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Abstract Multi-objective optimization problems (MOPs) arise in many fields in
engineering. In this chapter we argue that adaptation of cell mapping techniques,
originally designed for the global analysis of dynamical systems, are well-suited for
the thorough analysis of low-dimensional MOPs. Algorithms of this kind deliver an
approximation of the set of global solutions, the Pareto set, as well as the set of locally
optimal and nearly optimal solutions in one run of the algorithm which may signifi-
cantly improve the underlying decision making process.We underline the statements
on some illustrative examples and present comparisons to other algorithms.

1 Introduction

In many applications the problem arises that several objectives have to be optimized
concurrently. For instance, two important objectives in many space mission design
problems are the time of flight and the cost for a mission to a certain destination [1].
One important characteristic of such a multi-objective optimization problem (MOP)
is that its solution set, the Pareto set, does typically not consist of a singleton but
forms a (k − 1)-dimensional object, where k is the number of objectives involved
in the MOP. The computation of Pareto sets thus represents in general a challenge.
Even more, in certain applications one may be interested in approximate solutions
that may allow the decision maker (DM) to find alternative or backup solutions to
a given problem. As for the above space mission design problem this could be a
trajectory that is slightly more costly and has a slightly longer time of flight than an
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optimal one but offers in turn a different realization of the problem (see [2] for such
examples where the launch date has been considered as influential for the related
decision making process). The set of these approximate solutions even forms an n-
dimensional set, where n is the number of decision variables involved in the model.

There exist so far many techniques for the numerical treatment of MOPs. Most
of these works focus on the detection of one or several optimal solutions, while
the consideration of approximate solutions is relatively scarce, probably due to the
dimension of the solution set. There exists, for instance, a variety of point-wise
iterative search procedures that are capable of generating a sequence of pointsmoving
either toward or along the Pareto set (e.g., [3–7] and references therein). These local
methods, however, are not universally applicable due to the fact that the solution
set is not a singleton as well as some possible characteristics of the model such
as multi-modality and disconnectedness of the domain and/or the set of interest.
A possible alternative is given by set oriented methods that are of global nature
but, in turn, applicable to lower dimensional problems. Among them, specialized
evolutionary strategies have caught the interest of many researchers in the recent
past (e.g., [8–10]) since algorithms of this kind are very robust, applicable to a broad
class of problems, and deliver a finite size approximation of the set of interest in one
single run. Another class of set oriented methods are subdivision techniques [11–
13] that start by considering an n-dimensional box that contains the domain of the
MOP. This box gets subdivided into a set of smaller boxes, and according to certain
conditions it is decidedwhich box could contain a part of the set of interest and is thus
suited for further investigation. The other, unpromising boxes, are discarded from
the collection. This process, subdivision and selection, is performed on the current
box collection until the desired granularity of the boxes is reached. This way, a tight
covering of the Pareto set is obtained.

In this chapter, we argue that cell mapping techniques are in particular advanta-
geous for the thorough investigation of low dimensional problems. Such problems
occur such problems occur, for instance, in optimal control [14–17]. Cell mapping
techniques were first introduced in [18] for global analysis of nonlinear dynamical
systems. They transform classical point-to-point dynamics into a cell-to-cell map-
ping by discretizing both phase space and the integration time. In particular the phase
space discretization bounds the method to a small number of variables that can be
considered (say, n < 10), but this global analysis offers in turn much more infor-
mation than other methods. In the context of multi-objective optimization this is in
particular the extended set of options that can be offered to the DM after analyzing
the model. There are first of all the Pareto set and the set of approximate solutions as
motivated above. In particular if there exist several possibilities to obtain the same
optimal or nearly optimal performance, other methods have problems to detect them
all since the notion of dominance is defined in objective space (and thus, typically
only one of these solutions is detected). Further, the entire set of local optima can be
identified that also serve as potential backup solutions [2] and that are interesting for
landscape analysis [19]. It is important to note that the relevant information about all
these sets of interest is available after one single run of the algorithm (together with
an ex post analysis of the obtained data).
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In this work we will investigate adaptations of the cell mapping techniques to the
context ofmulti-objective optimizationwherewewill concentrate on the computation
of optimal and nearly optimal solutions of a given MOP. A preliminary study of
approximate solutions in the sense of Loridan [20] by means of cell mapping can be
found in [21]. Further, applications of the method to the design of optimal feedback
control are presented in [15, 16].

The remainder of this chapter is organized as follows: in Sect. 2, we state the
notations and some background required for the understanding of the chapter. In
Sect. 3, we state the cell mapping techniques for MOPs. In Sect. 4, we will present
some numerical results. Finally, in Sect. 5, we conclude and will give some paths for
future work.

2 Notations and Background

In the following we consider continuous MOPs

min
x∈Q

F(x), (MOP)

where Q ⊂ R
n is the domain of the problem and F is defined as the vector of the

objective functions F : Q → R
k , F(x) = (f1(x), . . . , fk(x))T , and where each objec-

tive fi : R
n → R is (for simplicity) sufficiently smooth.

The optimality of a MOP is defined by the concept of dominance [22]: a vector
v ∈ R

k is less than w ∈ R
k (v <p w), if vi < wi for all i ∈ 1, . . . , k. The relation ≤p

is defined analogously. Then, a vector y ∈ Q is dominated by a vector x ∈ Q (in
short: x ≺ y) with respect to (MOP) if and only if fi(x) ≤ fi(y), i = 1, . . . , k, and
there exists an index j such that fj(x) < fj(y), else y is non-dominated by x. A point
x ∈ Q is called (Pareto) optimal or a Pareto point if and only if there is no y ∈ Q
which dominates x. The set of all Pareto optimal solutions PQ is called the Pareto set,
and its image F(PQ) the Pareto front. Both sets typically form a (k − 1)-dimensional
object.

To define the set of approximate solutions we need the following definition.

Definition 1 ([20, 23]) Let ε = (ε1, . . . , εk) ∈ R
k+ and x, y ∈ Q.

(a) x is said to ε-dominate y (x ≺ε y) with respect to (MOP) if and only if F(x) −
ε ≤p F(y) and F(x) − ε �= F(y).

(b) x is said to−ε-dominate y (x ≺−ε y) with respect to (MOP) if and only if F(x) +
ε ≤p F(y) and F(x) + ε �= F(y).

The notion of −ε-dominance can be used to define our set of interest.

Definition 2 ([23]) Denote by PQ,ε the set of points in Q ⊂ R
n that are not −ε-

dominated by any other point in Q, i.e.,

PQ,ε := {x ∈ Q|�y ∈ Q : y ≺−ε x} . (1)
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Fig. 1 Two different examples for sets PQ,ε . At the left, we show the case for k = 1 and in para-
meter space with PQ,ε = [a, b] ∪ [c, d]. Note that the image solutions f ([a, b]) are nearly optimal
(measured in objective space), but that the entire interval [a, b] is not ‘near’ to the optimal solution
which is located within [c, d]. At the right, we show an example for k = 2 in image space, F(PQ,ε)

is the approximate Pareto front (taken from [23])

The set PQ,ε contains all ε-efficient solutions, i.e., solutions which are optimal
up to a given (small) value of ε. See Fig. 1 for two examples.

In [23, 24] several archiving techniques were proposed. In this work, we focus
in ArchiveUpdatePQ,ε . The archiver guarantees convergence under certain assump-
tions on the MOP and the generation process (see for more details [23, 24]).
Algorithm 1 show the realization of the archiver.

Algorithm 1 A := ArchiveUpdatePQ,ε (P, A0, ε)

Require: population P, archive A0
Ensure: updated archive A
1: A := A0
2: for all p ∈ P do
3: if �a ∈ A : a ≺−ε p then
4: A := A ∪ {p}
5: end if
6: for all a ∈ A do
7: if p ≺−ε a then
8: A := A\{a}
9: end if
10: end for
11: end for

The cell mapping method was originally proposed by Hsu [18, 25] for global
analysis of nonlinear dynamical systems in the state space. The cellmappingmethods
have been extensively studied,which lead to, the simple cellmapping, the generalized
cell mapping [25], the interpolated cell mapping [26], the adjoining cell mapping [27,
28], the hybrid cell mapping [29], among others. The cell mapping methods have
been applied to optimal control problems of deterministic and stochastic dynamical
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systems [14, 17, 30, 31]. In [28], the cell mapping techniques where combined with
dynamical systems theory in order to find all solutions to a system of nonlinear
algebraic equations.

The cell mapping methods transform the point-to-point dynamics into a cell-to-
cell mapping by discretizing both phase space and the integration time. The simple
cell mapping (SCM) offers an effective approach to investigate global response prop-
erties of the system. The cell mapping with a finite number of cells in the compu-
tational domain will eventually lead to closed groups of cells of the period equal to
the number of cells in the group. The periodic cells represent approximate invariant
sets, which can be periodic motion and stable attractors of the system. The rest of the
cells form the domains of attraction of the invariant sets. For more discussions on
the cell mapping methods, their properties and computational algorithms, the reader
is referred to the book by Hsu [25].

3 Global Analysis of Dynamical Systems

In this section, we first define a dynamical system, and further on the solution of
a dynamical system. We also present the concept of the domain of attraction and
finally we look into the simple cell mapping method that was proposed to perform a
global analysis of a given dynamical system.

3.1 Dynamical Systems

Definition 3 (Dynamical System) A dynamical system [25] can be considered to be
a model describing the temporal evolution of a system and it is defined as follows:

ẋ = G(x),

where x is a n-dimensional vector and G : R
n → R

n is, in general, a nonlinear vector
function. The evolution of such a dynamical system can be described by a function
of the form:

xm+1 = G(x(m), μ), (2)

where x is a n-dimensional vector, m denotes the mapping step, μ is a parameter
vector, and G is a general nonlinear vector function. In this case ordinary differen-
tial equations can be used to describe the dynamical systems. These are defined as
follows:

ẋ = F(x, t, μ); x ∈ R
n, t ∈ R, μ ∈ R

l,

where x is a n-dimensional state vector, t is the time variable, μ is a l-dimensional
parameter vector, and F is a vector-valued function of x, t and μ.
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Definition 4 (Fixed point) When the evolution of a dynamical system is made, one
may find a point that satisfies the following:

x∗ = G(x∗, μ).

In this case, x∗ is called a fixed point of Eq. (2).

Definition 5 (Periodic group) A periodic solution of Eq. (2) of period l is a sequence
of l distinct points x∗(j), j = 1, 2, . . . , l such that

x∗(o + 1) = Go(x∗(1), μ), o = 1, 2, . . . , l − 1,

x∗(1) = Gl(x∗(1), μ).
(3)

We say that there exists a periodic solution of period l. Any of the points x∗(j), j =
1, 2, . . . , l, is called a periodic point of period l. One can see that a fixed point is a
periodic solution with l = 1.

Definition 6 (Domain of attraction) We say x∗(j) is an attractor if there exists a
neighborhood U of x∗(j) such that for every open set V ⊃ x∗(j) there is a N ∈ N

such that f j(U) ⊂ V for all j ≥ N . Hence, we can restrict ourselves to the closed
invariant set x∗(j), and in this case we obtain

x∗(j) =
⋂

j∈N

Gj(U).

Thus, we can say that all the points in U are attracted by x∗(j) (under iteration of
G), and U is called basin of attraction of x∗(j). If U = R

n, then x∗(j) is called the
global attractor.

Several kinds of attractors exists, however, only the ones formed by the set of
periodic solutions will be considered in this work.

3.2 Simple Cell Mapping

In this section, we present the simple cell mapping [25], which is useful to compute
global attractors and domains of attraction of a given dynamical system.

SCM does not consider the state space to be continuous but rather as a collection
of state cells, with each cell being taken as a state entity. Because of this, now we
need to introduce some basic concepts regarding the new model.

Definition 7 (Cell state space) A n dimensional cell space S [25] is a space whose
elements are n-tuples of integers, and each element is called a cell vector or simply
a cell, and is denoted by z.

The simplest way to obtain a cell structure over a given Euclidean state space is to
construct a cell structure consisting of rectangular parallelepipeds of uniform size.
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Definition 8 (Cell functions) Let S be the cell state space for a dynamical system
and let the discrete time evolution process of the system be such that each cell in
a region of interest S0 ⊂ S has a single image cell after one mapping step. Such an
evolution process is called simple cell mapping (SCM)

z(n + 1) = C(z(n), μ), z ∈ Z
N , μ ∈ R

l, (4)

where C : Z
N × R

l → Z
N , and μ is a l-dimensional parameter.

Definition 9 (Periodic group) A cell z∗ which satisfies z∗ = C(z∗) is said to be an
equilibriumcell of the system.LetCm denote the cellmappingC appliedm timeswith
C0 understood to be the identity mapping. A sequence of l distinct cells z∗(j), j ∈ l,
which satisfies

z∗(m + 1) = Cm(z∗(1)), m ∈ l − 1, z∗(1) = Cl(z∗(1)), (5)

is said to constitute a periodic group or P-Group of period l and each of its elements
z∗(j) a periodic cell of period l. One can see that an equilibrium cell is a l = 1 periodic
group.

Definition 10 (Domains of attraction) A cell z is said to be r steps away from a
periodic group if r is the minimum positive integer such that Cr(z) = z∗(j), where
z∗(j) is one of the cells of that periodic group.

The set of all cells, which are r steps or less removed from a periodic group is
called the r-step domain of attraction for that periodic group. The total domain of
attraction of a periodic group is its r-step domain of attraction with r → ∞.

The main idea of this method is based on the fact that the representation of the
numbers in a computer is finite. A number does not only represent the number
represented by its digits, but also an infinite neighborhood of numbers given by the
precision of the machine. This does not allow to assume variables to be continuous,
due to rounding errors and for this reason it is possible to consider the space as small
hypercubes whose size is given by the machine precision.

The cell mapping approach [25] proposes to increase this discretization by divid-
ing the state space into bigger hypercubes. The evolution of the dynamical system
is then reduced to a new function, which is not defined in R

n, but rather on the cell
space. In this case we restrict ourselves to functions that are strictly deterministically
defined. For this case, we have the so-called simple cell mapping method, which is
effective to obtain the attractors and basins of attraction of a dynamical system.

The SCM method uses some sets in order to capture the global properties of a
cell, which we describe in the following:

• Group motion number (Gr): the group number uniquely identifies a periodic
motion; it is assigned to every periodic cell of that periodic motion and also to
every cell in the domain of attraction. The group numbers, which are positive
integers, can be assigned sequentially.
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0.5 1 1.5 2 2.5

(a) N = 2

1 2 3 4

(b) N = 4

2 4 6 8 10 12 14

(c) N = 14

5 10 15 20 25

(d) N = 28

Fig. 2 Numerical result of the SCM on Eq. (6) with different grid size, a N = 2; b N = 4;
c N = 14; d N = 28. The white cells represents the optimal solutions. The cells with the same
color belong to the same domain of attraction (for those cells their mapping end in the same cell).
The arrows represent the cell mapping. Finally, the black curve is the graphic representation of the
problem

• Period (Pe): defines the period of each periodic motion.
• Number of steps to a P-group (St): used to indicate howmany steps it takes to map
this cell into a periodic cell.
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According to the previous discussion, the algorithm works as follows: until all
cells are processed, the value of the group motion indicates the state of the current
cell and it also points out the corresponding actions to the cell.

• A value of Gr(cell) = 0 means that the cell has not been processed. Hence, the
state of the cell changes to “under process” and then, we follow the dynamical
system to the next cell.

• A value of Gr(cell) = −1 means that the cell is under process, which means we
have found a periodic group and we can compute the global properties of the
current periodic motion.

• A value Gr(cell) > 0 means that the cell has already been processed. Hence we
found a previous periodic motion along with its global properties which can be
used to complete the information of the cells under process.

The cell mapping methods have been applied to optimal control problems of
deterministic and stochastic dynamic systems [30–32]. Other interesting applications
of the cell mapping methods include optimal space craft momentum unloading [33],
single and multiple manipulators of robots [34], optimum trajectory planning in
robotic systems by [35], and tracking control of the read-write head of computer
hard disks [36].

Now, we present an application of the SCM on a simple example. We consider
the following SOP:

min
x

f = 4x3 − 2x, (6)

where f : R → R and x ∈ R. For this problem, we have two optimal points at
√
2
2 and

−
√
2
2 . Figure2 shows the result for different values of N and Q = [−3, 3]. The figure

shows the mapping from one cell to another one, until it reaches a periodic group.
Further, it shows two different group motions and for N = 14 and N = 28, we can
also see where the domain of attraction of

√
2
2 ends and the domain of attraction of

−
√
2
2 begins.

4 Simple Cell Mapping Techniques for MOPs

The cell mapping methods are so far designed for the global analysis of general
nonlinear dynamical systems. In the following, we will present adaptations to the
SCM in order to handle multi-objective optimization problems.
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4.1 The Algorithm

First, we need an appropriate dynamical system to run SCM. For this, we propose
to utilize descent directions. A descent direction ν at a point x0 ∈ Q is a direction in
which all objectives improve, i.e., it holds

F(x0 + tν) <p F(x0) (7)

for all sufficiently small step sizes t ∈ R+. Such descent directions can be found e.g.,
in [37–40]. For the bi-objective problems presented in this chapter, we have used the
following one.

Theorem 1 ([39]) Let (MOP) be unconstrained and be defined by two differentiable
functions. If ∇fi(x0) �= 0, for i = 1, 2 and for x0 ∈ R

n, then

v(x0) := −
( ∇f1(x0)

||∇f1(x0)|| + ∇f2(x0)

||∇f2(x0)||
)

(8)

is a descent direction at x0 of (MOP).

Using such a descent direction, the following dynamical system

ẋ(t) = v(x(t)) (9)

can now be used since it defines a pressure toward the Pareto set/front of the MOP
at hand: v(x) = 0 for every (locally) optimal point, and for all other points improve-
ments can be found by integrating (9). Thus, the set of locally optimal Pareto points
is contained in the global attractor of (9).

It remains to discretize the time (9), i.e., to define a ‘suitable’ step size t for the
related discrete dynamical system

xi+1 = xi + tν(xi). (10)

This is in general not an easy task as we have two conflicting aims. On the one
hand, wewould like to choose a step size t that lowers all objective functions as much
as possible for a given direction ν. On the other hand, it is desired tomake this decision
as cheap as possible in terms of computing time and number of function evaluations.
One option is to use an inexact step size control as the one proposed in [38].

Here, we can take advantage of the particular setting of the multi-objective SCM.
Most importantly, we have the size h = (ubi − lbi)/Ni for i = 1, . . . , n of the cells
and know that the initial point is the center of a cell. Using this, we already have a
value for sufficient decrease. If there exists a tνi ≥ hi

2 , i = 1, . . . , n, then we ensure
that we leave the current cell, which is required for the SCM in case the cell does
not contain a part of the Pareto set. Now, to decide if the step size t is accepted, we
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Fig. 3 Illustration of the
setting of the step size
control problem for the SCM
method

can use a dominance test. We are left with the choice of the initial step size t0. In the
current context, it is promising to compute the distance to the nearest neighbor cell
given the descent direction ν from the current cell center. Thus, we suggest to take
(compare to Fig. 3):

t0 = max

(
hi

νi

)
+ ε, ∀i|νi �= 0. (11)

We used this approach in the present work, with good computational results.
Alternatively, one could use a more sophisticated method such as the one presented
in [28]. The authors of this work propose an adaptive integration schemewhich either
finds a neighboring cell or stays in the same cell.

In both cases, although a bigger value of t0 may lead to a bigger decrease in the
objective function, this value of t0 is enough to leave the current cell and we have
several advantages. We would lose less information since we would be moving to a
neighbor cell. Also with this step size control we would be in the frontier between
the current cell and its neighbor, thus if the step size t0 is not accepted there is no
need to use backtracking. Given that we would not be able to leave the current cell
and also, since all cells are visited in the SCM method the advantages that bigger
step sizes would have by going to an optimal solution with less function evaluations
would be lost.

Inequality constraints are handled in the following (straightforward) way: if the
center point xi of cell i is violating any constraint, it will be discarded (i.e., mapped
to the sink cell), else, the point will be mapped as described above. The inclusion of
more sophisticated constraint handling techniques including the adequate treatment
of equality constraints is the subject of ongoing study.
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Fig. 4 Iteration of the SCM. The white cells represent the optimal solutions found so far. The
arrows show the path from the starting cell to an optimal solution of the MOP. The darker cells
represent unexplored regions

Algorithm2 shows the pseudo code of the cellmapping technique for the treatment
of MOPs that contains the above discussion. Figure4 gives some insight into the
behavior of the SCM using the MOP CONV2 (see Table1) on a 10 × 10 grid. The
figure shows the result of the SCM after 1, 3, 10 and 50 iterations in cell space. First,
we look at the cell located in (1, 1), which has been taken as the starting cell. Next,
we can follow the mapping from this cell by following its arrow. These arrows are
formed as follows: We take the center point of the current cell, then we apply the
dynamical system (e.g., the descent direction method that we have chosen) on the
center point and finally, with the new solution found, we compute to which cell it



Global Multi-objective Optimization … 37

Table 1 MOPs considered in this work

WITTING

F(x) = (f1(x), f2(x)), where:

f1(x) = 1

2
(

√
1 + (x + y)2 +

√
1 + (x − y)2 + x − y) + λ · e−(x−y)2

f2(x) = 1

2
(

√
1 + (x + y)2 +

√
1 + (x − y)2 − x + y) + λ · e−(x−y)2

− 10 ≤ x1 ≤ 10

− 10 ≤ x2 ≤ 10

CONV2

F(x) = (f1(x), f2(x)), where:

f1(x) = (x1 − 1)4 + (x2 − 1)2

f2(x) = (x1 + 1)2 + (x2 + 1)2

− 3 ≤ x1 ≤ 3

− 3 ≤ x2 ≤ 3

CONV3

F(x) = (f1(x), f2(x)), where:

f1(x) = (x1 − 1)4 + (x2 − 1)2 + (x3 − 1)2

f2(x) = (x1 + 1)2 + (x2 + 1)4 + (x3 + 1)2

f3(x) = (x1 − 1)2 + (x2 + 1)4 + (x3 − 1)4

− 3 ≤ x1 ≤ 3

− 3 ≤ x2 ≤ 3

− 3 ≤ x3 ≤ 3

RUDOLPH

F(x) = (f1(x), f2(x)), where:

f1(x) = (x1 − t1(c + 2a) + a)2 + (x2 − t2b)2 + δt

f2(x) = (x1 − t1(c + 2a) − a)2 + (x2 − t2b)2 + δt

where

t1 = sgn(x1)min

(⌈ |x1| − a − c/2

2a + c

⌉
, 1

)
,

t2 = sgn(x2)min

(⌈ |x2| − b/2

b

⌉
, 1

)
,

δt =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for t1 = 0 and t2 = 0

0.01 for t1 = −1 and t2 = 0

0.02 for t1 = 1 and t2 = 0

0.03 for t1 = 0 and t2 = −1

0.04 for t1 = −1 and t2 = −1

0.05 for t1 = 1 and t2 = −1

0.06 for t1 = 0 and t2 = 1

0.07 for t1 = −1 and t2 = 1

0.08 for t1 = 1 and t2 = 1

a = 0.5

b = 5

c = 5

− 10 ≤ x1 ≤ 10

− 10 ≤ x2 ≤ 10

SSW

F(x) = (f1(x), f2(x)), where:

f1(x) =
n∑

j=1

xj,

f2(x) = 1 −
n∏

j=1

(1 − wj(xj)),

wj(z) =
{
0.01 · exp(−( z

20 )2.5) for j = 1, 2

0.01 · exp(− z
15 ) for j > 2

0 ≤ x1 ≤ 40

0 ≤ x2 ≤ 40

0 ≤ x3 ≤ 40

TANAKA

F(x) = (f1(x), f2(x)), where:

f1(x) = x1

f2(x) = x2

0 ≤ x1 ≤ π

0 ≤ x2 ≤ π

g1(x) = −x21 − x22 + 1

+ 0.1 cos(16atan(
x1
x2

))

g2(x) = (x1 − 1

2
)2

+ (x2 − 1

2
)2 − 1/2
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belongs. In our example, the path is formed by the cells (1, 1), (2, 1), (3, 2), (4, 3),
and (5, 4). Cell (5, 4) is an endpoint in this case, since there is not an arrow from
this cell to another cell, which means we have a periodic group of 1. All the cells
processed belong to the same domain of attraction and, therefore, they should have
the same group number. Since, this is the first group motion discovered, we assign
to it the group number 2 (the group number 1 is reserved for those periodic motions
that go to the sink cell). Once we have the global properties of those cells, we have
to choose a new starting cell. Since the cell (2, 1) has already been processed, we
skip it and continue with the cell (3, 1). The mapping of this cell also finishes in the
cell (5, 4). Thus, this cell together with the new path should have the same group
number as before (group number 2).

Then, we choose a new starting cell and continue until we finish processing all
the cells. As we process the cells, we gather more information of the problem. For
this example we have 8 periodic motions with the same number of optimal solutions.

After one run of the SCM the information of the sets of interest can be extracted.
In the following, we will do this for optimal and nearly optimal solutions.

4.2 Computing the Pareto Set

Since the Pareto set of a MOP is contained in the global attractor of the dynamical
system that is derived from a descent direction, all cells with periodic groups are at
first point interesting. That is, such cells can potentially contain a part of the Pareto
set. It is important to note that due to the properties of the dynamical system periodic
groups with size larger than 1 should not appear, however, due to the discretization
both in space and time exactly this happens (i.e., oscillations around Pareto optimal
solutions can be observed leading to such periodic groups). Hence, we also consider
those cells as candidates. The collection of those cells form the candidate set.

This collection can then be further investigated (e.g., via a more fine grain cell
mapping or via subdivision techniques), or an approximation of the Pareto set can be
directly determined via the center points of the boxes (e.g., via a non-dominance test).
Technically speaking, we introduce a set called cPs (see Algorithm 2). Candidate
optimal cells are thus those cells with St = 0 and Gr �= 1. St = 0 means they are
part of a periodic group and Gr �= 1 ensures we do not add cells that map to the sink
cell.
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Algorithm 2 Simple cell mapping for MOPs
Require: MOP F, Dynamical system ν, upper bound ub, lower bound lb, divisions per dimension

N , cell size h = (ubi − lbi)/Ni for i = 1, . . . , n, Total number of cells Nc = N1 × N2 × . . . Ni
for i = 1, . . . , n

Ensure: Set of cells z, image of cells C, group number Gr, period number Pe, step number St,
candidate pareto set cPs

1: current_group ← 1
2: cPs = {}
3: Gr(i) ← 0,∀i ∈ Nc
4: for all pcell ∈ Nc do
5: cell ← pcell
6: i ← 0
7: while newcell = true do
8: xi ← center point of cell
9: if Gr(cell) = 0 then
10: ν ← compute as in Eq. (9)
11: t ← compute as in Eq. (11)
12: pi+1 ← xi + νt
13: ncell ← cell where pi+1 is located
14: C(cell) ← ncell
15: cell ← ncell
16: i ← i + 1
17: end if
18: if Gr(cell) > 0 then
19: Gr(Cj(pcell)) ← Gr(cell), j ← 0, · · · , i
20: Pe(Cj(pcell)) ← Pe(cell), j ← 0, · · · , i
21: St(Cj(pcell)) ← St(cell) + i − j, j ← 0, · · · , i
22: cell ← C(cell)
23: newcell ← false
24: end if
25: if Gr(cell) = −1 then
26: current_group ← current_group + 1
27: Gr(Ck(pcell)) ← current_group, k ← 0, · · · , i
28: j ← ith value when period appears
29: Pe(Ck(pcell)) ← i − j, k ← 0, · · · , i
30: St(Ck(pcell)) ← j − k, k ← 0, · · · , j − 1
31: St(Ck(pcell)) ← 0, k ← j, · · · , i
32: cPs ← cPs ∪ cellk, k ← j, · · · , i
33: cell ← C(cell)
34: newcell ← false
35: end if
36: end while
37: end for
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4.3 Computing the Set of Approximate Solutions

Once the run of the SCM is performed, also the approximate solutions can be detected
by analyzing the given data. For instance, if an approximation of PQ,ε is desired, one
can use the archiving technique ArchiveUpdatePQ,ε presented in [23, 24]. In order
to prevent that all points have to be considered in the archive, one can proceed as
follows:

Once the group number of the current periodic motion is discovered, the idea is to
update the archive first with the periodic group of the current periodic motion and to
continue with the rest of the periodic motion. Once it finds a cell which is not in PQ,ε

it stops the procedure. This can be done since subsequent points are dominated by
the current candidate solution and thus also not a member of PQ,ε. In the worst case,
however, this algorithm visits all the cells and the archive has to be updated by all
candidate solutions. This is the case if the entire domain Q is equal to PQε

. Typically,
this is not the case and the number of center points considered by the archive is much
lower than the total number of cells.

4.4 Error Estimates

Since SCM evaluates the entire discretized search space in one run of the algorithm,
we are able to provide estimations on the maximal error that can occur in the approx-
imation of the set of interest. Since we are particularly interested in errors of the
Pareto front (i.e., errors in objective space) the following estimates are based on
Lipschitz continuity.

Assume in the following that the objective function F is Lipschitz continuous on
each cell, i.e.,

‖F(x) − F(y)‖ ≤ LB(c,r)‖x − y‖, ∀x, y ∈ B(c, r), (12)

where
B(c, r) := {y ∈ R

n : |ci − yi| ≤ ri, i = 1, . . . , n} (13)

is a cell (or generalized box) with center c and radius r, and LB(c,r) is the Lipschitz
constant of F within B(c, r). Since SCM evaluates cells at the center c and since the
maximal distance on the right hand side of (12) is given for vertices of the cell, e.g.,
y = c + r, we can estimate (12) at least for unconstrained problems by

‖F(c) − F(y)‖ ≤ LB(c,r)‖r‖, ∀y ∈ B(c, r). (14)

The above formula might already be used to measure errors in image space. In
the context of multi-objective optimization, however, a potential trouble is that some
objectives may be in completely different ranges (e.g., the model SSW that will be
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considered in the next section. See Fig. 4 for an approximation of the Pareto front).
We suggest hence to consider the error bounds for each objective, that is

‖Fi(c) − Fi(y)‖ ≤ L(i)
B(c,r)‖r‖, ∀y ∈ B(c, r), i = 1, . . . , k, (15)

where L(i)
B(c,r) is the Lipschitz constant for objective fi. If the boxes are small enough,

one may approximate this value by the absolute value of the gradient at the center
point leading to the estimate

E(B(c, r), fi) := |∇fi(c)|‖r‖, ∀y ∈ B(c, r), i = 1, . . . , k, (16)

which we use in this study. As errors for the entire approximation we thus define

Ei := max
E(c,r)∈Q

E(B(c, r), fi), i = 1, . . . , k. (17)

It remains to measure the approximation quality obtained via SCM on a particular
problem after the algorithm has been performed. For this, we think it makes sense
to measure the distance of the Pareto front to the image F(A) of the archive A
of candidate solutions (e.g., the nondominated solutions) obtained by SCM. The
Inverted Generational Distance (IGD, see [41]) is widely used as a performance
indicator in multi-objective optimization, and measures the (averaged) distance of
the Pareto front to F(A) as

IGDp(F(A), PF) =
⎛

⎝ 1

M

M∑

j=1

dist(Fj, F(A))p

⎞

⎠
1/p

, (18)

where PF = {F1, . . . , FM} is a discretization of the Pareto front, F(A) = {y1, . . . ,
yN }, dist(a, B) = minb∈B ‖b − a‖ the distance from point a to set B, and p ∈ N. To
obtain an error bound for the objective space of each objective function fi, one can
modify IGD as follows:

IGD(i)
p (F(A), PF) =

⎛

⎝ 1

M

M∑

j=1

dist(Fj,i, F(A)i)
p

⎞

⎠
1/p

, i = 1, . . . , k, (19)

where Fj,i denotes the i-th entry of Fj, and F(A)i = {y1,i, . . . , yN,i}. Note that a finite
value of p in (19) averages the distances from Fj to F(A). If this is not wanted, one
can choose p = ∞ leading to

IGD(i)
∞(F(A), PF) = max

i=1,...,M
dist(Fj,i, F(A)i), i = 1, . . . , k. (20)

In this study, we will consider p = 1.
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5 Numerical Results

In the following we present some results obtained by the cell mapping techniques
and make some comparisons to other techniques.

First we consider the capability of the SCM to compute approximations of the
global Pareto set. Figure5 shows some results obtained by SCM on four MOPs
(see Table1 for the description of the problems). CONV2 is a convex bi-objective
problem. The Pareto set is a curve connecting the points (−1,−1)T and (1, 1)T . SSW
is a bi-objective problemwhose Pareto set falls into four connected components. Due
to symmetries of the model two of these components (the two outer curves on the
boundary of the domain) map to the same region in the Pareto front. TANAKA is a
bi-objective inequality constrained problem whose Pareto front is disconnected and
has convex and concave parts. Finally, CONV3 is a convex tri-objective problem.
We have used a 1,000 × 1,000 grid to perform the cell mapping for the problems
with n = 2 and a 100 × 100 × 100 grid for CONV3. Figure4 shows the results. In
all cases SCM is able to obtain a fine grained approximation of both Pareto set and
front. Table2 shows the error estimate discussed in the previous section on sixMOPs
including the four ones considered in Fig. 5 on different grid sizes together with their
IGD values. The match of both values (for each objective value) is almost perfect for
WITTING while the IGD values for the other unconstrained problems are (much)
better than the Ei values since these describe the worst case scenario. An exception
is the TANAKA problem where the IGD values are worse. The reason is that this
problem is constrained, and in this case the estimation made in (14) does not have to
hold: it may happen that a cell contains a part of the Pareto set, but its center point is
not feasible and will thus be discarded by SCM. Thus, the IGD values can get larger
than the estimation made in (14) which is the case for TANAKA.

Tables3 and 4 show comparisons of the SCM with NSGA-II [42] and MOEA/D
[43], two state-of-the-art MOEAs. For the comparison we have used a budget of
60,000 function evaluations for all algorithms, and to measure the approximation
qualitywe have used the averagedHausdorff distanceΔ1 [44]which ismore common
for the comparison of different algorithms (in particular, since it gives one value
for each problem). As anticipated, SCM cannot outperform the MOEAs (which
can get similar approximation qualities even for much smaller budgets of function
evaluations). Nevertheless, SCM is competing in the approximation of the Pareto set.

Now, we present a comparison of the SCM with an enumeration algorithm that
generates all solutions with a certain precision and then we keep the nondominated
solutions. The comparisons were made on CONV2 and RUDOLPH. In order to do
this comparison, we use a refinement method on SCM. This can be done due to the
fact that SCM returns a set of boxes and thenwe can use this set and apply subdivision
techniques.
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Table 3 Δ1 values for the distances of the images of the candidate sets to PQ

MOP SCM NSGA-II MOEA/D

WITTING 0.1421 0.2925 3.9561

CONV2 0.1329 0.1297 0.1677

CONV3 0.2814 1.2607 1.7306

RUDOLPH 0.1414 0.0232 0.4970

SSW 2.6533 3.7666 32.8963

Table 4 Δ1 values for the distances of the images of the candidate sets to F(PQ)

MOP SCM NSGA-II MOEA/D

WITTING 0.1984 0.2779 5.5826

CONV2 0.8288 0.1578 2.5493

CONV3 5.5185 16.3426 27.1944

RUDOLPH 0.1649 0.0282 0.7863

SSW 2.4000 0.8969 54.0516

For CONV2 problem, we used a 20 × 20 grid, and 3 subdivision steps using a
2 × 2 grid of test points to evaluate each cell for SCM, which leads to 7,416 function
evaluations. In the case of the grid search, we used a 92 × 92 grid leading to 8,464
function evaluations. The results on terms of Δ1 for parameter space and objective
space are as follows: SCM, 0.1289 and 0.5666; grid search, 0.1529 and 1.3074
respectively. Since for Δ1 smaller numbers represent better approximations, we can
say that SCM outperforms the grid search in this example.

For RUDOLPH problem, we used a 20 × 20 grid, and 3 subdivision steps using
a 3 × 3 grid of test points to evaluate each cell in the case of the SCM, which leads
to 4,128 function evaluations. In the case of the grid search, we used a 65 × 65 grid
leading to 4,225 function evaluations. The results in terms ofΔ1 for parameter space
and objective space are as follows: SCM, 0.0414 and 0.0724; grid search, 5.9615
and 0.1246, respectively.

Figure6 shows the results of the SCM method with subdivision techniques and
Fig. 7 shows the results of the enumeration algorithm. In this case SCM shows a
better performance in both problems, which is underlined by the indicator values.
Also the SCM has advantages if more than ‘just’ the solution set is sought as the
following examples demonstrate.

In some applications, it is desired to have a technique capable of computing both
global and local Pareto solutions. This can be useful in cases where the global criteria
does no account for all decision makers expectations [50–52].
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Fig. 6 Pareto sets (left) and fronts (right) using SCM with subdivision. Above, we can see the
results of CONV2 and below the ones of RUDOLPH

One interesting example in this context is MOP RUDOLPH (see Table1). In its
original version proposed in [47] the Pareto set consists of nine different connected
components, each of them mapping to the same Pareto front. We have modified
this problem here slightly so that the Pareto set consists of one of these connected
components whereas the other eight componentsmap to a slightly higher value (more
precisely, the objective values are shifted by a multiple of 0.01). Since this change in
objective space is just slight, all nine components are hence potentially interesting for
the decision maker if he/she is willing to accept this deterioration. Figure8 shows the
result of the SCM on this problem on a 1,000 × 1,000 grid. Note that the algorithm
is capable of detecting all nine connected components, and that each component is
approximated with the same quality.
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Fig. 7 Pareto sets (left) and fronts (right) using grid search on the problems CONV2 (above) and
RUDOLPH (below)

Following this idea of solving multimodal problems, we now compare the SCM
method with a simple multi start algorithm that uses the same descent direction than
SCM. We used a 20 × 20 grid, a subdivision of 3 × 3 for each optimal cell and
with 3 levels of subdivision in the case of the SCM, which leads to 12,120 function
evaluations. For the multi start algorithm, we used 130 starting points leading to
12,785 function evaluations. Figure9 shows the results of the SCM and the multi
start algorithm on MOP RUDOLPH with a budget of 12,500 function evaluations.
The results show that SCM is able to compute evenly spread solutionswhile the result
of the multi start approach reveals some gaps in the fronts. The results in terms ofΔ1

for parameter space and objective space are as follows: SCM, 0.1775 and 0.3362;
multi start, 0.4112 and 0.5631, respectively.
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Fig. 8 Numerical result of the SCM for MOP RUDOLPH on a 1,000 × 1,000 grid

Next we address the problem to approximate the set of nearly optimal solutions.
Figure10 shows the result of the SCM on four MOPs resulting from a consideration
of a 1,000 × 1,000 grid. As mentioned above, the investigation of the entire set
of approximate solutions is scarce. So far, archiving techniques exist that aim for
the approximation of PQ,ε [24], but efficient algorithms for their computations are
still missing. We stress that so far many heuristics exist that utilize the concept of ε-
dominance (e.g., [53–57]), however, all of them use this concept to obtain a finite size
approximation of the Pareto front and not to obtain the set of approximate solutions.
That is these works use it as a mean to improve diversity and thus get better a better
approximation of the Pareto front.

In order to obtain a comparison, we have coupledNSGA-II andMOEA/Dwith the
archiver ArchiveUpdatePQ,ε [24]. The coupling can thus be viewed as an algorithm
for the computation of PQ,ε, but since bothMOEAs are elitist algorithms their search
naturally focuses on PQ and not on the nearly optimal solutions. Further improve-
ments of the evolutionary strategies can thus be obtained via further modifications of
the selection operators which are, however, neither straightforward nor in the scope
of this chapter. Figure11 shows numerical results obtained by the NSGA-II variant
on the same MOPs, and Tables5 and 6 show averaged Δ1 values of the approxima-
tion qualities in parameter and objective space, respectively. For the latter we have
chosen a budget of 10,000 function calls for each algorithm. As it can be seen, SCM
offers the best performance in particular for the approximation of the set of interest
in decision space (which is of great interest for the decision maker as motivated in
Sect. 1).
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Fig. 9 Comparison of the SCM method (above) and multi start (below) on RUDOLPH

We would like to stress that PQ,ε is one way to define approximate solutions, but
there exist other ways depending on the given situation, and that the data obtained
by SCM is sufficient to comply with all of them. Figure12 shows the approximate
solutions obtained by SCM for different sets of approximate solutions. Next to PQ,ε

we have selected the notion of Tanaka [58] and Bonnel [59].
As a hypothetical decision making problem we reconsider MOP RUDOLPH.

Assume for this purpose that the DM is interested in the performance
Z = [0.17, 0.37]T (measured in objective space) and further that he/she is will-
ing to accept a deterioration of ε = [0.1, 0.1]. Then, for instance the representatives
of the cells whose images are within the target regions can be presented to the DM
leading here to 23 candidate solutions (i.e., the ‘optimal’ one plus another 22 nearly
optimal ones) that are shown in Fig. 13. The solutions are well-spread and come in
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Table 5 Δ1 values for the distances of the candidate solution set to PQ,ε , the best solutions in
boldface

MOP MOEA/D NSGA-II SCM

CONV2 0.5141 0.4628 0.0849

RUDOLPH 7.2438 8.0552 0.2102

SSW 10.8365 10.9384 0.8660

TANAKA 0.1462 0.1371 0.0248

Table 6 Δ1 values for the distances of the images of the candidate sets toF(PQ,ε), the best solutions
in boldface

MOP MOEA/D NSGA-II SCM

CONV2 7.8902 8.0027 2.4250

RUDOLPH 0.5090 0.7390 0.2186

SSW 5.8152 2.6852 1.5000

TANAKA 0.1462 0.1371 0.0248

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

(a) PQ, and F(PQ, )

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

(b) Tanaka

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

(c) Bonnel

Fig. 12 Different sets of approximate solutions

Fig. 13 Hypothetical
decision making problem.
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this case from all nine components of PQ,ε. Since these components are located in
different regions of the parameter space, the DM is hence given a large variety for
the realization of his/her project.

6 Conclusions and Future Work

In this chapter, we have investigated cell mapping techniques for the numerical
treatment of multi-objective optimization problems. Cell mapping techniques have
been designed for the global analysis of dynamical systems and replace the common
point-to-point by a cell-to-cell mapping via a discretization of both space and time.
We have adapted the cell mapping techniques to the given context via considering
dynamical systems derived from descent methods and have argued that the resulting
algorithm is in particular beneficial for the thorough investigation of small problems.
That is, the newalgorithm is capable of detecting the global Pareto set in one run of the
algorithm which is of course important for the related decision making process. For
the latter, however, also other points are of potential interest such as locally optimal
solutions and approximate solutions which can serve as backup solutions for the
DM in case he/she is willing to accept a certain deterioration measured in objective
space. The cell mapping techniques are capable of delivering all the sets after the
same run of the algorithm in the same approximation quality as the computed Pareto
set. While satisfactory algorithms for the computation of the Pareto set exist, such as
specialized evolutionary algorithms, this does not hold for the local and approximate
solutions. The cell mapping techniques presented in this work offer hence a surplus
in the design of small dimensional problems by providing a thorough analysis of the
problem at hand.

Though the results presented in thiswork are very promising, there are somepoints
that have to be addressed in order to make the algorithm applicable to a broader class
of problems. First of all, the main drawback of the cell mapping techniques is that
they are restricted to small dimensional problems since the number of cells grows
exponentially with the number of dimensions. Note, however, that the algorithm is
highly parallelizable since the core of the algorithm is themapping of each cell which
can be realized with small effort. We expect thus that the use of massive parallelism
realized e.g., via GPUs will lead to an applicability to higher dimensional problems.
Further, the constraint handling techniques may be improved so that also equality
constrained problems can be treated adequately. Another interesting path of future
research would be to use SCM to detect a possible bias in the descent method toward
the set of interest or, if possible, to design a bias free method. This could be done by
considering the volumes of the basins of attractions similar as done in [60] for general
dynamical systems. Bias free methods are highly wanted for memetic strategies
where the aim is to get an approximation of the entire solution set. Finally, it is
expected that the change from simple cell mapping techniques as used in this chapter
to generalized cell mapping will offer more information to thoroughly analyze the
given model.
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