

0 for d(c, v) > r
1

1 + d(c, v)
otherwise

(9)

where d(c, v) is the distance between node v and the center c.
Two such granules around nodes 1 and 34 are shown in Fig. 5. Here darker shades

of brown represent higher values ofmembership.Asweusednormalizedmembership
values, the nodes in less overlapping region may turn to have higher membership
than the center nodes of the granules. This indicates that those nodes belong only to
a fewer number of granules as compared to the centers. This is intuitively appealing
as the former ones have higher possibilities of ‘definitely belonging’ to a granule
than the latter ones
Granular Degree of a Node: Granular degree of a node in FGSN is equivalent to
the degree measure of a node in graph representation. Granular degree of a node c is
the cardinality of the granule constructed around the node c [44]. Here each granule
is represented by a fuzzy set, so we use Eq.2 to compute the granular degree of a
node c as

D(c) = |Ac| =
∑

v∈V
μ̃c(v) (10)

In the karate club example (Fig. 2), node 34 has a granular degree of 3.38026 and
node 1 has a granular degree of 3.0044. Figure6a shows the distribution of granular
degree of karate club data.
Granular Betweenness of a Node: Granular betweenness of a representative node
c in FGSN is quantified by the sum of membership values that c possesses for
all granules in the system [44]. Using the normalized membership values (Eq.8),
granular betweenness of c ∈ C is calculated as follows.

B(c) = 1

max
i∈C

(μ̃i (c))
(11)

Granular Social Network: Model and Applications 633

B(c) takes values in [0, |C|]. In our example karate club network, granular
betweenness of node 1 and node 34 is 9 and 9.5, respectively. The distribution of
granular betweenness of karate club data is shown in Fig. 6b.
Granular Embeddedness of a Pair of Nodes: Granular embeddedness for any pair
of nodes defines howmuch a granule centered at one node is embedded inside that of
the other [44]. It may be measured by the cardinality of the intersection of granules
centered by the pair of points. Using Eqs. 4 and 2, granular embeddedness of a pair
of nodes a and b is defined as

E(a, b) = |Aa ∩ Ab| =
∑

v∈V
min(μ̃a(v), μ̃b(v)) (12)

where Aa and Ab are the fuzzy sets representing the granules having the center nodes
a and b, respectively.

In the example of karate club, the embeddedness of 1 and 34 is found to be
0.610714when r = 2, and 0.959073when r = D(= 5), the diameter of the network.

4.3 Uncertainties in FGSN

Uncertainties in a social network arises due to the presence of vaguely defined close-
ness between nodes. Each relationship has a degree of togetherness. The presence of
a relational link in a network does not imply that both the nodes are 100% committed
towards each other. Similarly, the absence of a link does not necessarily mean they
are not following each other. Let us now define two measures of uncertainties in
FGSN in terms of fuzziness, as follows:
EnergyMeasure of aGranule inFGSN: Let us consider amonotonically increasing
mapping e : [0, 1] → [0, 1] with the boundary conditions e(0) = 0 and e(1) = 1.
An energy measure of a granule Ac ∈ G, denoted by E(Ac), is a function of its
characterizing membership values, represented as

E(Ac) =
∑

x∈V
e[μ̃c(x)] (13)

This measure quantifies the energy associated with the granule Ac. The energy
increases as the membership values of its supporting nodes increase. The energy
measure of Ac reduces to its cardinality if we use the identity mapping e(x) =
x ∀x ∈ V , i.e.,

E(Ac) =
∑

x∈V
μ̃c(x) = |Ac| (14)

One can also think of a different functional for e other than the identity mapping,
for example, e(x) = xa, a > 0 or e(x) = sin(π

2 x).

634 S.K. Pal and S. Kundu

Entropy Measure of FGSN: Given a FGSN S(C,V,G), each granule Ac ∈ G rep-
resents a fuzzy equivalence class under the attribute set C. If we have n objects in
the universe V then the fuzzy relative frequency [56] of a granule will be

ρ(Ac) = |Ac|
n

(15)

where |Ac| is the cardinality of the granule Ac. Based on this relative frequency of
granules, one can find the information gain of the FGSN through its entropy, using
Shannon’s logarithmic function, as

H(S) = −
∑

Ac∈G
ρ(Ac)logβ(ρ(Ac)) (16)

where β represents the base of logarithm. Applying Eq.15 into Eq.16 we get

H(S) = −1

n

∑

Ac∈G
|Ac|logβ(

|Ac|
n

). (17)

The value of H(S) can vary in [0, logβ(|C|)]. H(S) = 0 means the FGSN is least
uncertain, while its value equal to logβ(|C|) signifies the highest uncertainty. Readers
may refer [82] for generalized entropy measures in the granular space.

4.4 Granular Degree Heuristic for Target Set Selection in
FGSN

The section report the experimental results demonstrating the applicability of fuzzy
granular social network for target set selection problem.
Problem Statement: Let us consider an influence function σ : 2V → N, defined for
a social network S(C,V,G), such that given a set of initial active nodes K ∈ 2V ,
σ(K) returns the expected number of active nodes at the end of information cascade.
The problem of target set selection is to find the k number of influential nodes for
which influence in S is maximum. So, this is a maximization problem defined as

max
K

σ(K)

subject to |K | = k, k > 0.

Data Sets: In the experiments, we used three data sets, namely Zachary karate
club [92], Dolphin social network [55], and Political blog network [1]. We already
described the details of Zachary karate club in Sect. 2.1. Properties of Dolphin social
graph and Political blog network are shown in Figs. 7 and 8 respectively.
Results: We first selected the top-k nodes (that is, the centers of the granules) from a
given FGSN, in descending order of granular degree value. We refer this algorithm

Granular Social Network: Model and Applications 635

BeakBeescratch

Bumper

CCL

Cross

DN16
DN21

DN63

Double
Feather

Fish

Five

Fork

Gallatin
Grin

Haecksel

HookJet

Jonah

Knit
Kringel

MN105

MN23

MN60

MN83

Mus Notch

Number1

Oscar

Patchback

PL

Quasi

Ripplefluke

Scabs

Shmuddel

SMN5

SN100

SN4

SN63

SN89

SN9SN90

SN96

Stripes

Thumper

Topless

TR120
TR77

TR82

TR88

TR99

Trigger

TSN103

TSN83

Upbang

Vau

Wave

Web

Whitetip

Zap

Zig

Zipfel

(a) (b)

(c)

Network

data
log normal
pareto

10 20 50 100 200 500 1000

Degree

0.7

0.8

0.9

1.0

C
D
F

Degree distribution

Nodes 62
Edges 159
NodesinlargestWeaklyConnectedComponent(WCC) 62
Edges inlargestWCC 159
NodesinlargestStronglyConnectedComponent(SCC) 62
Edges inlargestSCC 159
Diameter 8
Avg. clusteringcoefficient 0.258958

Statistics

Fig. 7 Dolphin social graph

as Granular degree heuristic. Then we pass these top k nodes, as the set of seeds,
in the Monte Carlo simulation of information diffusion (independent cascade model
[37]). The output of the simulation process represents the number of total nodes
influenced due to the said set of input seeds. We have varied the value of k from 1 to
15. These results are reported graphically in Fig. 9. Here X -axis shows the value of
k and the Y -axis presents the total number of nodes influenced. As the Monte Carlo
process is a stochastic process, we executed each experiment for 10000 trials and
reported here the average values. It is clear from the figure that, for Zachary karate
club andDolphin social networks, results obtainedwith the proposed granular degree
heuristic on FGSN outperform those obtained by other graph theoretic algorithms
(High degree heuristic, Random and Diffusion degree heuristic [67]) for most values
of k. This signifies that the set of seeds selected using the FGSN basedmethod is able
to determine the superior top k influential nodes. For Political blogs, the performance
is at par with the High Degree Heuristic, superior to random and inferior to Diffusion
Degree Heuristics.

Execution time (in seconds) of different algorithms for 1000 runs is shown in
Table2. As expected, the random selection method needs least time for all the data
sets. Diffusion degree heuristics, on the other hand, takes longest time for all the
cases. The proposed Granular degree heuristic requires much lower execution time
as compared to diffusion degree for all the data sets. For Zachary karate club and
Dolphin social graph, it is almost as fast as the high degree heuristics. For Political
blog network, however, the proposed algorithm takes longer time compared to high
degree heuristics. Further the algorithm is seen to perform best for r = 2. For other
values e.g., r = 1, 3, 4, 5, the performance deteriorates [44].

636 S.K. Pal and S. Kundu

Network
Nodes 1490
Edges 16718
Nodes in largest Weakly Connected Component (WCC) 1222
Edges in largest WCC 16717
Nodes in largest Strongly Connected Component (SCC) 1
Edges in largest SCC 0
Diameter 10
Avg. clustering coefficient 0

Statistics

(a)

(b)

Fig. 8 Political blogs network

The computation complexity of the granular degree heuristic is O(|V | + |E | +
|C| + kn) as reported in [44]. Here k is the number of desire seeds and n is the number
of granules having granular degree greater than 1.

4.5 Fuzzy-Rough Community (FRC) Detection

A new community detection algorithm within the new knowledge representation
scheme of FGSN is described in this section. Communities detected here show fuzzy-

Granular Social Network: Model and Applications 637

Fig. 9 Variation of total
influence with k for different
algorithms (r = 2)

Granular Degree

High Degree

Random

Diffusion Degree

2 4 6 8 10 12 14
k

5

10

15

20

To
ta
lI
nf
lu
en
ce

To
ta
lI
nf
lu
en
ce

To
ta
lI
nf
lu
en
ce

(a)

(b)

(c)

Zachary karate club

Granular Degree

High Degree

Random

Diffusion Degree

2 4 6 8 10 12 14
k

5

10

15

20

Dolphin social graph

Granular Degree

High Degree

Random

Diffusion Degree

2 4 6 8 10 12 14
k

10

20

30

40

50

60

Political blogs network

638 S.K. Pal and S. Kundu

Table 2 Execution time (in sec) of different algorithms for 1000 runs

Data Sets

Algorithms Zachary karate club Dolphin social graph Political blogs network

Granular degree
heuristics

0.311 0.52 27.26

High degree heuristics 0.3 0.48 3.7

Random selection 0.2 0.2 0.5

Diffusion degree
heuristics

12.19 16.532 9.29 × 104

rough characteristics [45]. Nodes surely belong to a community constitute its lower
bound (i.e., core region) in the notion of rough set theory while the others possibly
belonging to the community are identified as members of “upper - lower” bound
or boundary region. The nodes in the core region of the community are assigned
with “unity” (full) membership to that community and “zero” (no) for the remaining
community. The nodes in boundary region belong to multiple communities with
different memberships of association. We assign fuzzy membership to these nodes
based on their connectivity with different core regions, thereby resulting in unequal
membership unlike the previous available methods.
TheAlgorithm:Acommunity is formedwhennodes are densely connected, compare
to the other parts of the network. In the new knowledge representation scheme of
fuzzy granular social network we would like to find out such densely connected
groups. The key idea of finding such groups is to identify the granules with dense
neighborhood and merge them when they are nearby (merging dense regions). Thus
the first step is to find those granuleswhere granular degree (Eq.10) exceeds a certain
threshold (θ) indicating dense region. These granules are referred as θ-Core.

A community may have multiple such θ-cores. The algorithm needs to identify
the set of those close by θ-cores. So, the goal is to search for θ-cores which belong to
same community. These are called ‘community reachable cores’ [45]. To understand
community reachability, we need to understand how the neighborhood of a granule
is defined. Neighborhood of a granule Ac is the set of all granules whose centers lie
in the support set of Ac [45], i.e.,

Γ (Ac) = {Ai |Ai ∈ G and i ∈ Support (Ac)∀i �= c}

where Support (Ac) = {v|μ̃c(v, r) > 0} and r is the radius of the granule.
Based on the neighborhood, thus defined, we can find the θ-cores which are com-

munity reachable to each other, i.e., belong to the same community. There are three
notions of community reachability. Two θ-cores are said to be (1) directly community
reachable when one of them is in the neighborhood of the other, (2) indirectly com-
munity reachable, when one is reachable via a chain of directly community reachable
θ-cores to the other and (3) r -connected community reachable when both of them
are indirectly community reachable to a third θ-core r .

Granular Social Network: Model and Applications 639

In a network, there might be nodes, which reside at the boundary regions and
have neighborhood spread over multiple groups. To represent the notion of this
overlapping, a normalized granular embeddedness measure [45] is introduced as

E(Ap, Aq) = |Ap ∩ Aq |
|Ap ∪ Aq | .

E = 0 implies no overlapping between granules Ap and Aq . E = 1 signifies com-
plete overlapping.

On the basis of community reachable θ-cores one may define community as
follows.

Definition 1 (Community) Given a social network S = (C,V,G), and θ and ε, a
communityC is a non empty subset of granulesG satisfying the following conditions:

• ∀Ap, Aq ∈ C, Ap and Aq are community reachable cores
• ∀Ap ∈ C, E(Ap,

⋃
Aq∈C\Ap

Aq) > 1
ε

θ and ε are referred as density and coupling co-efficient of the community respec-
tively [45]. One may note that the communities, thus identified, have fuzzy (ill
defined) boundaries. These communities can further be viewed in terms of lower
and upper approximations in the framework of rough set theory. That is, each com-
munity has a lower approximate region reflecting nodes definitely belonging to, and
a boundary (i.e., upper - lower) region reflecting the nodes possibly belonging to.
Therefore it may be appropriate to assign fuzzy membership values in (0, 1) to only
those nodes which lie within the said (upper - lower) region, and assign unity (1)
value to those of lower approximation. The fuzzy-rough communities are accordingly
defined (Definition 2).

Definition 2 (Fuzzy-Rough Community) Let the n communities found for a social
network be C1,C2, ...,Cn , and the upper and lower approximation of the i th com-
munity be Ciθ and Ciθ respectively. Then

Ciθ = {x |x ∈ Support (Ap) ∧ x /∈ Support (Aq);
∀Ap ∈ Ci and Aq ∈ C j ; i �= j} (18)

Ciθ = {x |x ∈ Support (Ap); Ap ∈ Ci }

Fuzzy-Rough membership function characterizing the community Ci is defined
as,

δθ
Ci

(x, r) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if x ∈ Ciθ
∑

c∈Ci θ

μ̃c(x, r) if x ∈ Ciθ \ Ciθ

0 Otherwise

(19)

where μ̃c(x, r) is defined in Eq.8.

640 S.K. Pal and S. Kundu

initialize:
θ-Cores ← ∅,

Ac ∈ G

θ-Cores
← θ-Cores ∪{Ac}

Ac ← next
granule

Ac ∈ θ-Cores

C ← {Ac} Ac ←next granule
from θ-Cores

Rechable
← {X|X ∈ Γ (Ac) AND X ∈ θ-Cores}

Ap ∈Rechable

Ap ←next granule
from Rechable

Add Ap to C

Add C to Communities

Remove all
Ac ∈ C from

θ-Cores

output:
Communities

Membership
Assign

D(Ac) > θ

no more granules to chcek

E(Ap, Aq∈C
Aq) >

Rechable \ C = ∅

no more granule in θ-Cores

Fig. 10 Block diagram of FRC-FGSN algorithm

Orphans: A node is said to be orphan if it is not a member of any identified com-
munity.

Given a social network, the algorithm (FRC-FGSN) finds its various communities
(Definition 1) with fuzzy-rough description (Eq.19) defined over the granular model
(Eq.9) of knowledge representation. Nodes not included as a part of any community
are designated as orphans. A block diagram of the algorithm is shown in Fig. 10 [45].

Granular Social Network: Model and Applications 641

LFR Benchmark Data: LFR benchmark data is one of the popular benchmark
data for comparing community detection algorithms [48]. Later, it was modified to
accommodate more properties of network and communities viz. directed, weighted
network and overlapping communities [47]. The idea is to generate network graphs
based on various parameters. These parameters are

• Size of the network N
• Size of the communities (within Cmin to Cmax)
• Mixing parameter, i.e., the average ratio of edges within community and edges
with other communities (η)

• Fraction of overlapping nodes (On) and
• Number of overlapping communities (Om)

With LFR data, we compare the identified community structures with the output
of three popular graph theoretic algorithms. These are, centrality based community
detectionmethod [28],Modularity optimizationmethod [62] and k-cliquepercolation
method (CPM) [71]. A point to note here is that, CPM can identify overlapping
communities whereas the other two comparing methods identify non-overlapping
partitions of the network.

Normalized fuzzy mutual information [45] is used to compare different commu-
nity detection algorithms. For two community structuresCX andCY the NFMI value
can be calculated as

N F M I (CX : CY) = 1

2

[
H(CX) − H(CX |CY)

H(CX)

+ H(CY) − H(CY |CX)

H(CY)

] (20)

where H(CX |CY)(or H(CY |CX)) is the conditional information measure in terms
of lack of information of CX (or CY) given C

Y (or CX). Here, H(CX)(or H(CY)) is
the information contained in CX (or CY) and is defined as

H(CX) = −
∑

P∈CX

λX
P log2(λ

X
P) (21)

where λX
P = ∑n

i m X
P (i) is the fuzzy relative frequency of community P ∈ C

X .
In the experiments, the size of the network is fixed to 1001 and we vary the other

variables, and analyze the algorithms and their performance. The benchmark data
generated by LFR algorithm for overlapping communities is far from the reality. It
considers a fixed number of overlaps for the nodes which is unusual for real world
networks. Furthermore, for nodes in overlapping region, we are assigning different
memberships for belonging to different communities, but the network generated by
LFR assigns unity value to these nodes. So, it is not the perfect data set to test our
algorithms, yet results are convincing, as described below.

642 S.K. Pal and S. Kundu

Fig. 11 Comparative results
with different values of
mixing parameter. Network
size: 1001; Min community
size: 150; Max community
Size: 250 FRC FGSN

CPM

Modularity

Centrality

0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

N
FM

I

η

Fig. 12 Comparison
showing variation of NFMI
for different fraction of
overlapping community.
Network size: 1001; Mixing
parameter: 0.4; Min
community size: 150; Max
community size: 250

FRC FGSN

CPM

Modularity

Centrality

0.1 0.2 0.3 0.4 0.5
On

0.1

0.2

0.3

0.4

N
FM

I

First, we vary the mixing parameter η from 0.0 to 1.0 by fixing the fraction of
overlap to 0.15 and run all the four algorithms. We measure NFMI of each output
with the ground truth. Figure11, shows the variation of NFMI with respect to η for
these algorithms. As expected, NFMI decreases when η increases in all the cases. For
lower values of η, modularity and centrality based algorithms show better results, but
for η ≥ 0.3 the proposed FRC-FGSN shows prominent improvement over all other
methods.

In another experiment, we vary the fraction of overlapping nodes (On) from 0.0
to 0.5 by fixing the mixing parameter at 0.4. Results are reported in Fig. 12. It shows
that the proposed FRC-FGSN produces superior performance for On ranging from
0.2 to 0.4 and second best for On < 0.2.

Onemay restrict the number of granules to reduce the execution time to a tolerable
range. We perform an experiment to observe this phenomenon. The result in this
regard for one of the benchmark networks is shown in Fig. 13. Here, x-axis shows
the percentage of granules corresponding to the number of nodes in the network. The
blue curve with square points shows the time taken by the proposed FRC-FGSN and
the red curve with circular points shows its accuracy in terms of NFMI. As expected,
the time and accuracy both decrease as we reduce the number of granules from 100

Granular Social Network: Model and Applications 643

Fig. 13 Plot showing the
performance on number of
granules for LFR data

50 60 70 80 90 100

0.15

0.20

0.25

of Granules
Ti
m
e

se
c

0.25

0.30

0.35

0.40

N
FM

I

Table 3 Characteristics of generated data sets

Datasets

Properties Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5

Nodes 8404 16998 25761 34328 42965

Edges 163397 396178 660909 934708 1233418

Closed
triangles

349156 879612 1526011 2178342 2952935

Open triangles 22228753 66714578 125632613 183297754 256587753

Approx. full
diameter

4 5 5 5 5

90% effective
diameter

2.875267 2.900036 2.931684 2.932677 2.935486

to 50%. Interestingly, the rate of drop in execution time is higher than that of the
accuracy. This shows that by reducing the number of granules in FGSN one may
obtain execution benefits in the algorithm.

4.6 Scalability of FGSN

We conducted experiments to understand the performance of FGSN with the grow-
ing number of links in the network. We used LDBC DATAGEN [75] to generate
social network data of different scale. LDBC DATAGEN is a synthetic graph data
generator which internally uses S3G2 [74] algorithm to generate social network data.
DATAGEN generates realistic social networks based on the link distributions found
in a real social network such as Facebook [75]. DATAGEN follows the MapReduce
[15] paradigm, allowing for the generation of large data sets on commodity clusters.

With the help of DATAGEN, we generated five data sets. Characteristics of these
networks are listed in Table3. We observed the time required to convert these net-
works into FGSNmodel. Python modules NetworkX and Pandas are used for graph-

644 S.K. Pal and S. Kundu

Fig. 14 Variation of
conversion time with the
number of links in the
network

Fig. 15 Variation of
execution time with number
of links in the network

based operations and granule based operations respectively. Figure14 shows the
results in graphical format. The x-axis shows the number of links in the network and
y-axis shows the time required for the conversion. As expected, the time increases
with the number of links in the network. Clearly the curve shows a quadratic pattern.
It is seen that for a network with over 1.23 millions of edges require slightly over
15min of time for the conversion. A point to note here is that this time is required
only once and the granular social network thus produced can be saved in flat files
or database for future use. After the conversion, one may efficiently execute algo-
rithms designed for the granular social networks. For example, the granular degree
heuristic algorithm for the problem of target set selection is magnitude faster than
the high degree heuristic. Figure15 shows the execution time for extracting 50 seeds
with aforesaid two algorithms on different data sets. The time here corresponds to
100 runs. The granular degree heuristics take only 1.93 s for the network with 1.23
millions edges, where as for the same network high degree heuristic took 69.14 s.

Granular Social Network: Model and Applications 645

5 Discussions and Conclusions

In this chapter, we described a model of social network based on fuzzy granulation
theory.Granules in themodel characterize the closely operative groups formedwithin
the highly overlapping neighborhood of social networks. The presence of vaguely
defined closeness in relationships is modeled through the fuzzy set theory. Themodel
is named fuzzy granular social network (FGSN).

In the graph representation of network, an individual node is used as an actor,
whereas in FGSN, a granule is considered as an actor. A granule is constructed
around each node in the network. This enables to capture the maximum information
of the network inside the FGSN model. Under this granular framework, character-
istics of a network are described using various measures defined over one or more
granules. These measures include granular degree, granular betweenness and gran-
ular embeddedness.

The FGSN framework assumed the same role for all the actors in a network.
This means, the model is valid for any social network as long as the roles of all the
actors in the network remain the same. However, if a network has different roles
for its different actors, then a modification may be required to accommodate such
characteristics.

The data used in the experiment are collected with the view of graph representa-
tion. Hence, we had to convert such graph networks into the new knowledge repre-
sentation of FGSN. Time taken for these conversions in seconds is seen to be 3.61,
12.54 and 7.09 × 103 for the Zachary karate club network, Dolphin social graph and
Political blog network respectively. Once the modeling is complete, algorithms for
different tasks of network analysis can be formulated.

A point to note here is that FGSN only encodes the structural information of
the network. However for online social networks, many other contents (like posts,
images, tags and profile) are also available to attribute with the actors. How to encode
these information inside the granular social network model is not addressed in the
current study.

Two major tasks concerning social network analysis are provided in this article.
These are target set selection and community detection. Granular degree heuristic
algorithm described for target set selection on FGSN uses granular degrees to rank
the influencing nodes. Top k nodes selected from this ranked list are then used as
the seed for the problem of target set selection. This selected target set is seen to
perform better for most of the test cases in the undirected social networks of karate
club network and Dolphin social graph. For directed network it is at par with the
high degree heuristic but lower than that of the diffusion degree heuristics.

The output communities found by FRC-FGSN are characterized with crisp lower
and fuzzy upper memberships, and are designated as “fuzzy-rough communities”.
A fuzzy membership is assigned only to those nodes which fall into the boundary
(upper - lower) region of a community signifying that a node in that region can
belong to multiple communities with different degrees of association. Nodes in the
lower approximate region are assigned unity membership reflecting the certainty in

646 S.K. Pal and S. Kundu

belonging. In the process orphan (nodes with zero membership to all communities)
are detected automatically.

Normalized fuzzy mutual information (NFMI) quantifies well the goodness of
the identified communities. Larger is the value of NFMI between two community
structures, higher is their similarity. It is shown that the FRC-FGSN algorithm pro-
duces superior outcome as compared to other popularly known community detection
algorithms when the network contains overlapped communities.

Social networks available from popular mobile and Internet applications produce
data in huge scale. These data show all the characteristics of Big data. Scalability
is one of the important issues for Big data analysis. In case of big social networks,
FGSN has the following two advantages over the graph modeling. First, in FGSN,
the network properties of a node are embedded inside the granule constructed around
it. If an algorithm demands to work on fewer nodes rather than the full network then
onemay avoid feeding the full network into the algorithm and yet can get the network
properties from the granular characteristics. Even for the global property analysis,
for reducing the execution time of data processing one may restrict the number of
granules either based on a threshold, decided over the cardinality of the granule, or
with human intervention. Experimentally, we found thatwith the reduction in number
of granules, the rate of improvement in execution time is exponential while the rate of
drop in accuracy is linear. Second, FGSN supports asynchronous nature of distributed
computing better than the graph modeling. Two of the major challenges involving
the distributed computing are, (1) coping with the intrinsic asynchrony between the
different entities, and (2) coping with the spatial distribution of these computing
entities. Granules may be more effectively fed into such asynchronous distributed
systems where one computing unit will only deal with a subset of granules. Whereas
feeding a graph model in such system is difficult. With graphs an additional care
needs to be taken to work with synchronous algorithms in a distributed environment.

It is seen experimentally that the algorithm scales well with the growing number
of links in the network. DATAGEN, a Hadoop/MapReduce based data generator is
used to generate synthetic data for scalability analysis. The growth in execution time
with the number of links for granular degree heuristics is found to be linear and the
slope is also very low.

The model of FGSN is seen here to perform effectively and efficiently for two
of the major applications in the domain of social network analysis. There are other
applications in social network analysis e.g., link prediction and evolution of social
network which are also very important to study. For example existing algorithms
on link prediction through graph implementation find the similarity between two
nodes which in turn provides the plausibility that a link may form between them
in future. Similarities can easily be identified using the normalized embeddedness
measure in FGSN. If two granules are highly embedded to each other, then there is
a high possibility that there would be a link between the centers of the granules in
the network.

Although, some of the algorithms available in the domain might provide bet-
ter solutions as compared to the proposed methodologies, the way of modeling a
network with FGSN opens a new avenue and provides directions on using the estab-

Granular Social Network: Model and Applications 647

lished granular computing theory and other efficient data mining techniques into the
demanding dynamics of social networks and related problems with a scope of newly
defined measures and efficient algorithms.

Acknowledgements The work was completed while S.K. Pal held the J.C. Bose National Fel-
lowship, Indian National Academy of Engineering Chair professorship, and DAE Raja Ramanna
Fellowship.

References

1. L.A.Adamic,N.Glance, The political blogosphere and the 2004US election: divided they blog,
in Proceedings of the 3rd International Workshop on Link Discovery, LinkKDD ’05 (ACM,
Chicago, 2005), pp. 36–43

2. Y.Y. Ahn, J.P. Bagrow, S. Lehmann, Link communities reveal multiscale complexity in net-
works. Nature 466(7307), 761–764 (2010)

3. A. Anthony, S. Biesan, Block Modeling in Large Social Networks with Many Clusters. Tech-
nical report (2012)

4. C. Aslay, N. Barbieri, F. Bonchi, R. Baeza-Yates, Online topic-aware influence maximization.
Proc. VLDB Endow. 8(6), 666–677 (2015)

5. A.L. Barabási, R. Albert, Emergence of scaling in random networks. Science 286(5439), 509–
512 (1999)

6. S.A. Boorman, H.C. White, Social structure from multiple networks. ii. role structures social
structure from multiple networks. Am. J. Sociol. 81(6), 1384–1446 (1976)

7. D.Chakraborty, B.U. Shankar, S.K. Pal,Granulation, rough entropy and spatiotemporalmoving
object detection. Appl. Soft Comput. J. 13(9), 4001–4009 (2013)

8. S. Chattopadhyay, C.A. Murthy, S.K. Pal, Fitting truncated geometric distributions in large
scale real world networks. Theor. Comput. Sci. 551, 22–38 (2014)

9. S. Chen, Y. Li, Dynamic grade on the major hazards using community detection based on
genetic algorithm, in Proceedings of 2009 International Conference on Signal Processing
Systems (IEEE, Singapore, 2009), pp. 713–717

10. W. Chen, C. Wang, Y. Wang, Scalable influence maximization for prevalent viral marketing in
large-scale social networks, inProceedings of the 16th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (ACM, New York, 2010a), pp. 1029–1038

11. W.Chen,Y.Wang, S.Yang, Efficient influencemaximization in social networks, inProceedings
of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(ACM Press, Paris, 2009), pp. 199–208

12. W. Chen, Y. Yuan, L. Zhang, Scalable influence maximization in social networks under the
linear threshold model, in 2010 IEEE International Conference on Data Mining (IEEE, New
Jersey, 2010b), pp. 88–97

13. E. Cohen, D. Delling, T. Pajor, R.E. Werneck, Sketch-based influence maximization and com-
putation: scaling upwith guarantees, inProceedings of the 23rd ACM International Conference
on Information and Knowledge Management (CIKM ’14) (ACM Press, New York, 2014), pp.
629–638

14. G.B. Davis, K.M. Carley, Clearing the FOG: fuzzy, overlapping groups for social networks.
Soc. Netw. 30(3), 201–212 (2008)

15. J. Dean, S. Ghemawat, mapreduce: simplified data processing on large clusters. Commun.
ACM 51(1), 107 (2008)

16. P. Domingos,M. Richardson,Mining the network value of customers, in Proceedings of the 7th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (ACM,
San Francisco, CA, 2001), pp. 57–66

648 S.K. Pal and S. Kundu

17. D. Easley, J. Kleinberg, Networks, Crowds, andMarkets: Reasoning about a Highly Connected
World (Cambridge, Cambridge University Press, 2010)

18. P.a. Estevez, P. Vera, K. Saito, Selecting the most influential nodes in social networks, in
Proceedings of 2007 International Joint Conference on Neural Networks (IEEE, New Jersey,
2007), pp. 2397–2402

19. T.S. Evans, R. Lambiotte, Line graphs of weighted networks for overlapping communities.
Eur. Phys. J. B 77(2), 265–272 (2010)

20. T. Falkowski, A. Barth, M. Spiliopoulou, DENGRAPH: a density-based community detection
algorithm, in Proceedings of IEEE/WIC/ACM International Conference on Web Intelligence
(WI’07) (IEEE, Washington, 2007), pp. 112–115

21. M. Faloutsos, P. Faloutsos, C. Faloutsos, On power-Law relationships of the internet topology,
in Proceedings of the Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communication, SIGCOMM ’99 (ACM, New York, 1999), pp. 251–262

22. T.F. Fan, C.J. Liau, T.Y. Lin, Positional analysis in fuzzy social networks, in Proceedings
of 2007 IEEE International Conference on Granular Computing (GRC 2007) (IEEE, Silicon
Valley, 2007), pp. 423–428

23. I.J. Farkas, D. Ábel, G. Palla, T. Vicsek, Weighted network modules. New J. Phys. 9(6), 180
(2007)

24. S. Fortunato, Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010)
25. O. Frank, Estimation and sampling in social network analysis, in Encyclopedia of Complexity

and Systems Science, by R.A. Meyers (ed.) (Springer, New York, 2009), pp. 8213–8231
26. A. Ganivada, S. Dutta, S.K. Pal, Fuzzy rough granular neural networks, fuzzy granules, and

classification. Theor. Comput. Sci. 412(42), 5834–5853 (2011)
27. K.J.Gile,M.S.Handcock,Respondent-driven sampling: an assessment of currentmethodology.

Sociol. Methodol. 40(1), 285–327 (2010)
28. M. Girvan, M.E.J. Newman, Community structure in social and biological networks. Proc.

Natl. Acad. Sci. U.S.A 99(12), 7821–7826 (2002)
29. M. Gomez-Rodriguez, B. Schölkopf, Influence maximization in continuous time diffusion

networks, in Proceedings of the 29th International Conference on Machine Learning (ICML-
12) (Edinburgh, 2012), pp. 313–320

30. A.Goyal,W. Lu, L. Lakshmanan, CELF++: optimizing the greedy algorithm for influencemax-
imization in social networks, in Proceedings of the 20th International Conference Companion
on World Wide Web (ACM, New York, 2011), pp. 47–48

31. T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning: Data Mining,
Inference, and Prediction, 2nd edn. (Springer Series in Statistics, Springer, New York, 2009)

32. P. Hońko, Association discovery from relational data via granular computing. Inf. Sci. 234(2),
136–149 (2013)

33. H. Jeong, B. Tombor, R. Albert, Z.N. Oltvai, aL Barabási, The large-scale organization of
metabolic networks. Nature 407(6804), 651–654 (2000)

34. G. Jiang, F. Ma, J. Shang, P.Y. Chau, Evolution of knowledge sharing behavior in social
commerce: an agent-based computational approach. Inf. Sci. 278, 250–266 (2014)

35. L.j. Kao, Y.P. Huang, Mining influential users in social network, in Proceedings of IEEE
International Conference on Systems, Man, and Cybernetics (SMC), 2015 (Hong Kong, 2015),
pp. 1209–1214

36. S.Kelley,M.Goldberg,M.Magdon-Ismail,K.Mertsalov,A.Wallace,Defining and discovering
communities in social networks, in Handbook of Optimization in Complex Networks (2012),
pp. 139–168

37. D. Kempe, J. Kleinberg, É. Tardos, Maximizing the spread of influence through a social net-
work, in Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining (ACM Press, New York, NY, 2003), p. 137

38. D. Kempe, J. Kleinberg, É. Tardos, Influential nodes in a diffusion model for social networks.
Autom. Lang. Program. 3580, 1127–1138 (2005)

39. Y.A. Kim, R. Phalak, A trust prediction framework in rating-based experience sharing social
networks without a Web of Trust. Inf. Sci. 191, 128–145 (2012)

Granular Social Network: Model and Applications 649

40. J. Kleinberg, Cascading behavior in networks: algorithmic and economic issues, in Algorith-
mic Game Theory, by eds. N. Nisan, T. Roughgarden, E. Tardos, V.V. Vazirani (Cambridge,
Cambridge University Press, 2007), pp. 613–632

41. J. Kleinberg, S. Suri, É. Tardos, T. Wexler, Strategic network formation with structural holes,
in Proceedings of the 9th ACM Conference on Electronic Commerce - EC’08 (ACM Press,
New York, USA, 2008), pp. 284–293

42. B. Krishnamurthy, J. Wang, On network-aware clustering of web clients, in Proceedings of
of the Conference on Applications, Technologies, Architectures, and Protocols for Computer
Communication, SIGCOMM ’00 (ACM, New York, Stockholm, 2000), pp. 97–110

43. L. Kuang, X. Tang, M. Yu, Y. Huang, K. Guo, A comprehensive ranking model for tweets big
data in online social network. EURASIP J. Wireless Commun. Netw. 2016(1), 46 (2016)

44. S. Kundu, S.K. Pal, FGSN: fuzzy granular social networks - model and applications. Inf. Sci.
314, 100–117 (2015a)

45. S. Kundu, S.K. Pal, Fuzzy-rough community in social networks. Pattern Recognit. Lett. 67(2),
145–152 (2015b)

46. M. Lahiri, M. Cebrian, The genetic algorithm as a general diffusion model for social networks,
in Proceedings of the 24th AAAI Conference on Artificial Intelligence (Atlanta, Georgia, 2010),
pp. 494–499

47. A. Lancichinetti, S. Fortunato, Benchmarks for testing community detection algorithms on
directed and weighted graphs with overlapping communities. Phys. Rev. E. 80(1), 016118
(2009)

48. A. Lancichinetti, S. Fortunato, F. Radicchi, Benchmark graphs for testing community detection
algorithms. Phys. Rev. E. 80(1), 016118 (2008)

49. J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, N. Glance, N, Cost-effective
outbreak detection in networks, in Proceedings of the 13th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining (ACM Press, San Jose, 2007), pp. 420–429

50. J. Leskovec, K.J. Lang, M. Mahoney, Empirical comparison of algorithms for network com-
munity detection, in Proceedings of the 19th International Conference on World Wide Web -
WWW ’10 (Raleigh, 2010), p. 631

51. G. Li, S. Chen, J. Feng, K.J. Tan, W.s. Li, Efficient location-aware influence maximization,
in Proceedings of the 2014 ACM SIGMOD international conference on Management of data
(SIGMOD’14) (Snowbird, 2014), pp. 87–98

52. L. Li, S. Li, X. Chen, A new genetics-based diffusionmodel for social networks, inProceedings
of 2011 International Conference on Computational Aspects of Social Networks (CASoN)
(IEEE, Salamanca, Spain, 2011), pp. 76–81

53. O. Liu, K.L. Man, W. Chong, C.O. Chan, Social network analysis and big data, in Proceedings
of the International Multi Conference of Engineers and Computer Scientists, vol. II (Hong
Kong, 2016), pp. 6–7

54. W, Liu., X, Jiang, M, Pellegrini, X, Wang, Discovering communities in complex networks by
edge label propagation. Sci. Rep. 6 (2016)

55. D. Lusseau, K. Schneider, O.J. Boisseau, P. Haase, E. Slooten, S.M. Dawson, The bottlenose
dolphin community of doubtful sound features a large proportion of long-lasting associations.
Behav. Ecol. Sociobiol. 54(4), 396–405 (2003)

56. P. Maji, S.K. Pal, Fuzzy-rough sets for information measures and selection of relevant genes
from microarray data. IEEE Trans. Syst. Man Cybern. Part B 40(3), 741–52 (2010)

57. F.D. Malliaros, M. Vazirgiannis, Clustering and community detection in directed networks: a
survey. Phys. Rep. 533(4), 95–142 (2013)

58. J.L. Moreno, Who Shall Survive? A New Approach to the Problem of Human Interrelations,
Nervous and Mental Disease Monograph Series (Nervous and Mental Disease Publishing co.,
New York, 1934)

59. P.S. Nair, S.T. Sarasamma, Data mining through fuzzy social network analysis, in Proceedings
of the 26th International Conference of North American Fuzzy Information Processing Society
(IEEE, San Diego, California, 2007), pp. 251–255

650 S.K. Pal and S. Kundu

60. R. Narayanam, Y. Narahari, A Shapley value-based approach to discover influential nodes in
social networks. IEEE Trans. Autom. Sci. Eng. 8(1), 130–147 (2011)

61. M. Narayanan, A. Cherukuri, A study and analysis of recommendation systems for location-
based social network (LBSN) with big data. IIMB Manag. Rev. 28(1), 25–30 (2016)

62. M.Newman, Fast algorithm for detecting community structure in networks. Phys. Rev. E 69(6),
066133 (2004)

63. M. Newman, M. Girvan, Finding and evaluating community structure in networks. Phys. Rev.
E 69(2), 1–15 (2004)

64. M. Newman, Modularity and community structure in networks. Proc. Natl. Acad. Sci. U.S.A
103(23), 8577–8582 (2006)

65. G.K. Orman, V. Labatut, The effect of network realism on community detection algorithms, in
Proceedings of the 2010 International Conference on Advances in Social Networks Analysis
and Mining (IEEE, Odense, Denmark, 2010), pp. 301–305

66. S.K. Pal, Granular mining and rough-fuzzy pattern recognition: a way to natural computation.
IEEE Intell. Inf. Bull. 13(1), 3–13 (2012)

67. S.K. Pal, S. Kundu, C.A. Murthy, Centrality measures, upper bound, and influence maximiza-
tion in large scale directed social networks. Fundam. Inf. 130(3), 317–342 (2014)

68. S.K. Pal, S.K. Meher, Natural computing: a problem solving paradigm with granular informa-
tion processing. Appl. Soft Comput. J. 13(9), 3944–3955 (2013)

69. S.k. Pal, S.K.Meher, A. Skowron,Data science, big data and granularmining. PatternRecognit.
Lett. 67(2), 109–112 (2015)

70. S.K. Pal, P. Mitra, Pattern Recognition Algorithms for Data Mining (CRC Press, Boca Raton,
2004)

71. G. Palla, I. Derényi, I. Farkas, T. Vicsek, Uncovering the overlapping community structure of
complex networks in nature and society. Nature 435(7043), 814–818 (2005)

72. W. Pedrycz, Granular Computing: Analysis and Design of Intelligent Systems (CRC Press,
Boca Raton, 2013)

73. W. Pedrycz, A. Skowron, V. Kreinovich (eds.), Handbook of granular computing (Wiley,
Sussex, 2008)

74. M.D. Pham, P. Boncz, O. Erling, S3G2: a scalable structure-correlated social graph generator,
in Selected Topics in Performance Evaluation and Benchmarking: 4th TPC Technology Con-
ference, TPCTC 2012, Istanbul, Turkey, August 27, 2012, Revised Selected Papers, ed. by R.
Nambiar, M. Poess (Springer, Berlin, 2013), pp. 156–172

75. A. Prat, DATAGEN: Data Generation for the Social Network Benchmark (2014). http://
ldbcouncil.org/blog/datagen-data-generation-social-network-benchmark

76. Y. Qin, J. Ma, S. Gao, Efficient influence maximization under TSCM: a suitable diffusion
model in online social networks. Soft Comput. 1–12 (2016)

77. U. Raghavan, R. Albert, S. Kumara, Near linear time algorithm to detect community structures
in large-scale networks. Phys. Rev. E 76(3), 36106 (2007)

78. P.K. Reddy, M. Kitsuregawa, P. Sreekanth, S.S. Rao, A graph based approach to extract a
neighborhood customer community for collaborative filtering, in Proceedings of the Second
International Workshop on Databases in Networked Information Systems, DNIS ’02 (Springer,
London, 2002), pp. 188–200

79. F. Reid, A. McDaid, N. Hurley, Partitioning breaks communities, in Proceedings of 2011
International Conference on Advances in Social Networks Analysis and Mining, ASONAM
2011 (Kaohsiung City, Taiwan, 2011), pp. 102–109

80. S.A. Rice, The identification of blocs in small political bodies. Am. Polit. Sci. Rev. 21(3),
619–627 (1927)

81. M. Richardson, P. Domingos, Mining knowledge-sharing sites for viral marketing, in Proceed-
ings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (ACM Press, Edmonton, Alberta, 2002), pp. 61–70

82. D. Sen, S. Pal, Generalized rough sets, entropy, and image ambiguity measures. IEEE Trans.
Syst. Man Cybern. Part B 39(1), 117–128 (2009)

http://ldbcouncil.org/blog/datagen-data-generation-social-network-benchmark
http://ldbcouncil.org/blog/datagen-data-generation-social-network-benchmark

Granular Social Network: Model and Applications 651

83. M. Spreen, Rare Populations, Hidden Populations, and Link-Tracing Designs: What andWhy?
Bulletin de Méthodologie Sociologique 36, 34–58 (1992)

84. M. Steenstrup, Cluster-based networks, in Ad Hoc Networking, Chap, vol. 4 (Addison-Wesley
Longman Publishing Co., Inc, Boston, MA, USA, 2001), pp. 75–138

85. Z. Su, Q. Xu, Q. Qi, Big data in mobile social networks: a QoE-oriented framework. IEEE
Netw. 30(1), 52–57 (2016)

86. C. Wang, L. Deng, G. Zhou, M. Jiang, A global optimization algorithm for target set selection
problems. Inf. Sci. 267, 101–118 (2014)

87. C. Wang, W. Chen, Y. Wang, Scalable influence maximization for independent cascade model
in large-scale social networks. Data Mining Knowl. Discov. 25(3), 545–576 (2012)

88. S. Wasserman, K. Faust, Social Network Analysis: Methods and Applications (Cambridge
University Press, Cambridge, 1994)

89. R.S. Weiss, E. Jacobson, A method for the analysis of the structure of complex organizations.
Am. Sociol. Assoc. 20(6), 661–668 (1955)

90. H.C. White, S.A. Boorman, R.L. Breiger, Social structure from multiple networks. I. Block-
models of roles and positions. Am. J. Sociol. 81(4), 730–780 (1976)

91. J. Yao, A.V. Vasilakos, W. Pedrycz, Granular computing: perspectives and challenges. IEEE
Trans. Cybern. 43, 1977–1989 (2013)

92. W. Zachary, An information flow model for conflict and fission in small groups. J. Anthropol.
Res. 33(4), 452–473 (1977)

93. L. Zadeh, Fuzzy sets. Inf. Control 8, 338–353 (1965)
94. L.A. Zadeh, Toward a theory of fuzzy information granulation and its centrality in human

reasoning and fuzzy logic. Fuzzy Sets Syst. 90, 111–127 (1997)
95. Y. Zeng, X. Chen, G. Cong, S. Qin, J. Tang, Y. Xiang, Maximizing influence under influence

loss constraint in social networks. Expert Syst. Appl. 55, 255–267 (2016)
96. T. Zhu, B.Wang, B.Wu,C. Zhu,Maximizing the spread of influence ranking in social networks.

Inf. Sci. 278, 535–544 (2014)

Part IV
Big Data Applications

Big Data, IoT and Semantics

Beniamino di Martino, Giuseppina Cretella and Antonio Esposito

Abstract Big data and the Internet of things are two parallel universes, but they are
so close that in most cases they blend together. The amount of devices that connect
to the internet grows day by day and they bring millions of data. The IoT generates
unprecedented amounts of data and this impacts on the entire big data universe. The
IoT and big data are clearly growing apace, and are set to transform many areas
of business and everyday life. Semantic technologies play a fundamental role in
reducing incompatibilities among data formats and providing an additional layer on
which applications can be built, to reason over data and extract new meaningful
information. In this chapter we report the most common approaches adopted in
dealing with Big Data and IoT problems and explore some of the semantic based
solutions which address such problematics.

Keywords Big data · IoT · Semantics

1 Introduction

With the diffusion of Smart Sensors and mobile Sensor devices communicating with
each other and with remote servers, the number of connections established over the
Internet has exponentially grown, and with that the volume of data continuously
exchanged over such connections. The advent of the Internet of Things (IoT) era
has deeply shaken the already thriving IT ecosystem, and has given birth to new
potentialities, challenges and issues. In particular Big Data methodologies and tech-
nologies, already at a test due to the huge amount of information generated by not

B. di Martino · G. Cretella · A. Esposito (B)
Second University of Naples, Via Roma 29, Aversa, Caserta, Italy
e-mail: antonio.esposito@unina2.it

B. di Martino
e-mail: beniamino.dimartino@unina.it

G. Cretella
e-mail: giuseppina.cretella@unina2.it

© Springer International Publishing AG 2017
A.Y. Zomaya and S. Sakr (eds.), Handbook of Big Data Technologies,
DOI 10.1007/978-3-319-49340-4_19

655

656 B. di Martino et al.

Fig. 1 The system used by a delivery company to update its delivery routes

sensor-related resources (Social Media, Business Processes, e-mails and so on) are
further stressed and need to be adapted to the new sensor-centred scenarios.

Nevertheless, existing techniques are a necessary background for data analysts
approaching the IoT field, as in many cases sensors’ outputs come in the form of data
streams which can be analysed, filtered and classified via well-known algorithms.
Also, Smart Sensors are often integrated in Big Data applications. As an instance,
consider the simple application scenario proposed in Fig. 1. In such example, a deliv-
ery company collects data fromdifferent sources in order to optimize the routeswhich
the company’s delivery trucks have to follow. In particular, the data come from:

• A database containing information on all the goods to deliver: expiration day,
address of sender and receiver of the item, treatments for special goods and so on.

• Adatabase of the company’s employees, which collects information on their shifts,
ordinary routes, residence.

• Sensors placed on the delivery trucks, which continuously feed the system with
data regarding the trucks’ position, the traffic conditions, the fuel consumption,
etc.

• Feedback from customers, directly provided via explicit forms, or extracted from
comments on social networks or on the company’s web-site.

Big Data, IoT and Semantics 657

Now, let’s suppose the system detects a high number of complaints or negative
feedbacks for goods delivered in a specific town. It thus follows a series of steps in
order to determine the cause of such complaints and eventually avoid future ones.

1. First of all, the system tries to understand what the complaints are about: let’s
suppose that customers complain about damaged goods.

2. Then, the system checks the goods’ database to understand if the affected items
belong to some specific category of products: it finds out that only items catego-
rized as fragile are affected. Also, only items delivered in a specific area of the
town, or whose route passes through that area, are involved in the complaints.

3. By analysing the data coming from delivery trucks following the identified routes,
the system determines that, when passing through a specific road, all trucks sen-
sibly slow down. However there are no problems with other roads, so the items
are always delivered on-time.

4. At this point, the system re-arrange the routes in order to avoid that specific road.
5. In re-arranging the routes, the system also tries to assign them to employees living

in or close to the interested areas of the town.

At the end of the day, it turned out that a very poorly maintained road was the cause
of the damages to the goods: even if trucks’ drivers slowed down significantly while
driving along such a road, the shaking and vibrations caused by trucks passing over
potholes ruined fragile items.

Considering the dimension of the data to be analysed to follow the simple steps
described above (just consider how many goods a delivery company has to take care
about every day), Big data analysis techniques are needed.

1. In order to analyse the feedbacks from users, and to understand if they are positive
or negative and the topic of the reports, Text Mining and Sentiment Analysis
techniques are applied. Section4 reports an overview of such techniques, starting
with the more general topic of Social Mining.

2. In order to rapidly query the goods’ database and understand which items
are affected by the reports, for which reasons and what are their main char-
acteristics, Graph based representations can be employed. Graphs are a very
efficient and convenient instrument for data representation, especially when sev-
eral relevant relationships exist among data, or indexing capabilities are highly
desired. Section5 presents and overviewof GraphMining algorithms,with some
application examples.

3. The data coming delivery trucks are actually sent by Smart Sensors applied to
them. In order to handle the data traffic generated by such kind of sensors, specific
protocols have been standardized (see Sect. 3), and Data Stream analysis tech-
niques need to be applied (see Sect. 6 for such techniques). Also, the data collected
from such sensors are almost all geo-referenced, as they specify position, speed
and acceleration of the trucks. Section7 briefly introduces such a topic.

658 B. di Martino et al.

4. The data coming fromall of these different sources need to be efficiently integrated
in order to be of some use to the system elaborating the routes. Semantic-web
based models and technologies are the most suited to provide a homogeneous
representation for data, which can be used as a base to infer new information and
solve interoperability and portability issues which may arise. Section2 provides
and insight on semantic technologies and their application to Big Data.

2 Semantics for Big Data

BigData is a relatively emerging field, inwhich innovative technologies are exploited
to dealwith issues often arisingwhendealingwith huge amounts of data. In particular,
new technologies and methodologies are investigated to reuse and extract value from
information often coming from heterogeneous, unstructured or semi-structured and
dynamic sources. Whilst the main issue referred to by researchers is the problem of
processing very large sources of data in affordable time, analysts are equally busy
in defining ways to rapidly and effortlessly normalize, integrate and transform the
data coming from different sources into the format required by their own systems
and tools. This depends on the extreme heterogeneity displayed by data coming from
different resources, which is caused by the different perspectives on the reality the
original developers of each of the considered source systems had. This problem is
even more evident when considering data silos produced within the same company
or organization, as a result of the use of different systems (CMRs, ERPs and so on)
which too often are not natively integrated.

In such a situation semantic based technologies come in handy, as they can help
solving several incompatibility errors related to data definitions and standard differ-
ences, and they can provide further context information which, in some cases, are
fundamental to correctly analyse them. In short, the contribution of semantics to Big
Data can be roughly summarized into these fields:

• Data contextualization. Information on the context the analysed set of data is
referred to is sometimes fundamental for a correct analysis. Often the same term
can refer to very different objects, places or even people: for example if we use the
word “President”, are we referring to the President of United States, to a film or to
a restaurant with that name? The outcome of a term-based research will strongly
depend on the context we are moving in (the time also can affect such search).

• Data reconnection. Since the same concepts can be represented in very different
ways, according to the descriptors’ perspectives, different terms could be used to
address the same data. Using a common and shared semantic representation, it is
possible to resolve eventual inconsistencies and “reconnect” data from different
database silos.

• Management of overlapping representations. There are situations in which data
models simply overlap, that is they could share some definition and differ on
some other. In such a case, it can be difficult for an analyst to integrate them, or

Big Data, IoT and Semantics 659

to discard one in favour of another. Semantic technologies provide the means to
operate such an integration effortlessly, retaining the essential information from
all the interested models.

• Knowledge discovery.Discovery of new information represents a foundational ele-
ment of Big Data. Semantic technologies provide many instruments, from logical
rules to query languages, which can be used to assess and retrieve new information
from an existing knowledge base.

2.1 Semantic Representation of Things, People and Web

Semantic web technologies include a plethora of standards and languages for knowl-
edge representation, querying and inferencing. Some of these technologies find
immediate application in the Big Data scenery, as they provide a better support to the
storage of huge and complex amount of data, than traditional relational databases.
Resource Description Framework [32] (RDF) is a framework for the description of
knowledge, defined and maintained by the W3C Group, which provides a structure
for describing identified “things” or resources and their relationships. RDF usesURIs
(Uniform Resource Identifiers) to unambiguously point to resources in statements.
RDF statements are represented by triples in the form Subject-Predicate-Object.
These elements are all defined as unique resources, but only objects can be prim-
itive types. An RDF model can be always serialized into an XML document, or it
can be represented through an oriented graph in which nodes describe resources or
primitive types and arcs are predicates. Using RDF triples, it is possible to easily
represent knowledge, as even very complex concepts can be reduced to Subject-
Predicate-Object instances. Also, RDF enables the inferencing of new knowledge
from existing corpora. Figure2 reports a very simple example of an RDF triple in
which a person Mary (the Subject) is connected to a city Rome (the Object) via the
property Works_In (the Predicate). Since Rome is also the Subject of another triple,
with Predicate Is_in and Object Italy, it is possible to infer a new predicate between
Mary and Italy. An extension to RDF, known as RDF-Schema (RDFS) is used to pro-
vide native predicates to define basic relationships among the described resources:
rdf:type for example is used to state that a resource is an instance of a class, while
rdfs:subClassOf is used to define a class hierarchy. Triples stored in an RDF data-
base can be easily accessed and retrieved via SPARQL Protocol And RDF Query
Language [45] (SPARQL). SPARQL can be used to express queries across different

Fig. 2 Simple RDF triple
example

660 B. di Martino et al.

data sources, provided that such data are expressed in or can be seen as RDF triples
through a middleware. SPARQL queries use a syntax which is very similar to SQL,
and these can be written in the form of triple patterns, conjunctions and disjunctions.
SPARQL enables analysis and querying of large RDF graphs and different studies
have been carried out to define multiple scalable and optimized queries [18, 24, 36].
SPARQL queries can be used to retrieve RDF described resources, filtered according
to selected constraints. While RDF enables a very simple, effective and straightfor-
ward approach to resource description, it lacks the expressive capabilities needed to
add useful semantic information to such descriptions. So, we opted for a much more
expressive formalism for semantic description of resources, known asWebOntology
Language [37] (OWL). OWL is completely derived from RDF, of which it retains all
the native predicates and properties and the triples based description. OWLwas born
to develop ontologies (definition and classification of concepts and entities, together
with their relationships) that are compatible with the World Wide Web. Since OWL
is based on RDF, SPARQL queries can be still executed on produced ontologies.
OWL adds new properties to the basic RDF, allowing to:

• put restrictions on defined classes (for example, allValuesFrom selects resources
with properties that only have values that meet a specific criteria);

• define complex relationships among classes (disjointWith states that resources
belonging to one class cannot belong to another;

• state equality between classes through the sameAs attribute;
• enrich defined relationships (a Symmetric property between A and B affirms that
a relationship between A and B is also true between B and A).

Adding semantic information to resource description allows the execution of auto-
matic inferences on the existing knowledge base, provided inference rules are defined
and an inferential engine is used to enforce them. In order to define such rules, lan-
guages like the Semantic Web Rule Language [22] (SWRL) can be used. SWRL
can be used to express rules as well as logic, combining OWL DL or OWL Lite
dialects with a subset of the Rule Markup Language. Rules in SWRL are described
as an implication between an antecedent (body) and consequent (head). Whenever
the conditions specified in the antecedent hold, then the conditions specified in the
consequent also hold. Using SWRL rules it is possible, for example, to automatically
assess equivalence among semantically described data and documents, or to interpret
the associated meta-data and produce new knowledge.

2.2 Semantic Based Classification and Learning

Data classification and semantic-guided learning is an immediate example of appli-
cation of semantic technologies to Big Data. In order to effectively respond to the
huge volume and variability of data coming from different sources (just consider the
data continuously coming in streaming from a sensor network), it is necessary to
classify the information and act differently according to its interpretation. One of the

Big Data, IoT and Semantics 661

Fig. 3 Multilayer semantic classification

most followed approach to classify data from heterogeneous sources is based on the
development of multi-layer classification models, which refine and abstract data, by
identifyingmore specific “buckets” in which to put them at each layer. An example of
such approach is described in [1], and the basic model followed for data classification
is reported in Fig. 3. Here the data, coming from different sources (in the specific
case, a sensor network), are firstly roughly classified according to the generating
source: since the system knows the origin of the collected data, some knowledge
on them is already owned and can be used to create coarse grained groups. One of
the main characteristics of the proposed approach consists in associating each data
to one or more possible initial categories: in this way, even if some redundancy is
created as some data will be replicated in several classes, there will be more pre-
cision when applying semantics. Semantics are applied at the Ontology layer, in
which data are associated to different domain ontologies. Such ontologies are cho-
sen according to the previous classification operated at the lower layer, and are used
to add context-specific information. However, the ontologies used at this level are not
isolated, as they are connected via properties which enable reasoning. At the highest
level an Access/Control layer can be found, which acts as an interface to query the
created knowledge base and provide access to classified data. In order to correctly
associate semantic annotations to incoming data, classification systems need a set of
rules which identify data features and then create annotations accordingly. Several
languages can be used to express such rules: SWRL is a classic example of these.
However, it is also important to collect the semantic features in order to not hard-code

662 B. di Martino et al.

them into the rules: that is why Semantic Patterns [21, 49] can be used. Such Pat-
terns provide a structured representation of semantic features which can be identified
in a dataset: once such features are recognized, it is possible to assess that a certain
kind of data has been identified. One aspect which needs to be addressed regards the
training of the system to “teach” it how to correctly classify data and annotate them.
Training sets can be defined and used in order to both verify the effectiveness of the
defined recognition rules and Semantic Patterns or to contribute to their design.

2.3 Linked Data and Open Data

Linked Data can be defined as a set of methodologies and technologies to publish
structured data on the web, in order to interlink them and enable the use of semantic
queries for their retrieval. Standard Web and Semantic Web technologies such as
HTTP, RDF, URIs, OWL are needed to provide an environment where applications
can query data, draw inferences by accessing vocabularies and share information
seamlessly. The semantic web technologies do not aim to serve human readers, but
to extends classicwebpages to support automatic reasoningprocesses and computers.
The use of a standard format,which can be interpreted andmanaged bySemanticWeb
tools, is a necessary condition to make the Linked Data paradigm a reality. Also, not
only access to data must be continuously ensured, but also the relationships among
them need to be always available: otherwise, we would obtain only a mere collection
of fairly annotated data. As also stated by Berners-Lee in [8], a set of four simple
rules need to be applied in order to correctly define Linked Data and enable their
availability on the web:

• In order to identify and refer to entities (things), URIs need to be used to name
them.

• To look-up entities, HTTP URIs need to be used. This ensures both uniqueness of
the references item and its availability on the web.

• Beside the name of the referred entities, other useful information need to be pro-
vided regarding it, by using standard SemanticWeb formats and technologies. Just
putting names on the Web does not help in building a Linked Data framework:
descriptions and relationships are needed too.

• Always refer to other entities by using their HTTP URI-based names when pub-
lishing data on the Web.

Graph notations are widely used to represent linked data, as also shown by Fig. 4
where the Linked Open Data dataset is graphically represented. Linked Open Data is
linked data that is also open content. Practically, it follows the same rules as above, but
the connected information must be open to everyone. The goal of theW3C Semantic
Web Education and Outreach group’s Linking Open Data community project is to
extend the Web by publishing several open datasets as RDF on the Web and by
setting RDF links between data items from different data sources. Large linked open

Big Data, IoT and Semantics 663

Fig. 4 Linked Open Data collection, march 2009

data sets include DBpedia [4] and Freebase [9]. The development of Linked Open
Data databases and datasets is strongly favoured by the European Union, which has
funded several research projects and currently supports the development of the Eu
Open Data Portal [10]. Such portal includes a very wide variety of high-value open
data across EU policy domains, as also more recently identified by the G8 Open
Data Charter. Data are currently provided by a growing number of agencies, such as
Eurostat, the EuropeanEnvironmentAgency and the Joint ResearchCentre continues
to grow. The portal also provides access to a wide range of visualization applications
which both enable the retrieval of information and the displaying of examples of
possible practical applications. Figure5 reports a screen-shot of an application for
the monitoring of temperatures and precipitations in Europe, as part of a drought
monitoring project. Among the European funded research projects and communities,
we find:

• PlanetData [16]which aims to establish aEuropean community of researchers that
supports organizations in exposing their data in new and useful ways. I n particular,
it focuses on themining and analysis of the huge amount of data continuously pub-
lished online, including data streams, (micro)blog posts, digital archives, eScience
resources, public sector data sets, and the Linked Open Data Cloud.

• DaPaaS [12] research project has developed a set of tools which enable the use,
re-use, definition and sharing of Linked Open Data. The provide DataGraft

664 B. di Martino et al.

Fig. 5 European Drought Observatory application

platform consists of an integrated suite of four elements:Grafter, an open source
collection of tools for tabular data transformation and processing; Grafterizer,
the graphical fronted for the Grafter collection; a Database-as-a-Service struc-
ture completely built upon RDF; a Data Portal providing a catalogue of various
datasets and reusable data transformation services.

• LOD2 [5] is a large-scale integrating project co-funded by the European Commis-
sion within the FP7 framework. The project aims at advancing the technologies
and standards for Linked Open Data management and representation, by devel-
oping tools, methodologies, testbeds and standards to support interaction among
enterprises and the sharing of new datasets. The project focuses on the develop-
ment of trustful standards which can reliably track provenance, ensure privacy and
security of data.

2.4 Reasoning over Big Data

For a long time Business Intelligence tools and Data Warehouses have helped com-
panies to understand more about their operations and to take decisions over future
development strategies. However, such tools work best on structured and limited
(in dimension) data, whilst they are very limited when it come to unstructured data,
such as those considered in Big Data scenarios. That depends on the fact that BI tools

Big Data, IoT and Semantics 665

work by having a clear model already defined and a set of well described Patterns
to identify in the data source. Due to the high heterogeneity and volume of data to
analyse in a Big Data scenario, it would be impossible to identify a set of Patterns to
recognize, since they would change dynamically as new information is digested by
the system. In order to identify relationships and patterns among different types of
data, companies are turning to Predictive analytics. This term covers a large number
of analysis techniques, such as:

• Social media analytics (see Sect. 4), which collects and analyzes information
gathered from a variety of social media sources;

• Text mining, focused on the deep analysis of text-based documents;
• Sentiment analysis (see Sect. 4.2), which aims to identify a user’s desires, thinking
and priorities, by analyzing electronic text from files, reports, surveys, forms,
e-mail and more;

• Geospatial analysis (see Sect. 7), focused on data coming from satellites, global
navigation systems, aerial surveys, sensor networks and radar.

Predictive analytic makes large use of Inductive reasoning, which does not make
presumptions of patterns or relationships and is more about data discovery. Several
approaches can be used to explore data and discover interrelationships and patterns:
machine learning, neural networks, computational mathematics and so on.

Semantics plays a key role in providing the means to correctly understand the
meaning of the analysed data: frameworks like Hadoop can store huge amounts of
raw documents and files, through the Hadoop Distributed File System (HDFS), but it
is difficult to assess what they exactly mean, and to enable several users to understand
them without ambiguities. Semantic technologies can help solving the problem, by
adding a semantic layer on top of the unstructured data. However, classical semantic-
based reasoning approaches are not suitable to support scalable analysis of Big Data:
the graph structures, often adopted when representing knowledge in the Semantic
Web, are not the best choice for high-bandwidth applications which require speed
and scalability.

3 Big Data and Semantics in the Internet of Things

Big data and the Internet of things are two parallel universes, but they are so close that
in most cases they blend together. The amount of devices that connect to the internet
grows day by day and they bring millions of data. The IoT generates unprecedented
amounts of data and this impacts on the entire big data universe. The IoT and big
data are clearly growing apace, and are set to transform many areas of business and
everyday life.

666 B. di Martino et al.

3.1 Impact of IoT on Big Data

The Internet of Things has deeply influenced the Big Data ecosystem, driving com-
panies towards the research of new, highly efficient data collection and elaboration
mechanisms. Since the idea at the base of the IoT is the possibility to connect devices
to each other via an IP address, and also considering the fact that millions of devices
are and will be connected together, thus generating a huge volume of data, the need
for new methodologies and technologies to handle them has become urgent. Along
with the necessity to actually handle the enormous volumes of data continuously
exchanged and elaborated by smart devices, there are two important issues to con-
sider: Security issues, due to the difficulties to apply traditional securitymechanisms
to such a dynamic and ever growing collection of data;Data Usefulness, companies
will need to distinguish between useful and redundant data, which will translate in
the research for new and efficient analysis algorithms and techniques.

Collecting huge volumes of data from sensors The task of collecting all and
only the data that are really relevant to their business can be extremely challeng-
ing for companies, as they need not only to actually collect them, but also to filter
them by eliminating redundant data, and protect them against security threats. Sev-
eral software and protocols have been developed for such tasks, and some of them
are currently employed with success: among these, the Message Queue Telemetry
Transport (MQTT) [26] and Data Distribution Service [44] (DDS) are two of the
most comprehensive protocols.

TheMQTT, which is currently an OASIS standard, collects data from several sen-
sor fitted devices, and then feeds them to the IT infrastructure which will elaborate
them. It represents, in simple words, a lightweight message queueing and transport
protocol, suited for Mobile to Mobile (M2M), Wireless Sensor Networks (WSN)
and IoT applications. Its implementation follows a clear Observer Design Pattern.
A Sensor Node sends data to an MQTT Broker which sorts them in different mes-
sage queues, also referred to as Topics. An Actor Node, or Subscriber, which has
previously registered to one or more Topics, will receive only those messages con-
taining data of specific interest. Figure6 shows the general idea behind the protocol
model, while Fig. 7 describes the general sequence of steps sensor nodes, subscribers
and broker have to follow. In general, when a Publisher sends data to the Broker,

Fig. 6 Model of the MQTT
protocol

Big Data, IoT and Semantics 667

Fig. 7 Example of usage of the MQTT protocol

or the Broker pushes such data to a Subscriber, an ack is sent by the receiver. This
feature is enabled when the protocol works with a Quality of Services of level one
(QS1), for which a message has to be delivered at least once. Instead, a QS0 can be
chosen (with no ack messages), or the level can be raised to two (QS2), in which
messages are delivered exactly once. In the last case, additional ack messages are
exchanged between senders and receivers. When the Broker receives data, and the
message containing them is marked with the “Retain = 1” option, then the data has
to be stored on the Broker and will eventually be updated. When such data is sent to
the Subscriber, the same option points out that the data is old and the stored value
could not match the current one. In any case, when a new Subscriber requests update
from a topic, the last stored data is immediately sent to it.

In order to keep the protocol simple and reduce overhead in communication,
the mandatory header for MQTT messages is just two bytes long. Additional and
optional fields can be used, especially to reduce retransmissions and data losses.

The DDS protocol, while based on exactly the same publisher/subscriber para-
digm, is more suited for the distribution of data among several devices. This derives
from the distributed, rather than centralized, architecture of a DDS implementation,
which does not imply the use of a central broker for message delivery. The concepts
which are defined in the DDS standard are very similar to those found in the MQTT.
The concept of Topic still exists in DDS, with more or less the same meaning. IN
particular, DDS’s topics are a class of streams, which are associated to a user defined
extensible type and a set of QoS policies. They can be defined locally, or discov-
ered by devices. As in the MQTT case, we have Subscribers called DataReaders
and Publishers called DataWriters. The main difference between MQTT and DDS
relies in the complete lack of a central broker in the latter approach. Instead, the
DDS protocol implementations exploit a distributed Peer to Peer network, in which
devices can act as readers or writers indifferently and at the same time. As shown in
Fig. 8, no broker is used in the DDS approach and, while clusters of devices/sensors
are possible and supported, the nodes act independently. DDS also offers a better
approach to QoS than MQTT, as several properties regarding delivery time, dimen-

668 B. di Martino et al.

Fig. 8 Example of
communication network in
the DDS protocol

sion and length of the exchanged messages can be enforced. The approaches used
by the two protocols are not mutually exclusive: indeed, they can be used together in
order to solve issues in data communication over very large and distributed sensor
networks. The most common approach is to exploit a Gateway, located on a sensor
device or on the MQTT broker, between a DDS and MQTT network.

3.2 Ongoing Research Efforts

The Internet-of-Things vision provides a large set of opportunities to users, manu-
facturers and companies [39]. In fact, IoT technologies will find wide applicability
in many productive sectors including, e.g., environmental monitoring, health-care,
inventory and product management, workplace and home support, security and sur-
veillance. From a user point of view, the IoT will enable a large amount of new
always responsive services, which shall answer to users needs and support them in
everyday activities. Before the IoT and big data coalition can deliver on its promise,
there are a number of barriers to overcome.

The first challenge is the worldwide adoption of shared standards. The use of
standards ensures interoperable and cost-effective solutions, opens up opportunities
in new areas and allows the market to reach its full potential. For the IoT to work,
there must be a framework within which devices and applications can exchange data
securely over wired or wireless networks. In this area there are a lot of player: M2M
[41], AllJoyn [3], OIC [42].

M2M (Machine to Machine) refers to technologies that allow both wireless and
wired systems to communicate with other devices of the same type. M2M is a broad
term as it does not pinpoint specific wireless or wired networking, information and
communications technology. This broad term is particularly used by business exec-
utives. M2M is considered an integral part of the Internet of Things (IoT) and brings
several benefits to industry and business in general as it has a wide range of appli-
cations such as industrial automation, logistics, Smart Grid, Smart Cities, health,
defense etc. mostly for monitoring but also for control purposes. Open Machine to
Machine (OM2M) [2] provides an open source service platform for M2M interoper-
ability based on the ETSI-M2M standard. OM2M follows a RESTful approach with

Big Data, IoT and Semantics 669

open interfaces to enable developing services and applications independently of the
underlying network. It proposes a modular architecture making it highly extensible
via plugins. It supports multiple protocol bindings such as HTTP and CoAP. Various
interworking proxies are provided to enable seamless communication with vendor-
specific technologies such as Zigbee and Phidgets devices. OM2M implements the
SmartM2M [13] standard. It provides a horizontal Service Capability Layer (SCL)
that can be deployed in anM2M network, a gateway, or a device. Each SCL provides
Application Enablement, Generic Communication, Reachability, Addressing and
Repository, Interworking proxy, Entity Management, etc. It includes several primi-
tive procedures to enable machines authentication, resources discovery, applications
registration, containers management, synchronous and asynchronous communica-
tions, access rights authorization, groups organisation, re-targeting, etc.

The AllSeen Alliance [3] is a cross-industry consortium dedicated to enabling the
interoperability of billions of devices, services and apps that comprise the Internet of
Things. AllJoyn, a framework created by the AllSeen Alliance, is an open, universal,
secure and programmable software connectivity and services framework that enables
companies and enterprises to create interoperable products that can discover, connect
and interact directlywith other AllJoyn-enabled products. AllJoyn is agnostic respect
to the transport layer, the OS, the platform and brand, enabling the emergence of a
broad ecosystem of hardware manufacturers, application developers and enterprises
that can create products and services that easily communicate and interact. It consists
of an open source SDK and code base of service frameworks that enable such fun-
damental requirements as discovery, connection management, message routing and
security, ensuring interoperability among even the most basic devices and systems.
The initial planned set of service frameworks include: device discovery to exchange
information and configurations (learning about other nearby devices); onboarding to
join the users network of connected devices; user notifications; a common control
panel for creating rich user experiences; and audio streaming for simultaneous play-
back on multiple speakers. In addition, the Alliance is producing developer tools and
verifying correct implementation through a compliance program.

The Open Interconnection Consortium (OIC) is defining a common communica-
tion framework based on industry standards to wirelessly connect and manage the
flow of information among IoT devices. It sponsors the IoTivity Project [29], an open
source software framework for device-to-device connectivity. The IoTivity architec-
tural goal is to create a new standard by which billions of wired and wireless devices
will connect to each other and to the internet. The goal is an extensible and robust
architecture that works for smart and thin devices. The IoTivity framework APIs
expose the framework to developers, and are available in several languages and for
multiple operating systems. The APIs are based on a resource-based, RESTful archi-
tecture model. The framework operates as middleware across all operating systems
and connectivity platforms and has four essential building blocks: discovery, data
transmission, data management and device management. IoTivity Services, which
are built on the IoTivity base code, provide a common set of functionalities to applica-
tion development. IoTivity Services are designed to provide easy and scalable access
to applications and resources and are fully managed by themselves. There are six

670 B. di Martino et al.

IoTivity Services in v1.0, each with its own unique functionality: Resource Encap-
sulation, Resource Container, Things Manager, Resource Hosting, Resource Direc-
tory and MultiPHY EasySetup. Resource Encapsulation abstracts common resource
function modules. It provides functionalities for both the client and server side func-
tions to IoTivity Service developers. For client side, it provides resource Cache and
Presence Monitoring functions. On the other hands, for the server side, it provides
the simple, direct way to create the resource and to set the properties, attributes of
resources. Resource Container provides a way to integrate non-OIC resources into
OIC ecosystem by creating, registering, loading and unloading resource bundles. It
also provides common resource templates and configurationmechanism for resource
bundles. It deals with OIC specific communication features, and provides common
functionalities in a generic way. Things Manager creates Groups, finds appropriate
member things in the network, manages member presence, and makes group action
easy. The goal of Resource Hosting is to off-load the request handling works from the
resource server where original resource is located to reduce the power consumption
of resource constrained devices. A resource directory is a server that acts on behalf
of the thin-client. The thin-client after it publishes their resources, resource-directory
will respond on behalf of these devices. The device acting as a resource directory
could itself hold resources. MultiPHY Easysetup is an IoTivity primitive service to
enable different sensor devices (with different connectivity support) to be easily con-
nected to the end user’s IoTivity network seamlessly. Thus enabling Sensor devices
to be part of the IoTivity network in a user friendly manner.

The big data universe can provide infrastructure and tools for handling, process-
ing and analyzing deluge of the IoT data. However, there is a lack of efficient
methods and solutions that can structure, annotate, share and make sense of the
IoT data and facilitate transforming it to actionable knowledge and intelligence in
different application domains [6]. The issues related to interoperability, automa-
tion, and data analytics naturally lead to a semantic-oriented perspective towards
IoT. Semantic technologies based on machine-interpretable representation formal-
ism have shown promise for describing objects, sharing and integrating information,
and inferring new knowledge together with other intelligent processing techniques.

Semantic technologies are necessary to integrate data from heterogeneous data
sources. In fact ontologies and related semantic technologies, such as ontologymerg-
ing and mapping, could offer a simple and powerful mean to provide not only a
formats unifier but also a semantic translator by providing an unified interpretation
of different data sources. Moreover, by means of semantic annotation the data will
be self explanatory information carriers and thus enabling the dynamic discovery
of relevant data sources and data. Semantic technologies enable the development of
extensible context models which can be adapted to different application domain and
that can be easily enriched to accommodate the continuous evolution of IoT systems.
There are many efforts in creating common models for describing and representing
the IoT data and resource descriptions, among many IOT-A [7], SSN [11], OpenIoT
[31].

Big Data, IoT and Semantics 671

4 Social Mining

Modern Social media is designed as a group of Internet-based applications that build
on the ideological and technological foundations ofWeb2.0. Such technologies allow
the creation, sharing and exchanges of huge volumes of user-generated content. Vast
amounts of data are created on social media sites every day. Social data mining can
be defined as the systematic analysis and extraction of valuable information from the
Social media. Since the Social media data are largely user-generated. This means
that the analysed content is:

• Vast, as the volume of data produced and exchanged exceeds the computational
capabilities of standard algorithms and machines.

• Noisy, since people exchange information about everything, often biased by their
own opinions and experiences. The really useful information could be hidden
behind a large amount of useless data.

• Distributed because the source of data cannot be found in just one place, such as
in a single database. Data are being generated everywhere, by people connecting
to their preferred social networks from work, school, home or in the middle of a
street, thanks to their mobile phones.

• Unstructured, as data produced by people interacting on Social Networks come
in the form of chats, comments, messages, e-mails, which do not have a fixed
structure or standard to follow.

• Dynamic, since data change at a dramatic pace, following people’s opinions,
moods, movements and so on.

Despite the complexity behind the analysis of such social generated data, there are
many reasons which drive companies to invest money on this topic. The main reason
is represented, however, by Marketing. By mining people’s opinions and mood,
market researchers try to determine the best sale trends and to propose, according
to it, the right product at the right moment. By analysing customer experiences,
which can be extracted from dedicated blogs or web-sites (not considering Facebook
pages), companies can try to optimize their products and satisfy their clients. There
are, of course, nobler applications of social mining. First of all, by analysing the
position of people, their movements and their opinion on public transports, insti-
tutions can try to identify problems and issues in the public transportation system
(very crowded/almost empty trains could represent the symptoms of a problem in
the circulation system). The analysis of messages exchanged by people during or
immediately after major incidents (fire out-brakes, earthquakes, floods) can be used
to direct rescuers towards the most hit areas and rapidly organize first-aid operations.

As in all social relationships and communities, SocialMedia evolve and gradually
acquire a well defined structure, which reflect the interaction ad relations among the
community members, and impose rules of well behaving within that community. As
an instance, online forums often have criteria to determine if amember is an expert on
a specific topic, and provide means to give the user credit for that. Social applications
are generally designed to support the definition and creation of such structures and
criteria. Very common social structure to be found in Social Media are:

672 B. di Martino et al.

• Hierarchical structures, which follow the hierarchical nature of human relation-
ships, in which a limited set of members has higher privileges and can enforce
rules.

• Conversational structures,which are built upon themessages and replies exchanged
by members. Such structures are present in all networks which imply or require a
direct interaction among users.

Knowing the structure of the target Social Media is essential to analyse it, since the
value of the information generated by a member of the network strongly depends
on its source within the community and the influence such a source has on other
participants. In order to study a social media and apply mining techniques, Social
Media Graph Mining Graphs (or networks) have been largely applied, since they
constitute a dominant data structure and appear essentially in all forms of information.
Typically, the communities correspond to groups of nodes, where nodes within the
same community (or clusters) tend to be highly similar sharing common features,
while on the other hand, nodes of different communities show low similarity. Useful
knowledge (patterns, outliers, etc.) can be extracted from structured data represented
as a graph. Using a graph representation of social interactions and behaviours, it is
possible to run several algorithms which help in mining new information as required.
A classical example is represented by Google Page Rank algorithm, used as one of
many predictors for the relevance of a web page. The link structure in the world-
wide-web network provides valuable contextual information about which pages are
deemed most relevant by the web page creators and visitors. The link-based graph
structure is used to predict relevance for a user’s query, but Social media hosts also
use it to understand if a specific group within their network will grow or be disbanded
in the near future. Section5 focuses more on graph mining techniques.

4.1 Text Mining

Text Mining is an emerging technology that attempts to extract meaningful informa-
tion from unstructured textual data. Since Social networks are based on messages
exchanging, comments publication, links to posts, blogs or other news articles, most
of the data created and passed from one user to another come in for of text. Text
mining techniques to discover information from unstructured text are part of many
of today’s applications, some of which we use everyday:

• Automatic processing of e-mails, for the automatic classification of text and recog-
nition of “junk mail” is used in order to fight spam. Using text based filters it is
possible to recognize specific terms or words that are not likely to appear in proper
and legitimate messages.

• Mining of medical records is used to improve care of patients’ health.
• Cyber Security applications, also to fight terrorism and crime, often analyse online
plain text sources such as news, blogs, feeds, to monitor suspicious activities and
detect malicious intentions.

Big Data, IoT and Semantics 673

Fig. 9 Phases of a text mining process

• Web pages “crawling” is often used by companies to analyse competitors’ port-
folios and identify competitive strategies. Crawling techniques are also used by
search engines to determine connections among web pages and to index new con-
tent, also making researches faster.

In order to carry out an effective Text Mining process, three basic steps have to be
followed, as also shown in Fig. 9.

First of all, the data need to be correctly collected from one or more social plat-
forms. Raw data can be stored into Big Data oriented databases, especially if their
volume need particular care. However, some pre-processing need to be done in order
to reduce the volume od data to be analysed and to remove redundant and noisy text.
This is done by applying Data Modelling techniques which enforce specific require-
ments on the data (which have to be determined in the application design phase) and
strongly depended on the scope of the application. According to this pre-processing,
meta-data are generated and associated to the raw data, which are then sorted and
arranged in order to be better classified during the second stage.

In the Mining stage, different Data Mining techniques are applied to the semi-
structured datawhich have been previously collected. Cluster analysis, as an instance,
is applied to identify unknown and interesting patterns which glue together groups
of data records. Anomaly and outliers detection is also applied in this phase in order

674 B. di Martino et al.

Fig. 10 Example of the graph representation of information extracted from text byWatson services

to identify abnormal clusterings of data, unexpected events or strange behaviours
which do not confirm previously identified patterns.

In the last phase, after all automatic analysis of data have been carried out, a
static comparison with historical information is run. In this way, it is possible to
compare past and present situations, in order to understand if some major change has
happened, if the previous model can be confirmed or need to be update on the base
of the new information. Business companies often use such comparison to perform
market analysis, to determine future trends or correct/avoidmanufacturing problems.
Among the most recent advancements in the State of the Art on text mining, Cloud
based solutions surely have an important role. As an instance, the IBM Bluemix
Cloud Platform has provided a set of very interesting services, based on the Watson
framework, which enable the online analysis of text and web-sites. In particular, via a
Relation extraction service [27], which accepts as an input both textual documents
and URLs of web-pages, it is possible to retrieve semantic relationships among
entities described in the text and polarity information on the analysed terms. The
output produced by the Watson framework includes parse trees, grammatical and
logical information on the text, and semantic relationships which can be used to
derive entire ontologies. Figure10 shows the graph-based representation of entities
and their relationships which have been detected in a simple text analysed viaWatson
services. By selecting one of the bubbles, whose dimension depends on the number
of occurrences and relevance of the referenced term, it is possible to obtain additional
information on that term (relationships with other entities, meta-data and so on).

Big Data, IoT and Semantics 675

4.2 Sentiment Analysis

One recurring argument in Social and Text Mining scenarios, is represented by Sen-
timent Analysis (also Opinion Mining) which is referred to as the use of Natural
Language Processing (NLP) techniques, statistics, or machine learning methods to
extract, identify, or otherwise characterize the sentiment content of a text unit.Mostly
adopted to identify people’s reaction to particular events, such as the launch on the
market of a new product, upcoming elections, a change in the marketing advertise-
ment and so on, it is applied to several possible sources: customer forums, tweets,
product reviews. However, sentiment analysis is also used for other purposes, such
as during information extraction for discarding subjective opinions from a text and
identifying biased news sources, or when trying to summarize the content of a spe-
cific page, taking in consideration multiple opinions. Moreover, it finds application
in flame detections, or in identifying the content of public media from the comments
left by users.

While Sentiment Analysis deal with far less categories than Text Mining, as
the opinions can be positioned into a limited and strictly dependent set of classes
(positive or negative, good or bad and similar), it is still extremely complex to actually
understand under which category a specific opinion falls. This depends on the fact
that humans express their opinions in very complex ways, making use of expressions
where lexical meaning can be misleading, or using rhetorical modes such as irony,
sarcasm implication and so on.

The first question to answer when trying to analyse the sentiment of a text unit
regards the exact subject of the classification: according to what we are interested
in (users, small sentences, tweets and updates, smileys) different techniques can be
applied. Since words represent the building block of language, most techniques start
from them to classify the sentences they compose. Short sentences (two to three
words) can also be taken in consideration, since they can compose some particular
meaningful expression. When working with small texts, tweets or comments, a com-
mon approach is to analyse smileys, since they portray a lot of information in a very
few coded characters.

Whatever part of the text we want to analyse, there are different techniques and
approaches which can be applied. The most known and followed approach tries
to identify the Semantic orientation [20] of the text and the Polarity of words
contained in it. Examining the Semantic Orientation of a text towards a features tries
to determine if the opinion expressed by that text is positive, negative or neutral. It
represents a real-number measure of positive or negative sentiment in a phrase, and
it is calculated on the Polarity of the relevant words composing it, which is in turn
a binary value either positive o negative. In order to assess if a specific word has a
positive or negative meaning, we can rely on Heuristic methodologies, which start
from some already owned knowledge and apply it to solve the new problem: as an
instance, we already own dictionaries which classify words and know their meaning.
Some tools support this kind of approach: General Inquirer [50] and WordNet
[38].

676 B. di Martino et al.

General Inquirer is a “Computer-assisted approach for content analyses of textual
data” which has been developed over several years and continuously updated to
support modern programming languages and run on today’s machines. The approach
it uses consists in dividing words into more than 180 categories (like a dictionary
with more classes), which are used to tag and map terms and phrases. In order to
classify words by polarity, it is possible to apply positive and negative categories,
which is very fast and easy using the instruments provided by the Inquirer. However,
there are major drawbacks represented by the binary-based approach (no gradations
or weighting of the polarity) and the blindness to the context. Since the categorization
is only lexical, the context is ignored and sometimes interpretation can bemisleading.

WordNet creates an extended thesaurus in which words are part of a network,
connecting them on the base of synonymy in order to create a rich semantic organi-
zation. Synonyms are grouped into synsets, which are in turn connected via different
kind of relationships:

• Hyponym relationship connects a term with a specific meaning to a more general
one: butterfly is hyponym of insect;

• Hypernym is the opposite of Hyponym;
• Has-member connects a group with one or more of its components: book has-
member page;

• Has-stuff connects a term with one or more elements describing its composing
materials: book has-stuff paper;

• Entail express an implication or natural involvement: dream –> sleep;
• Cause-to express a cause-effect relationship: time passes –> become older
• Attribute connects and adjective to a base word: hypocritical –> insincerity

Other relationships connect words directly. The work presented in [23] demonstrates
the use of WordNet to determine adjectives’ polarity: the authors apply a machine
learning methodology, based on a set of rules which, starting from a set of “seed”
words (whose polarity is already well known), label new terms by measuring their
proximity via synonymy/antonymy relations to seed adjectives. Despite the good
results obtained via such a technique (the authors documented an average sentiment
orientation accuracy of 84%), the WordNet approach is limited when it comes to
word with multiple senses (context issues again) and sentences with very few or no
adjectives.

Another approach which is used in combination withWordNet or other systems is
based on theTheory of Semantic Differentiation [43], which assigns three different
values to words, according to the emotive meaning of adjectives: Potency (strong or
weak),Activity (active or passive) andEvaluative (good or bad). Thework presented
in [30] usedWordNet to calculate such values, by comparing the minimal path length
(MPL) between two words representing the factor’s range (as an instance, the MPL
between a word and the good and bad terms, for Evaluative). This approach has the
evident limitation that if two adjectives are not related to the ranges’ extremes by a
synonymy relationship, they will never get a score.

Big Data, IoT and Semantics 677

4.3 Social and Political Trends

One of the application of Sentiment Analysis techniques is represented by the inspec-
tion of informal texts regarding political discussions and opinions. The subject of
such an analysis can be quite heterogeneous, as the arguments of interest vary signif-
icantly. In general, government and politicians are strongly interested in knowing the
Public opinion, and their general attitude towards policies, parties, government agen-
cies and politicians. The knowledge of the political trends and opinions expressed
by people, active voters in particular, can be used to drive elections by influencing
them. Targeting advertising and communications such as donation requests, peti-
tions, and notices can represent a formidable weapon to gain consent. Also, it is
possible to understand if a particular information source, such as a news paper, is
biased towards a specific opinion more than another, and choose/discard it to release
a positive interview.

The main source of informal political discussions is represented by Newsgroups,
Blogs, Online publications allowing readers to write their feedback, or even Social
Networks. What characterizes such sources is informal register which is often used
in the text. This depends on the fact that people express their opinion by quickly
writing short sentences, often fragmented, which contain expressions the author
(but not necessarily the readers) is very familiar with. To this, one should add the
high number of misspellings and grammatical errors which often affect such textual
interventions, the extensive use of jargon, and the occurrence of non-existing words
which are satirical re-spellings of known ones.

Differently from Sentiment Analysis categorizations, political opinion does not
easily fall in binary classifications, which are way too simple representations. Politi-
cal attitudes cover a wide range of possible judgements, whose relationships are not
always clear. As instance, the “Pro-life” anti-abortion groups in the USA political
scenario are often affiliated with “Pro-death” penalty organizations.

In [40] and subsequent works, the authors have applied a classification method-
ology to identify public opinion trends, using “quote” patterns to determine the affil-
iation of writers to a political party. In particular, political attitudes were divided in
three coarse grain categories left, right and other, where the “other” contained noisy
and uncertain data. Starting from the discussions posted on the www.politics.com
website, the textual data has been divided in “chunks”, and three (or more) words
long chunks, which appeared in more than one post, were considered as quotes. By
analysing chunks and quotes, and by comparing them with lexical terms extracted
from other sources (such as on-line newspapers), text is labelled with manual identi-
fied classes, which then are associated to the original categories. In order to correctly
identify the afferent categories, Naive Bayesian techniques were used, associated to
a User Citation Graph, in which nodes represented users and edges were quotes.
Among the results of the study, it was evident that users from one wing mostly
quoted users from the opposing party. In order to reduce the set of data to analyse
and fasten the computation, only posts and quotes from frequent users were taken in
consideration.

www.politics.com

678 B. di Martino et al.

The selection of the starting set of terms, sentences and textual fragments to
analyse is an important task, as the dimension of the data to be evaluated strongly
influences the time to elaborate them and the needed computational power. In the
approach followed in [35], which analyses sentiments expressed in tweets on USA
President approval, the selection of posts to analyse was reduced to one per day per
poster, and all comments left on other topics were simply discarded. Subjectivity
Lexicon [52] and SentiStrength [51] were used to determine the polarity of words
and the strength of the expressed sentiments.

5 Graph Mining

When trying to model complex structures, Graphs based representations can pro-
vide the optimal solution to store all the required information regarding elements
of the structure and their relationships. Circuits, biological and social networks, the
Internet can all be represented through graphs. The use of graph search algorithms is
documented in several fields, such as chemical informatics, computer vision, video
indexing, and text retrieval. Because of the extremeflexibility of graphs, their capabil-
ity to describe complex situations and the intense research on algorithms to manage
them, they have been naturally adopted to support many data mining applications.
Recent studies have developed several graph mining methods and applied them to
the discovery of interesting patterns in various applications. In particular, such meth-
ods are based on the discovery of Frequent sub-structures, that is basic patterns
which repeat themselves in several graphs and show peculiar and distinguishable
characteristics. The presence of such Frequent sub-structures in graphs can help in
discriminating, classifying and clustering sets of graphs, building indexes or speeding
researches in graph databases.

Graph sub-structuremining In order to understand how to mine for sub-structures,
we need to define the main components of a graph. In particular, a graph is com-
posed of: a set of Vertexes, which represent entities to be modelled; a set of Edges
which denote relationships among entities and connect vertexes; a Labelling func-
tion which associates vertexes and edges to a label used to annotate it with infor-
mation (meta-data). Given a set D of N graphs, we will say that a sub-graph g is
frequent, if it is sub-graph of at least m graphs from the set, where m represents a
threshold. The definition of sub-graph relies on that of isomorphism on which a
very rich literature exists [14].

The sub-graph mining problem is generally solved by following a two-step
approach: in the first step, a set of sub-graph candidates is generated, while in the sec-
ond their frequency is calculated. Most algorithms provide optimized methodologies
to create the candidate set.

The Apriori-based Approach starts from a small structure (the definition of size
depends on the specific graphs analysed), and define new candidates by expanding it.
The expansion can require the addition of a vertex, and edge or a path to the original

Big Data, IoT and Semantics 679

Fig. 11 Functioning of an Apriori procedure (AGM in particular)

structure. In general, the algorithms based on this approach follow a bottom-up
procedure: starting from a set of already known frequent sub-graphs, either already
known or built and evaluated during the first phases (thus being very small and
simple), theymerge such sub-graphs and check if they are frequent enough to become
part of the solution set. By means of this iterative procedure, larger sub-graphs are
generated at each iteration: the algorithm stops when the new larger structures do
not meet the frequency threshold. Figure11 shows how the basic procedure works,
by adding one vertex at a time.

Implementations of such procedure are, as an instance:

• the Apriori-based Graph Mining (AGM) algorithm [28], which increases the
size of graphs by adding one vertex at a time. In particular, in order to obtain
a graph of dimension k (size here is the number of vertexes), it joins only two
graphs of dimension k − 1 sharing the same sub-graph. The new graph will share
the common elements of the joined graphs, plus twomore vertexes which can be or
not be connected: thus, two new candidates are defined. Figure11 makes reference
to this kind of approach.

• the Frequent Sub-Graph (FSG) algorithm [34] follows an edge-based approach,
as the expansion is made not by adding vertexes, but one edge at a time. Two k −
1 graphs sharing the same substructure are joined to form a new k sized graph.

• the Edge-disjoint path method [19] defines the size of a graph as the number of
Disjoint paths (paths not sharing edges) they include. Two graphs of dimension
k, sharing a set of disjoint paths, are combined together to obtain a k + 1 sized
graph.

Apriori-based approaches all have to evaluate all k-size sub-graphs before increasing
their dimension: thus, they all follow a Breadth-first search kind of approach which,
in some cases, can slow down the process since the number of k-size graph to be
evaluated before moving to k+ 1 can be considerable. Pattern Growth approaches
use a completely different way of visiting the solution space and, beingmore flexible,
they can be implemented in a BFS or DFS (Depth-first search) fashion. The idea is
to add to a sub-graph g, one edge at a time. This edge can add a vertex or not, that is
not important. Instead of adding edges to the graph g by keeping the size constant,
this approach builds all the g’ graphs including g which can be generated by adding
edge after edge. The algorithm stops when no more edges can be added, so when the

680 B. di Martino et al.

Fig. 12 Expansions used for
the gSpan algorithm

maximum size possible, starting from g, has been reached. This approach rapidly
determines sub-graphs of big size, but has a potential bottleneck: it can produce a
high number of duplicate solutions, which need to be continuously checked and can
represent an unwanted overhead.

The gSpan algorithm provides a solution to such a problem. It adopts a DFS
search, by selecting a random start vertex which is then expanded to add new edges.
Each edge will provide a connection to a new vertex, which will be expanded itself.
Already visited vertex are not expanded. The algorithm stops when no more expan-
sion are possible. A criterion for expansion order is needed, as it is necessary to
choose which vertex among new added ones the algorithm has to visit. When the
DFS visit has been completed, we will have a single path from the root note and the
last visited vertex, which is also calledRight-mostVertex, while the path connecting
the root the such vertex is called the Right-most path. In order to avoid duplicate
graphs, edges can be added only in two cases:

• backward extension: the edge connects the right-most vertex with another vertex
on the right-most path;

• forward extension: the new edge introduces a new vertex on the right-most path.

Figure12 reports how the two expansion methods work.
Since different DFS trees can be defined, depending on the root node selected and

the ordering criterion, one and only one base DFS has to be chosen to expand the
sub-graph by using the two extension mechanisms.

Since each node in the examined graphs can be labelled, it is possible to generate
a codewhich identifies all the vertexes and edges from the root to the last added one:
in this way, if a visit has generated two identical signatures, it is possible to simply
prune one of them, and proceed to explore the remaining. In this way, the algorithm
avoid expanding the same nodes twice and being capped in a loop.

Other graphmining algorithmsTheApriori and PatternGrowthmining algorithms
are among the most used ones to determine frequent sub-graphs in a graph set.
However, there are other algorithms and methods which try to reduce the search
space by imposing some limitation criteria on the possible sub-graph candidates. As
an instance, the Closed Frequent Substructuremethod only researches for Closed
Graphs, where we define a graph G as closed if there is no super-Graph G’ with
the same frequency in the graph set: that is, by expanding the graph G we have a

Big Data, IoT and Semantics 681

reduction in its frequency. With one of the previous approaches the new graph G’
would have been considered as a valid candidate, if it had a minimum frequency of
course. With the Closed graph approach, it is ruled out of the solution set, even if it
has a frequency above the threshold. The result set would obviously be smaller than
in the base Apriori or Pattern Growth approaches, but the missing solutions can still
be calculated from the discovered Closed graphs.

If we consider the gSpan algorithm, we can see that it is limited in regards to
the graphs it can handle: the original algorithm considers only labelled, connected,
undirected graphs. So, if one or more of these properties is not present, the algorithm
cannot be applied. However, these situations can be addressed and eventual issues
solved.

• If a graph is not labelled or partially labelled, it is possible to define a new label
set, comprehending the old one and a new “empty” symbol, which is applied to
all unlabelled nodes and edges. This symbol can match with all other symbols or
only with other empty ones, depending on the application.

• In the case of nonsimple graphs which may contain self loops (a vertex pointing
to itself), or multiple edges from vertexes, a change to the expansion rules must be
introduces. In particular, the order to be followed during the expansion needs to
be backward edges, self-loops, forward edges. Multi-edge graphs can be handled
by simply defining a correct order in the nodes’ codes: the classic lexicographic
order can handle multiple edges without problems.

• Directed graphs only differ from undirected because edges have a starting and
target node. It is possible to represent an edge with a tuple o 6 elements (i, j, d,
li , l(i, j), l j), where i and j are nodes, li , l(i, j), l j are the labels associated to such
nodes and the edge existing between them, while d is the direction (1 for forward,
−1 for backward). So the expansion algorithm just has to consider the direction
when adding new edges to the solution set.

• Disconnected graphs are handled in two ways, depending on the source of discon-
nection. If the graphs in the data set are disconnected, then it is possible to a add
virtual vertex to eliminate the disconnection. If the disconnection is in the graph
patterns, then we can see each of them as a set of connected graphs, and impose
and order on their visit.

Applications of GraphminingAmong the several applications in which graphmin-
ing techniques can be adopted, Indexing represents is particularly important. All
modern databases exploit indexing algorithms to speed-up queries and the retrieval
of information, but graph-based databases cannot be handled by standard algorithms,
because of the exponential number of sub-graphs tomanage. A Path-based approach
is often applied, where the path (a list of visited vertexes) represents the indexing
unit. The idea is to enumerate all possible paths in a graph-based database, limiting
the path length to a maximum number L. When a query is issued, graphs are iden-
tified by matching them with a graph index extracted from the query. Since, despite
the length limitation, the index can be quite long as several paths are considered,
other approaches choose different indexes. The Discriminative frequent substruc-
ture approach uses frequent substructures to index graphs in the database, but it

682 B. di Martino et al.

only considers discriminative substructures. A substructure is discriminative if its
frequency is not approximated by the intersection of the graph sets containing one
of its sub-graphs. The gIndex [53] algorithm is an implementation of this approach.

Classification and cluster analysis is another application of graph and sub-graph
mining algorithms. By discovering frequent graph patterns and their variants, it is
possible to associate discriminative features to graphs and, as a consequence, to clas-
sify them according to such features. Thresholds like frequency, graph connectivity,
discriminativeness can be tweaked to determine the classification accuracy. Once a
set of features has been identified, classic classification techniques can be applied:
vector machines, naive Bayesian, associative classification and so on. Clustering can
also be based on mined graph patterns. Graphs sharing a large sub-set of similar
graph patterns can be labelled as similar and thus be grouped in the same cluster,
while graphs not belonging to any of the determined clusters or not similar enough
to other graphs, are considered as outliers.

5.1 Link Mining

In Social Networks relationships among entities are represented by links in a
graph: however, traditional machine learning and data mining algorithms and
techniques may not be efficient and appropriate in the Social Network analysis.
The data produced and exchanged within a social network tend to be very heteroge-
neous,multi-relational and semi-structured: in order to definenewmining techniques,
LinkMining has emerged as a new research field. In particular, while traditional data
classification methods, based on graphs, identify objects as possible graph’s nodes
based on their attributes only, Link Mining takes in consideration the attributes of
existing links and the properties eventually associated to the whole object-relation-
object triples. This is used, as an instance, for Link-based object classification. A
typical application of link based classification is represented by Web pages analysis,
which tries to predict the category of a web page on the base of two attributes: the
words occurrences in the text of the page and the anchor text that is, the words
used for hyperlinks. Classification also benefits from the knowledge of links existing
between pages and the attributes of the linked pages. Strictly connected to link-based
object classification areObject type prediction andLink type prediction, which try
to predict an Object and Link type, based on the links and objects they are connected
to. Link prediction is particularly interesting, since in most analysis it is necessary to
understand the nature of the relationship existing among entities. If we want to assess
if a certain link exists, that is we do not know if two or more objects are connected or
not, we talk about Predicting link existence. As an instance, wemaywant to know if
two web pages are connected, if an article cites another one and so on. In some cases,
knowing theCardinality of the links is necessary to correctly weight them, and opti-
mize the pages’ categorization. In general, an object authoritativeness is reflected by
the number of other objects linking to it. A highly cited paper, for an instance, is
more likely to have a high impact on the research field it addresses. Conversely, if

Big Data, IoT and Semantics 683

an object acts as a hub, that is it links to a high number of different authoritative
objects (out-links), than it can be seen just as a collector of links and obtain scarce
consideration. Another form of link cardinality estimation calculates the number of
object touched while visiting a link-based graph, moving along the path between
two nodes. As an instance, while crawling a web page, it is useful to predict how
many in and out links that page own and, as a consequence, to choose the path which
will require less computational power to complete the crawling. A common prob-
lem which can be solved by analysing the attributes of the links connecting object
is the Recognition of Duplicates, that is the identification of two or more objects
as exactly the same. This is an important task in web pages classification, in order
to identify page mirrors, or in the bibliography field, to understand if two citations
actually refer to the same paper. Clustering of objects is also another interesting
task which can be addressed via link mining: by analysing objects’ properties and
links existing among them, it is possible to place them in particular groups or clus-
ters, thus inferring similarities among different entities. The identification of Web or
research Communities is an example of Cluster detection. If we are more interested
in identifying particular structures based on the connections existing among objects,
we talk about Sub-graph detection, which identify recurring sub-graphs within net-
works. Information on objects and links can be stored as Meta-data, which provide
semi-structured data on otherwise unstructured ones.

6 Big Stream Data Mining

Most of the algorithms described in literature to mine data assume that the informa-
tion is permanently stored in some kind of database and that it is always available.
However, when considering Big Data Streams, data arrive in a stream or streams,
and needs to be immediately processed or stored somewhere, or they are lost. In
most cases, the rapidity with which data arrive is so high that it is not even possible,
or feasible, to actually store them. Stream mining algorithms tend to apply one of
two different approaches: Summarization andWindowing. In Summarization only
a part of the stream, the one considered relevant and desirable, is actually elabo-
rated or stored temporarily, in order to reduce storing and computational costs. In
Windowing, the stream is divided in chunks of fixed length (generally large), and
data are elaborated in batches. Since the windows tend to be very large themselves,
summarization may be applied on a smaller scale. The reduced windows can be then
queried like a standard database.

Models used to manage Data Streaming all follow a standard architecture, which
is summarised in Fig. 13 in its main components. The data streams, which can be of
different nature and come from very different sources, feed a streaming processor.
Among the possible data sources, we have:

684 B. di Martino et al.

Fig. 13 Data Streaming Model

• Sensors and Sensor networks, which produce vast amounts of data regarding sev-
eral aspects of the world (temperature, devices’ positions, measures of voltage or
current).

• Image data, sent for example from satellites to home and mobile devices for repro-
duction.

• Internet andWeb-traffic, which represent a very relevant part of the data exchanged
among human and artificial net users.

Such sources are very different fromone another, but they aBigData StreamAnalysis
framework has often to deal with all of them at the same time and to integrate the
knowledge extracted from it.

The Streaming Processor is in charge of executing queries on the collected data,
regardless of the fact that it has been summarized or windowed (or both). Standing
Queries are always executed on the stream, that is they are defined statically once and
are always used to retrieve information from the stream. As an instance, a standing
query could determine, for a specific reading, the medium value of the preceding x
hours, for every time that measurement arrives. Instead, ad-hoc queries are executed
once and only if the system is asked to. Since it is not feasible to store all the data
obtained by the streams in order to answer arbitrary queries, the designer of the
stream analysis system need to foresee which ad-hoc queries could be formulated
in the future and organize theWorking Storage accordingly: in such a storage only
a limited sub-set of the entering data can be archived, as they will fade after a set
amount of time (sliding-window approach). On the other hand, Archival Storage is
used to preserve some particular data over a longer period of time: generally it stores
aggregate data (max, minimum and similar) extracted from the streams.

Several operations can be done on the data stream: here we will consider two
basic operations which are necessary to analyse data efficiently.

Big Data, IoT and Semantics 685

6.1 Data Sampling

Data Sampling is one of such operations. As we have already stated, it is not feasible
to keep track of all the data flowing into the analysis system, and to permanently store
them somewhere. Sop, in order to answer both static and ad-hoc query, the most
suitable samples must be selected from the data stream. The general idea which is
applied to solve the sampling problem, is to choose a Hash function to apply to the
incoming data and, based on the value returned by such a function, to keep or discard
the data. In general, the data flowing in via the stream come in form of tuples, with
one or more of the tuple’s components representing the key which will be used by a
query to retrieve the required data. The hash function idea is to choose a threshold
value, generally high enough to not discard too much data, and to store all and only
the tuples whose key correspond to a hash value below the threshold. Furthermore,
if the hash value is used to label the tuples and put them in discreet buckets, the data
is also partially sorted. Since the storage space is not free and sooner or later the
system will need to erase some data, it is possible to lower the threshold and discard
tuples stored in buckets with hashing value above it.

6.2 Data Filtering

Another operation which can be done on the data stream is represented by Filtering,
that is remove/discard those tuples which do not meet certain criteria. Note that this
is different from Sampling, since the hash function adopted in that case does not
consider the characteristics of the data. Among the techniques used to enforce a
filtering rule on a set of tuples, the Bloom Filter represents one outstanding tool.
The idea behind this filter is represented by combining several hash functions, which
are all evaluated on the incoming tools. In particular, the Bloom Filters can be built
by using a simple bit array of N elements, initially all set to 0, and a collection of K
hash function which, operating on the tuples’ key(s), map them to one of N buckets.
Finally a set S ofM keys, which represent tuples meeting the filter criteria, is selected
and evaluated: the N bit array is initialized by calculating the hash functions of the S
set, and setting to 1 all and only the bits corresponding to the calculated hash values.
After the training, when a new tuple arrives, the set of hash functions is evaluated on
its key(s) and, if the resulting values correspond to the 1 bits of the N array, then it
is accepted. Otherwise, it does not respect the acceptance criterion and it is rejected.
Obviously, while there is no possibility of having a false negative, it is still possible
to have a false positive, and to accept a tuple which does not meet all the criteria.

686 B. di Martino et al.

7 Geo-Referenced Data Mining

Geographic information science moves within an increasingly data-rich and compu-
tation consuming environment. The digital geographic datasets are very extensive,
and they provide an impressive coverage: remote sensing systems and environmental
monitoring devices have gathered in the past years vast amounts of geo-referenced
images, videos and sounds. Location aware technologies, such as the GPS and other
modern tools such as cell phones, in-vehicle navigation systems and so on have
enable the possibility to associate spatial information to practically all of the data we
produce, exchange and consume everyday. While information infrastructure initia-
tives, such as the U. S. National Spatial Data Infrastructure, have provided the means
to enhance data sharing and interoperability, and the growth in computer power has
allowed for faster computations on large datasets, there are still issues related to the
available algorithms andmethodologies formining huge volumes of data. Traditional
statistical methods, particularly spatial statistics, have high computational burdens.

Geographic knowledge discovery (GKD) and Geographic data mining start
from the presupposition that novel and useful geographic knowledge is hidden in the
huge volumes and scopes of digital geo-referenced data being collected, archived
and shared by researchers, public agencies, private organizations and web users.
Traditional methods fail to reveal such knowledge, as they cannot handle massive
data. Also, the very nature of geo-references data is different from the classic aspatial
data. Non spatial data analysed in typical Knowledge Mining applications can be
often reduced to points in a n-dimensional space, without the risk of losing important
information. On the other hand, for some (most of) geographical objects such a
reduction causes a significant information loss, which cannot be neglected bymining
applications. A problem which is often related to geographic data is the sensitivity
shown to spatial measurement units, especially when treating aggregate variables
(density of population over an area, census districts and so on). This is known as
the Modifiable Area Unit Problem (MAUP) [17]. As a consequence, discovered
patterns have to be checked for robustness, as they may emerge because of unit
conventions.

In spatial and geo-reference mining, the pattern types which can be discovered,
such as classes, associations, rules, clusters, outliers and trends all have spatial expres-
sions, since their are heavily influences by the morphology as well as spatial relation-
ships among these objects. Several techniques are available to examine these kind of
patterns.

• Spatial classification techniques map spatial objects into meaningful categories
that take in consideration several characteristics, such as distance, direction, mor-
phological aspects and so on. Spacial buffers are used in the work presented in
[33]. The approach classify objects on the base of morphological similarity and
proximity. A similar approach, but which uses path relationships in a defined
neighbourhood of a target object is used in [15].

• Spatial association rules are association rules that also contain spatial predicates
in their precedent or antecedent. Such rules are used to associate spatial data by

Big Data, IoT and Semantics 687

exploiting tree search techniques, which explore hierarchical structured data. Co-
location patterns are a particular type of association rules that determine subsets
of spacial objects which are often found together in the same location. As a top-
down tree search technique that exploits background knowledge in the form of a
geographic concept hierarchy. A specific type of association rule is a co-location
pattern: these are subsets of spatial objects that are frequently located together.
Huang, Shekhar and Xiong [25] develop a multi-resolution filtering algorithm for
discovering co-location patterns in spatial data.

• Spatial prediction algorithms try to infer new information on the characteristics
of a set of spatial objects via inductive learning techniques. The target is generally
represented by general purpose collections of data, such as topographic maps
produced by cartographic organizations. As an instance the work presented in
[46] used a tree-based induction algorithm to extract knowledge about complex
soil-landscape processes, by combining background knowledge from soil surveys
with data coming from environmental sensors.

• Spatial clustering algorithms comprehend a vast number of heuristic approaches
for the grouping of spacial objects, following some similarity criteria. The heuristic
of such approaches is necessary since it is not possible to automatically decide the
optimal set of k clusters in which to divide the data, without a previous knowledge
of the problem. Traditional partitioning methods such as k-means and the “expec-
tation maximization” method can be used to cluster data on the base of simple
distance relationships, and are therefore applicable to large spatial datasets.
Density-based methods are used to define regions of space where a large number
of spatial objects reside. The definition of density will depend of the particular case
examined and discriminates the dimension of the regions to be considered. Using
density as a parameter, it is possible to determine clusters of arbitrary shapes.
Conversely, grid-based methods divides the space into a very well defined tes-
sellated structure, and cluster objects accordingly. Model-based methods define
functions and rules which are reflected in region shapes which include or exclude
subsets of the spatial database. The curves drawn by these functions represent the
border between adjacent regions. Constraint based methods are used to capture
spatial restrictions: they are particularly useful to take in account for geographical
obstacles such as rivers, borders and mountains [47].

• Spatial outlier analysis can be focused on both spatial and non-spatial charac-
teristics of the examined objects. In the work presented in [48] spatial outliers are
geo-referenced object which show non-spatial characteristics which are not con-
sistent with other objects in the neighbourhood. This means that the object would
be inconsistent with the local region it would belong spatially, but not with the
entire database. Obviously,more generic approaches can take in consideration spa-
tial characteristics (i.e. distance, speed, geometry, position) as well to determine
outliers.

688 B. di Martino et al.

8 Conclusion

In the steadily evolving IT environment, strong emphasis has been given to Big Data
and the Internet of Things. These two topics are strongly related to each other (see
Sect. 3): indeed, IoT strongly influences Big Data research, since the huge volumes
of data continuously produced by sensors need to be managed in a high efficient
way. That is why it is important for data analysts to own knowledge of Big Data
methodologies, techniques and technologies, which are also applied in the IoT field.
In this chapter we have presented the most prominent Big Data algorithms and tech-
niques, in order to provide an insight on Big Data thematics and fields of application,
stress its connection to IoT, and show how Semantics can support reasoning and
classification over collected data (Sect. 2). In particular, we have focused on mining
techniques, applied to Social contexts (Sect. 4), Graphs (Sect. 5) and Data Streams
(Sect. 6), which are particularly relevant to IoT developers, since the information
coming from sensors networks are often in the form of streams.

References

1. M.G. Al Zamil, S. Samarah, The application of semantic-based classification on big data,
in 2014 5th International Conference on Information and Communication Systems (ICICS)
(IEEE, 2014), pp. 1–5

2. M.B. Alaya, Y. Banouar, T. Monteil, C. Chassot, K. Drira, Om2m: extensible etsi-compliant
m2m service platformwith self-configuration capability. Procedia Comput. Sci. 32, 1079–1086
(2014)

3. AllJoyn, https://allseenalliance.org/
4. S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, Z. Ives, Dbpedia: A Nucleus for a

Web of Open Data (Springer, Berlin, 2007)
5. S. Auer, V. Bryl, S. Tramp, Linked Open Data–Creating Knowledge Out of Interlinked Data:

Results of the LOD2 Project, vol. 8661 (Springer, 2014)
6. P. Barnaghi,W.Wang, C. Henson, K. Taylor, Semantics for the internet of things: early progress

and back to the future. Int. J. Semant. Web Inf. Syst. (IJSWIS) 8(1), 1–21 (2012)
7. R. Beneficiary, I. FhG, S.H. SAP, E.H. HSG, C. Jardak, A.O. CEA, A. Serbanati, M.T. SAP,

J.W. Walewski, Internet of things-architecture iot-a deliverable d1. 3–updated reference model
for iot v1. 5

8. T. Berners-Lee, Linked data-design issues. https://www.w3.org/DesignIssues/LinkedData.
html (2006). Accessed 01 Apr 2016

9. K. Bollacker, C. Evans, P. Paritosh, T. Sturge, J. Taylor, Freebase: a collaboratively created
graph database for structuring human knowledge, in Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data (ACM, 2008), pp. 1247–1250

10. E.U. Commission, European union open data portal (2012). https://open-data.europa.eu.
Accessed 01 Apr 2016

11. M. Compton, P. Barnaghi, L. Bermudez, R. GarcíA-Castro, O. Corcho, S. Cox, J. Graybeal, M.
Hauswirth, C. Henson, A. Herzog et al., The ssn ontology of the w3c semantic sensor network
incubator group. Web Semant. Sci. Serv. Agents World Wide Web 17, 25–32 (2012)

12. D. Consortium, A data- and platform-as-a-service approach to efficient. open data publication
and consumption (2006). http://project.dapaas.eu/. Accessed 01 Apr 2016

13. S.K. Datta, C. Bonnet, Smart m2m gateway based architecture for m2m device and endpoint
management, in Internet of Things (iThings), 2014 IEEE International Conference on, and

https://allseenalliance.org/
https://www.w3.org/DesignIssues/LinkedData.html
https://www.w3.org/DesignIssues/LinkedData.html
https://open-data.europa.eu
http://project.dapaas.eu/

Big Data, IoT and Semantics 689

Green Computing and Communications (GreenCom), IEEE and Cyber, Physical and Social
Computing (CPSCom), IEEE (IEEE, 2014), pp. 61–68

14. D. Eppstein, Subgraph isomorphism in planar graphs and related problems. SODA 95, 632–640
(1995)

15. M. Ester, H.P. Kriegel, J. Sander, Spatial data mining: a database approach, in Advances in
spatial databases (Springer, 1997), pp. 47–66

16. A. Fensel, D. Fensel, E. Simperl, R. Studer, Planetdata: a european network of excellence on
large-scale data management (2012)

17. A.S. Fotheringham, D.W. Wong, The modifiable areal unit problem in multivariate statistical
analysis. Environ. Plan. A 23(7), 1025–1044 (1991)

18. R. Gomathi, C. Sathya, D. Sharmila, Efficient optimization of multiple sparql queries. IOSR
J. Comput. Eng. (IOSR-JCE) 8(6), 97–101 (2013)

19. V. Guruswami, S. Khanna, R. Rajaraman, B. Shepherd, M. Yannakakis, Near-optimal hardness
results and approximation algorithms for edge-disjoint paths and related problems. J. Comput.
Syst. Sci. 67(3), 473–496 (2003)

20. V. Hatzivassiloglou, K.R. McKeown, Predicting the semantic orientation of adjectives, in Pro-
ceedings of the 35th Annual Meeting of the Association for Computational Linguistics and
Eighth Conference of the European Chapter of the Association for Computational Linguis-
tics (ACL ’98, Association for Computational Linguistics, Stroudsburg, PA, USA, 1997), pp.
174–181. http://dx.doi.org/10.3115/976909.979640

21. M.A. Hearst, Automatic acquisition of hyponyms from large text corpora, in Proceedings of
the 14th conference on Computational linguistics-Volume 2 (Association for Computational
Linguistics, 1992), pp. 539–545

22. I. Horrocks, P.F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof,M.Dean et al., Swrl: a semantic
web rule language combining owl and ruleml 21, 79 (2004)

23. M. Hu, B. Liu, Mining and summarizing customer reviews, in Proceedings of the Tenth ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (ACM, 2004),
pp. 168–177

24. J. Huang, D.J. Abadi, K. Ren, Scalable sparql querying of large rdf graphs. Proc. VLDBEndow.
4(11), 1123–1134 (2011)

25. Y. Huang, S. Shekhar, H. Xiong, Discovering colocation patterns from spatial data sets: a
general approach, in IEEE Transactions on Knowledge and Data Engineering, vol. 16, no. 12
(2004), pp. 1472–1485. doi:10.1109/TKDE.2004.90

26. U. Hunkeler, H.L. Truong, A. Stanford-Clark, Mqtt-sa publish/subscribe protocol for wireless
sensor networks, in 3rd International Conference on Communication Systems Software and
Middleware and Workshops, 2008. Comsware 2008 (IEEE, 2008), pp. 791–798

27. Ibm watson relationship extraction service, http://www.ibm.com/smarterplanet/us/en/
ibmwatson/developercloud/doc/sireapi/

28. A. Inokuchi, T. Washio, H. Motoda, An apriori-based algorithm for mining frequent substruc-
tures fromgraph data, inPrinciples ofDataMining andKnowledgeDiscovery (Springer, 2000),
pp. 13–23

29. IoTivity, https://www.iotivity.org/
30. J. Kamps, M. Marx, R.J. Mokken, M. de Rijke, Words with attitude. Citeseer (2001)
31. J. Kim, J.W. Lee, Openiot: an open service framework for the internet of things, in 2014 IEEE

World Forum on Internet of Things (WF-IoT) (IEEE, 2014), pp. 89–93
32. G. Klyne, J.J. Carroll, Resource description framework (rdf): Concepts and abstract syntax

(2006)
33. K. Koperski, J. Han, J. Adhikary, Mining knowledge in geographical data. Commun. of ACM

(accepted) (1998)
34. M. Kuramochi, G. Karypis, An efficient algorithm for discovering frequent subgraphs. IEEE

Trans. Knowl. Data Eng. 16(9), 1038–1051 (2004)
35. P. Lai, Extracting strong sentiment trends from twitter (2010)
36. W. Le, A. Kementsietsidis, S. Duan, F. Li, Scalablemulti-query optimization for sparql, in 2012

IEEE 28th International Conference on Data Engineering (ICDE) (IEEE, 2012), pp. 666–677

http://dx.doi.org/10.3115/976909.979640
http://dx.doi.org/10.1109/TKDE.2004.90
http://www.ibm.com/smarterplanet/us/en/ibmwatson/developercloud/doc/sireapi/
http://www.ibm.com/smarterplanet/us/en/ibmwatson/developercloud/doc/sireapi/
https://www.iotivity.org/

690 B. di Martino et al.

37. D.L. McGuinness, F. Van Harmelen et al., Owl web ontology language overview 10(10), 2004
(2004)

38. G.A. Miller, Wordnet: a lexical database for english. Commun. ACM 38(11), 39–41 (1995)
39. D. Miorandi, S. Sicari, F. De Pellegrini, I. Chlamtac, Internet of things: vision, applications

and research challenges. Ad Hoc Netw. 10(7), 1497–1516 (2012)
40. T. Mullen, R. Malouf, A preliminary investigation into sentiment analysis of informal politi-

cal discourse, in AAAI Spring Symposium: Computational Approaches to Analyzing Weblogs
(2006), pp. 159–162

41. D. Niyato, L. Xiao, P. Wang, Machine-to-machine communications for home energy manage-
ment system in smart grid. Commun. Mag. IEEE 49(4), 53–59 (2011)

42. Open Connectivity Foundation, http://openconnectivity.org/
43. C. Osgood, G. Suci, P. Tannenbaum, TheMeasurement ofMeaning (University of Illinois Press,

Urbana, 1957)
44. G. Pardo-Castellote, Omg data-distribution service: architectural overview, in Proceedings

23rd International Conference on Distributed Computing Systems Workshops, 2003 (IEEE,
2003), pp. 200–206

45. E. PrudHommeaux, A. Seaborne et al., Sparql query language for rdf 15 (2008)
46. F. Qi, A.X. Zhu, Knowledge discovery from soil maps using inductive learning. Int. J. Geogr.

Inform. Sci. 17(8), 771–795 (2003)
47. S. Sekhar, C.T. Lu, P. Zhang, R. Liu, Data mining for selective visualization of large spatial

datasets, in Proceedings 14th IEEE International Conference on Tools with Artificial Intelli-
gence, 2002.(ICTAI 2002) (IEEE, 2002), pp. 41–48

48. S. Shekhar, C.T. Lu, P. Zhang, A unified approach to detecting spatial outliers. GeoInformatica
7(2), 139–166 (2003)

49. S. Staab, M. Erdmann, A. Maedche, Semantic patterns. Technical report, AIFB, University of
Karlsruhe (2001)

50. P.J. Stone, D.C. Dunphy, M.S. Smith, The general inquirer: a computer approach to content
analysis (1966)

51. M. Thelwall, K. Buckley, G. Paltoglou, D. Cai, A. Kappas, Sentiment strength detection in
short informal text. J. Am. Soc. Inform. Sci. Technol. 61(12), 2544–2558 (2010)

52. T. Wilson, J. Wiebe, P. Hoffmann, Recognizing contextual polarity in phrase-level sentiment
analysis, in Proceedings of the Conference on Human Language Technology and Empirical
Methods in Natural Language Processing (Association for Computational Linguistics, 2005),
pp. 347–354

53. X. Yan, P.S. Yu, J. Han, Graph indexing: a frequent structure-based approach, in Proceedings
of the 2004 ACM SIGMOD International Conference on Management of Data (ACM, 2004),
pp. 335–346

http://openconnectivity.org/

SCADA Systems in the Cloud

Philip Church, Harald Mueller, Caspar Ryan, Spyridon V. Gogouvitis,
Andrzej Goscinski, Houssam Haitof and Zahir Tari

Abstract SCADA (Supervisory Control AndDataAcquisition) systems allow users
tomonitor (using sensors) and control (using actuators) an industrial system remotely.
Larger SCADA systems can support several 100,000 sensors, sending and storing
hundreds of thousands of messages per second, generating large amounts of data. As
these systems are critical to industrial processes, they are often run on highly reliable
and dedicated hardware. This is in contrast to the current state of computing, which
is moving from running applications on internally hosted servers to cheaper, internal
or external cloud environments. Clouds can benefit SCADA users by providing the
storage and processing power to analyse the collected data. The goal of this chapter
is twofold; provide an introduction to techniques for migrating SCADA to clouds,
and devise a conceptual system which supports the process of migrating a SCADA
application to a cloud resource while fulfilling key SCADA requirements (such as;
support for big data storage).

P. Church · C. Ryan · A. Goscinski · Z. Tari (B)
School of CS and IT, RMIT University, Melbourne, Australia
e-mail: zahir.tari@rmit.edu.au

P. Church
e-mail: philip.church@rmit.edu.au; philip.church@research.deakin.edu.au

C. Ryan
e-mail: caspar.ryan@rmit.edu.au

A. Goscinski
e-mail: andrzej.goscinski@rmit.edu.au; ang@deakin.edu.au

H. Mueller · S.V. Gogouvitis · H. Haitof
Corporate Technology, Siemens AG, Munich, Germany
e-mail: h.mueller@siemens.com

S.V. Gogouvitis
e-mail: gogouvitis@siemens.com

H. Haitof
e-mail: houssam.haitof@siemens.com

P. Church · A. Goscinski
School of IT, Deakin University, Geelong, Waurn Ponds, Australia

© Springer International Publishing AG 2017
A.Y. Zomaya and S. Sakr (eds.), Handbook of Big Data Technologies,
DOI 10.1007/978-3-319-49340-4_20

691

692 P. Church et al.

Keywords SCADA ·Migration · Clouds

1 Introduction

Industry enterprise these days are located over huge areas; individual components
of a flood prediction system, power generation and distribution complex, and min-
eralogical plant are distributed and distances between components are huge. The
problem is; how to control, co-ordinate and manage all the components, identify-
ing the current state of a production process and changing it to satisfy production
requirements. This implies the collection of a huge amount of data, to be stored and
processed. To make the best decisions there is a need for a lot of data which describe
the current state and predict the future state of all components; Enterprise IT is of
the most crucial importance.

While cloud computing has gained significant inroads to enterprise IT, Opera-
tional Technology (OT) still relies on dedicated on-premise hardware in most cases.
OT systems utilize hardware and software that can monitor and/or control physical
devices, processes, and events in an industrial enterprise or in the public infrastruc-
ture. They show the following characteristics: connectivity to physical devices, soft
real-time monitoring and/or control of physical processes, control of assets essential
to the function of a society and/or economy (mission-critical systems), high security,
and high availability. In many cases OT systems collect large amounts of data about
the monitored and controlled infrastructure and processes in order to make decisions
based on this data. Much of this data is still unused today, which gives the oppor-
tunity to open up new fields of big data applications. A very prominent example of
Operational Technology are Supervisory Control and Data Acquisition (or SCADA)
systems.

SCADA systems are instrumental to a wide range of mission-critical industrial
systems, from infrastructure installations like gas pipelines or water control facilities
to industrial plants. SCADA systems allow a user to monitor (using sensors) and
control (using switches/actuators) an industrial system remotely.As SCADAsystems
are critical to industrial processes, they are often run on highly reliable and dedicated
hardware. This is in contrast to the current pattern in Enterprise IT, which is moving
from running applications on internally hosted servers to private or public cloud
resources.

For users, the main benefits of moving applications such as SCADA to the cloud
lie in potential cost savings, shifting from upfront investment to operational cost,
reduced setup and maintenance efforts, and faster access to new functionality. Cloud
resources are purchased and accessed on-demand, at a price cheaper than buying
hardware; furthermore, as there is no need to install and/or maintain hardware and
manage software, the need for technical staff is reduced. Clouds provide storage
for the big data generated by SCADA systems, and the processing power and tools
to carry out analytics. For the vendor, offering cloud-based SCADA can lead to
new, pay-per-use business models, instead of a traditional one-off hardware cost and

SCADA Systems in the Cloud 693

software licensing fee. Recurring charges can be based on time of use, the amount of
computing resources (compute, storage, bandwidth) needed, or any number derived
from the size, complexity or quality of the managed industrial process or system.

One way to provide a cloud-based SCADA system would be the cloud native
approach, whichmeans to develop it from scratch, ideally using an appropriate archi-
tectural design to make use of cloud inherent features. Another option is to take an
existing SCADA implementation and migrate it to a cloud. Often this latter approach
is an initial step towards the cloud, given that solid and well proven implementations
are available.

The goal of this chapter is twofold; provide a tutorial covering cloud migration
techniques applied to SCADA systems, and propose a conceptual framework that
supports the process of migrating a SCADA application from on-premise hardware
to a cloud-based infrastructure.

The chapter is structured as follows: Sect. 2 presents exsisitng SCADA system
architectures that have been deployed in the cloud environment. Section3 presents an
overview of SCADA systems and their characteristics, deriving a generalized archi-
tecture. Section4 describes advantages and challenges to build cloud-based SCADA
systems and presents options, methodologies and technologies for cloud migration.
The remaining sections describe our work simplifying the migration process through
a SCADA cloud orchestration framework. Section5 presents a design of SCADA
cloud services and a SCADA cloud orchestration framework. Section6 presents the
time taken to transfer sensor data, in order to validate the use of cloud to support
SCADA real-time requirements. The chapter concludes with Sect. 7 which provides
a summary of the proposed framework, and the recommendations derived from it.

2 Related Work

There are a number of papers, which discuss how to build cloud-based SCADA
architectures. They focus on implementing a solution from the ground up, as opposed
to utilizing pre-existing SCADA solutions.

• Liu, et al. presents a generalized overview of clouds and SCADA, and propose the
possibility of running SCADA in the cloud [1].

• Gligor and Turc recommend exposing each SCADA component as a service and
deploying them through a Local Directory Service (LDS) [2]. The LDS stores
a description of available SCADA resources, access methods, and description.
The use of a broker allows some components can be replaced by cloud services;
for example the database service can utilize Data Center as a Service (DaaS).
This approach is very flexible; allowing users to extending the SCADA system
by adding new functionalities to existing services or defines new ones in accor-
dance with needs and formulated requirements. Based on these concepts, a web-
based SCADA system is implemented on Rackspace cloud resources. Data was
transferred using a simple protocol, consisting of a few numerical and process

694 P. Church et al.

monitoring variables. Data transfer rates were measured from a local database to
a cloud database, results measured were between 125 to 156 ms.

• Goose et al. present a secure SCADA cloud framework called SKYDA [3]. This
SCADA system is designed to take advantage of the scalability and reliability
offered by a cloud-based infrastructure. This paper focuses on providing a high
level understanding of SCADA replication using clouds, moving all SCADA com-
ponents (except the field devices) as a single service. Field devices are connected
to the cloud based SCADA system directly or (for legacy devices) via a proxy.
The framework utilizes multiple cloud providers, running multiple copies of the
SCADA Master application in multiple clouds to provide fault tolerance.

There also are solutions provided by commercial cloud-based SCADA providers;
the two major commercial solutions are Ignition and XiO’s Cloud SCADA.

• Ignition SCADA is a SCADA solution that has been built from the ground up
using Java to take advantage of cloud features [3]. Ignition interfaces with most
Programmable Logic Controllers (PLC), allowing users to take advantage of exist-
ing sensors/actuators. Ignition users do not maintain hardware themselves; instead
they access systems remotely via web interfaces. Users are charged based on the
number of servers used instead of via software licensing fees. Ignition allows users
to customize their architecture by choosing to deploy components individually.

• XiO Cloud SCADA [4] consists of two components, a local (customizable) hard-
ware module called a Soft-I/O, which contains the sensors and actuators, and
the cloud component, the SCADA application which runs on secure commercial
servers. Users subscribe to a Cloud Service, for a monthly fee, giving them access
to the SCADA system through web and mobile apps. Users can customize the
priorities of their XiO SCADA system, for example to priorities energy efficiency.

In general, there is a trend to develop SCADA systems specifically for clouds. The
fact that existing SCADA solutions have not been used alludes to potential issues
with migrating SCADA systems. However, it is not clear if issues are performance
or deployment related. The solution presented by Gligor and Turc addresses perfor-
mance through the use of a simple data transfer protocol, while the local directory
service addresses deployment issues. The SKYDA cloud framework only addresses
deployment issues through the use of automated replication. Common open-source
SCADA systems include EPICS, TANGO, EclipseSCADA and IndigoSCADA.
EPICS (Experimental Physics and Industry Control System) [5] is a SCADA sys-
tem designed to operate devices such as particle accelerators, large experiments, and
major telescopes. TANGO [6] is an object orientated distributed control system sup-
ported by a consortium of European Synchrotrons in Germany, Spain, Italy, Poland,
and France. EclipseSCADA [7] is a key eclipse foundation project used commer-
cially, the details of which have not been made public. IndigoSCADA [8] is a light
weight SCADA system for Linux and Windows. This paper focuses on the process
of migrating existing open SCADA solutions to run on a cloud.

SCADA Systems in the Cloud 695

3 An Overview of SCADA

3.1 Generalized SCADA Architecture

SCADA describes applications, which aim to control and monitor remote equipment
via a communication channel [9]. There have been a number of attempts to generate a
generalizedSCADAframework and architecture. Boye [10] defines a simple SCADA
architecture which consists of sensors, switches and/or actuators (field devices),
connected and read by a device server (see Fig. 1). Data is transfered across a network
to a control server, which handles events (informing a user if sensor data exceeds set
boundaries). A user of a SCADA system accesses data via the master server using a
workstation. This setup could be extended with a Historian which stores sensor data
and events for analysis.

In contrast, IEEE [11] defines an in-depth standard describing the components that
make up a SCADA framework. Based on this IEEE standard, study of SCADA sys-
tems, their characteristics, and requirements (see Sect. 3.2) we present a generalized
SCADA architecture (shown in Fig. 2).

As defined by the IEEE standard, the system is divided into a remote site and
master station. The remote site consists of field devices connected to a device server.
Communication between the field device and device server makes use of a SCADA
communication standard (used by the driver). Collected information is stored in
real-time and historical databases on the master station. Communication between
components of the master station uses an internal communication protocol. The
Master Terminal Unit (MTU) contains a number of tools that interact with the data
stored in the databases including:

• An event handler, which reacts to changes to the real time database;
• A device manager, which can modify the behaviour of field devices;
• An alarm manager, which allows users to setup monitoring rules and notify a user
if rules have been broken;

Fig. 1 Simple SCADA
system

Control Server
(MTU) Modem

Modem

Device Server

Communication/
Radio Link

Sensor Switch Actuators

Control Station

Remote System

696 P. Church et al.

Remote Site

Master Station

Internal
Communication Protocol

Device
Server

SCADA
Communication Standard

Driver

Historical
Database

Real Time
Database

Event Handler

Device Manager

Alarm Manager

Archiver

G
U

I
(H

M
I)

MTU

Fig. 2 General SCADA software architecture

N
et

w
or

k
In

te
rf

ac
e

Compute

Processor

Memory

Power Supply I/O Card

I/O Card

I/O Card Sensor, Switch
or Actuator

Human Machine Interface

<backups>

Fig. 3 Field device architecture

• An archiver, which provides analytics of stored data; and
• A GUI or Human Machine Interface, which provides the user with a graphical
representation of the remote site.

Every SCADA system uses a large number of field devices. A field device must
be able to understand and collect data from sensors, switches and actuators. For
this reason, field devices make use of a compute device called a Programmable
Logic Controller (PLC), or Remote Terminal Unit (RTU) (see Fig. 3). Users can
access the PLC or RTU through a network interface or a Human Machine Inter-
face (HMI), allowing for configuration and access to connected sensors, switches or
actuators. An inbuilt computer runs code which converts signals from connected sen-
sors, switches or actuators to digital data, or vice versa. The code which runs on field
devices falls under two categories: monitoring loops for sensors that may incorporate
sampling/averaging, and state diagrams that control the state of output devices such as
switches/actuators. Often this code has real time requirements, as it directly monitors
and controls the connected field devices.

SCADA Systems in the Cloud 697

Control Server
(MTU)

Device Server

R
T

&
 E

ve
nt

 M
an

ag
er

Log Display

Alarm Display

Trending

HMIRef. DB Data Process.

RT DB

Log

Archive

Report
Gener.

D
at

ab
as

e

O
D
B
C Alarm

S
Q

L

A
PI

S
pr

ea
d

S
he

et
Pr

iv
at

e
A
pp

.

Driver
Data
R/W

PLC

Data
R/W

RTU

Device Server

File ServerField Device

Field Device

OPC

OPC

Driver

Sensor

Switch

Sensor

Switch

H
M

I

Fig. 4 General SCADA software architecture (Detailed)

Field devices are designed to be reliable, often incorporating backup power and
redundancy in the form of backup I/O cards. If a device is connected to an I/O card
that fails, the device automatically gets connected to the redundant I/O. In the absence
of this feature, if an input card fails, signals would be lost until the card is replaced.
Through the use of SCADA and Field Devices, it becomes possible to monitor and
control large scale systems (such as gas pipelines which cover very large distances)
cheaply and efficiently.

A realization of the generalized SCADA architecture is shown in Fig. 4 [12]. This
SCADA system consists of field devices, device servers, a file server, and a control
server (MTU). Field Devices consist of sensors, switches or actuators connected
to Programmable Logic Controllers (PLCs) or Remote Terminal Units (RTU). Two
Device Servers are used, each interfacing with a field device through the Driver
or Open Platform Component (OPC). Information collected from these devices are
collected and stored in a real time (RT) database hosted on the File Server. Data
from the RT database is used by a number of software components running on the
File Server. The File Server runs a Report Generation component that queries the RT
database using SQL in order to produce report summarizing information generated
by connected devices. TheAlarm component is programmed to recognize and react to
behaviour patterns found in theRTdatabase.Both theLogandArchive component are
responsible for moving data from the RT database to historical database for medium
or long term storage. The archive database is made accessible to external programs
through methods such as: Open Data Base Connectivity (ODBC) or Application
Interfaces (API). This data is provided to users through a number of tools hosted on
the Master Terminal Unit.

3.2 SCADA Characteristics

There are numerous SCADA systems available (both open-source and commercial),
each with different features, architectures, hardware and standard support [13, 14].
Both open-source and commercial SCADA systems provide similar functionality
and requirements.

698 P. Church et al.

Current SCADA systems provide users with the following functionalities:

• Connectivity to physical devices: SCADA must communicate with physical
devices. Devices are connected to computers running a software component called
a monitor. The monitor integrates drivers, which implement communication stan-
dards such as ISA-95 [15]. Often a mechanism is provided that allows a user to
register a device with amonitor. Themonitor reads signals from connected devices
and responds when a change occurs.

• Monitoring and Analytics: Data collected from SCADA must be analysed. It is
common to provide short term monitoring and long term analytics to identify
system problems. Short term monitoring is often provided in the form of alarms,
which notify a user or trigger actions if a threshold has been exceeded. Historical
data is presented to users in the form of graphs.

• Data Storage: Collected data is stored by the SCADA system for monitoring and
analysis. Often two databases are used, a historical database for long term storage
and a real-time database for monitoring. Due to the different requirements of these
databases, different data storage technologies are used. Real-time databases must
store data at real-time, so these databases often run inmemory.Historical databases
needs to store large amounts of data and is typically written to the disk.

SCADA systems must be designed and implemented to support the following
non-functional requirements:

• Real-time: Communication between the device and SCADA system must be at
real time. The acceptable delay between communications depends on the SCADA
application. Internal communication standards are used to reduce the traffic on
the network. These standards often use: polling techniques which requests sensor
data on a timer, or event driven techniques which sends data when sensor signals
change.

• High availability: SCADA systems collect data in real-time, and therefore need
to be available at all times. Furthermore, users must be able to control attached
hardware via these SCADA systems at any time. Availability is considered one of
themost important requirements for SCADAsystems [16]. SCADAsolutions often
provide availability through replication of software and hardware (hot standby).

• Reliability: SCADA systems are responsible for controlling critical infrastructure,
which is often distributed geographically or in places difficult to maintain (under-
ground). For these reasons, SCADA systems are designed to be fault-tolerant,
running in adverse environmental conditions and operating for long periods of
time without human intervention. Some SCADA solutions utilize hardware that is
ruggedized to withstand temperature, vibration, and voltage extremes.

• High Security: Using SCADA systems, users can monitor and control critical
infrastructure. If an intruder got access to a SCADA system, core infrastructure
could be attacked and real time information collected by SCADA systems could be
used maliciously. Solutions such as TDMS-Plus utilize the OpenVMS operating
system, which is known for extensive security protection.

SCADA Systems in the Cloud 699

3.3 SCADA and Big Data

During operation, SCADA systems generates big data which need to be stored and
analysed.A typical SCADAsystemconsists of 100,000 sensors polling at a rate of 1 s.
Assuming a data size of 8 bytes, over the course of an hour, this SCADA system will
generate 2.8GB of data. Some SCADA systems can generate even larger amounts
of data, with large numbers of sensors polling at rates of 0.01 s, and even shorter
periods.

Big data is a paradigm applied to datasets of these large sizes. Therefore, there
is a need for new software tools and infrastructure to collect, store, manage, and
process these datasets in an acceptable time period. These datasets are of the 4 V
type: Variety: from various sources, structured and unstructured; Volume: of large
size; Velocity: with fast data in/out; and Value: high value.

In the case of SCADA, big data are characterised by Volume, as they are collected
by thousands of sensors; Velocity, as they are collected with very high frequency,
data in/out occuring at soft- real time (with 1ms polling rates and control signals
being sent to actuators with a matching frequency); and Value, although individual
signals are not of a critical value, a set of them could form a pattern that might be
critically important, for example, to predict failure of a industrial system.

Various systems are proposed andused to support the handling of big data: scalable
storage systems; parallel processing databases; cloud computing systems, in general
distributed systems. In this chapterwedealwith porting aSCADAsystem into clouds,
for lowering costs, improving reliability and availability, and increasing performance.

Although we do not address the issues of industry complex coordination and
management carried out based on data provided and stored within a SCADA system,
it is worth mentioning, from the big data point of view, data integration, which
covers: data preservation, information integration, spatiotemporal data management,
and computational modelling. The following tools are usually used to deal with
these operations: analytics tools for big data, visualisation tools for big data, big
data acquisition, integration and cleaning tools, and big data pre-processing tools.
Reliability is of the most crucial importance to industry complexes. When using
SCADAbased big data there is a need for analytics to deal with: duplicate, erroneous,
and inconsistent data, data trustworthiness (e.g., integrity, reputable source), and
provide data validation. Clouds can be used to support big data storage and analytics.

4 Moving SCADA to the Cloud

4.1 Benefits of Cloud-Based SCADA Systems

Today’s SCADA systems usually consist of software packages installed and running
on on-premise servers. When moving SCADA systems to a cloud, we propose a
combined cloud consisting of infrastructure and data storage. Infrastructure as a

700 P. Church et al.

Service (IaaS) is used to provide the computational power to monitor sensors, while
Data as a Service (DaaS) provides flexible and cheap storage for the generated data.

Providing such a cloud-based SCADA system has advantages for the customer
as well as for the vendor. For the customer, the main benefits are savings in the total
cost of ownership, focus on core competences, and faster access to new functionality.
For the vendor, the cloud can inherently provide support for redundancy, scalability,
and increased uptime [17, 18]. Cloud features can also help support core SCADA
functionality;

• Connectivity to Physical Devices: SCADA systems are distributed systems con-
sisting of many connected devices (sensors/actuators). Each device is connected
to a monitor, a piece of software which integrates drivers and event handlers, in
order to provide control and system status to the user. As sensors are added to the
SCADA system, more monitors must also be added. A growing SCADA system
can take advantage of the resource on demand provided by Infrastructure as a
Service (IaaS) cloud solutions.

• Data Storage: As discussed in Sect. 3.3, SCADA systems can generate large
amounts of data. Data as a Service (DaaS) cloud solutions provide flexible storage.

• Monitoring and Analytics: To monitor and analyse the large amounts of data
generated by a SCADA system, computational resources are required. Commonly
analysis is carried out in two phases, short-term and long-term. Short-term analysis
is carried out on recent data (often a day to week) in order to predict failures of a
system. Long-term analysis is carried out on months and years worth of data, in
order to monitor trends which can be used to improve the system. Infrastructure as
a Service (IaaS) cloud solutions can provide the resources required to carry out this
analysis. In the case of short-term analysis, resources are required to constantly
analyse data. In the case of long-term analysis, a large amount of resources are
required for a short period, making this analysis suitable to take advantage of cloud
resources on demand.

While cloud characteristics can benefit SCADA systems, moving SCADA to the
cloud also introduces problems which must be resolved.

4.2 SCADA Requirements Versus Cloud Solutions

When moving an existing SCADA system to the cloud, there is a shift from private
hardware to shared public cloud infrastructure. Due to the change in computational
environment, SCADA software may not be designed to address specific cloud issues
such as: network security and shared network connections.We propose the following
core requirements must be supported (see Table1).

SCADA systems have high security requirements; for this reason they currently
often operate on isolated networks and servers. On the other hand, one of the most
publicized issues in public clouds is security. Public clouds are open tomultiple users,
and hardware is often shared. Security must be addressed when moving SCADA to a

SCADA Systems in the Cloud 701

Table 1 Main SCADA requirements and Cloud features

SCADA requirements Exemplary possible cloud solutions

High security requirements Private clouds, data encryption

High availability Service level agreements (Cloud and Internet Provider),
high availability architectures, redundancy concepts

Real time communication SLAs, region selection, private clouds, traffic policing

Ease of use Data, hardware, software transparency and abstraction

Reliability Replication of application components and databases,
geographical isolation

public cloud. In a simple case, this can be done by using concepts like virtual private
clouds, that provide virtual separation of the used resources. Amore rigorous solution
is to use less shared environments like private clouds, or to only run those parts of the
SCADA system in the public cloud that are non-security critical. Databases and data
communication can alsobe encrypted, to protect data during transfer and storage.This
does not solve all security issues; data must be decrypted when carrying out analysis,
reacting to alarms, or providing event handling leading to potential vulnerabilities.
Cloud-based SCADA system are also vulnerable to denial of service attacks.

SCADA requires high availability; public clouds provide Service Level Agree-
ments (SLA) made between the customer and the provider. As SCADA systems are
typically distributed, there is also a need to have a service level agreement with the
providers of the communication networks. High availability could also be achieved
by having stand-by or redundancy concepts implemented in the cloud or between
the cloud and the remote sites. The XiO cloud solution [4], for example, gets around
the need to provide an SLA by having backup SCADA implemented at the remote
site.

SCADA systems require (soft) real-time response, typically requiring worst case
latencies in the order of sub second to several seconds. In order to enable (soft)
real-time applications to run in cloud environments certain guarantees need to be
provided [19]. As an example, the speed of network communication needs to be
guaranteed. Common solutions to reduce latency include hosting data and processing
on the same cloud, and ensuring the cloud resources are in the same geographical
location as the remote site [20]. Other solutions are targeted at optimising clouds for
communication [21]. iLAND provides a virtualized middleware based on the Data
Distribution Service (DDS) standard, implementing a publish/subscribe model for
sending and receiving data [22]. ISONI improves the flow of traffic on the network
by isolating the traffic of individual virtual machines through a virtual address space
and policing network traffic [23].

As key parts of critical infrastructure, SCADA systems need to be reliable, able
to continue operating correctly with an expected level of performance at all times.
Often, SCADA systems replicate key components (see Sect. 3.2). This approach can
be supported by clouds; IaaS clouds allow users to replicate their virtual machines on
demand. Users can replicate data stored on DaaS clouds. Clouds can further improve

702 P. Church et al.

reliability by replicating across different geographical regions. Once a SCADA sys-
tem is replicated, synchronization must be performed to ensure that the states of all
SCADA components are consistent. A common method to ensure data consistency
is by keeping track of and carrying out events on each replicated database, in the
order in which they occur.Many of these problems can be solvedwhen implementing
a cloud-friendly design, keeping service components stateless, and storing state in
distributed databases. Several cloud-based databases of this kind are available.

4.3 Overview of Cloud Migration

Migration is the process of moving an application between clouds and/or on-premise
environments. A re-occurring operation, migration is often automated through the
use of resource selection and scheduling algorithms.

When migrating SCADA to the cloud, three different approaches can be consid-
ered: re-hosting, re-factoring, and revising. The quickest and simplest approach is
achieved by simply re-hosting an application in the cloud (“lift and shift” approach).
Re-hosting is the process of installing an existing application in a cloud environment
and mainly relying on IaaS offerings. This can be a first step in a gradual approach,
enabling to perform initial analysis and to improve the application in multiple itera-
tions.

To better benefit from the characteristics of cloud computing, e.g., making an
application redundant or scalable, it is usually required to re-engineer the applica-
tion. This can be a simple refactoring, i.e. a modification of one or a few features. An
example is adding monitoring capabilities, which enable elastic behaviour by report-
ing unused resources and react to it. It might also require revising an application,
i.e. making major modifications at its core; examples would be using a cloud-based
database offering or changing an application into a multi-tenancy SaaS offering. To
fully benefit from the cloud, it might also be necessary to rebuild an application and
integrate, for example automation for horizontal scaling.

Before carrying out the migration process, there is a need to understand the ram-
ifications of running SCADA on a cloud. The outcomes of a study of advantages
of moving SCADA to the cloud, how clouds can fulfil SCADA requirements, and
how existing cloud-based SCADA solutions utilize cloud resources are of the most
critical importance. An examination of cloud-based SCADA solutions demonstrate
a range of different deployment options. In general, moving an application to a cloud
is broken into three stages: planning, execution, and evaluation.

• The planning stage incorporates preliminary migration studies and decision mak-
ing. Preliminary studies are carried out to determine if the application can bemoved
to the cloud, and to define migration requirements. Decisions are made about the
cloud provider to decide, what sub-systems to move, what cloud services to use,
and how the moving procedure is to be carried out.

SCADA Systems in the Cloud 703

• The execution stage covers the tasks to port and migrate the selected application to
the cloud. The system architecture may be adapted to the cloud. If necessary, code
is modified to take advantage of cloud services (in the case of legacy applications,
code wrapping is used). Data from the pre-existing system is extracted and moved
to the cloud. In order to take full advantage of life cycle improvements and elasticity
of the cloud, a special focus needs to be taken on automating the steps of migrating
the ported application to different cloud environments and setups and operating it.

• The evaluation stage involves validating the application now running on the cloud.
Testing is carried out to ensure that the system requirements (defined in the plan-
ning stage) are fulfilled. Migration validation is carried out to ensure the behaviour
of the system matches the on-premise solution.

Of these three stages, the approaches used during the execution stage are the most
varied. Decisions aremade based on an understanding of the specific SCADA system
architecture, and selected cloud provider and services. The first part of the execution
stage is adapting the system architecture to the cloud, through the partitioning of the
target application. This is followed by the implementation of the adapted architecture,
which is based on the selected cloud model, and by the automated migration and
operation steps.

4.4 Cloud Migration Technologies

The task of migrating an application to the cloud can be supported by different
migration technologies, that can be structured in open standards, cloud abstraction,
and cloud orchestration.

Open Standards There are several attempts to standardize the different interfaces
that are relevant in cloud computing. Open standards address all layers of clouds,
from defining a common architecture to file formats. The most prominent standard
is the Open Cloud Computing Interface (OCCI) from the Open Grid Forum, which
is aimed at supporting remote management of mainly IaaS cloud infrastructure [24].
However, the OCCI standard is not supported by many cloud providers and cloud
technologies, or it is only available as an add-on (e.g. for OpenStack).

Another standard is Open Virtual Format (OVF), ratified by ANSI and adopted
by ISO and IEC. OVF defines a virtual machine format, which is an “open, secure,
portable, efficient and extensible format for the packaging anddistributionof software
to be run in virtual machines” [25]. OVF is supported by a number of cloud and vir-
tualization technologies, including VMware, VirtualBox, OpenNode and Microsoft.
However, this does not cover all cloud technologies.

Docker is a light weight Linux container, which can package an application and
its dependencies in a virtual container that can run on almost any Linux server [26].
Docker can be used as a lightweight virtualization technology and can run on bare
metal servers. However, it lacks some functionalities of IaaS like virtualizing and
managing storage and networking. There are numerous ways how Docker can be

704 P. Church et al.

used in conjunction with clouds. Although Docker is not an official standard, it is
widely supported by different cloud providers and technologies.

Cloud Abstraction As described in the previous section, clouds providers and tech-
nologies use different interfaces for managing and accessing their services. Several
cloud abstraction technologies have emerged, that provide access to a multitude
of cloud stacks through a generic API. Current abstraction technologies cover the
functionality of IaaS clouds. Using them allows for writing cloud-agnostic code to
manage infrastructure resources.

Apache jclouds is a multi-cloud toolkit written in Java, which is compatible with
over 30 cloud providers, including Amazon, OpenStack, the Google Cloud Platform,
and Docker [27]. Apache delta-cloud is a REST-based API for simple any-platform
access; it supports a range of IaaS cloud providers and cloud storage providers [28].

Cloud orchestration Orchestration can be referred to as the automated deployment,
configuration, coordination, and management of complex computing configurations,
spanning infrastructure, services and applications. Orchestration techniques become
especially important in the context of cloud computing, with its core characteristics
of self-service and elasticity. Furthermore, cloud-based solutions get more and more
complex due to their modular and distributed nature.

Usually, orchestration technologies provide some sort of formal description of
the required configuration and its dependencies. In the simplest case, this can be
a form of scripting. In more powerful technologies, more advanced concepts are
used, that include hierarchical and functional descriptions, or concepts of autonomic
computing.

Orchestration technologies can be classified according to twomain criteria: scope
of managed resources - from infrastructure to applications, and proprietary versus
open. Most cloud technologies come with proprietary orchestration technologies
tailored to their service offerings: e.g. Amazon Cloud Formation [29], Microsoft
Azure Automation [30], OpenStack Heat [31]. Usually they cover the full set of
services offered by the respective cloud. However, using them will provide specific
configuration descriptions that can only be used for the specific cloud.

Another type of orchestration is related to deploy and manage containers. With
Docker having established as one of the most wide-spread container technologies,
many tools have emerged to handle Docker containers.

Kubernetes is an open source container cluster manager by Google. It provides
capabilities to deploy and manage containers among a cluster of Kubernetes nodes,
which are physical or virtual machines managed by Kubernetes. Kubernetes also
provides services like service discovery or load balancing [32]. Many cloud ser-
vice providers offer container management services based for running and manag-
ing Docker containers on their infrastructure and integrate with other services. One
example is the Amazon EC2 Container Service (ECS) [33].

Open orchestration technologies provide users with the ability to deploy and
manage applications across many clouds, often built on top of cloud abstraction
libraries. Uncinus provides automated provisioning and deployment of applications,
built on top of the euca2ools library [34]. Aoleus is a cloud management tool written
in Ruby; it is built atop the delta-cloud API [35].

SCADA Systems in the Cloud 705

Cloudify is an open source cloud orchestration technology, using so-called blue-
prints defined in YAML. It uses an abstraction layer to interface with different cloud
stacks. The blueprints describe the execution plans for the lifecycle of the appli-
cation for installing, starting, monitoring, and terminating the complete applica-
tion stack [36].

The open source orchestration technology Brooklyn also uses YAML blueprints
to describe configurations. Brooklyn blueprints can be composed from simpler blue-
prints in a hierarchical manner. Another description element is the so-called entity,
that can use Java to implement functional behaviour. Brooklyn implements the con-
cept of autonomic computing, that uses sensors and actuators in the entities together
with policies to result in self-managed components and systems. Brooklyn uses
jclouds as cloud abstraction layer and can thus provide cloud-agnostic orchestration
supportingmultiple cloud providers and technologies, as well as container-based and
even physical server infrastructure [37].

Existing standards such as OCCI and OVF have not been widely adopted and are
only available in a few cloud management tools. OCCI is available with OpenStack
as an add-on, while OVF is supported by the IBM SmartCloud and OpenNode cloud
platforms. In practice, cloud abstraction libraries have to be used to stay independent
from specific cloud providers and technologies. In order to automate the deployment
and management of the typically complex configurations of cloud-based applica-
tions, several orchestration technologies are available. Again, using open orches-
tration technologies helps to keep the automation descriptions independent from
the underlying cloud infrastructure and to flexibly migrate software in multi-cloud
environments.

5 Conceptual SCADA Cloud Orchestration Framework

5.1 Migration Recommendations

In principle, there are two ways to implement a cloud-based SCADA system: migra-
tion of an existing non-cloud implementation, or cloud-native development of a
SCADA system. While cloud-native development has the opportunity to design the
system for the cloud and to make maximum use of cloud inherent features, it usually
implies major implementation effort to match the functionality of existing SCADA
systems. For this reason, the approach of migrating existing solutions is an impor-
tant one, allowing to make use of available functionality very fast, and optimize the
migrated system incrementally afterwards.

In order to migrate a SCADA system to the cloud, different technologies can
be used. Virtualization and containerization can be used to simplify the movement
of the SCADA system by implementing the same resource stack. Cloud abstraction
techniques can be used to deploySCADAacross different cloud providers.Orchestra-
tion technologies can be used to support automated deployment of SCADA on cloud

706 P. Church et al.

resources. Based on the study of SCADA (see Sect. 3) and cloudmigration techniques
and technology (see Sect. 4), the following recommendations can be made:

• SCADA components (the device server, master server and historian) should be
replicated locally due to: real-time constraints and reliability in case connection
to the cloud is lost.

• SCADA components should be exposed as services. Services would consist of
SCADA components deployed on virtual machines or Docker containers, and
exposed through APIs or graphical interfaces.

• Virtualization or containerization techniques (such as Docker) should be used to
ensure a consistent environment.

• Cloud abstraction libraries such as Apache jclouds should be used to ensure com-
patibility with many cloud systems.

• Orchestration should be used to automate deployment andmanagement of SCADA
components exposed as services.

Following these recommendations, a SCADA system can be moved to the cloud
in an efficient and open manner. However, it still needs to take into account user and
application requirements (see Sect. 3.2). From the view point of a user: SCADAmust
be reliable, available at any time, provide real-time data and control over connected
devices, and be accessible through easy to understand interfaces. From the view
point of the company: SCADA must be reliable (and easy to repair) and secure
so that data is protected and the connected devices are not taken over by hackers.
SCADA running on a cloud should also guarantee user satisfaction. Clouds provide
some features targeted at these requirements. For example by using Service Level
Agreements that can be utilized to ensure availability of the SCADA system.

An ideal cloud-based SCADA system should be flexible, allowing a user control
over what parts of their SCADA system is running on the cloud. Based on these
suggestions, the SCADA cloud orchestration framework will enable two deploy-
ment strategies: the first is aimed at users with static SCADA requirements and no
knowledge of SCADA design; the second is aimed at technical users with dynamic
SCADA requirements and knowledge of SCADA design (see Table2).

• Pre-configured SCADA system: This variant deploys a specified SCADA archi-
tecture to the cloud. An entire SCADA system is exposed as a service, which can
be deployed to a cloud (via an orchestrator).While the SCADA system is treated as
a single service, the deployed SCADA service is to be partitioned across multiple
computer resources. Implementation of this approach focuses on building mecha-
nisms to transform a local SCADA system to the defined cloud based architecture.
Each migrated SCADA system must be based on a scenario (with a well defined
number of sensors, switches and actuators, network bandwidth and regions) and
finding an optimal solution.

• Customizable SCADAsystem: This variant gives users control overwhere tomove
SCADA components (no assumptions are made about the user’s SCADA require-
ments). SCADA components are exposed as services, which can be deployed,
duplicated, and linked together. Implementation of this approach must support

SCADA Systems in the Cloud 707

Table 2 Advantages and Disadvantages of SCADA migration approaches

Approaches Advantages Disadvantages

Preconfigured SCADA Optimised for a specific
scenario, standardized solution
so less effort

Low flexibility to adapt to
different SCADA scenarios

Customizable SCADA Customizable and could be
extended to other clouds and
SCADA packages

Requires an understanding of
system’s requirements, more
complex solution

the dynamic nature of this solution; the migrated SCADA system must be able
to recognize and integrate new services. Time must be spent to ensure that ser-
vices are constructed in such a way that communication can be redirected, and
services can interact with each other over local and cloud networks (supporting
one-to-one, one-to-many, and many-to-many relationships). As control is given to
the user, a sub-optimal SCADA solution could be deployed. Migration tools could
be extended to enable automatic selection and deployment of a SCADA system
based on user requirements.

In the following paragraphs we describe how a SCADA system can be exposed
as a service and provide a framework that can deploy a SCADA system on different
clouds. Deployment on different clouds could be carried out to improve reliability,
availability and performance. The last improvement being the outcome of migration
of the SCADA system close to data sources and sinks.

5.2 SCADA as a Service

Typically, access to cloud resources is offered as service (usually through web
interfaces), encapsulating software, and providing resource management. Offering
a SCADA system as a service allows the non-technical user access to SCADA run-
ning on cloud resources without having to purchase and operated hardware or install
specific software. There are many ways to deploy a cloud service; commonly this
requires packaging software in a virtual machine or container, and offering it as a
web-based service (through anAPI and graphical interface) or through an application
marketplace [38].

From the generalized SCADA architecture, three core SCADA components have
been defined: a device service that converts data between formats, a file service that
stores data, and a control service that carries out event management. According to
the general migration approach presented in Sect. 4, in order to devise a portable
SCADA system there is a need to: expose the three SCADA components as cloud
services, and construct an environment in which these services can be deployed.

708 P. Church et al.

Fig. 5 Cloud service deployment enviroment

The service deployment environment contains the middleware required to host
and run services. Deployed on top of the environment are the three defined SCADA
components which are encapsulated in either a VM or Docker container. Users can
access and configure these services using anApplication Programing Interface (API).

5.3 Cloud Service Deployment Environment

The Cloud Service Deployment Environment (see Fig. 5) is designed to ensure that
services can be run on a range of IaaS cloud resources.

There are two possible implementations of the deployment environment; both
run similar services using different virtual environments. The first uses a virtual
machine image, while the second uses a Docker container. In the case of the virtual
machine, the operating system is encapsulated into the service. This increases the
size of the service, but gives users the flexibility to specify the operating system type
and version. This is useful when running legacy or windows-based SCADA systems.
In the case of Docker, the container runs on top of the host operating system and the
SCADA system must be Linux compatible.

Running in the virtual machine or Docker container are applications that expose
key OS functionalities. A network interface application enables changes to be made
to the network interface, and enables collection and modification of network traffic.
A monitor application collects performance data of each service (such as CPU, and
RAM usage). The network interface and monitor are accessible through an API,
which can be accessed by a user remotely. Also running in the virtual machine or
Docker container shown in Fig. 5, are SCADA components and their dependencies.

SCADA Systems in the Cloud 709

Fig. 6 Device SCADA
service Device Service

Logger

Driver A
PIMemory/

RTDS
Storage

Fig. 7 File SCADA service

Logger

A
PI

External DB
Connector SCADA

HistorianLocal
Database

5.4 SCADA Service Design

The implementation of a SCADA service depends on the type of SCADA component
being deployed. We have proposed and developed three different SCADA services.
They provide the core functionality of the device server, file server, and control server
(MTU). The device service provides the core functionality of the device server (see
Fig. 6). The device service consists of drivers which enable communication with
connected field devices, and memory storage which provides fast storage for device
data. Each component is exposed through an API which enables configuration of
drivers and memory storage. Users can modify the driver component to support
different devices and specify how often data is collected from connected devices.
Users can also configure the memory/Real Time Database storage to configure what
type of data is collected.

The file service implements the core functionality of the file server (see Fig. 7).
The file service consists of: a SCADA Historian, which collects and stores device
data; a local database for internal data storage; an external DB connector to enable
optional usage of cloud storage (DaaS); and a logger, which stores events and errors.
Each component is exposed through an API, which enables access to stored data,
and configuration of the data storage environments. Users can link the file service to
a device service and a control service, configure the SCADA historian to use either
the local or a external database as storage, and query the historic data stored in the
local or external databases.

The control service implements the core functionality of the MTU (see Fig. 8).
The control service consists of: a device manager, which connects to and consoli-
dates data from device services; an event manager, which defines when events are
triggered by connected devices; an alarm handler, which implements logic, which

710 P. Church et al.

Fig. 8 Control SCADA
service Control Service

Logger

A
PIAlarm

Handler
Event

Manager
Device

Manager

is executed when events are triggered; and a logger, which stores events and errors.
Each component is exposed through an API, which enables access to alarm and event
handling, and consolidation of devices. Through the API, users connect to the alarm
handler, device manager and event manager. Users can access the device manager to
setup connections to device services, and to classify connected devices in the form of
groups. Users can access the event manager to define the rules which indicate success
and failure of devices or groups of devices. Users can access the alarm handler to
link operational and recovery logic to defined events.

Once implemented, the Cloud Service Deployment Environment (see Sect. 5.3)
and the presented SCADA services can be manually deployed on IaaS cloud
resources. To achieve migration, there is a need to automate deployment and manage
these SCADA services. A framework which supports the orchestration of SCADA
services, is proposed; which serves as a proxy between SCADA services and IaaS
cloud providers.

5.5 SCADA Cloud Orchestration Framework

The SCADA cloud orchestration framework is designed to deploy the SCADA cloud
services (described in Sect. 5.2) to IaaS cloud resources and manage the SCADA ser-
vices. This SCADAorchestration framework supports: the allocation and termination
of IaaS cloud resources, the deployment of SCADA services to IaaS resources, and
the management and evaluation of SCADA services.

Framework Design The proposed SCADA cloud orchestration framework consists
of SCADA services (see Sect. 5.2), a SCADA orchestration service (see Sect. 4)
and field devices (see Sect. 3). In default operation, the SCADA services, SCADA
orchestration service, and field devices run locally (see Fig. 9). SCADA services are
stored and managed by the SCADA orchestration service, where running SCADA
services connect to field devices.

At any time, a user can connect to the SCADA orchestration service and request
that deployment of SCADA services be carried out. During this process the user can
either: create a SCADA system configuration from the available SCADA services
or choose a pre-configured SCADA system. Upon selection of the SCADA services,
the Orchestration Service selects and requests cloud resources from a cloud provider,
and carries out service deployment.

SCADA Systems in the Cloud 711

Actuator

XML Interfaces

Sensor

XML Interfaces

...

Data
Stream

User

Control

Control

Data Stream

Local

Control

Data Stream

SCADA
Services

Orchestration
Services

Master
Server

DaaS

File
Server

Control

Data StreamCloud

Remote
Server

Fig. 9 SCADA cloud orchestration framework

Using the SCADA cloud orchestration framework, two possible scenarios for
SCADA deployment are supported (see Sect. 5.1). In the case of the pre-configured
SCADA approach, the SCADA orchestration service stores instructions for deploy-
ing a full SCADAsystem, deployment and configuration ofmultiple SCADAservices
occurring as a single operation. In the case of the customizable SCADA system, users
deploy and configure each SCADA service individually either manually or through
a scripting language.

Regardless of the deployment scenario, once SCADA services are deployed to
the cloud, users can connect to the cloud-based SCADA system through the control
service. In this framework, aHumanMachine Interface (HMI) can be used to simplify
access to the control service API, enabling users to access and monitor data from
connected field devices.

Architecture and Operations of the SCADAOrchestration Service As discussed
in Sect. 5.5, the SCADA orchestration service serves as an intermediary between a
cloud provider and user. The SCADA orchestration service helps users accomplish a
rangeof tasks including service publication, selection, deployment, andmanagement.
The proposed design of the SCADA orchestration service consists of a cloud service
manager, which interacts with an open library and database, and is made accessible
through a graphical interface (see Fig. 10).

The cloud service manager is divided into two parts, the “Application Broker”,
which implements algorithms to store and discover cloud services; and the “Cloud
Interface Services”, which implement the algorithms to select, deploy, and manage
cloud resources and services (see Fig. 11).

• The application broker facilitates storage and retrieval of service information from
a database. The database provides persistent storage of deployable services, which
can be discovered by users, and information about running services.

712 P. Church et al.

SCADA Orchestration Service

Cloud Provider(s)

Interface
exposed

Cloud Service
Manager

publishes
service

requests
service

Service
Information

Open Library

requests resources
deploys services
terminates resources

provides

Attributes

retrieves Database
storesstores

Fig. 10 SCADA orchestration service - architecture and operations

Database Open Library

Cloud Service Manager

Application Broker Cloud Interface Services

Service
Deployment

Recorder

Service
Deployment

Recorder

Secure Data
Transfer

Configuration
Service

Fig. 11 Cloud service manager

• The cloud interface services facilitate communication with cloud providers using
an abstraction mechanism like jclouds. Services are divided into three cate-
gories: “CloudResourceAllocator”,which requests and terminates IaaS resources;
“Secure Data Transfer”, which manages transfer of files to IaaS resources; and
“Configuration Services”, which interacts with deployed services and configures
their operation. Each of these services use a library, which abstracts the API of
many cloud providers, so that common operations such as starting and terminating
VMs is carried out through a single interface, despite the lower level differences
in cloud providers.

When a user publishes services, the Application Broker is used to store those
services into the database. Each service consists of a Docker or VM image and
related metadata, or attributes [34]. The following attributes are stored for each
service: service name, service description, service type, minimal CPU and RAM
requirements (see Table3).

SCADA Systems in the Cloud 713

Table 3 SCADA service
attributes

Attribute Description

Name Name of service

Description Description of service, used
for service discovery

Type Type of service (VM or
Docker)

CPU Minimal CPU requirements
used for resource selection

RAM Minimal RAM requirements
used for resource selection

When an end-user wants to deploy a SCADA system on cloud resources, the user
first accesses the “Application Broker” and retrieves the name and description of all
stored services. The user selects from the available SCADA services to port to the
cloud. “Secure Data Transfer” is used to move the selected SCADA service files to
the cloud. Attributes of each selected service is retrieved from the database and given
to the “Cloud Interface Services”. Using the CPU and RAM attributes, the “Cloud
Resource Allocator” selects and contacts the cloud provider, requesting resources
that meet the service requirements. If resources have been allocated successfully,
the cloud provider returns service allocation information such as the deployment
location, type of service, and authentication details. This information is sent to the
“Service Deployment Recorder” and stored in the database. Lastly, the “Configura-
tion Service” accesses each service’s API, and uses the service allocation information
customizing each service so they interact with each other. This procedure commonly
involves: adding devices to the control service through modifications of the device
manager, configuring the historian to link to the control server and data storage, and
configuring the device server to support sensors as indicated by the user.

Supporting SCADA requirements The above conceptual SCADA cloud orchestra-
tion framework is designed in such a way that the four main requirements of SCADA
systems: security, availability, real time communication, and reliability are supported
(see Sect. 4.2).

The SCADA cloud orchestration framework supports SCADA security by allow-
ing the user to choose parts of the SCADA system to run on the cloud. Depending
on security constraints, a private cloud could be used. The inclusion of a cloud
abstraction layer into the cloud middleware allows support for private clouds such
as OpenStack. Security can also be implemented at the base service level, where the
network interface service could be modified to support data encryption.

The SCADAcloud orchestration framework provides SCADAsystemswith avail-
ability through replication. By default, the entire SCADA system is replicated with
SCADA services running both locally and on the cloud in order to implement hot-
standby. Furthermore, individual SCADA services can be replicated; for example
deploying multiple historians can allow for both local and external data storage
(noSQL databases) to be provided.

714 P. Church et al.

Virtual Machine

Master Service
Device

Manager Local
Database

File Service

Historian
Alarm Handling

Simulator
(Modbus)

Device Service Request

Event Handling
Value

NGP

Melbourne

Tasmania

Fig. 12 EclipseSCADA service enviroment

The SCADA cloud orchestration framework helps SCADA systems support real
time communication through geographical cloud region selection. Cloud abstraction
libraries allow for SCADA systems to take advantage of cloud providers that are
close to field devices.

The SCADA cloud orchestration framework provides SCADA systems with reli-
ability through replication and monitoring. As stated above, the SCADA cloud
orchestration framework supports replication of services. Monitoring is used to
ensure that the SCADA system is operational. The middleware provides a configura-
tion component, which communicates with the monitor in each SCADA service on a
regular basis. In this way, the broker is aware of what services are running and their
status. End-users are notified if their service has failed, and automated recovery can
be carried out. Local SCADA services take over from the cloud, until a connection
to the cloud is once again made available.

It should be noted, that while SCADA requirements can be supported by the
framework, they are not ensured by the proposed framework alone. Ideally, security,
availability, real time communication, and reliability should be also provided at lower
levels through system architecture and underlying resource configuration.

6 Results

Using the framework, EclipseSCADA was converted into services and deployed on
virtual machines hosted on the NeCTAR research cloud [39]. Each virtual machine
(m1.medium) had 2 virtual CPUs, 8GB RAM and 60GB secondary disk.

The EclipseSCADA system was deployed across Melbourne and Tasmania cloud
regions, where the device service was deployed in Tasmania, and File and Control
services were deployed in Melbourne. The Device Service was configured to use
Modbus/TCP simulators, where the Control servicewill request data from theDevice
service on a timed loop of 1ms. Data which triggers alarms will be converted to NGP
format and sent to the File service for long term storage (see Fig. 12) [40].

SCADA Systems in the Cloud 715

Table 4 Modbus Transfer Time between Service (ms)

Origin Destination Time (ms)

Control service Device service 4

Device service Control service 7

Control service File service 0.7

The time taken to transfer data between each service was measured (see Table4).
Results show that the time taken to transfer a single Modbus/TCP sensor of data

between regions differs deepening on the service. During operation of the migrated
SCADA system, 4ms are spent requesting data, while 7ms are spent recieving sensor
data. The Device service will store data via the File service, each operation taking
0.7ms. For each connected sensor, 10 bytes of sensor datawas generated every 11ms,
for a total of 909kbyte per hour. These measurements are faster than those reported
by Gligor and Turc [2]. Results confirm that the soft real-time requirements of a
SCADA system can be met using cloud resource.

7 Conclusion

SCADA systems are of fundamental importance to a wide range of mission-critical
industrial systems in the scope of gas pipelines, dams, to industrial plants. SCADA
systems allow users to monitor and control systems remotely and in real time, based
on huge amount of data. The ability to control, co-ordinate and manage all the
components, in addition to identifying the current state of a production process and
changing it to satisfy production requirements, is of crucial importance.

Migrating existing SCADA systems to clouds can allow users to benefit from new
business and technological models where users are charged for resources they use,
and on-demand resources allow for reduced setup and deployment time. Users can
also take advantage of flexible storage and clouds set up for big data processing. For
this reason a study and experience report was presented that covered SCADA, clouds
and services, and SCADA migration approaches techniques and technologies.

We propose the development of a SCADA cloud orchestration framework that
combines different techniques and solutions to access IaaS clouds. Through the pro-
posed system, SCADAwill be made available to developers and users by automating
two main scenarios: (i) exposing a SCADA application running on a local computer
as a service; (ii) deploying a SCADA service to a cloud.

Based on the study presented in this chapter, the following recommendations were
made (see Sect. 5.1):

• SCADA components (the device server, master server and historian) should be
replicated locally due to: real-time constraints and reliability in case connection
to the cloud is lost.

716 P. Church et al.

• SCADA components should be exposed as services. Services would consist of
SCADA components deployed on virtual machines or Docker containers, and
exposed through APIs or graphical interfaces.

• Virtualization or containerization techniques (such as Docker) should be used to
ensure a consistent environment.

• Cloud abstraction libraries such as Apache jclouds should be used to ensure com-
patibility with many cloud systems.

• Orchestration should be used to automate deployment andmanagement of SCADA
components exposed as services.

From these recommendations a conceptual SCADA cloud orchestration frame-
work was devised, which aimed to support the deployment and management of
SCADA systems to Infrastructure as a Service clouds, thereby fulfilling the core
SCADA requirements.

As a framework, themethodologyhad tobe abstract enough tobe applied to a range
of SCADA systems. Therefore a generalized SCADA architecture was developed to
serve as the basis of the SCADA cloud orchestration framework. This generalized
SCADA architecture consists of three servers: a remote server that collects data from
field devices, a file server that stores data, and a master server that performs alarm
and event handling. Each SCADA server is converted into a service, resulting in
the creation of a device service, a remote service, and a control service. The device
service is a cloud enabled remote server with customizable drivers. The file service
is a cloud enabled file server with customizable storage. The control service is a
cloud enabled master server with customizable event and alarm handling. These
services are integrated with a SCADA orchestration service to form the SCADA
cloud orchestration framework.

The SCADA Orchestration Service is designed to help users accomplish a range
of tasks including service publication, selection, deployment, and management. A
service manager implements algorithms, which fall under two categories: service
storage and service deployment. By providing service storage, it is possible to
re-use deployment information and reduce the time taken to deploy SCADA ser-
vices. By automating service deployment, non-computing specialists can deploy and
access SCADA running on cloud infrastructures. Results show that SADA deployed
through this framework can meet the soft-real time requirments of SCADA systems.

In conclusion, a SCADA cloud orchestration framework like the one presented in
this chapter can simplify the migration procedure. By treating each SCADA com-
ponent as an individual service, which can be deployed separately, this framework
fulfills the four requirements of SCADA systems. Users can deploy each SCADA
service based on their requirements. Components with high security requirements
could be deployed on private networks and hardware. Components with tight real
time communication requirements could be deployed on appropriate infrastructure,
private clouds or even on-premise hardware. Availability and reliability requirements
can be met using replication; by default the SCADA system runs locally in case of
failure of the cloud system. Additionally it is possible to deploy multiple SCADA
file services to support both local and remote big data storage.

SCADA Systems in the Cloud 717

References

1. M. Liu, C. Guo, M. Yuan, in The Framework of SCADA System Based on Cloud Computing, in
Cloud Computing, vol. 133, ed. by V.C.M. Leung, M. Chen (Springer International Publishing,
2014), pp. 155–163

2. A. Gligor, T. Turc, Development of a service oriented SCADA system. Procedia Econ. Finance
3, 256–261 (2012)

3. S. Goose, J. Kirsch, D. Wei, SKYDA: cloud-based, secure SCADA-as-a-service. Int. Trans.
Electr. Energy Syst. 25(11), 3004–3016 (2014)

4. XiO, XiO Cloud SCADA Control System (2015). http://www.xioio.com/wp/
5. A. Johnson, EPICS - Experimental Physics and Industrial Control System (2014). http://www.

aps.anl.gov/epics/index.php
6. TANGO Consortium, “The TANGO Controls website,” (2014)
7. IBH Systems GmbH, openSCADA | We are the good guys (2014). http://openscada.org
8. apaatsf, IndigoSCADA (2015). http://sourceforge.net/projects/indigoscada/
9. K. Barnes, B. Johnson, R. Nickelson, Review Of Supervisory Control And Data Acquisition

(SCADA) Systems (U.S. Department of Energy) (pp. 57). Idaho Falls, Idaho: Idaho National
Engineering and Environmental Laboratory (2004)

10. S.A. Boye (ed.), SCADA: Supervisory Control and Data Acquisition (International Society of
Automation, Research Triangle Park, 2010)

11. IEEE Power Engineering Society. IEEE Standard for SCADA and Automation Systems (2008)
12. P. Kumar, SCADA SYSTEMS Introduction, architecture, functionality, and other aspects (28

July, 2011). http://purnendukumar.wordpress.com/2011/12/12/scada-systems-introduction-
architecture-functionality-and-other-aspects/

13. O.Barana, P. Barbato,M.Breda, R. Capobianco,A. Luchetta, F.Molon,M.Moressa, P. Simion-
ato, C. Taliercio, E. Zampiva, Comparison between commercial and open-source SCADA
packages: a case study. Fusion Eng. Des. 85(3–4), 491–495 (2010). doi:10.1016/j.fusengdes.
2010.02.004

14. C.Queiroz, A.Mahmood, Z. Tari, SCADASim - a framework for building SCADAsimulations.
IEEE Trans. Smart Grid 2(4), 589–597 (2011). doi:10.1109/tsg.2011.2162432

15. American National Standards Institute/International Society of Automation, Enterprise-
Control System Integration, Part 3: Activity Models of Manufacturing Operations Manage-
ment (ISA The Instrumentation, Systems, and Automation Society, Research Triangle Park,
NC, 2005)

16. ETM professional control GmbH, 1200 survey participants judge SCADA systems and PVSS
(2015). http://www.etm.at/index_e.asp?seite_id=91

17. K. Wilhoi, “SCADA in the Cloud - A Security Conundrum?” (Trend Micro 2013)
18. Inductive Automation, Cloud-Based SCADA systems: The benefits and Risks (2011). http://

www.inductiveautomation.com
19. S. Gogouvitis, K. Konstanteli, S. Waldschmidt, G. Kousiouris, G. Katsaros, A. Menychtas, D.

Kyriazis, T. Varvarigou, Workflow management for soft real-time interactive applications in
virtualized environments. Future Gener. Comput. Syst. 28(1), 193–209 (2012)

20. A. Goscinski, M. Brock, P. Church, High Performance Computing Clouds (CRC, Taylor &
Francis group, Boca Raton, 2011)

21. M. Garcia-Valls, T. Cucinotta, C. Lu, Challenges in real-time virtualization and predictable
cloud computing. J. Syst. Archit. 60(9), 726–740 (2014). doi:10.1016/j.sysarc.2014.07.004

22. M. Garcia-Valls, I.R. Lopez, L.F. Villar, iLAND: an enhanced middleware for real-time recon-
figuration of service oriented distributed real-time systems. IEEETrans. Ind. Inf. 9(1), 228–236
(2013). doi:10.1109/TII.2012.2198662

23. T. Voith, M. Kessler, K. Oberle, D. Lamp, A. Cuevas, P. Mandic, A. Reifert, ISONIWhitepaper
v2.0 (2009)

24. Open Cloud Computing Interface, Open Cloud Computing Interface (2015). http://occi-wg.
org/

http://www.xioio.com/wp/
http://www.aps.anl.gov/epics/index.php
http://www.aps.anl.gov/epics/index.php
http://openscada.org
http://sourceforge.net/projects/indigoscada/
http://purnendukumar.wordpress.com/2011/12/12/scada-systems-introduction-architecture-functionality-and-other-aspects/
http://purnendukumar.wordpress.com/2011/12/12/scada-systems-introduction-architecture-functionality-and-other-aspects/
http://dx.doi.org/10.1016/j.fusengdes.2010.02.004
http://dx.doi.org/10.1016/j.fusengdes.2010.02.004
http://dx.doi.org/10.1109/tsg.2011.2162432
http://www.etm.at/index_e.asp?seite_id=91
http://www.inductiveautomation.com
http://www.inductiveautomation.com
http://dx.doi.org/10.1016/j.sysarc.2014.07.004
http://dx.doi.org/10.1109/TII.2012.2198662
http://occi-wg.org/
http://occi-wg.org/

718 P. Church et al.

25. American National Standards Institute, Information technology – Open Virtualization Format
(OVF) specification, 17203, 37 (2011)

26. Docker Inc, Docker - Build, Ship and Run Any App, Anywhere (2014). https://www.docker.
com/

27. Apache, jCloud (2015c). https://jclouds.apache.org/
28. Apache, Apache delta-cloud (2015b). https://deltacloud.apache.org/
29. Amazon, AWS CloudFormation (2015). http://aws.amazon.com/cloudformation/
30. Microsoft, Automation - Cloud process (2015a). http://azure.microsoft.com/en-us/services/

automation/
31. OpenStack Project, Heat - OpenStack (2015). https://wiki.openstack.org/wiki/Heat
32. Google, Kubernetes (2015b). http://kubernetes.io/
33. J. Jackson, Amazon embraces Docker with new customer tool (2014). http://www.itnews.com/

virtualization/86050/amazon-embraces-docker-new-customer-tool?page=0,0
34. P. Church, A. Goscinski, C. Lefere, Exposing HPC and sequential applications as services

through the development and deployment of a SaaS cloud. Future Gener. Comput. Syst. 43–
44, 24–37 (2015)

35. Aeolus, Aeolus (2015). http://www.aeolus-project.org/
36. GigaSpaces Technologies, Cloudify (2015). http://getcloudify.org/
37. Apache Software Foundation, Apache Brooklyn (2016). https://brooklyn.apache.org/
38. F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, S. Weerawarana, Unraveling the Web

services web: an introduction to SOAP,WSDL, and UDDI. IEEE Internet Comput. 6(2), 86–93
(2002)

39. J. Kirby, NeCTAR - Australian Research Cloud (2012). http://www.nectar.org.au/
40. P. Church, H. Mueller, C. Ryan, S. Gogouvitis, A. Goscinski, H. Haitof, Z. Tari, Moving

SCADA systems to IAAS clouds, in Proceedings of the 5th International Symposium on Cloud
and Service Computing (SC2 2015), Chengdu, China, 19–21 Dec 2015 (2015), pp. 908–914

https://www.docker.com/
https://www.docker.com/
https://jclouds.apache.org/
https://deltacloud.apache.org/
http://aws.amazon.com/cloudformation/
http://azure.microsoft.com/en-us/services/automation/
http://azure.microsoft.com/en-us/services/automation/
https://wiki.openstack.org/wiki/Heat
http://kubernetes.io/
http://www.itnews.com/virtualization/86050/amazon-embraces-docker-new-customer-tool?page=0,0
http://www.itnews.com/virtualization/86050/amazon-embraces-docker-new-customer-tool?page=0,0
http://www.aeolus-project.org/
http://getcloudify.org/
https://brooklyn.apache.org/
http://www.nectar.org.au/

Quantitative Data Analysis in Finance

Xiang Shi, Peng Zhang and Samee U. Khan

Abstract Quantitative tools have beenwidely adopted in order to extract themassive
information from a variety of financial data. Mathematics, statistics and computers
algorithms have never been so important to financial practitioners in history. Invest-
ment banks develop equilibrium models to evaluate financial instruments; mutual
funds applied time series to identify the risks in their portfolio; and hedge funds
hope to extract market signals and statistical arbitrage from noisy market data. The
rise of quantitative finance in the last decade relies on the development of computer
techniques that make processing large datasets possible. As more data is available
at a higher frequency, more researches in quantitative finance have switched to the
microstructures of financial market. High frequency data is a typical example of big
data that is characterized by the 3V’s: velocity, variety and volume. In addition, the
signal-to-noise ratio in financial time series is usually very small. High frequency
datasets are more likely to be exposed to extreme values, jumps and errors than the
low frequency ones. Specific data processing techniques and quantitative models are
elaborately designed to extract information from financial data efficiently. In this
chapter, we present the quantitative data analysis approaches in finance. First, we
review the development of quantitative finance in the past decade. Then we discuss
the characteristics of high frequency data and the challenges it brings. The quantita-
tive data analysis consists of two basic steps: (i) data cleaning and aggregating; (ii)
data modeling.We review the mathematics tools and computing technologies behind
the two steps. The valuable information extracted from raw data is represented by
a group of statistics. The most widely used statistics in finance are expected return
and volatility, which are the fundamentals of modern portfolio theory. We further
introduce some simple portfolio optimization strategies as an example of the appli-
cation of financial data analysis. Big data has already changed financial industry

X. Shi · P. Zhang (B)
Stony Brook University, Stony Brook, NY 11794, USA
e-mail: peng.zhang@stonybrook.edu

X. Shi
e-mail: xiang.shi@stonybrook.edu

S.U. Khan
North Dakota State University, Fargo, ND 58108, USA
e-mail: samee.khan@ndsu.edu

© Springer International Publishing AG 2017
A.Y. Zomaya and S. Sakr (eds.), Handbook of Big Data Technologies,
DOI 10.1007/978-3-319-49340-4_21

719

720 X. Shi et al.

fundamentally; while quantitative tools for addressing massive financial data still
have a long way to go. Adoptions of advanced statistics, information theory, machine
learning and faster computing algorithms are inevitable in order to predict compli-
cated financial markets. These topics are briefly discussed in the later part of this
chapter.

1 Introduction

1.1 History of Quantitative Finance

The modern quantitative finance or mathematical finance is an important field of
applied mathematics and statistics. The major task of it is to model the finance data,
evaluate and predict the value of an asset, identify and manage the potential risk in a
highly scientific way. One can divide the area of quantitative finance into two distinct
branches based on its tasks [43]. The first one is called the “Q” area, which serves
to price the derivatives and other assets. The character “Q” denotes the risk-neutral
probability. The other one is the “P” area, which are developed to predict the future
movements of the market. The character “P” denotes the “real” probability of the
market.

The first influential theory in quantitative finance is the Black–Scholes option
pricing theory. Unlike public equities that are frequently traded in the market, deriv-
atives like options often lack liquidity and are hard to be evaluated. The theory was
initiated by Merton [42] who applied continuous-time stochastic models to get the
equilibrium price of equity. Black and Scholes [7] derive an explicit formula for
option pricing based on the idea of arbitrage free market. This formula, as Duffie
[19] called, is “the most important single breakthrough” of the “golden age” of the
modern asset pricing theory. Following works by Cox and Ross [15], Cox et al. [16]
and Harrison and Kreps [29] form the footstone of the “Q” area. The theory is most
widely applied in sell-side firms and market makers like large investment banks.
Today the Black–Scholes formula is the core curriculum of any quantitative finance
programs in university. The fundamental mathematical tools in this area are Ito’s sto-
chastic calculus, partial differential equation and modern probability measure theory
developed by Kolmogorov. The security and the derivatives are often priced indi-
vidually, thus high dimensional problems are often not considered in classical “Q”
theories.

Unlike the “Q” theory which focuses on measuring the present; the goal of the
“P” area is to predict the future. Financial firms who are keen on this area are often
mutual funds, hedge funds or pension funds. Thus the ultimate goal of the “P” area
is portfolio allocation and risk management. The foundation of the “P” world is
the modern portfolio theory developed by Markowitz [37]. The idea of Markowitz’s
theory is that any risk-averse investor tends to maximize the expected returns (alpha)
of his portfolio while the risk is under control. Other important contributions to this

Quantitative Data Analysis in Finance 721

area are the capital asset pricingmodels (CAPM) introduced by Treynor [58], Sharpe
[54], Lintner [35] and Mossin [46].

Financial data is fundamentally discrete in nature. In the “Q” area, asset prices are
usually approximated by a continuous-time stochastic process so that one can obtain
a unique equivalent risk-neutral measure. The continuous-time process, however, has
difficulties in capturing some stylized facts in financial data such as mean-reverting,
volatility clustering, skewness and heavy-tailness unless highly sophisticated the-
ories are applied to these models. Thus the “P” area often prefers discrete-time
financial econometric models that can address these problems more easily than their
continuous-time counterparties. Rachev et al. [50] suggest that there are three funda-
mental factors that make the development of financial econometrics possible, which
are: “(1) the availability of data at any desired frequency, including at the transac-
tion level; (2) the availability of powerful desktop computers and the requisite IT
infrastructure at an affordable cost; and (3) the availability of off-the-shelf econo-
metric software.”

Furthermore, most problems in the “P” area are high dimensional. Portfolio man-
agers construct their portfolios from thousands of equities, ETFs or futures. Depen-
dence structure among these risky assets is one of the most important topics in the
“P” world. Traditional statistics are challenged by these high dimensional financial
data and complicated econometric models.

Thus the big data together with related techniques is the foundation of the “P”
world, just like coal and petroleum that make the industrialization possible. And
the technologies behind big data become more important as the development of high
frequency trading. Just a decade ago, the major research in the “P” area was based on
the four prices: Open, High, Low, Close (OHLC) that are reported at the end of each
day.Data at higher frequencywas not provided or even kept bymost of the exchanges.
For example, commodity trading floors did not keep intraday records for more than
21 days until 6 years ago [2]. Comparing to the low frequency OHLC data, the high
frequency data is often irregularly spaced, and exhibits stronger mean-reverting and
periodic patterns. A number of researches in econometrics have switched to the high
frequency area. As an example, we use the keywords “financial econometrics” and
“high frequency” to search related publications on Google Scholar®. To compare we
also search the results of “financial econometrics” only. Figure1 plots the number of
the publications during each period.

One can observe that there is a tremendous growth of financial econometrics pub-
lications over the past decade. The percentage of the papers related to high frequency
data is about 13% in 1990–1994 periods. This number increases to about 34 and 32%
in 2005–2009 and 2010–2014 periods. Figure1 is also an evidence of the growing
importance of the big data in finance; since the high frequency data is a typical exam-
ple of big data that is characterized by the 3V’s: velocity, variety and volume. We
discuss these concepts in depth in the following sections.

722 X. Shi et al.

Fig. 1 Number of publications related to high frequency econometrics on Google Scholar® (Data
source: Google Scholar®)

1.2 Compendium of Terminology and Abbreviations

Briefly, we summarize the terminology and abbreviations in this chapter (Table1):

Algorithmic trading strategy refers to a defined set of trading rules executed by
computer programs.

Quantitative data analysis is a process of inspecting, cleaning, transforming,
and modeling data based on mathematical models and statistics.

Moore’s law is the observation that the number of transistors in a dense integrated
circuit doubles approximately every two years.

Equity is a stock or any other security representing an ownership interest. In this
chapter, the term “equity” only refers to the public traded ones.

High frequency data refers to intraday financial data in this chapter.
ETF refers to exchange traded fund, is a marketable security that tracks an index,

a commodity, bonds, or a basket of assets like an index fund.
Derivative refers to a security with a price that is dependent upon or derived from

one or more underlying assets.
Option refers to a financial derivative that represents a contract sold by one party

(option writer) to another party (option holder). The contract offers the buyer the
right, but not the obligation, to buy (call) or sell (put) a security or other financial
asset at an agreed-upon price (the strike price) during a certain period of time or on
a specific date (exercise date).

Buy side is the side of the financial industry comprising the investing institutions
such as mutual funds, pension funds and insurance firms that tend to buy large
portions of securities for money-management purposes.

Quantitative Data Analysis in Finance 723

Table 1 List of abbreviations TAQ data Trade and quote data

OHLC Traditional open, high, low, close price data

HFT High frequency trading

MLE Maximum likelihood estimator

QMLE Quasi-maximum likelihood estimator

PCA Principle component analysis

EM Expectation maximization

FA Factor analysis

ETF Exchange traded fund

NYSE New York stock exchange

AR Autoregressive model

ARMA Autoregressive moving average model

GARCH Generalized autoregressive conditional
heteroscedasticity model

ACD Autoregressive conditional duration

Sell side is the part of the financial industry involved with the creation, promotion,
analysis and sale of securities. Sell-side individuals and firms work to create and
service stock products that will be made available to the buy side of the financial
industry.

Bid price refers to the maximum price that a buyer or buyers are willing to pay
for a security.

Ask price refers to the minimum price that a seller or sellers are willing to receive
for the security. A trade or transaction occurs when the buyer and seller agree on a
price for the security.

2 The Three V’s of Big Data in High Frequency Data

Big data is often described by the three V’s: velocity, variety and volume, all of which
are the basic characteristics of high frequency data. The three V’s bring both oppor-
tunities and difficulties to practitioners in finance [26]. In this section we introduce
the concept, historical development and challenges of high frequency data.

2.1 Velocity

Telling about the velocity of the high frequency data seems to be tautology. Over the
past two decades, the financial markets adopt computer technologies and electronic
systems. This leads to a dramatic change of the market structure. Before 1970s, the
traditional market participates usually negotiate their trading ideas via phone calls.

724 X. Shi et al.

Todaymost of jobs of the traditional traders and brokers are facilitated by computers,
which are able to handle tremendous amount of information in an astonishing speed.
For example, the NYSE TAQ (Trade and Quote) data was presented in seconds’
timestamp when it was first introduced in 1997. This was already a huge advance
comparing to the pre 1970s daily data. Now the highest frequency of the TAQ data is
in millisecond, which is a thousand of a second. Furthermore, a stock can have about
500 quote changes and 150 trades in a millisecond. No one would be surprised if
the trading speed would grow even faster in the near future because of Moore’s law.
As a result, even traditional low frequency traders may need various infrastructures,
hardware and software techniques to reduce their transaction costs in their transac-
tions. The high frequency institutions, on the other side, are willing to invest millions
of dollars not only on computer hardware but also on real estate; since 300 miles
closer to the exchange will provide about one millisecond advantage in sending and
receiving orders.

2.2 Variety

With the help of electronic systems the market information can be collected not only
in higher frequency but also in a greater variety. Traditional price data of a financial
instrument usually consists of only 4 components: open, high, low, close (OHLC).
The microstructure of the price data is fundamentally different with the daily OHLC,
which are just 4 numbers out of about ten thousands trade prices of equity in a single
day. For example, the well-known bid-ask spread which is the difference between the
highest bid price and the lowest ask price is the footstone of many high frequency
trading strategies. The level-2 quote data also contains useful information can be
used to identify buy/sell pressure. Another example is the duration, which measures
how long it takes for price change, can be used to detect the unobservable good news
in the market. Diamond and Verrecchia [17] and Easley and O’hara [21] suggest
that the lower the durations, the higher probability of the presence of the good news
when the short selling is not allowed or limited. Together with the trade volume,
the duration can also be a measurement of market volatility. Engle and Russell [25]
first found the intraday duration curve that indicated the negative correlation with
the U-shaped volatility pattern.

2.3 Volume

Both velocity and variety contributes to the tremendous volume of the high frequency
data. And that amount is still growing. The total number of transactions in the US
market has been increased by 50 times in the last decade. If we assume that there
are about 252 trading days in each year, then the number of quotes observed on
November 9, 2009 for SPY alone would be greater than 160 years of daily OHLC

Quantitative Data Analysis in Finance 725

and volume data points, Aldridge [1]. Not only the number of records, but also the
accuracy is increasing. The recent TAQ prices are truncated to five implied decimal
places comparing to the two decimal digits of the traditional daily price data. The
size of one-day trade data is about 200MB on average; while the quote data is about
30 times larger than the trade data. Most of these records are contributed by the
High Frequency Trading (HFT) companies in US. For example, in 2009 the HFT
accounted for about 60–73% of all US equity trading volume while the number of
these firms is only about 2% overall operating firms [26].

2.4 Challenges for High Frequency Data

Like most Big Data, high frequency data is a two-sided sword. While it carries a
great amount of valuable information; it also brings huge challenges to quantitative
analyst, financial engineers and data scientists. First of all, most high frequency data
are inconsistent. These data are strongly depended on the regulations and procedures
of the institution that collects them, which varies for different periods and different
exchanges. For example, the bid-ask spreads in NYSE are usually smaller than the
ones in other exchanges. Moreover, a higher velocity in trading means a larger likeli-
hood that the data contains wrong records. As a result, some problematic data points
should be filtered out from the raw data; and a fraction of the whole data can be used
in practice.

Another challenge is the discreteness in time and price. Although all financial
data are discrete, many of them can be approximately modeled by a continuous
stochastic process or a continuous probability distribution. The classical example of
Black Scholes formula is based on the assumption of geometric Brownian motion
price process. However this is not the case for high frequency data. The tick data
usually falls on a countable set of values. Figure2 plots the histogram of the trade
price changes of IBMon Jan 10, 2013. There are about 66% of the prices are the same
as the previous one. And about 82% of the price changes fall in−1 to 1 cent. Similar
observation can be found in Russell et al. [53]. Another property of high frequency
data is the bid-ask bounce. Sometimes it can be observed that the prices frequently
back and forth between the best bid and ask price. This phenomenon introduces a
jump process that differs with many traditional models. Furthermore, the irregularly
spaced data makes it difficult to be fitted by most continuous stochastic processes
that are widely used in modeling daily returns. The problem becomes even harder in
high dimension, since the duration pattern varies in different assets.

3 Data Cleaning, Aggregating and Management

Cleaning data is the first step of any data analysis, modeling and prediction. The raw
data provided by data collectors is referred as dirty data, since it contains inaccurate

726 X. Shi et al.

Fig. 2 Histogram of the
trade price changes of IBM
on Jan 10, 2013

Fig. 3 Daily TAQ file details (Source https://www.nyxdata.com/doc/243156)

or even incorrect data point almost surely. In addition data cleaning is sometimes
followed by data aggregation that generates data with a desired frequency. The size
of data is often significantly reduced after the two steps. Thus one can extract useful
information from the cleaned data in a great efficiency.

In this section we take NYSE TAQ data as an example. Figure3 lists the details
of daily TAQ files. The information is available on http://www.nyxdata.com/Data-
Products/Daily-TAQ.

https://www.nyxdata.com/doc/243156
http://www.nyxdata.com/Data-Products/Daily-TAQ
http://www.nyxdata.com/Data-Products/Daily-TAQ

Quantitative Data Analysis in Finance 727

Fig. 4 The trade prices of
IBM on Jan 10, 2013

3.1 Data Cleaning

As we have discussed in the previous section, most of high frequency data contains
certain errors. Some of them can be detected simply by plotting all the data points.
Figure4 plots all the trade prices of IBM on Jan 10, 2013. The trades not happened
in regular market hours (9:30 AM to 4:00 PM) are also included in the dataset. This
kind of data lacks liquidity and contains more outliers than the others; and therefore
they are not considered in most data analysis. But one can also observe that there are
several abnormal outliers within the regular hours.

We introduce several numerical approaches for cleaning high frequency data. The
first step is to filter out the data that potentially have lower quality and accuracy. For
example, Brownlees and Gallo [9] suggest removing non-NYSE quotes in TAQ data;
since NYSE records usually have less outlier than the non-NYSE ones as shown by
Dufour and Engle [20]. In addition, the data record that were corrected or delayed
should also be removed. These kinds of information about data condition and location
are listed in COND, CORR and EX columns in the TAQdata, see Yan [59] for details.

Consider a price sequence pi where i = 1, 2, . . . ,N with length N . Brownlees
and Gallo [9] propose the following algorithm for removing outliers:

If (|pi − p̄i(k)| < 3si(k) + φ) =
{
true, observation i is kept
false, observation i is removed/truncated

where p̄i(k) and si(k) are the α-trimmed mean and standard deviation of a neighbor-
hood of k observations andφ is a positive number called granularity parameter.φ is to
prevent pi to be removed when si(k) = 0. As we have seen in Fig. 2 high frequency
data often contains many equal prices. α is a percentage number. For example, a
10%-trimmed mean and standard deviation are the average of the sample excluding
the smallest 10% and the largest 10% numbers. Thus outliers and unreasonable data

728 X. Shi et al.

points have less impact on the trimmed statistics. Median can be viewed as a fully
trimmed mean. Mineo and Romito [44] propose a slightly different algorithm:

If (|pi − p̄i−(k)| < 3s−i(k) + φ) =
{
true, observation i is kept
false, observation i is removed/truncated

where p̄i−(k) and s−i(k) are the α-trimmed mean and standard deviation of a neigh-
borhood of k observations excluding pi. Mineo and Romito [45] apply both algo-
rithms to the ACD model and conclude that the performances of the two algorithms
are very similar, while the second one might be better in modeling the correlations
of model residuals.

The α-trimmed mean and standard deviation are the robust estimates of the loca-
tion and dispersion of a sequence. The robustness depends on the choice of α. Prior
knowledge of the percentage of outliers in the data is required in order to find the
best α. The optimal α of each asset would be different. In some cases the α-trimmed
mean and the standard deviation can be replaced by the following statistics:

p̄i(k) = median{pj}j=i−k,...,i+k

si(k) = c · median{|pj − p̄i(k)|}j=i−k,...,i+k

where c is a positive coefficient. Outlier detecting algorithms with above statistics
are sometimes called Hampel filter that is widely used in engineering. The second
equation can be generalized by replacing the median by quartile with certain level.
The median based p̄i(k) and si(k) are also more robust than the trimmed ones.

A very important issue in the data cleaning approaches is that the volatility of
the cleaned data depends on the choice of methods and corresponding parameters.
The volatility of many high frequency data, including equity and currency, exhibits
strong periodic patterns. The outlier detection algorithms with moving window can
potentially diminish or remove these patterns that are important in prediction and
risk control. Thus it is crucial to consider the periodic behavior before using above
algorithms directly. One way is to apply robust estimates of volatility to raw data and
then remove this effect via certain adjustment. We discuss this problem in Sect. 4.1.

3.2 Data Aggregating

Most econometric models are developed for equally spaced time series, while most
high frequency data are irregular spaced and contain certain jumps. In order to apply
these models to the high frequency data, some aggregating techniques are necessary
for generating equally spaced sequence from the raw data. Consider a sequence
{(ti, pi)} where i = 1, . . . ,N , ti is time step and pi is trade or quote price. Given an
equally-spaced time stamps {τj} where j = 1, . . . ,M and τj − τj−1 = τj+1 − τj for
all j, a simple but useful way to construct a corresponding price series {qj} where

Quantitative Data Analysis in Finance 729

j = 1, . . . ,M is to take the previous data point:

qj = pilast ,

where ilast = max{i|ti ≤ τj, i = 1, . . . ,N}. This approach is called last point inter-
polation. It assumes that the price would not change before the new data come in.
Gençay [27] propose a linear interpolation approach:

qj = pilast + (pinext − pilast)
τj − tilast
tinext − tilast

where inext = min{i|ti ≥ τj, i = 1, . . . ,N}. The second method is potentially more
accurate than the first one, but one should be very careful when use it in practice,
especially in back-testingmodels or strategies; since it contains the future information
pinext which is not available at τj.

There are several ways to deal with the undesirable jumps caused by bid-ask
bounce. The most widely used approach is to replace the trade prices by the mid-
quote prices. Let {(tib , pib)}where i = 1, . . . ,Nb and {(tia , pia)}where i = 1, . . . ,Na

be the best bid and ask prices together with their time stamps. The mid-quote price
is given by

pi = 1

2
(pbib + paia),

where

ti = max{tia , tib}
ib = min{tib > ti−1, i = 1, . . . ,Nb}
ia = min{tia > ti−1, i = 1, . . . ,Na}.

Another approach is to weight the bid and ask by their sizes sib and sia

pi = sbibp
b
ib + saiap

a
ia

sbib + saia
.

Once we get an equal time spaced price series {qj} where j = 1, . . . ,M, we are
able to calculate the log returns of the asset:

rj = log
qj
qj−1

.

In high frequency data, the price difference is usually very small. Thus the log
returns would be very close to the linear returns

730 X. Shi et al.

rj = qj − qj−1

qj−1
.

There are several good reasons to consider the log returns instead of the linear
returns in financial modeling. First it is symmetric with respect to the up and down
of the prices. If the price increases 10% and decreases 10% in terms of the log return,
then it will remain the same. The linear return can exceed 100% but cannot be lower
than−100%while the log return does not have this limit. Furthermore the cumulative
log returns can be simply represented as the sum of the log returns; this fact would
be very helpful in applying many linear models to the log returns.

The last thing we want to mention here is that the size of overnight returns in
equity market is often tremendous comparing to the size of intraday returns. The
currency market does not have that problem. Overnight returns in equity market are
often considered as outliers and removed from the data in most applications. One can
also rescale these returns since they may contain useful information. But different
methods in rescaling overnight returns might affect the performance of model and
strategy.

3.3 Scalable Database and Distributed Processing

Cleaning and aggregating high-volume data always needs a big data infrastructure
that combines a data warehouse and a distributed processing platform. To address
the challenges of such a big data infrastructure with emerging computing multi-
source platforms such as heterogeneous architectures and Hadoop with emphasis on
addressing data-parallel paradigms, people have extensively been working on vari-
ous aspects, such as scalable data storage and computation management of big data,
multisource streaming data processing and parallel computing, etc.

Database is an essential datastore for high-volume finance data such long-term
historical market data sets. In data management, the column-based database like
NoSQL and in-memory database are replacing the traditional relational database
management system (RDBMS) in financial data-intensive applications. RDBMS is
database based on the relational model and it has been used for decades in industry.
Although it is ideal for processing general transactions, RDBMS is less efficient
in processing enormous structured and unstructured data, for examples, for market
sentiment analysis, real-time portfolio and credit scoring in modern financial sector.
Usually, these financial data are seldom modified but their volume is overwhelmed
and they need to be queried frequently and repeatedly. In this, a column based data-
base often stores time series based metadata with support of data compression and
quick read. In this regard, the columnar databases are preferably suitable for time
series of financial metadata. For example, when a financial engineer pulls out a time
series of only a few specified metrics with a specific point, a columnar database is
faster for reading than a row-based database since only specified metrics such as
OHLC are needed. In this case, a columnar database is more efficient because of the

Quantitative Data Analysis in Finance 731

cache efficiency and it has no need for scanning all rows like in a row based data-
base. Beyond the columnar database, the in-memory data-base is another emerging
datastore solution when performing analytics. That is, if the data set is frequently
used and its size fits into memory, the data should persist in the memory for sake
of data retrieving, eliminating the need for accessing disk-mediated databases. In
practice, what solution is favorable should depend on the practitioners application
and available computing facilities.

In addition to datawarehouse, distributed processing is equally important. Hadoop
often works on Big Data for financial services [26]. Hadoop refers to a software plat-
form for distributed datastore and distributed processing on a distributed computing
platform such as a computer cluster. Hadoop is adopted for handling the big data sets
for some financial services such as fraud detection, customer segmentation analy-
sis, risk analytics and assessment. In these services, the Hadoop framework helps to
enable a timely response. As a distributed data infrastructure, Hadoop does not only
include a distributed data storage known as HDFS, Hadoop Distributed File System,
but it also offers a data-parallel processing scheme called as MapReduce. However,
Hadoop, as a tool, is not a complete big data solution and it has its limitations like
everything. For example, it is inefficient to connect structured and unstructured data,
unsuitable for real-time analytics, unable to prioritize tasks when multiple tasks
are running simultaneously in distributed computing platforms, and its performance
closely depends on the scalability of a distributed file system which in turn limits
this architecture. Apache Spark, on the other hand, is a data-processing tool and it
operates on distributed data storage. Spark does not provide a distributed data storage
like HDFS so it needs to be integrated with one distributed data platform. It can run
on top of HDFS or it can process structured data in Hive. Spark is an alternative to
the traditional map/reduce model that is used by Hadoop and it supports real-time
stream data processing and fast queries. Generally, Sparks needs more RAM instead
of network and disk-backed I/O and thus it is relatively faster than Hadoop. Spark
often completes the full real-time data analytics in memory. However, as it uses large
RAM, Spark needs a high-end machine with a large memory capacity. In the code
development, Spark is a library for parallel processing through function calls and a
Hadoop MapReduce program can be written by inheriting Java classes.

4 Modeling High Frequency Data in Finance

In this section we discuss the mathematical models for high frequency data. There
are a number of quantitative models with different features in financial econometrics.
The purpose of majority of these models is to estimate expected returns and volatility
of a risky asset or portfolio. As we have discussed in the first section, expected return
and volatility are the two footstones of the modern portfolio theory. Expected return,
sometimes called alpha, is the prediction of profit and loss in the future. It is the most
crucial statistics for a portfoliomanager.Volatilitymeasures variation of value change
for a financial instrument or portfolio. The behavior of a portfolio whose volatility

732 X. Shi et al.

is controlled properly is more consistent than the ones with large volatility. Thus
Markowitz’s theory states that a portfolio may generate relatively stable revenues by
maximizing its expected return and minimizing the volatility. Other useful statistics
and performance measures such as skewness, kurtosis, VaR or drawdown can also be
estimated by some of the following models. There a number of literatures consider
portfolio selection and riskmanagement based on these statistics.Wewill not discuss
them in this chapter.

4.1 Volatility Curve

The intraday market exhibits a more clearly periodic pattern especially in volatility
comparing to the low frequency financial data. There a number of papers propose
different approaches to modeling the volatility of the high frequency data. The most
common idea is to separate the volatility into deterministic seasonal part and stochas-
tic part. The deterministic part is usually fitted by a smooth function, as Andersen and
Bollerslev [4] and Andersen et al. [5] suggest. The stochastic part can be modeled by
ARCH type models, since Engle and Manganelli [24] discover volatility clustering
effect in high frequency market.

The volatility is often considered as a hidden factor of the market. The most
common way to extract seasonal volatility from the data is to compute the norms of
the absolute returns. To make it clear, let an integer K > 0 be the period length and
r1, r2, . . . , rKN be a sequence of equally time-spaced log returns in N periods. Then
the seasonal realized volatility can be defined as:

vi =
(1

N

N∑

j=1

|rK(j−1)+i|p
) 1

p
, i = 1, 2, . . . ,K,

where the exponent p is usually set to be 1 or 2. However the above representation
is sensitive to the outliers. The seasonal structure could be destroyed by a single
abnormal extremevalue.Amore robustway is to consider the quartiles of the absolute
returns:

vi = quartileα{|rK(j−1)+i|}j=1,2,...,N , i = 1, 2, . . . ,K,

where 0 ≤ α ≤ 1. Seasonality with different periods can be observed from the high
frequency data. As an example, Dong [18] considers 1-min log returns of all the
stocks in Russell 3000 on 2009. The period K is set to be 390 that is the number
of minutes in each trading day. Figure5 plots the volatility curve together with the
aggregated volume curves of NYSE and NASDAQ against 390 min.

In addition Dong [18] discovers that there exist 5-min spikes on the curve. This
phenomena are more clear when we plot the volatility curve when K = 60 min (see

Quantitative Data Analysis in Finance 733

Fig. 5 The volatility curve together with the aggregated volume curves of NYSE and NASDAQ
against 390 min (Credit [18])

Fig. 6 The volatility curve together with the aggregated volume curves of NYSE and NASDAQ
against 60 min (Credit [18])

Fig. 6). Both volatility and volume exhibit the U-shape pattern but they are different
at tails. The volatility is relatively higher at market opening and lower at the end.

To fit the volatility curve above one can use a smooth rational function, for exam-
ple:

f (x) = ax2 + bx + c

dx + 1
.

The coefficients a, b, c, d can be fitted by least square approach:

734 X. Shi et al.

min
a,b,c,d

K∑

i=1

(vi + divi − ai2 − bi − c)2,

and the de-seasonal log returns can be:

r̂K(j−1)+i = rK(j−1)+i

f (i)
,

where i = 1, 2, . . . ,K and j = 1, 2, . . . ,N . Aswehavementioned before, the volatil-
ity patterns may not be preserved if we apply the outlier cleaning techniques intro-
duced in Sect. 3.1 before computing the realized volatility. The quartile-based real-
ized volatility, which is a robust estimator, can be applied directly to un-cleaned data.
Thus instead of removing outliers in the price, one can first aggregate data and get an
equal spaced return series with abnormal outliers. Then the data cleaning approach
can be applied to the de-seasonal returns.

4.2 Stochastic Volatility

Despite of the deterministic periodic pattern, the volatility is stochastic and exhibits
volatility clustering, i.e. large returns are likely followed by large returns regardless
their directions, see Engle and Manganelli [24]. Thus the generalized autoregressive
conditional heteroscedasticity (GARCH) type models developed by Engle [22] and
Bollerslev [8] would be a good choice to fit the stochastic part of the volatility. In
this section we briefly introduce the idea of the GARCH (1,1) model. For simplicity
let ri, i = 1, 2, . . . be the de-seasonal equally spaced log returns. The GARCH (1,1)
model assumes that:

ri = μi + σiεi

σ2
i = ω + αr2i−1 + βσ2

i−1

where ω,α,β are positive real numbers, and εi where i = 1, 2, . . . are i.i.d normally
distributed with zero mean and unit variance. The drift term μi is the conditional
expectation of ri given all the information up to time i. There are a lot of approaches
in modeling μi that is often called “alpha” in finance. We discuss several examples in
Sect. 4.4. The parameters ω,α,β should satisfy the constraint α + β ≤ 1 in order to
make the process to be stationary. The estimation of the model is usually performed
by the maximum likelihood estimator (MLE). We refer to McNeil et al. [40] for
details. Scientific programming languages including Matlab and R have matured
packages for fitting the GARCH model. In practice, the ω is often a small number
close to zero; β ranges from 0.7 to 0.9 and α + β ≈ 1. α is usually much smaller
than β, but it plays a key role in measuring the volatility sensitivity to the market
impact.

Quantitative Data Analysis in Finance 735

4.3 Multivariate Volatility

The simplest approach to model the dependence structure of multi-assets is to com-
pute the covariance of their returns. However, the traditional sample covariance is
usually ill- conditioned when the dimension is relatively high comparing to the sam-
ple size.An ill-conditioned covariancematrixmay lead huge errors in risk forecasting
and portfolio optimization. The simplest way to improve the conditions of the sample
covariance is to adjust its eigenvalues. Another method is to shrink the covariance to
some well-conditioned matrix. The most famous shrink-age estimator is proposed
by Ledoit and Wolf [33].

The third approach, which might be the most widely used, is to impose certain
structure on the covariance. For example, one can assume that a d by d covariance
matrix has the expression:

Σ = FF ′ + D,

where F is a d-by-n matrix, D is a d-by-d diagonal matrix and n < d. The rationale
of the above formula is that the asset return follows the linear factor model:

r = Fx + ε,

where r is the d-dimensional vector of log returns, x is the vector of uncorrelated
risky factors with unite variance in a lower dimension n, and ε is the uncorrelated
errors with covariance D. Unlike the traditional factor models, the factor x does
not come from real data, which are usually correlated. In this model x is some
un-correlated statistical factors that are hidden from the market. The well-known
principle component analysis (PCA) is one way to extract x from the original data.
Let Σ̂ be the sample covariance matrix; by the singular value decomposition it can
be written as:

Σ̂ = UΛU ′,

whereU is a d-by-d unitary matrix, i.e.UU ′ = U ′U = I , and Λ is a diagonal matrix
with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λd . Then we can set

x = Λ
− 1

2
n U ′

nr

F = UnΛ
1
2
n ,

where the d-by-nmatrixUn consists the first n columns ofU, and the diagonal matrix
Λn is the first n-by-n block of Λ. In fact one can show that F is the solution of:

min
F

‖Σ̂ − FF ′‖2,

736 X. Shi et al.

where ‖ · ‖2 is the induced 2-norm of a matrix. The residual matrix D can be simply
written as:

D = diag(Σ̂ − FF ′).

ThePCA is a simple standard statistical tool for dimension reduction.Apotentially
more precise approach to fit F and D is to apply the expectation maximization (EM)
algorithm to the log returns. This approach is also known as the factor analysis (FA).
The standard EM algorithm for FA proposed by Rubin and Thayer [52] is an iterative
algorithm. Let {ri} where i = 1, . . . ,N be a sequence of vectors of log returns, and
F(0), D(0) be the initial inputs. Then the k-th iteration of the EM is given by:

E Step: Re-compute the conditional expectations:

E[x|ri] = F(k−1)′(D(k−1) + F(k−1)F(k−1)′)−1ri

E[xx′|ri] = I − F(k−1)′(D(k−1) + F(k−1)F(k−1)′)−1F(k−1) + E[x|ri]E[x|ri]′.

M Step: Update F and D:

F(k) =
(N∑

i=1

riE[x|ri]
)(N∑

i=1

E[xx′|ri]
)−1

D(k) = 1

N
diag

(N∑

i=1

rir
′
i − F(k)E[x|ri]r′

i

)
.

The above algorithm will converge to the maximum likelihood estimator of F
and D given that x and ε are independently Gaussian distributed. There are some
variations of the classical EM algorithm that may improve the convergence speed,
for example, the ECM algorithm proposed by Meng and Rubin [41], Donald B the
ECME algorithm proposed by Liu and Rubin [36], the GEM algorithm pro-posed
by Neal and Hinton [48] and the α-EM algorithm proposed by Matsuyama [39]. Jia
[31] applies the α-EM algorithm together with conjugate gradient method to the FA
and shows a significant improvement in the speed.

4.4 Expected Return

The high frequency data usually have a stronger cross-sectional dependency than the
low frequency one. This fact can be observed not only in the volatility but also in
the expected returns or alphas. Thus the classical autoregressive (AR) models may
have a better performance in the high frequency market. Let {ri}, i = 1, 2, . . . be a
sequence of de-seasonal log returns equally spaced in time. The AR(p) model can
be written as:

Quantitative Data Analysis in Finance 737

ri = h0 + h1ri−1 + h2ri−2 + · · · + hpri−p + xi,

where i = p + 1, p + 2, . . . ; h0, h1, . . . , hp are called AR coefficients or impulse
response in electronic engineering and xi are often assumed to be i.i.d zero mean
normally distributed noises. Given the information up to time i − 1, the expectation
of ri, which is given by h0 + ∑p

j=1 hjri−j, is the alpha prediction of the AR(p) model.
The estimation of AR(p) model can be performed by the least square method.

Suppose that we have data samples with length N > p, the least square method
solves the following optimization problem:

min
h0,h1,...,hp

N∑

i=p+1

(ri − h0 −
p∑

j=1

hjri−j)
2,

which can be solved explicitly:

ĥ = (R′R)−1R′r,

where

r =

⎛

⎜
⎜
⎜
⎝

rp+1

rp+2
...

rN

⎞

⎟
⎟
⎟
⎠

,

and

R =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 rp rp−1 · · · r1
1 rp+1 rp · · · r2
1 rp+2 rp+1 · · · r3
...

...
...

. . .
...

1 rN−1 rN−2 · · · rN−p

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

The naïve least squaremethod is simple, but it is not themost numerically efficient
approach in the estimation of AR(p). A better alternative called Burg’s method is
usually considered a standard approach for estimating AR(p) systems. We refer
readers toMarple [38]. Some software such asMatlab also provides build-in function
for Burg’s algorithm.

A generalization of the AR(p) model is so-called autoregressive moving average
(ARMA) model. Similar as AR(p), the ARMP(p,q) model can be represented as

ri = h0 +
p∑

j=1

hjri−j +
q∑

j=1

qjxi−j + xi.

738 X. Shi et al.

In fact one can show that ARMA(p,q) is also a special case of AR(∞) process.
However methods like least squares or Burg’s algorithm cannot be applied to the
estimation of ARMA(p,q) model. Instead the general maximum likelihood estimator
is the standard approach for fitting ARMA(p,q) with normally distributed residuals
xi. The ARMA process often works together with GARCH model. In that case the
estimations of ARMA and GARCH can be done separately. This approach is called
quasi maximum likelihood (QMLE). A comprehensive introduction of the ARMA-
GARCH type models can be found in McNeil et al. [40]. Beck et al. [6] apply the
ARMA-GARCH model to intraday data with frequency ranged from 75 to 300 s;
and discover the heavy-tailness in the residuals of the model.

The financial data often has mean-reverting pattern. For example, the estimated
h1 of AR(p) model is usually negative. Roughly speaking, the scales of the rest para-
meters hj, (j > 1) are small comparing to h1, and become smaller as j increases,
since the impact of historical values to the present will diminish as time goes. How-
ever, this does not mean that hj with large j should be ignored. The aggregation of
small impulse responds may have a strong impact to the prediction; since it contains
information of long-term trends. Sun et al. [56] find that the intraday equity data may
have long-range dependence, i.e. the decay of hj with respect to j is very slow. Kim
[32] applies an ARMA-GARCH model with fractional heavy-tailed distributions to
model high frequency data. Although neither ARMA(p,q) nor AR(p) processes can
capture the long-range dependency of the data, one may approximate a long-range
dependent time series by an AR(p) with large p in a finite amount of time. How-
ever as the number of parameters increases, the error of the least squares estimator
or Burg’s method grows tremendously, due to the Cramér-Rao bound. Thus simi-
lar as the covariance matrix estimation, one may need some biased estimators like
shrinkage. Mullhaupt and Riedel [47] impose a specific structure called triangular
input balanced form on the AR process. They show that the estimation error can be
significantly reduced by adding small bias to the estimator.

4.5 Duration

Up to now we introduce how to transfer data into equal spaced series. However
the frequency of the data would be reduced and certain information would be lost
in the aggregation. The original data with irregular time stamps are called ultra-
high frequency data in Engle [23]. Consider a sequence of ultra-high frequency
data {(ti, pi)} where i = 1, . . . ,N , the number of trades that occur before time t
is given by N(t) = sup{i|ti ≤ t, i = 1, . . . ,N}. The simplest way is to fit N(t) by
a homogeneous Poisson process, i.e. the probability that there N(t) events happen
between t and t + Δt is

P(N(t + Δt) − N(t) = k) = (λΔt)k

k! e−λΔt , k = 0, 1, 2, . . . ,

Quantitative Data Analysis in Finance 739

where λ is the instantaneous arrival rate of an event

λ = lim
Δt→0

P(N(t + Δt) − N(t) ≥ 0)

Δt
.

The Poisson process implies that the durations Δti = ti − ti−1 are i.i.d exponen-
tially distributed with constant rate λ

P(Δt ≤ s) = 1 − e−λs.

However the Poisson process might over simplify the problem. Similar as the
volatility, duration exhibits periodicity and heteroskedasticity. Engle [23] shows that
the duration of mid-quote prices has an n-shape curve in contrast to the volatility. The
periodicity can be removed using the same approach in Sect. 4.1. The heteroscedas-
ticity, however, contradicts to the assumption that λ is constant. Engle and Russell
[25] propose an autoregressive conditional duration (ACD) model as follows:

Δti = φiεi

φi = ω + αΔti−1 + βφi−1,

where εi are i.i.d positive random variables. The ACD model looks very similar to
the GARCH model. The distribution of residuals εi is often set to be the exponential
or Weibull distribution. It is clear that the instantaneous arrival rate λ of the ACD
model is not a constant. Simple calculation shows that given φN(t) and exponentially
distributed εN(t):

λ(t) = 1

φN(t)
.

Similar as the GARCHmodel, the parameters of the ACDmodel can be fitted via
QMLE, see Engle and Russell [25], Engle [23].

4.6 Scalable Parallel Algorithms on Supercomputers

As we have seen, all of the computations in previous sections are based on high
dimensional matrix operations. For example, multivariate least squares method is
applied tofit volatility curves andARmodels. Eigenvalues are important in estimating
the covariance matrix.

Of these methods, matrix multiplication is the core problem as a basis for most
of other methods such as least square, eigenvalue and matrix factorization. Matrix
multiplication (MM) is the simplest yet most difficult problem in mathematics [60].
The standard algorithm for MM is O(n3) but in mathematics, researchers never
stop in pursuit of faster approached for multiplying matrices. For example, Strassen

740 X. Shi et al.

Fig. 7 Comparing the naïve algorithm and Strassen algorithm for matrix-matrix multiplication

reduced the computing complexity to O(n2.8) in 1969 and another breakthrough
is the Coppersmith-Winograd algorithm that per-forms MM in O(n2.4) operations.
In addition to theoretical studies, the complex architectures of computing facilities
have further escalated the difficulty for the MM implementation. For example, the
task mapping in parallel computers and the task scheduling in hybrid CPU-GPU
computers made the MM implementations even harder. In this regard, some data-
oriented schedule paradigm is proposed and it has been applied to the MM problem
on todays high-performance computing facilities [62]. Of experiments, the best-
practice matrix-multiplication approach is found [60]. Figure7 compares the naïve
and Strassen algorithms for tile-based matrix-matrix multiplication.

Cholesky inversionmethod is to compute the inverse for a positive-definitematrix.
In finance, the covariance matrix is positive semidefinite. Cholesky inversion is
more challenging than matrix multiplication and it consists of three successive steps:
Cholesky factorization, inversion for lower triangular matrix and product of lower
triangular matrices. A naïve approach is to perform three steps sequentially but its
performance is very poor. To deliver better parallelism, one has to interweave these
steps by adhering to the complex data dependencies. This goal could be achieved

Quantitative Data Analysis in Finance 741

through a thorough critical path approach [57] or a dynamic data-oriented schedule
approach Zhang et al. [61, 62].

5 Portfolio Selection and Evaluation

Data cleaning, aggregation and modeling can all be viewed as searching valuable
information from themassive data. The amount of datawouldbe significantly reduced
after each step. Expected return, volatility and other statistics are the gold extracted
from raw ore. The final steps are developing trading ideas, constructing portfolios
and testing strategies. Although data volume in this procedure is relatively small,
there is a great need of computing speed from high frequency investors who want
to execute their strategies faster than their opponents. In this section we review
two different classes of strategies: Markowitz’s mean variance portfolio selection
and on-line portfolio selection. The first one is relatively slow but mature and well
developed. The second one is simple but fast which can be potentially applied to
ultra-high frequency trading.

5.1 Markowitz Portfolio Optimization with Transaction Costs

Suppose that there are d risky assets with expected returnμ and covarianceΣ . A self-
financing portfolio is represented by a d-dimensional weight vector w that satisfies∑d

i=1 wi = 1. The well-known Markowitz portfolio states that a rational risk averse
investor wants to maximize the utility function

max
w

w′μ − λ

2
w′Σw

subject to: 1′wi = 1,

where 1d is a d-dimensional vector with all ones, w′μ is the expected return of the
portfolio, w′Σw is the variance of the portfolio and λ > 0 reflects the degree of
risk aversion. In high frequency market, the log return and the real return are very
close, so w′r with log return r can be an approximation of the real portfolio return
in a short period. Thus μ and Σ in the optimization problem can be log return based
mean and covariance. But this would not be true for long-term prediction. The above
optimization problem can be solved explicitly. The optimal portfolio weight together
with its expectation and variance changes as the risk aversion parameter λ varies. By
plotting the expected return against the variance with all possible λ then we obtain
the famous efficient frontier.

There aremany variations of theMarkowitzmean-variance portfolio strategy. One
can replace the variance term w′Σw by other risk measures like the value-at-risk

742 X. Shi et al.

(VaR), conditional value-at-risk (CVaR) or maximum drawdown. These risk mea-
sures are often considered to be superior than the variance since they are able to
capture the tail-risk. Rockafellar and Uryasev [51] show that the mean-CVaR prob-
lem can be transferred to a linear programming with a higher dimension. Chekhlov et
al. [11] propose a similar approach for drawdown measures. However, the trade-off
of these approaches is that the dimension of the problem increases tremendously by
introducing auxiliary variables. CVaR for example, is often calculated via Monte
Carlo; and the dimension of the auxiliary variables in the equivalent linear program-
ming is the same as the number of Monte Carlo scenarios. Regular computers may
fail to deal with this kind of problem efficiently due to the memory limitation. Under
some special cases the mean-risk problem can be solved easily. For example, Shi
and Kim [55] show that the dimension of any mean-risk problem with coherent risk
measures and a subclass of normal mixture distributions can be reduced to two. In
general, however, the mean-risk problem is usually very hard to solve.

The most important problem within the above strategies is that they assume no
transaction cost. Transaction cost is usually ignored in the low frequency finance,
but it grows dramatically as the trading frequency increases. Broker commissions,
exchange fees and taxes are all major sources of the transaction cost. But the most
significant one is the portfolio turnovers. For example, if the current best ask price
of equity is $10, it does not mean you are able to buy 500 shares at $5000. The size
of the best asks might just be 200 shares. The next best ask price might be $10.1
with 300 shares. Overall the average price you paid grows almost proportionally as
objective shares increases. Thus a high frequency tradermay not choose to change his
current position even when he observes a signal. Even you have a perfect prediction
of the expected returns and variance, the optimal mean-variance portfolio may be
completely different with the current ones; and the profit would be dwarfed by the
huge transaction cost in rebalancing the portfolio. Thus a constraint on the portfolio
turnover is necessary in portfolio optimization problems. Suppose that your current
portfolio weight is given by a d-dimensional vector w̃; then the turnover is usually
modeled by the 1-norm of the weight change:

‖w − w̃‖1 :=
d∑

i=1

|wi − w̃i|.

Thus the mean-variance problem with transaction cost can be rewritten as:

max
w

w′μ − λ

2
w′Σw − c‖w − w̃‖1

subject to: 1′w = 1,

where c > 0 is the degree of the turnover. The object function is neither quadratic
nor smooth at the point w̃. But we are able to convert it to a quadratic programming
problem:

Quantitative Data Analysis in Finance 743

max
v

v′μ̃ − λ

2
v′Σ̃v

subject to: 1̃′v = 0, v ≥ 0,

where

μ̃ =
(

μ − λw̃′Σ + c1
−μ + λw̃′Σ + c1

)

, Σ̃ =
(

Σ −Σ

−Σ Σ

)

,

and 1̃ is a 2d dimensional vector with first d elements are 1 and the rest are −1. The
optimal portfolio weight w∗ of the mean-variance problem with transaction cost can
be represented by the optimal solution of the above problem v∗:

w∗ = w̃ + [I,−I]v∗,

where I is the d-dimensional identity matrix. One can show that the first d elements
of v∗ are the positive parts of the weight change, and the rest d elements are the
negative parts of the weight change. If v∗

k > 0 for some k = 1, . . . , d, then we must
have v∗

d+k > 0, otherwise v∗ will not be the optimal solution. The quadratic program-
ming has been thoroughly studied in modern convex optimization theory. Classical
algorithm includes the interior-point method and trust-region method, see Nocedal
andWright [49]. Note that Σ̃ is not of full rank, this is caused by the non-smoothness
of the original problem. One may shrink the eigenvalues of Σ̃ a bit to make the prob-
lem strictly convex. Thus in practice we usually get an suboptimal solution w∗. If
the value of the object function on w∗ does not exceed w̃′μ − λ

2 w̃
′Σw̃ then we will

keep the portfolio unchanged since the potential benefit of changing the portfolio
does not cover the transaction cost.

5.2 On-Line Portfolio Selection

In this section we consider a portfolio allocation framework that is different from the
Markowitz’s theory. Let ri,t where i = 1, 2, . . . , d, t = 1, 2, . . . ,T be the log return
of the i-th asset at time t, xi,t = exp(ri,t) be the price ratio, xt = (x1,t, . . . , xd,t)

′ be
the price ratio vector of d assets and wt = (w1,t, . . . , wd,t)

′ be the portfolio weights.
We assume that the portfolio is long-only; and let W = {w ∈ R

d , s.t.
∑d

i=1 wi =
1, wi ≥ 0} be the universe of all long-only portfolio weights. Suppose that the initial
wealth is S0, then the value of a portfolio with strategies: w1, w2, . . . , wt ∈ W is
given by:

St(w1, . . . , wt|x1, . . . , xt) = S0

t∏

s=1

d∑

i=1

wi,sxi,s.

744 X. Shi et al.

A general on-line portfolio selection framework proposed by Li and Hoi [34] is
as follows:

ALGORITHM: On-line portfolio selection
Input: x1, . . . , xT : Historical market sequence
Output: ST : Final cumulative wealth
Initialize S0 and w0
for t = 1, . . . ,T do
Portfolio manager computes a portfolio wt ;
Market reveals the market price ratio xt ;
Updates cumulative wealth St = St−1w

′
txt ;

Portfolio manager updates his/her online portfolio selection rules;
end

Here are several examples of on-line portfolio strategies:

5.2.1 Buy and Hold Strategy

The buy and hold strategy simply does not trade anymore once the initial portfolio
weight w0 is given. The dynamic of its portfolio weight is given by:

wi,t = wi,t−1xi,t−1
∑d

j=1 wj,t−1xj,t−1

and the cumulative wealth is:

St(w1, . . . , wt|x1, . . . , xt) = S0

d∑

i=1

wi,0

t∏

s=1

xi,s.

5.2.2 Constantly Rebalanced Strategy

In contrast to the buy and hold strategy, the constantly rebalanced strategy is to keep
rebalancing the portfolio such thatw0 = w1 = · · · = wt . Thus the cumulative wealth
is

St(w1, . . . , wt|x1, . . . , xt) = S0

t∏

s=1

d∑

i=1

wi,0xi,s.

It can be used to replicate the movements of a certain market index. Constantly
rebalance and buy and hold are two naïve trading strategies that are often used as
benchmarks.

Quantitative Data Analysis in Finance 745

5.2.3 Minimax Strategy

Let y1, . . . , yT be a sequence of integers ranged from 1 to d. Given a sequence of
static strategies: v1, . . . , vT ∈ W , i.e. vt does not depend on any information prior to
t. Then we can define a probability density function of y1, . . . , yT :

pT (y1, . . . , yT) = supv1,...,vT∈W
∏T

t=1 vyt ,t
∑d

z1=1 · · · ∑d
zT=1 supv1,...,vT∈W

∏T
t=1 vzt ,t

.

The marginal density function of y1, . . . , yt for some t < T is given by

pt(y1, . . . , yt) =
d∑

zt+1=1

· · ·
d∑

zT=1

pT (y1, . . . , yt, zt+1, . . . , zT).

Given a sequence of price ratio x1, . . . , xt−1, the minimax strategy on wi,t is defined
as

wi,t =
∑d

y1=1 · · ·∑d
yt−1=1 pt(y1, . . . , yt−1, i)

∏t−1
s=1 xys,s

∑d
y1=1 · · ·∑d

yt−1=1 pt−1(y1, . . . , yt−1)
∏t−1

s=1 xys,s
.

The minimax strategy is the theoretical best strategy in terms of minimizing the
worst-case logarithmic wealth ratio

sup
x1,...,xT

sup
v1,...,vT∈W

log
ST (v1, . . . , vT |x1, . . . , xT)

ST (w1, . . . , wT |x1, . . . , xT)
.

This ratio measures the difference between the strategy w1, . . . , wT and the best
static strategy with the knowledge of future under the worst case scenario. For de-
tailed proof and the deduction of the minimax strategy we refer readers to Cesa-
Bianchi and Lugosi [10].

5.2.4 Universal Portfolio Strategy

Theminimax strategy is the theoretical best on-line strategy, but it is hard to achieve in
practice. The computation of the densities p1, . . . , pT is often numerically intractable
in real market. Cover [13] proposes a computationally efficient strategy called uni-
versal portfolio:

wi,t =
∫
W ujSt−1(u, . . . , u|x1, . . . , xt−1)μ(u)du
∫
W St−1(u, . . . , u|x1, . . . , xt−1)μ(u)du

,

746 X. Shi et al.

where St−1(u, . . . , u|x1, . . . , xt−1) is the cumulative wealth of a constantly re-
balanced strategy u; and μ(u) is a density function that can be viewed as a prior
distribution of the portfolio weight. At time t the strategy updates the distribution
of weight based on the performance of all possible constantly rebalanced strate-
gies. The new strategy is just the expectation of the updated distribution. Cover and
Ordentlich [14] show that the worst-case logarithmic wealth ratio of the universal
portfolio strategy has an upper bound that increases at the speed of O(logT) as T
increases.

5.2.5 Exponential Gradient (EG) Strategy

The universal portfolio strategy is more practical than the minimax strategy, but still
computationally intractable under high dimension; since it involves the calculation
of d dimensional integrals. A simple strategy called the EG strategy proposed by
Helmbold et al. [30] updates the portfolio weights as follows:

wi,t =
wi,t−1 exp

(ηxi,t−1
∑d

i=1 wi,t−1xi,t−1

)

∑d
j=1 wj,t−1 exp

(ηxj,t−1
∑d

i=1 wi,t−1xi,t−1

) .

The EG strategy is a gradient-based forecaster since the term xi,t−1
∑d

i=1 wi,t−1xi,t−1
can be

viewed as the gradient of logarithmic loss − log
∑d

i=1 wi,t−1xi,t−1. The upper bound
of the worst-case logarithmic wealth ratio of the EG strategy grows withO(

√
T); but

in terms of the dimension d it grows only with O(
√
log d) comparing to the linear

growth of universal portfolio.

The above on-line strategies are all based on the assumption that there is no trans-
action cost. Györfi and Vajda [28] propose an on-line portfolio allocation framework
with transaction costs. Suppose that at time t − 1 the net wealth of the portfolio is
given by Nt−1. Given a new strategy wt and price ratio xt the gross wealth at time t
is given by

St = Nt−1

d∑

i=1

wi,txi,t .

However, after the rebalancing, the wealth is reduced to Nt ≤ St because of the
transaction costs. Before the rebalancing the weights of each asset are given by

w̃i,t = wi,txi,t
∑d

j=1 wj,txj,t
, i = 1, . . . , d.

Quantitative Data Analysis in Finance 747

In the previous section we simply use ‖wt+1 − w̃t‖1 to approximate the trans-
action cost. A more precise approximation should be

Ct = csell

d∑

i=1

max{w̃i,tSt − wi,t+1Nt, 0} + cbuy

d∑

i=1

max{wi,t+1Nt − w̃i,tSt, 0},

where csell and cbuy are the per dollar transaction costs of selling and buying respec-
tively. Using the fact that Nt = St − Ct we obtain the following equation

1 = ρt + csell

d∑

i=1

max{w̃i,t − wi,t+1ρt, 0} + cbuy

d∑

i=1

max{wi,t+1ρt − w̃i,t, 0},

from with we can solve ρt = Nt/St . Thus instead of St we obtain a sequence of net
wealth

Nt = N0

t∏

s=1

ρs

d∑

i=1

wi,sxi,s.

The on-line portfolio allocation with transaction costs can be summarized as:

ALGORITHM: On-line portfolio selection with transaction costs
Input: x1, . . . , xT : Historical market sequence, transaction costs csell and cbuy
Output: NT : Final cumulative net wealth
Initialize ρ0, S0 and w0
for t = 1, . . . ,T do
Portfolio manager computes a portfolio wt ;
Updates the net wealth Nt−1 = ρt−1St−1 after rebalancing;
Market reveals the market price ratio xt ;
Updates the gross wealth St = Nt−1w

′
txt ;

Portfolio manager updates his/her online portfolio selection rules;
end

For more on-line portfolio selection strategies we refer readers to Li and Hoi
[34] that provide a review of recent published techniques including some pattern
recognition and machine learning strategies.

6 The Future

The rise of big data in financial industry has already been dramatic in the past decade.
However we have good reasons to believe that it is just a start; and the adoption of big
data technology together with quantitative tools still has a long way to go. Despite of

748 X. Shi et al.

the rapid growth of high frequency industry and systematic trading funds, a number of
traditional financial businesses still live in the small data era. A lot of economic data
that they collected are weekly, monthly or even quarterly based. Financial analysts
may spend several hours on small amount of fundamental data of a single firm; while
a large percentage of the work could be done automatically by machine. In addition,
there are also more hidden errors in the data that are very difficult to be detected
manually, as the information from the data providers such as Bloomberg and Factset
grow tremendously. Thus the chances of operational risk made by human analyst
who does not have the support of advanced technology increases simultaneously.
The most widely used data analyze tool in many financial firms is Microsoft Excel
together with Visual Basic for Applications (VBA), which is very inefficient to deal
with large datasets. On the other side, although there is a number of professional
data analyzing technologies that can process big data in a great efficiency, most of
them are not user-friendly and fail to provide a comprehensive visualization of the
information for the financial professionals with little technological or mathematical
background. Thus the future of big data in finance is likely to be more client-oriented
and personalized. This requires a closer connection between the engineers, scientists,
financers and bankers [63].

Even in the rapid growing high frequency industry, the technology and theory is
far from mature. A unified influential framework such as the classical Black Scholes
theory is not discovered yet in high frequency finance. Here we list some potential
research topics that might be crucial for the development of quantitative finance.

6.1 Advanced Statistics and Information Theory

In contrast to the classical statistics based on unbiased statistics such as maximum
likelihood estimator, biased estimators, shrinkage, Bayesian theory and prior infor-
mation are getting more and more emphasis in modern statistics in finance. Financial
data is highly noisy and inconsistent. And this property would just become more sig-
nificant as the data size grows bigger. The behavior of financial market also changes
over the time. For example, the pattern of some financial instruments is completely
changed by the crisis on 2009. New phenomena like the flash crash appears as
new technologies are introduced to the market. Simple models fail to capture these
changes, and complicated advancedmodels usually introduce large estimation errors.
That is the reason for which the biased estimators often have a better performance
than the unbiased ones. However introducing prior information naively could be
dangerous. How to shrink the estimators of a distribution? What is the best Bayesian
prior? What is the correct way to parameterize a model? All of which are challeng-
ing questions in practice. A tool that can address these problems is the information
geometry developed by Amari and Nagaoka [3]. By linking probability distributions
to differential geometry one can get a better intuition of statistical models and tests.
For example, Choi and Mullhaupt [12] investigate the linear time series model on
Kähler manifold and construct a Bayesian prior superior than the traditional Jeffers

Quantitative Data Analysis in Finance 749

prior. Further researches in different financial econometrics can potentially improve
the current models and statistic tests.

6.2 Combination of Machine Learning, Game Theory
and Statistics

Markowitz portfolio theory is insightful; but it is clearly not the best strategy that an
investor can choose. Given a prediction model and a certain investment period, the
theoretical best strategy is provided by dynamic programming, which is numerically
unachievable in finance. Machine learning theory provides feasible algorithms that
can approximate a dynamic programming strategy. Techniques such as deep learn-
ing achieved significant success in different areas such as Chess and Go recently.
However unlike the board games, financial market exhibits strong uncertainty; and
the information available to each participant is incomplete. Thus machine-learning
theory based on modern statistics is necessary for decision making in finance. The
on-line portfolio strategies introduced in Sect. 5.2 are just simple examples of the
theory. These strategies do not consider stylized facts like mean-reverting of the
market, and ignore the transaction costs which are crucial in high frequency trading.
Utilizing additional information and signals from the market is an open topic in this
area, Li and Hoi [34].

In addition high frequency industry is highly competitive. Buying and selling
assets in a short amount of time is approximately a zero-sum game, i.e. someones
gain leads to someones loss. Even for the low frequency investors the high frequency
traders introduce higher transaction costs that can affect on the long-term profit.
Thus an investor may consider opponents actions and the impact of his strategy to
the market before executing his strategy. Thus game theory may provide a deeper
insight to the high frequency trading than the dynamic programming of a certain
utility function.

6.3 Efficient Algorithms in Linear Algebra and Convex
Optimization

Linear algebra and convex optimization are the footstones for modern data analysis
and financial engineering. Any quantitative model in finance would not be practi-
cal without basic tools in linear algebra and optimization, such as matrix inversion,
SVD, Cholesky decomposition, QR decomposition, eigenvalue problem, linear and
quadratic programming.Whilemost classical algorithms in linear algebra and convex
optimizationwerewell developed in the last century, the need of faster andmore accu-
rate algorithms keeps increasing as new technologies and new applications appear.
First, a number of matrices in financial applications are sparse or structured. Thus

750 X. Shi et al.

Fig. 8 Inverted pyramid structure of quantitative data analysis in finance

algorithms specificity designed for these matrices can be more efficient than these
standard approaches. Second of all, the novel heterogeneous platforms including
GPU and MIC [60] has further escalated the computational complexities, although
they have improved the computing performance.

7 Conclusion

In this chapter we review the big data concept in quantitative finance. By considering
high frequency data as an example, we introduce the basic data cleaning and aggre-
gation approaches, quantitative modeling, portfolio allocation and strategies, which
are summarized by Fig. 8.

The inverted pyramid structure illustrated the change of data size after each step.
The three topics are also related to the 3V’s in Big Data. First of all, raw data is volu-
minous. Processing and cleaning them requires efficient I/O, ranking and searching
techniques. Second, we briefly introduce the typical econometric models but there
exist a variety of quantitative models with different degrees of complexity. Different
matrix operating and optimization algorithms are needed to deal with different types
of the models. Finally, the velocity of model estimation and portfolio allocation is
equally important for algorithm trading firms. Even milliseconds difference in speed
couldmake a huge difference for some high frequency investors. However the frame-
work in Fig. 8 is just a coarse summarization of the world of quantitative finance.
More researches in market microstructure would be launched in the near future, as
more types of data get involved. Appearance of the next Black Scholes theory is just
a matter of time.

Quantitative Data Analysis in Finance 751

References

1. I. Aldridge,High-Frequency Trading: A Practical Guide to Algorithmic Strategies and Trading
Systems (Wiley, Hoboken, 2009)

2. I. Aldridge, Trends: all financewill soon be big data finance (2015). http://www.huffingtonpost.
com/irene-aldridge/trends-all-finance-will-s_b_6613138.html

3. S.-I. Amari, H. Nagaoka,Methods of Information Geometry (American Mathematical Society,
Providence, 2007)

4. T.G.Andersen, T.Bollerslev, Intraday periodicity and volatility persistence in financialmarkets.
J. Empir. Financ. 4(2), 115–158 (1997)

5. T.G. Andersen, T. Bollerslev et al., Intraday and interday volatility in the Japanese stockmarket.
J. Int. Financ. Mark. Inst. Money 10(2), 107–130 (2000)

6. A. Beck, Y.S.A. Kim et al., Empirical analysis of ARMA-GARCH models in market risk
estimation on high-frequency US data. Stud. Nonlinear Dyn. Econom. 17(2), 167–177 (2013)

7. F. Black,M. Scholes, The pricing of options and corporate liabilities. J. Polit. Econ. 81, 637–654
(1973)

8. T. Bollerslev, Generalized autoregressive conditional heteroskedasticity. J. Econom. 31(3),
307–327 (1986)

9. C.T. Brownlees, G.M. Gallo, Financial econometric analysis at ultra-high frequency: data
handling concerns. Comput. Stat. Data Anal. 51(4), 2232–2245 (2006)

10. N. Cesa-Bianchi, G. Lugosi, Prediction, Learning, and Games (Cambridge University Press,
Cambridge, 2006)

11. A. Chekhlov, S.P. Uryasev et al., Portfolio optimization with drawdown constraints. Research
report 2000-5. Available at SSRN http://dx.doi.org/10.2139/ssrn.223323 (2000)

12. J. Choi, A.P. Mullhaupt, Geometric shrinkage priors for Khlerian signal filters. Entropy 17(3),
1347–1357 (2015)

13. T.M. Cover, Universal portfolios. Math. Financ. 1(1), 1–29 (1991)
14. T.M. Cover, E. Ordentlich, Universal portfolios with side information. IEEE Trans. Inform.

Theory 42(2), 348–363 (1996)
15. J.C. Cox, S.A. Ross, The valuation of options for alternative stochastic processes. J. Financ.

Econ. 3(1–2), 145–166 (1976)
16. J.C. Cox, S.A. Ross et al., Option pricing: a simplified approach. J. Financ. Econ. 7(3), 229–263

(1979)
17. D.W. Diamond, R.E. Verrecchia, Constraints on short-selling and asset price adjustment to

private information. J. Financ. Econ. 18(2), 277–311 (1987)
18. X. Dong, New development on market microstructure and macrostructure: patterns of US high

frequency data and a unified factor model framework. Ph.D. Dissertation, State University of
New York at Stony Brook (2013)

19. D. Duffie, Dynamic Asset Pricing Theory (Princeton University Press, Princeton, 2010)
20. A. Dufour, R.F. Engle, Time and the price impact of a trade. J. Financ. 55(6), 2467–2498 (2000)
21. D. Easley, M. O’hara, Time and the process of security price adjustment. J. Financ. 47(2),

577–605 (1992)
22. R.F. Engle, Autoregressive conditional heteroscedasticity with estimates of the variance of

United Kingdom inflation. Econom. J. Econom. Soc. 50, 987–1007 (1982)
23. R.F. Engle, The econometrics of ultra-high-frequency data. Econometrica 68(1), 1–22 (2000)
24. R.F. Engle, S. Manganelli, CAViaR: conditional autoregressive value at risk by regression

quantiles. J. Bus. Econ. Stat. 22(4), 367–381 (2004)
25. R.F. Engle, J.R. Russell, Autoregressive conditional duration: a new model for irregularly

spaced transaction data. Econometrica 66, 1127–1162 (1998)
26. B. Fang, P. Zhang, in Big Data in Finance. Big Data Concepts, Theories, and Applications, ed.

by S. Yu, S. Guo (Springer International Publishing, Cham, 2016), pp. 391–412
27. R. Gençay, M. Dacorogna et al., An Introduction to High-Frequency Finance (Academic Press,

San Diego, 2001)

http://www.huffingtonpost.com/irene-aldridge/trends-all-finance-will-s_b_6613138.html
http://www.huffingtonpost.com/irene-aldridge/trends-all-finance-will-s_b_6613138.html
http://dx.doi.org/10.2139/ssrn.223323

752 X. Shi et al.

28. L. Györfi, I. Vajda, Growth optimal investment with transaction costs. Algorithmic Learning
Theory (Springer, Berlin, 2008)

29. J.M. Harrison, D.M. Kreps, Martingales and arbitrage in multiperiod securities markets. J.
Econ. Theory 20(3), 381–408 (1979)

30. D.P. Helmbold, R.E. Schapire et al., On-line portfolio selection using multiplicative updates.
Math. Financ. 8(4), 325–347 (1998)

31. T. Jia, Algorithms and structures for covariance estimates with application to finance. Ph.D.
Dissertation, State University of New York at Stony Brook (2013)

32. Y.S. Kim, Multivariate tempered stable model with long-range dependence and time-varying
volatility. Front. Appl. Math. Stat. 1, 1 (2015)

33. O. Ledoit, M. Wolf, Improved estimation of the covariance matrix of stock returns with an
application to portfolio selection. J. Empir. Financ. 10(5), 603–621 (2003)

34. B. Li, S.C. Hoi, Online portfolio selection: a survey. ACM Comput. Surv. (CSUR) 46(3), 35
(2014)

35. J. Lintner, The valuation of risk assets and the selection of risky investments in stock portfolios
and capital budgets. Rev. Econ. Stat. 47, 13–37 (1965)

36. C. Liu, D.B. Rubin, The ECME algorithm: a simple extension of EM and ECM with faster
monotone convergence. Biometrika 81(4), 633–648 (1994)

37. H. Markowitz, Portfolio selection. J. Financ. 7(1), 77–91 (1952)
38. S.L. Marple Jr., Digital Spectral Analysis with Applications (Prentice-Hall, Inc, Englewood

Cliffs, 1987)
39. Y. Matsuyama, The alpha-EM algorithm: surrogate likelihood maximization using alpha-

logarithmic information measures. IEEE Trans. Inform. Theory 49(3), 692–706 (2003)
40. A.J. McNeil, R. Frey et al., Quantitative Risk Management: Concepts, Techniques and Tools

(Princeton University Press, Princeton, 2005)
41. X.-L. Meng, D.B. Rubin, Maximum likelihood estimation via the ECM algorithm: a general

framework. Biometrika 80(2), 267–278 (1993)
42. R.C. Merton, Lifetime portfolio selection under uncertainty: the continuous-time case. Rev.

Econ. Stat. 51, 247–257 (1969)
43. A.Meucci, ‘P’Versus ‘Q’: differences and commonalities between the two areas of quantitative

finance. GARP Risk Prof., 47–50 (2011)
44. A.M. Mineo, F. Romito, A method to ‘clean up’ ultra high-frequency data, Vita e pensiero

(2007)
45. A.M. Mineo, F. Romito, Different methods to clean up ultra high-frequency data. Atti della

XLIV Riunione Scientifica della Societa’Italiana di Statistica (2008)
46. J. Mossin, Equilibrium in a capital asset market. Econom.: J. Econom. Soc. 34, 768–783 (1966)
47. A.P. Mullhaupt, K.S. Riedel, Band matrix representation of triangular input balanced form.

IEEE Trans. Autom. Control (1998)
48. R.M. Neal, G.E. Hinton, A view of the EM algorithm that justifies incremental, sparse, and

other variants, Learning in Graphical Models (Springer, New York, 1998), pp. 355–368
49. J. Nocedal, S. Wright, Numerical Optimization (Springer Science and Business Media, New

York, 2006)
50. S.T. Rachev, S. Mittnik et al., Financial Econometrics: From Basics to Advanced Modeling

Techniques (Wiley, New York, 2007)
51. R.T. Rockafellar, S. Uryasev, Optimization of conditional value-at-risk. J. Risk 2, 21–42 (2000)
52. D.B. Rubin, D.T. Thayer, EM algorithms for ML factor analysis. Psychometrika 47(1), 69–76

(1982)
53. J.R. Russell, R. Engle et al., Analysis of high-frequency data. Handb. Financ. Econom. 1,

383–426 (2009)
54. W.F. Sharpe, Capital asset prices: a theory of market equilibrium under conditions of risk. J.

Financ. 19(3), 425–442 (1964)
55. X. Shi, A. Kim, Coherent risk measure and normal mixture distributions with application in

portfolio optimization and risk allocation (2015). Available at SSRNhttp://dx.doi.org/10.2139/
ssrn.2548057

http://dx.doi.org/10.2139/ssrn.2548057
http://dx.doi.org/10.2139/ssrn.2548057

Quantitative Data Analysis in Finance 753

56. W. Sun, S.Z. Rachev et al., Long-range dependence, fractal processes, and intra-daily data,
Handbook on Information Technology in Finance (Springer, New York, 2008), pp. 543–585

57. S. Tomov, R. Nath et al., Dense linear algebra solvers for multicore with GPU accelerators, in
IEEE International Symposium on Parallel and Distributed Processing, Workshops and PhD
Forum (IPDPSW) (IEEE, 2010)

58. J.L. Treynor, Toward a theory ofmarket value of risky assets. Available at SSRN (1961). doi:10.
2139/ssrn.628187

59. Y. Yan, Introduction to TAQ. WRDS Users Conference Presentation (2007)
60. P. Zhang, Y. Gao, Matrix multiplication on high-density multi-GPU architectures: theoretical

and experimental investigations, in High Performance Computing: 30th International Confer-
ence, ISC High Performance 2015, Frankfurt, Germany, 12–16 July 2015, Proceedings, ed. by
M.J. Kunkel, T. Ludwig (Springer International Publishing, Cham, 2015), pp. 17–30

61. P. Zhang, Y. Gao et al., A data-oriented method for scheduling dependent tasks on high-
density multi-GPU systems, in IEEE 17th International Conference on High Performance
Computing and Communications (HPCC), IEEE 7th International Symposium on Cyberspace
Safety and Security (CSS), IEEE 12th International Conference on Embedded Software and
Systems (ICESS) New York, NY, 2015, pp. 694–699

62. P. Zhang, L. Liu et al., A data-driven paradigm for mapping problems. Parallel Comput. 48,
108–124 (2015)

63. P. Zhang, K. Yu et al., QuantCloud: big data infrastructure for quantitative finance on the cloud.
IEEE Trans. Big Data (2016)

http://dx.doi.org/10.2139/ssrn.628187
http://dx.doi.org/10.2139/ssrn.628187

Emerging Cost Effective Big Data
Architectures

K. Ashwin Kumar

Abstract Volume, velocity and variety of data is increasing at an unprecedented
rate. There is a growing consensus that a single system cannot cater to the vari-
ety of workloads and real world datasets. As such, different solutions are being
researched and developed catering for requirements of different applications. For
example, column-stores are optimized specifically for data warehousing applica-
tions, whereas row-stores are better suited for transactional workloads. There are
also hybrid systems for applications that need support for both transactional work-
loads and data analytics. Other varied systems are being designed and built to store
different types of data, such as document data stores for storing XML or JSON docu-
ments, and graph databases for graph-structured or RDF data. Most of these systems
focus on minimization of execution time or performance improvement and often
ignore optimization of overall cost of data management. A more holistic view of
the cost of data management includes energy consumption, and utilization of com-
pute, memory and storage resources which attribute to the cost of data processing
especially in a cloud-based pay-as-you-go environments. In this chapter, we discuss
a new area of emerging Big Data Architectures that aim at minimization of overall
cost of data storage, querying and analysis, while improving performance. We first
provide a motivation for the overall problem, with appropriate related work. We then
discuss the state-of-the-art and provide key case studies of the emerging cost effec-
tive big data architectures that have been recently designed and built with the above
mentioned goals in mind. Finally, we enumerate key future directions and conclude.

1 Introduction

The problem of Big Data deals with the exponential increase in the rates of vol-
ume, velocity and variety of data. In other words, for organizations with big data
projects, data is arriving at an unprecedented speed and volumes, and it has to be
managed in a timely fashion—sometimes in real time. They often find it challenging

K. Ashwin Kumar (B)
Veritas Technologies LLC, Mountain View, CA, USA
e-mail: ashwin.kayyoor@veritas.com

© Springer International Publishing AG 2017
A.Y. Zomaya and S. Sakr (eds.), Handbook of Big Data Technologies,
DOI 10.1007/978-3-319-49340-4_22

755

756 K. Ashwin Kumar

to cope with high-velocity data from internet of things. Also, increasingly, data is
arriving in a myriad of formats, from structured ones like traditional databases to
unstructured formats like text documents, emails, and videos. Merging, managing,
and searching different types of data is one of the challenges associated with big
data projects. There is a growing consensus that a single system cannot cater to the
variety of workloads and real world datasets. As such, different solutions are being
researched and developed catering for requirements of different applications. For
example, column-stores [34, 57] are optimized specifically for data warehousing
applications, whereas row-stores are better suited for transactional workloads. There
are also hybrid systems [24] for applications that need support for both transactional
workloads and data analytics. Other varied systems are being designed and built to
store different types of data, such as document data stores for storing XML or JSON
documents [10], and graph databases for graph-structured or RDF data.

To handle the increasing volumes of data, two solutions are commonly considered.
One approach is to use a sufficiently powerful machine that can handle the workload
(called the scale-up approach), whereas the other approach is to use a cluster of
commodity machines to parallelize the compute tasks (scale-out approach). The
scale-up approach is attractive because it is significantly easier to code for, whereas
the scale-out approach requires one to deal with the distributed nature of computation
aswell as complexities involved in guaranteeingdistributed fault-tolerance.However,
the scale-up approach is limited in its ability to scale to large volumes of data,
and also is typically more expensive. There has been much work on the scale-out
approach over the last decade – several high-level programming frameworks and
abstractions have been proposed, and numerous systems have been developed for
supporting those frameworks over a large number of machines. Popular among these
areMapReduce paradigm [12] introduced by Google that makes use of large number
of cheap commodity machines to arbitrarily scale the humongous amounts of data.
Since, MapReduce is not optimized for iterative algorithms, Spark [69] has been
introduced that is specifically optimized for distributed machine learning algorithms
(mostly iterative) offers performance up to 10 times faster than previous generation
systems like Hadoop MapReduce. On the other hand, to handle and process high-
speed streams of data, distributed real-time computation systems such as Storm [60],
Apache Samza [49] and Apache Flink [15] has been developed for processing fast,
large streams of data. In databases world, variety of database systems (both SQL and
NoSQL) [25, 33, 34, 56] have been proposed to process different types of Big Data
workloads.

Majority of the systems today focus on minimization of execution time and often
ignore optimization of overall cost of data management. Similar to the performance
that has been central to systems evaluation, energy-efficiency (e.g., completed tasks
per unit of energy, or Queries per Joule) is quickly growing in importance for
minimizing overall IT costs [62]. A more holistic view of the data management
cost includes energy consumption, and utilization of compute, memory and storage
resources which attribute to the cost of data processing especially in a cloud-based
pay-as-you-go environments.

Emerging Cost Effective Big Data Architectures 757

Energy Efficiency: Fundamentally, energy can be defined as the capacity or power
to do work, such as the capacity to move an object of a given mass by the application
of force. Energy can exist in a variety of forms, such as electrical, mechanical,
chemical, thermal, or nuclear, and can be transformed from one form to another.
Energy efficiency (EE) can be defined as the ratio of performance to power, in other
words, it is the ratio of useful work done to the energy used [62]:

EE = Performance

Power
= Work

Power × Time
= Work

Energy
(1)

To understand the importance of thismetric,we need to understand the seriousness
of the problem resulting from ignoring this metric. Data centers are the backbone of
the modern economy – from the server rooms that power small- to medium-sized
organizations to the enterprise data centers that support American corporations and
the server farms that run cloud computing services hosted by Amazon, Facebook,
Google, and others. However, the explosion of digital content, big data, e-commerce,
and Internet traffic is also making data centers one of the fastest-growing consumers
of electricity in developed countries, and one of the key drivers in the construction
of new power plants.

According to a report [4] on data center energy efficiency from the Natural
Resources Defense Council (NRDC), an environmental action organization, “in
2013, U.S. data centers consumed an estimated 91 billion kilowatt-hours of electric-
ity, equivalent to the annual output of 34 large (500-MW) coal-fired power plants.
Data center electricity consumption is projected to increase to roughly 140 billion
kilowatt-hours annually by 2020, the equivalent annual output of 50 power plants,
costing American businesses $13 billion annually in electricity bills and emitting
nearly 100 million metric tons of carbon pollution per year”. Hence, it is critical
to save energy by reducing the amount of electricity consumed while increasing the
amount of work done within a given time.

There are three key ways to handle the problem of energy consumption, (1)
hardware-based, (2) software-based and (3) infrastructural-based. Lets understand
each of them:
Hardware-based: One way of tackling the problem of reducing the overall energy
consumption in the data centers is by employing more energy efficient hardware
solutions. Initial solutions included CPUs with dynamic voltage and frequency
settings [43] where processors automatically switch to lower power states when
idle. Recently there have been surge in the manufacturing of energy efficient hard-
ware solutions. More comprehensively, today industries are manufacturing compute
servers that are ENERGY STAR [14] certified. According to the EPA, computer
servers that earn the ENERGY STAR designation will, on average, be 30% more
energy efficient than standard servers. The agency also predicts that if all servers
sold in the United States were to meet ENERGY STAR specifications, energy cost
savings would approach $800million per year and prevent greenhouse gas emissions
equivalent to those from over one million vehicles. On the other hand, because of

758 K. Ashwin Kumar

heterogeneity in the hardware choices, choosing a right variety of hardware for a par-
ticular problem can be critical in achieving best energy efficiency. Malik et al. [42]
analyze the measurements of performance and power of Big Data applications on
two state-of-the-art server platforms, one with IntelTM Xeon; Big cores and the other
with IntelTMAtom; Little cores. They conclude that that low power embedded core
is noticeably more efficient for big data processing across various data sizes. There
have been similar studies that make the case for choice of low power embedded cores
to improve the energy efficiency of traditional server applications [5, 19, 46]. Sim-
ilarly, on the storage front, for read-only workloads SSDs are significantly energy
efficient than HDDs, for write intensive workloads its vice versa [52].
Software-based: As the hardware choices increase, improved algorithms are needed
to make judicious use of underlying hardware to achieve overall energy efficiency.
In general, there are three categories of solutions in this area, (a) Algorithms that
take advantage of dynamic speed scaling in variable-speed processors. It is common
for modern microprocessors to run at variable speed. High speeds result in higher
performance but also high energy consumption. Lower speeds save energy but per-
formance degrades. Albers et al. [3] study the problem of scheduling a set of jobs,
each specified by a release time, a deadline and a processing volume, on variable
speed processors so as to minimize the total energy consumption. (b) power-down
mechanisms that conserve energy by shutting down under-utilized server nodes, or
transitioning a device into low-power standby or sleep modes. Khuller et al. [26] dis-
cuss an algorithm to schedule collection of jobs on set of unrelated machines with a
need to decide which subset of machines to activate, while other machines are either
shutdown or in low-power standby. Objective is to assign all jobs to machines such
that the time when all jobs are complete is minimized. (c) Interestingly, designing
algorithms for performance may not be same as designing algorithms for energy
efficiency. So, third category consists of optimization algorithms that trade perfor-
mance with energy. Xu et al. finds opportunity to trade power to performance in
current DBMSs and proposes a power aware query optimizer to enable power con-
servation [66–68]. On the other hand, similar to Xu et al., Lang et al. [35] present a
new design for query optimizer that can pick an “energy-enhanced” query plan that
also meets any existing response time targets (service level agreements).
Infrastructural: Apart from hardware and software choices, infrastructural choices
can also play a key role in improving energy efficiency. One of the dominant costs
for data center energy consumption is related to data center cooling. More precisely,
cooling consumes 37% of electricity usage. Industries currently employ different
strategies for increasing data center cooling efficiency such as, bringing cooling
closer to the source of heat essentially reducing the energy required for airmovement,
placing data centers in the relatively cooler locations, employing cutting edge cooling
infrastructures such as variable capacity systems and improved controls.

In this chapter, we will focus mainly on software approaches to cost effective Big
Data architectures. We will use the terms “cost effectiveness” and “energy efficiency”
interchangeably as appropriate.

Emerging Cost Effective Big Data Architectures 759

2 Emerging Solutions for Big Data

Issues in energy-efficient computing are being increasingly studied at all layers in
today’s computing infrastructures. Harizopoulos et al. [62] reported the first results
on software-level optimizations to achieve better energy efficiency; they experiment
with a system that was configured similarly to an audited TPC-H server and show
that making the right physical design decisions can improve energy efficiency. Addi-
tionally, they use relational scan operator as a basis to demonstrate that optimizing
for performance is different from optimizing for energy efficiency. It is also among
the first papers [18, 36, 62] to practically show the importance of energy efficiency
in database systems. Graefe [20] also points out various research challenges and
promising approaches in energy-efficient database management. In his paper he indi-
cates various promising approaches and techniques to achieve energy efficiency in
database systems. He discusses two approaches in this context: processor frequency
control and explicit delays.

Overall, in order to minimize the cost of Big Data systems, energy efficiency has
to be studied in two key cases, single-node energy efficiency and multi-node energy
efficiency. In the case of single-node data systems, objective of maximizing perfor-
mance and energy efficiency go hand in handwhere increasing the performance often
improves the energy efficiency as well. Tsirogiannis et al. [62] analyze the energy
efficiency of a single-node database server, and argue that the most energy efficient
configuration is typically the highest performing one. However, this assertion is valid
only for single node database server, and does not hold for scale-out architectures
involvingmultiplemachineswhere parallelization, communication, and startup over-
heads come into play.

On the other hand, because of the complexity involved in the scale-out archi-
tectures, most straightforward and common way of improving energy efficiency or
reducing the overall cost is to power down the under utilized machines in a scale-out
cluster. Leverich et al. [38] and Lang et al. [37] suggest approaches to conserving
energy by powering down Hadoop cluster nodes during periods of low load, and
observe that the default replica placement policy is highly inefficient in this regard.
In particular, they observe that powering down any three nodes is likely to lead to
some data being unavailable, and instead suggest a replication policy such that a
small set of cluster nodes cover (contain) at least one replica of each data item. Lang
et al. [37] suggest and evaluate an alternative approach where all cluster nodes are
powered up (to answer queries), and powered down at the same time, and show that
their approach leads to better energy utilization.

In this section, we will study three emerging directions for cost effective Big Data
architectures with relatively detailed example systems.

760 K. Ashwin Kumar

2.1 Workload-Aware Solutions

As the cloud computing industry is maturing, the workloads are becoming stable
and somewhat predictable, opening up the possibility of monitoring, capturing, and
exploiting workload information to optimize for resource consumption, energy effi-
ciency (or other metrics of interest). Such workload-aware approaches have been
shown to be highly successful inmakingmany types of systemdesign decisions in the
past work [7]. Recently, Sharov et al. [53] developed a workload-aware optimization
framework that dynamically and automatically determines the optimal configuration
for leader and quorum based distributed storage systems. Goal of this system was to
minimize the overall latency of running jobs and not cost. In the context of cost effec-
tive execution ofBigData analytics in a geo-distributed data setup,Vulimiri et al. [63]
have proposed a system that can judiciously orchestrate distributed query execution
and adjusting data replication across data centers in order to minimize bandwidth
usage and reduce overall data transfer costs. On the other hand, Wu et al. [65]
propose a novel system SPANStore, which is essentially a cost-effective geo-
replicated storage spanning multiple cloud services such as Amazon, Microsoft and
Google’s cloud services. By understanding the given workload and by exploiting
the pricing discrepancies across providers, SPANStore minimizes the overall cost
(in terms of price). It also provides an automated way to trade cost with latency by
judiciously determining replication policies based on workload properties, and by
minimizing the use of compute resources.

Case Study: Minimizing Average Job Span
In this case study,wewill discuss theworkload-aware approach ofminimizing overall
cost of Big Data (typically scale-out based) analytics which involves minimizing
overall resource consumption while improving performance. To begin with let us
take a look at an example of resource inefficiency in scale-out architectures. Consider
a job that takes 100 s to execute on a single machine and consumes 100 J of energy.
Now consider a situation where the data corresponding to the same job is spread
equally on to two machines and job is allowed to execute parallelly on these two
machines.

Ideally, this job should finish its execution in exactly half of the time (i.e., 50 s)
on each machine and should consume 50 J energy on each machine. But in practice
as a result of several overheads and process startup costs the job executes in >50 s
time and consumes >50 J of energy on each machine. In summary, a job executing
on multiple machines can consume more energy when compared to the same job
executing on relatively fewer number of machines. In other words, in the absence
of super-linear speedups, more the number of machines a job or a job touches,
more energy it consumes. In order to minimize resource consumption of given job,
we should minimize the number of machines required for a job for its execution.
Also, it can be observed that, for fault tolerance, load balancing, and availability,
scale-out based Big Data systems typically maintain several copies of each data
item (e.g., Hadoop file system (HDFS) maintains at least 3 copies of each data item

Emerging Cost Effective Big Data Architectures 761

by default [64]), and this inherent replication can be exploited to achieve higher
colocation by judicious replica creation and placement.

Job Span: A key metric to optimizeFor a given jobor analysis task, its span is defined
to be the minimum number of machines that contain the data needed to execute that
job or task. Best case is when the data required by a job fits in the memory of a single
machine, then a job can be executed on a singlemachine as efficiently as possible (job
span = 1). This results in the highest resource efficiency of the underlying system.
Minimizing job span has significant advantages that make it an important metric for
which to optimize.
• Minimize the communication overhead: job span directly impacts the total com-
munication that must be performed to execute a job. This is clearly a concern in dis-
tributed setups (e.g., grid systems [58] or multi-datacenter deployments); however
even within a datacenter, communication network is oversubscribed, and especially
cross-rack communication bandwidth can be a bottleneck [11, 22]. In cloud com-
puting, the total communication directly impacts the total dollar cost of executing a
job.
•Minimize the total amount of resources consumed: It is well-known that parallelism
comes with significant startup and coordination overheads, and we typically see sub-
linear speedups as a result of these overheads and data skew [44]. Although the
response time of a job usually decreases in a parallel setting, the total amount of
resources consumed typically increaseswith increased parallelism. Even in scenarios
where we obtain super-linear speedups due to higher aggregate memory across the
machines, we expect the total resource consumption to increase with the degree of
parallelism.
•Reduce the energy footprint:Computing equipment inUScosts datacenter operators
millions of dollars annually for energy, and also impacts the environment. Energy
costs are ever increasing and hardware costs are decreasing – as a result soon the
energy costs to operate and cool a datacenter may exceed the cost of the hardware
itself. Minimizing the total amount of resources consumed directly reduces the total
energy consumption of a task.

In scale-out settings, an effective way to minimize the job span is to co-locate the
data items required by the queries on fewer machines. With colocation, data items
needed for a particular job or a job can be found in lesser number of machines, con-
suming lesser resources often also improving execution times. In order to perform
data colocation certain information about data access patterns is required. For exam-
ple, if we know that the data items d1 and d2 are being frequently accessed by the
queries, then these data items can be colocated and placed in single partition. In other
words, we want to understand the history of data access and partition the data items
such that frequently co-accessed data items are placed together and when queries
access these data items then job span is minimized. Figure1 gives the detailed picto-
rial example where it shows that workload-aware smart partitioning and replication
minimizes overall job span.
Problem definitionWe are given a set of data itemsD and their sizes – the data items
may be files, database relations, vertical or horizontal partitions of database relations,

762 K. Ashwin Kumar

Fig. 1 This figure depicts an overall idea of workload-aware data partitioning and replication to
minimize job spans using an example

or tuples. We are also given a set of partitions with associated storage capacities, and
an expected job workload in the form of a set of queries over the data items. The
queries may be read-only queries, or update transactions. Our goal is to decide which
data items to replicate and how to place them on to the partitions so as to minimize
the averageshould job span for the queries in the workload. In addition, we may be
given a constraint that specifies how much each item should be minimally replicated
for fault tolerance and availability.
Modeling workload history Intuitive way to capture or represent a job workload
is using hypergraph, H = (V,E), where the nodes are the data items and each
(hyper)edge e ∈ E corresponds to a job in the workload. Each hyperedge is associ-
ated with an edge weight we, which represents the frequency of such queries in the
workload. Each vertex v ∈ V is associated with a weightwv representing either data
size or access frequency or a combination of both providing balancing in terms of
size and load on each partition. In Fig. 1, block explaining “workload modelling”
shows the recording and managing of workload history in terms of list of jobs and
data items they have accessed for their execution, then modeling workload history
in the form of hypergraph.
Calculating span When there is no replication, calculating the span of a job is
straightforward since each data item is associated with a single partition. However, if
there is replication, the problem becomes NP-Hard in general. In the simplest case,
for read-only queries with strongly consistent replicas (i.e., if all replicas of a data
item are kept up-to-date when it is updated), it is identical to the minimum set cover
problem [16] – where we are given a collection of subsets of a set (in our case, the

Emerging Cost Effective Big Data Architectures 763

partitions) and a job subset, and we are asked to find the minimum number of subsets
(partitions) required to cover the job subset.
Hypergraph partitioning Without replication, the problem we defined above is
essentially the k-way (balanced) hypergraph partitioning problem that has been very
well-studied in the literature. However, the optimization goal of minimizing the aver-
age span is unique to this setting; prior work has typically studied how to minimize
the number of cut hyperedges instead.
Finding dense subgraphs of a specified size Given a set of nodes S in a graph,
the density of the subgraph induced by S is defined to be the ratio of the number
of edges in the induced subgraph and |S|. The dense subgraph problem is to find
the densest subgraph of a given size. To understand the connection to the dense
subgraph problem, consider a scenario where we have exactly one “extra” partition
for replicating the data items (i.e., Ne = N − 1). Further, assume that each job refers
to exactly two data items, i.e., the hypergraphH is just a graph. One approach would
then be to first partition the data items into N − 1 partitions without replication, and
then try to use this extra partition optimally. To do this, we can construct a residual
graph, which contains all edges that were cut in this partitioning. The spans of the
queries corresponding to these edges is exactly 2. Now, we find the subgraph of
size C such that the number of induced edges (among the nodes of the subgraph)
is maximized, and we place these data items on the extra partition. The spans of
the queries corresponding to these edges are reduced from 2 to 1, and hence this
is an optimal way to utilize the extra partition. We can generalize this intuition to
hypergraphs and this forms the basis of one of our algorithms. Unfortunately, the
problem of finding the most dense subgraph of a specified size is NP-Hard (with no
good worst case approximation guarantees), so we have to resort to heuristics. One
such heuristic that we adapt in our work is as follows: recursively remove the lowest
degree node from the residual graph (and all its incident edges) till the size of the
residual graph is exactly C. This heuristic has been analysed by Asahiro et al. [9]
whofind that this simple greedy algorithm can solve this problemwith approximation
ratio of approximately 2(|V |

C − 1) (when C ≤ |V |/3).
Smart data placement and replication algorithms Kumar et al. [29, 31] present
several algorithms for data placement with replication, with the goal to minimize
the average job span. Homogenous scale-out setup is assumed where each machine
or a partition has capacity C units. These algorithms are based on existing standard
hypergraph partitioning algorithms (denoted HPA) and focus on data placement and
smart replication of data items appropriately to reduce the average job span. An
HPA algorithm typically tries to find a balanced partitioning (i.e., all partitions are of
approximately equal size) that minimizes some optimization goal. Usually, allowing
for unbalanced partitions results in better partitioning.

One such algorithm for data placement and replication tominimize the average job
spans is known as local move based replication (LMBR) algorithm. In this algorithm
key idea is to identify small groups of data items that can copied from one partition to
another such that we maximize the overall benefit, which is essentially minimization
of job span. Algorithm starts with a partitioning returned by HPA. Then algorithm
strategically chooses two partitions at a time, more specifically, at each step, we

764 K. Ashwin Kumar

copy a small group of data items from one partition to another. The decisions are
made greedily by finding the move that results in the highest decrease in the average
job span (“benefit”) per data item copied (“cost”). For this purpose, at all times, a
priority queue is maintained containing the best moves from partitioni to partitionj,
for all i �= j. There are clearly many other variations of these algorithms, some
of which may work better for some inputs, that can be implemented quickly and
efficiently. In practice, taking the best of the solutions produced by running several
of these algorithms would guarantee good data placements. The selection of data
placement algorithm should primarily be based on the requirements of the application
scenario at hand and the granularity of data items. On the other hand, in analytical
workloadswhere the data items are relations or files, LMBRmay bemore appropriate
given it usually results in best colocation. In Fig. 1, blocks explaining “workload-
aware data partitioning” and “smart replication” shows that the modeled hypergraph
can be min-cut partitioned to perform workload-aware partitioning over cluster of
storage nodes such that average job spans can be reduced. Finally, by analyzing the
workload andworkload-aware partitioning of the data, smart replication is performed
to further minimize job spans as well as provide fault-tolerance and data availability.
For example in the shown figure: job span for the job j6 has reduced from 6 to 3 with
workload-aware partitioning and smart replication.

Smart data placement and replication to minimize average job spans of the given
workload can benefit different types of Big Data stores.

1. Distributed analytical data stores: Analytical workloads typically consist of
complex distributed join queries. More the number of machines these queries
touch for their execution worse the query response time gets. With LMBR-
suggested placement (smart data placement and replication) query response
times for complex analytical join queries decrease significantly when executed
on LMBR-suggested placement. This is because of minimization of overheads
caused by distributed analytical processing, e.g., communication overheads in
processing complex joins. Colocation of data items and minimization of query
spans also reduces the energy consumption significantly both because of better
utilization of resources and reduction in distributed overheads.

2. Distributed transactional data stores: On the other hand, consider the problem
of transparently scaling out transactional (OLTP) workloads on relational data-
bases, to support database-as-a-service in cloud computing environment. The
primary challenges in supporting such workloads include choosing how to par-
tition the data across a large number of machines, minimizing the number of
distributed transactions, providing high data availability, and tolerating failures
gracefully. Capturing and modeling the transactional workload over a period of
time, and then exploiting that information for data placement and replication
has been shown to provide significant benefits in performance, both in terms of
transaction latencies and overall throughput. However, suchworkload-aware data
placement approaches can incur very high overheads, and further, may perform
worse than naive approaches if the workload changes. Quamar et al. [45] propose
a scalable workload-aware data partitioning and placement approach for OLTP

Emerging Cost Effective Big Data Architectures 765

workloads, that incorporates a suite of novel techniques to significantly reduce the
overheads incurred both during the initial placement, and during query execution
at runtime. Query workload is modelled as a hypergraph over the data items, and
propose using a hypergraph compression technique to reduce the overheads of
partitioning. To deal with workload changes, an incremental data repartitioning
technique is proposed that modifies data placement in small steps without resort-
ing to complete workload repartitioning. A workload-aware active replication
mechanism is employed to increase availability and enable load balancing. The
use of fine-grained quorums is defined at the level of groups of tuples to control
the cost of distributed updates, improve throughput, and provide adaptability to
differentworkloads.Overall, in the case of transactional databaseworkloads it has
been shown that workload-aware data partitioning and replication can improve
the transactional throughput significantly by reducing the the number of distrib-
uted transactions.

3. Distributed information retrieval systems: Most prior research on web infor-
mation retrieval assumes that documents are already assigned to physical par-
titions [6, 8, 55, 59]. Simplest way of assigning documents to partitions is to
distribute these documents randomly across the partitions. Query is sent to all
the partitions to retrieve the documents of interest. This approach of distributed
exhaustive search increases the query cost significantly [27]. There have been
few other studies that have looked into partitioning of a document collection into
topical clusters. These studies have shown that search efficiency can be further
increased by document cluster selection, that is, by querying a small number of
promising document clusters for each query. Kulkarni et al. [27] present the topic-
based clustering and partitioning of documents into distributed index or document
clusters and show that this approach reduces the search cost significantly when
compared to the exhaustive search with no loss of accuracy, on average.

To summarize, workloads will ultimately dictate the resource requirements and
performance demands. In order to minimize the overall cost of Big Data analytics,
there is a pressing need for Big Data systems to employ workload-aware techniques
to optimize dual objectives such as improving performance as well as minimizing the
resources consumed. Efforts have already begin in this direction (cost effectiveness),
but further impetus is required from larger open source and commercial software
community to make cost effectiveness or energy efficiency to be the key metric to
optimize for emerging Big Data systems.

2.2 Scaling-Down Big Data Systems

In the era of Big Data, it has become norm to throw more and more hardware
resources in order to solve Big Data problems. Big Data systems today are designed
in a way that they can scale linearly with increasing number of machines and appli-
cation needs. Often, over provisioning or under utilization of the already provisioned

766 K. Ashwin Kumar

servers/machines can lead to massive energy in-efficiencies, increasing the overall
cost of data processing. One way to improve the overall energy efficiency is through
consolidation of workloads in fewer number of machines, so that all the available
machines are fully utilized. Underlying system achieves highest energy efficiency
when the data required by a jobfits in singlemachine’smemory and the job canbe exe-
cuted on a single machine as fast as possible. In similar essence, Gharaibeh et al. [17]
demonstrated that graph processing on single machine using GPUs and CPUs can
be more energy efficient than scale-out solutions. More specifically, they show that
GPU-acceleration improves both time-to-solution as well as energy consumption for
large-scale graph processing, and that this improvement scales when increasing the
graph size and adding more GPUs. Further, even within single machine, although
the GPUs have one order of magnitude less memory, a hybrid (one CPU and one
GPU) system can be more power efficient than a dual-CPU symmetric one.

Scaled-down or single machine solutions, in addition to being cost effective,
they often outperform scale-out solutions by eliminating unnecessary distributed
overheads. GraphChi [32] is one such popular example of scaled-down Big Data
system of GraphLab. GraphChi essentially is a disk-based system for computing
efficiently on graphs with billions of edges. By using a well-known method to break
large graphs into small parts, and a novel parallel sliding windowsmethod, GraphChi
is able to execute several advanced data mining, graph mining, and machine learning
algorithms on very large graphs, using just a single consumer-level computer. Hence,
because it is extremely efficient and scales well even on single machine, GraphChi
can be cost effective than its scale-out counterparts such as Spark,Hadoop,GraphLab.
Cost effectiveness of GraphChi can be deduced from Table 2 in [32] by taking into
account the amount of resources consumed and execution time by GraphChi when
compared to its other scale-out counterparts.

Also, the assumption behind current Big Data systems and the need for distributed
processing is that the data to be analyzed cannot be held in memory on a single
machine. Today, this assumption needs to be re-evaluated. Although it is true that
petabyte-scale datastores are becoming increasingly common, it is unclear whether
datasets used in “typical” analytics tasks today are really too large to fit in memory
on a single server. Of course, organizations such as Yahoo, Facebook, and Twitter
routinely run Pig or Hive jobs that scan terabytes of log data, but these organizations
should be considered outliers—they are not representative of data analytics in most
enterprise or academic settings. Even still, according to the analysis of Rowstron
et al. [48], at least two analytics production clusters (at Microsoft and Yahoo) have
median job input sizes under 14 GB and 90% of jobs on a Facebook cluster have
input sizes under 100 GB. Holding all data in memory does not seem too far-fetched.

There is one additional issue to consider: over the past several years, the sophisti-
cation of data analytics has grown substantially. Whereas yesterday the community
was focused on relatively simple tasks such as natural joins and aggregations, there is
an increasing trend toward data mining and machine learning. These algorithms usu-
ally operate on more refined, and hence, smaller datasets—typically in the range of
tens of gigabytes. These factors suggest that it is worthwhile to consider in-memory
data analytics on modern servers—but it still leaves open the question of how we

Emerging Cost Effective Big Data Architectures 767

orchestrate computations on multi-core, shared-memory machines. Should we go
back to multi-threaded programming? That seems like a step backwards because we
embraced the simplicity of currentBigData programmingparadigms such asMapRe-
duce for good reason—the complexity of concurrent programming with threads is
well known. There is a need to scale downBigData systems to run on shared-memory
machines for small tomedium sized datasets to improve energy efficiency and reduce
the overall cost of analytics.

Case Study: Scaling-Down Hadoop on Shared Memory Systems
In this case study, we will understand about a new system called HONE [30] that
attempts to scale down Hadoop on to shared memory systems. We begin by dis-
cussing why Hadoop does not perform well on a single machine. To take advantage
of multi-core architectures, Hadoop provides pseudo-distributed mode (PDM hence-
forth), in which all daemon processes run on a single machine (on multiple cores).
This serves as a natural point of comparison, and we identify several disadvantages
of running Hadoop PDM. (1)Multi-process overhead: In PDM, mapper and reducer
tasks occupy separate JVM processes. In general, multi-process applications suffer
from interprocess communication (IPC) overhead and are typically less efficient than
an equivalentmulti-threaded implementation that runs in a single process space.break
(2) I/O overhead: Another disadvantage of Hadoop PDM is the overhead associated
with reading from and writing to HDFS. Disk I/O operations using HDFS can be
extremely expensive [13, 41] when compared to direct disk access. In Hadoop PDM,
mappers read from HDFS and reducers write to HDFS, even though the system is
running on a single machine. Thus, Hadoop PDM suffers from these HDFS per-
formance issues. (3) Framework overhead: Hadoop is designed for high-throughput
processing of massive amounts of data on potentially very large clusters. In this con-
text, startup costs are amortized over long-running jobs and thus do not have a large
impact on overall performance. Hadoop PDM inherits this design, and in the context
of a single machine running on modest input data sizes, job startup costs become a
substantial portion of overall execution time.

HONEattempts to beHadoopAPI compatible, so that one can run existingHadoop
jobs on HONE without modification. We describe the Hone system architecture:
Map stage: Analogous to Hadoop, this stage applies the map function on the input
dataset to emit intermediate (key, value) pairs. Each mapper is handled by a separate
thread, which consumes the supplied InputSplit and processes input records accord-
ing to the user-specified InputFormat. As with Hadoop, the total number of mappers
is determined by the number of input splits. This stage uses a standard thread-pooling
technique to control the number of parallel mapper tasks. Mappers in Hone accept
input either from disk or from a ‘namespace’ residing in memory (more below).
Sort stage: Hone sorts intermediate (key, value) pairs emitted by the mappers per the
standard contract defined by the MapReduce model. Sorting is handled by a separate
thread pool with a builtin load balancer. If the sort streams grow too large then an
automatic splitter determines the optimal split size, efficiently splits the streams on
the fly, and performs parallel sorting on the split streams. This splitting information

768 K. Ashwin Kumar

is passed on to the reduce stage so that proper stream assignment is performed on
the reducers. One can also specify the stream split size in the configuration.
Reduce stage: A reducer in Hone applies a reduce function on intermediate (key,
value) pairs emitted by mappers. Depending on how mappers interact with reducers
as discussed below, reducers may have to apply the partitioning function on the key
to gather the appropriate (key, value) pairs. A reducer either writes output to disk or
it can store output in memory for further iterative processing.
MapReduce interaction module: Running MapReduce on multicore shared mem-
orymachines creates interesting possibilities in the waymappers interact with reduc-
ers. For example, one option is that each mapper emits intermediate (key, value)
pairs in a corresponding output stream, and each reducer iterates through the stream
corresponding to eachmapper and ingests (key, value) pairs as determined by the par-
titioner. In another possibility, each mapper emits intermediate pairs into r (number
of reducers) streams by applying the partitioner to every emitted (key, value) pair. In
this case, each reducer only needs to access a single stream. Hone provides a flexible
way of controlling these interactions through a user-specified option, by providing
three different MapReduce interaction models: pull-based, push-based and hybrid.
In the pull-based approach, each mapper emits keys into r streams, where r is the
number of reducers. Each mapper applies the partitioning function to assign (key,
value) pairs to one of the r corresponding streams. If m is the total number of map-
pers then there will be a total of m × r intermediate streams. In the sort stage, these
m × r intermediate streams are sorted in parallel. In the reduce stage, each reducer
thread “pulls” the appropriate (key, value) pairs from the appropriate r streams. In
the push-based approach, there are only r intermediate streams, each corresponding
to a reducer. Each mapper emits intermediate (key, value) pairs directly into these
r streams (as determined by the partitioner)—in this way, the (key, value) pairs are
“pushed” to the reducers. Because the r streams in this case are being updated by
m mappers in parallel, the streams must be synchronized. In the hybrid approach, k
(1 < k < m) streams are maintained for each reducer and (key, value) pairs emitted
by mappers for a particular reducer are distributed among the streams corresponding
to that reducer.
Namespace manager: This module manages memory assignment to enable data
reading and writing for MapReduce jobs. It converts filesystem paths that are spec-
ified in the standard Hadoop API into an abstraction we call a ‘namespace’: output
is directed to an appropriate namespace that resides in memory, and, similarly, input
records are directly consumed from memory as appropriate.

Kumar et al. [30] demonstrated that HONE can be significantly faster than scaled-
out Hadoop for small to medium sized datasets. As others have suggested, we need to
re-think scale-out versus scale-up architectures as the amount of cores and memory
on high-end commodity servers continues to increase. There is no doubt that the total
amount of data is also growing rapidly, but it is unclear if the datasets used in typical
analytical tasks today are increasing as fast. The crux of the scale-out versus scale-
up debate hinges on these relative rates of growth: server capacities are (roughly)

Emerging Cost Effective Big Data Architectures 769

growing with Moore’s Law, which should continue for at least another decade. If
dataset sizes are growing at a slower rate, then scale-up architectures will become
increasingly attractive.

Ultimately, the datacenter is likely to consist of a mix of scale-out and scale-up
systems—we will continue to run large, primarily disk-based jobs to scan petabytes
of raw log data to extract interesting features, but this work explores the interesting
possibility of switching over to a multi-core, shared-memory system for efficient
execution on more refined datasets. With the systems such as HONE, this can all be
accomplished without leaving the comforts of Big Data frameworks or paradigms
such as MapReduce: we simply select the most appropriate execution environment
based on dataset size and other characteristics of the workload. This brings us to the
biggest limitation of our current work and the subject of ongoing research—how to
a priori determine the best configuration parameters for scaled-down version of Big
Data systems in terms of the thread pool sizes etc. In the future, we can imagine an
optimizer that is able to examine a Big Data workload and automatically decide what
job to run where and the optimal parameter settings.

2.3 Approximate Computing

Approximate computing essentially involves computer systems that enables systems
to trade-off accuracy for efficiency. In other words, system exposes incorrectness to
the application layer in order to minimize the resources consumed. In the context of
trading accuracy for energy efficiency, approximation has been applied for hardware
technologies such asmemory. In general, the idea is to trade energy spent on retaining
or accessing data with a very small possibility of data loss in the memory (i.e., bits
will flip in the memory). DRAM structures present one such opportunity, where
power spent on refresh cycles can be reduced by allowed bit flips [40]. Similarly,
SRAM structures represent another opportunity for fidelity trade-offs as they spend
significant static power on retaining data [9, 28, 54]. Also, low-power writes to
memories like flash can exploit its probabilistic properties while hiding them from
software [39, 50, 61].

On the other hand, in the context of software systems, most of the current BigData
systems are meant to process and return the results for terabyte and petabyte amounts
of data on clusters of tens, hundreds, or thousands of machines to support near real-
time decisions. However, it has been widely observed that many applications can
tolerate some degree of inaccuracy. This is especially true for exploratory queries on
data, where users are satisfied with “close-enough” answers if they can be provided
quickly to the end user. Also, it is not uncommon today for applications to tolerate
some degree of inaccuracy. Hence, in order to achieve better cost effectiveness of
todays Big Data systems, it is ideal to process sample of data instead of complete
data to compute and return approximate results to the queries quickly.

770 K. Ashwin Kumar

Case Study: BlinkDB
BlinkDB [1] is a popular Big Data processing framework built on top of Spark.
Given petabytes of data, it creates and maintains a variety of uniform and stratified
samples from underlying data. More specifically, stratified samples are created on
the most frequently used query column sets to ensure efficient execution for queries
on rare values. The term ‘stratified’ essentially means that rare subgroups are over-
represented relative to a uniformly random sample. This ensures that one can answer
queries about any subgroup, regardless of its representation in the underlying data.
Agarwal et al. [1] have formulated the problem of sample creation as an optimization
problem.Given a collection of past query column sets and their historical frequencies,
collection of stratified samples are chosen with total storage costs below some user
configurable storage threshold. These samples are designed to efficiently answer
querieswith the samequery column sets as past queries, and to provide good coverage
for future queries over similar query columns sets.

Once stratified samples are created, BlinkDB returns fast, approximate answers
with error bars by executing queries on samples of data. More specifically, based on
a query’s error/response time constraints, the sample selection module dynamically
picks a sample on which to run the query. It does so by running the query on multiple
smaller sub-samples to quickly estimate query selectivity and choosing the best
sample to satisfy specified response time and error bounds.

Additionally, BlinkDB verifies the correctness of the error bars that it returns at
runtime. In other words, it employs bootstrap-based error estimation techniques and
diagnostics to validate multiple procedures for generating error bars at runtime.With
the diagnostic in place, BlinkDB can answer a range of complex analytic queries on
large samples of data (of gigabytes in size) at interactive speeds (i.e., within a couple
of seconds), while falling back to non-approximate methods to answer queries whose
errors cannot be accurately estimated.

In summary, Big Data systems with approximate computing possess an ability to
trade away accuracy for savings in time and energy. In other words, when inaccuracy
is not an issue, then we can essentially minimize the overall cost of analytics and
improve energy efficiency by retrieving approximate results using sample of data
rather than the whole datasets.

3 Future Directions

3.1 Hybrid Big Data Architectures

Previously, it used to be expensive to scale up computing hardware, so most of the
large-scale systems used cheap commoditymachines. But today scenario is changing
where scaling-up of a single machine has become fairly inexpensive. In coming days,
the data centers ultimately will consist of a mix of scale-out and scale-up systems.
We note that, today most of the systems developed to handle the problem of Big

Emerging Cost Effective Big Data Architectures 771

Data are optimized for scale-out settings. These design decisions often can lead
to under utilization of the available resources. In order to judiciously make use of
cheap processing power of commodity hardware together with large memories of
scaled-up machines, we need systems that can also take advantage of heterogeneity
provided by scale-up systems such as large available memories, advanced storage
and processor/accelerator types. Key motivation for this direction comes from the
fact that data center servers today are notoriously underutilized [47]. Therefore, we
need techniques that can adapt dynamically by profiling jobs and assigning right
type of resource to them to achieve resource’s peak utilization that will maximize
the overall energy efficiency and minimize the overall cost.

One idea in this direction is to develop smart data processing techniques that can
take advantage of both scale-out and scale-up optimized systems. For example in
the scenario of Hadoop, let us say that we have developed a Hadoop compatible
system like HONE that is optimized for scaled-up systems. Also let us say we per-
form a workload-aware data placement and replication in Hadoop. When jobs arrive
at Hadoop then based on job profile at hand, it should be automatically routed to
either scale-up optimized system like HONE or it can be sent to vanilla scale-out
based Hadoop with large number of cheap commodity machines. In summary, in
this age of heterogeneity, each Big Data system should have different version of
itself optimized for variety of workload profiles, hardware choices and platforms.
For particular workload or job profile, appropriate variant (scaled-down version or
scaled-out version) of Big Data system must be chosen to minimize the overall cost
of analytics.

Essentially, question boils down to this, when should a job runwith scale-up rather
than scale-out; and for jobs larger than even the largest scale-up machine, should we
scale them out with a few large machines or with many small ones? The correct
decision depends on job type, job size, job characteristics and pricing and we need
an automated way to predict the best architecture and configuration for a given job.
Essentially, there is a need for predictive mechanism based on input job sizes and
static analysis of the application code. Moreover, the co-existence of scale-up and
scale-out machines in a cluster also complicates the management of the cluster, e.g.
the design of the scheduler [21, 51].

3.2 Multi-tenancy in Cloud Infrastructures

Cloud computing is gaining popularity where in order to reduce operating costs,
multiple businesses or tenants share a common infrastructure owned by a cloud
service provider. In coming days, to improve businesses multiple tenants may also
share data among themselves while sharing common infrastructure.

In a cloud setting, usually, each tenant has different workload requirements and
service level agreements (SLA). Each tenant wants to make profits and also expects
cloud service provider to meet his SLAs. Whereas, cloud service provider’s goal
is to maximize performance for each tenant and minimize the overall cost of their

772 K. Ashwin Kumar

service infrastructure. In other words, cloud service providers objective can be given
as: max(performancecost). In order to meet both tenant and cloud provider’s objective, we
need techniques to perform multi-tenant workload consolidation.

One open problem in this direction is: given different workloads corresponding to
multiple tenants with different SLAs, can we model these workloads together such
that the workload-aware data partitioning helps meet multi-tenant SLAs as well as
help maximize cloud service provider’s objective. Closest work in this direction is
by Al-Kiswany et al. [2] where they propose a data sharing framework that hosts a
large number of web and mobile applications. This benefits both web and mobile
apps by giving them access to rich information within their cost budget, as well
as increasing revenue for the cloud provider while saving resources (side effect of
data sharing). Clearly more work is needed in this direction since more and more
applications are moving to cloud infrastructures and challenges related to the dual
problem of performance and cost related issues are soon going to take a center stage.

3.3 Virtualized Environments

Over the past years virtualization has emerged as an ubiquitous technology to increase
server utilization. Also, more recently Big Data systems are increasingly run on vir-
tual cloud environments including public clouds such as Amazon EC2. However,
performance and virtualization overheads are still open issues in virtualized environ-
ments. For performance and energy efficiency reasons, physical clusters currently
offer a better choice albeit at the possible cost of utilization. Some of the overheads
in virtualization are expected to be alleviated with newer technologies. However,
there are still a number of open challenges in trying to determine the performance
and energy-efficient configuration of applications running in virtual environments.
Very few studies have been performed in this direction, one such work is done by
Jin et al. [23] where they empirically investigate the effects of server virtualization
on energy usage in physical servers. In addition, they identify a trade-off between
the energy saving from server consolidation and the negative effects such as energy
overheads and throughput reduction from server virtualization.

4 Conclusion

Big Data management and analytics is one of the most important building blocks
of todays modern economy. For the same reason, we are witnessing the emergence
of plethora of Big Data systems to handle variety of workloads with extreme vol-
umes, and arriving at tremendous speeds. Most of these systems are optimized for
performance and ignore other critical aspects of the overall cost such as resource and
power consumption. In extreme scales, such performance-only short sightedness can
lead to significant monetary loss, over budgeting, and wastage of resources for the

Emerging Cost Effective Big Data Architectures 773

businesses etc.Not only for businesses, these factors can also have ill-effects onglobal
level such as environmental issues. Hence, it has become important to consider over-
all cost effectiveness that would not only include performance as a key metric but
also consider metrics like energy consumption. Research community today is much
more aware of these issues than before, and there are few Big Data architecture par-
adigms that are emerging in this direction. In this chapter, we identified few of these
emerging cost effective Big Data architecture paradigms and have discussed it.

References

1. S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, I. Stoica, BlinkDB: queries with
bounded errors and bounded response times on very large data, in Proceedings of the 8th ACM
European Conference on Computer Systems, EuroSys’13 (ACM, New York, 2013), pp. 29–42

2. S. Al-Kiswany, H. Hacıgümüş, Z. Liu, J. Sankaranarayanan, Cost exploration of data sharings
in the cloud, in Proceedings of the 16th International Conference on Extending Database
Technology, EDBT’13 (ACM, New York, 2013), pp. 601–612

3. S. Albers, F. Müller, S. Schmelzer, Speed scaling on parallel processors, in Proceedings of
the Nineteenth Annual ACM Symposium on Parallel Algorithms and Architectures, SPAA’07
(ACM, New York, 2007), pp. 289–298

4. America’s data centers consuming and wasting growing amounts of energy, http://www.nrdc.
org/energy/data-center-efficiency-assessment.asp

5. D.G. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee, L. Tan, V. Vasudevan, FAWN: a
fast array of wimpy nodes, in Proceedings of the ACM SIGOPS 22nd Symposium on Operating
Systems Principles, SOSP’09 (ACM, New York, 2009), pp. 1–14

6. J. Arguello, F. Diaz, J. Callan, J.-F. Crespo, Sources of evidence for vertical selection, in
Proceedings of the 32nd International ACM SIGIR Conference on Research and Development
in Information Retrieval, SIGIR’09 (ACM, New York, 2009), pp. 315–322

7. N.Bruno, S.Chaudhuri,A.C.König,V.R.Narasayya,R.Ramamurthy,M. Syamala,Autoadmin
project at microsoft research: lessons learned. IEEE Data Eng. Bull. 34(4), 12–19 (2011)

8. J.P. Callan, Z. Lu, W.B. Croft, Searching distributed collections with inference networks, in
Proceedings of the 18th Annual International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, SIGIR’95 (ACM, New York, 1995), pp. 21–28

9. I.J. Chang, D.Mohapatra, K. Roy, A priority-based 6t/8t hybrid SRAM architecture for aggres-
sive voltage scaling in video applications. IEEE Trans. Circuit Syst. Video Technol. 21(2),
101–112 (2011)

10. K. Chodorow, M. Dirolf, MongoDB: The Definitive Guide, 1st edn. (O’Reilly Media, Inc.,
Sebastopol, 2010)

11. M. Chowdhury, M. Zaharia, J. Ma, M.I. Jordan, I. Stoica, Managing data transfers in com-
puter clusters with orchestra, in Proceedings of the ACM SIGCOMM 2011 Conference, SIG-
COMM’11 (ACM, New York, 2011), pp. 98–109

12. J. Dean, S. Ghemawat, Mapreduce: simplified data processing on large clusters. Commun.
ACM 51(1), 107–113 (2008)

13. B. Dong, J. Qiu, Q. Zheng, X. Zhong, J. Li, Y. Li, A novel approach to improving the efficiency
of storing and accessing small files on hadoop: a case study by powerpoint files, in IEEE
International Conference on Services Computing, SCC 2010, Miami, Florida, USA, 5–10 July
2010 (2010), pp. 65–72

14. Energy star program, http://www.energystar.gov/
15. Flink. Apache Software Foundation. http://flink.apache.org
16. M.R. Garey, D.S. Johnson, Computers and Intractability; A Guide to the Theory of NP-

Completeness (W.H. Freeman & Co., New York, 1990)

http://www.nrdc.org/energy/data-center-efficiency-assessment.asp
http://www.nrdc.org/energy/data-center-efficiency-assessment.asp
http://www.energystar.gov/
http://flink.apache.org

774 K. Ashwin Kumar

17. A. Gharaibeh, E. Santos-Neto, L.B. Costa, M. Ripeanu, The energy case for graph processing
on hybrid cpu and gpu systems, in Proceedings of the 3rd Workshop on Irregular Applications:
Architectures and Algorithms, IAAA’13 (ACM, New York, 2013), pp. 2:1–2:8

18. G. Graefe, Database servers tailored to improve energy efficiency, in Proceedings of the 2008
EDBT Workshop on Software Engineering for Tailor-Made Data Management, SETMDM’08
(ACM, New York, 2008), pp. 24–28

19. S. Harizopoulos, S. Papadimitriou, A case for micro-cellstores: energy-efficient data manage-
ment on recycled smartphones, in Proceedings of the Seventh International Workshop on Data
Management on New Hardware, DaMoN 2011, Athens, Greece, 13 June 2011 (2011), pp.
50–55

20. S. Harizopoulos, M.A. Shah, J. Meza, P. Ranganathan, Energy efficiency: the new holy grail
of data management systems research, in CoRR (2009). arXiv:0909.1784

21. B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A.D. Joseph, R. Katz, S. Shenker, I. Stoica,
Mesos: a platform for fine-grained resource sharing in the data center, in Proceedings of the 8th
USENIX Conference on Networked Systems Design and Implementation, NSDI’11 (USENIX
Association, Berkeley, 2011), pp. 295–308

22. L.-Y. Ho, J.-J. Wu, P. Liu, Optimal algorithms for cross-rack communication optimization
in mapreduce framework, in IEEE International Conference on Cloud Computing (CLOUD)
(2011), pp. 420–427

23. Y. Jin, Y.Wen, Q. Chen, Energy efficiency and server virtualization in data centers: an empirical
investigation, in INFOCOM Workshops (IEEE, 2012), pp. 133–138

24. A. Jindal, S. Prof, D.J. Dittrich, The mimicking octopus: towards a one-size-fits-all database
architecture, in In VLDB PhD Workshop (2010)

25. R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S. Zdonik, E.P.C. Jones, S. Madden,
M. Stonebraker, Y. Zhang, J. Hugg, D.J. Abadi, H-Store: a high-performance, distributed main
memory transaction processing system. Proc. VLDB Endow. 1(2), 1496–1499 (2008)

26. S. Khuller, J. Li, B. Saha, Energy efficient scheduling via partial shutdown, in Proceedings of
the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA’10 (Society
for Industrial and Applied Mathematics, Philadelphia, 2010), pp. 1360–1372

27. A. Kulkarni, J. Callan, Document allocation policies for selective searching of distributed
indexes, in Proceedings of the 19th ACM International Conference on Information and Knowl-
edge Management, CIKM’10 (ACM, New York, 2010), pp. 449–458

28. A. Kumar, J. Rabaey, K. Ramchandran, SRAM supply voltage scaling: a reliability perspective,
in Proceedings of the 2009 10th International Symposium on Quality of Electronic Design,
ISQED’09 (IEEE Computer Society, Washington, 2009), pp. 782–787

29. K.A. Kumar, A. Deshpande, S. Khuller, Data placement and replica selection for improving
co-location in distributed environments, in CoRR (2013). arXiv:1302.4168

30. K.A. Kumar, J. Gluck, A. Deshpande, J. Lin, Optimization techniques for “scaling down”
hadoop on multi-core, shared-memory systems, in Proceedings of the 17th International Con-
ference on Extending Database Technology, EDBT 2014, Athens, Greece, 24–28 March 2014
(2014), pp. 13–24

31. K.A. Kumar, A. Quamar, A. Deshpande, S. Khuller, SWORD: workload-aware data placement
and replica selection for cloud data management systems. VLDB J. 23(6), 845–870 (2014)

32. A. Kyrola, G. Blelloch, C. Guestrin, GraphChi: large-scale graph computation on just a PC, in
Proceedings of the 10th USENIX Conference on Operating Systems Design and Implementa-
tion, OSDI’12 (USENIX Association, Berkeley, 2012), pp. 31–46

33. A. Lakshman, P. Malik, Cassandra: a decentralized structured storage system. SIGOPS Oper.
Syst. Rev. 44(2), 35–40 (2010)

34. A. Lamb, M. Fuller, R. Varadarajan, N. Tran, B. Vandiver, L. Doshi, C. Bear, The vertica
analytic database: c-store 7 years later. Proc. VLDB Endow. 5(12), 1790–1801 (2012)

35. W. Lang, R. Kandhan, J.M. Patel, Rethinking query processing for energy efficiency: slowing
down to win the race. IEEE Data Eng. Bull. 34(1), 12–23 (2011)

36. W. Lang, J.M. Patel, Towards eco-friendly database management systems, in CIDR 2009,
Fourth Biennial Conference on Innovative Data Systems Research, Asilomar, CA, USA, 4–7
January 2009, Online Proceedings (2009)

http://arxiv.org/abs/0909.1784
http://arxiv.org/abs/1302.4168

Emerging Cost Effective Big Data Architectures 775

37. W. Lang, J.M. Patel, Energy management for mapreduce clusters. Proc. VLDB Endow. 3(1–2),
129–139 (2010)

38. J. Leverich, C. Kozyrakis, On the energy (in)efficiency of hadoop clusters. SIGOPSOper. Syst.
Rev. 44(1), 61–65 (2010)

39. R. Liu, C. Yang, W. Wu, Optimizing NAND flash-based SSDs via retention relaxation, in
Proceedings of the 10th USENIX Conference on File and Storage Technologies, FAST 2012,
San Jose, CA, USA, 14–17 February 2012 (2012), p. 11

40. S. Liu, K. Pattabiraman, T.Moscibroda, B.G. Zorn, Flikker: saving dram refresh-power through
critical data partitioning. SIGPLAN Not. 46(3), 213–224 (2011)

41. X. Liu, J. Han, Y. Zhong, C. Han, X. He, Implementing WebGIS on Hadoop: a case study of
improving small file I/O performance on HDFS, inCLUSTER (IEEE Computer Society, 2009),
pp. 1–8

42. M. Malik, H. Homayoun, Big data on low power cores: are low power embedded processors
a good fit for the big data workloads? in 33rd IEEE International Conference on Computer
Design, ICCD 2015, New York City, NY, USA, 18–21 October 2015 (2015), pp. 379–382

43. S. Mittal, A survey of techniques for improving energy efficiency in embedded computing
systems. IJCAET 6(4), 440–459 (2014)

44. A. Pavlo, E. Paulson, A. Rasin, D.J. Abadi, D.J. DeWitt, S. Madden, M. Stonebraker, A com-
parison of approaches to large-scale data analysis, in Proceedings of the 2009 ACM SIGMOD
International Conference on Management of Data, SIGMOD’09 (ACM, New York, 2009), pp.
165–178

45. A. Quamar, K.A. Kumar, A. Deshpande, Sword: scalable workload-aware data placement for
transactional workloads, in Proceedings of the 16th International Conference on Extending
Database Technology, EDBT’13 (ACM, New York, 2013), pp. 430–441

46. V.J. Reddi, B.C. Lee, T.M. Chilimbi, K. Vaid, Web search using mobile cores: quantifying and
mitigating the price of efficiency, in ISCA, ed. by A. Seznec, U.C. Weiser, R. Ronen (ACM,
New York, 2010), pp. 314–325

47. S. Rivoire, M.A. Shah, P. Ranganathan, C. Kozyrakis, J. Meza, Models and metrics to enable
energy-efficiency optimizations. IEEE Comput. 40(12), 39–48 (2007)

48. A. Rowstron, D. Narayanan, A. Donnelly, G. O’Shea, A. Douglas, Nobody ever got fired for
using hadoop on a cluster, in Proceedings of the 1st International Workshop on Hot Topics in
Cloud Data Processing, HotCDP’12 (ACM, New York, 2012), pp. 2:1–2:5

49. Samza. Apache Software Foundation. http://samza.apache.org
50. M. Salajegheh, Y. Wang, K. Fu, A. Jiang, E. Learned-Miller, Exploiting half-wits: smarter

storage for low-power devices, in Proceedings of the 9th USENIX Conference on File and
Stroage Technologies, FAST’11 (USENIX Association, Berkeley, 2011), pp. 4–4

51. M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, J.Wilkes, Omega: flexible, scalable sched-
ulers for large compute clusters, in Proceedings of the 8th ACM European Conference on
Computer Systems, EuroSys’13 (ACM, New York, 2013), pp. 351–364

52. E. Seo, S.Y. Park, B. Urgaonkar, Empirical analysis on energy efficiency of flash-based SSDs,
in Proceedings of the 2008 Conference on Power Aware Computing and Systems, HotPower’08
(USENIX Association, Berkeley, 2008), pp. 17–17

53. A. Sharov, A. Shraer, A. Merchant, M. Stokely, Take me to your leader!: online optimization
of distributed storage configurations. Proc. VLDB Endow. 8(12), 1490–1501 (2015)

54. M. Shoushtari, A. BanaiyanMofrad, N. Dutt, Exploiting partially-forgetful memories for
approximate computing. IEEE Embed. Syst. Lett. 7(1), 19–22 (2015)

55. L. Si, J. Callan, Relevant document distribution estimation method for resource selection,
in Proceedings of the 26th Annual International ACM SIGIR Conference on Research and
Development in Informaion Retrieval, SIGIR’03 (ACM, New York, 2003), pp. 298–305

56. S. Sivasubramanian, Amazon dynamoDB: a seamlessly scalable non-relational database ser-
vice, in Proceedings of the ACM SIGMOD International Conference on Management of Data,
SIGMOD 2012, Scottsdale, AZ, USA, 20–24 May 2012, pp. 729–730

57. M. Stonebraker, D.J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Ferreira, E. Lau, A. Lin,
S. Madden, E. O’Neil, P. O’Neil, A. Rasin, N. Tran, S. Zdonik, C-store: a column-oriented

http://samza.apache.org

776 K. Ashwin Kumar

DBMS, in Proceedings of the 31st International Conference on Very Large Data Bases,
VLDB’05 (VLDB Endowment, 2005), pp. 553–564

58. D. Thain, M. Livny, Building reliable clients and servers, in The Grid: Blueprint for a New
Computing Infrastructure, ed. by I. Foster, C. Kesselman (Morgan Kaufmann, Amsterdam,
2003)

59. P. Thomas, M. Shokouhi, Sushi: scoring scaled samples for server selection, in Proceedings of
the 32nd International ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR’09 (ACM, New York, 2009), pp. 419–426

60. A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J.M. Patel, S. Kulkarni, J. Jackson, K. Gade,
M. Fu, J. Donham, N. Bhagat, S. Mittal, D. Ryaboy, Storm@twitter, in Proceedings of the 2014
ACM SIGMOD International Conference on Management of Data, SIGMOD’14 (ACM, New
York, 2014), pp. 147–156

61. H.-W. Tseng, L.M. Grupp, S. Swanson, Underpowering NAND flash: profits and perils, in
Proceedings of the 50th Annual Design Automation Conference, DAC’13 (ACM, New York,
2013), pp. 162:1–162:6

62. D. Tsirogiannis, S. Harizopoulos, M.A. Shah, Analyzing the energy efficiency of a database
server, in Proceedings of the 2010 ACM SIGMOD International Conference on Management
of Data, SIGMOD’10 (ACM, New York, 2010), pp. 231–242

63. A. Vulimiri, C. Curino, P.B. Godfrey, T. Jungblut, K. Karanasos, J. Padhye, G. Varghese,
Wanalytics: geo-distributed analytics for a data intensive world, in Proceedings of the 2015
ACM SIGMOD International Conference on Management of Data, SIGMOD’15 (ACM, New
York, 2015), pp. 1087–1092

64. T. White, Hadoop: The Definitive Guide, 1st edn. (O’Reilly Media, Inc., Sebastopol, 2009)
65. Z.Wu,M. Butkiewicz, D. Perkins, E. Katz-Bassett, H.V.Madhyastha, Spanstore: cost-effective

geo-replicated storage spanning multiple cloud services, in Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles, SOSP’13 (ACM, New York, 2013), pp.
292–308

66. Z. Xu, Building a power-aware database management system, in Proceedings of the Fourth
SIGMODPhDWorkshop on InnovativeDatabaseResearch, IDAR’10 (ACM,NewYork, 2010),
pp. 1–6

67. Z. Xu, Y. Tu, X. Wang, Exploring power-performance tradeoffs in database systems, in Pro-
ceedings of the 26th International Conference on Data Engineering, ICDE 2010, 1–6 March
2010, Long Beach, California, USA (2010), pp. 485–496

68. Z. Xu, Y. Tu, X. Wang, PET: reducing database energy cost via query optimization. PVLDB
5(12), 1954–1957 (2012)

69. M. Zaharia, M. Chowdhury, M.J. Franklin, S. Shenker, I. Stoica, Spark: cluster computing
with working sets, in Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud
Computing, HotCloud’10 (USENIX Association, Berkeley, 2010), pp. 10–10

Bringing High Performance Computing
to Big Data Algorithms

H. Anzt, J. Dongarra, M. Gates, J. Kurzak, P. Luszczek, S. Tomov
and I. Yamazaki

Abstract Many ideas of High Performance Computing are applicable to Big Data
problems. The more so now, that hybrid, GPU computing gains traction in main-
stream computing applications. This work discusses the differences between the
High Performance Computing software stack and the Big Data software stack and
then focuses on two popular computing workloads, the Alternating Least Squares
algorithm and the Singular Value Decomposition, and shows how their performance
can be maximized using hybrid computing techniques.

1 Introduction

1.1 High Performance Computing Meets Big Data

High Performance Computing (HPC), meaning scientific and engineering comput-
ing, with emphasis on simulation, offers decades of experience in crunching numbers

H. Anzt · J. Dongarra · M. Gates · J. Kurzak (B) · P. Luszczek · S. Tomov · I. Yamazaki
Innovative Computing Laboratory, University of Tennessee,
1122 Volunteer Blvd, Knoxville, TN 37996, USA
e-mail: kurzak@icl.utk.edu

H. Anzt
e-mail: hanzt@icl.utk.edu

J. Dongarra
e-mail: dongarra@icl.utk.edu

M. Gates
e-mail: mgates3@icl.utk.edu

P. Luszczek
e-mail: luszczek@icl.utk.edu

S. Tomov
e-mail: tomov@icl.utk.edu

I. Yamazaki
e-mail: iyamazak@icl.utk.edu

© Springer International Publishing AG 2017
A.Y. Zomaya and S. Sakr (eds.), Handbook of Big Data Technologies,
DOI 10.1007/978-3-319-49340-4_23

777

778 H. Anzt et al.

at the highest speeds, using machines form the high end of the hardware spectrum.
Big Data, meaning data analytics, has been shifted more toward the lower end of
that spectrum, where the price/performance ratio is more favorable. Now that Big
Data problems enter the mainstream of computing, many solutions from HPC can
be applied to Big Data.

This chapter opens with a discussion of the main differences between the hard-
ware/software stacks of Big Data and HPC. Then two prominent HPC workloads
are introduced, which happen to be in widespread use in the Big Data domain, the
Alternating Least Squares (ALS) algorithm and the Singular Value Decomposition
(SVD). Then the main techniques for maximizing the performance of the implemen-
tations are discussed. A comprehensive discussion of the implementation details of
the ALS algorithm follows. Then a thorough presentation of the implementation
details of the SVD algorithm is given. The chapter is concluded with the summary
of the most important points.
High Performance Computing: In the 1980s, vector supercomputing dominated
high-performance computing, as embodied in the eponymously named systems
designed by the late Seymour Cray. The 1990s saw the rise of massively parallel
processing (MPPs) and shared memory multiprocessors (SMPs) built by Thinking
Machines, Silicon Graphics, and others. In turn, clusters of commodity (Intel/AMD
x86) and purpose-built processors (such as IBM’s BlueGene), dominated the previ-
ous decade.

Today, these clusters are augmented with computational accelerators in the form of
coprocessors from Intel and graphical processing units (GPUs) from NVIDIA; they
also include high-speed, low-latency interconnects (such as InfiniBand). Storage area
networks (SANs) are used for persistent data storage, with local disks on each node
used only for temporary files. This hardware ecosystem is optimized for performance
first, rather than for minimal cost.

Atop the cluster hardware, Linux provides system services, augmented with par-
allel file systems (such as Lustre) and batch schedulers (such as PBS and SLURM)
for parallel job management. MPI and OpenMP are used for internode and intranode
parallelism, augmented with libraries and tools (such as CUDA and OpenCL) for
coprocessor use. Numerical libraries (such as LAPACK and PETSc) and domain-
specific libraries complete the software stack. Applications are typically developed
in Fortran, C, or C++. Figure 1 (right) shows the mainstream HPC system stack.
Big Data: Just a few years ago, the very largest data storage systems contained only
a few terabytes of secondary disk storage, backed by automated tape libraries. Today,
commercial and research cloud-computing systems each contain many petabytes of
secondary storage, and individual research laboratories routinely process terabytes
of data produced by their own scientific instruments.

As with high-performance computing, a rich ecosystem of hardware and soft-
ware has emerged for big data analytics. Unlike scientific computing clusters, data-
analytics clusters are typically based on commodity Ethernet networks and local
storage, with cost and capacity the primary optimization criteria. However, industry
is now turning to FPGAs and improved network designs to optimize performance.

Bringing High Performance Computing to Big Data Algorithms 779

Fig. 1 The mainstream big data stack (left) versus the mainstream HPC stack (right)

Atop this hardware, the Apache Hadoop system implements a MapReduce model
for data analytics. Hadoop includes a distributed file system (HDFS) for managing
large numbers of large files, distributed (with block replication) across the local stor-
age of the cluster. HDFS and HBase, an open source implementation of Google’s
BigTable key-value store, are the big data analogs of Lustre for computational sci-
ence, albeit optimized for different hardware and access patterns.

Atop the Hadoop storage system, tools (such as Pig) provide a high-level pro-
gramming model for the two-phase MapReduce model. Coupled with streaming
data (Storm and Flume), graph (Giraph), and relational data (Sqoop) support, the
Hadoop ecosystem is designed for data analysis. Moreover, tools (such as Mahout)
enable classification, recommendation, and prediction via supervised and unsuper-
vised learning. Unlike scientific computing, application development for data ana-
lytics often relies on Java and Web services tools (such as Ruby on Rails). Figure 1
(left) shows the mainstream Big Data system stack.

1.2 Application Areas

This chapter discusses HPC implementations of two mainstream Big Data algo-
rithms. While the first one, Alternating Least Squares (ALS), has primarily commer-
cial applications, the second one, Singular Value Decomposition (SVD), is uniformly
applicable to a wide range of problems in science, engineering, and commerce.

780 H. Anzt et al.

The Alternating Least Squares algorithm provides a classic solution for build-
ing a recommender system for e-commerce, and was one of the more successful
approaches to the Netflix Prize challenge. The importance of the algorithm is in
its ability to deal with systems with implicit feedback, when the user’s preference
towards some products or content is known, while it is unknown for others. The
weighted regularization process employed in the ALS algorithm allows for attach-
ing higher weights to the known values and lower weight to the unknown values,
therefore effectively reconstructing the unknown values, as opposed to treating them
as lack of interest. This approach leads to much more accurate recommendations
than the simpler similarity-based algorithms.

One of the first open source implementations of the ALS algorithms was pro-
duced in Java, as part of the Mahout machine learning package [48], which relied
on the MapReduce paradigm provided by the Hadoop framework [34, 60]. As the
MapReduce approach is being ousted by the Resilient Distributed Datasets (RDD)
of the Spark framework [67], a faster implementation showed up in the Spark MLlib
library [44]. Also, ALS was one of the first algorithms implemented in the GraphLab
package [37], and also, for some time now, has been available in the Data Analytics
Acceleration Library (DAAL) from Intel [26]. Finally, the first state of the art GPU
implementation was produced by the authors of this chapter [16], and followed by
similar developments from other groups [57].

The Singular Value Decomposition is ubiquitous in statistics and scientific com-
puting and commonly applied to problems where the matrices are large and substan-
tial computational power is required. Prime examples of application areas include
astrophysics, genomics, climate data analysis, and information retrieval systems. In
astrophysics, the SVD is used on massive datasets from astronomical surveys for
spectral classification, e.g., to predict morphological types using galaxy spectra, and
to select quasar candidates from sky surveys. In genomics, the SVD is routinely used
to analyze genome-wide single-nucleotide polymorphism (SNP) data, for detecting
population structure and potential outliers. In climate data analysis, Empirical orthog-
onal function (EOF) and the SVD are the methods of choice for analyzing spacial
and temporal variability of geophysical data. The SVD is also the primary tools for
latent semantic indexing (LSI) in information retrieval systems, where it is used to
find low-rank approximations to term-document matrices, enabling computation of
query-document similarity scores in low-rank representation, as well as automated
document categorization.

Randomized algorithms have been developed for the singular value decompo-
sition [36, 42]. Great surveys of recent developments in randomization algorithms
were published by Halko [21] and Mahoney [41]. In terms of software, singular value
solvers are available in Skylark and Mahout. Skylark is an open-source software
project launched by IBM Research with the objective to develop a set of random-
ized machine learning algorithms that support distributed memory and are accessible
through Python interfaces. Skylark uses a number of sketching transforms to imple-
ment a few randomized linear algebra solvers, including a singular value solver based
on the work by Halko et al. [21]. Mahout is a project of the Apache Software Foun-
dation to produce free implementations of distributed or otherwise scalable machine

Bringing High Performance Computing to Big Data Algorithms 781

learning algorithms focused primarily in the areas of collaborative filtering, cluster-
ing, and classification [48]. In addition to a classic Lanczos SVD algorithm, Mahout
also contains an implementation of a stochastic (randomized) SVD routine [40].

1.3 Tricks of the Trade

Two techniques discussed here and borrowed from the field of High Performance
Computing, are automated software tuning and randomization algorithms. The tech-
nique of automated software tuning mostly addressed the challenges of programming
modern computing devices, such as GPU accelerators, in a way that provides portable
performance, i.e., not only allows getting maximum performance from a particular
device, but also allows for porting to a new device by retuning rather than rewrit-
ing/redesigning the code. The technique of randomization allows dealing with one
of the most burning problems of processing Big Data, which is the lagging of IO
capabilities behind processing capabilities in modern hardware.
Automated Software Tuning: Although Moore’s Law has still been in effect in the
last few years, the multicore revolution initiated the trend, in processor design, of
going away from architectural features that do not directly contribute to processing
throughput. This means preference towards shallow pipelines with in-order execution
and cutting down on branch prediction and speculative execution. On top of that,
virtually all modern architectures require some form of vectorization to achieve top
performance, whether it being short-vector SIMD (Single Instruction Multiple Data)
extensions of CPU cores, or SIMT (Single Instruction Multiple Thread) pipelines
of GPU accelerators. With the landscape of future High Performance Computing
populated with complex, hybrid, vector architectures, automated software tuning may
provide a path towards portable performance without heroic programming efforts.

Automated software tuning was pioneered by projects like ATLAS and Spiral,
and is the objective of numerous academic projects, and is also practiced by hard-
ware vendors providing libraries like BLAS for their devices. The basic premise
is to explore a search space and find the best performers. The search space can be
defined by a set of tunable parameters, code transformations, implementation vari-
ants, hardware switches, etc. It can then be pruned by applying a set of constraints
that eliminate obvious underperformers. Finally, it can be searched to find the win-
ners. Exhaustive search, steepest descent methods, genetic algorithms are all valid
approaches.
RandomizationAlgorithms: The landscape of future High Performance Computing
presents an explosive growth in the volume of data, and a relatively dismal growth in
the capabilities of communication and IO systems. Under such conditions, it becomes
increasingly important to find algorithms that communicate less, and perform IO
operations even less. For an important set of problems in numerical computing, a class
algorithms emerges that seem to be an answer to these challenges—randomization
algorithms.

782 H. Anzt et al.

The new classes of random sampling and random projection algorithms offer
numerous advantages when dealing with large datasets coming from both scien-
tific applications (astrophysics, genomics, climate modeling), as well as commercial
applications (social networks, information retrieval systems, financial transactions).
In many cases, randomized algorithms beat their classical counterparts in terms of
accuracy, speed, and robustness. They utilize modern computer architectures bet-
ter by exposing higher levels of parallelism than traditional numerical methods. At
the same time, they often produce more numerically robust solvers by introducing
implicit regularization.

2 GPU Acceleration of Alternating Least Squares

Web-based services such as movie databases and online retailers increasingly rely
on recommendation systems to suggest products to their customers. Collaborative
Filtering (CF) is a class of recommendation systems that recommends products based
on what other customers with similar interests have enjoyed [17]. It harvests infor-
mation collected from a large set of users, which can be either explicit feedback, such
as “likes” or product ratings; or implicit feedback, such as purchases, time spent, or
search patterns. This yields a large dataset to process, for instance, the Netflix Prize
dataset has over 100 million ratings [4].

Collaborative Filtering algorithms are based on observation data in a relation
matrix R, where each entry denotes how a user rated or interacted with an item. As
each user rates only a small subset of the items, most entries are unknown, i.e., the
matrix R is sparse. The goal is to determine the unknown values in R for how a user
would hypothetically rate every item. Thus it is an instance of the matrix completion
problem [9], to determine the unknown entries of a sparsely sampled matrix. In recent
years, latent feature models have assumed a small set of features—such as movie
genres—drive users’ interest. However, these latent features are determined by the
algorithm, without any explicit, a priori assigned meaning. This small set of features
implies the matrix R is (approximately) low-rank.

Besides providing an algorithm to complete R, an added benefit of the low-
rank model is that it determines R in a compact representation, R = X T Y , taking
O(f m + f n) space instead of O(mn) space for m users, n items, and rank f � m, n.
For a site with millions of users and millions of products, this compact representation
makes storing and accessing the recommendations database tractable.

In addition to recommendation systems, the matrix completion problem occurs
in numerous other contexts. Examples include recovery of missing pixels of an
image [27], inferring 3D structure from motion of images [10], and determining
sensor positions from incomplete distance measurements [8].

Various methods exist for computing the matrix completion. Many CF systems
used neighborhood models [30]. For low-rank models, Candès and Recht [9] used
convex relaxation, and proved that R can be completed if sufficient entries are known.
Stochastic gradient descent [8, 50] and alternating least squares (ALS) [27, 70] are

Bringing High Performance Computing to Big Data Algorithms 783

popular methods. We will focus on the ALS method, which has adaptations for both
explicit [70] and implicit feedback [23].

We propose both multi-core CPU and GPU implementations that are able to
exploit the computing power of state-of-the-art processors and accelerators. We
compare performance with the open source implementations available in Mahout [1],
GraphLab [12], and Spark MLlib [2, 44, 67], and report significant speedups for
selected benchmark datasets.

2.1 Explicit Feedback

For explicit feedback, entry rui of R denotes how user u rated item i . Since users
have not rated all items, the goal is to complete the missing entries of R. We assume
that R is approximately low-rank, such that R ≈ X T Y , where X is f × m and Y is
f × n for m users, n items, and rank or feature space size f . This latent feature space
is small compared to the number of users and items, e.g., from 10 to 100, depending
on the application. Column xu of X represents user u, and column yi of Y represents
item i , such that their inner product yields the rating, rui ≈ xT

u yi .
Determining X and Y is commonly expressed as an optimization problem, with

a summation over known rui entries,

min
X,Y

∑

u,i
rui is known

(
rui − xT

u yi
)2 + λ

(
∑

u

‖xu‖2 +
∑

i

‖yi‖2

)

. (1)

Here, λ is a regularization term to avoid overfitting. This can be solved with stochastic
gradient descent or alternating least squares.

To solve using ALS, we observe that if X or Y is fixed, the cost function (1)
becomes a linear least squares problem. ALS iterates two steps: fixing Y and solving
for X , then fixing X and solving for Y . In the first step, fixing Y and finding where
the gradient is zero yields

(
Y DuY T + λI

)
xu = Yru for u = 1, . . . , m

to solve for each user-factor xu . Each of the m user-factors can be solved indepen-
dently, providing a large amount of parallelism. Here, ru is row u of the R matrix,
and Du is a binary diagonal matrix that selects columns of Y corresponding to known
rui values. Similarly, in the second step, fixing X yields

(
X Di X T + λI

)
yi = Xri for i = 1, . . . , n

784 H. Anzt et al.

to solve for each item-factor yi , where ri is column i of the R matrix, and Di selects
columns of X for known rui values. Experiments have shown that the user- and
item-factors typically converge after a few iterations of these two steps [70].

2.2 Implicit Feedback

For implicit feedback, Hu et al. [23] note that a large rui value does not necessarily
indicate a higher preference, but instead gives a higher confidence. For instance, a
user may enjoy watching a moderately good TV show every week, yielding a large
rui value, but watch a beloved movie just once or twice, yielding a small rui value,
despite its stronger preference. Therefore, they propose a preference matrix P with
binary values,

pui =
{

1 if rui > 0,

0 if rui = 0,

to indicate whether user u has a preference for item i . Larger rui values indicate
greater confidence in this preference, so a matrix C with entries cui = 1 + αrui is
introduced that measures the confidence of the preference pui . Here some minimal
confidence is given even to zero entries, while α weights known values more. Hu et al.
found α = 40 to work well. For implicit feedback, instead of completing the relation
matrix R, the goal is to complete the preference matrix as P ≈ X T Y . Again, X and
Y can be computed by minimizing a cost function,

min
X,Y

∑

u,i

cui
(

pui − xT
u yi

)2 + λ

(
∑

u

‖xu‖2 +
∑

i

‖yi‖2

)

. (2)

The major difference compared to explicit feedback is that the sum is over all u and i ,
not just those with nonzero rui values, since some minimal confidence is given even
to zero entries. This means there are mn terms, making stochastic gradient descent
prohibitively expensive for implicit feedback, whereas for explicit feedback only the
nonzero rui values have terms in (1). Therefore, we apply the alternating least squares
algorithm, similar to the explicit feedback case above, yielding

(
Y CuY T + λI

)
xu = Y Cu pu for u = 1, . . . , m;

(
XCi X T + λI

)
yi = XCi pi for i = 1, . . . , n;

to solve for each xu and for each yi , where Cu is a diagonal matrix of row u of the
confidence matrix C , Ci is a diagonal matrix of column i of C , pu is row u of the
preference matrix P , and pi is column i of P . Pseudocode is given in Algorithm 1.

Bringing High Performance Computing to Big Data Algorithms 785

Algorithm 1 Pseudocode of alternating least square algorithm iterating user-factors
and item-factors.
function als(input: α, λ, R; output: X, Y)

set Y to random initial guess
while not converged

// update user-factors X
for u = 1, . . . , m

solve
(
Y CuY T + λI

)
xu = Y Cu pu for xu

end
// update item-factors Y
for i = 1, . . . , n

solve
(
XCi X T + λI

)
yi = XCi pi for yi

end
end

end function

The two steps, updating the user-factors and the item-factors, are identical except
for swapping the input and output matrices. Therefore, we will subsequently focus
on updating the user-factors, and the item-factors will follow similarly. The explicit
and implicit feedback ALS algorithms are also very similar; we will concentrate on
implicit feedback.

For computational efficiency, the product can be factored as

Y CuY T = Y Y T + αY RuY T ,

where Ru is a diagonal matrix of row u of R, as shown schematically in Fig. 2.
Since Y Y T is the same for all users, it can be computed once per iteration [23],
which is done efficiently using the syrk (symmetric rank-k update) BLAS routine.
(Explicit feedback lacks the Y Y T term.) The remaining term, αY RuY T , involves

Au

f f
=

Ai

f f =

for users u = 1, ..., m

for items i = 1, ..., n

Ri

m m

Ru

n nY
f n

YT

n f
+ YYT + I

X
f m

XT

m f
+ XXT + I

m
 u

se
rs

n items

R

Fig. 2 Diagram of computation of user-factors and item-factors. R is general sparse, Ru and Ri

are sparse diagonal, X, Y, Au , Ai are dense

786 H. Anzt et al.

a dense matrix Y and the sparse diagonal matrix Ru , which will require a custom
kernel. Under mild assumptions, Y CuY T + λI is symmetric positive definite (SPD),
allowing us to solve it with the Cholesky factorization.

2.3 CPU Implementation

In the product Y RuY T , the sparse diagonal matrix Ru selects and scales a few columns
of Y , as shown in Fig. 3. Columns of Y corresponding to zeros in Ru are ignored.
As k, the number of nonzeros in Ru , is typically much less than n, the number of
columns of Y , the kernel should take advantage of this sparsity, reducing the cost
from a rank-n update to a rank-k update, with k � n.

For instance, with the Netflix dataset and f = 64, the problem is to generate
and solve m = 480190 systems, each formed by a 64 × 64 rank-k update, with
the average k = 209 (see Fig. 5). There is not enough parallelism in computing a
single system for an efficient multi-core implementation. Instead, we do a batched
implementation that generates and solves the m systems in parallel. For this, we use
OpenMP to parallelize the loops in Algorithm 2.

High efficiency can be attained by relying on optimized Level 3 BLAS routines,
which operate on matrices instead of individual vectors, enabling data reuse and
optimizations for cache efficiency, improving performance to be compute-bound
instead of memory-bound. To use Level 3 BLAS, we copy the relevant columns of Y
to workspaces Ŷ and V , with the Ru column scaling included in V , as shown in Fig. 3,
then use a gemm (general matrix-matrix multiply) BLAS call. Since A is symmetric,
work could be reduced by using an extended BLAS routine such as gemmt in Intel
MKL [25] or syrkx in NVIDIA cuBLAS [46] instead of gemm.

Updating the item-factors is exactly the same, except it uses columns of R instead
of rows of R. For updating the user-factors, we store R in CSR (compressed sparse
row) format, which gives efficient, contiguous access to each row of R, but slow
access to columns of R. For efficiency in updating the item-factors, we also store R

Fig. 3 Schematic of
Au = Y RuY T and
b = Y Cu pu . Shaded boxes
in row ru represent nonzeros;
only corresponding shaded
columns of Y and rows of
Y T contribute to Au and b

Y

ru

YT

Au = V T + W

V = Ru

b = (1 + ru)

Bringing High Performance Computing to Big Data Algorithms 787

Algorithm 2 Multi-core CPU ALS algorithm.
function als_cpu(input: α, λ, R; output: X, Y)

set Y to random initial guess
while not converged

// update user-factors X
W = Y Y T + λI using syrk BLAS
parallel for u = 1, . . . , m

copy columns of Y corresponding to nonzeros in ru to Ŷ
copy and scale columns of Ŷ as V = Ŷ Ru

accumulate scaled columns of Ŷ as bu = Ŷ (1 + αru)

Au = αV Ŷ + W using gemm BLAS (single-threaded)
solve Au xu = bu using Cholesky (single-threaded)

end
// update item-factors Y
W = X X T + λI using syrk BLAS
parallel for i = 1, . . . , n

copy columns of X corresponding to nonzeros in ri to X̂
copy and scale columns of X̂ as V = X̂ Ri

accumulate scaled columns of X̂ as bi = X̂(1 + αri)

Ai = αV X̂ + W using gemm BLAS (single-threaded)
solve Ai yi = bi using Cholesky (single-threaded)

end
end

end function

in CSC (compressed sparse column) format, which gives efficient, contiguous access
to each column of R.

Because the number of nonzeros per row can vary significantly (see Fig. 5), there
will be a load imbalance between different processors. This is easily solved by using
the OpenMP dynamic scheduler, adding schedule(dynamic,NB), with a block
size NB. We set NB=200, but performance is not sensitive to the exact value.

2.4 GPU Implementation

A brief summary of the GPU architecture will help to understand the GPU implemen-
tation. A GPU kernel divides its computation into a grid of thread blocks, and each
thread block into a grid of threads. Within each thread block, threads are not indepen-
dent, but execute the same instructions on different data. Threads can synchronize
and communicate via shared memory, which is a kind of fast, user-controlled cache.
Each thread’s local variables are stored in a large register file. Different thread blocks
execute asynchronously, without an easy way to synchronize or communicate. An
NVIDIA Kepler GPU contains up to 15 multiprocessors, each with 192 cores.

Due to this GPU architecture, the GPU implementation shown in Algorithm 3
is structured differently than the CPU implementation in Algorithm 2. Each thread
block computes one tile of a matrix Au and its right-hand side bu . As with the CPU

788 H. Anzt et al.

implementation, a single system has insufficient parallelism to fully occupy all the
GPU’s cores. Filling a GPU requires hundreds of thread blocks and tens of thousands
of threads. Therefore, we use a batched implementation, where a single GPU kernel
generates a batch of s matrices using the batched_sparse_syrk routine, then a
batched Cholesky routine factors them, and finally batched triangular solvers solve
the resulting systems. We use the batched Cholesky and triangular solves from the
BEAST project [33]. We used a batch size of s = 4096 to balance parallelism with
GPU memory requirements. However, performance is not sensitive to the exact batch
size.

Algorithm 3 GPU implementation of ALS, using batched operations.
function als_gpu(input: α, λ, R; output: X, Y)

// workspaces: A is f × f × s, B is f × s
set Y to random initial guess
while not converged

// update user-factors X
W = Y Y T + λI using syrk from cuBLAS
for k = 1, . . . , m by batch size s

batched_sparse_syrk computes Au = αY RuY T + W and bu = Y Cu pu
for u = k, . . . , k + s

batched_cholesky factors Au for u = k, . . . , k + s
batched_solve solves Au xu = bu for u = k, . . . , k + s

end
// update item-factors Y
W = X X T + λI using syrk from cuBLAS
for i = 1, . . . , n by batch size s

batched_sparse_syrk computes Ai = αX Ri X T + W and bi = XCi pi
for i = k, . . . , k + s

batched_cholesky factors Ai for i = k, . . . , k + s
batched_solve solves Ai yi = bi for i = k, . . . , k + s

end
end

end function

The implementation of the batched_sparse_syrk GPU kernel is conceptually
similar to the CPU kernel. Like the CPU kernel, it copies the relevant columns of Y
to a workspace Ŷ , in this case stored in GPU shared memory. Instead of copying all
the relevant columns at once, it copies just one block of kb columns at a time and
multiplies these, storing the results in registers, then continues with the next block.
Unlike the CPU version, here the copy and multiply are fused into one kernel. The
multiply is based an optimized gemm GPU kernel [32], which sub-tiles the output
matrix Au , with each GPU thread computing one entry in each sub-tile (Fig. 4).

A few optimizations can be made. Since Au is symmetric, only the tiles on or
below the diagonal need to be computed; tiles above the diagonal are known by
symmetry. Also, since matrix Y is read-only, it is beneficial to bind its memory
to GPU texture memory, which has optimized caching for read-only data. Texture
memory also simplifies the code by dealing with out-of-bounds memory accesses

Bringing High Performance Computing to Big Data Algorithms 789

Y

YT

{nb

{ kb

ru

T

tile of

Au

Au = Ru T + W

fast shared memory
and registers

main GPU memory

Fig. 4 Schematic of sparse-syrk GPU kernel. Au is divided into nb × nb tiles. Block of kb relevant
columns are loaded into shared memory and multiplied in registers at a time. At end, tile of Au in
registers is written back to main GPU memory. bu is also computed (not shown)

in hardware—the software can pretend that Y is bigger than it actually is. This
allows for fixed loop bounds and eliminates cleanup code, enabling more compiler
optimizations.

2.5 Setup and Datasets

For performance comparison, we chose three ALS implementations from popular
data analytics software packages: Mahout version 0.9 [1, 48], GraphLab version
1.3 [12, 37, 38], and Spark MLlib version 1.5 [2]. All results used single precision and
were obtained on a two-socket 2.6 GHz Intel Sandy Bridge E5-2670 with 8 cores per
socket. CPU implementations were linked with Intel’s Math Kernel Library (MKL)
version 11.1.2 [25]. Our GPU implementation ran on an NVIDIA Kepler K40c GPU
with CUDA version 7.0 [47].

To compare performance, we target several recommendation datasets that are
available online: Netflix Prize [4], Million Song [6], and Yahoo! Song [53]. For
tuning parameters of the GPU implementation, we employ an autotuning sweep
using the BEAST framework [24], with the EachMovie dataset [43, 53], a smaller
dataset that permits executing a comprehensive set of kernel configurations in a
moderate runtime. Table 1 summarizes properties of the datasets.

For the Netflix Prize dataset, we show histograms in Fig. 5 of the number of
nonzeros per row (left) and per column (right). The minimum, median, mean, and
maximum number of nonzeros per row and column are annotated in each graph. As

790 H. Anzt et al.

Table 1 Dataset properties

Dataset # users # items # nonzeros

Netflix prize 480,190 17,771 100,480,508

Million song 1,019,318 384,546 48,373,586

Yahoo! song 130,558 136,736 49,770,695

EachMovie 1,623 61,265 2,811,717

Fig. 5 Nonzero distribution of rows (left) and columns (right) of Netflix Prize dataset

previously noted, the wide range of nonzeros per row and column means different
users and items incur widely different costs in computing Y CuY T and XCi X T ,
potentially leading to load imbalance.

2.6 Auto Tuning

The sparse-syrk GPU kernel has four tunable parameters: tile size nb, block size
kb, and thread block dimensions dx and dy. The kernel is generalized so that any
value of nb can be used for any feature space size f . The optimal parameters are not
obvious and not easy to derive by an analytical formula. Therefore the factorization
calls for a real autotuning sweep. To achieve high performance, classic heuristic
automatic software tuning methodology is applied, where a large number of kernels
are generated and run, and the fastest ones identified.

The BEAST autotuning framework [39] enumerates and tests all possible kernel
configurations. Various constraints are applied to limit the search space. Configu-
rations violating correctness constraints—such as exceeding the maximum shared
memory, or nb not divisible by the thread block dimensions—are eliminated. Sev-
eral heuristic constraints are also applied, for instance, ensuring a compute-intensive
kernel by requiring the ratio of multiply-add instructions to load instructions is at
least 2. While kernels that violate these soft constraints will run correctly, they will
not keep the GPU fully occupied, leading to lower performance.

After applying these constraints, BEAST generated 330 kernel configurations to
test. The kernels were tested on the modest sized EachMovie dataset, timing the

Bringing High Performance Computing to Big Data Algorithms 791

10 20 30 40 50 60 70 80 90 100

feature space size f

0

50

100

150

200

250

300

350

400

450
G
flo

p/
s

Y CuY T

10 20 30 40 50 60 70 80 90 100

feature space size f

0

50

100

150

200

250

300

G
flo

p/
s

XCiXT
nb, kb, dx, dy

16, 8, 8, 8
16, 4, 20, 8
24, 4, 8, 8
24, 8, 8, 8
24, 8, 24, 8
32, 8, 8, 8
32, 8, 8, 16
32, 8, 16, 16
32, 8, 32, 16
40, 8, 8, 8
48, 8, 8, 16
48, 8, 16, 16
64, 8, 8, 16
80, 8, 16, 16

Fig. 6 Performance of all kernels (gray lines), highlighting ones that are best for some size. Circled
kernel is chosen as best for each size(color figure online)

sparse-syrk for both the user-factor and the item-factor matrix generation. Due to
differences in the size of Y and X and the sparsity of Ru and Ri , the performance
was not identical between these two. We ran tests for sizes of f that are multiples of
8 and multiples of 10, from 8 to 100.

The performance of all these kernels is plotted in gray in Fig. 6. Kernels that were
best for some size are highlighted with colored markers. For each size f , the circled
kernel was chosen as the best overall kernel.

Inspecting the data reveals that no one configuration was optimal across all feature
space sizes. Taking the yellow diamond (80, 8, 16, 16)kernel as an example: for small
f it is a poor performer, but the performance increases as f increases, until it is the
best kernel for f = 80, where f = nb. For the next size, f = 88, its performance
plummets to less than half the optimal performance. This occurs because it goes from
one tile to four tiles covering each matrix A, wasting three large tiles to cover the
extra 8 rows and columns. This saw tooth pattern is evident for all the configurations.

While often the best kernel for user-factors (left in Fig. 6) and item-factors (right)
is the same, there are several instances where this is not true due to the difference in
sparsity patterns. In these cases, the kernel with the best geometric mean performance
is chosen as the best compromise between the two.

This analysis highlights the need for autotuning. The performance difference
between the best and worst kernels is dramatic—between a factor of 6 and 72 times
for a particular f . Also, the optimal kernel configuration depends heavily on the
size f , and to a lesser extent on the actual dataset. While some kernel configurations
make sense in retrospect, it was infeasible to predict optimal kernels in all cases.

2.7 Performance Evaluation

Execution time of a single ALS iteration (updating user-factors and item-factors
once) for the three large benchmark databases—Netflix, Million Song, and Yahoo!

792 H. Anzt et al.

Fig. 7 Time in log scale (top) and linear scale (bottom) for single ALS iteration, using 16 CPU
cores or GPU

Song—is presented in Fig. 7, in both log and linear scale. This covers a range of
feature space sizes, all using 16 CPU cores or the GPU. A large performance dif-
ference between implements is evident. Mahout is nearly two orders-of-magnitude
slower than GraphLab and Spark. This is not surprising, as Mahout is written in
Java while GraphLab is a newer implementation written in C++. Spark, while writ-
ten in Scala/Java, links with native optimized BLAS to achieve good performance.
For f ≥ 50 with the Yahoo and Netflix datasets, Spark had performance compara-
ble to GraphLab. However, with the Million Song dataset, the Spark execution time
increased markedly for f ≥ 50, and it encountered an exception for f ≥ 80. Our
CPU implementation is 10 times faster than GraphLab and 19 times faster than Spark
MLlib, on average.

The speedup of our GPU implementation over Mahout, GraphLab, Spark, and our
CPU implementation is given in Fig. 8. The GPU achieves an average speedup of 2.1

Bringing High Performance Computing to Big Data Algorithms 793

Fig. 8 Speedup in log scale of GPU implementation over Mahout, GraphLab, Spark, and CPU
implementations using 16 cores

times over our CPU implementation. Compared to GraphLab, the GPU is on average
20.9 times faster, and compared to Spark it is 35.3 times faster. Mahout performs
poorly, taking 1684 times longer, on average, to compute a single ALS iteration.

While speedups are similar across datasets, our GPU implementation consistently
gets the best speedups for the Netflix dataset and the least speedups for the Million
Song dataset. This may be because the Million Song dataset has the smallest average
nonzeros-per-row and nonzeros-per-column, with a mean of 47 nonzeros per row and
126 per column, compared to 209 and 5654 for the Netflix dataset (Fig. 5). Having
more nonzeros means a higher floating point operation count in the sparse-syrk
routine to amortize memory reads.

We have presented both a multi-core CPU and a GPU implementation for the
alternating least-squares algorithm to compute recommendations based on implicit
feedback datasets. The central kernel involved is sparse_syrk, an algorithm-specific
kernel achieving compute-bound performance for multiplying two dense matrices
scaled by a sparse diagonal matrix. Our results demonstrate the advantage of fully
exploiting the available parallelism by using a batched implementation, along with
using optimized kernels, either from the vendor’s BLAS library or custom auto-tuned
kernels. This yields good performance over several different datasets and a range of
feature space sizes.

3 GPU Acceleration of Singular Value Decomposition

3.1 Introduction

A partial singular value decomposition (SVD) [18] of a sparse matrix is a power-
ful tool for data analysis, where the data is represented as the sparse matrix. The
ability of the SVD to filter out noise and extract the underlying features of the data

794 H. Anzt et al.

has been demonstrated in many applications, including Latent Semantic Indexing
(LSI) [5, 13], recommendation systems [13, 55], population clustering [49], and
subspace tracking [28]. The SVD is also used to compute the leverage scores – sta-
tistical measurements for sampling the data in order to reduce the cost of the data
analysis [21].

In recent years, the amount of data being generated from the observations,
experiments, and simulations has been growing at unprecedented paces in many
areas of studies, e.g., science, engineering, medicine, finance, social media, and
e-commerce [11, 14]. The algorithmic challenges to analyze such “Big Data” are
exacerbated by its massive volume and wide variety as well as its high veracity and
velocity [35]. Though the SVD has the potential to address the variety and veracity of
the modern data sets, the traditional approaches to computing the partial SVD access
the data repeatedly, e.g., block Lanczos [19]. This is a significant drawback on a
modern computer, where the data access has become significantly more expensive
compared to arithmetic operations, both in terms of time and energy consumptions.
The gap between the communication and computation costs is expected to further
grow on future computers [15, 20], and this high cost of the communication is exac-
erbated by the Big Data. This hardware trend is certainly true for the GPU.

3.2 Randomized Algorithms to Compute SVD

To address this hardware trend, a randomized algorithm [21] has been gaining atten-
tion since compared to the traditional algorithms, it may require fewer data accesses
to compute the SVD of the matrices arising from the modern applications (see Fig. 9
for an illustration of the algorithm). To compare the performance of different algo-
rithms for computing the truncated SVD, we implemented the framework, which
encapsulates these algorithms on multicore CPUs with multiple GPUs [64]. This
framework not only allows us to develop software whose performance can be tuned
based on domain specific knowledge, but it also allows a user from one discipline
to test an algorithm from another, or to combine the techniques from different algo-
rithms (see Fig. 10 for the list of the algorithms). For example, we studied the per-
formance of a block Lanczos, combining it with communication-avoiding [22, 62]
and thick-restarting [3, 61]; two techniques developed by two different disciplines

Fig. 9 Randomized algorithm to compute truncated SVD

Bringing High Performance Computing to Big Data Algorithms 795

Fig. 10 Algorithms to
compute truncated SVD

– computer science and numerical linear algebra. These two techniques allow us to
build the projection subspace with the minimum data access and accelerate the solu-
tion convergence by retaining the useful information when restarting the iteration,
respectively. Hence, compared to the randomized algorithm, Lanczos could build a
projection subspace of the same dimension, which is richer in useful information
with fewer communication phases, and potentially with about the same amount of
data access. Unfortunately, this is possible only when the matrix can be partitioned
well, while many of the matrices from the modern applications cannot be partitioned
in such a way, leading to the significant overheads of the communication-avoiding
technique in term of the computation and storage requirements, as well as the com-
munication volume. Hence, there is a growing interest in a novel algorithm that can
more efficiently compute the SVD of the massive data that are being generated from
many modern applications, and the randomized algorithm is one of such algorithms
with the potential.

3.3 Hybrid CPU/GPU Implementation

Figure 11 shows the pseudocode of a randomized algorithm to compute the SVD.
Since the computational cost of the randomized algorithm is dominated by the cost
of generating the projection basis vectors, P̂ and Q̂, we accelerate this step using
GPUs, while the SVD of the projected matrix B is redundantly computed by each MPI
process on CPU. To generate the basis vectors, the two main computational kernels
of the randomized algorithm are the sparse-matrix dense-matrix multiply (SpMM)
and the orthogonalization. In this subsections, we describe our implementations of
these two kernels on a hybrid CPU/GPU cluster.

796 H. Anzt et al.

for j = 1,2, . . . ,s do
1. Orthogonalize ̂Q

QR := ̂Q
2. Sample range of A

̂P := AQ
3. Orthogonalize ̂P

PB := ̂P
4. Prepare to iterate

if j < s then
̂Q := ATP

end if
end for

(a) Power iteration to
generate subspace.

1. Generate ̂Pk+� and ̂Qk+� that approximate ̂A,
̂A ≈ ̂P ̂QT .

2. Compute SVD of the projected matrix B,
B = X ̂ΣY T ,

where B = ̂PT
̂A ̂Q.

3. Compute approximate partial SVD of ̂A,
̂Ak ≈ ̂Uk

̂Σk̂V T
k ,

where ̂Uk = ̂PXk and ̂Vk = ̂QYk.

(b) Projection method to compute partial
SVD.

Fig. 11 Randomized algorithm to compute partial SVD based on power iteration

3.3.1 Sparse Matrix Matrix Multiply

To perform SpMM with the matrix A on a hybrid CPU/GPU cluster, we distribute
A among the GPUs in a 1D block row format (e.g., using a graph or hypergraph
partitioning algorithm). The basis vectors P̂ and Q̂ are then distributed in the same
formats. Then, to perform SpMM, each GPU first exchanges the required non-local
vector elements with its neighboring GPUs. This is done by first copying the required
local elements from the GPU to the CPU, then performing the point-to-point com-
munication among the neighbors using the non-blocking MPI (i.e., MPI_Isend
and MPI_Irecv), and finally copying the non-local vector elements back to the
GPU. Then, each GPU computes the local part of the next basis vectors using the
CuSPARSE SpMM in the compressed sparse row (CSR) format. This was an effi-
cient communication scheme in our previous studies to develop a linear solver [65],
where the coefficient matrix A arising from a scientific or engineering simulation is
often sparse and structured, e.g., with three-dimensional embedding. Unfortunately,
sparse matrices originating from the modern data sets such as social networks and/or
commercial applications have irregular sparsity structures, and have wide ranges
of nonzero counts per row. In fact, they often exhibit power-law distributions of
nonzeros as they result from scale-free graphs. As a result, this point-to-point com-
munication with all the neighbors at once could be inefficient (in term of time and
buffer storage). To alleviate the problem, our current implementation is based on a
collective communication scheme. For example, using MPI_Allgatherv, each
process sends its local vector elements, which are needed by at least one of its neigh-
bors, to all the processes. Though this all-to-all approach requires the buffer to store
the receiving messages from all the processes at once, it could obtain a significant
speedup over the point-to-point communication, especially when the nonzeros of the
matrix follows the power-law distribution.

Bringing High Performance Computing to Big Data Algorithms 797

(a) 1DBR with neighborhood-
collective before local SpMM.

(b) 1DBC with all-reduce after local SpMM.

Fig. 12 Illustration of matrix and vector distributions for SpMM with A and AT . The submatrices
distributed to the same GPU are colored in the same color. In Figure (a) or (b), the sparse matrices
A and AT are distributed either in 1D block row or block column (1DBR or 1DBC in short),
respectively

Sine many matrices of our interests are tall-skinny, to perform SpMM with AT ,
our current implementation keeps the input and output vectors, P̂ and Q̂, in the
1D block row distribution, but distribute AT in the 1D block column (see Fig. 12b).
Since the columns of AT are the same as the rows of A on each GPU, we do not
need to separately store AT and A. In this implementation, each GPU first computes
SpMM with its local parts of AT and P̂ , and then copies the partial result to the
CPU. Then, the MPI process computes the final result Q̂ by a global all-reduce, and
copies its local part back to the GPU. Hence, this requires each MPI process to store
the global vectors Q̂. However, when AT has the power-law distribution, performing
SpMM with AT in the 1D block row requires each GPU to store the much longer
global vectors P̂ . Our performance results have demonstrated the advantage of this
all-reduce communication. Furthermore, partitioning AT in the 1D block column
often led to a higher performance of SpMM on each GPU as the local submatrix
becomes more square than tall-skinny.

3.3.2 Orthogonalization

For our experiments in this paper, we used the block classical Gram-Schmidt (CGS)
[18] to orthogonalize a set of vectors against another set of vectors (block orthogonal-
ization, or BOrth in short) and the Cholesky QR (CholQR) [56] to orthogonalize the
set of vectors against each other. In our previous studies, these algorithms obtained
great performance on multiple GPUs on a single compute node [63] or on a hybrid
CPU/GPU cluster [65]. This is because these algorithms can orthogonalize the basis
vectors with a low communication cost. For example, CholQR requires only one

798 H. Anzt et al.

global reduction between the GPUs, while most of the local computation is based on
BLAS-3 kernels on the GPU.

3.4 Randomized Algorithms to Update SVD

Though the randomized algorithms have the potential to efficiently compute the SVD
on the GPUs, there are several obstacles that need to be overcome. In particular, the
randomized algorithm may require only a small number of data accesses, but each
data access can be expensive due to the irregular sparsity pattern of the matrix and
the power-law distribution of its nonzeros. Though several techniques to avoid such
communication have been proposed [22], these techniques may not be effective for
computing the SVD of the modern data because they often require a significant
computational or communication overhead due to the particular sparsity structure of
the matrix [64].

To address this challenge, we studied randomized algorithms to update (rather than
recompute) the partial SVD as the changes are made to the data set [66]. This is an
attractive approach because compared to recomputing it from scratch, the SVD may
be updated more efficiently, while in modern applications, the existing data are being
constantly updated and new data is being added. Moreover, in some applications,
recomputing the SVD may not be possible because the original data, for which the
SVD has been already computed, is no longer available. At the same time, in modern
applications, the size of the update is significant even though it is much smaller than
the massive data that has been already compressed. Therefore, an efficient updating
algorithm is needed to address the large volume and high velocity of the modern data
sets. Such applications with the rapidly changing data include the communication
and electric grids, transportation and financial systems, personalized services on the
internet, particle physics, astrophysics, and genome sequencing [11].

3.4.1 Case Studies

To study the potential of the randomized algorithm, we studied its performance for a
popular statistical analysis tool, the principal component analysis (PCA) [7]. In PCA,
a multidimensional dataset is projected onto a low-dimensional subspace given by the
partial SVD such that related items are close to each other in the projected subspace.
Here, we show the results from two particular applications of PCA, Latent Semantic
Indexing (LSI) and population clustering.

For information retrieval by text mining [54], a variant of PCA, Latent Semantic
Indexing (LSI) [13], has been shown to effectively address the ambiguity caused
by the synonymy or polysemy, which are difficult to address using a traditional
lexical-matching [31]. Figure 13a compares the average 11-point interpolated preci-
sions [29] after adding different numbers of documents from the MEDLINE matrix.
Our test matrices are the term-document matrices generated using the Text to Matrix

Bringing High Performance Computing to Big Data Algorithms 799

Fig. 13 Case studies with
randomized algorithms for
LSI (k = 50)

532 582 632 682 732 782 832 882 932 982 1032
0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

Number of documents

A
ve

ra
ge

 p
re

ci
si

on

Recompute
Update
Update−inc
Random−2

(a) Latent semantic indexing.

Total number of documents, n+d
Method 700 800 900 1000 1100 1200 1300 1400
Recompute 26.7 30.9 32.0 32.5 32.7 31.3 30.8 29.8
Update 26.7 29.8 30.1 30.7 31.5 30.7 30.4 29.7
Update-inc 26.7 29.8 30.1 30.6 30.9 30.1 29.8 29.5
Random-1 26.7 29.0 29.9 31.9 31.9 30.9 29.5 28.6
Random-2 26.7 29.6 29.6 30.0 31.0 30.1 30.0 29.7
Random-3 26.7 29.6 28.2 28.2 27.9 27.4 26.8 25.8

(b) Average 11-point interpolated precision for 6916-by-
1400 CRANFIELD matrix with 225 queries, n= 700.

Generator (TMG)1 and the TREC dataset,2 and are preprocessed using thelxn.bpx
weighing scheme [29]. These are the standard test matrices and were used in the pre-
vious studies [59, 68]. For our studies, we first performed 20 power iterations of
the randomized algorithm to compute the rank-k approximation of the matrix Â
representing the first 700 documents Then, the figure shows the average precision
after new columns are added (e.g., under the column labeled “1000,” 300 docu-
ments were added). To recompute the partial SVD of the matrix, we performed 20
power iterations, while the randomized algorithm used the oversampling parameter
set to be � = k (i.e., r = 2k), and performed two iterations that access the matrix
three times. Since the basis vectors P̂ and Q̂ approximate the ranges of Â and ÂT ,
respectively, the randomized algorithm accesses the matrix at least twice. Then, they
access the matrix one more time to compute the projected matrix B. We let the
incremental update algorithm (Update-inc) add k + � columns at a time such that it
requires about the same amount of memory as the randomized algorithm. We see that
with only three data passes, the randomized algorithm obtained similar precisions as
those of the updating algorithm. In some cases, the updating and randomized algo-
rithms obtained higher precisions than recomputing the SVD, while the precisions of

1http://scgroup20.ceid.upatras.gr:8000/tmg.
2http://ir.dcs.gla.ac.uk/resources.

http://scgroup20.ceid.upatras.gr:8000/tmg
http://ir.dcs.gla.ac.uk/resources

800 H. Anzt et al.

Fig. 14 Case studies with
randomized algorithms for
population clustering

−0.058 −0.056 −0.054
0.02

0.022

0.024

0.026

0.028

0.03

0.032

0.034

0.036

0.038

0.04
JPT
CHB
CHD

−0.055 −0.05 −0.045
−0.13

−0.12

−0.11

−0.1

−0.09

−0.08

−0.07
MEX

Average Clustering Correlation Coefficient = 0.85

(a) Population clustering.

JPT+MEX + ASW + GIH + CEU
Recompute 1.00 1.00 1.00 0.97
No update 1.00 0.81 0.84 0.67
Update-inc 1.00 1.00 0.89 0.70
Random-1 1.00 0.95 0.92 0.86

(b) Average correlation coefficients of popula-
tion clustering based on the five dominant singu-
lar vectors, where 83 African ancestry in south
west USA (ASW), 88 Gujarati Indian in Hous-
ton (GIH), and 165 European ancestry in Utah
(CEU) were incrementally added to the 116,565
SNP matrix of 86 Japanese in Tokyo and 77
Mexican ancestry in Los Angeles, USA (JPT and
MEX). Random-1 iterated twice with � = k.

the incremental update slightly deteriorated at the end. Such phenomena were also
reported in the previous studies [58, 68].

PCA has been also successfully used to extract the underlying genetic structure of
human populations [45, 51, 52]. To study the potential of the randomized algorithm,
we used it to update the SVD, when a new population is added to the population
dataset from the HapMap project.3 Figure 14 shows the correlation coefficient of
the resulting population cluster, which is computed using the k-mean algorithm
of MATLAB in the low-dimensional subspace given by the dominant left singular
vectors. We randomly filled in the missing data with either −1, 0, or 1 with the
probabilities based on the available information for the SNP. We let the randomized
algorithm iterate twice, and with only the three data passes, the randomized algorithm

3http://hapmap.ncbi.nlm.nih.gov.

http://hapmap.ncbi.nlm.nih.gov

Bringing High Performance Computing to Big Data Algorithms 801

improved the clustering results, potentially reducing the number of times the SVD
must be recomputed.

3.4.2 Performance Studies

We now study the performance of the randomized algorithm on the Tsubame Com-
puter at the Tokyo Institute of Technology.4 Each of its compute nodes consists of
two six-core Intel Xeon CPUs and three NVIDIA Tesla K20Xm GPUs. We com-
piled our code using the GNU gcc version 4.3.4 compiler and the CUDA nvcc
version 6.0 compiler with the optimization flag -O3, and linked it with Intel’s Math
Kernel Library (MKL) version xe2013.1.046.

Figure 15a compares the strong parallel scaling of the randomized algorithm with
that of the current state-of-the-art updating algorithm [68]. Clearly, the state-of-the-
art algorithm can spend significantly longer time in the orthogonalization, leading
to a great speedup obtained by the randomized algorithm (i.e., the speedups of up to
14.1). At the same time, the speedup decreased on a larger number of GPUs. This
is because the execution time of the randomized algorithm is dominated by SpMM,
whose strong parallel scaling suffered from the increasing inter-GPU communication
cost for this relatively small-scale matrix that was used for this study. On the other
hand, the updating algorithm was still spending a significant amount of its execution
time for the orthogonalization which was still compute intensive and scaled over
the small number of the GPUs. On a larger number of GPUs, compared to the
randomized algorithm, the updating algorithm is expected to suffer from the greater
communication latency.

Figure 15b shows the weak parallel scaling results for the document-document
matrix used in a previous LSI study [69]. The matrix row contains 2,559,430 doc-
uments, and each column contains about 4, 176 nonzero entries. The weak parallel
scaling results, in particular, show the advantages of the randomized algorithm due
to its ability to compress the desired information into a small projection subspace
using a small number of data passes. For the updating algorithm, the accumulated
cost of the SVDs of the projected matrices also became significant.

4 Conclusions

In this chapter, two mainstream Big Data algorithms were discussed: the Alternating
Least Squares algorithm for solving the matrix completion problem and the Singular
Value Decomposition algorithm for computing a low-rank approximation of a matrix,
both of which pose significant challenges when offloading to a GPU or a computing
cluster with multiple GPUs.

4http://tsubame.gsic.titech.ac.jp.

http://tsubame.gsic.titech.ac.jp

802 H. Anzt et al.

Fig. 15 Performance studies
with randomized algorithms

Update Random−1 Update Random−1 Update Random−1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

T
im

e
(s

)

Other
SVD
TSQR
GEMM
SpMM

13.4x on
3 GPUs

14.1x on
12 GPUs

7.7x on
48 GPUs

(a) Strong parallel scaling.

Update Random Update Random Update Random Update Random
0

2

4

6

8

10

12

14

T
im

e
(s

)

Other
SVD
TSQR
GEMM
SpMM

21.9x
on 12GPUs

29.7x
on 24GPUs

38.9x
on 48GPUs

37.6x
on 96GPUs

(b) Weak parallel scaling.

In the case of the ALS algorithm, the technique of automatic software tuning
was used to achieve top performance, leading to an order of magnitude performance
advantage over mainstream open source packages, GraphLab and Spark MLlib, and
three orders of magnitude advantage over Mahout (Hadoop), when using a single
GPU as opposed to a multicore CPU (16 cores).

In the case of the SVD algorithm, the technique of random projection was applied
to implement the algorithm efficiently on a computing cluster with up to 48 GPUs,
and also to implement an algorithm for updating a previously computed factorization
upon arrival of new data. In this case, the algorithmic innovations also lead to an order
of magnitude performance advantage.

Bringing High Performance Computing to Big Data Algorithms 803

Both case studies show the kind of impact that cutting-edge HPC techniques can
have on the world of Big Data by enabling efficient use of accelerators, which leads
to massive performance improvements.

References

1. Apache, Mahout version 0.9 (2015a). https://mahout.apache.org/
2. Apache, Spark version 1.5 (2015b). http://spark.apache.org/
3. J. Baglama, L. Reichel, Augmented implicitly restarted Lanczos bidiagonalization methods.

SIAM J. Sci. Comput. 27, 19–42 (2005)
4. J. Bennett, S. Lanning, The netflix prize, in Proceedings of the KDD Cup Workshop 2007

(ACM, New York, 2007), pp 3–6. http://www.cs.uic.edu/~liub/KDD-cup-2007/NetflixPrize-
description.pdf

5. M.W. Berry, Large scale sparse singular value computations. Int. J. Supercomput. Appl. 6,
13–49 (1992)

6. T. Bertin-Mahieux, D.P. Ellis, B. Whitman, P. Lamere, The million song dataset, in Proceedings
of the 12th International Conference on Music Information Retrieval (ISMIR) (2011)

7. C. Bishop, Pattern Recognition and Machine Learning (Springer, New York, 2006)
8. P. Biswas, T.C. Lian, T.C. Wang, Y. Ye, Semidefinite programming based algorithms for sensor

network localization. ACM Trans. Sensor Networks (TOSN) 2(2), 188–220 (2006)
9. E.J. Candès, B. Recht, Exact matrix completion via convex optimization. Found. Comput.

Math. 9(6), 717–772 (2009)
10. P. Chen, D. Suter, Recovering the missing components in a large noisy low-rank matrix: appli-

cation to SFM. IEEE Trans. Pattern Anal. Mach. Intell. 26(8), 1051–1063 (2004)
11. Committee on the Analysis of Massive Data, Committee on Applied and Theoretical Statistics,

Board on Mathematical Sciences and Their Applications, Division on Engineering and Physical
Sciences, National Research Council (2013). Frontiers in Massive Data Analysis. The National
Academies Press

12. Dato, GraphLab version 1.3 (2015). https://dato.com/products/create/open_source.html
13. S. Deerwester, S. Dumais, G. Furnas, T. Landauer, R. Harshman, Indexing by latent semantic

analysis. J. Am. Soc. Inf. Sci. 41, 391–407 (1990)
14. DOE Office of Science, Synergistic challenges in data-intensive science and exascale com-

puting. DOE Advanced Scientific Computing Advisory Committee (ASCAC) (2013). Data
Subcommittee Report

15. S.H. Fuller, L.I. Millett, The Future of Computing Performance: Game Over Or Next Level?
(National Academy Press, Washington, DC, 2011)

16. M. Gates, H. Anzt, J. Kurzak, J. Dongarra, Accelerating collaborative filtering using concepts
from high performance computing, in 2015 IEEE International Conference on Big Data (Big
Data) (IEEE, 2015), pp. 667–676

17. D. Goldberg, D. Nichols, B.M. Oki, D. Terry, Using collaborative filtering to weave an infor-
mation tapestry. Commun. ACM 35(12), 61–70 (1992)

18. G. Golub, C. van Loan, Matrix Computations, 4th edn. (The Johns Hopkins University Press,
Baltimore, 2012)

19. G. Golub, F. Luk, M. Overton, A block Lanczos method for computing the singular values and
corresponding singular vectors of a matrix. ACM Trans. Math. Softw. 7, 149–169 (1981)

20. S. Graham, M. Snir, C. Patterson, Getting Up to Speed: The Future of Supercomputing (The
National Academies Press, Washington, DC, 2004)

21. N. Halko, P. Martinsson, J. Tropp, Finding structure with randomness: probabilistic algorithms
for constructing approximate matrix decompositions. SIAM Rev. 53(2), 217–288 (2011)

22. M. Hoemmen, Communication-avoiding Krylov subspace methods. Ph.D. thesis, University
of California, Berkeley (2010)

https://mahout.apache.org/
http://spark.apache.org/
http://www.cs.uic.edu/~liub/KDD-cup-2007/NetflixPrize-description.pdf
http://www.cs.uic.edu/~liub/KDD-cup-2007/NetflixPrize-description.pdf
https://dato.com/products/create/open_source.html

804 H. Anzt et al.

23. Y. Hu, Y. Koren, C. Volinsky, Collaborative filtering for implicit feedback datasets, in IEEE
International Conference on Data Mining (ICDM) (2008), pp. 263–272

24. Innovative Computing Lab, BEAST (2015). http://icl.utk.edu/beast/
25. Intel Corp, Developer Reference for Intel Math Kernel Library (2015). https://software.intel.

com/en-us/articles/mkl-reference-manual
26. Intel Corp, Intel Data Analytics Acceleration Library 2016, Developer Guide (2016)
27. P. Jain, P. Netrapalli, S. Sanghavi, Low-rank matrix completion using alternating minimization,

in Proceedings of the Forty-Fifth annual ACM Symposium on Theory of Computing (ACM,
2013), pp 665–674

28. I. Karasalo, Estimating the covariance matrix by signal subspace averaging. IEEE Trans.
Acoust. Speech Signal Process. 34(1), 8–12 (1986)

29. T. Kolda, D. O’Leary, A semidiscrete matrix decomposition for latent semantic indexing infor-
mation retrieval. ACM Trans. Inf. Syst. 16(4), 322–346 (1998)

30. Y. Koren, Factorization meets the neighborhood: a multifaceted collaborative filtering model,
in Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD’08 (ACM, New York, 2008), pp. 426–434

31. R. Krovetz, W.B. Croft, Lexical ambiguity and information retrieval. ACM Trans. Inf. Syst.
10(2), 115–141 (1992)

32. J. Kurzak, S. Tomov, J. Dongarra, Autotuning gemm kernels for the Fermi GPU. IEEE Trans.
Parallel Distrib. Syst. 23(11), 2045–2057 (2012)

33. J. Kurzak, H. Anzt, M. Gates, J. Dongarra, Implementation and tuning of batched Cholesky
factorization and solve for NVIDIA GPUs. Trans. Parallel Distrib. Syst. (2015). doi:10.1109/
TPDS.2015.2481890

34. C. Lam, Hadoop in Action (Manning Publications Co., Stamford, 2010)
35. D. Laney, 3D data management: controlling data volume, velocity, and variety. Application

Delivery Strategies by META Group Inc., File: 949 (2001)
36. E. Liberty, F. Woolfe, P.G. Martinsson, V. Rokhlin, M. Tygert, Randomized algorithms for the

low-rank approximation of matrices. Proc. National Acad. Sci. 104(51), 20167–20172 (2007)
37. Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, j.M. Hellerstein, GraphLab: a new

framework for parallel machine learning. CoRR abs/1006.4990 (2010). http://arxiv.org/abs/
1006.4990

38. Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, J.M. Hellerstein, Distributed
GraphLab: a framework for machine learning and data mining in the cloud. Proc. VLDB
Endow. 5(8), 716–727 (2012)

39. P. Luszczek, M. Gates, J. Kurzak, A. Danalis, J. Dongarra, Search space generation and pruning
system for autotuners, in International Workshop on Automatic Performance Tuning (iWAPT
2016) (2016, submitted)

40. D. Lyubimov, Command line interface, stochastic SVD. Technical report, The Apache Soft-
ware Foundation (2014). https://mahout.apache.org/users/dim-reduction/ssvd.page/SSVD-
CLI.pdf

41. M.W. Mahoney, Randomized algorithms for matrices and data. Found. Trends® Mach. Learn.
3(2), 123–224 (2011)

42. P.G. Martinsson, V. Rockhlin, M. Tygert, A randomized algorithm for the approximation of
matrices. Technical report, DTIC Document (2006)

43. P. McJones, Eachmovie collaborative filtering data set. DEC Systems Research Center 249
(1997)

44. X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu, J. Freeman, D. Tsai,
M. Amde, S. Owen et al., MLlib: Machine learning in Apache Spark (2015). arXiv preprint
arXiv:150506807

45. P. Menozzi, A. Piazza, L. C-Sforza, Synthetic maps of human gene frequencies in Europeans.
Science 201, 786–792 (1978)

46. NVIDIA Corp, cuBLAS Library User Guide, v7.0 (2015a)
47. NVIDIA Corp, CUDA C Programming Guide, v7.0 (2015b)

http://icl.utk.edu/beast/
https://software.intel.com/en-us/articles/mkl-reference-manual
https://software.intel.com/en-us/articles/mkl-reference-manual
http://dx.doi.org/10.1109/TPDS.2015.2481890
http://dx.doi.org/10.1109/TPDS.2015.2481890
http://arxiv.org/abs/1006.4990
http://arxiv.org/abs/1006.4990
https://mahout.apache.org/users/dim-reduction/ssvd.page/SSVD-CLI.pdf
https://mahout.apache.org/users/dim-reduction/ssvd.page/SSVD-CLI.pdf
http://arxiv.org/abs/150506807

Bringing High Performance Computing to Big Data Algorithms 805

48. S. Owen, R. Anil, T. Dunning, E. Friedman, Mahout in Action (Manning Publications Co.,
Greenwich, 2011)

49. P. Paschou, E. Ziv, E. Burchard, S. Choudhry, W. R-Cintron, M. Mahoney, P. Drineas, PCA-
correlated SNPs for structure identification in worldwide human populations. PLoS Genet. 3,
1672–1686 (2007)

50. A. Paterek, Improving regularized singular value decomposition for collaborative filtering, in
Proceedings of KDD Cup and Workshop (2007), pp. 39–42

51. N. Patterson, A. Price, D. Reich, Population structure and eigenanalysis. PLoS Genet. 2(12),
2074–2093 (2006)

52. A. Price, N. Patterson, R. Plenge, M. Weinblatt, N. Shadick, D. Reich, Principal components
analysis corrects for stratification in genome-wide association studies. Nature Genet. 38(8),
904–909 (2006)

53. R.A. Rossi, N.K. Ahmed, The network data repository with interactive graph analytics and
visualization, in Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence
(2015). http://networkrepository.com

54. G. Salton, M. McGill, Introduction to Modern Information Retrieval (McGraw-Hill, New York,
1983)

55. B. Sarwar, G. Karypis, J. Konstan, J. Riedl, Analysis of recommendation algorithms for e-
commerce, in Proceedings of the 2nd ACM Conference on Electronic Commerce (2000), pp
158–167

56. A. Stathopoulos, K. Wu, A block orthogonalization procedure with constant synchronization
requirements. SIAM J. Sci. Comput. 23(6), 2165–2182 (2002)

57. W. Tan, L. Cao, L.L. Fong, Faster and cheaper: Parallelizing large-scale matrix factorization
on gpus. CoRR abs/1603.03820 (2016). http://arxiv.org/abs/1603.03820

58. J. Tougas, R. Spiteri, Updating the partial singular value decomposition in latent semantic
indexing. Comput. Statist. Data Anal. 52, 174–183 (2007)

59. E. Vecharynski, Y. Saad, Fast updating algorithms for latent semantic indexing. SIAM J. Matrix
Anal. Appl. 35(3), 1105–1131 (2014)

60. T. White, Hadoop: The Definitive Guide (O’Reilly Media, Inc., Sebastopol, 2012)
61. K. Wu, H. Simon, Thick-restart Lanczos method for large symmetric eigenvalue problems.

SIAM J. Matrix Anal. Appl. 22(2), 602–616 (2000)
62. I. Yamazaki, K. Wu, A communication-avoiding thick-restart lanczos method on a distributed-

memory system, in Proceedings of the 2011 International Conference on Parallel Processing,
Euro-Par’11 (Springer, Berlin, 2012), pp. 345–354

63. I. Yamazaki, H. Anzt, S. Tomov, M. Hoemmen, J. Dongarra Improving the performance of
CA-GMRES on multicores with multiple GPUs, in Proceedings of the IEEE International
Parallel and Distributed Symposium (IPDPS) (2014a), pp. 382–391

64. I. Yamazaki, T. Mary, J. Kurzak, S. Tomov, Access-averse framework for computing low-rank
matrix approximations, in Proceedings of the International Workshop on High Performance
Big Graph Data Management, Analysis, and Minig (2014b), pp. 70–77

65. I. Yamazaki, S. Rajamanickam, E. Boman, M. Hoemmen, M. Heroux, S. Tomov, Domain
decomposition preconditioners for communication-avoiding Krylov methods on a hybrid
CPU/GPU cluster, in Proceedings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis (SC) (2014c), pp. 933–944

66. I. Yamazaki, J. Kurzak, P. Luszczek, J. Dongarra, Randomized algorithms to update partial
singular value decomposition on a hybrid CPU/GPU cluster, in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis (SC) (2015),
pp. 345–354

67. M. Zaharia, M. Chowdhury, M.J. Franklin, S. Shenker, I. Stoica, Spark: cluster computing
with working sets, in Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud
Computing, vol. 10 (2010), p.10

68. H. Zha, H. Simon, On updating problems in latent semantic indexing. SIAM J. Sci. Comput.
21(2), 782–791 (1999)

http://networkrepository.com
http://arxiv.org/abs/1603.03820

806 H. Anzt et al.

69. H. Zha, O. Marques, H. Simon, Large-scale SVD and subspace-based methods for information
retrieval, in Solving Irregularly Structured Problems in Parallel, vol. 1457, Lecture Notes in
Computer Science, ed. by A. Ferreira, J. Rolim, H. Simon, S.-H. Teng (Springer, Heidelberg,
1998), pp. 29–42

70. Y. Zhou, D. Wilkinson, R. Schreiber, R. Pan, Large-scale parallel collaborative filtering for
the netflix prize in Proceedings of the 4th International Conference on Algorithmic Aspects in
Information and Management, AAIM’08 (Springer, Berlin, 2008), pp. 337–348

Cognitive Computing: Where Big Data
Is Driving Us

Ana Paula Appel, Heloisa Candello and Fábio Latuf Gandour

Abstract In this chapter we will discuss the concepts and challenges to design
Cognitive Systems. Cognitive Computing is the use of computational learning sys-
tems to augment cognitive capabilities in solving real world problems. Cognitive
systems are designed to draw inferences from data and pursue the objectives they
were given. The era of big data is the basis for innovative cognitive solutions that
cannot rely on traditional systems.While traditional computers must be programmed
by humans to perform specific tasks, cognitive systems will learn from their inter-
actions with data and humans. Not only is Cognitive Computing a fundamentally
new computing paradigm for tackling real world problems, exploiting enormous
amounts of data using massively parallel machines, but also it engenders a new form
of interaction between humans and computers. As machines start to enhance human
cognition and help people make better decisions, new issues arise for research. We
will address these questions for Cognitive Systems: What are the needs? Where to
apply? Which are the sources of information to relying on?

1 Cognitive Computing: An Alternative Approach
for Clear Understanding

Cognitive Computing is a term which became quite popular in a relatively short
period of time. Given the origin of this popularity in a contest between man and
machine, it was unavoidable the comparison with the former attempts to create arti-
ficial intelligence, as coined by John McCarty in 1955 and further explored in the
1980s. Latter in this chapter we will address the similarities and differences between

A.P. Appel (B) · H. Candello · F.L. Gandour
IBM Research, São Paulo, Brazil
e-mail: apappel@br.ibm.com

H. Candello
e-mail: heloisacandello@br.ibm.com

F.L. Gandour
e-mail: fgandour@br.ibm.com

© Springer International Publishing AG 2017
A.Y. Zomaya and S. Sakr (eds.), Handbook of Big Data Technologies,
DOI 10.1007/978-3-319-49340-4_24

807

808 A.P. Appel et al.

Fig. 1 The original e-Business logo and definition, as it appeared in the WSJ

that AI (Artificial Intelligence), and todays promises of Cognitive Computing. For
the moment, we can say that there are more differences than similarities.

The popularity of Cognitive Computing in the 21st century may be understood
from 2 perspectives:

• One is the ability of IBM to create global agendas and
• The other is the real need to evolve to a new and innovative level on using data.

A quick review of both view angles may be worthwhile to understand the past,
present and eventual future ofCognitiveComputing.Lets begin by recovering another
successful global agenda, the e-Business. To do so, we suggest you to ask to any
person 18 year old or less, if he or shewould remember a timewhen it was impossible
to buy goods over the Internet. Very likely, this person will say that he or she has a
vague memory of this time or even that this time has never existed. In fact, the action
which transformed the Internet in the commercial platform as we see it today was
greatly based in the creation made by IBM in the early 90s, made public in an 8 pages
e-Businessmanifesto inserted in theWall Street Journal in October, 1997 (Fig. 1) and
highly publicized by Ogilvy and Mather from 1998 onwards.1 The success of this
initiative has transformed the e-Business, an acronym which stands for Electronic
Business, into a global agenda and today, using the Internet as a commercial platform
may be considered a given element of the human culture [67].

Likewise, in October 2014, IBM has released another manifesto in the sameWall
Street Journal, now talking about something that became public in an event of great
impact: the competition between a machine called “Watson” and two human beings
at the popular TV show Jeopardy. In fact, the Watson which came up at that impact-
ing media event was made up by several connecting modules and some of them
have started to be build many years ago, such as the concepts of UIMA (Unstruc-
tured Information Management Architecture). Although UIMA was made popular

1Figure extract from http://www-03.ibm.com/ibm/history/ibm100/us/en/icons/ebusiness/
transform/ last visit 9th March, 2016.

http://www-03.ibm.com/ibm/history/ibm100/us/en/icons/ebusiness/transform/
http://www-03.ibm.com/ibm/history/ibm100/us/en/icons/ebusiness/transform/

Cognitive Computing: Where Big Data … 809

as an Apache component from 2006 on and as an Oasis component from 2009 on
http://uima.apache.org, UIMA concepts started to be created back in 2003 and were
first out together in the IBM Systems Journal [33]. All this historical aspects are
mentioned here to make clear that the Cognitive Computing foundational concepts
have evolved since long ago, in a process of maturation which reached the status we
can appreciate now.

After this retrospect around global agendas, lets focus now on the real need to
evolve to a new and innovative level on using data.We have heard about the evolution-
ary aspect of IT (Information Technology), moving from DP (Data Processing), to
IM (InformationManagement) and the contribution to KG (Knowledge Generation).

Figures2, 3 and 4 illustrates this evolution.

Fig. 2 A set of numbers
consist of pure data

Fig. 3 By adding the title
DOB Date of Birth, the data
set became an information
table

http://uima.apache.org

810 A.P. Appel et al.

Fig. 4 By adding an
annotation, one can now use
the Information Table to feed
a machine learning process

The addiction of a simple title in this data table will add a new meaning to the
data set which will become now an Information Table, as shown in Fig. 3.

From the information table, one already extracts a lot of information such as the
average age of this population, higher and lower limits, standard deviation, etc.

A new dimension in the information created by the title DOB, can now be attained
by the use of annotation symbols, as show in Fig. 4.

The Information Table properly slashed got the adequate format to be ingested by
a machine learning methodology. At this point, when our initial data set has evolved
to a new format ready to be understood by a machine, we are getting closer to what
has been called Cognitive Computing: the use of computational learning systems to
augment cognitive capabilities in solving real world problems.

So far, the evolution from data to information could be attained by a machine but
the generation of knowledge on top of the information was essentially the result of
a human function.

Running in a parallel track, the Psychology has studied the human mechanism
of cognition, defined as “the mental action or process of acquiring knowledge and
understanding through thought, experience, and the senses”. As a “mental action”,
cognition has been studied as a process essentially performed by human or, at most,
superior living beings, by connecting abilities related to linguistics, neuroscience,
psychiatry, psychology, education, philosophy, anthropology and logic.

In another parallel track, due to some reasons including the ever lowering prices
of data storage media, the IT facilities ended up storing an astonishing amount of
data.

This huge amount of data was in the foundation of the appearance of Big Data
and Data Analytics areas. However, the expansion of Social Computing has added
another aspect to the data stored: instead of being structured, more and more the data
stored is unstructured.

Cognitive Computing: Where Big Data … 811

At the end of the first decade of the 21st century, IT world was supported by
a robust infrastructure of data storage, a number of algorithms and tools of Data
Analytics, stable UIMA protocols developed under the umbrella of Apache Software
Foundation since 2006 and Oasis since 2009 https://uima.apache.org/, forming a
perfect set of tools and methods to analyze massive unstructured data. At the same
time, the prices of high performance hardware came to a reasonable level, including
the ever expensive memory chips.

That was the perfect circumstance to face a new challenge: trying to build a
machine capable of executing cognition, defined byPsychologists as amental process
[60] but being now, performed by a machine. As a first step to face this challenge,
a sophisticated set of modules were put together in the first publicly successful
experiment, the Watson System, competing in the Jeopardy TV show in November
2011. Of course, from this experiment on, a lot of improvements have happened but
that is the landmark of the beginning of Cognitive Computing as a new era of IT.
From then on, we can go from data to information and then, reach a new level of use
of the machine as a device with cognitive capability. And this capability will at least,
expand the decision making process of the end user, certainly a human being.

As we said, the comparison with the Artificial Intelligence of the 80s is inevitable
but the differences are obvious:

• The experiments of AI of the 80s tried to mimic the brain functionality which
resulted in a number of knowledge representation forms.

• Under this paradigm, we have had projects based on inference engines operating
production rules, like the renowned MYCIN, from Edward Shortliffe [14, 88].

• Todays Cognitive Computing solution do not try to mimic the human brain
anymore but rather, work as a complementary expansion of the human way of
reasoning.

• To do so, Cognitive Computing foundation will put to work in a collaborative
fashion elements of NLP (Natural Language Processing), UIMA and data. An
immense amount of data easily available in each semantic field.

Of course, as in any other new wave in the field of IT, the beginning of the
Cognitive Computing Era, as it was called in the manifesto of October 2014, will
evolve through major changes, peculiar to the onset of any new technology. In any
case, we believe that this new era may well change the way see and use data, now
more easily transformed in the input for the enhancement of human intelligence [49].

Cognitive Computing has multiple definitions, in a formal way Cognitive Com-
puting was defined by John E. Kelly III, IBM Senior Vice President of Cognitive
Solutions and Research in his book [49] as been:

Cognitive computing [is] not just a new computing system or computing paradigm but a
whole new era of computing The explosion of data in the world and the rate and pace of
change has outstripped our ability to reprogram these systems We have coined this [era]
cognitive because it has attributes that are more like human cognition. These are not systems
that are programmed; they are systems that learn. These are not systems that require data to
be neatly structured in tables or relational databases. They can deal with highly unstructured
data, from tweets to signals coming off sensors.

https://uima.apache.org/

812 A.P. Appel et al.

Trying to create a clearer view of this field, we can say that so far, we simple
gathered data and put it in a useful format of information:

Now, by using Cognitive Computing methods, we will be able to extract knowl-
edge automatically from data: Data Information Cognition Knowledge

If succeeding in this attempt, the extracted knowledge, once acquired, refined and
accumulated, may take the us to the next level of sophistication, the generation of
wisdom: Data Information Cognition Knowledge Wisdom

If that happens, todays definition of Cognitive Computing can be considered
the process to automatically extract knowledge from data and in the future, the
same definition may well be expanded to the process of generate wisdom from the
accumulated knowledge.

2 Big Data Impulsing Cognitive System

The term Big Data was first used at Silicon Graphics (SGI) in the mid 1990s. John
Mashey, retired former Chief Scientist at SGI was the responsible to explicit the
awareness with this phenomena [26].

Among all the definitions offered for Big Data the one that seams fit better in the
context of cognitive system is data thats too big, too fast, or too hard for existing
tools to process.

In the last decade the volume of data storage not only from companies but indi-
viduals grow exponentially. If in the beginning of Big Data era the World Wide Web
(WWW)was the main reason for data volume increase nowmobile devices are being
the ones responsible for that. Each day the number of videos, photos and text that
we storage is bigger that in the previous day. Social networks, which in the begin-
ning was mainly feed with text, is flooding with videos and photos, even in a single
“happy B-day” post we find pictures of cakes. Also, much of human communication,
whether it is in natural-language text, speech, or images, is unstructured.

How to handle large volumes of data was always a problem in computer science
and the era of big data was responsible to push parallel and distribution processing
to help handle these large volume of data. Another question with big data is that the
volume increased so fast that the development of new technologies tomine these data
did not follow this growth. Traditional Database Systems (DBMS) are not useful for
this kind of data, since traditional DBMS were best with numbers and small text. As
a result, new technologies were developed as distributed processing system such as
Map/Reduce models to increase performance and scalability [44].

However, the problem with big data was not only storing and retrieving, mining
this large volume of data with noise and unstructured data has being a nightmare
for decision making tools. Because most of tools do not support unstructured data
from different formats and sources, find a method that can extract useful information

Cognitive Computing: Where Big Data … 813

about these kind of data is a hard task. On the other hand, this has been a dreaming
for data science and research develop new ways to work with these kind of data. This
is so true, that in the last couple of years the number of companies looking for data
scientist has largely increased.

Doug Laney [52] was the first person to define big data in terms of V’s, that are:

• Volume: the volume grow each day and the tools do not scale in same proportion;
• Variety: we have several types of data as images, videos, long text, sensors, graphs,
links and so on

• Velocity: data are like streams which means they continuous coming and most of
tools are not able to process in real time;

IBM include one more V defining Big Data as Four V’s, which is Veracity for
uncertain in the data. And in [31] more two V’s are included, Variability: which
means that the data structure change and the way people interpret the data changes
too; Value: the business value that data can bring to organization given them a
competitive advantage based on the power to do decision making.

When wemove to Cognitive Systemwe can also include a 7th V in this definition,
that is Visualization: visualize a large amount of data is a tough problem and it is
very important to cognitive computing and can attach a enormous power to decision
making.

In the business world, companies are still trying to figure out how to use and
make decision based on these massive volume of data, and how to use unstructured
information to improve their business.

Cognitive System can deal with this massive amount of data amplifying human
intelligence, which is not scalable in the way that data is growing.

Cognitive computing is not trying to replicate what the human brain does.
There is a new Moores Law about unstructured data dark data accounts for 80%

of all data generated today. Most of that data is dark we cannot make sense of that
data. It is noisy or formats that cannot be read by traditional systems. Furthermore,
the amount of dark data is expected to grow to over 93% by 2020 as showed in Fig. 5.

Fig. 5 Data growing expectations

814 A.P. Appel et al.

Examples of area where will be a massive unstructured data collection could be
found in several industries, as Energy: more than 680 million smart meters will be
installed globally by 2017 producing more than 280 PB of new data to be analyzed
and acted upon; Security: in 2014, more than 1 billion personal data records were
compromised by cyber attacks; Transportation: By 2020, 75% of the worlds cars will
be connected and they will produce 350 MB of data per second to be assessed and
acted upon. And of course, is healthcare is an enormous industry, prime for disruption
and new forms of insight. All these industries will need to make real time decisions
about the environment based on learning about the environment and learning about
driver behavior.

3 Traditional Systems versus Cognitive Systems?

The history of computing can be divided into three eras as presented in Fig. 6 extract
from [49]. The first was the tabulating era, with the early 1900 calculators and
tabulating machines made of mechanical systems, and later made of vacuum tubes.
In the first era the numbers were fed in on punch cards, and there was no extraction
of the data itself.

The second era emerged in the 1940s, programmable machines are still based
on a design laid out by Hungarian American mathematician John von Neumann
and ranged from vacuum tubes to microprocessors. They are programmed on much
way to reach performance while executing restrict tasks, depending totally from the
instructions.

The third era is the cognitive computing era, where computing technology repre-
sented an intersection between neuroscience, supercomputing and nanotechnology.

Traditional computers must be programmed by humans to perform specific tasks
and they are designed to calculate rapidly and have only rudimentary sensing capa-
bilities, such as license-plate-reading systems on toll roads. The development of a
traditional system is represented in Fig. 7. First is necessary to have a project def-

Fig. 6 Three eras of computing based on [49]

Cognitive Computing: Where Big Data … 815

Fig. 7 Focus on functionality: meeting requirements of performance, correctness, scalability,
robustness, security, stability, etc

inition to specify the requirements to the system. Them the processes is split in
development and test to go to test and validation to finally deploy the system.

On the other hand, cognitive systems will be designed to draw inferences from
data and pursue the objectives they were given and will be able to sense more like
humans do. Theyll augment our hearing, sight, taste, smell and touch.

Ideally, cognitive systems, humans andmachineswill collaborate to producebetter
results each bringing its own skills to the partnership. The machines will be more
rational and analytic. People will provide judgment, intuition, empathy, a moral
compass, and human creativity (Fig. 8).

Cognitive Computing is poised to transform the IT industry, both in terms of
impact and how it works. As we can see the development of cognitive computing
solutions follows a very different flow centered on data. We can assure that this
will have a strong impact in Knowledge Discovery in Databases (KDD) area, since
the Cognitive Computing will change the way we discovery knowledge in this vast
amount of unstructured data.

4 Data Mining in the Era of Cognitive Systems

The acronym KDD was first define in 1996 by Usama Fayyad, Gregory Piatetsky-
Shapiro, andPadhraic Smyth in the paperFromDataMining toKnowledgeDiscovery
in Databases [32].

Fig. 8 Focus on data: continuous (re)training and quality data set assessment. Additional challenge:
generalization (keep accuracy on new scenarios)

816 A.P. Appel et al.

Fig. 9 Overview of the steps that compose KDD Process from [32]

In this paper KDD is defined as: The nontrivial process of identifying valid, novel,
potentially useful, and ultimately understandable patterns in data.

The KDD process proposed in Fayyad’s paper revolutionize a whole era allow
that a large volume of data start to bring insight for companies and a new field of
research was created.

As we see, even this paper has been written 20 years ago we are in exactly same
way as we can see by the beginning of the paper presented bellow:

Our ability to analyze and understand massive datasets lags far behind our ability to gather
and store the data. A new generation of computational techniques and tools is required
to support the extraction of useful knowledge from the rapidly growing volumes of data.
These techniques and tools are the subject of the emerging field of knowledge discovery in
databases (KDD) and data mining. Reference [32]

One could say that the Big Data Era make us go back 20 years but I believe that
be in the same way as Fayyad stated in his paper means that now we need to think
different and Cognitive system will allow us to do that.

The KDD (as presented in Fig. 9) is composed by following tasks: selection,
preprocessing, sub-sampling, and transformations of it; data-mining methods (algo-
rithms) to enumerate patterns from it; and evaluating the products of data mining to
identify the subset of the enumerated patterns deemed knowledge.

Over the years the data grew faster than new KDD techniques to mine data. Also,
the traditional KDD process and most of the methods proposed are for relational data
(the last D comes from database) what today is not a reality. Most of data produced
in the last decade, around 80%, is unstructured data composed by video, images,
long text, graph data and so on which do not fit in relational databases.

But, even with relational databases not been the storage of these new data and
new methods have been created to handle unstructured data, KDD process has been
largely used by the community and adapt for these newdata and algorithms.However,
when we move from tools that support KDD process for system that actually help in
KDD process, as cognitive system, this process does not hold completely anymore.

Cognitive Computing: Where Big Data … 817

• Procedural Process - a person need to say how she will extract the information,
which methods will be used;

• Data Scientist dependent (personal or team experience and knowledge);
• More interested in solving a computational problem than acquisition of knowledge;
• Not sufficient wisdom in using the knowledge;
• User Interaction only with the domain specialist;
• It does not learn with the process.

One of the biggest issue is despite all the tools developed over the years to support
KDD process, it is totally dependent of data scientist(s) that are conduct the process.
Also, the KDD processes is a procedural processes, where data scientist need to
specify not only the task but the methods within the task which makes the processes
iterative. This requests data scientist(s) execute and know a lot of techniques to
evaluate which one performs better. These techniques are dependent of data scientist
(or the team) background and sometimes these are also dependent from which area
the data scientist came. There are some works that address the problem of choose the
best technique for a dataset as presented in [9, 80]. However, these work are only to
find the best data mining method for a couple of dataset, or help find the parameter
for a specific type of method as classification as SVM [24].

Recently there is a frenetic search for data scientists and the background requested
for them are bigger each day. Not for only for a data scientist, but for any person in
mining field, is almost impossible to keep track and updated from all research and
development that have been doing in mining area. Not only in data mining traditional
but complex networks, videos, images and so on and data process platforms as Spark,
Hadoop, NoSQL data management, good reviews about these subjects can be found
in [1, 48, 62, 65, 71, 83, 85, 87].

The idea behind a cognitive system is to amplify human’s ability and because it is
centered on the data, cognitive system could perfectly help data scientist to find the
best task and technique to answer hypothesis about the data they were mining. So,
instead of be worried about which method, tool, storage and so on the data scientist
will be worried in the knowledge acquisition and solve real problems and he or she
will guide the system together with the domain specialist. Also, the system will learn
about the processes and could replicate or improve that learning that some methods
work better with a set of data instead of others (Fig. 10).

Based on this, in our point of view the data mining processes in cognitive age will
be:

• Declarative Process - the user specify what he/she want;
• System will learn the process, thus the processes can be replicate;
• Data Scientist will guide the system to extract knowledge;
• Knowledge will be used to improve data domain;
• Interaction with everybody not only data specialists;
• System use the result as a feedback for future use.

In this sense, Cognitive System can encapsulate data mining processes and extend
data scientist ability tomining large volume of data in amore efficient way. An exam-
ple this is “Celia” (Cognitive Environments Laboratory Intelligent Agent) [50]. Celia

818 A.P. Appel et al.

Fig. 10 Data Mining processes being viewed as a system that will be driven by data scientist and
will receive the produce results (good or not) as feedback for future use

Fig. 11 Scientistsworkingwith one another andwith themergers and acquisitionsCelia’s prototype
to discover companies that match desired criteria (Figure extract from [50])

is a prototype of symbiotic cognitive systems built over mergers and acquisitions use
case that allows user interact through several cameras, kinects, microphones, input
devices such as wands, and displays, including a large 4× 4 multi-panel display
in the front. Celia communicates through the displays and via speakers that play
synthesized speech over the laboratory speakers.

Using Celia specialists are able to discover and visualize companies matching
specified characteristics. Figure11 shows a image of Celia being used. They can also
use a decision agent that compares companies and their attributes side by side and

Cognitive Computing: Where Big Data … 819

receive guidance about which companies are most aligned with their preferences,
as inferred through repeated interactions with Celia. A video showing mergers and
acquisitions Celia’s prototype can be viewed in https://www.youtube.com/watch?v=
Sl6ehvwPhKs. Repsol will be the first to apply cognitive technologies for oil and gas
applications.2

5 Design Methods for Cognitive Systems

Techniques and methods are employed in the design process to facilitate collection,
development, evaluation and analysis of data. The choice of a method is related
to the purpose of the activity and what is to be achieved using certain techniques.
Additionally, cost and time are variables that have an impact on this selection.

Data gathering methods aim to collect data to understand the nature of potential
users and context to serve the base for development. Information collected not only
comes fromuser studies, but also other sources such as research literature, competitor
analysis, surveys, social networks data and background experience of designers.
Design methods are ways to refine, interpret and envision ideas from data collected
in the previous phase, in order to create a product and/or a system. Information is
transformed into a concrete object tailored to potential users. Evaluation methods
elucidate certain issues that were not clear in the previous phases and aim to discover
how users will use the system and what can be improved before the final system is
fully deployed. Not always this is a linear process, mainly when we are talking about
Cognitive systems that depend on data to function.

In this section priority is given to methods and techniques employed in designing
cognitive systems.

5.1 Quantitative and Qualitative Methods

It is important to distinguish between the nature of qualitative and quantitative
research. It could be suggested that this distinction is not clear. Reference [13] sup-
ports this notion stating that the status of the distinction is ambiguous and further
suggests that the difference is deeper than the superficial issue of the presence or
absence of quantification. Blaxter [11] p.64 concur:

... the use of questionnaires as a research technique might be seen as a quantitative strat-
egy, whereas interviews and observations might be thought of as qualitative techniques. In
practice, however, it is often more complicated than that. Thus, interviews may be struc-
tured and analyzed in a quantitative manner, as when numeric data is collected or when
non-numeric answers are categorized and coded in numeric form. Similarly, surveys may
allow for open-ended responses and lead to the in-depth study of individual cases.

2http://www.offshore-technology.com/features/featureturning-the-cogs-ibms-cognitive-
environments-lab-takes-on-offshore-exploration-4517222/ last visited in 9th March 2016.

https://www.youtube.com/watch?v=Sl6ehvwPhKs
https://www.youtube.com/watch?v=Sl6ehvwPhKs
http://www.offshore-technology.com/features/featureturning-the-cogs-ibms-cognitive-environments-lab-takes-on-offshore-exploration-4517222/
http://www.offshore-technology.com/features/featureturning-the-cogs-ibms-cognitive-environments-lab-takes-on-offshore-exploration-4517222/

820 A.P. Appel et al.

Hence, it could be summarized that qualitative research is more suitable for
observing individual behaviors whereas quantitative is better for broader research.

Human-Computer Interaction (HCI) lies at the intersection between the social and
behavioral sciences on the one hand, and computer and information technology on the
other hand. It is concerned with understanding how people make use of devices and
systems that incorporate or embed computation, and how such devices and systems
can be more useful and more usable [18]. Therefore, the use of mixed methods is
essential to understand how people interact with computer-based systems. The use of
quantitative research shows, for example, the numbers of minutes it takes to perform
a task or the number of errors made by users. On the other hand, qualitative research
focuses on the nature of something and can be represented by themes, patterns,
and stories [74] p. 356. Additionally, the use of qualitative methods is motivated
by the need to understand user work before design begins, the inadequacy of many
traditional forms of data and requirement gathering when applied to interface design
problems, the need to involve users in the design process and data analysis [103].
Qualitative strategies were formerly investigated in the field of human-computer
interaction, including Grounded Theory [47], Phenomenological research [43], case
studies [73] and ethnography [57].

The use of mixed methods provide freedom to apply different approaches in the
HCI field. Creswell [20] p. 14 classifies this approach into three general strategies:

• Sequential mixed method procedures are those in which the researcher seeks to
elaborate on or expand on the findings of one method with another method.

• Concurrent mixed method procedures are those in which the researcher merges
quantitative and qualitative data in order to provide a comprehensive analysis of
the research problem.

• Transformative mixed method procedures are those in which the researcher uses
a theoretical lens as an overarching perspective within a design that contains both
quantitative and qualitative data.

Reference [13] also highlights some approaches to combining qualitative and
quantitative research in mixed methods research:

• Triangulation: when the researcher uses more than one method or source of data
in the study of social phenomena.

• Context: The application of this approach was for a qualitative study to provide
the context for understanding broad-brush quantitative findings.

• Confirm and discover: The inferences that are derived from a qualitative study are
then subsequently tested with quantitative research.

We consider that the strategies presented in [20] and the approaches to combining
qualitative and quantitative research highlighted in [13] are in concordance. For
instance, triangulation is present in both sequential and concurrent mixed methods.

Current projects aimed to enhance human decision-making apply a mixedmethod
approach with qualitative data from interviews [54] and quantitative data from sur-
veys and questionnaires [99, 101]. Some projects aimed to understand users visual
preferences applying quantitative techniques such as the study proposed by [104]. In

Cognitive Computing: Where Big Data … 821

their research, authors used the Amazon Mechanical Turk to understand users com-
prehension and preferences to composite visualizations under different condition.
As a result, they developed taxonomy of participants difficulties in understanding
the graphics. Reference [55] describes two cases that use behavioral data to drive
requirements to design new services. Although, this data is helpful to generate design
insights, still the space of design alternatives is complex, according to the authors,
and more knowledge based approaches with their proposal method can improve sys-
tem design. Therefore, with those methods to gather user information is possible
to know WHAT is wrong or not working effectively but its not usually possible
to know WHY those behaviors happen without user research methods (contextual
inquiry, observation studies).

5.2 Data Gathering Methods

Fieldwork observations, self-reporting methods, including questionnaires and semi-
structured interviews, are usually applied in order to provide an overview of user and
stakeholders preferences for employing to interface design and better understanding
of human reasoning.
Field observations Observational techniques aim to investigate behaviors, interac-
tions and practices in everyday environments. Reference [25] describes observation
as a technique that seeks to examine the world through relevant human faculties. He
emphasizes that observers make use not only of their visual faculties, but also other
senses, from smell to hearing. In addition, [58] mentions some of the observational
activities and social interactions that an observer will perform, such as: observing;
participating; interrogating; listening and communicating,with a range of other forms
of being, doing and thinking. Furthermore, [59] highlight the importance of observa-
tional studies as a method for use in investigations of complex interactions in natural
social settings.

Observation is one of the key techniques employed in the human-computer inter-
action (HCI) field. Early in the design process, observation helps designers to under-
stand the user context, task and goals.Observation conducted later in the development
process may be used to investigate how well the developing prototype supports these
tasks and goals [74]. This method can reinforce findings and is sometimes com-
bined with other methods in order to gather more accurate and rigorous information
[25, 59, 74].

There are different kinds of observational studies, one of which is known by the
term participant observation. According to [13], ethnography and participant obser-
vation are very difficult to define. In his opinion, participant observation is frequently
used as a term to describe observation alone. However, ethnography denotes both
the observation and the written outcome of the research. Marshall and Rossman [59]
state that participant observation researchers immerse themselves in the social set-
ting and also observe everything that they can about it. According to [74], where a
particular study falls along this spectrum depends on its goal and on the practical and

822 A.P. Appel et al.

ethical issues that constrain and shape it. In HCI, the role of the researcher differs
from that of traditional ethnographers.

... in addition to seeking understanding of their subjects, user-interface designers focus on
the interfaces for the purpose of changing and improving those interfaces. Also, whereas
traditional ethnographers immerse themselves in culture for weeks or months, user-interface
designers usually need to limit the process to a period of days or even hours to obtain the
relevant data needed to influence the redesign ([86] p. 130).

Usually, interactive systems ethnographers use observational studies with a range
of other methods such as interviews and focus groups in order to identify the main
characteristics of a certain group of people. Reference [46] p. 98 suggest that it is
immensely rewarding tomakeuse of ethnographicmethods inmobile designprojects.
They affirm that after a period of observation, the researcher should have a range
of sketches, which can be used to create an overview of the field setting. In their
words, “the ethnographers job is to portray the action in a vividly colorful way both
in responding to design team questions and by providing an account resulting from
careful reflection” [46] p. 98.

The observer may participate in the activities through which s/he seeks to observe
the users behaviors/tasks either directly or indirectly through records. Overt obser-
vation occurs when participants are informed about the objectives of the research
and are aware of the researchers presence. In covert observation, observers infiltrate
themselves into the activity and do not inform other participants of their presence.
According to [13],most research projects use overt observation, but both perspectives
are adopted sporadically. In the field, in some cases, it is difficult to avoid coming
into contact with people who are unaware of the ethnographers status as a researcher,
even though s/he is carrying out overt observation. In addition, it is cumbersome to
perform covert observation, as it is difficult to take notes without being noticed by the
participants. The researcher cannot take advantage of other methods like interviews,
and ethical issues like privacy can arise [13, 25].

There are many issues in the literature regarding covert observation and ethical
issues [13, 58, 74]. Among them are issues relating to privacy, deception and the
lack of informed consent. In the case of overt observation, the description of what
is going to be analyzed has to be clear for the participant. In field work, as well as
in the evaluation of systems in laboratories, it is important to clarify the purpose of
the study, the kind of information that will be collected, who has the rights to the
data and analysis, and how this information will be used. Participants must not only
be allowed to withdraw from the study at any time, but must also be permitted to
ask questions at any time [46]. It is important to give some kind of payment such as
vouchers or a certain amount of money in exchange for the participants views. This
should be communicated verbally, or described in a consent form which users are
requested to sign before starting the study.

Sometimes is not easy to classify the role that the researcher will play. A number
of authors use the classification of participant and observer roles proposed by [39],
which is based on the level of involvement with the research, such as: complete
observer, observer as a participant, participant as anobserver and complete participant

Cognitive Computing: Where Big Data … 823

[13, 25]. For instance, as a complete observer, a researcher must not be noticed. In
this case, video and/or audio recording or photography may help in the task. An
observer as participant carries out short periods of observation and conducts semi-
structured interviews. The overt stance is applied. The third role is participant as
observer, in which the researcher is a complete participant but the participants know
their status. The fourth role is the complete participant; the researcher acts as a covert
observer, undertaking the same role as an ordinary participant. The decision about
which approach to undertake is affected by the kind of research questions that the
study aims to answer.

A broad range of studies in the literature has set the stage and structure of observa-
tion studies [13, 25, 58, 59, 86] p. 130. Below is a discussion of the most important
issues to be addressed when carrying out observation studies.

Select the setting Researchers should select a setting that contains everything in
which they are interested (or as much of the desired material as possible). It is also
important to check the availability of the participants and the venue.

Research teams members The researchers may have to train members in what to
observe and how to take notes. Sampling According to [13], there are certain types
of sampling that are more likely to be used in observational studies, such as:

Convenience sampling: This is a sample that is available to the researcher due to its
accessibility;

Snowball sampling: The researcher contacts a small group of people who are rele-
vant to the research and then use these to initiate contact with others;

Theoretical sampling: This is the process of data collection in order to generate the-
ory whereby the analyst jointly collects, codes and analyses the data and decides
which data to collect next and where to find them, in order to develop the theory
as it emerges ([37] p. 45);

Representative sampling: Reference [46] give advice on selecting a representative
sample to observe in the context of mobile design. For instance, a group that
characterizes the entire population or a broad section of it should include a diverse
range of people;

Defining a broad research question: Normally, the study is guided by a broad
research question. After familiarization with the field, new findings will guide
the research.

Overall, during the early stages of research, the investigator typically enters the
setting with broad areas of interest but without predetermined categories. The value
of this is that the researcher is able to discover recurring patterns of behaviors and
relationships. After this stage, some patterns are identified and described for an early
analysis of fieldwork and records.

There is a broad range of techniques for registering the information identified
during observational studies. In the case of direct observation, field notes are the
typical choice. The literature provides some general principles on how to take notes
[13, 58, 74]. The focus and the type of notes that should be taken are related to
the research questions of the study. It is important to be aware that sometimes, the

824 A.P. Appel et al.

participants may act differently or be self-conscious while the researcher is taking
notes. Therefore, most authors suggest carrying out the observations only over short
periods of time. Notes should also be clear and legible. Reference [59] also focus
on the recording data perspective, saying that detailed, non-judgmental and concrete
descriptions of what has been observed should be included in the field notes. After a
long day of experiments, researchers should review and reflect on their notes, adding
observationswhere necessary. Frequently, observations of behaviors give researchers
cues to validate what participants report in interviews. Likewise in the study by [97],
they created ontology to understand participants behaviors in collaborative design
meetings that may be applied to create intelligent systems. The researchers used
design sessions videos to understand behaviors also giving attention to non-verbal
messages. Methodologies and approaches were also used to investigate problems
that Cognitive systems might help to solve.

Think aloud technique In interaction design studies, several techniques are applied
in order to capture user data, including think aloud protocols, video and audio record-
ing and photography. The think aloud technique, developed by Erikson [30], requires
subjects to verbalize their every action or thought during the study. According to [46],
this technique has some drawbacks, e.g. it is embarrassing and people forget to speak
after a while. Amore satisfactory technique may be the constructive interaction tech-
nique suggested by [66], in which two participants exchange their opinions with each
other, resulting in a more natural task. With this technique is possible to understand
the mental maps of target users. For instance, [21] conducted a user qualitative eval-
uation of an information visualization (RiDeViz) that shows investment alternatives.
The aimwas to understand the user awareness of risk and uncertainty with bar charts.
Observation approach using the think aloud protocol and content analysis were the
methods applied with 10 subjects. Participants were asked to choose one invest-
ment choice evaluating risk and uncertainty in a bar chat visualization with limited
range and a risk explorer table. The system provided different types of information,
although participants did not use all for investment decision-making, they focused
on small number of salient pieces and concentrated in the perceived consequences
of undesirable outcomes.

Multimedia documentationVideo and audio recordings are employed at the begin-
ning of the project in order to collect information for the development process and
at the end of the project in order to evaluate the prototype design. Video recordings
have the advantage of capturing both visual and audio data, but can be intrusive.
However, after a while, participants concentrate on the tasks and forget that they are
being filmed. Other positive aspects of video recording are that it allows us to capture
what users are doing on the system screen, to go back and analyze what happened
after or before a specific event and to zoom in on the scene in order to analyze the
users face to give some indication of his/her emotional state [46]. Preece [74] men-
tion that is easy to miss things that are outside of the cameras view, which is why the
use of more than one camera is an advantage. In addition, the use of more cameras
provides a second opportunity to understand data recorded in noisy and windy urban
environments.

Cognitive Computing: Where Big Data … 825

Photographs also provide contextual information and are an excellent method in
addition of gathering audio data and notes [74]. Similarly, sketches of the site, maps,
pictures and documents are other resources that can be analyzed [46]. Alternatively,
indirect observations can be made when direct observation would be intrusive or
participants cannot be present on the day of the study [74]. Diaries and interaction
logs are examples of this type of data.

Diaries and interaction logs Diaries are suitable for when the researcher cannot
be with the participant when interesting things might happen. With this technique,
participants are asked to enter their thoughts about a subject in a diary, through a
phone call or on a website [46].

Interaction logs involve the use of software to track and record the users activities
in a log that can be analyzed later [46, 74]. In this way, researchers can analyze
different aspects of the usability of the activity.

Questionnaires and semi-structured interviewsQuestionnaires are usually applied
in order to request demographic information and to elicit a participants views of a
certain system. The questions should be designed to extract the participants opinion
efficiently and should also be easy to analyze. Tullis and Albert [95] suggest the use
of rating scales such as Likert scales and semantic differential scales for this purpose.

Typical Likert scales consist of positive and negative statements with which par-
ticipants rate their agreement. Normally, these scales have a five-point scale of agree-
ment, e.g. strongly disagree, disagree, neither agree nor disagree, agree and strongly
agree. For instance, in a study integrating fitness and a mobile map-based guide,
Buttussi [15] invited 12 participants to test the new system (MOPET). They fol-
lowed the trails encouraged by an avatar on the mobile guide that reported on their
performance as theywent. After the test, participants answered a questionnaire rating
their motivation and the support offered by the guide in performing the exercises via
a Likert scale. As a result, users agreed that MOPET guided them in how to perform
the exercises correctly.

On the other hand, semantic differential scales involve the presentation of anti-
thetical words at the extreme points of the scale. As with Likert scales, a five to
seven-point scale is normally used. The challenge is to choose suitable and clear
opposites so as not to confuse respondents and to obtain dependable data.

Another popular questionnaire is the System Usability Scale (SUS), which was
developed by John Brooke [12]. The SUS consists of 10 statements with which
users rate their agreement. Half of the questions are positively worded and the other
half negatively worded. Reference [5] found that the SUS was highly reliable and
useful over a wide range of types of interface. In the same study, they substituted the
scores for adjectives and compared them to the school grading scale and acceptability
ranges. The scores are classified according to their acceptability. If the mean score
is less than 50, the system does not have an acceptable level of usability. A score
between 50 and 70 is classified as indicative of marginal acceptability, while a score
higher than 70 is acceptable (Fig. 12). The same model was adopted in a mobile
phone study. More information on sample questionnaires for usability metrics can
be found in [74, 86, 95].

826 A.P. Appel et al.

Fig. 12 SUS scale (from [5])

Open-ended questions and interviews are used for qualitative and exploratory
research. These may be hard to analyze [46, 95] but lead to interesting findings,
as the answers are not predetermined. In a study using a mobile system to track the
behavior of young people, this is clear. Reference [76] claim that certain resultswould
not have been available if closed-ended questions were present in their research. In
their opinion, when participants are asked to answer closed-ended questions, they
have to reframe their thoughts and behavior into the options given, while this does
not occur when open-ended questions are used.

Open-ended questions are hard to analyze because the answers may be long and
very diverse. The researcher needs to interpret the answers and tofindpatterns in order
to analyze the data. According to [4] this opens the possibilities of misunderstanding
and researcher bias. Therefore, the researcher should use a set of codes emerging from
the first analysis and try to apply it to the subsequent analyses, with the flexibility
to add new codes. It is important to test this method with other researchers, as well
as testing questionnaires in pilot studies before using them with a large number of
subjects in order to correct possible mistakes and check the time taken to answer the
questions [98].

Semi-structured interviews Occasionally, the time available to carry out experi-
ments is not enough for users to write long answers. At other times, users do not
feel encouraged to write their own opinions. An alternative is to use semi-structured
interviews. Semi-structured interviews are employed in order to support users in
answering questionnaires and to give users opportunities to share their experience
in a more natural way. According to Bernard [8], this is the best type of interview
for questioning someone who will only be interviewed once. It has the freedom of
an unstructured interview, but is based on a questionnaire guide. Audio recordings
might be used to register the findings, or the researcher might take notes, and there-
fore users do not have to write their own answers as they would in a questionnaire.
For instance, semi-structured interviewing was the method chosen to collect require-
ments in a project to develop accessible mobile phones for individuals with cognitive
disabilities. This method was suitable for interviewing people with disabilities and
for developing a contextual and detailed understanding of the role that mobile phones
can play in the lives of individuals with cognitive disabilities [22]. As a result, it was
found that the mobile phone should be rugged and durable, and should have a simpli-
fied menu system; charger input, voicemail access and features targeted at specific
remote communication tasks (e.g. sharing ones location).

Cognitive Computing: Where Big Data … 827

5.3 Design Methods

Design activities aim to employ the knowledge acquired in the data collection process
in designing a product. The main trends that have been identified in the universe in
question should be extracted and interpreted in order to give shape to the product
and specify requirements. These are applied to the conceptual design, and later to
the prototype. Personas and scenarios are inspired by the preliminary research in the
field, and used to identify functionality, content and appearance of a prototype.

Requirements and insights elicitation Requirements are statements that define
which functional and quality characteristics the system should have. Requirements
usually emerge from necessities identified in fieldwork and competitor analysis.
Researchers may review the literature in the field and find certain requirements that
have already been collected by others to apply to a new product. There are dif-
ferent kinds of requirements: functional and quality requirements. According to the
template proposed by [78], eight types of quality requirements can be identified: look
and feel requirements; usability and humanity requirements; performance require-
ments; operational requirements; maintainability and support requirements; security
requirements; cultural and political requirements; and legal requirements. The use
of this classification helps to identify diverse requirements and to focus not only on
functional requirements.

Conceptual design It is not only user requirements, but also factors involved in the
activity that emerge from the fieldwork. The environmental context, communica-
tion and personal behavior might influence how tasks will be performed with the
envisioned product. In addition to a list of requirements, ideas and concepts are put
forward about what a system should do and how it should be presented on the inter-
face [74]. Reference [63] explored the design ideas and concepts of place-specific
computing based on fieldwork carried out in four countries. The study resulted in 36
concepts, which are available for consultation on their website. In this phase, general
specifications of the interface design were developed, and only the main ideas were
illustrated by a prototype.

Personas and scenarios Personas are characters that embody certain characteristics
of a niche user group. They might be inspired by source documents from field stud-
ies. As designs are proposed, they can be checked against personas [46]. The use
of personas avoids elastic users facilitating the communication in the development
group. Hence, it is the persona who would behave in a certain manner in a specific
situation, and not the designer. Personas are actors in scenarios who illustrate inter-
action with products. According to Carroll [17], every scenario involves at least one
agent (persona) and one goal, and if the agent is different, the goal may change.
Scenarios are the setting. Design cycles are contemplated in scenarios in order to
illustrate interaction and user reactions in a real-life situation. Storyboards are one
way to illustrate scenarios and to clarify interaction. From scenarios, it is possible to
extract the main necessary elements of the system.

828 A.P. Appel et al.

Scenarios to illustrate context to field trails [19] and to envision future use of
Cognitive systems is also a common method applied with Protocol analysis and
Think aloud techniques [102]. Reference [7] use non-wearable sensors and machine
learning algorithms to identify emotions in team meetings using scenarios as a tool.
Understanding emotional states of the design teammembers helps quantify interper-
sonal interactions and how those interactions might affect resulting design solutions.
Participants were invited to a scenario based design meeting and a catalog of 8 body
language poses relevant to emotional states was used as data. Their machine learn-
ing algorithms identify individuals body language and relates to emotional states to
quantify design team interactions.

Prototyping In this stage, system features are specified and transferred to a physical
design. Low-tech and high-tech prototypes are normally employed to verify modes
of interaction and interface design. Low-tech prototypes are relevant to the resolution
of navigational problems and errors that would be complicated to solve after cod-
ing. Paper-based prototypes and PowerPoint presentations may serve this purpose.
High-tech prototypes are more similar to the final product and are usually ready to
be tested by experts and users.

The use of material artefacts to elucidate human thinking is a common trend
since getting requirements only with user research to design cognitive systems is
not a fixed starting phase. Usually those systems use human parameters and users
inputs into technological artefacts for self-improvements, applyingmachine-learning
algorithms. Therefore, some prototypes described into papers were used with the
intent to gather parameters for the future systems, as experimental investigations,
and not to evaluate a prototype that represents a system. Robins [79] investigated
how robotic toys could be used as a play tool to assist in the childrens development.
Experimental investigations with artefacts (field trails with children), expert panels
and questionnaires (with caretakers) help to develop scenarios for robots to give
stimulus for autistic children that may promote further learning.

The question of how close the prototype should be to the final product was
investigated by Sauer and Sonderegger [84]. Six experiments were carried out in
order to study prototype fidelity. Participants were assigned to diverse user groups
such as: paper prototype; computer-based prototype; fully operational appliance,
highly appealing and moderately appealing prototype. The task completion time
was higher for the computer-based simulation than for the fully operational appli-
ance. On the other hand, the results suggested that perceived usability may be more
strongly associated with attractiveness ratings than objectively measured usability
parameters. Therefore, aesthetics is as relevant as efficiency and effectiveness for user
satisfaction.

Cognitive Computing: Where Big Data … 829

5.4 Evaluation Methods

Evaluation can be informal or formal. The first case includes techniques such as self-
generated evaluation, peer reviews and casual user testing, which can provide insight
into what should be improved in the final product. In the latter, expert evaluations and
user testing are applied. Evaluation might occur during the design process (formative
evaluation) or in the final stage (summative evaluation) [74]. AsDuh [28] and Jeffries
[45] both suggest, methods of usability evaluation can be categorized into four main
areas: heuristic evaluation, cognitive walkthroughs, usability testing and software
guidelines. The latter area is frequently employed as a guide for heuristic evaluators.

Some techniques that are employed in the early stages of development with users
may also be applied in the evaluation phase. These include observation of users
interacting with the product in the field and/or laboratory settings, questionnaires
and interviews. In addition, cognitive walkthroughs and heuristic evaluation are the
main techniques used by experts.

Usability testing When people first hear about usability testing, they sometimes
assume that it is the same as a focus group. Tullis and Albert [95] in p. 58 clarify the
term according to their experience:

the similarity between the two methods begins and ends with the fact that they both involve
representative participants. In a focus group, the participants commonly watch someone
demonstrate or describe a potential product, and then react to it. In a usability test, the
participants actually try to use some version of the product themselves. Weve seen many
cases where a prototype got rave reviews from focus groups and then failed miserably in a
usability test.

Giving users a version of the product to test can highlight more interesting issues
than demonstrating it and asking for opinions. The same might occur according to
the choice of setting (laboratory or field test). Field tests provide a real context for
the users experience, despite being more time-consuming and expensive.

Similar approaches for collecting data are also effective during evaluation proce-
dures. Feedback achieved through questionnaires, interviews and thinkaloud tech-
niques allows designers to improve the products based on users opinions. In addition,
the use of observational studies helps to clarify the users interaction with the product
and the influence of contextual factors on his/her experience

Heuristic evaluationHeuristics evaluation is an expert method of examining system
usability. Authors have different opinions of the essence of this technique. Jeffries
[45] consider this type of evaluation to be based upon the expertise and experience of
the evaluator and that it is not necessary to follow pre-determined design and usability
guidelines [66, 74]. The use of a set of heuristics and guidelines is valued by Jones and
Marsden [46] in p. 208 as someone who has received these reports on their cherished
designs, we appreciate it when the evaluator lists which particular heuristic is being
violated, to show that the assessment is based on rational evaluation and not personal
opinion. This method is considered as an alternative to formal usability tests with
users. It generally requires fewer resources and less time than testing with users
[23, 46].

830 A.P. Appel et al.

After comparing the results of a heuristic evaluation study and a formal usability
evaluation by eye tracking, De Kock [23] identified several differences. First, the
purpose of a heuristic evaluation differs from that of usability tests. The former aims
to identify usability errors while the second focuses on effectiveness, efficiency and
user satisfaction. Second, the resultant data from a heuristic evaluation are highly
influenced by the experts experience. In a usability evaluation, it is possible to trian-
gulate results due to a diverse range of methods applied in the same test observation,
questionnaires and usability measures. Third, a heuristic evaluation tends to answer
questions such as why and when, while usability tests consider what and how infor-
mation is acquired.

Cognitive walkthrough Cognitive walkthrough is an expert evaluation method that
focuses on the steps and goals taken by users in order to predict and solve problems
with a future system. It was created by Polson [72] to examine users cognitive
activities. Knowledgeable experts are necessary for this method, and sometimes the
process is somewhat tedious [45]. The goals and steps taken by users should be well
planned in order to facilitate experts reviews and to ensure that they are representative
of major interactions [64]. The strengths of this technique are the focus on detailed
problems experienced by users and that users do not need to be present; not even a
functional prototype is necessary. However, this technique is highly time-consuming.
Preece [74] presents a model (p. 703) of how to conduct a cognitive walkthrough. For
every task to be accomplished, evaluators should answer yes or no to four questions,
described bellow, and add their comments.

• Will the action be sufficiently evident to the user?
• Will users know what to do?
• Will users understand how to do it?
• Will users understand from feedback whether or not the action was correct?

Positive responses to the individual questions support the inference that the inter-
face will be easily learn. Negative responses highlight those steps in an operating
procedure that may be difficult to learn [53, 64].

Wizard of Oz A Wizard of OZ technique, where a human (wizard) simulates the
intelligent system tasks such as natural language understanding without user aware-
ness, was perceived as one of the main approaches to evaluate cognitive dialogue
systems. Steinfeld [91] shows a diagram explaining the combinations of the Wizard
of Oz technique. It summarizes these in the context of how close to reality theWizard
and the Oz are within the evaluation. (Fig. 13)

Dow [27] present a study that could be classified in the category of Wizard with
OZ (Fig. 13). In their experiment, wizards were human operators type players spoken
utterances; then algorithms interpret the players intention, based on a pre-authored
dialogue and animate two embodied characters part of a Augmented Reality expe-
rience called Faćade. Forbes-Riley and Litman [35] also applied the Wizard of Oz
technique. The system was a spoken language tutoring system in which the wiz-
ard performed speech recognition, natural language understanding, and uncertainty
annotation, for each student to answer. 81 students participated in the study. The

Cognitive Computing: Where Big Data … 831

Fig. 13 Categories of
Wizard of Oz [27]

authors also claim it was the first study to show that dynamic responding to stu-
dent uncertainty can significantly improve learning during computer tutoring. Rieser
[77] applied the Wizard of Oz tool to improve information presentation in natural
language generation dialogues; humans simulated the intelligent system that pro-
vided recommendations of restaurants to other humans. Their aim was to present
enough information to users while keeping the utterances short and understandable.
Authors identified the adaptive natural language generation, as well the information
presentation, affects perceived or objective task success of the system.

5.5 Data Analysis Methods

As previously affirmed, this research has two strands, in order to conduct and analyze
the data gathered. Qualitative approaches permeate most of the research process, but
quantitative approaches are also present

Qualitative analysisThe value of thismethod is that the researcher is able to discover
recurring patterns of behavior and relationship issues in the target group. The study
continues until the findings starting to repeat consistently. Different approaches can
be applied for data analysis according to the nature of the research. Creswell [20],
Marshall and Rossman [59] and Bryman [13] offer an overview of typical procedures
in qualitative data analysis: (a) organizing the data; (b) immersion in the data reading
through all data; (c) generating codes by theme and/or description; (d) finding rela-
tions among themes/description; (e) interpreting themeaning of themes/descriptions;
and (f) validating the accuracy of the information.

It is advisable to carry out the first step [13] while the data are being collected. In
this phase, data from interviews and video observations are transcribed, field notes
are typed up and data are organized according to the source of information. The fol-

832 A.P. Appel et al.

Fig. 14 Validation of data ([20] p. 185)

lowing step involves creating an overview of the issues which have emerged or been
examined in the study. With the highlighted issues organized into chunks, codes are
generated. Coding is the process of organizing the material into chunks or segments
of text before studying the meaning of the information ([81] p. 171 and labeling it
with terms [20]. There are certain tools that canmake this stage faster, easier andmore
accurate, such as: software for analyzing videos (NVivo) and spreadsheet applica-
tions and tools that support the organization, coding and manipulation of data. After
finding the mainstream categories (terms), the researcher looks for relationships, and
new categories may emerge during this process. Findings are described through the
interpretation of categories, which could be the researchers personal interpretation
or/and the meaning derived from a comparison with the literature or theories. There-
fore, information could be validated through a comparison to previous research and
new questions may emerge ([20] p. 188) (Fig. 14).

The findings are described as contextual trends, and the use of quotations from
participants affirms the truthfulness of the research. In addition, initial hypotheses
are tested according to the results, and some questions will not have answers [20],
perhaps because of the sample size, and therefore more attention should be given
to this issue in future research. The use of questions and hypotheses in the initial
phase of the study helps the researcher to understand the events, participants and

Cognitive Computing: Where Big Data … 833

setting [38]. Not only do the recognized patterns, categorizations and hypotheses
provide options for analyzing the data, but also the recognition of critical incidents.
In interaction design, critical incident analysis has been used in a variety of ways, but
the main focus is to identify specific incidents that are significant, and then to focus
on these incidents and analyze them in detail, using the rest of the data collected as
a context to inform the interpretation ([74] p. 384).

Mixed methods analysis Similar incidents/categories may be seen as emphasizing
the strength of issues in the data. Therefore, mixed methods might be applied. Data
transformation and content analysis are examples of this approach.

Data transformation is a quantification of qualitative data. This involves creating
qualitative codes and themes, and then counting the number of times they occur in the
textual data. This enables researchers to compare quantitative results with qualitative
data ([20] p. 218).

A more structured and well-known methodology in this line is content analysis.
This is considered to be a quantitative approach, despite the fact that in the first steps
of the analysis, categories and codes are not always pre-defined. Patterns emerge
from the data, key aspects are identified and their frequency is counted. Hence,
content analysis reduces qualitative data to a quantified form [56]. It is a flexible,
objective and unobtrusive method ([13] p. 289). It is easy to identify the steps of the
content analysis approach in Brymans study aimed at analyzing the combined use
of qualitative and quantitative research in 232 articles.

First, the rationale given by the authors for combining the two approaches to
data collection and/or analysis is coded. For this exercise, the reasons that were
given before the findings were presented are typically examined. Then, the ways
in which quantitative and qualitative research were actually combined are coded.
This coding presents the authors reflections on what they feel has been gleaned
from combining quantitative and qualitative research, and any ways in which the
two were combined which were not reflected in the authors accounts. The purpose
of discriminating between these two ways of thinking about the justification for
multi-strategy research was that authors accounts of why they intended to combine
quantitative and qualitative research might differ from how they actually combined
the methods in practice [13].

Paay [68] describe how content analysis was undertaken in order to analyze and
represent peoples understanding of the physical and social aspects of urban settings in
order to develop a digital environment. Elements of the physical environment were
recorded in the form of photographs and field notes. These elements were coded
according to five categories proposed by Lynch [58] landmarks, districts, nodes,
edges and paths based on the focal element in each image. Elements were also coded
based on 253 patterns, which were investigated by Alexander [2]. Later, maps of
the setting Federation Square, Melbourne, Australia were created featuring the same
elements. The social context was analyzed using rapid ethnographic methods and
contextual interviews. In the opinion of the researchers [69], social and physical
elements in the space would not be noticed if the researcher merely examined the
original data or visited the space. The results were applied in a pervasive prototype to
enrich peoples experiences of Federation Square. For example, the new system iden-

834 A.P. Appel et al.

tifies peoples previous interactions in the same place, and so it is possible to access
information about familiar paths and places that have been visited, the estimated
waiting time for a friend, and navigation based on known landmarks.

Quantitative analysis Interaction design data are typically analyzed using simple
statistics [74]. The issues that are relevant in the context of the study are denominated
as variables.Variables are classified as nominal, ordinal, interval, ratio, dependent and
independent. Nominal variables can be defined using categories that are qualitative
in nature (e.g. gender). Ordinal ones vary according to degrees (e.g. satisfaction).
Interval variables are when the difference between two values is meaningful (e.g.
temperature). Ratio variables have the same characteristics as interval variables, but
a zero value exists [75, 82]. Dependent variables record the effect provoked by the
independent variable, and this is what is measured [4, 82, 93]. For instance, an
experimental evaluation of a mobile guide in the field used age as the independent
variable and usability measures as dependent variables. The authors [40] suggest a
summary of usability measures they found relevant and recommended methods to be
employed for evaluating mobile guides based on the study. These included timings,
errors, perceived workload, distance traveled and route taken, walking speed and
comfort.

The data may be described as descriptive, without saying anything about the large
population size. Another type of classification is inferential, from which conclusions
can be drawn about a large population [95]. Descriptive statistics covers themeasures
relating to central tendency, tables and cross-tabulation, which are other ways of
investigating data [13, 56, 95].

Measures of central tendency are denominated as the mean, median and mode.
The mean is the average score of the dataset, in the everyday sense of the term. The
median is the central value of the distribution (half of the values are smaller than
or equal to this value). The mode is the value that occurs most frequently within
the dataset [56, 75, 82]. When the data have a more limited set of values (such as
subjective rating scales), the mode is more useful than when the data are continuous
(e.g. completion times) [95].

Tables are used to display counts and percentages for individual variables or
to compare one or more variables (cross tabulation). Cross tabulation tables show
whether and to what extent two or more nominal-level variables are related. They
display the frequency and/or percentage of the categories of one variable cross-
tabulated with the frequency and/or percentage of another variable or variables ([82]
p. 188). Quantitative data analysis might be assisted by a statistics software package,
such as Minitab.

5.6 Using Information Visualization to Understanding Users

Information visualizations are important tools to unveil hidden information in Big
Data sets. Information visualization is defined as “The use of computer-supported,

Cognitive Computing: Where Big Data … 835

interactive, visual representations of data to amplify cognition by Card [16] p.6.
Spencer [90] completes affirming that visualization is a process of forming mental
model of data, thereby gaining insight into that data. Visualization is a human cog-
nitive activity, not something that a computer does in Spencer [90] views. Thereby,
control of information is given over to viewers, not to editors, designers or dec-
orators [94]. To unveil the mental model in every persons mind is a cumbersome
activity. Therefore, user experience researchers and designers may dispose what
will be formed in peoples mind understanding better their contexts and practices in
everyday life. Visualizations have their own purpose give insights on data to solve or
clarify certain problems. And it posts a critical question: How best to transform the
data into something that people can understand for optimal decision-making? [100].
User cantered design approaches; such as user evaluation studies may enlighten this
question.

Designers may employ multimedia elements to built new or redesigned interfaces
to improve users interpretation of visual and verbal elements. According to Bertin
[10]: A graphic is no longer drawn once and for all; it is constructed and reconstructed
until it reveals all the relationships constituted by the interplay of data. In otherwords,
the best graphic operations are those carried out by the decision maker itself. Bertin
[10] also created a visual grammar to make designers aware of visual elements
characteristics when choosing them to compose a graph. In Tufte [94] p. 8 words
When principles of design replicate principles of thought, the act of arranging infor-
mation is becomes an act of insight. A study and tool proposed by Viegas [96] allows
individuals upload data, collaborate and generate visualizations at a large scale in a
public website called Many Eyes. This tool also provides a wide range of visualiza-
tions types that may help designers to compare and choose appropriate visualizations
for different contexts. Baur [6] evaluates visualization techniques with large datasets
and recommended-based systems onmobile phones. They evaluated the visualization
technique for repeated item selection in the context of music playlist creation. They
considered the particularities of the mobile phone devices (orientation) with 12 users
to do a user trail. Users selected options and for each option five suggestions were
given out, and one should be right selected. Authors measured completion times and
error rates. They found that the vertical orientation and interface was faster to interact
and had less error rate than the horizontal one. Arshad [3] compared the confidence
of expert users and non-expert users varying level of uncertainty presented on a pre-
diction case study of water-pipe failure. Participants did three groups of tasks and
received a viewgraph of overlapping and non-overlapping uncertainty presentations
as supplementary material for decision-making. Showing this supplementary mater-
ial improved user confidence and uncertainty with unknown probabilities decreasing
user confidence, although uncertainty with known probabilities can increase expert
user confidence but the same is not true for non-experts.

As noticed, current methods for designing cognitive system did not differ hugely
from traditional design processes.Methods and approaches are applied to understand
users to inform the design artefacts and evaluate thosewith users. The iterative design
process is more frequent and necessary when designing and developing Cognitive
systems. Cognitive systems use human data as input with the intent to improve and

836 A.P. Appel et al.

learn in an iterative process. Context is crucial and changes over time. Therefore,
design process phases are less linear. Several times prototypes are crucial to gather
data and inform the design, and many times prototypes are used as experiments to
develop the real system. Primary research, where data gatheringmethods are applied,
usually focuses on context and assembles the basis to the design process. It is not a
phase that is isolated as in some traditional design process were ethnography work
can be the first phase to inform the overall design process. Evaluation methods are
applied in several stages of the design process and not only as the final phase. The
evaluation phase never ends, because those systems as much as they learn and are
assessed using user information they become well and more user friendly. More
studies are necessary to unveil ways of evaluating the huge amount of data available
nowadays. In doing so, helping designers, practitioners and researchers to create
more effective visual analytics tools and cognitive systems.

6 Cognitive Systems

6.1 IBM Watson

Pretty much like the previous section, any approach about IBMWatson can be made
from, at least, 3 different angles

• The media impact of a Deep Qs and As systems which defeated 2 human beings
at the popular TV program Jeopardy

• The technology behind the system shown in the TV and
• The consequences of this experiment in terms of science and business

Lets try to do an adequate coverage in each of these possibilities.
The prospective strategy of the IBM company is highly supported by an yearly

work intense exercise lead by its Research Division and called GTO Global Tech-
nology Outlook. From the GTO, emerge the major opportunities for the foreseeable
future and the challenges associated with them, of course.

Back in 2007, the IBM Research Division took the grand challenge of building
a computer system that could compete with champions at the game of Jeopardy. In
2011, this system, named Watson, came to life with an excellent result. Beyond any
technicality to describe the computer system, one has to have in mind that theWatson
competing in the Jeopardy show was an open-domain question-answering system.

In fact, for those interested in the deep technical details of the Watson system,
there are several information sources but one of them is essential: the IBM Journal
of Research and Development [61], fromwhich most of this chapter has been largely
inspired.

In the following lines, we will give an overview from these 3 angles, calling the
attention to some important aspect, which can go unnoticed by the reader.

Cognitive Computing: Where Big Data … 837

Let’s begin by calling the attention to the fact that most of human communica-
tion, weather in natural language text, speech or image, is unstructured. Therefore,
semantics necessary to interpret unstructured information to solve problems is often
implicit and must be derived by using background information and inference. On the
other side, with structured information, such as traditional database tables, the data
is well-defined, and the semantics is explicit.

To manage unstructured information, “from 2001 through 2006, IBM built the
Unstructured Information Management Architecture (UIMA) to facilitate this kind
of basic interoperability. UIMA is a software architecture and framework that pro-
vides a common platform for integrating diverse collections of text, speech, and
image analytics independently of algorithmic approach, programming language, or
underlying domain model. UIMA is focused on the general notion of integrating
a scalable set of cooperating software programs, called annotators, which assign
semantics to some region of text (or image or speech). In 2006, IBM contributed
UIMA to Apache,3 and it is currently in regular use around the world by industry
and academia. UIMA provides the essential infrastructure needed to engage large-
scale language understanding research”.

In an evolutionary perspective, UIMA may well be considered the first founda-
tional roadblock in this journey. But much more were required to progress in towards
the great challenge.

In 2007, a baseline solution was used to measure the capability against Jeopardy
requirements. The precision performance was nothing better than 16% and this mark
was not even enough to qualify for the game. This fact has clearly shown what
should be the necessary effort ahead, to face the challenge with some chances to win.
After 4 year and many corrections, the project achieved the system called DeepQA
framework, with encompassed “more than 100 core algorithmic components. These
components were designed to understand questions, search for candidate answers,
collect evidence, score evidence and answers, produce confidences, and merge and
rank results”. As described by Ferrucci [34], the illustration in Fig. 15 summarized
the blueprint of DeepQA systems which competed in the Jeopardy TV show.

No question about the success and media impact that the DeepQA system named
Watson has caused, in wining two of the top competitors of Jeopardy, in front of a
huge TV audience. However, from this success two facts emerged:

• A number of lessons have been learned on how to deal with the complexity in
many aspects of what could be considered a cognitive system in the near future
and

• The evolutionary aspect of the system design, which in fact has evolved very fast
over time.

3https://uima.apache.org.

https://uima.apache.org

838 A.P. Appel et al.

Fig. 15 DeepQA architecture (extract from [34])

The consequences of the experiment went far beyond science and technology!
First, after 3 years forming and refining a new set of workable alternatives based
on what had been learned in the experiment, IBM created a new line of business
named Watson. Second, a totally new and innovative paradigm on how to manage
information came up, now fed by unstructured information. At this point, we call the
attention to the fact that, for almost 100 years, the IT industry has pushed the market
to the direction of structured information but in the last 10 years, with the emergence
of Social Computing, unstructured information became the rule. So, finding a way
to deal with unstructured information as a tool to support decision making in the
business environment was not just a question of transformative innovation. It was a
question of survival of the industry!

And third, IBM has once more, fulfilled the tradition of creating every decade, a
global agenda as it had made with e-Business in the late 90s.

Today, the evolutionary road took Cognitive Computing to a different format as
a number of simplified alternatives came up, closer to the end user and available in
a cloud environment. These alternatives do exist under the broad definition of API
Application Product Interface, are grouped as services, by function and by industry.
The number of APIs grows very fast making impossible to make a list. They are
available in the cloud computing architecture of IBM, named BlueMix.4

Many advances in analytics and machine learning have been based on our under-
standing of how the brain works. Deep learning is no exception it takes its inspiration
from our understanding of the cortex in the brain. The brain has many regions which
form a hierarchy of processing, where sensory data flows from one region to another,
being transformed and combined with other information along the way.While it may

4https://console.ng.bluemix.net/.

https://console.ng.bluemix.net/

Cognitive Computing: Where Big Data … 839

Fig. 16 IT infrastructure evolution

seem instantaneous when we recognize a face or a voice, there are actually many
stages of processing between our senses and a set of neurons that we can clearly link
to that particular person.

A pictorial review of what has happened in the last 30–35 years and summarized
in 4 quadrants is worthwhile to illustrate (Fig. 16) former attempts to create a more
intelligent IT infrastructure.

In the early 80s, we started mimicking the brain through what was then called
Artificial Intelligence. Themost we have achievedwas tomimic the brain of amouse.
Then, began the Neural network effort which has created a good foundation to the
current Multiple Agents. Then the Fuzzy Logic to support complex mathematical
models. And lastly, the Machine Learning projects. Cognitive Computing was the
evolution in this sequence.

Today’s cognitive computing solutions build on established concepts from artifi-
cial intelligence, natural language processing, ontologies, and leverage advances in
big data management and analytics. They foreshadow an intelligent infrastructure
that enables a new generation of customer and context-aware smart applications in
all industries.

6.2 Other Cognitive Systems

To increase the longevity of this chapter, we opted for a different approach to this
section because Cognitive Computing drove greatmotivation in the ITworld and new
possible solutions are coming up every day in different formats: ideas, proposals and
projects some of them already under development. Thus, any attempt to identify

840 A.P. Appel et al.

the other existing or near-existing Cognitive Systems would carry the risk of being
incomplete or simply leaving some of them out just because we have not yet had the
chance to get to know them. However, we have not seen any other real Cognitive
Systems besides the IBM solutions so far. And real in the former phrase means under
full production.

Indeed, the conversation about this topic has to begin with the review of what
cognitive is and is not. To do so, we have to get into areas slightly beyond the regular
IT field. Also, considering the youth of this area, we will probably go through a
period of temporary definitions which will evolve to a more crystallized version of
themselves until they are considered final and frozen.

Said that, the simplest definition could be: a cognitive system is a system with
the ability to create cognition. Then, we have to define what cognition is. Turning
to the dictionary, we find that cognition is The mental action or process of acquiring
knowledge and understanding through thought, experience, and the senses. Theword
mental relates, at this level, the ability to execute the cognition process only to humans
or, at least, to living beings that can execute a mental action. These basic thoughts
are all useful to support the appearance of new systems that have now some ability
to acquire knowledge and understand through thought, experience and, eventually,
senses.

One example is Google’s DeepMind 5 [41], which is a high performance computer
that is inspired by brain’s short-termmemory properties. The computer is built with a
neural network that interactswith externalmemory. Scientists can use this technology
to store experiments, like the brain, and the computer compares to previous data
queries and responds more efficiently.

TheZerothCognitiveComputing Platform6 relies on visual and auditory cognitive
computing to recognize the environment around you so it can capture things that
matter to users. This platform allows a device running the platform could recognize
objects, read handwriting, identify people and understand the overall context of a
setting. One example is that a device could adjust automatically when taking pictures
at a sunny beach or a moonlight walk. It could also adjust its microphone settings
automatically if there is a lot of background noise to deliver better sound quality. Its
ability to understand scenes and context means that partnered with the right devices
and image technology, it cloud decipher how people are feeling based off facial
expressions, or if their voice reflects levels of stress or anger.

The evolution of IT, mainly in the software arena, has created a number of system
features thatmight suggest theywere cognitive.Making this comparison very simple:
while I am writing this text, the editor makes a number of corrections. In some cases,
the editor decides by itself what needs to be corrected. In other cases, it checks with
me if the correction should be made. In the past, somebody could even say that this
ability of the text editor is due to knowledge acquisition and understanding through
thought and experience and, therefore, the text editor would be considered a cognitive
solution. However, today we know that this ability of text editors is related only to

5https://deepmind.com.
6https://www.qualcomm.com/invention/cognitive-technologies/zeroth.

https://deepmind.com
https://www.qualcomm.com/invention/cognitive-technologies/zeroth

Cognitive Computing: Where Big Data … 841

the ability of quick processing of some arithmetic rules, using traditional procedural
programming and few heuristic rules.

The conclusion so far is that a cognitive system, asmost of the innovative creations
in the technology arena, will go through an evolving onset and what is considered
cognitive today may not be so cognitive in the near future. With that in mind, we can
now try to evaluate the existence of other cognitive systems but rather than naming
two or three, lets try to split them into segments we can envision.

From the perspective of the end user:

All Purpose Virtual Assistants: Siri,7 Alexa,8 Cortana9 and others are, undoubtedly,
the most popular because of its user-friendliness of the systems said to be cog-
nitive. We will not waste any time here analyzing if they are cognitive or not.
Instead, we will accept that their success is, to a great extent, due to a high quality
vocal or if you prefer, voice recognition interface. This will be an ever growing
segment of cognitive systems in the future and may replace current call center
services.

Domain Specific Solutions: less popular than all-purpose assistants, a domain-
specific solution can support the decision making process of a person, in their
professional role or not, inside a specific domain. In fact, there may be many
of these systems already running, but as they are used in connection with some
business need (like stockmarket investment counseling), they are not made public
very often.

Public Domain Based Solutions: these solutions are based on information of public
interest andwill help the user, often a citizen, find an adequate answer to a problem
relatedwith public administration at any level. This answer can be related to public
services such as the timetable of public transportation and the best alternative to
go from A to B , to local regulations such as the requirements to open a new
business , or even to safety and security aspects of a community.

From the perspective of the technology and model of operation:

Systems based on existing APIs: such as the ones available in the BlueMix cloud
computing environment of IBM.TheseAPIs are focused on a single function, such
as relationship extraction, classification, translation, etc. TheAPIwill execute only
the cognitive function for which it was designed and developed and will usually
work on top of a defined segment of cumulated feeding knowledge.

Systems based on very large scale structured content: such as the ones used to guide
medical treatment of a particular disease. These systems will be based on clinical
protocols, properly supported medical bibliography, consisting of a vast amount
of information but already partially or totally curated by the editor of the scientific
periodical on which the paper has been published. Given the nature of the input

7https://www.macstories.net/news/apple-officially-unveils-siri-voice-assistant/ visited 13th
March 2016.
8http://www.alexa.com/about visited 13th March 2016.
9http://research.microsoft.com/en-us/news/features/cortana-041614.aspx visited 13th March
2016.

https://www.macstories.net/news/apple-officially-unveils-siri-voice-assistant/
http://www.alexa.com/about
http://research.microsoft.com/en-us/news/features/cortana-041614.aspx

842 A.P. Appel et al.

information and the format of the answer, these systems can benefit frommachine
learning processes. Gastronomy assistants- such as the Chef Watson,10 of IBM
can also be included in this category.

Systems based on very large amount of unstructured content: such as the ones
designed to fulfill the need to solve a specific problem where the solution will be
based on a substantial amount of unstructured data. These systems will require
good sources of trustable information, permanent curation and the content will
be submitted to the process of ingestion, which will generated annotated corpora,
after some semantic processing. These are the solutions which will fit properly in
cases of legal processes, to help lawyers and eventually judges.

The combination of the 3 categories of users with the 3 categories of technology
and operation will result in a 9-alternative matrix of possibilities, which is enough.
For now. As much as the technology evolves, there are always needs to be met as
new users keep coming, bringing new challenges. That is why the alternatives of the
matrix will expand. Aspects regarding this expansion will be discussed in the next
section of this chapter.

7 The Future of Cognitive Systems

With different semantic formats, the future of Cognitive Systems has been spread in
both scientific and popular publications with the same phrase: AI will be present in
our future. This prediction has been based mostly on the history of the IT evolution
itself: considering this arena formed basically by 2 segments hardware and software
we can say that, periodically,we face disruptive innovation either in the tools to handle
information (the hardware) or in the way we explore these tools (the software).

About hardware, a new architecture for cognitive computing is needed, one
inspired from human brain. Distributed data processing will be largely used and
processing and the memory will be closely integrated in spite of to reduce the shut-
tling of data and instructions back and forth. Discrete processing tasks will be exe-
cuted in parallel instead of serially. A cognitive computer employing these systems
will respond to inquires more quickly than todays computers; less data movement
will be required and less energy will be used.

Evolution in hardware has been based on the Moores Law for a long period of
time. Also, we have heard, for quite some time, thatMoores Lawwas hitting in a wall
represented by the restriction of materials themselves, which could not cope with
the growing need to create smaller, faster and cheaper computers circuitry. Well, in
light of the challenging obstacle, the IT hardware industry is now struggling with
what will be the new disruptive innovation in this segment and Quantum Computing
seems to be the Holy Grail in this case.

10https://www.ibmchefwatson.com/ visited 13th March 2016.

https://www.ibmchefwatson.com/

Cognitive Computing: Where Big Data … 843

However, running in another track and maybe in a lower speed , the software
technology has evolved to Cognitive Computing, a disruptive innovation by itself.
So, its time to enjoy the new rule of the game and be cognitive. Of course, marketing
people have already noticed how promising the new wave of Cognitive Computing
is and, out of a sudden, everything becomes cognitive. Again, it is very likely that
what we will see here is the same pendulum movement that we observe in many
other evolutionary and revolutionary events that the technology brings to our lives:
on one side, some skepticism and lack of trust in the new technology, on the opposite
side, where the new technology seems to be the panacea that heals all wounds. After
some time, equilibrium will be established somewhere between these two extremes.

Nowadays,we see a plethora of suggestions on how to useCognitiveComputing to
address the human needs to solve problems, using some of the alternativesmentioned
in the former section of the chapter. Some of these suggestions will turn into projects
and some of these projects may generate cognitive solutions that will be available to
the end user. This is the point when they will face their moment of truth will they
succeed or succumb? Anyhow, some facts that will undoubtedly outline the future
of Cognitive Systems.

Unstructured data will be more and more useful to feed these systems. Also,
sensors and actuators evolve, other formats of input will also feed these systems. IoT
Internet of Things is a promising field for this.

From the analytics point of view of cognitive computing will contribute to guide
data scientist in their journey. Thus, it not will be so dependent of his/her, since
cognitive computing will help in the decision making of which technique should be
applied to solve the problem and which is the best method for that dataset. This will
help companies make sense and take decision using the ocean of data that we are
dive. The human-in-the-loop will be each day more present in this type o approach,
it was the base of KDD process where the domain specialist and the expert in KDD
where the base of this process, know it will help guide and change the decision and
parameters during execution time.

Is a common sense that many advances in analytics and machine learning have
been based on our understanding of how the brain works. The flavor of the month,
deep learning, is inspired in the processes of the cortex in the brain. The brain has
many regions which form a hierarchy of processing, where sensory data flows from
one region to another, being transformed and combined with other information along
the way. While it may seem instantaneous when we recognize a face or a voice, there
are actually many stages of processing between our senses and a set of neurons that
we can clearly link to that particular person.

Certainly theres a lot of variety to deep learning algorithms, and were likely to
see many new variations over the next years as more applications are developed.
The current crop of deep learning is drawing on only a fraction of what is known
about real neurons and brains, indicating huge potential for this line of scientific
exploration.

Not only deep learning, but other machine learning techniques will need to evolve
to allow cognitive computing to be better and succeed. In the same way other tech-
nologies as data processing with platforms as Spark, data curation, ontologies, rea-

844 A.P. Appel et al.

soning, machine reading, NLP, human computer interaction, visualization and so on.
In fact, the hole computer science will need to evolve so cognitive computing can
evolve.

After this, inspired by the human cognition, other forms of input will soon be
accepted to be ingested by Cognitive Systems. Image utilization is around the corner.

It is fair to say that in a foreseeable future, machines, called by AI or not, will
reach a state of of acquiring knowledge and understanding through thought, experi-
ence, and the senses. When this happens, we will have reached the end of another
evolutionary process for the information technology. The next challenge might be
making machines that are able to emulate our emotions, such as love and happiness,
and capture the more refined nuances of our intellect, which would make them able
to understand irony and, ultimately, to lie in a more humanly fashion [36].

Interdisciplinary studies from computer science, psychology and cognitive
science are already helping scientists to emulate emotions. Emotions impact cog-
nitive processes. Reference [70] demonstrated that emotions play an essential role
on human creativity, intelligence and also in rational human-thinking and decision
making. Empathy is turning out to be one of the most important emotion comput-
ers should emulate, to start a conversation and build trust along of the interaction
sessions [42].

Scientists are discussing the current social-technical challenges for collaboration
with intelligent/autonomous systems and some cooperative work between human
and non-human actors are starting to emerge [29]. Discussions about robots and
systems as cooperative partners are also in evidence [51, 89]. Additionally, com-
munication modes are still an area to explore, for example human like robots and
systems interaction my cause aversive feedback from people [92] and discomfort.11

New promises, new ways of interaction and design challenges are part of the
everyday life of scientists, designers and consumers of cognitive systems.

8 Final Remarks

The construction of this chaptermay summarize the creation of CognitiveComputing
itself: challenging, time consuming, working intensive, required multidisciplinary
skills and approach and in many points, was not totally conclusive. But the authors
really enjoyed the opportunity to impose the discipline required by the scientific
writing process to a sort of knowledge which has been sparsely acquired in the last
few years and, although available, might not be very well organized. When applying
the organization process in a collaborative task, some answers come up but also new
questions. Lets begin by the answers:

11http://arstechnica.com/gadgets/2016/04/how-would-you-feel-if-a-robot-asked-you-to-touch-
its-buttocks/.

http://arstechnica.com/gadgets/2016/04/how-would-you-feel-if-a-robot-asked-you-to-touch-its-buttocks/
http://arstechnica.com/gadgets/2016/04/how-would-you-feel-if-a-robot-asked-you-to-touch-its-buttocks/

Cognitive Computing: Where Big Data … 845

• Data will be the most efficient fuel to speed up the simpler modalities of Cognitive
Systems at the onset of this new era. If the phrase of Clive Humby12 was a concept
still pending to be proved, no question about it anymore: definitely data is the new
oil!

• After more than 100 years pushing the world towards structured data, we cannot
simply disregard them. Therefore, the data analytics approach will still have a
great appeal for a long while.

• Because of the strong appeal of structured data, machine learning methodologies
are also very appealing.

• But the Social Computing has been pushing the IT world toward non-structured
information and in the mid to long term, they will become the preferred fuel to
ignite cognition. Therefore, Cognitive Systems may well become more efficient,
more comprehensive and more complex.

• These systems will learn and interact to provide expert assistance to scientists,
engineers, lawyers, and other professionals in a fraction of the time it now takes.
Far from replacing our thinking, cognitive systems will extend our cognition and
free us to think more creatively.

Now, one questions and one requests:
Do you believe that the traditional bibliographic reference can fulfill the curiosity

of the interested reader? We bet it cannot and for this reason, we have added other
non-traditional sources of information, mainly to reference interesting debates.

Besides this regular reference, we would like to add here some sites with excel-
lent content about Cognitive Computing, most of them are discussions about non-
conclusive topics but which are very compelling for all of us:

• Dario Gil’s presentation at TED: https://www.ted.com/watch/ted-institute/ted-
bcg/dario-gil-the-next-area-of-cognitive-systems

• IBMNYCCognitiveColloquium:http://www.research.ibm.com/cognitive-computing/
index.shtml#fbid=o6epbokzGUL?hashlink=rpi

• Financial Times: AI Can Watson Save IBM? http://www.ft.com/intl/cms/s/2/
dced8150-b300-11e5-8358-9a82b43f6b2f.html#axzz3wwMehMjI

• Searching for Eureka: IBMs path back to greatness, and how it could change the
world http://qz.com/567658/searching-for-eureka-ibms-path-back-to-greatness-
and-how-it-could-change-the-world/

We are pretty curious to know if this chapter will attend the needs of our readers!
Please, do not hesitate in contacting uswith critics, suggestions or any other feedback.

References

1. V. Abramova, J. Bernardino, P. Furtado, Which nosql database? a performance overview.
Open J. Databases (OJDB) 1(2), 17–24 (2014)

12http://ana.blogs.com/maestros/2006/11/data_is_the_new.html.

https://www.ted.com/watch/ted-institute/ted-bcg/dario-gil-the-next-area-of-cognitive-systems
https://www.ted.com/watch/ted-institute/ted-bcg/dario-gil-the-next-area-of-cognitive-systems
http://www.research.ibm.com/cognitive-computing/index.shtml#fbid=o6epbokzGUL?hashlink=rpi
http://www.research.ibm.com/cognitive-computing/index.shtml#fbid=o6epbokzGUL?hashlink=rpi
http://www.ft.com/intl/cms/s/2/dced8150-b300-11e5-8358-9a82b43f6b2f.html#axzz3wwMehMjI
http://www.ft.com/intl/cms/s/2/dced8150-b300-11e5-8358-9a82b43f6b2f.html#axzz3wwMehMjI
http://qz.com/567658/searching-for-eureka-ibms-path-back-to-greatness-and-how-it-could-change-the-world/
http://qz.com/567658/searching-for-eureka-ibms-path-back-to-greatness-and-how-it-could-change-the-world/
http://ana.blogs.com/maestros/2006/11/data_is_the_new.html

846 A.P. Appel et al.

2. C. Alexander, S. Ishikawa, M. Silverstein, A Pattern Language: Towns, Buildings, Construc-
tion, vol. 2 (Oxford University Press, Oxford, 1977)

3. S.Z. Arshad, J. Zhou, C. Bridon, F. Chen, Y. Wang, Investigating user confidence for uncer-
tainty presentation in predictive decision making (2015)

4. E.R. Babbie, The Practice of Social Research, vol. 112 (Wadsworth publishing company
Belmont, CA, 1998)

5. A. Bangor, P. Kortum, J. Miller, Determining what individual sus scores mean: adding an
adjective rating scale. J. Usability Stud. 4(3), 114–123 (2009)

6. D. Baur, S. Borin, A. Butz, Rush: repeated recommendations on mobile devices, in Proceed-
ings of the 15th international conference on Intelligent user interfaces (ACM, 2010), pp.
91–100

7. I. Behoora, C.S. Tucker, Machine learning classification of design team members’ body
language patterns for real time emotional state detection. Design Stud. 39, 100–127 (2015)

8. H.R. Bernard, Social researchmethods:Qualitative and quantitative approaches (Sage, 2012)
9. A. Bernstein, F. Provost, S. Hill, Toward intelligent assistance for a data mining process:

an ontology-based approach for cost-sensitive classification. IEEE Trans. Knowl. Data Eng.
17(4), 503–518 (2005)

10. J. Bertin, Semiology of Graphics: Diagrams, Networks, Maps (1983)
11. L. Blaxter, How to Research (McGraw-Hill Education, New York, 2010)
12. J. Brooke, Sus-a quick and dirty usability scale. Usability Eval. Ind. 189(194), 4–7 (1996)
13. A. Bryman, Social Research Methods (Oxford University Press, Great Britain, 2008)
14. B.G. Buchanan, E.H. Shortliffe, Rule Based Expert Systems: The Mycin Experiments of the

StanfordHeuristicProgrammingProject (TheAddison-Wesley Series inArtificial Intelligence)
(Addison-Wesley Longman Publishing Co. Inc, Boston, MA, USA, 1984)

15. F. Buttussi, L. Chittaro, D. Nadalutti, Bringing mobile guides and fitness activities together:
a solution based on an embodied virtual trainer, in Proceedings of the 8th conference on
Human-computer interaction with mobile devices and services (ACM, 2006), pp. 29–36

16. S.K. Card, J.D. Mackinlay, B. Shneiderman. Readings in Information Visualization: Using
Vision to Think (Morgan Kaufmann 1999)

17. J.M. Carroll, Five reasons for scenario-based design. Interact. Comput. 13(1), 43–60 (2000).
doi:10.1016/S0953-5438(00)00023-0

18. J.M. Carroll, HCI Models, Theories, and Frameworks: Toward a Multidisciplinary Science
(Morgan Kaufmann, 2003)

19. A.R. Chatley, K.Dautenhahn, M.L. Walters, D.S. Syrdal, B. Christianson. Theatre as a dis-
cussion tool in human-robot interaction experiments - a pilot study, in Third International
Conference on Advances in Computer-Human Interactions, ACHI ’10 (2010), pp. 73–78,
scenarios theatre

20. J.W. Creswell Research Design: Qualitative, Quantitative, and Mixed Methods Approaches
(Sage publications, 2013)

21. M.Daradkeh, Exploring the use of an information visualization tool for decision support under
uncertainty and risk, in Proceedings of the The International Conference on Engineering &
MIS (ACM, 2015), pp. 1–7

22. M. Dawe, Understanding mobile phone requirements for young adults with cognitive disabil-
ities, in Proceedings of the 9th international ACM SIGACCESS conference on Computers and
accessibility (ACM, 2007), pp. 179–186

23. E. De Kock, J. Van Biljon, M. Pretorius, Usability evaluation methods: mind the gaps, in Pro-
ceedings of the 2009 Annual Research Conference of the South African Institute of Computer
Scientists and Information Technologists (ACM, 2009), pp. 122–131

24. P.B.C. deMiranda, R.B.C. Prudêncio, A.C.P.L.F. Carvalho, C. Soares, A hybridmeta-learning
architecture for multi-objective optimization of SVM parameters. Neurocomputing 143, 27–
43 (2014)

25. N.K. Denzin, Y.S. Lincoln, Handbook of Qualitative Research (Sage Publications Inc, 1994)
26. F.X. Diebold, A personal perspective on the origin (s) and development of’big data’: the

phenomenon, the term, and the discipline, second version (2012)

http://dx.doi.org/10.1016/S0953-5438(00)00023-0

Cognitive Computing: Where Big Data … 847

27. S.P. Dow, M. Mehta, B. MacIntyre, M. Mateas, Eliza meets the wizard-of-oz: blending
machine and human control of embodied characters, in Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems (ACM, 2010), pp. 547–556

28. H.B.L. Duh, G.C.B. Tan, V.H. Chen, Usability evaluation for mobile device: a comparison
of laboratory and field tests, in Proceedings of the 8th Conference on Human-Computer
Interaction with Mobile Devices and Services (ACM, 2006), pp. 181–186

29. L. Emanuel, J. Fischer, W. Ju, S. Savage, Innovations in autonomous systems: Challenges and
opportunities for human-agent collaboration, in Proceedings of the 19th ACM Conference on
Computer Supported Cooperative Work and Social Computing Companion (ACM, 2016), pp.
193–196

30. T. Erikson, H. Simon, Protocol analysis: Verbal reports as data. Technical report (MIT Press,
1985)

31. W. Fan, A. Bifet, Mining big data: current status, and forecast to the future. SIGKDD Explor.
Newsl. 14(2), 1–5 (2013)

32. U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, Advances in knowledge discovery and data
mining. Chapter FromDataMining to Knowledge Discovery: An Overview (American Asso-
ciation for Artificial Intelligence, Menlo Park, CA, USA, 1996), pp. 1–34

33. D. Ferrucci, A. Lally, Building an example application with the unstructured information
management architecture. IBM Syst. J. 43(3), 455–475 (2004)

34. D.A. Ferrucci, Introduction to this is watson. IBM J. Res. Dev. 56(3.4), 1:1–1:15 (2012)
35. K. Forbes-Riley,D. Litman,Designing and evaluating awizarded uncertainty-adaptive spoken

dialogue tutoring system. Comput. Speech Lang. 25(1), 105–126 (2011)
36. W. Gibson, Neuromancer: Roman. (Heyne, 1992)
37. B.G. Glaser, A. Strauss, Discovery of Grounded Theory (Aldine, London, 1967)
38. J.P. Goetz, M.D. Lecompte, Ethnography and Qualitative Design in Educational Research

(Academic Press, Orlando, Fl, 1984)
39. R.L. Gold, Roles in sociological fieldwork. Soc. Forces 36, 217–223 (1958)
40. J. Goodman, S. Brewster, P. Gray, Using field experiments to evaluate mobile guides, in

Proceedings of HCI in Mobile Guides, workshop at Mobile HCI, vol. 2004 (Citeseer, 2004)
41. A. Graves, G. Wayne, I. Danihelka, Neural turing machines. CoRR. arXiv:1410.5401 (2014)
42. T.D. Huynh, N.R. Jennings, N.R. Shadbolt, An integrated trust and reputation model for open

multi-agent systems. Auton. Agents and Multi-Agent Syst. 13(2), 119–154 (2006)
43. G. Iacucci, K.Kuutti, R.Mervi, On themovewith amagic thing: role playing in concept design

ofmobile services and devices, inProceedings of the 3rd Conference onDesigning Interactive
Systems: Processes, Practices, Methods, and Techniques (ACM, 2000), pp. 193–202 347715
193-202

44. H.V. Jagadish, J. Gehrke, A. Labrinidis, Y. Papakonstantinou, J.M. Patel, R. Ramakrishnan,
C. Shahabi, Big data and its technical challenges. Commun. ACM 57(7), 86–94 (2014)

45. R. Jeffries, J.R. Miller, C. Wharton, K. Uyeda, User interface evaluation in the real world: a
comparison of four techniques, in Proceedings of the SIGCHI conference on Human factors
in computing systems (ACM, 2013), pp. 119–124

46. M. Jones, G. Marsden, Mobile Interaction Design (Wiley, Glasgow, 2006)
47. J. Joo, Adoption of semantic web from the perspective of technology innovation: a grounded

theory approach. Int. J. Hum. - Comput. Stud. 69(3), 139–154 (2011)
48. A.K. Karun, K. Chitharanjan, A review on hadoop - hdfs infrastructure extensions, in 2013

IEEE Conference on Information Communication Technologies (ICT) (2013), pp. 132–137
49. J.E. Kelly, S. Hamm, Smart Machines: IBM’s Watson and the Era of Cognitive Computing

(Columbia University Press, New York, NY, USA, 2013)
50. J.O. Kephart, J. Lenchner, A symbiotic cognitive computing perspective on autonomic com-

puting, in 2015 IEEE International Conference on Autonomic Computing (ICAC) (2015), pp.
109–114

51. C. Lampe, B. Bauer, H. Evans, D. Robson, T. Lau, L. Takayama, Robots as cooperative
partners... we hope.., in Proceedings of the 19th ACM Conference on Computer Supported
Cooperative Work and Social Computing Companion (ACM, 2016), pp. 188–192

http://arxiv.org/abs/1410.5401

848 A.P. Appel et al.

52. D. Laney, 3D data management: Controlling data volume, velocity, and variety (Technical
report, META Group, 2001)

53. C. Lewis, P. G. Polson, C. Wharton, J. Rieman, Testing a walkthrough methodology for
theory-based design of walk-up-and-use interfaces, inProceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI ’90 (ACM, New York, NY, USA, 1990), pp.
235–242

54. M. Li, J. Mao, Hedonic or utilitarian? exploring the impact of communication style alignment
on user’s perception of virtual health advisory services. Int. J. Inf. Manag. 35(2), 229–243
(2015)

55. L. Liu, Q. Zhou, J. Liu, Z. Cao, Requirements cybernetics: Elicitation based on user behavioral
data. J. Syst. Softw. (2015)

56. S. Love, Understanding Mobile Human-Computer Interaction (Elsevier, Oxford, 2005)
57. J. Lundberg, R. Gustavsson, Challenges and opportunities of sensor based user empowerment,

in 2011 IEEE International Conference on Networking, Sensing and Control (ICNSC) (2011),
pp. 463–468

58. J. Manson, Qualitative Researching (Sage Publications, Great Britain, 2002)
59. C. Marshall, G.B. Rossman, Designing Qualitative Research (Sage, 2011)
60. M. Matlin, Cognitive Psychology (Wiley, 2009)
61. M.C. McCord, J.W. Murdock, B.K. Boguraev, Deep parsing in watson. IBM J. Res. Dev.

56(3.4), 3:1–3:15 (2012)
62. X. Meng, J.K. Bradley, B. Yavuz, E.R. Sparks, S. Venkataraman, D. Liu, J. Freeman, D.B.

Tsai, M. Amde, S. Owen, D. Xin, R. Xin, M.J. Franklin, R. Zadeh, M. Zaharia, A. Talwalkar.
Mllib: Machine learning in apache spark. CoRR. arXiv:1505.06807 (2015)

63. J. Messeter, M. Johansson, Place-specific computing: conceptual design cases from urban
contexts in four countries, inProceedings of the 7th ACM conference onDesigning interactive
systems (ACM, 2008), pp. 99–108

64. J. Mowat, Cognitive walkthroughs: where they came from, what they have become, and their
application to epss design. The Herridge Group Inc (2002)

65. W. Naheman, J. Wei, Review of nosql databases and performance testing on hbase, in Pro-
ceedings 2013 International Conference on Mechatronic Sciences, Electric Engineering and
Computer (MEC) (2013), pp. 2304–2309

66. J. Nielsen, R. Mack, Usability Inspection Methods (Wiley, 1994)
67. N. O’Leary, Ogilvy & mather and big blue - a new york agency gives ibm a fresh new look.

Commun. Arts Mag. 41(8), 98–107 (2000)
68. J. Paay, J. Kjeldskov, Understanding and modelling built environments for mobile guide

interface design. Behav. Inf. Technol. 24(1), 21–35 (2005)
69. J. Paay, J. Kjeldskov, S. Howard, B. Dave, Out on the town: a socio-physical approach to the

design of a context-aware urban guide. ACM Trans. Comput.-Hum. Interact. (TOCHI) 16(2),
7 (2009)

70. R.W. Picard, Affective Computing (MIT Press, Cambridge, MA, USA, 1997)
71. I. Polato, R.R.A. Goldman, F. Kon, A comprehensive view of hadoop researcha systematic

literature review. J. Netw. Comput. Appl. 46, 1–25 (2014)
72. P.G. Polson, C. Lewis, J. Rieman, C. Wharton, Cognitive walkthroughs: a method for theory-

based evaluation of user interfaces. Int. J. Man-Mach. Stud. 36(5), 741–773 (1992)
73. A. Pommeranz, J. Broekens, P. Wiggers, W.-P. Brinkman, C.M. Jonker, Designing interfaces

for explicit preference elicitation: a user-centered investigation of preference representation
and elicitation process. User Model. User - Adap.Interact. 22(4–5), 357 (2012)

74. J.R. Preece, Y. Rogers, Sharp (2002): Interaction Design: Beyond Human-Computer Inter-
action (Wiley, Answers. com Technology, Crawfordsville, 2007)

75. D.G. Rees, Essential Statistics, vol. 50 (CRC Press, Boca Raton, 2000)
76. S.C. Reid, S.D. Kauer, P. Dudgeon, L.A. Sanci, L.A. Shrier, G.C. Patton, A mobile phone

program to track young peoples experiences of mood, stress and coping. Soc. Psych. Psych.
Epidemiol. 44(6), 501–507 (2009)

http://arxiv.org/abs/1505.06807

Cognitive Computing: Where Big Data … 849

77. V. Rieser, O. Lemon, S. Keizer, Natural language generation as incremental planning under
uncertainty: adaptive information presentation for statistical dialogue systems. IEEE/ACM
Trans. Audio, Speech Lang. Process. 22(5), 979–994 (2014)

78. J. Robertson, S. Robertson, Volere requirements specification template.Atlantic SystemGuild.
www.systemguild.com (2000)

79. B. Robins, E. Ferrari, K. Dautenhahn, G. Kronreif, B. Prazak-Aram, G.-J. Gelderblom, B.
Tanja, F. Caprino, E. Laudanna, P. Marti, *human-centred design methods: developing sce-
narios for robot assisted play informed by user panels and field trials. Int. J. Hum.-Comput.
Stud. 68(12), 873–898 (2010)

80. A.L.D. Rossi, A.C.P. de Leon, Ferreira de Carvalho, C. Soares, B.F. de Souza, Metastream: a
meta-learning based method for periodic algorithm selection in time-changing data. Neuro-
computing 127, 52–64 (2014)

81. G.B. Rossman, S.F. Rallis, Learning in the Field: An introduction to Qualitative Research
(Sage, 2003)

82. A. Rubin, Statistics for Evidence-Based Practice and Evaluation (Cengage Learning, 2012)
83. S. Sagiroglu,D. Sinanc,Big data: a review, in 2013 InternationalConference onCollaboration

Technologies and Systems (CTS) (2013), pp. 42–47
84. J. Sauer, A. Sonderegger, The influence of prototype fidelity and aesthetics of design in

usability tests: effects on user behaviour, subjective evaluation and emotion. Appl. Ergon.
40(4), 670–677 (2009)

85. J. Schindler, Profiling and analyzing the i/o performance of nosql dbs. SIGMETRICSPerform.
Eval. Rev. 41(1), 389–390 (2013)

86. B. Schneiderman, C. Plaisant, Designing the User Interface: Strategies for Effective Human-
Computer Interaction (Pearson higher education, USA, 2010)

87. A.G. Shoro, T.R. Soomro, Big data analysis: apache spark perspective. Global J. Comput.
Sci. Technol. 15(1) (2015)

88. E.H. Shortliffe, B.G. Buchanan, A model of inexact reasoning in medicine. Math. Biosci. 23,
351–379 (1975)

89. D. Sirkin, B. Mok, S. Yang, W. Ju, Oh, i love trash: personality of a robotic trash barrel, in
Proceedings of the 19th ACM Conference on Computer Supported Cooperative Work and
Social Computing Companion (ACM, 2016), pp. 102–105

90. R. Spencer, Information Visualization, vol. 1. (Springer, 2001)
91. A. Steinfeld, O.C. Jenkins, B. Scassellati, The oz of wizard: simulating the human for interac-

tion research, in 2009 4th ACM/IEEE International Conference on Human-Robot Interaction
(HRI) (IEEE, 2009), pp. 101–107

92. M. Strait, L. Vujovic, V. Floerke, M. Scheutz, H. Urry, Too much humanness for human-robot
interaction: exposure to highly humanlike robots elicits aversive responding in observers, in
Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems
(ACM, 2015), pp. 3593–3602

93. J.R. Thomas, S. Silverman, J. Nelson, Research Methods in Physical Activity, 7E (Human
Kinetics, 2015)

94. E.R. Tufte, Envisioning information. Optom. Vis. Sci. 68(4), 322–324 (1991)
95. T. Tullis, B. Albert, Measuring the user experience: Collecting, Analysing, and Presenting

Usability Metrics (2008)
96. F.B. Viegas, M. Wattenberg, F. Van Ham, J. Kriss, M. McKeon, Manyeyes: a site for visual-

ization at internet scale. IEEE Trans. Vis. Comput. Gr. 13(6), 1121–1128 (2007)
97. A.S. Vivacqua, A.C.B. Garcia, A. Gomes, Boo: behavior-oriented ontology to describe partic-

ipant dynamics in collocated design meetings. Expert Syst. Appl. 38(2), 1139–1147 (2011).
Knowledge acquisition meetings to create domain representations

98. N. Walliman, Social Research Methods (Sage, 2006)
99. T. Walsh, P. Nurkka, T. Koponen, J. Varsaluoma, S. Kujala, S. Belt. Collecting cross-cultural

user data with internationalized storyboard survey, in Proceedings of the 23rd Australian
Computer-Human Interaction Conference (ACM, 2011), pp. 301–310

100. C. Ware, Information Visualization: Perception for Design (Elsevier, 2012)

www.systemguild.com

850 A.P. Appel et al.

101. F.Weber,C.Haering,R.Thomaschke, Improving the humancomputer dialoguewith increased
temporal predictability. Hum. Factors: J. Hum. Factors Ergonom. Soc. 55(5), 881–892 (2013)

102. C.R. Wilkinson, A. De Angeli, Applying user centred and participatory design approaches to
commercial product development. Des. Stud. 35(6), 614–631 (2014)

103. D. Wixon, Qualitative research methods in design and development. Interactions 2(4), 19–26
(1995)

104. H. Yang, Y. Li, M.X. Zhou, Understand users comprehension and preferences for composing
information visualizations. ACM Trans. Comput.-Hum. Interact.(TOCHI) 21(1), 6 (2014)

Privacy-Preserving Record Linkage
for Big Data: Current Approaches
and Research Challenges

Dinusha Vatsalan, Ziad Sehili, Peter Christen and Erhard Rahm

Abstract ThegrowthofBigData, especially personal data dispersed inmultiple data
sources, presents enormous opportunities and insights for businesses to explore and
leverage the value of linked and integrated data. However, privacy concerns impede
sharing or exchanging data for linkage across different organizations. Privacy-
preserving record linkage (PPRL) aims to address this problem by identifying and
linking records that correspond to the same real-world entity across several data
sources held by different parties without revealing any sensitive information about
these entities. PPRL is increasingly being required in many real-world application
areas. Examples range from public health surveillance to crime and fraud detection,
and national security. PPRL for Big Data poses several challenges, with the three
major ones being (1) scalability to multiple large databases, due to their massive
volume and the flow of data within Big Data applications, (2) achieving high quality
results of the linkage in the presence of variety and veracity of Big Data, and (3)
preserving privacy and confidentiality of the entities represented in Big Data collec-
tions. In this chapter, we describe the challenges of PPRL in the context of Big Data,
survey existing techniques for PPRL, and provide directions for future research.

Keywords Record linkage · Privacy · Big data · Scalability

D. Vatsalan · P. Christen
Research School of Computer Science, The Australian National University,
Acton, ACT 2601, Australia
e-mail: dinusha.vatsalan@anu.edu.au

P. Christen
e-mail: peter.christen@anu.edu.au

Z. Sehili · E. Rahm (B)
Database Group, University of Leipzig, 04109 Leipzig, Germany
e-mail: rahm@informatik.uni-leipzig.de

Z. Sehili
e-mail: sehili@informatik.uni-leipzig.de

© Springer International Publishing AG 2017
A.Y. Zomaya and S. Sakr (eds.), Handbook of Big Data Technologies,
DOI 10.1007/978-3-319-49340-4_25

851

852 D. Vatsalan et al.

1 Introduction

With the Big Data revolution, many organizations collect and process datasets that
contain manymillions of records to analyze andmine interesting patterns and knowl-
edge in order to empower efficient and quality decision making [28, 53]. Analyzing
and mining such large datasets often require data from multiple sources to be linked
and aggregated. Linking records from different data sources with the aim to improve
data quality or enrich data for further analysis is occurring in an increasing number of
application areas, such as healthcare, government services, crime and fraud detection,
national security, and business applications [28, 52]. Effective ways of linking data
from different sources have also played an increasingly important role in generating
new insights for population informatics in the health and social sciences [99].

For example, linking health databases fromdifferent organizations facilitates qual-
ity health data mining and analytics in applications such as epidemiological studies
(outbreak detection of infectious diseases) or adverse drug reaction studies [20, 116].
These applications require data from several organizations to be linked, for example
human health data, travel data, consumed drug data, and even animal health data [38].
Linked health databases can also be used for the development of health policies in
a more efficient and effective way compared to traditionally used time-consuming
survey studies [37, 88].

Record linkage techniques are also being used by national security agencies and
crime investigators for effective identification of fraud, crime, or terrorism sus-
pects [73, 125, 168]. Such applications require data from law enforcement agencies,
immigration departments, Internet service providers, businesses, as well as financial
institutions [125].

In recent time, record linkage is increasingly being required by social scien-
tists in the field of population informatics to study insights into our society from
‘social genome’ data, the digital traces that contain person-level data about social
beings [99]. The ‘Beyond 2011’ program by the Office for National Statistics in the
UK, for example, has carried out research to study different possible approaches to
producing population and socio-demographics statistics for England and Wales by
linking data from several sources [121].

Record linkage within a single organization does not generally involve privacy
and confidentiality concerns (assuming there are no internal threats within the orga-
nization and the linked data are not being revealed outside the organization). An
example application is the deduplication of a customer database by a business
using record linkage techniques for conducting effective marketing activities. How-
ever, in many countries record linkage across several organizations, as required in
the above example applications, might not allow the exchange or the sharing of
database records between organizations due to laws or regulations. Some example
Acts that describe the legal restrictions of disclosing personal or sensitive data are:
(1) the Data-Matching Program Act in Australia,1 (2) the European Union (EU) Per-

1https://www.oaic.gov.au/privacy-law/other-legislation/government-data-matching [Accessed:
15/06/2016].

https://www.oaic.gov.au/privacy-law/other-legislation/government-data-matching

Privacy-Preserving Record Linkage for Big Data: Current Approaches … 853

sonal Data Protection Act in Europe,2 and (3) the Health Insurance Portability and
Accountability Act (HIPAA) in the USA.3

The privacy requirements in the record linkage process have been addressed by
developing ‘privacy-preserving record linkage’ (PPRL) techniques, which aim to
identifymatching records that refer to the same entities in different databases without
compromising privacy and confidentiality of these entities. In a PPRL project, the
database owners (or data custodians) agree to reveal only selected information about
records that have been classified as matches among each other, or to an external
party, such as a researcher [164]. However, record linkage requires access to the
actual values of certain attributes.

Known as quasi-identifiers (QIDs), these attributes need to be common in all
databases to be linked and represent identifying characteristics of entities to allow
matching of records. Examples of QIDs are first and last names, addresses, tele-
phone numbers, or dates of birth. Such QIDs often contain private and confidential
information of entities that cannot be revealed, and therefore the linkage has to be
conducted on masked (encoded) versions of the QIDs to preserve the privacy of
entities. Several masking techniques have been developed (as we will describe in
Sect. 3.4), using two different types of general approaches: (1) secure multi-party
computation (SMC) [111] and (2) data perturbation [87].

Leveraging the tremendous opportunities that Big Data can provide for businesses
comes with the challenges that PPRL poses, including scalability, quality, and pri-
vacy. Big Data implies enormous data volume as well as massive flows (velocity)
of data, leading to scalability challenges even with advanced computing technology.
The variety and veracity aspects of Big Data require biases, noise, variations and
abnormalities in data to be considered, which makes the linkage process more chal-
lenging. With Big Data containing massive amounts of personal data, linking and
mining data may breach the privacy of those represented by the data. A practical
PPRL solution that can be used in real-world applications should therefore address
these challenges of scalability, linkage quality, and privacy. A variety of PPRL tech-
niques has been developed over the past two decades, as surveyed in [154, 164].
However, these existing approaches for PPRL fall short in providing a sound solu-
tion in the Big Data era by not addressing all of the Big Data challenges. Therefore,
more research is required to leverage the huge potential that linking databases in
the era of Big Data can provide for businesses, government agencies, and research
organizations.

In this chapter, we review the existing challenges and techniques, and discuss
research directions of PPRL for Big Data. We provide the preliminaries in Sect. 2
and review existing privacy techniques for PPRL in Sect. 3. We then discuss the
scalability challenge and existing approaches that address scalability of PPRL in
Sect. 4. In Sect. 5, we describe the challenges and existing techniques of PPRL on
multiple databases, which is an emerging research avenue that is being increasingly
required in many Big Data applications. In Sect. 6 we discuss research directions in

2http://ec.europa.eu/justice/data-protection/index_en.htm [Accessed: 15/06/2016].
3http://www.hhs.gov/ocr/privacy/ [Accessed: 15/06/2016].

http://ec.europa.eu/justice/data-protection/index_en.htm
http://www.hhs.gov/ocr/privacy/

854 D. Vatsalan et al.

PPRL for Big Data, and in Sect. 7 we conclude this chapter with a brief summary of
the topic covered.

2 Background

Building on the introduction to record linkage and privacy-preserving record link-
age (PPRL) in Sect. 1, we now present background material that contributes to the
understanding of the preliminaries. We describe the basic concepts and challenges
in Sect. 2.1, and then describe the process of PPRL in Sect. 2.2.

2.1 Overview and Challenges of PPRL

Record linkage is a widely used data pre-processing and data cleaning task where the
aim is to link and integrate records that refer to the same entity from two or multiple
disparate databases. The record pairs (when linking two databases) or record sets
(when linking more than two databases) are compared and classified as ‘matches’ by
a linkage model if they are assumed to refer to the same entity, or as ‘non-matches’
if they are assumed to refer to different entities [26, 54]. The frequent absence of
unique entity identifiers across the databases to be linked makes it impossible to use
a simple SQL-join [30], and therefore linkage requires sophisticated comparisons
between a set of QIDs (such as names and addresses) that are commonly available
in the records to be linked. However, these QIDs often contain personal information
and therefore revealing or exchanging them for linkage is not possible due to privacy
and confidentiality concerns.

As an example scenario, assume a demographer who aims to investigate how
mortgage stress (having to pay large sums of money on a regular basis to pay off
a house) is affecting people with regard to their mental and physical health. This
research will require data from financial institutions as well as hospitals as shown
in Tables1 and 2. Neither of these organizations is likely willing or allowed by law
to provide their databases to the researcher. The researcher only requires access to
some attributes of the records (such as loan type, balance amount, blood pressure,
and stress level) that are linked across these databases, but not the actual identities
of the individuals that were linked. However, personal details (such as name, age or
date of birth, gender, and address) are needed as QIDs to conduct the linkage due to
the absence of unique identifiers across the databases.

As illustrated in the above example application (shown in Tables1 and 2), link-
ing records in a privacy-preserving context is important, as sharing or exchanging
sensitive and confidential personal data (contained in QIDs of records) between
organizations is often not feasible due to privacy concerns, legal restrictions, or
commercial interests. Therefore, databases need to be linked in such ways that no
sensitive information is being revealed to any of the organizations involved in a cross-

Privacy-Preserving Record Linkage for Big Data: Current Approaches … 855

Table 1 Example bank database

ID Given_name Surname DOB Gender Address Loan_type Balance

6723 Peter Robert 20.06.72 M 16 Main
Street
2617

Mortgage 230,000

8345 Smith Roberts 11.10.79 M 645
Reader
Ave 2602

Personal 8,100

9241 Amelia Millar 06.01.74 F 49E
Apple-
cross Rd
2415

Mortgage 320,750

Table 2 Example health database

PID Last_name First_name Age Address Sex Pressure Stress Reason

P1209 Roberts Peter 41 16 Main
St 2617

m 140/90 High Chest pain

P4204 Miller Amelia 39 49 Apple-
cross
Road
2415

f 120/80 High Headache

P4894 Sieman Jeff 30 123
Norcross
Blvd 2602

m 110/80 Normal Checkup

organizational linkage project, and no adversary is able to learn anything about these
sensitive data. This problem has been addressed by the emerging research area of
PPRL [164].

The basic ideas of PPRL techniques are to mask (encode) the databases at their
sources and to conduct the linkage using only these masked data. This means no
sensitive data are ever exchanged between the organizations involved in a PPRL
protocol, or revealed to any other party. At the end of such a PPRL process, the
database owners only learn which of their own records match with a high similar-
ity with records from the other database(s). The next steps would be exchanging
the values in certain attributes of the matched records (such as loan type, balance
amount, blood pressure, and stress level in the above example) between the database
owners, or sending selected attribute values to a third party, such as a researcher
who requires the linked data for their project [164]. Recent research outcomes and
experiments conducted in real health data linkage validate that PPRL can achieve
linkage quality with only small loss compared to traditional record linkage using
unencoded QIDs [134, 135].

Using PPRL for Big Data involves many challenges, among them the follow-
ing three key challenges need to be addressed to make PPRL viable for Big Data
applications:

856 D. Vatsalan et al.

1. Scalability: The number of comparisons required for classifying record pairs or
sets equals to the product of the size of the databases that are linked. This is a
performance bottleneck in the record linkage process since it potentially requires
comparison of all record pairs/sets using expensive comparison functions [9,
31]. Due to the increasing size of Big Data (volume), comparing all records is
not feasible in most real-world applications. Blocking and filtering techniques
have been used to overcome this challenge by eliminating as many comparisons
between non-matching records as possible [9, 29, 150].

2. Linkage quality: The emergence of Big Data brings with it the challenge of deal-
ing with typographical errors and other variations in data (variety and veracity)
making the linkage more challenging. The exact matching of QID values, which
would classify pairs or sets of records as matches if their QIDs are exactly the
same and as non-matches otherwise, will likely lead to low linkage accuracy in
the presence of real-world data errors. In addition, the classification models used
in record linkage should be effective and accurate in classifyingmatches and non-
matches [31]. Therefore, for practical record linkage applications, techniques are
required that facilitate both approximate matching of QID values for comparison,
as well as effective classification of record pairs/sets for high linkage accuracy.

3. Privacy: The privacy-preserving requirement in the record linkage process adds
a third challenge, privacy, to the two main challenges of scalability and linkage
quality [164]. Linking Big Data containing massive amounts of personal data
generally involves privacy and confidentiality issues. Privacy needs to be consid-
ered in all steps of the record linkage process as only the masked (or encoded)
records can be used, making the task of linking databases across organizations
more challenging. Several masking techniques have been used for PPRL, as we
will discuss in detail in Sect. 3.4.

2.2 The PPRL Process and Techniques Used

In this section we discuss the steps and the techniques used in the PPRL process, as
shown in Fig. 1.

Data Pre-processing and Masking: The first important step for quality linkage
outcomes is data pre-processing. Real-world data are often noisy, incomplete and
inconsistent [8, 128], and they need to be cleaned in this step by filling in missing
data, removing unwanted values, transforming data into well-defined and consistent
forms, and resolving inconsistencies in data representations and encodings [28, 36].
In PPRL, data masking (encoding) is an additional step. Data pre-processing and
masking can be conducted independently at each data source.However, it is important
that all database owners (or parties) who participate in a PPRL project conduct the
same data pre-processing and masking steps on the data they will use for linking.
Some exchange of information between the parties about what data pre-processing

Privacy-Preserving Record Linkage for Big Data: Current Approaches … 857

processing
Data pre−Database

AD
Data

masking

Data
masking

Matches

matches

Possible

EvaluationNon−Comparison
tion

Classifica−

Clerical
review matches

Blocking/
filtering

Blocking/
filtering

Database
BD processing

Data pre−

Fig. 1 Outline of the general PPRL process as discussed in Sect. 2.2. The steps shown in dark out-
lined boxes need to be conducted on masked database records, while dotted arrows show alternative
data flows between steps

and masking approaches they use, as well as which attributes to be used as QIDs, is
therefore required [164].

Blocking/filtering: Blocking/filtering is the second step of the process, which is
aimed at reducing the number of comparisons that need to be conducted between
records by pruning as many pairs or sets of records as possible that unlikely corre-
spond to matches [9, 29]. Blocking groups records according to a blocking criteria
(blocking key) such that comparisons are limited to records in the same (or similar)
blocks, while filtering prunes potential non-matches based on their properties (e.g.
length differences of QIDs) [29]. The output of this step are candidate record pairs
(or sets) that contain records that are potentially matching, which need to be com-
pared in more detail. Blocking/filtering can either be conducted on masked records
or locally by the database owners on unmasked records. The scalability challenge of
PPRL has been addressed by several recent approaches using private blocking and
filtering techniques [46, 78, 131, 133, 149, 150, 159, 163], as will be described in
Sects. 4 and 5.1.

Comparison: Candidate record pairs (or sets) are compared in detail in the com-
parison step using comparison (or similarity) functions [32]. Various comparison
functions have been used in record linkage including Levenshtein edit distance,
Jaro-Winkler comparison, Soft-TFIDF string comparison, and token-based compar-
ison using the Overlap, Dice, or Jaccard coefficient [28]. These comparison functions
provide a numerical value representing the similarity of the compared QID values,
often normalized into the [0, 1] interval where a similarity of 1 corresponds to two
values being exactly the same, and 0 means two values being completely different.
Several QIDs are normally used when comparing records, resulting in one weight
vector for each compared record pair that contains the numerical similarity values
of all compared QIDs.

858 D. Vatsalan et al.

The QIDs of records often contain variations and errors, and therefore simply
masking these values with a secure one-way hash-encoding function (as will be
described inSect. 3.4) and comparing themasked valueswill not result in high linkage
quality for PPRL [35, 122]. A small variation in a pair of QID values will lead to
completely different hash-encoded values [35], which enables only exactly matching
QID values to be identified with such a simple masking approach. Therefore, an
effective masking approach for securely and accurately calculating the approximate
similarity of QID values is required. Several approximate comparison functions have
been adapted into a PPRL context, including the Levenshtein edit distance [76] and
the Overlap, Dice, and Jaccard coefficients [164].

Classification: In the classification step, the weight vectors of the compared candi-
date record pairs (or sets) are given as input to a decision model which will classify
them into matches, non-matches, and possible matches [31, 54, 63], where the latter
class is for cases where the classification model cannot make a clear decision. A
widely used classification approach for record linkage is the probabilistic method
developed by Fellegi and Sunter in the 1960s [54]. In this model, the likelihood that
a pair (or set) of records corresponds to a match or a non-match is modelled based
on a-priori error estimates on the data, frequency distributions of QID values, as well
as their similarity calculated in the comparison step [28]. Other classification tech-
niques include simple threshold-based and rule-based classifiers [28]. Most PPRL
techniques developed so far employ a simple threshold-based classification [164].

Supervised machine learning approaches, such as support vector machines and
decision trees [14, 25, 51, 52], can be used for more effective and accurate classifica-
tion results. These require training data with known class labels for matches and non-
matches to train the decision model. Once trained, the model can be used to classify
the remaining unlabelled pairs/sets of records. Such training data, however, are often
not available in real record linkage applications, especially in privacy-preserving set-
tings [28]. Alternatively, semi-supervised techniques (such as active learning-based
techniques [3, 11, 169]), that actively use examples manually labeled by experts
to train and improve the decision model, need to be developed for PPRL. Recently
developed advanced classification models, such as (a) collective linkage [13, 74] that
considers relational similarities with other records in addition to QID similarities, (b)
group linkage [123] that calculates group of records’ similarities based on pair-wise
similarities, and (c) graph-based linkage [58, 66, 74] that considers the structure
between groups of records, can achieve high linkage quality at the cost of higher
computational complexity. However, these advanced classification techniques have
not been explored for PPRL so far.

Clerical review: The record pairs/sets that are classified as possible matches require
a clerical review process, where these pairs are manually assessed and classified into
matches or non-matches [171]. This is usually a time-consuming and error-prone
processwhichdepends upon experience of the expertswho conduct the review.Active
learning-based approaches can be used for clerical review [3, 11, 169]. However,
clerical review in its current form is not possible in a PPRL scenario since the actual
QID values of records cannot be inspected because this would reveal sensitive private

Privacy-Preserving Record Linkage for Big Data: Current Approaches … 859

information. Recent work in PPRL suggests an interactive approach with human-
machine interaction to improve the quality of linkage results without compromising
privacy [100].

Evaluation: The final step in the process is the evaluation of the complexity, quality,
and privacy of the linkage to measure the applicability of a linkage project in an
application before implementing it into an operational system.Avariety of evaluation
measures have been proposed [29, 31]. Given in a practical record linkage application
the truematch status of the compared recordpairs are unlikely to beknown,measuring
linkage quality is difficult [6, 31]. How to evaluate the amount of privacy protection
using a set of standard measures is still an immature aspect in the PPRL literature.
Vatsalan et al. recently proposed a set of evaluation measures for privacy using
probability of suspicion [165]. Entropy and information gain, between unmasked
and masked QID values, have also been used as privacy measures [46].

Tools: Different record linkage approaches have been implemented within a number
of tools. Koepcke and Rahm provided a detailed overview of eleven such tools
in [95] both categories of with and without the use of learning-based (supervised)
classification. The comparative evaluation study [96] benchmarks selected tools from
both categories for four real-life test cases. It is found that learning-based approaches
achieve generally better linkage quality especially for complex tasks requiring the
combination of several attribute similarities. Current tools for link discovery, i.e.,
matching entities between sources of linked open data web, are surveyed in [119].
A web-based tool was recently developed to demonstrate several multi-party PPRL
approaches (as will be described in Sect. 5) [132].

3 Privacy Aspects and Techniques for PPRL

Several dimensions of privacy need to be considered for PPRL, the four main ones
being: (1) the number of parties and their roles, (2) adversary models, (3) privacy
attacks, and (4) data masking or encoding techniques. In Sects. 3.1–3.4, we describe
these four privacy dimensions, and in Sect. 3.5 we provide an overview of Bloom
filter-based data masking, a technique widely used in PPRL.

3.1 PPRL Scenarios

PPRL techniques for linking two databases can be classified into those that require a
linkage unit for performing the linkage and those that do not. The former are known
as ‘three-party protocols’ and the latter as ‘two-party protocols’ [24, 27, 167]. In
three-party protocols, a (trusted) third party acts as the linkage unit to conduct the
linkage of masked data received from the two database owners, while in two-party

860 D. Vatsalan et al.

DA DB

Linkage
unit

2. Masked data

1. Parameters

2. Masked data

3. Record IDs
of matches

Database
A

owner
Database

B
owner

3. Record IDs
of matches

DA DB

1. Parameters

2. Masked data

2. Masked data

of matches

Database
A

owner
Database

B
owner

3. Record IDs

Fig. 2 Outline of PPRL protocols with (left) and without (right) a linkage unit (also known as
three-party and two-party protocols, respectively)

protocols only the two database owners participate in the PPRLprocess.A conceptual
illustration and the main communication steps involved in these protocols are shown
in Fig. 2.

A further characterization of PPRL techniques is if they allow the linking of data
from more than two data sources (multi-party) or not. Multi-party PPRL techniques
identify matching record sets (instead of record pairs) from all parties (more than
two) involved in a linkage, or from sub-sets of parties. Only limited work has been
so far conducted on multi-party PPRL due to its increased challenges, as we will
describe in Sect. 5. Similar to linking two databases, multi-party PPRL may or may
not use a linkage unit to perform the linkage.

Protocols that do not require a linkage unit are more secure in terms of collusion
(described below) between one of the database owners and the linkage unit. However,
they generally require more complex techniques to ensure that the database owners
cannot infer any sensitive information about each other’s data during the linkage
process.

3.2 Adversary Models

Different adversary models are assumed in PPRL techniques, including the most
commonly used honest-but-curious (HBC) and malicious models [164].

1. Honest-but-curious (HBC) or semi-honest parties are curious in that they try
to find out as much as possible about another party’s input to a protocol while
following the protocol steps [65, 111]. If all parties involved in a PPRL protocol
have no new knowledge at the end of the protocol above what they would have
learned from the output, which is generally the record pairs (certain attributes)
classified as matches, then the protocol is considered to be secure in the HBC
model. However, it is important to note that HBC does not prevent parties from
colluding with each other with the aim to learn about another party’s sensitive
information [111]. Most of the existing PPRL solutions assume the HBC adver-
sary model.

2. Malicious parties can behave arbitrarily in terms of refusing to participate in
a protocol, not following the protocol in the specified way, choosing arbitrary

Privacy-Preserving Record Linkage for Big Data: Current Approaches … 861

values for their data input, or aborting the protocol at any time [110]. Limited
work has been done in PPRL for the malicious adversary model [57, 105, 118].
Evaluating privacy under this model is very difficult, because there exist poten-
tially unpredictable ways for malicious parties to deviate from the protocol that
cannot be identified by an observer [21, 62, 111].

3. Covert and accountable computing models are advanced adversary models
developed to overcome the problems associated with the HBC and malicious
models. The HBCmodel is not sufficient in many real-world applications because
it is suitable only when the parties essentially trust each other. On the other hand,
the solutions that can be used with malicious adversaries are generally more com-
plex and have high computation and communication complexities, making their
applications not scalable to large databases. The covert model guarantees that
the honest parties can detect the misbehavior of an adversary with high prob-
ability [4], while the accountable computing model provides accountability for
privacy compromises by the adversaries without excessive complexity and cost
that incur with the malicious model [72]. Research is required towards transform-
ing existing HBC or malicious PPRL protocols into these models and proving
privacy of solutions under these models.

3.3 Attacks

The privacy attacks or vulnerabilities that a PPRL technique is susceptible to allow
theoretical and empirical analysis of the privacy guarantees provided by the PPRL
technique. The main privacy attacks of PPRL are:

1. Dictionary attack is possible with masking functions, where an adversary masks
a large list of known values using various existing masking functions until a
matching masked value is identified [164]. A keyed masking approach, such as
the Hashed Message Authentication Code (HMAC) [97], can be used to prevent
dictionary attacks. With HMAC the database owners exchange a secret code
(string) that is added to all database values before they are masked. Without
knowing the secret key, a dictionary attack is unlikely to be successful.

2. Frequency attack is still possible even with a keyed masking approach [164],
where the frequency distribution of a set of masked values is matched with the
distribution of known unmasked values in order to infer the original values of the
masked values [112].

3. Cryptanalysis attack is a special category of frequency attack that is applicable
to Bloom filter-based data masking techniques. As Kuzu et al. [101] have shown,
depending upon certain parameters of Bloom filter masking, such as the number
of hash functions employed and the number of bits in a Bloom filter, using a
constrained satisfaction solver allows the iterative mapping of individual masked
values back to their original values.

862 D. Vatsalan et al.

4. Composition attack can be successful by combining knowledge frommore than
one independent masked datasets to learn sensitive values of certain records [60].
An attack on distance-preserving perturbation techniques [155], for example,
allows the original values to be re-identified with high level of confidence if
knowledge about mutual distances between values is available.

5. Collusion is another vulnerability associated with multi-party or three-party
PPRL techniques,where someof the parties involved in the protocolwork together
to find out about another database owner’s data. For example, one or several data-
base owners collude with the linkage unit or a sub-set of database owners collude
among them to learn about other parties’ data.

3.4 Data Masking or Encoding

In PPRL, the linkage has to be conducted on amasked or encoded version of theQIDs
to preserve the privacy of entities. Data masking (encoding) transforms original data
in such a way that there exists a specific functional relationship between the original
data and the masked data [55]. Several data masking functions have been used to
preserve privacy while allowing the linkage. We categorize existing data masking
techniques into three: (1) auxiliary, (2) blocking, and (3) matching techniques. Aux-
iliary techniques are the ones used as helper functions in PPRL, while blocking and
matching categories are used for private blocking and matching (comparison and
classification), respectively. In the following we describe key techniques in each of
these three categories.

• Auxiliary:

1. Pseudo random function (PRF) is a deterministic secure function that, when
given an n-bit seed k and an n-bit argument x , returns an n-bit string fk(x) such
that it is infeasible to distinguish fk(x) for different random k from a truly random
function [114]. In PPRL, PRFs have been used to generate random secret values
to be shared by a group of parties [57, 122, 151].

2. Reference values constructed either with random faked values, or values that for
example are taken from a public telephone directory, such as all unique surnames
and town names, have been used in several PPRL approaches [77, 124, 141, 173].
Such lists of reference values can be used to calculate the distances or similarities
between QID values in terms of the distances or similarities between QID and
reference values.

3. Noise addition in the form of extra records or QID values that are added to the
databases to be linked is a data perturbation technique [86] that can be used to
overcome the problem of frequency attacks on PPRL protocols [44, 100]. An
example is shown in Fig. 3. Adding extra records, however, incurs a cost of lower
linkage quality (due to false matches) and scalability (due to extra records that
need to be processed and linked) [79]. Section4.1 discusses noise addition for
private blocking.

Privacy-Preserving Record Linkage for Big Data: Current Approaches … 863

QID valuesPhonetic code

m460

p360

s530

millar myler

peter

smith smyth smitth

QID values

2re0a4i

yn40s21

zm0r04h 4hd0ffd

phonetic code
Hash−encoded Hash−encoded

51dc3jh6le

e78gh7la3i

2jdf60q 72gfi2b

46sjb321p0 i29uh7s

o3zkatn7v2lki0

Phonetic code

s530

p360

m460 millar myler miller

peter petar pete

smith smyth smitth

QID values + noise

Fig. 3 An example of phonetic encoding, noise addition, and secure hash-encoding (adapted
from [164]). Values represented with dotted outlines are added noise to overcome frequency
attacks [165] (as will be discussed in detail in Sect. 4.1)

4. Differential privacy [50] has emerged as an alternative to random noise addition
in PPRL. Only the perturbed results (with noise) of a set of statistical queries
are disclosed to other parties, such that the probability of holding any property
on the results is approximately the same whether or not an individual value is
present in the database [50]. In recent times, differential privacy has been used in
statistical (e.g. counts or frequencies) microdata publication as well as in PPRL
[16, 68, 103].

• Blocking:

1. Phonetic encoding, such as Soundex, NYSIIS or Double-Metaphone, groups
values together that have a similar pronunciation [23] in a one-to-many mapping,
as shown in Fig. 3. The main advantage of using a phonetic encoding for PPRL
is that it inherently provides privacy [79], reduces the number of comparisons,
and thus increases scalability [23], and supports approximate matching [23, 79].
Two drawbacks of phonetic encodings are that they are language dependent
[126, 146] and are vulnerable to frequency attacks [165]. Section4.1 discusses
phonetic encoding-based blocking in more details.

2. Generalization techniques overcome the problem of frequency attacks on
records by generalizing records in such a way that re-identification of individual
records from the masked data is not feasible [106, 115, 152]. k-anonymity is a
widely used generalization technique for PPRL [75, 77, 118], where a database is
said to be k-anonymous if every combination of masked QID values (or blocking
key values) is shared by at least k records in the database [152]. Other gen-
eralization techniques include value generalization hierarchies [67], top-down
specialization [118], and binning [108, 162].

• Matching:

1. Secure hash-encoding is one of the first techniques used for PPRL [17, 49, 127].
Thewidely knownMessageDigest (likeMD5) and SecureHashAlgorithms (like
SHA-1 and SHA-2) [143] are one-way hash-encoding functions [97, 143] that
can be used to mask values into hash-codes (as shown in Fig. 3) such that having
access to only hash-codes will make it nearly impossible with current computing
technology to infer their original values. A major problem with this masking
technique is, however, that only exact matches can be found [49]. Even a single

864 D. Vatsalan et al.

character difference between a pair of original valueswill result in two completely
different hash-codes.

2. Statistical linkage key (SLK) is a derived variable generated from components
of QIDs. The SLK-581 was developed by the Australian Institute of Health
and Welfare (AIHW) to link records from the Home and Community Care
datasets [140]. The SLK-581 consists of the second and third letters of first
name, the second, third and fifth letters of surname, full date of birth, and sex.
Similarly, SLK consisting of month and year of birth, sex, zipcode, and initial of
first name was used for linking the Belgian national cancer registry [157]. How-
ever, as a recent study has shown these SLK-based masking provides limited
privacy protection and poor sensitivity [136].

3. Embedding space embeds QID values into a multi-dimensional metric space
(such as Euclidean [16, 141, 173] or Hamming [81]) while preserving the dis-
tances between these values using a set of pivot values that span the multi-
dimensional space. A drawback with this approach is that it is often difficult to
determine a good dimension of the metric space and select suitable pivot values.

4. Encryption schemes, such as commutative [1] and homomorphic [92] encryp-
tion, are used in PPRL techniques to allow securemulti-party computation (SMC)
in such a way that at the end of the computation no party knows anything except
its own input and the final results of the computation [38, 62, 111]. The secure
set union, secure set intersection, and secure scalar product, are the most com-
monly used SMC techniques for PPRL [38, 143]. A drawback of these crypto-
graphic encryption schemes for SMC, however, is that they are computationally
expensive.

5. Bloom filter is a bit vector data structure into which values are mapped by using
a set of hash functions. Bloom filters have been widely used in PPRL for private
matching of records as they provide a means of privacy assurance [46, 47, 76,
104, 147, 170], if effectively used [102]. We will discuss Bloom filter masking
in more detail in the following section.

6. Count-min sketches are probabilistic data structures (similar to Bloom filters)
that can be used to hash-map values along with their frequencies in a sub-linear
space [41]. Count-min sketches have been used in PPRL where the frequency of
occurrences of amatching pair/set also needs to be identified [80, 139]. However,
these approaches only support exact matching of categorical values.

Other privacy aspects in a PPRL project are the secure generation and exchange
of public/private key pairs, employee confidentiality agreements to reduce internal
threats, as well as encrypted communication, secure connections, and secure servers
to reduce external threats.

Privacy-Preserving Record Linkage for Big Data: Current Approaches … 865

3.5 Bloom Filters

Bloom filter encoding has been used as an efficient masking technique in a variety
of PPRL approaches [46, 104, 130, 148, 150, 158, 160]. A Bloom filter bi is a
bit vector data structure of length l bits where all bits are initially set to 0. k inde-
pendent hash functions, h1, h2, . . . , hk , each with range 1, . . . l, are used to map
each of the elements s in a set S into the Bloom filter by setting the bit positions
h1(s), h2(s), . . . , hk(s) to 1. TheBloomfilter was originally proposed byBloom [15]
for efficiently checking set membership [19]. Lai et al. [104] first adopted the con-
cept of using Bloom filters in PPRL for identifying exactly matching records across
multiple databases, as will be described in Sect. 5.2.

Schnell et al. [148] were the first to propose a method for approximate matching
in PPRL using Bloom filters. In their approach, the character q-grams (sub-strings of
length q) of QID values of each record in the databases to be linked are hash-mapped
into a Bloom filter using k independent hash functions. The resulting Bloom filters
are sent to a linkage unit that calculates the similarity between Bloom filters using a
set-based similarity function, such as the Dice-coefficient [28]. The Dice-coefficient
of two Bloom filters (b1 and b2) is calculated as:

Dice_sim(b1, b2) = 2 × c

(x1 + x2)
, (1)

where c is the number of common bit positions that are set to 1 in both Bloom filters
(common 1-bits), and xi is the number of bit positions set to 1 in bi (1-bits), i ∈ {1, 2}.
An example similarity calculation is illustrated in Fig. 4.

Bloom filters are susceptible to cryptanalysis attacks, as shown by Kuzu et
al. [101]. Using a constrained satisfaction solver, such attacks allow the iterative
mapping of individual hash-encoded values back to their original values depending
upon the number of hash functions employed and the length of a Bloom filter. Differ-
ent Bloom filter encoding methods have been proposed in the literature to overcome
such cryptanalysis attacks and improve linkage quality. Schnell et al.’s proposed
method of hash-mapping all QID values of a record into one composite Bloom filter
is known as Cryptographic Long-term Key (CLK) encoding [148].

Fig. 4 An example
similarity (Dice-coefficient)
calculation of Bloom filters
for approximate matching
using Schnell et al.’s
approach [147] (taken
from [164]) pe et te

te et re

1 1

11

1

1

1

1

pe

1

1

0

0

0

0

0

0

0

0

1

0

0 0 0 1

0 0 0 0

Num common
1−bits Dice_sim =

Num 1−bits

5

7

= 0.83
(7+5)
2 x 5

c = 5

b2

b1

866 D. Vatsalan et al.

Durham et al. [48] investigated composite Bloom filter encoding in detail by
first hash-mapping different attributes into attribute-level Bloom filters of differ-
ent lengths. These lengths depend upon the weights [54] of QID attributes that are
calculated using the discriminatory power of attributes in separating matches from
non-matches using a statistical approach. These attribute-level Bloom filters are then
combined into one record-level Bloom filter (known as RBF) by sampling bits from
each attribute-level Bloom filter. Vatsalan et al. [165] recently introduced a hybrid
method of CLK and RBF (known as CLKRBF) where the Bloom filter length is kept
to be the same (as in CLK) while using different numbers of hash functions to map
different attributes into the Bloom filter based on their weights (to improve matching
quality as in RBF).

Several non-linkage unit-based approaches have also been proposed for PPRL
using Bloom filter masking, where the database owners (without a linkage unit)
collaboratively (or distributively) calculate the similarity of Bloom filters [104, 158,
160].A recentworkproposednovelBloomfilter-basedmasking techniques that allow
approximate matching of numerical data in PPRL [161]. Instead of hash-mapping q-
grams of a string, the proposed approaches hash-map a set of neighbouring numerical
values to allow approximate matching.

4 Scalability Techniques for PPRL

PPRL for Big Data needs to scale to very large data volumes of many millions of
records from multiple sources. As for standard record linkage, the main techniques
for high efficiency are to reduce the search space by blocking and filtering approaches
and to perform record linkage in parallel on many processors.

These three kinds of optimization are largely orthogonal so that they may be
combined to achieve maximal efficiency. Blocking is defined on selected attributes
(blocking keys) thatmay be different from theQIDattributes used for comparison, for
example zip code. It partitions the records in a database into several blocks or clusters
such that comparison can be restricted to the records of the same block, for example
persons with the same zip code. Other blocking approaches like sorted neighborhood
work differently but are similar in spirit. Filtering is an optimization for the particular
comparison approach which optimizes the evaluation of a specific similarity measure
for a predefined similarity threshold to be met by matching records. It thus utilizes
different filtering or indexing techniques to eliminate pairs (or sets) of records that
cannot meet the similarity threshold for the selected similarity measures [28, 43].
Such techniques can be applied for comparison within blocks, i.e., filtering could be
utilized in addition to blocking.

In the next two subsections, we discuss several proposed blocking and filtering
approaches for PPRL. We then briefly discuss parallel PPRL which has found only
limited attention so far. We will focus on PPRL with two data sources (multi-party
PPRL is discussed in Sect. 5). We will furthermore mostly assume the use of a
dedicated linkage unit (as shown on the left-hand side in Fig. 2) aswell as themasking

Privacy-Preserving Record Linkage for Big Data: Current Approaches … 867

of records using Bloom filters (as described in Sect. 3.5). Note that a linkage unit is
ideally suited for high performance as it requires minimal communication between
the database owners, and it can utilize a high performance cluster for parallel PPRL
as well as blocking and filtering techniques.

4.1 Blocking Techniques

Blocking aims at reducing the search space for linkage by avoiding the comparison
between every pair of records and its associated quadratic complexity. There are
numerous blocking strategies [28] that mostly group records into disjoint or overlap-
ping blocks such that only records within the same block need to be compared with
each other. Standard blocking uses the values of a so-called blocking key to partition
all records into disjoint blocks. The blocking key values (BKVs) may be the values
of a selected attribute or the result of a function on one or several attribute values
(e.g. the concatenation of the first two letters of last name and year of birth). Other
blocking approaches include canopy clustering that results in overlapping clusters
or blocks, and sorted neighborhood that sorts records according to a sorting key
and only compares neighboring records within a certain window [28]. Comparing
records only within the predetermined blocks may result in the loss of some matches
especially if some BKVs are incorrect or missing. To improve recall a multi-pass
blocking approach can be utilized, where records are blocked according to different
blocking keys, at the cost of an increased number of additional comparisons.

Blocking for PPRL is based on the known approaches for regular record linkage
but aims at improving privacy. A general approach with a central linkage unit is to
apply a previously agreed on blocking strategy by the database owners on the original
records. Then all records within the different blocks are masked (encoded), e.g. using
Bloom filters, and sent to the linkage unit. The linkage unit can then compare the
masked records block-wise with each other. In the following, we present selected
blocking approaches for PPRL and discuss results from a comparative evaluation of
different blocking schemes.

Phonetic Blocking: Blocking records based on their phonetic code is a widely used
technique in record linkage [28]. The basic idea is to encode the values of a blocking
key attribute (e.g. last name) with a phonetic function (as discussed in Sect. 3.4) such
as Soundex or Metaphone [28]. All records with the same phonetic code, i.e. with a
similar pronunciation, are then assigned to the same block. The phonetic blocking
has been used in several PPRL approaches, in particular in [76, 79]. Karakasidis et
al. in [76] use a multi-pass approach with both Soundex andMetaphone encodings to
achieve a good recall. Furthermore, they add fake records to the blocks for improved
privacy.

As discussed in Sect. 3.4, adding fake records improves privacy but adds overhead
in the form of extra comparisons between records and can reduce linkage quality due
to the introduction of false matches. A theoretical analysis of the impact of adding

868 D. Vatsalan et al.

fake records for Soundex-based blocking is presented in [79]. The authors study the
effect of fake records on the so-called relative information gainwhich is related to the
entropy measure. A high entropy within blocks caused by fake records introduces
a high uncertainty and thus a low information gain [165]. The authors also study
different methods to inject fake records to increase entropy. The most flexible of the
approaches is based on the concept of k-anonymity and adds as many fake records
as required to ensure that each block has at least k records. The approach typically
requires only the addition of a modest number of fake records; the choice of k also
supports finding a good trade-off between privacy and quality.

Blocking with Reference Values: An alternative to adding fake records for improv-
ing the privacy of blocking is the use of reference values (as discussed in Sect. 3.4).
The reference values can be used by the database owners for clustering their database
records. Comparison can then be restricted to the clusters (blocks) of the same or
similar reference records. Such an approach has been proposed in [77] based on k
nearest neighbor (kNN) clustering. This approach first clusters the reference values
identically at each database owner such that each cluster contains at least k reference
values to ensure k-anonymity; clustering is based on the Dice-coefficient similarity
between values. In the next step, each database owner assigns its records to the nearest
cluster based on the Dice-coefficient between records and reference values. Finally
each database owner sends its clusters (encoded reference values and records) to the
linkage unit which then compares the records between corresponding clusters.

An alternate proposal utilizes a local sorted neighborhood clustering (SNC-3P)
for improved performance in the blocking phase while retaining the use of reference
values and support for k-anonymity [159]. Each database owner sorts a shared set
of reference values and then inserts its records into the sorted list according to their
sorting key. From the sorted list of reference values and records the initial Sorted
Neighborhood Clusters (SNCs) are determined such that each cluster contains one
reference value and a set of database records. To ensure k-anonymity, the initial clus-
ters are merged into larger blocks containing at least k database records. This differs
from kNN clustering where k reference records are needed per cluster. The merging
of the initial clusters can be based on similarity or size constraints. The remaining
protocol with sending the encoded records to the linkage unit for comparison works
as for kNN clustering.

An adaptation of SNC-3P for two parties without a linkage unit (SNC-2P) was
presented in [163]. In this approach, the two database owners generate their reference
values independently, so that they end up with two different sets of reference values.
As for SNC-3P, each database owner sorts its reference values, inserts its records
into the sorted list, builds initial SNCs (with one reference value and its associated
records), and merges these clusters to guarantee k-anonymity. Afterwards the data-
base owners exchange their reference values. These values are then merged with
the local reference values and sorted. To find candidate pairs between the sources a
sorted neighborhood method with a sliding window w is applied on these reference
values. The window size w determines the number of reference values originating
from each data source, e.g. forw = 2 the sliding window includes 2 reference values

Privacy-Preserving Record Linkage for Big Data: Current Approaches … 869

from each data source. In the last step, the encoded records falling into a window are
exchanged for comparison.

LSH-based blocking: Locality-sensitive hashing (LSH) has been proposed to solve
the problem of nearest neighbor search in high dimensional spaces [61, 69]. For
blocking, LSH uses a family of hash functions to generate keys used to partition the
records in a database, so that similar records are grouped into the same block [89].
Durham investigated the use of LSH for private blocking of recordsmasked as Bloom
filters [46]. She considered two families of hash functions depending on the used dis-
tance function (Jaccard orHamming distance). For the Jaccard distance, she proposed
the use of MinHash functions. A MinHash function hi permutes the bits of a Bloom
filter bi and selects from the permuted Bloom filter the first index position with a set
bit (1-bit). By applying φ MinHash functions we obtain φ index positions which are
concatenated to generate the final MinHash key. So for Bloom filter bi and the family
of hash functions H , we determine key(bi)H = concat (h1(bi), h2(bi), . . . , hφ(bi)),
where h j ∈ H with 1 ≤ j ≤ φ and function concat () concatenates a set of input val-
ues. For the Hamming distance, Durham proposed the use of HLSH hash functions
that select the bit value of a Bloom filter at a random position ρ. In the same way as
MinHash, φ HLSH functions are applied on a Bloom filter bi and the values of the
φ selected bits are concatenated to obtain the final hash key of bi .

Example Consider two Bloom filters b1 = 1100100011 and b2 = 1100100111,
two permutations p1 = (10, 7, 1, 3, 6, 4, 2, 9, 5, 8) and p2 = (4, 3, 6, 7, 2, 1, 5,
10, 9, 8), and the MinHash family H1 with two functions h1 = Min(p1(·)) and
h2 = Min(p2(·)), where Min(·) returns the first position of a set bit in the input
bit vector, and pi (·) returns the input bit vector permuted using pi . The applica-
tion of h1 and h2 on b1 results in h1(b1) = Min(p1(b1)) = Min(1010001110) = 1
and h2(b1) = Min(p2(b1)) = Min(0000111110) = 5. Hence the key of b1 in H1

is key(b1)H1 = concat (h1(b1), h2(b1)) = (1, 5). In the same way we determine the
key of b2, i.e. key(b2)H1 = (1, 5). Hence, for MinHash family H1 records b1 and b2
are put into the same block and will be compared with each other.

Both families, MinHash and HLSH, depend on two parameters: the number of
hash functions φ as well as the number of passes or iterations μ. Since the final hash
key of a record concatenates φ values, using a high φ leads to more homogeneous
blocks and better precision (i.e., blocks containing similar records with higher prob-
ability). However a high φ also increases the probability of missing true matches
(reduced recall). This problem is addressed by applying μ iterations, each with a
different set of hash functions. Therefore each record bi will be hashed to several
blocks to allow identifying more true matches.

In [83] the authors present a theoretical analysis of the use of MinHash functions
to identify good values for parameters φopt and μopt to efficiently achieve a good
precision and recall. The naïve approach to improve recall is to increase the number
of iterations μ and thus the number of blocks to which records are assigned. The
drawbacks of this method are the high runtime caused by the computation of the
permutations, increased number of record pairs to compare, and the large space
needed to store intermediate results. This observation was experimentally confirmed

870 D. Vatsalan et al.

in [46]. The choice of the φopt is also complex and depends on the expected running
time (for details see [83]).

Evaluation of Private Blocking Approaches: The relatively large number of pos-
sible blocking approaches requires detailed evaluations regarding their relative scal-
ability, blocking quality and privacy for different kinds of workloads. One of the few
studies in this respect has been presented by Vatsalan et al. [165]. For scalability
they considered runtime and the so-called reduction ratio (RR), a value indicating
the number of pruned candidate pairs compared to all possible record pairs (which
thus evaluates to what degree the search space is reduced). For blocking quality they
considered the recall and precision metrics pair completeness (PC) and pair quality
(PQ), respectively [29]. For privacy they estimated the so-called disclosure risk (DR)
measures, which represent the probability that masked records/QID values can be
linked with records or values in a publicly available dataset.

The evaluation of [165] considers six simulated blocking strategies including
kNN [77], SNC-3P [159], SNC-2P [163] andLSHblocking [46]. Regarding blocking
runtime, the SNC and LSH schemes performed best. All strategies except SNC-2P
achieved a very high RR of almost 1. On the other hand, SNC-2P achieved the best
PC. The best trade-off between RR and PC was observed for LSH. Considering the
privacy aspect, SNC-2P was found to have a low DR while kNN and LSH generally
expose the highest DR.

While this study provides interesting results, we see a need for additional bench-
mark studies given that further blocking schemes have been developed more recently
and that the relative behavior of each approach depends on numerous parameter set-
tings as well as characteristics of the chosen datasets.

4.2 Filtering Techniques

Almost all proposed PPRL schemes based on Bloom filters aim at identifying
the pairs of bit vectors with a similarity above a threshold. For regular record
linkage, such a threshold-based comparison of record pairs is known as a sim-
ilarity join [39]. The efficient processing of such similarity joins for different
kinds of similarity measures has been the focus of much research in the past, e.g.
[2, 64, 138, 172]. Several approaches utilize the characteristics of the considered
similarity measure and the prespecified similarity threshold to reduce the search
space thereby speeding up the linkage process. This holds especially for the broad
class of token-based similarity joins where the comparison of records is based on the
set of tokens (e.g. q-grams) of QIDs. In this case, one can exclude all pairs of records
that do not share at least one token. Further proposed optimizations for such similar-
ity joins include the use of different kinds of filters (for example, length and prefix
filters) and dynamically created inverted indexes [10]. PPJoin [172] is an efficient
approach that includes these kinds of optimizations. Several filtering approaches

Privacy-Preserving Record Linkage for Big Data: Current Approaches … 871

also utilize the characteristics of similarity functions for metric spaces to reduce the
search space, in particular the so-called triangle inequality (see below) [174].

For PPRL, similar filtering (similarity join) approaches are usable but need to be
adapted to the comparison ofmasked records such as Bloomfilters and the associated
similarity measures. For Bloom filters it is relatively easy to apply the known token-
based similaritymeasures by considering the set bit positions (1-bits) in the bit vectors
as the “tokens”. This has already been shown in Sect. 3.5 for the Dice-coefficient
similarity which is based on the degree of overlapping bit positions. This is also the
case for the related Jaccard similarity. For two bit vectors b1 and b2 it is defined as
follows:

Jacc_sim(b1, b2) = |b1 ∧ b2|
|b1 ∨ b2| = |b1 ∧ b2|

|b1| + |b2| − |b1 ∧ b2| , (2)

where |bi | denotes the number of set bits in bit vector bi which is also called its
length or cardinality. For the example Bloom filter pair shown in Fig. 4, the Jaccard
similarity is 5/7 = 0.71. In the following, we outline several filtering approaches
that have been proposed for PPRL.

Length Filter: The similarity function Jacc_sim (as well as Dice_sim) allows the
application of a simple length filter to reduce the search space. This is because the
minimal similarity (overlap of set bits) can only be achieved if the lengths (number of
set bits) of the two input records do not deviate too much. Formally, for two records
ri and r j with |ri | ≤ |r j |, it holds that

Jacc_sim(ri , r j) ≥ st ⇒ |ri | ≥ �st · |r j |	 (3)

For example, two records cannot satisfy a (Jaccard) similarity threshold st = 0.8 if
their lengths differ by more than 20%. Hence for a similarity threshold of 0.8, the
length filter would already avoid the two records from the example Bloom filter pair
shown in Fig. 4 without comparing in detail, since Eq.3 (5 ≥ �0.8 · 7	 = 6) does not
hold. The two-party PPRL approach proposed by Vatsalan and Christen uses such a
length filter for Dice-coefficient similarity [158].

PPJoin for PPRL: The privacy-preserving version of PPJoin (called P4Join) utilizes
three filters to reduce the search space: the length filter as well as a prefix filter and
a position filter [150]. The prefix filter is based on the fact that matching bit vectors
need a high degree of overlap in their set bit positions in order to satisfy a predefined
threshold. Pairs of records can thus be excluded from comparison if they have an
insufficient overlap. This overlap test can be limited to a relatively small sub-set
of bit positions, e.g. in the beginning (or prefix) of the vectors. To maximize this
filter idea, P4Join applies a pre-processing to count for each bit position the number
of records where this bit is set to 1 and reorders the positions of all bit vectors
in ascending order of these frequency counts. This way the prefixes of bit vectors
contain infrequently set bit positions reducing the likelihood of an overlap with other

872 D. Vatsalan et al.

bit vectors. The position filter of P4Join can avoid the comparison of two records
even if their prefixes overlap depending on the prefix positions where the overlap
occurs. For more details of this filter we refer to [150].

As we will see in the comparative evaluation below, the filtering approaches
achieve only a relatively small improvement for PPRL since the filter tests imply
already a certain overhead which is not much less than for the match tests (which
are relatively cheaper for Bloom filters). In addition, Bloom filter masking for PPRL
should ideally have 50% of their bits set to 1 in order to make them less vulnerable
to frequency attacks [117], making P4Join less effective.

Multi-bit Trees: The use of multi-bit trees was originally proposed for fast similarity
search in large databases of chemical fingerprints (masked into Bloom filters) [98].
A query Bloom filter bq is being searched for in a database to retrieve all elements
whose similarity with bq is above the threshold st . Amulti-bit tree is a binary tree that
iteratively assigns fingerprints to its nodes based on so-called match bits. A match
bit refers to a specific position of the bit vector and can be 1 or 0: it indicates that all
fingerprints in the associated subtree share the specified match bit. When building
up the multi-bit tree, one match bit or multiple such bits are selected in each step
so that the number of unassigned fingerprints can be roughly split by half. The split
is continued as long as the number of fingerprints per node does not fall under a
limit ([98] recommends a limit of 6). The match bits can then be used for a query
fingerprint to determine the maximal possible similarity for subtrees when traversing
the tree and can thereby eliminate many fingerprints to compare.

As suggested in [5], multi-bit trees can easily be applied for PPRL using Bloom
filters and Jaccard similarity. For two datasets, the larger input dataset is used to build
the multi-bit trees while each record (fingerprint) of the second dataset is used for
searching similar records. The multi-bit approach of [5] partitions the fingerprints
according to their lengths such that all fingerprints with the same length belong to the
same partition (or bucket). To apply the length filter, we can then restrict the search
for similar fingerprints to the partitions meeting the length criterion of Eq.3. Query
efficiency is further improved by organizing all fingerprints of a partition within a
multi-bit tree.

In evaluations of [5, 145] the multi-bit tree approach was found to be very effec-
tive and even better or similarly effective than blocking approaches such as canopy
clustering and sorted neighborhood.

PPRL for Metric Space Similarity Measures: A metric space consists of a set of
data objects and a metric to compute the distance between the objects. The main
property of interest that a metric or distance function d for metric spaces has to
satisfy is the so-called triangle inequality. It requires that for any objects x , y and z
it holds

d(x, z) ≤ d(x, y) + d(y, z) (4)

Privacy-Preserving Record Linkage for Big Data: Current Approaches … 873

Fig. 5 Triangle inequality:
Object y cannot lie within
the search radius of query
object q since the difference
between d(p, q) and d(p, y)

exceeds rad(q) (taken
from [149]) p q

x

rad(q)

y

d(p,q)

Distance functions for metric spaces satisfying this property include the
Minkowski distances (for example, Euclidean distance), edit distance, Hamming dis-
tance and Jaccard-coefficient (but not Dice-coefficient) [174]. The triangle inequal-
ity has been used for private comparison and classification in PPRL using reference
values [124, 162].

The triangle inequality has also been used to reduce the search space for similarity
search and record linkage [7, 12]. In both cases we have to find for a query object
q those similar objects x with a distance d(q, x) lower than or equal to a maximal
distance threshold (or above a minimal similarity threshold) which can be seen as a
radius rad(q) around q in Fig. 5. The triangle equality allows one to avoid comput-
ing the distance between two objects based on their precomputed distances to a third
reference object or pivot, such as object p in Fig. 5. Utilizing the precomputed dis-
tances d(p, q) and d(p, x) we only have to compute the distance d(q, x) for objects
x that satisfy the triangle inequality d(p, q) − d(p, x) ≤ rad(q). In all other cases,
comparison can be avoided such as for object y in Fig. 5.

Several alternatives to utilize the triangle inequality to reduce the search space for
PPRL have been studied in [149], in particular for the Hamming distance which has
been shown to be equivalent to the Jaccard similarity [172]. The best performance
was achieved for a pivot-based approach that selects a certain number of data objects
from a sample of the first dataset as pivots and assigns each other object of the
first dataset to its closest pivot. For each pivot, the maximal distance (radius) for
its objects is also recorded. Pivots are iteratively determined from the sample set of
objects such that the object with the greatest distance to all previously determined
pivots becomes the next pivot. The rational behind this selection strategy is to have
a relatively large distance between pivots so that searching for similar objects can be
restricted to objects of relatively few pivots. Determining the pivots from a sample
rather than from all objects limits the overhead of pivot selection. The search for
similar (matching) objects can be restricted to the pivots for which there is a possible
overlap with the radius of the query objects. For the objects of the relevant pivots the
triangle inequality is further used to prune objects from the comparison.

Comparative Evaluation: The performance of pivot-based approaches for metric
similarity measures has been evaluated in [149] and compared with the use of P4Join
andmulti-bit trees. The evaluation has been done for synthetically generated datasets

874 D. Vatsalan et al.

Table 3 PPRL runtime in minutes for different dataset sizes and filtering approaches (taken
from [149])

Algorithms Datasets

100,000 200,000 300,000 400,000 500,000

NestedLoop 3.8 20.8 52.1 96.8 152.6

Multi-bit Tree 2.6 11.3 26.5 50.0 75.9

P4Join 1.4 7.4 24.1 52.3 87.9

Pivots (Metric
Space)

0.2 0.4 0.9 1.3 1.7

of 100,000–500,000 records such that 80% of the records are in the first dataset and
20% in the second. Bloom filters of length 1,000 bits are used to mask the QIDs of
records, and the comparison is based on a Jaccard similarity threshold of 0.8 or the
corresponding Hamming distance for the metric-space approach.

Table3 summarizes the runtimes of the different approaches as well as for a naïve
nested loop approachwithout any filtering (all implemented using Java) on a standard
PC (Intel i7-4770, 3.4GHz CPU with 16GB main memory). The results show that
both multi-bit trees and P4Join perform similarly but achieve only modest improve-
ments (less than a factor of 2) compared to the naïve nested loop scheme. By contrast
the pivot-based metric space approach achieves order-of-magnitude improvements.
For the largest dataset it only needs 1.7min and is 40 times faster than using multi-bit
trees. A general observation for all approaches is that the runtimes increasemore than
linearly (almost quadratically) with the size of datasets, indicating a potential scala-
bility problem despite the reduction of the search space. Substantially larger datasets
would thus create performance problems even for the best filtering approach indicat-
ing that additional runtime improvements are necessary, e.g. by the use of parallel
PPRL.

4.3 Parallel PPRL

PPRL in Big Data applications involves the comparison of a large number of masked
records as themain part of the overall execution pipeline. Parallel linkage onmultiple
processors aims at improving the execution time proportionally to the number of
processors [42, 90, 91]. This can be achieved by partitioning the set of all record
pairs to be compared, and conducting the comparison of the different partitions in
parallel ondifferent processors.A special casewouldbe to utilize a blocking approach
to compare the records in different blocks in parallel. In the following we discuss
two approaches for parallel PPRL that have been proposed: one utilizes graphics
processors or GPUs for parallel processing within a single machine, and the other
one is based on Hadoop and its MapReduce framework. Both approaches have also
been used for general record linkage.

Privacy-Preserving Record Linkage for Big Data: Current Approaches … 875

Parallel PPRL with GPUs: The utilization of Graphical Processing Units (GPUs) to
speed-up similarity computations is a comparatively newapproach [56, 120].Modern
GPUs provide thousands of cores that allow for a massively-parallel application of
the same instruction set to disjoint data partitions. The availability of frameworks like
OpenCL and CUDA simplify the utilization of GPUs to parallelize general purpose
algorithms. The GPU programs (called kernels) are typically written in a dialect of
the general programming language C. Kernel execution requires the input and output
data to be transferred between the main memory of the host system and the memory
of the GPU, and it is important to minimize the amount of data to be transferred.
Further limitations are that there is no dynamic memory allocation on GPUs (all
resources required by a program need to be allocated a priori) and that only basic
data types (e.g., int, long, float) and fixed-length data structures (e.g., arrays) can be
used.

Despite such limitations, the utilization ofGPUs is a promising approach to speed-
up PPRL. This is especially the case for Bloom filter masking where all records are
represented as bit vectors of equal length. These vectors can easily be stored in array
data structures on the GPU. Furthermore, similarity computations can be broken
down into simple bit operations which are easily processed by GPUs.

A GPU-based implementation for PPRL using the P4Join filtering is described
in [150]. It sorts the bit vectors of the two input datasets initially according to their
number of set bits (1-bits) and partitions the set of bit vectors into equal-sized blocks
such that multiple of such blocks fit into the GPU memory. Pairs of blocks are then
continuously loaded into the GPU for parallel comparison. To limit unnecessary data
transfers, the length filter (described in Sect. 4.2) is applied to avoid transferring pairs
of blocks that do not meet the length filter restriction. The kernel programs also apply
the prefix filter to save comparisons.

The evaluation in [150] showed that the GPU implementation is highly efficient
and improves runtimes by a factor of 20, even for a low-profile graphics card (Nvidia
GeForce GT 540 M with 96 CUDA cores@672 MHz, 1GB memory). It would be
interesting to realize GPU versions of other PPRL approaches and to utilize more
powerful graphics cards with thousands of cores for improved performance.

Hadoop-based Parallel PPRL: Many Big Data applications are based on local
Shared Nothing clusters driven by software from the open-source Hadoop ecosys-
tem for parallel processing. Depending on the data volume and needed degree of
parallelism up-to thousands of multi-processor nodes are utilized. A main reason for
the success of Hadoop is that its programming frameworks, in particular MapRe-
duce and newer platforms such as Apache Spark4 or Apache Flink,5 make it easy to
develop programs that can be automatically executed in parallel on Hadoop clusters.

Several approaches and implementations have utilized MapReduce for parallel
record linkage [93, 166]. In its simplest form, the Map tasks read the input data in
parallel and apply a blocking key to assign each record to a block. Then the data
records are dynamically redistributed among the Reduce tasks such that all records

4http://spark.apache.org [Accessed: 15/06/2016].
5https://flink.apache.org/ [Accessed: 15/06/2016].

http://spark.apache.org
https://flink.apache.org/

876 D. Vatsalan et al.

Fig. 6 Parallel PPRL with MapReduce using LSH blocking [82], where the MinHash keys for
Bloom filters are computed in the Map phase and records with the same MinHash signature will be
sent to the same Reduce task for matching

with the same blocking key are sent to the same Reduce task. Comparison is then
performed block-wise and in parallel by the Reduce tasks. For highly skewed block
sizes this simple approach can result in load balancing problems for the Reduce tasks;
approaches to solve this data skew or load balancing problem are proposed in [94].

The sketched approach can in principle also be applied for parallelizing PPRL,
e.g., if the linkage unit utilizes aHadoop cluster.One such approach for usingMapRe-
duce to speed-up PPRL has been proposed in [82]. The authors apply a LSH-based
blockingmethod using theMinHash approach (see Sect. 4.1). The use ofMapReduce
is rather straightforward and illustrated in Fig. 6. The Bloom filters of both sources
are initially stored in the distributed file system (HDFS) as chunks. In theMap phase,
records are read sequentially and for each Bloom filter r a set of j MinHash keys are
computed. The records are then redistributed so that records with the same key are
sent to the same Reduce task for comparison. The main drawback of this strategy is
that records may be compared several times by different Reduce tasks because they
could share many keys (as shown in Fig. 6 for records r2 and s1). To overcome this
problem the authors proposed another strategy by chaining two MapReduce jobs,
where the first one is similar to the described method except that the Reduce phase
only outputs the pairs of records’ identifiers instead of comparing the records. In the
second MapReduce job, duplicate records pairs are grouped at the same Reducer to
be compared only once. In this process, the Bloom filters are not redistributed (but
only their identifiers) by storing the Bloom filters in a relational database fromwhere
they are read when needed. The evaluation of this parallel LSH approach in [82] was

Privacy-Preserving Record Linkage for Big Data: Current Approaches … 877

limited to only 2 and 4 nodes and small datasets (about 300,000 records) so that the
overall scalability of the approach remains unclear.

For future work, it would be valuable to investigate and compare different parallel
PPRL approaches utilizing the Hadoop ecosystem. The approaches could also utilize
the Spark or Flink frameworks which support more operators than only Map and
Reduce, and support efficient distributed in-memory processing.

5 Multi-party PPRL

While there have been many different approaches proposed for PPRL [164], most
work thus far has concentrated on linking records from only two databases (or par-
ties). Only some approaches have investigated linking records from three or more
databases [75, 104, 118, 122, 127, 130, 131, 160],withmost of these being limited to
exactmatching ormatching of categorical data only, aswill be discussed below.How-
ever, as the example applications described in Sect. 1 have shown, linking data from
multiple databases is increasingly being required for several Big Data applications.
In the following, we describe existing techniques of multi-party private blocking and
private comparison and classification for multi-party PPRL (MP-PPRL).

5.1 Multi-party Private Blocking Techniques

Private blocking for MP-PPRL is crucial due to the exponential growth of the com-
parison spacewith the number of databases linked.However, this has not been studied
until recently, making MP-PPRL not practical in real applications.

Tree-based approaches: The first approach [130] is based on a single-bit tree
(adapted from multi-bit tree [98]) data structure, which is constructed iteratively
to arrange records (masked into Bloom filters) such that similar records are placed
into the same tree leaf while non-similar records are placed into different leaf nodes
in the tree. At each iteration, the set of Bloom filters in a tree node is recursively
split based on selected (according to a privacy criteria) bit positions which are agreed
upon by all parties. A drawback with this approach, however, is that it might miss
true matches due to the recursive splitting of Bloom filters. Furthermore, a commu-
nication step is required among all parties for each iteration.

This limitation ofmissing truematches in the single-bit tree-based approach [130]
has been addressed in [131] using amulti-bit tree [98] data structure (as we discussed
in Sect. 4.2) that is combinedwith canopy clustering.Multi-bit tree-based filtering for
PPRL of two databases was first introduced by Schnell [144]. In [131] the concept of
multi-bit treeswas used to split the databases (masked intoBloomfilters) individually
by the parties into small mini-blocks, which are then merged into larger blocks

878 D. Vatsalan et al.

01 1 0 0 1 1

1 0 1 1 0 1 1

1 1 0 1 1 1 0

1 1 0 1 0 1 0

RA1

RA2

RA3

RA4

1 0 1 0 1 1

1 0 1 1 0 1 1

1 1 0 1 0 1 0

1BR 0

RB2

RB3

11011 0

1 0 1 1 0 1 1

0 1 0 0 1 1 0

0 1 0 1 0 1 0

1RC1

RC2

RC3

RC4

<2, 3, 4, 5, 6>

<1, 5, 2, 7, 6>

CB1

CB2

<2, 3, 4, 5, 6>

<9, 8, 1, 2, 7>

CC1

CC2<1, 5, 2, 7, 6>

32Party P Party P1Party P

110011 0

1 0 1 1 0 1 1

1 1 0 1 1 1 0

1 1 0 1 0 1 0

CA1

CA2

1 0 1 0 1 1

1 0 1 1 0 1 1

0

1 1 0 1 0 1 0

CB1

CB2

11011 0

1 0 1 1 0 1 1

1

0 1 0 0 1 1 0

0 1 0 1 0 1 0

CC1

CC2

L
oc
al

 b
lo

ck
s

CA1, CB1, CC1

CA2, CB2

CA1, CB1, CC1

CA2, CB2

B
lo

om
 f

ilt
er

s
M

in
ha

sh
si
gn

at
ur

es CA1

CA2

<2, 3, 4, 5, 6>

Linkage unit

L
SH

C
an

di
da

te

CA1, CB1, CC1

bl
oc

k
se

ts

Fig. 7 Multi-party private blocking approach as proposed by Ranbaduge et al. [133] (adapted
from [133]). Candidate block sets from all three parties (C A1, C B1, CC1) and sub-set of two
parties (C A2, C B2) are identified to be compared and classified

according to privacy and computational requirements based on their similarity using
a canopy clustering technique [40].

Linkage unit-based approaches: A communication-efficient approach for
multi-party private blocking by using a linkage unit was recently proposed [133],
as illustrated in Fig. 7. In the first step of this approach, local blocks are generated
individually by each party using a private blocking technique (which is considered
to be a black box). For example, the private blocking approach based on multi-bit
tree and canopy clustering [131] (described above) can be used for local blocking.
A block representative in the form of a min-hash signature [18] is then generated
for each block and sent to a linkage unit. The linkage unit applies global blocking
using locality sensitive hashing (LSH) to identify the candidate block sets from all
parties or from sub-sets of parties based on the similarity between block representa-

Privacy-Preserving Record Linkage for Big Data: Current Approaches … 879

tives. Local blocking provides the database owners with more flexibility and control
over their blocks while eliminating all communications among them. This approach
outperforms existing multi-party private blocking approaches in terms of scalability,
privacy, and blocking quality, as validated by a set of experiments conducted by the
authors [133].

Karapiperis and Verykios recently proposed a multi-party private blocking
approach based on LSH [84]. This approach uses L independent hash tables (or
blocking groups), each of which consists of key-bucket pairs where keys represent
the blocking keys and buckets host a linked list aimed at grouping similar records that
were previouslymasked intoBloomfilters. Each hash table is assignedwith a set of K
hash functionswhich is generated by a linkage unit and sent to all the database owners
to populate their set of blocks accordingly. The same authors extended this approach
by proposing a frequent pairs scheme (FPS) [85] for further reducing the number of
comparisons while maintaining a high level of recall. This approach achieves high
blocking quality by identifying similar record pairs that exhibit a number of LSH
collisions above a given threshold, and then performs distance calculations only for
those similar pairs. Empirical results showed significant improvement in running
time due to a drastic reduction of candidate pairs by the FPS, while achieving high
blocking quality [85].

A major drawback of these multi-party private blocking techniques is that they
still result in an exponential comparison space with an increasing number of data-
bases to be linked, especially when the databases are large. Therefore, efficient
communication patterns, such as ring-based or tree-based [113, 142], as well as
advanced filtering techniques, such as those discussed in Sect. 4.2, need to be inves-
tigated for multi-party PPRL in order to make PPRL scalable and viable in Big Data
applications.

5.2 Multi-party Private Comparison and Classification
Techniques

Several private comparison and classification techniques for MP-PPRL have been
developed in the literature. However, they fall short in providing a practical solution
either because they allowexactmatchingonly or they are computationally not feasible
with the size and number of multiple databases. In the following we describe these
approaches and their drawbacks.

Secure Multi-party Computation (SMC)-based approach: An approach based
on SMC using an oblivious transfer protocol was proposed in [122] for multi-party
private comparison and classification. While provably secure, the approach only
performs exact matching of masked records and it is computationally expensive
compared to efficient perturbation-based privacy techniques such as Bloom filters
and k-anonymity [164].

880 D. Vatsalan et al.

Generalization-based approaches: A multi-party private comparison and classifi-
cation approachwas introduced in [75] to perform secure equi-join ofmasked records
from multiple k-anonymous databases by using a linkage unit. The database records
are k-anonymised by the database owners and sent to a linkage unit. The linkage
unit then compares and classifies records by applying secure equi-join, which allows
exact matching only.

Another multi-party private comparison and classification approach based on k-
anonymity for categorical values was proposed in [118]. In this approach, a top-
down generalization is performed on the QIDs to provide k-anonymous privacy (as
discussed in Sect. 3.4) and the generalized blocks are then classified into matches
and non-matches using the C4.5 decision tree classifier.

Probabilistic data structure-based approaches: An efficient multi-party private
comparison and classification approach for exact matching of masked records using
Bloom filters was introduced by Lai et al. [104], as illustrated in Fig. 8. Each party
hash-maps their record values into a single Bloom filter and then partitions its Bloom
filter into segments according to the number of parties involved in the linkage. The
segments are exchanged among the parties such that each party receives a corre-
sponding Bloom filter segment from all other parties. The segments received by a
party are combined using a conjunction (logical AND) operation. The resulting con-
juncted Bloom filter segments are then exchanged among the parties to generate the
full conjuncted Bloomfilter. Each party compares its Bloomfilter of each recordwith
the final conjuncted Bloom filter. If the membership test of a record’s Bloom filter is
successful then the record is considered to be a match across all databases. Though
the computation cost of this approach is low since the computation is completely
distributed among the parties without a linkage unit and the creation and processing
of Bloom filters are very fast, the approach can only perform exact matching.

P3p
1 P2

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

(2, 5, 9)(3, 6, 8)(1, 4, 8) robertmillerpeter

peter

peter

peter

miller

robert

1 1 0 11 0 1 0 1

robert

1 1 0 11 0 1 0 1

1 1 1

1 0 0 0 0

1 1 1 10 0 0 1 0

1 1 0 10 1 1

0 1 1 0 0 1

0 1 0 1

01

(AND)

b3

b2

b1
b
1

b2

b3

1 1 1 10 0 0 1 0
4 5 6 7 8 92 31

3 4 5 6 7 8 92

final
result

Distributed conjunctionMapping of QID values

1

Exact matching

(non−match)(match) (non−match)

− QID value (1−bits)

Fig. 8 Bloom filter masking-based exact matching approach for MP-PPRL as proposed by Lai et
al. [104] (adapted from [164])

Privacy-Preserving Record Linkage for Big Data: Current Approaches … 881

1 1 1

1 0 1 0 1

1 0 1 10 0 1 1

1 1 0 10 1 1

0 1 1 0 0 0

0 1 0

01

(AND)

c = 2c = 1 c = 11 2 3

Dice_sim = 1 2 3

1 2 3
=

(6+6+5)
= 0.706

1x = 6

x = 6
2

x = 53

(x +x +x)
3(c +c +c) 3(1+2+1)

1−bits
Num common

Num 1−bits

b3

b2

b1 1

0

1 2 P3
p P

Fig. 9 Bloom filter masking-based approximate matching approach for MP-PPRL proposed by
Vatsalan and Christen [160] (adapted from [160])

Another efficientmulti-party approach for private comparison and classification of
categorical data was recently proposed [80] using a Count-Min sketch data structure
(as described in Sect. 3.4). Sketches are used to summarize records individually by
each database owner, followed by a secure intersection of these sketches to provide a
global synopsis that contains the common records across parties and their frequencies.
The approachuses homomorphic operations, secure summation, and symmetric noise
addition privacy techniques.

Developing privacy-preserving approximate string comparison functions for mul-
tiple (more than two) values has only recently been considered [160]. This MP-
PPRL approach adapts Lai et al.’s Bloom filter-based exact matching approach [104]
(as described above) for approximate matching to distributively calculate the Dice-
coefficient similarity of a set of Bloom filters from different parties using a secure
summation protocol. This approach is illustrated in Fig. 9. The Dice-coefficient of P
Bloom filters (b1, . . . , bP) is calculated as:

Dice_sim(b1, . . . , bP) = P × c
∑P

i=1 xi

= P × ∑P
i=1 ci

∑P
i=1 xi

, (5)

where ci is the number of common bit positions that are set to 1 in i th Bloom filter
segment fromall P parties such that c = ∑P

i=1 ci , and xi is the number of bit positions
set to 1 in bi (1-bits), where x = ∑P

i=1 xi and 1 ≤ i ≤ P .
Similar to Lai et al.’s approach [104], the Bloom filters are split into segments

such that each party receives a certain segment of the Bloom filters from all other
parties. A logical conjunction is applied to calculate ci individually by each party Pi

(with 1 ≤ i ≤ P) which are then summed to calculate c using a secure summation
protocol. A secure summation of xi is also performed to calculate x . These two sums
are then used to calculate the Dice-coefficient similarity of the Bloom filters using
Eq.5. A limitation of this approach is that it can only be used to link a small number
of databases due to its large number of logical conjunction calculations (even when
a private blocking technique is used).

882 D. Vatsalan et al.

Therefore,morework needs to be done inmulti-party private comparison and clas-
sification to enable efficient and effective PPRLonmultiple large databases including
sub-set matching (i.e. identifying matching records across sub-set of parties).

6 Open Challenges

In this sectionwe first describe the various open challenges of PPRL, and then discuss
these challenges in the context of the four V’s volume, variety, velocity, and veracity
of Big Data.

6.1 Improving Scalability

The trend of BigData growth dispersed inmultiple sources challenges PPRL in terms
of complexity (volume), which increases exponentiallywithmultiple large databases.
Much research in recent years has focused on improving the scalability of the PPRL
process, both with regard to the sizes of the databases to be linked, as well as with
the number of databases to be linked. While significant progress has been made in
both these directions, further efforts are required to make all aspects of the PPRL
process scalable. Both directions are highly relevant for Big Data applications.

Even small blocks can still lead to a large number of record pair (or set) com-
parisons that are required in the comparison step, especially when databases from
multiple (more than two) sources are to be linked. For each set of blocks across sev-
eral parties, potentially all combinations of record sets need to be compared. For a
block that contains B records from each of P parties, B P comparisons are required.
Crucial are efficient adaptive comparison techniques that stop the comparison of
records across parties once a pair of records has been classified to be a non-match
between two parties. For example, assume the record set 〈rA, rB, rC , rD〉, where rA

is from party A, rB is from party B, and so on. Once the pair rA and rB are compared
and classified as a non-match, there is no need to compare all other possible record
pairs (rA with rC , rA with rD , rB with rC , and so on) if the aim of the linkage is to
identify sets of records that match across all parties involved in a PPRL.

A very challenging aspect is the task of identifying sub-sets of records that match
across only a sub-set of parties. An example is to find all patients that have medical
records in the databases of any three out of a group of five hospitals. In this situa-
tion, all potential sub-sets of records need to be compared and classified. This is a
challenging problem with regard to the number of comparisons required and has not
been studied in the literature so far.

Privacy-Preserving Record Linkage for Big Data: Current Approaches … 883

6.2 Improving Linkage Quality

The veracity and variety aspects (errors and variations) of Big Data need to be
addressed in PPRL by developing accurate and effective comparison and classifica-
tion techniques for high linkage quality. How to efficiently calculate the similarity of
more than two values using approximate comparison functions in PPRL is an impor-
tant challenge with multi-source linking. Most existing PPRL solutions for multiple
parties only support exact matching [80, 104] or they are applicable to QIDs of
only categorical data [75, 118]. Thus far only one recent approach supports approx-
imate matching of string data for PPRL on multiple databases [160] (as described in
Sect. 5.2).

In the area of non-PPRL, advanced collective [13] and graph-based [58, 74]
classification techniques have been developed in recent times. These techniques are
able to achieve high linkage quality compared to the basic pair-wise comparison
and threshold-based classification approach that is often employed in most PPRL
techniques. Group linkage [123] is the only advanced classification technique that
has so far been considered for PPRL [105].

For classification techniques that require training data (i.e. supervised classifiers),
a major challenge in PPRL is how such training data can be generated. Because of
privacy and confidentiality concerns, in PPRL it is generally not possible to gain
access to the actual sensitive QID values (to decide if they refer to a true match or
a true non-match). The advantage of certain collective and graph-based approaches
[13, 74] is that they are unsupervised and therefore do not require training data.
However, their disadvantage is their high computational complexities (quadratic or
even higher) [137]. Investigating and adapting advanced classification techniques
for PPRL will be a crucial step towards making PPRL useful for practical Big Data
applications, where training data are commonly not available, or are expensive to
generate.

6.3 Dynamic Data and Real-Time Matching

All PPRL techniques developed so far, in line with most non-PPRL techniques, only
consider the batch linkage of static databases. However, a major aspect of Big Data
is the dynamic nature of data (velocity) that requires adaptive systems to link data
as they arrive at an organization, ideally in (near) real-time. Limited work has so
far investigated temporal data [33, 107] and real-time [32, 70, 129] matching in
the context of record linkage. Temporal aspects can be considered by adapting the
similarities between records depending upon the time difference between them,while
real-timematching can be achieved using sophisticated adaptive indexing techniques.
Several works have been done on dynamic privacy-preserving data publishing on
the cloud by developing an efficient and adaptive QID index-based approach over
incremental datasets [175, 176].

884 D. Vatsalan et al.

Linking dynamic databases in a PPRL context opens various challenging research
questions. Existing masking (encoding) methods used in PPRL assume static data-
bases that allow parameter settings to be calculated a-priori leading to securemasking
of QID values. For example, Bloom filters in average should have 50% of their bits
set to 1, making frequency attacks more difficult [117]. Such masking might not
stay secure as the characteristics of data are changing over time. Dynamic databases
also require novel comparison functions that can adapt to changing data as well as
adaptive masking techniques.

6.4 Improving Security and Privacy

In addition to the four V’s of Big Data, another challenging aspect that needs to
be considered for Big Data applications is security and privacy. As we discussed
in Sect. 3.2, most work in PPRL assumes the honest-but-curious (HBC) adversary
model [65, 111]. Most PPRL protocols also assume that the parties do not collude
with each other (i.e. a sub-set of two or more parties do not collaborate with the
aim to learn sensitive information of another party) [111]. However, in a commercial
environment and in PPRL scenarios where many parties are involved, such as is
likely in Big Data applications, collusion is a real possibility that needs to be pre-
vented. Only few PPRL techniques consider the malicious adversary model [164].
The techniques developed based on this security model commonly have high compu-
tational complexities and are therefore currently not practical for the linkage of large
databases. Therefore, because the HBC model might not be strong enough while
the malicious model is computationally too expensive, novel security models that
lie between those two need to be investigated for PPRL. Two of these are the covert
adversary model [4] and accountable computing [71], which have been discussed in
Sect. 3.2. Research directions are required to develop new protocols that are practical
and at the same time more secure than protocols based on the HBC model.

With regard to privacy,most PPRL techniques are known to leak some information
during the exchange of data between the parties (such as the number and sizes of
blocks, or the similarities between compared records). How sensitive such revealed
information is for a certain dataset heavily depends upon the parameter settings used
by a protocol. Sophisticated attack methods [101] have been developed that exploit
the subtle pieces of information revealed by certain PPRL protocols to iteratively
gather information about sensitive values. Therefore, there is a need to harden existing
PPRL techniques to ensure they are not vulnerable to such attacks. Preserving privacy
of individual entities ismore challengingwithmulti-party PPRLdue to the increasing
risk of collusion between a sub-set of partieswhich aim to learn about another (sub-set
of) party’s private data. Distributing computations among pairs or groups of parties
can reduce the likelihood of collusion between parties if individual pairs or groups
can use different secret keys (known only to them) for masking their values.

Most PPRL techniques havemainly been focusing on the privacy of the individual
records that are to be linked [165]. However, besides individual record privacy, the

Privacy-Preserving Record Linkage for Big Data: Current Approaches … 885

privacy of a group of individuals also needs to be considered. Often the outcomes of
a PPRL project are sets of linked records that represent people with certain charac-
teristics (such as certain illnesses, or particular financial circumstances). While the
names, addresses and other personal details of these people are not revealed during or
after the PPRL process, their overall characteristics as a group could potentially lead
to the discrimination of individuals in this group if these characteristics are being
revealed. The research areas of privacy-preserving data publishing [59] and statistical
confidentiality [45] have been addressing these issues from different directions.

PPRL is only one component in themanagement and analysis of sensitive, person-
related information by linking different datasets in a privacy-preserving manner.
However, achieving an effective overall privacy preservation needs a comprehensive
strategy regarding the whole data life cycle including collection, management, pub-
lishing, exchange and analysis of data to be protected (‘privacy-by-design’) [22].
Hence, it is necessary to better understand the role of PPRL in the life cycle for
sensitive data to ensure that it can be applied and that the match results are both
useful and privacy-preserving.

In research, the different technical aspects to preserve privacy have partially been
addressed by different communities with little interaction. For example, there is a
large body of research on privacy-preserving data publishing [59] and on privacy-
preserving datamining [109, 156] that have been largely decoupled from the research
on PPRL. It is well known that data analysis may identify individuals despite the
masking of QID values [152]. Hence, there is similar risk that the combined infor-
mation of matched records together with some background information could lead
to the identification of individuals (known as re-identification). Such risks must be
evaluated and addressed within a comprehensive privacy strategy including a closely
aligned PPRL and privacy-preserving data analysis/mining approach.

6.5 Evaluation, Frameworks, and Benchmarks

How to assess the quality (how many classified matches are true matches) and com-
pleteness (how many true matches have been classified as matches) of the records
linked in a PPRL project is very challenging because it is generally not possible
to inspect linked records due to privacy concerns. Manual assessment of individual
records would reveal sensitive information which is in contradiction to the objective
of PPRL. Not knowing how accurate and complete linked data are is however amajor
issue that will render any PPRL protocol impractical in applications where linkage
completeness and quality are crucial, as is the case in many Big Data applications
such as in the health or security domains.

Recent initial work has proposed ideas and concepts for interactive PPRL [100]
where parts of sensitive values are revealed for manual assessment. How to actually
implement such approaches in real applications, while ensuring the revealed infor-
mation is limited to a certain level of detail (for example providing k-anonymous
privacy for a certain value of k > 1 [152]) is an open research question that must be

886 D. Vatsalan et al.

solved. Interactive manual evaluation might also not be feasible in Big Data appli-
cations where the size and dynamic nature of data, as well as real-time processing
requirements, prohibit any manual inspection.

With regard to evaluating the privacy protection that a given PPRL technique
provides, unlike for measuring linkage quality and completeness (where standard
measurements such as runtime, reduction ratio, pairs completeness, pairs quality,
precision, recall, or accuracy are available [28]), there are currently no standard
measurements for assessing privacy in PPRL. Different measurements have been
proposed and used [46, 164, 165], making the comparison of different PPRL tech-
niques difficult. How to assess linkage quality and completeness, as well as privacy,
aremust-solve problems as otherwise it will not be possible to evaluate the efficiency,
effectiveness, and privacy protection of PPRL techniques in real-world applications,
leaving these techniques non-practical.

An important direction of futurework for PPRL is the development of frameworks
that allow the experimental comparison of different PPRL techniques with regard
to their scalability, linkage quality, and privacy preservation. No such framework
currently exists. Ideally, such frameworks allow researchers to easily ‘plug-in’ their
own algorithms such that over time a collection of PPRL algorithms is compiled that
can be tested and evaluated by researchers, as well as by practitioners to allow them
to identify the best technique to use for their application scenario.

An issue related to frameworks is the availability of publicly available benchmark
datasets for PPRL.While this is not a challenge limited to PPRL but to record linkage
research in general [28, 95], it is particularly prominent for PPRL as it deals with
sensitive and confidential data.While for record linkage techniques publicly available
data from bibliographic or consumer product databases might be used [95], such data
are less useful for PPRL research as they have different characteristics compared to
personal data. The nature of the datasets to be linked using PPRL techniques is
obviously in strong contradiction to them being made public. Ideally researchers
working in PPRL are able to collaborate with practitioners that do have access to
real sensitive and confidential databases to allow them to evaluate their techniques
on such data.

A possible alternative to using benchmark datasets is the use of synthetic data that
are generated based on the characteristics of real data using data generators [34, 153].
Such generatorsmust be able to generate datawith similar distribution of values, vari-
ations, and errors aswould be expected in real datasets from the same domain. Several
such data generators have been developed and are used by researchers working in
PPRL as well as record linkage in general.

6.6 Discussion

As we have discussed in this section, there are various challenges that need to be
addressed in order to make PPRL practical for applications in a variety of domains.

Privacy-Preserving Record Linkage for Big Data: Current Approaches … 887

Some of these challenges are general and not just affect PPRL for Big Data, others
are specific to certain types of applications, including those in the Big Data space.

The challenge of scalability of PPRL towards very large databases is highly rel-
evant to the volume of Big Data, while the challenge of linkage quality of PPRL
is highly relevant to the veracity and variety of Big Data. The dynamic nature of
data in many Big Data applications, and the requirement of being able to link data
in real-time, are challenging all aspects of PPRL, as well as record linkage in gen-
eral [129]. This challenge corresponds to the velocity of Big Data and it requires the
development of novel techniques that are adaptive to changing data characteristics,
and that are highly efficient with regard to fast linking of streams of query records.
While the volume, variety, and veracity aspects of Big Data have been studied for
PPRL to some extent, the velocity aspect has so far not been addressed in a PPRL
context.

Making PPRL more secure and more private is challenged by all four V’s of Big
Data. Larger data volume likely means that only encoding techniques that require
little computational efforts per record can be employed,while dynamic data (velocity)
means such techniques have to be adaptable to changing data characteristics. Variety
means PPRL techniques have to be made more secure and private for various types
of data, while veracity requires them to also take data uncertainties into account. The
challenge of integrating PPRL into an overall privacy-preserving approach has also
not seen anywork so far. All four V’s of BigData will affect the overall efficiency and
effectiveness of systems that enable the management and analysis of sensitive and
confidential information in a privacy-preserving manner. The more basic challenges
of improving scalability, linkage quality, privacy and evaluation need to solved first
before this more complex challenge of an overall privacy-preserving system can be
addressed.

The final challenge of evaluation is affected by all aspects of Big Data. Improved
evaluation of PPRL systems requires that databases that are large, heterogeneous,
dynamic, and that contain uncertain data, can be handled and evaluated efficiently
and accurately. So far no research in PPRL has investigated evaluation specifically
for Big Data. While the lack of general benchmarks and frameworks is already a gap
in PPRL and record linkage research in general, Big Data will make this challenge
even more pronounced. Compared to frameworks that can handle small and medium
sized static datasets only, it is even more difficult to develop frameworks that enable
privacy-preserving linking of very large and dynamic databases, as is making such
datasets publicly available. No work addressing this challenge in the context of Big
Data has been published.

7 Conclusions

Privacy-preserving record linkage (PPRL) is an emerging research field that is being
required by many different applications to enable effective and efficient linkage of
databases across different organizationswithout compromising privacy and confiden-
tiality of the entities in these databases. In the BigData era, tremendous opportunities

888 D. Vatsalan et al.

can be realized by linking data at the cost of additional challenges. In this chapter, we
have provided background material required to understand the applications, process,
and challenges of PPRL, and we have reviewed existing PPRL approaches to under-
stand the literature. Based on the analysis of existing techniques, we have discussed
several interesting and challenging directions for future work in PPRL for Big Data.

With the increasing trend of Big Data in organizations, more research is required
towards the development of techniques that allow for multiple large databases to be
linked in privacy-preserving, effective, and efficient ways, thereby facilitating novel
ways of data analysis and mining that currently are not feasible due to scalability,
quality, and privacy-preserving challenges.

Acknowledgements This work was partially funded by the Australian Research Council under
Discovery Project DP130101801, the German Academic Exchange Service (DAAD) and Universi-
ties Australia (UA) under the Joint Research Co-operation Scheme, and also funded by the German
Federal Ministry of Education and Research within the project Competence Center for Scalable
Data Services and Solutions (ScaDS) Dresden/Leipzig (BMBF 01IS14014B).

References

1. R. Agrawal, A. Evfimievski, R. Srikant, Information sharing across private databases, in ACM
SIGMOD (2003), pp. 86–97

2. A. Arasu, V. Ganti, R. Kaushik, Efficient exact set-similarity joins, in PVLDB (2006), pp.
918–929

3. A. Arasu, M. Götz, R. Kaushik, On active learning of record matching packages, in ACM
SIGMOD (2010), pp. 783–794

4. Y. Aumann, Y. Lindell, Security against covert adversaries: efficient protocols for realistic
adversaries. J. Cryptol. 23(2), 281–343 (2010)

5. T. Bachteler, J. Reiher, and R. Schnell. Similarity Filtering with Multibit Trees for Record
Linkage. Technical Report WP-GRLC-2013-01, German Record Linkage Center, 2013

6. D. Barone, A. Maurino, F. Stella, C. Batini, A privacy-preserving framework for accuracy
and completeness quality assessment, in Emerging Paradigms in Informatics, Systems and
Communication (2009), pp. 83–87

7. J.E. Barros, J.C. French, W.N. Martin, P.M. Kelly, T.M. Cannon, Using the triangle inequality
to reduce the number of comparisons required for similarity-based retrieval, in Electronic
Imaging Science and Technology (1996), pp. 392–403

8. C. Batini, M. Scannapieca, Data quality: Concepts, Methodologies And Techniques. Data-
Centric Systems and Applications (Springer, Berlin, 2006)

9. R. Baxter, P. Christen, T. Churches, A comparison of fast blockingmethods for record linkage,
in SIGKDD Workshop on Data Cleaning, Record Linkage and Object Consolidation (2003),
pp. 25–27

10. R.J. Bayardo, Y. Ma, R. Srikant, Scaling Up All Pairs Similarity Search, in WWW (2007), pp.
131–140

11. K. Bellare, S. Iyengar, A.G. Parameswaran, V. Rastogi, Active sampling for entity matching,
in ACM SIGKDD (2012), pp. 1131–1139

12. A. Berman, L.G. Shapiro, Selecting good keys for triangle-inequality-based pruning algo-
rithms, in IEEE Workshop on Content-Based Access of Image and Video Database (1998),
pp. 12–19

13. I. Bhattacharya, L. Getoor, Collective entity resolution in relational data. ACM TKDD 1(1),
1–35 (2007)

Privacy-Preserving Record Linkage for Big Data: Current Approaches … 889

14. M. Bilenko, R.J. Mooney, Adaptive duplicate detection using learnable string similarity mea-
sures, in ACM SIGKDD (2003), pp. 39–48

15. B. Bloom, Space/time trade-offs in hash coding with allowable errors. Commun. ACM 13(7),
422–426 (1970)

16. L. Bonomi, L. Xiong, R. Chen, B. Fung, Frequent grams based embedding for privacy pre-
serving record linkage, in ACM CIKM (2012), pp. 1597–1601

17. H. Bouzelat, C. Quantin, L. Dusserre, Extraction and anonymity protocol of medical file, in
AMIA Fall Symposium (1996), pp. 323–327

18. A.Z. Broder, On the resemblance and containment of documents, in Compression and Com-
plexity of Sequences. IEEE (1997), pp. 21–29

19. A. Broder, M. Mitzenmacher, A. Mitzenmacher, Network applications of Bloom filters: a
survey. Internet Math. 1(4), 485–509 (2004)

20. E. Brook, D. Rosman, C. Holman, Public good through data linkage: measuring research
outputs from the Western Australian data linkage system. Aust. NZ J. Public Health 32,
19–23 (2008)

21. R. Canetti, Security and composition of multiparty cryptographic protocols. J. Cryptol. 13(1),
143–202 (2000)

22. A. Cavoukian, J. Jonas, Privacy by design in the age of Big Data. Technical report, TR
Information and privacy commissioner, Ontario (2012)

23. P. Christen, A comparison of personal name matching: techniques and practical issues, in
IEEE ICDM Workshop on Mining Complex Data (2006), pp. 290–294

24. P. Christen, Privacy-preserving data linkage and geocoding: current approaches and research
directions, in IEEE ICDM Workshop on Privacy Aspects of Data Mining (2006), pp. 497–501

25. P. Christen, Automatic record linkage using seeded nearest neighbour and support vector
machine classification, in ACM SIGKDD (2008), pp. 151–159

26. P. Christen, Febrl: an open source data cleaning, deduplication and record linkage system
with a graphical user interface, in ACM SIGKDD (2008), pp. 1065–1068

27. P. Christen, Geocode matching and privacy preservation, in Workshop on Privacy, Security,
and Trust in KDD (Springer, Berlin, 2009), pp. 7–24

28. P. Christen, Data Matching - Concepts and Techniques for Record Linkage, Entity Resolution,
and Duplicate Detection (Springer, Berlin, 2012)

29. P. Christen, A survey of indexing techniques for scalable record linkage and deduplication.
IEEE TKDE 24(9), 1537–1555 (2012)

30. P. Christen, T. Churches, M. Hegland, Febrl – a parallel open source data linkage system, in
Springer PAKDD (2004), pp. 638–647

31. P. Christen, K. Goiser, Quality and complexity measures for data linkage and deduplication,
inQuality Measures in Data Mining, vol. 43. Studies in Computational Intelligence (Springer,
Berlin, 2007), pp. 127–151

32. P. Christen, R. Gayler, D. Hawking, Similarity-aware indexing for real-time entity resolution,
in ACM CIKM (2009), pp. 1565–1568

33. P. Christen, R.W. Gayler, Adaptive temporal entity resolution on dynamic databases, in
PAKDD (2013), pp. 558–569

34. P. Christen, D. Vatsalan, Flexible and extensible generation and corruption of personal data,
in ACM CIKM (2013), pp. 1165–1168

35. T. Churches, P. Christen, Some methods for blindfolded record linkage. BioMed Cent. Med.
Inf. Decision Mak. 4(9), (2004)

36. T. Churches, P. Christen, K. Lim, J.X. Zhu, Preparation of name and address data for record
linkage using hidden Markov models. BioMed Cent. Med. Inf. Decision Mak. 2(9), (2002)

37. D.E. Clark, Practical introduction to record linkage for injury research. Inj. Prev. 10, 186–191
(2004)

38. C.Clifton,M.Kantarcioglu, J.Vaidya,X. Lin,M.Zhu, Tools for privacy preserving distributed
data mining. SIGKDD Explor. 4(2), 28–34 (2002)

39. W.W. Cohen, Data integration using similarity joins and a word-based information represen-
tation language. ACM TOIS 18(3), 288–321 (2000)

890 D. Vatsalan et al.

40. W.W. Cohen, J. Richman, Learning to match and cluster large high-dimensional data sets for
data integration, in ACM SIGKDD (2002), pp. 475–480

41. G. Cormode, S. Muthukrishnan, An improved data stream summary: the count-min sketch
and its applications. J. Algorithms 55(1), 58–75 (2005)

42. G. Dal Bianco, R. Galante, C.A. Heuser, A fast approach for parallel deduplication on multi-
core processors, in ACM Symposium on Applied Computing (2011), pp. 1027–1032

43. D. Dey, V. Mookerjee, D. Liu, Efficient techniques for online record linkage. IEEE TKDE
23(3), 373–387 (2010)

44. W. Du, M. Atallah, Protocols for secure remote database access with approximate matching,
in ACM WSPEC (Springer, Berlin, 2000), pp. 87–111

45. G.T. Duncan, M. Elliot, J.-J. Salazar-González, Statistical Confidentiality: Principles and
Practice (Springer, New York, 2011)

46. E. Durham, A framework for accurate, efficient private record linkage. Ph.D. thesis, Faculty
of the Graduate School of Vanderbilt University, Nashville, TN, 2012

47. E. Durham, Y. Xue, M. Kantarcioglu, B. Malin, Private medical record linkage with approx-
imate matching, in AMIA Annual Symposium (2010), pp. 182–186

48. E.A. Durham, C. Toth, M. Kuzu, M. Kantarcioglu, Y. Xue, B. Malin, Composite Bloom filters
for secure record linkage. IEEE TKDE 26(12), pp. 2956–2968 (2013)

49. L. Dusserre, C. Quantin, H. Bouzelat, A one way public key cryptosystem for the linkage of
nominal files in epidemiological studies. Medinfo 8, 644–647 (1995)

50. C. Dwork, Differential privacy, in ICALP (2006), pp. 1–12
51. M.G. Elfeky, V.S. Verykios, A.K. Elmagarmid, TAILOR: a record linkage toolbox, in IEEE

ICDE (2002), pp. 17–28
52. A. Elmagarmid, P. Ipeirotis, V.S. Verykios, Duplicate record detection: a survey. IEEE TKDE

19(1), 1–16 (2007)
53. U. Fayyad,G. Piatetsky-Shapiro, P. Smyth,R.Uthurusamy,Advances in Knowledge Discovery

and Data Mining (The MIT Press, Cambridge, 1996)
54. I.P. Fellegi, A.B. Sunter, A theory for record linkage. J. Am. Stat. Soc. 64(328), 1183–1210

(1969)
55. S.E. Fienberg,Confidentiality and disclosure limitation. Encycl. Soc.Meas.1, 463–469 (2005)
56. B. Forchhammer, T. Papenbrock, T. Stening, S. Viehmeier, U. Draisbach, F. Naumann, Dupli-

cate detection on GPUs, in BTW (2013), pp. 165–184
57. M. Freedman, Y. Ishai, B. Pinkas, O. Reingold, Keyword search and oblivious pseudorandom

functions, in Theory of Cryptography (2005), pp. 303–324
58. Z. Fu, J. Zhou, P. Christen, M. Boot, Multiple instance learning for group record linkage, in

PAKDD, Springer LNAI (2012), pp. 171–182
59. B. Fung, K. Wang, R. Chen, P.S. Yu, Privacy-preserving data publishing: a survey of recent

developments. ACM Comput. Surv. 42(4), 14 (2010)
60. S.R. Ganta, S.P. Kasiviswanathan, A. Smith, Composition attacks and auxiliary information

in data privacy, in ACM SIGKDD (2008), pp. 265–273
61. A. Gionis, P. Indyk, R. Motwani, Similarity search in high dimensions via hashing, in VLDB

(1999), pp. 518–529
62. O. Goldreich, Foundations of Cryptography: Basic Applications, vol. 2. (Cambridge Univer-

sity Press, Cambridge, 2004)
63. L. Gu, R. Baxter, Decisionmodels for record linkage, in Selected Papers from AusDM. LNCS,

vol. 3755 (Springer, Berlin, 2006), pp. 146–160
64. M. Hadjieleftheriou, A. Chandel, N. Koudas, D. Srivastava, Fast indexes and algorithms for

set similarity selection queries, in IEEE ICDE (2008), pp. 267–276
65. R. Hall, S. Fienberg, Privacy-preserving record linkage, in PSD (2010), pp. 269–283
66. M. Herschel, F. Naumann, S. Szott, M. Taubert, Scalable iterative graph duplicate detection.

IEEE TKDE 24(11), 2094–2108 (2012)
67. A. Inan, M. Kantarcioglu, E. Bertino, M. Scannapieco, A hybrid approach to private record

linkage, in IEEE ICDE (2008), pp. 496–505

Privacy-Preserving Record Linkage for Big Data: Current Approaches … 891

68. A. Inan, M. Kantarcioglu, G. Ghinita, E. Bertino. Private record matching using differential
privacy, in EDBT (2010), pp. 123–134

69. P. Indyk, R. Motwani, Approximate nearest neighbors: Towards removing the curse of dimen-
sionality, in ACM Symposium on the Theory of Computing (1998), pp. 604–613

70. E. Ioannou, W. Nejdl, C. Niederée, Y. Velegrakis, On-the-fly entity-aware query processing
in the presence of linkage. PVLDB 3(1–2), 429–438 (2010)

71. W. Jiang, C. Clifton, Ac-framework for privacy-preserving collaboration, in SDM SIAM
(2007), pp. 47–56

72. W. Jiang, C. Clifton,M.Kantarcıoğlu, Transforming semi-honest protocols to ensure account-
ability. Elsevier DKE 65(1), 57–74 (2008)

73. J. Jonas, J. Harper, Effective counterterrorism and the limited role of predictive data mining.
Policy Anal. 584, 1–12 (2006)

74. D. Kalashnikov, S. Mehrotra, Domain-independent data cleaning via analysis of entity-
relationship graph. ACM TODS 31(2), 716–767 (2006)

75. M. Kantarcioglu, W. Jiang, B. Malin, A privacy-preserving framework for integrating person-
specific databases, in PSD (2008), pp. 298–314

76. A. Karakasidis, V.S. Verykios, Secure blocking+secure matching = secure record linkage.
JCSE 5, 223–235 (2011)

77. A. Karakasidis, V.S. Verykios, Reference table based k-anonymous private blocking, in ACM
SAC (2012), pp. 859–864

78. A. Karakasidis, V.S. Verykios, A sorted neighborhood approach to multidimensional privacy
preserving blocking, in IEEE ICDMW (2012), pp. 937–944

79. A.Karakasidis,V.S.Verykios, P.Christen, Fake injection strategies for private phoneticmatch-
ing. DPM Springer 7122, 9–24 (2012)

80. D. Karapiperis, D. Vatsalan, V.S. Verykios, P. Christen, Large-scale multi-party counting set
intersection using a space efficient global synopsis, in DASFAA (2015), pp. 329–345

81. D. Karapiperis, D. Vatsalan, V.S. Verykios, P. Christen, Efficient record linkage using a com-
pact hamming space, in EDBT (2016), pp. 209–220

82. D. Karapiperis, V.S. Verykios, A distributed framework for scaling up LSH-based computa-
tions in privacy preserving record linkage, in ACM BCI (2013), pp. 102–109

83. D. Karapiperis, V.S. Verykios, A distributed near-optimal LSH-based framework for privacy-
preserving record linkage. ComSIS 11(2), 745–763 (2014)

84. D. Karapiperis, V.S. Verykios, An LSH-based blocking approach with a homomorphic match-
ing technique for privacy-preserving record linkage. IEEE TKDE 27(4), 909–921 (2015)

85. D. Karapiperis, V.S. Verykios, A fast and efficient hamming LSH-based scheme for accurate
linkage, in Springer KAIS (2016), pp. 1–24

86. H.Kargupta, S.Datta, Q.Wang,K. Sivakumar,On the privacy preserving properties of random
data perturbation techniques, in IEEE ICDM (2003), p. 99

87. H. Kargupta, S. Datta, Q. Wang, K. Sivakumar, Random-data perturbation techniques and
privacy-preserving data mining, Springer KAIS 7(4), 387–414 (2005)

88. C.W.Kelman, J. Bass, D.Holman, Research use of linked health data - a best practice protocol.
Aust. NZ J. Public Health 26, 251–255 (2002)

89. H. Kim, D. Lee, Harra: fast iterative hashed record linkage for large-scale data collections, in
EDBT (2010), pp. 525–536

90. H.-s. Kim, D. Lee, Parallel linkage, in ACM CIKM (2007), pp. 283–292
91. T. Kirsten, L. Kolb, M. Hartung, A. Groß, H. Köpcke, E. Rahm, Data partitioning for parallel

entity matching, in QDB (2010)
92. L. Kissner, D. Song, Private and threshold set-intersection, in Technical Report. Carnegie

Mellon University, 2004
93. L. Kolb, A. Thor, E. Rahm, Dedoop: efficient deduplication with Hadoop. PVLDB 5(12),

1878–1881 (2012)
94. L. Kolb, A. Thor, E. Rahm, Load balancing for mapreduce-based entity resolution, in IEEE

ICDE (2012), pp. 618–629

892 D. Vatsalan et al.

95. H. Köpcke, E. Rahm, Frameworks for entity matching: a comparison. Elsevier DKE 69(2),
197–210 (2010)

96. H. Köpcke, A. Thor, E. Rahm, Evaluation of entity resolution approaches on real-world match
problems. PVLDB 3(1), 484–493 (2010)

97. H. Krawczyk, M. Bellare, R. Canetti, HMAC: keyed-hashing for message authentication, in
Internet RFCs (1997)

98. T.G. Kristensen, J. Nielsen, C.N. Pedersen, A tree-based method for the rapid screening of
chemical fingerprints. Algorithms Mol. Biol. 5(1), 9 (2010)

99. H. Kum, A. Krishnamurthy, A. Machanavajjhala, S. Ahalt, Population informatics: tapping
the social genome to advance society: a vision for putting “big data” to work for population
informatics. Computer (2013)

100. H.-C. Kum,A. Krishnamurthy, A.Machanavajjhala,M.K. Reiter, S. Ahalt, Privacy preserving
interactive record linkage. JAMIA 21(2), 212–220 (2014)

101. M. Kuzu, M. Kantarcioglu, E. Durham, B. Malin, A constraint satisfaction cryptanalysis of
Bloom filters in private record linkage. PETS Springer LNCS 6794, 226–245 (2011)

102. M. Kuzu, M. Kantarcioglu, E.A. Durham, C. Toth, B. Malin, A practical approach to achieve
private medical record linkage in light of public resources. JAMIA 20(2), 285–292 (2013)

103. M. Kuzu, M. Kantarcioglu, A. Inan, E. Bertino, E. Durham, B. Malin, Efficient privacy-aware
record integration, in ACM EDBT (2013), pp. 167–178

104. P. Lai, S. Yiu, K. Chow, C. Chong, L. Hui, An efficient Bloom filter based solution for
multiparty private matching, in SAM (2006)

105. F. Li, Y. Chen, B. Luo, D. Lee, P. Liu, Privacy preserving group linkage, in Scientific and
Statistical Database Management (Springer, Berlin, 2011), pp. 432–450

106. N. Li, T. Li, S. Venkatasubramanian, T-closeness: privacy beyond k-anonymity and l-diversity,
in IEEE ICDE (2007), pp. 106–115

107. P. Li, X. Dong, A.Maurino, D. Srivastava, Linking temporal records. PVLDB 4(11), 956–967
(2011)

108. Z. Lin, M. Hewett, R.B. Altman, Using binning to maintain confidentiality of medical data,
in AMIA Symposium (2002), p. 454

109. Y. Lindell, B. Pinkas, Privacy preserving data mining, in CRYPTO (Springer, Berlin, 2000),
pp. 36–54

110. Y. Lindell, B. Pinkas, An efficient protocol for secure two-party computation in the presence
of malicious adversaries, in EUROCRYPT (2007), pp. 52–78

111. Y. Lindell, B. Pinkas, Secure multiparty computation for privacy-preserving data mining. JPC
1(1), 5 (2009), pp. 59–98

112. H. Liu, H. Wang, Y. Chen, Ensuring data storage security against frequency-based attacks in
wireless networks, in DCOSS, Springer LNCS, vol. 6131 (2010), pp. 201–215

113. H. Lu, M.-C. Shan, K.-L. Tan, Optimization of multi-way join queries for parallel execution,
in VLDB (1991), pp. 549–560

114. M. Luby, C. Rackoff, How to construct pseudo-random permutations from pseudo-random
functions, in CRYPTO, vol. 85 (1986), p. 447

115. A.Machanavajjhala, D.Kifer, J. Gehrke,M.Venkitasubramaniam, l-diversity: privacy beyond
k-anonymity. ACM TKDD 1(1), 3 (2007)

116. B.A. Malin, K. El Emam, C.M. O’Keefe, Biomedical data privacy: problems, perspectives,
and recent advances. JAMIA 20(1), 2–6 (2013)

117. M. Mitzenmacher, E. Upfal, Probability and Computing: Randomized Algorithms and Prob-
abilistic Analysis (Cambridge University Press, Cambridge, 2005)

118. N. Mohammed, B. Fung, M. Debbabi, Anonymity meets game theory: secure data integration
with malicious participants. PVLDB 20(4), 567–588 (2011)

119. M. Nentwig, M. Hartung, A.-C. Ngonga Ngomo, E. Rahm, A survey of current link discovery
frameworks. Semantic Web Journal (2016)

120. A.N. Ngomo, L. Kolb, N. Heino, M. Hartung, S. Auer, E. Rahm,When to reach for the cloud:
using parallel hardware for link discovery, in ESWC (2013), pp. 275–289

121. Office for National Statistics, Beyond 2011 matching anonymous data (2013)

Privacy-Preserving Record Linkage for Big Data: Current Approaches … 893

122. C. O’Keefe, M. Yung, L. Gu, R. Baxter, Privacy-preserving data linkage protocols, in ACM
WPES (2004), pp. 94–102

123. B. On, N. Koudas, D. Lee, D. Srivastava, Group linkage, in IEEE ICDE (2007), pp. 496–505
124. C. Pang, L. Gu, D. Hansen, A. Maeder, Privacy-preserving fuzzy matching using a pub-

lic reference table, in Intelligent Patient Management, vol. 189. Studies in Computational
Intelligence (Springer, Berlin, 2009), pp. 71–89

125. C. Phua, K. Smith-Miles, V. Lee, R. Gayler, Resilient identity crime detection. IEEE TKDE
24(3), 533–546 (2012)

126. C. Quantin, H. Bouzelat, L. Dusserre, Irreversible encryption method by generation of poly-
nomials. Med. Inf. Internet Med. 21(2), 113–121 (1996)

127. C. Quantin, H. Bouzelat, F. Allaert, A. Benhamiche, J. Faivre, L. Dusserre, How to ensure
data security of an epidemiological follow-up: quality assessment of an anonymous record
linkage procedure. IJMI 49(1), 117–122 (1998)

128. E. Rahm, H.H. Do, Data cleaning: problems and current approaches. IEEE Data Eng. Bull.
23(4), 3–13 (2000)

129. B. Ramadan, P. Christen, H. Liang, R.W. Gayler, Dynamic sorted neighborhood indexing for
real-time entity resolution. ACM JDIQ 6(4), 15 (2015)

130. T. Ranbaduge, P. Christen, D. Vatsalan, Tree based scalable indexing for multi-party privacy-
preserving record linkage, in AusDM (2014)

131. T. Ranbaduge, D. Vatsalan, P. Christen, Clustering-based scalable indexing for multi-party
privacy-preserving record linkage, in Springer PAKDD (2015), pp. 549–561

132. T. Ranbaduge, D. Vatsalan, P. Christen, Merlin–a tool for multi-party privacy-preserving
record linkage, in IEEE ICDMW (2015), pp. 1640–1643

133. T. Ranbaduge, D. Vatsalan, P. Christen, Hashing-based distributed multi-party blocking for
privacy-preserving record linkage, in Springer PAKDD (2016), pp. 415–427

134. T. Ranbaduge, D. Vatsalan, S. Randall, P. Christen, Evaluation of advanced techniques for
multi-party privacy-preserving record linkage on real-world health databases, in IPDLN
(2016)

135. S.M. Randall, A.M. Ferrante, J.H. Boyd, J.B. Semmens, Privacy-preserving record linkage
on large real world datasets, in Elsevier JBI (2014) volume 50, pp. 205–212

136. S.M. Randall, A.M. Ferrante, J.H. Boyd, A.P. Brown, J.B. Semmens, Limited privacy pro-
tection and poor sensitivity is it time to move on from the statistical linkage key-581? Health
Inf. Manag. J. 37, 60–62 (2016)

137. V. Rastogi, N. Dalvi, M. Garofalakis, Large-scale collective entity matching. in VLDB 4,
208–218 (2011)

138. C. Rong, W. Lu, X. Wang, X. Du, Y. Chen, A.K.H. Tung, Efficient and scalable processing
of string similarity join. IEEE TKDE 25(10), 2217–2230 (2013)

139. M. Roughan, Y. Zhang, Secure distributed data-mining and its application to large-scale
network measurements. ACM SIGCOMM Comput. Commun. Rev. 36(1), 7–14 (2006)

140. T. Ryan, D. Gibson, B. Holmes, A national minimum data set for home and community care,
in Australian Institute of Health and Welfare (1999)

141. M. Scannapieco, I. Figotin, E. Bertino, A. Elmagarmid, Privacy preserving schema and data
matching, in ACM SIGMOD (2007), pp. 653–664

142. D.A. Schneider, D.J. DeWitt, Tradeoffs in processing complex join queries via hashing in
multiprocessor database machines, in VLDB (1990), pp. 469–480

143. B. Schneier, Applied Cryptography: Protocols, Algorithms, and Source Code in C, 2nd edn.
(Wiley, New York, 1996)

144. R. Schnell, Privacy-preserving record linkage and privacy-preserving blocking for large files
with cryptographic keys using multibit trees, in JSM (2013), pp. 187–194

145. R. Schnell, An efficient privacy-preserving record linkage technique for administrative data
and censuses. Stat. J. IAOS 30(3), 263–270 (2014)

146. R. Schnell, T. Bachteler, S. Bender, A toolbox for record linkage. Aust. J. Stat. 33(1–2),
125–133 (2004)

894 D. Vatsalan et al.

147. R. Schnell, T. Bachteler, J. Reiher, Privacy-preserving record linkage using Bloom filters.
BMC Medi. Inf. Decision Mak. 9(1), 41 (2009)

148. R. Schnell, T. Bachteler, J. Reiher, A novel error-tolerant anonymous linking code, in German
Record Linkage Center, WP-GRLC-2011-02 (2011)

149. Z. Sehili, E. Rahm, Speeding up privacy preserving record linkage for metric space similarity
measures, in Datenbank-Spektrum (2016), pp. 1–10

150. Z. Sehili, L. Kolb, C. Borgs, R. Schnell, E. Rahm, Privacy preserving record linkage with PP
Join, in BTW Conference (2015)

151. D. Song, D. Wagner, A. Perrig, Practical techniques for searches on encrypted data, in IEEE
Symposium on Security and Privacy (2000), pp. 44–55

152. L. Sweeney,K-anonymity: amodel for protecting privacy. Int. J. Uncertaint. FuzzinessKnowl.
Based Syst. 10(5), 557–570 (2002)

153. K.-N. Tran, D. Vatsalan, P. Christen, GeCo: an online personal data generator and corruptor,
in ACM CIKM (2013), pp. 2473–2476

154. S. Trepetin, Privacy-preserving string comparisons in record linkage systems: a review. Inf.
Secur. J.: A Global Perspect. 17(5), 253–266 (2008)

155. E. Turgay, T. Pedersen, Y. Saygın, E. Savaş, A. Levi, Disclosure risks of distance preserving
data transformations, in Springer SSDBM (2008), pp. 79–94

156. J. Vaidya, Y. Zhu, C.W. Clifton, Privacy Preserving Data Mining, vol. 19. Advances in Infor-
mation Security (Springer, Berlin, 2006)

157. E. Van Eycken, K. Haustermans, F. Buntinx et al., Evaluation of the encryption procedure and
record linkage in the Belgian national cancer registry. Archiv. Public Health 58(6), 281–294
(2000)

158. D.Vatsalan, P. Christen, An iterative two-party protocol for scalable privacy-preserving record
linkage, in AusDM, CRPIT (2012), pp. 127–138

159. D. Vatsalan, P. Christen, Sorted nearest neighborhood clustering for efficient private blocking,
in Springer PAKDD, vol. 7819 (2013), pp. 341–352

160. D. Vatsalan, P. Christen, Scalable privacy-preserving record linkage for multiple databases,
in ACM CIKM (2014), pp. 1795–1798

161. D. Vatsalan, P. Christen, Privacy-preserving matching of similar patients. Elsevier JBI 59,
285–298 (2016)

162. D.Vatsalan, P.Christen,V.S.Verykios,An efficient two-party protocol for approximatematch-
ing in private record linkage, in AusDM (2011), pp. 125–136

163. D. Vatsalan, P. Christen, V.S. Verykios, Efficient two-party private blocking based on sorted
nearest neighborhood clustering, in ACM CIKM (2013), pp. 1949–1958

164. D. Vatsalan, P. Christen, V.S. Verykios, A taxonomy of privacy-preserving record linkage
techniques. Elsevier JIS 38(6), 946–969 (2013)

165. D. Vatsalan, P. Christen, C.M. O’Keefe, V.S. Verykios, An evaluation framework for privacy-
preserving record linkage. JPC 6(1), 3 (2014), pp. 35–75

166. R. Vernica, M.J. Carey, C. Li, Efficient parallel set-similarity joins usingMapReduce, in ACM
SIGMOD (2010), pp. 495–506

167. V.S. Verykios, A. Karakasidis, V.Mitrogiannis, Privacy preserving record linkage approaches.
IJDMMM 1(2), 206–221 (2009)

168. G. Wang, H. Chen, H. Atabakhsh, Automatically detecting deceptive criminal identities.
Commun. ACM 47(3), 70–76 (2004)

169. Q.Wang, D. Vatsalan, P. Christen, Efficient interactive training selection for large-scale entity
resolution, in PAKDD (2015), pp. 562–573

170. Z.Wen,C.Dong, Efficient protocols for private record linkage, inACM Symposium on Applied
Computing (2014), pp. 1688–1694

171. W.E. Winkler, Methods for evaluating and creating data quality. Elsevier JIS 29(7), 531–550
(2004)

172. C. Xiao, W. Wang, X. Lin, J.X. Yu, Efficient similarity joins for near duplicate detection, in
WWW (2008), pp. 131–140

Privacy-Preserving Record Linkage for Big Data: Current Approaches … 895

173. M.Yakout,M.Atallah,A. Elmagarmid, Efficient private record linkage, in IEEE ICDE (2009),
pp. 1283–1286

174. P. Zezula, G. Amato, V. Dohnal, M. Batko, Similarity Search: The Metric Space Approach,
vol. 32 (Springer, Berlin, 2006)

175. X. Zhang, C. Liu, S. Nepal, J. Chen, An efficient quasi-identifier index based approach for
privacy preservation over incremental data sets on cloud. J. Comput. Syst. Sci. 79(5), 542–555
(2013)

176. X. Zhang, C. Liu, S. Nepal, S. Pandey, J. Chen, A privacy leakage upper bound constraint-
based approach for cost-effective privacy preserving of intermediate data sets in cloud. IEEE
TPDS 24(6), 1192–1202 (2013)

	Foreword
	Preface
	Contents
	Part I Fundamentals of Big Data Processing
	Big Data Storage and Data Models
	1 Storage Models
	1.1 Block-Based Storage
	1.2 File-Based Storage
	1.3 Object-Based Storage
	1.4 Comparison of Storage Models

	2 Data Models
	2.1 NoSQL (Not only SQL)
	2.2 Relational-Based
	2.3 Summary of Data Models

	References

	Big Data Programming Models
	1 MapReduce
	1.1 Features
	1.2 Examples

	2 Functional Programming
	2.1 Features
	2.2 Example Frameworks

	3 SQL-Like
	3.1 Features
	3.2 Examples

	4 Actor Model
	4.1 Features
	4.2 Examples

	5 Statistical and Analytical
	5.1 Features
	5.2 Examples

	6 Dataflow-Based
	6.1 Features
	6.2 Examples

	7 Bulk Synchronous Parallel
	7.1 Features
	7.2 Examples

	8 High Level DSL
	8.1 Pig Latin
	8.2 Crunch/FlumeJava
	8.3 Cascading
	8.4 Dryad LINQ
	8.5 Trident
	8.6 Green Marl
	8.7 Asterix Query Language (AQL)
	8.8 IBM Jaql

	9 Discussion and Conclusion
	References

	Programming Platforms for Big Data Analysis
	1 Introduction
	2 Requirements of Big Data Programming Support
	3 Classification of Programming Platforms
	3.1 Data Source
	3.2 Processing Technique

	4 Major Existing Programming Platforms
	4.1 Data Parallel Programming Platforms
	4.2 Graph Parallel Programming Platforms
	4.3 Task Parallel Platforms
	4.4 Stream Processing Programming Platforms

	5 A Unifying Framework
	5.1 Comparison of Existing Programming Platforms
	5.2 Need for Unifying Framework
	5.3 MatrixMap Framework

	6 Conclusion and Future Directions
	References

	Big Data Analysis on Clouds
	1 Introduction
	2 Introducing Cloud Computing
	2.1 Basic Concepts
	2.2 Cloud Service Distribution and Deployment Models

	3 Cloud Solutions for Big Data
	3.1 Microsoft Azure
	3.2 Amazon Web Services
	3.3 OpenNebula
	3.4 OpenStack

	4 Systems for Big Data Analytics in the Cloud
	4.1 MapReduce
	4.2 Spark
	4.3 Mahout
	4.4 Hunk
	4.5 Sector/Sphere
	4.6 BigML
	4.7 Kognitio Analytical Platform
	4.8 Data Analysis Workflows
	4.9 NoSQL Models for Data Analytics
	4.10 Visual Analytics
	4.11 Big Data Funding Projects
	4.12 Historical Review
	4.13 Summary

	5 Research Trends
	6 Conclusions
	References

	Data Organization and Curation in Big Data
	1 Big Data Indexing Techniques
	1.1 Overview
	1.2 Record-Level Non-adaptive Indexing
	1.3 Record-Level Adaptive Indexing
	1.4 Split-Level Indexing
	1.5 Hadoop-RDBMS Hybrid Indexing

	2 Data Organization and Layout Techniques
	2.1 Overview
	2.2 Result Materialization and Caching Techniques
	2.3 Pre-processing and Colocation Techniques
	2.4 None Row-Oriented Storage Layouts

	3 Non-traditional Workloads in Big Data
	3.1 Overview
	3.2 Techniques for Recurring Workloads
	3.3 Techniques for Fast Online Analytics

	4 Curation and Metadata Management in Big Data
	4.1 Overview
	4.2 Execution-Centric Metadata Approach
	4.3 Provenance-Centric Metadata Approach
	4.4 Data-Centric Metadata Approach

	5 Conclusion
	References

	Big Data Query Engines
	1 Introduction
	1.1 MPP Query Engines
	1.2 Hadoop Query Engines
	1.3 Chapter Organization

	2 Massively Parallel Query Engines
	2.1 Teradata
	2.2 Greenplum
	2.3 Vertica

	3 Hadoop Query Engines
	3.1 MapReduce
	3.2 Hive
	3.3 Spark

	4 SQL on Hadoop
	4.1 HAWQ
	4.2 Impala
	4.3 Presto

	5 Query Optimization
	5.1 Research Problems
	5.2 Orca
	5.3 Catalyst
	5.4 V2Opt
	5.5 Impala Query Optimizer

	6 Query Execution
	6.1 Research Problems
	6.2 Hadoop-Based Execution Engines
	6.3 Parallel Databases Execution Engines
	6.4 Code Generation

	7 Summary
	References

	Large-Scale Data Stream Processing Systems
	1 Introduction
	1.1 Stream Processing and Its Precursors
	1.2 Large-Scale Data Stream Processing on Commodity Clusters
	1.3 Distinctive Features of Data Stream Processing Systems
	1.4 Chapter Overview

	2 Programming Models
	2.1 Programming with Streams
	2.2 Lower-Level Dataflow Programming
	2.3 Functional APIs
	2.4 Stream Windows

	3 System Support for Distributed Data Streaming
	3.1 An Analysis of Large-Scale Stream Processing Systems
	3.2 Execution Models
	3.3 Processing Guarantees Upon Failure
	3.4 Flow Control
	3.5 Execution Plan Optimisations

	4 Case Study: Stream Processing with Apache Flink
	4.1 The Apache Flink Stack
	4.2 The Apache Flink System Architecture
	4.3 Lightweight Asynchronous Snapshots

	5 Applications, Trends and Open Challenges
	5.1 Graph Stream Processing
	5.2 Online Learning
	5.3 Complex Event Processing

	6 Conclusions and Outlook
	References

	Part II Semantic Big Data Management
	Semantic Data Integration
	1 An Important Challenge
	1.1 Linked Data
	1.2 Ontologies
	1.3 Ontology and Data Alignment

	2 Current State-of-the-Art
	2.1 Interactive and Collaborative Approaches
	2.2 Visualizing the Data Integration Process
	2.3 Integrating Geospatial Data
	2.4 Integrating Biomedical Data

	3 The Path Forward
	3.1 Moving Beyond 1-to-1 Equivalence Mappings
	3.2 Advancing Alignment Evaluation
	3.3 Contextualizing Alignments

	References

	Linked Data Management
	1 Introduction
	2 Background Information
	3 Native Linked Data Stores
	3.1 Quadruple Systems
	3.2 Index Permuted Stores
	3.3 Graph-Based Systems

	4 Provenance for Linked Data
	4.1 Provenance Representations
	4.2 Provenance in Data Management Systems

	References

	Non-native RDF Storage Engines
	1 Introduction
	2 Storing Linked Data Using Relational Databases
	2.1 Statement Table
	2.2 Optimizing Data Storage
	2.3 Property Tables
	2.4 Query Execution

	3 No-SQL Stores
	4 Massively Parallel Processing for Linked Data
	4.1 Data Storage and Partitioning
	4.2 Query Execution

	References

	Exploratory Ad-Hoc Analytics for Big Data
	1 Exploratory Analytics for Big Data
	1.1 Requirements
	1.2 Architecture Overview

	2 A Top-K Entity Augmentation System
	2.1 Motivation and Challenges
	2.2 Requirements
	2.3 Top-k Consistent Entity Augmentation
	2.4 Related Work

	3 DrillBeyond -- Processing Open World SQL
	3.1 Motivation and Challenges
	3.2 Requirements
	3.3 The DrillBeyond System
	3.4 Processing Multi-result Queries
	3.5 Related Work

	4 Summary and Future Work
	4.1 Future Work

	References

	Pattern Matching Over Linked Data Streams
	1 Overview
	2 Linked Data Dissemination System
	2.1 System Overview
	2.2 TP-Automata for Single Triple Pattern Query Matching
	2.3 CTP-Automata for Conjunctive Triple Pattern Query Matching

	3 Experimental Evaluation
	3.1 Experimental Setup
	3.2 Evaluation of TP-Automata
	3.3 Evaluation of CTP-Automata
	3.4 Limitations

	4 Related Work
	5 Summary
	References

	Searching the Big Data: Practices and Experiences in Efficiently Querying Knowledge Bases
	1 Introduction
	2 Background
	2.1 Knowledge Base Preliminary

	3 The Framework of Cache-Based Knowledge Base Querying
	4 Similar Queries Suggestion
	4.1 Query Distance Calculation
	4.2 Feature Modeling

	5 Cache Replacement
	5.1 Modified Simple Exponential Smoothing
	5.2 Replacement Algorithms

	6 Implementation and Experimental Evaluation
	6.1 Setup
	6.2 Performance of Cache Replacement Algorithm
	6.3 Comparison of Feature Modeling Approaches
	6.4 Performance Comparison with the State-of-the-Art Work
	6.5 Experimental Conclusion

	7 Related Work
	7.1 Semantic Caching
	7.2 Query Suggestion

	8 Discussion and Conclusion
	References

	Part III Big Graph Analytics
	Management and Analysis of Big Graph Data: Current Systems and Open Challenges
	1 Introduction
	2 Graph Databases
	2.1 Recent Graph Database Systems
	2.2 Graph Data Models
	2.3 Query Language Support

	3 Graph Processing
	3.1 General Architecture
	3.2 Think Like a Vertex
	3.3 Think Like a Graph

	4 Graph Dataflow Systems
	4.1 Apache Flink
	4.2 Apache Flink Gelly
	4.3 Comparison to Other Graph Dataflow Frameworks

	5 Gradoop
	5.1 Architecture
	5.2 Extended Property Graph Model

	6 Comparison
	7 Current Research and Open Challenges
	7.1 Graph Data Allocation and Partitioning
	7.2 Benchmarking and Evaluation of Graph Data Systems
	7.3 Analysis of Dynamic Graphs
	7.4 Graph-Based Data Integration and Knowledge Graphs
	7.5 Interactive Graph Analytics

	8 Conclusions and Outlook
	References

	Similarity Search in Large-Scale Graph Databases
	1 Introduction
	2 Preliminaries
	3 The Pruning-Verification Framework
	4 State-of-the-Art Approaches
	4.1 A Tree-Based Approach: K-Adjacent Tree
	4.2 A Star-Based Approach: SEGOS
	4.3 A Path-Based Approach: GSimJoin
	4.4 A Partition-Based Approach: Pars

	5 Future Research Directions
	5.1 New GED Bounds and Search Algorithms
	5.2 Rich Semantics of Similarity Search
	5.3 Graph Query Formulation and Understanding

	6 Summary
	References

	Big-Graphs: Querying, Mining, and Beyond
	1 Introduction
	2 Graph Data Models
	2.1 RDF
	2.2 Property Graph

	3 Pattern Matching Techniques Over Big-Graphs
	3.1 SQL and NoSQL Approaches
	3.2 Keyword Search
	3.3 Graph Matching Query
	3.4 Graph Query by Example

	4 Mining Techniques Over Big-Graphs
	4.1 Frequent Subgraph Mining
	4.2 Mining Discriminative Subgraphs
	4.3 Mining Statistically Significant Subgraphs
	4.4 Mining Representative Subgraphs

	5 Open Problems
	5.1 Large-Scale Graph Processing Systems
	5.2 Graph Databases, Languages, and Query Interfaces
	5.3 Datasets and Benchmarks

	6 Conclusions
	7 About Authors
	References

	Link and Graph Mining in the Big Data Era
	1 Introduction
	2 Definitions
	3 Temporal Evolution
	4 Link Prediction
	5 Community Detection
	5.1 Modularity Maximization
	5.2 The Louvain Method for Community Detection

	6 Graphs in Big Data
	6.1 Graphs in the Big Data Era
	6.2 Knowledge Graphs
	6.3 Graph Sampling
	6.4 Graph Analytics Tools

	7 Weighted Networks
	8 Extending Graph Models: Multilayer Networks
	8.1 The Layered Point of View: Multilayer Networks
	8.2 Models, Methodologies and Other Tools
	8.3 Theoretical Models, Empirical Applications and Other Examples

	9 Open Challenges
	10 Conclusions
	References

	Granular Social Network: Model and Applications
	1 Introduction
	2 Preliminaries
	2.1 Social Network Analysis
	2.2 Fuzzy Sets
	2.3 Rough Sets
	2.4 Granular Computing

	3 Literature Review
	3.1 Modeling Social Networks
	3.2 Target Set Selection
	3.3 Community Detection

	4 Fuzzy Granular Social Networks (FGSN)
	4.1 The Model
	4.2 Network Measures of FGSN
	4.3 Uncertainties in FGSN
	4.4 Granular Degree Heuristic for Target Set Selection in FGSN
	4.5 Fuzzy-Rough Community (FRC) Detection
	4.6 Scalability of FGSN

	5 Discussions and Conclusions
	References

	Part IV Big Data Applications
	Big Data, IoT and Semantics
	1 Introduction
	2 Semantics for Big Data
	2.1 Semantic Representation of Things, People and Web
	2.2 Semantic Based Classification and Learning
	2.3 Linked Data and Open Data
	2.4 Reasoning over Big Data

	3 Big Data and Semantics in the Internet of Things
	3.1 Impact of IoT on Big Data
	3.2 Ongoing Research Efforts

	4 Social Mining
	4.1 Text Mining
	4.2 Sentiment Analysis
	4.3 Social and Political Trends

	5 Graph Mining
	5.1 Link Mining

	6 Big Stream Data Mining
	6.1 Data Sampling
	6.2 Data Filtering

	7 Geo-Referenced Data Mining
	8 Conclusion
	References

	SCADA Systems in the Cloud
	1 Introduction
	2 Related Work
	3 An Overview of SCADA
	3.1 Generalized SCADA Architecture
	3.2 SCADA Characteristics
	3.3 SCADA and Big Data

	4 Moving SCADA to the Cloud
	4.1 Benefits of Cloud-Based SCADA Systems
	4.2 SCADA Requirements Versus Cloud Solutions
	4.3 Overview of Cloud Migration
	4.4 Cloud Migration Technologies

	5 Conceptual SCADA Cloud Orchestration Framework
	5.1 Migration Recommendations
	5.2 SCADA as a Service
	5.3 Cloud Service Deployment Environment
	5.4 SCADA Service Design
	5.5 SCADA Cloud Orchestration Framework

	6 Results
	7 Conclusion
	References

	Quantitative Data Analysis in Finance
	1 Introduction
	1.1 History of Quantitative Finance
	1.2 Compendium of Terminology and Abbreviations

	2 The Three V's of Big Data in High Frequency Data
	2.1 Velocity
	2.2 Variety
	2.3 Volume
	2.4 Challenges for High Frequency Data

	3 Data Cleaning, Aggregating and Management
	3.1 Data Cleaning
	3.2 Data Aggregating
	3.3 Scalable Database and Distributed Processing

	4 Modeling High Frequency Data in Finance
	4.1 Volatility Curve
	4.2 Stochastic Volatility
	4.3 Multivariate Volatility
	4.4 Expected Return
	4.5 Duration
	4.6 Scalable Parallel Algorithms on Supercomputers

	5 Portfolio Selection and Evaluation
	5.1 Markowitz Portfolio Optimization with Transaction Costs
	5.2 On-Line Portfolio Selection

	6 The Future
	6.1 Advanced Statistics and Information Theory
	6.2 Combination of Machine Learning, Game Theory and Statistics
	6.3 Efficient Algorithms in Linear Algebra and Convex Optimization

	7 Conclusion
	References

	Emerging Cost Effective Big Data Architectures
	1 Introduction
	2 Emerging Solutions for Big Data
	2.1 Workload-Aware Solutions
	2.2 Scaling-Down Big Data Systems
	2.3 Approximate Computing

	3 Future Directions
	3.1 Hybrid Big Data Architectures
	3.2 Multi-tenancy in Cloud Infrastructures
	3.3 Virtualized Environments

	4 Conclusion
	References

	Bringing High Performance Computing to Big Data Algorithms
	1 Introduction
	1.1 High Performance Computing Meets Big Data
	1.2 Application Areas
	1.3 Tricks of the Trade

	2 GPU Acceleration of Alternating Least Squares
	2.1 Explicit Feedback
	2.2 Implicit Feedback
	2.3 CPU Implementation
	2.4 GPU Implementation
	2.5 Setup and Datasets
	2.6 Auto Tuning
	2.7 Performance Evaluation

	3 GPU Acceleration of Singular Value Decomposition
	3.1 Introduction
	3.2 Randomized Algorithms to Compute SVD
	3.3 Hybrid CPU/GPU Implementation
	3.4 Randomized Algorithms to Update SVD

	4 Conclusions
	References

	Cognitive Computing: Where Big Data Is Driving Us
	1 Cognitive Computing: An Alternative Approach for Clear Understanding
	2 Big Data Impulsing Cognitive System
	3 Traditional Systems versus Cognitive Systems?
	4 Data Mining in the Era of Cognitive Systems
	5 Design Methods for Cognitive Systems
	5.1 Quantitative and Qualitative Methods
	5.2 Data Gathering Methods
	5.3 Design Methods
	5.4 Evaluation Methods
	5.5 Data Analysis Methods
	5.6 Using Information Visualization to Understanding Users

	6 Cognitive Systems
	6.1 IBM Watson
	6.2 Other Cognitive Systems

	7 The Future of Cognitive Systems
	8 Final Remarks
	References

	Privacy-Preserving Record Linkage for Big Data: Current Approaches and Research Challenges
	1 Introduction
	2 Background
	2.1 Overview and Challenges of PPRL
	2.2 The PPRL Process and Techniques Used

	3 Privacy Aspects and Techniques for PPRL
	3.1 PPRL Scenarios
	3.2 Adversary Models
	3.3 Attacks
	3.4 Data Masking or Encoding
	3.5 Bloom Filters

	4 Scalability Techniques for PPRL
	4.1 Blocking Techniques
	4.2 Filtering Techniques
	4.3 Parallel PPRL

	5 Multi-party PPRL
	5.1 Multi-party Private Blocking Techniques
	5.2 Multi-party Private Comparison and Classification Techniques

	6 Open Challenges
	6.1 Improving Scalability
	6.2 Improving Linkage Quality
	6.3 Dynamic Data and Real-Time Matching
	6.4 Improving Security and Privacy
	6.5 Evaluation, Frameworks, and Benchmarks
	6.6 Discussion

	7 Conclusions
	References

