
Making Local Algorithms Wait-Free:
The Case of Ring Coloring

Armando Castañeda3, Carole Delporte1, Hugues Fauconnier1,
Sergio Rajsbaum3, and Michel Raynal2(B)

1 IRIF, Université Paris Diderot, Paris, France
2 IUF & IRISA (Université de Rennes), Rennes, France

raynal@irisa.fr
3 Instituto de Matemáticas, UNAM, 04510 Mexico D.F., Mexico

Abstract. When considering distributed computing, reliable message-
passing synchronous systems on the one side, and asynchronous failure-
prone shared-memory systems on tyhe other side, remain two quite
independently studied ends of the reliability/asynchrony spectrum. The
concept of locality of a computation is central to the first one, while the
concept of wait-freedom is central to the second one. The paper proposes
a new DECOUPLED model in an attempt to reconcile these two worlds.
It consists of a synchronous and reliable communication graph of n nodes,
and on top a set of asynchronous crash-prone processes, each attached
to a communication node.

To illustrate the DECOUPLED model, the paper presents an asyn-
chronous 3-coloring algorithm for the processes of a ring. From the
processes point of view, the algorithm is wait-free. From a locality point
of view, each process uses information only from processes at distance
O(log∗ n) from it. This local wait-free algorithm is based on an extension
of the classical Cole and Vishkin vertex coloring algorithm in which the
processes are not required to start simultaneously.

1 Introduction

Locality in synchronous distributed computing. The standard synchronous mes-
sage passing model (e.g. see [19,20]) consists of a graph, whose vertices represent
computational processes and whose edges represent bidirectional communication
links. In each synchronous round, a process sends messages to its neighbors, then
receives messages from them, and finally performs arbitrary computations. Fail-
ures are not considered: each message is received in the same round in which it
was sent, and processes do not fail. The time complexity of a distributed algo-
rithm in this model is the maximum number of rounds any process requires to
terminate.

In sequential computing only the most trivial tasks can be solved in constant
time. In contrast, there are many synchronous distributed algorithms that run
in a number of rounds d which is constant (or nearly constant), independently
of the number of vertices of the graph [23]. In such an algorithm, a process is
c© Springer International Publishing AG 2016
B. Bonakdarpour and F. Petit (Eds.): SSS 2016, LNCS 10083, pp. 109–125, 2016.
DOI: 10.1007/978-3-319-49259-9 9

110 A. Castañeda et al.

able to collect information from others at most d links away, and hence we can
think of the algorithm as a function that maps the d-neighborhood of a node to
a local output, for each node. In synchronous distributed computing the focus is
on locality, or to what extent a global property about the graph can be obtained
from locally available data [16].

The study of the LOCAL synchronous model was initiated at the very early
days of distributed computing [19], with problems such as coloring the vertices
of a ring with 3 colors. This is a problem that depends globally on the ring, yet
it can be solved locally. Cole and Vishkin [7] designed an algorithm that finds a
3-coloring of the vertices of a ring in O(log∗ n) rounds. Soon after, Linial proved
that Ω(log∗ n) rounds are needed for 3-coloring a ring. For general graphs, only
recently it was shown that (Δ+1)-coloring can be done in time O(Δ)+ 1

2 log∗ n,
where Δ is the largest degree in the graph [6]. Developments on what can or
cannot be locally computed can be found in many papers (e.g., [4,15,16,18]
to cite a few; more references can be found in the survey [23]). This part of
distributed computing is mainly complexity-oriented [11,19], as every problem
can be solved in d rounds, where d equal to the diameter of the graph.

Fault-tolerance in asynchronous distributed computing. At the same time that
the LOCAL model began to be studied, ignoring asynchrony and failures, an
orthogonal branch of distributed computing was beginning to focus on fault-
tolerance, and disregarding the communication network topology [9,13]. In an
asynchronous crash-prone distributed computing model [21,22], (i) there are
communication links between every pair of processes, (ii) there are no bounds
on message transfer delays and each process runs at its own arbitrary speed,
which can vary along with time, and (iii) processes can fail by crashing. In this
area, consensus is a fundamental problem, because, roughly speaking, it allows
processes to agree on a function of their inputs, which can then be used by each
process to individually perform a consistent computation. However, it was proved
early on that there is no deterministic distributed asynchronous message-passing
consensus algorithm even if only one process may crash [9]. Hence, computability
questions are central in this part of distributed computing. Given assumptions
about how many processes may fail, how severe the failures can be, and other
assumptions about communication, one tries to identify the distributed problems
that are solvable in a specific model.

Reliable message-passing synchronous systems and asynchronous failure-
prone systems remain two quite independently studied poles of distributed com-
puting.

Aim and content of the paper. In a distributed system failures and asynchrony
are rarely coming from the hardware, but much more often from the software.
Hence, it is natural to consider a model composed of two distinct layers, with
distinct reliability and synchrony features, namely:

– A synchronous and reliable communication graph G with n nodes, and
– n asynchronous crash-prone processes, each one attached to a distinct node.

Making Local Algorithms Wait-Free: The Case of Ring Coloring 111

At each vertex of G there are two components: a failure-free synchronous node
in charge of communicating with the nodes of its neighbors, and a failure-prone
asynchronous process in charge of performing the actual computation. Notice
that, in contrast to the LOCAL model, in the DECOUPLED model after d
rounds of communication, a process can collect the local inputs of only a sub-
graph of its d-neighborhood, since processes can start at distinct times and run
at different speeds. Thus, the new model is in principle more challenging than
the LOCAL model.

To illustrate the DECOUPLED model approach, the paper considers a fun-
damental problem of failure-free synchronous distributed computing. It presents
a 3-coloring algorithm for a ring, denoted WLC (for Wait-free Local Coloring),
suited to the DECOUPLED model. This algorithm is based on the time-optimal
Cole and Vishkin’s vertex coloring algorithm, which is denoted CV86 in the
following [7]1. The CV86 algorithm runs in log∗ n + 3 rounds2 while the new
algorithm runs in log∗ n + 6 rounds. From the processes point of view, the algo-
rithm is fully asynchronous, wait-free, i.e., a process never waits for an event in
another process. Yet the algorithm is local, in the sense that each process uses
information only from processes at distance O(log∗ n) from it. Moreover, this
amount of information is optimal due to Linial’s lower bound [16] and because
in the absence of failures and asynchrony, the DECOUPLED model boils down
to the LOCAL model.

The WLC algorithm for the DECOUPLED model is built in two stages.
First an extension of CV86 is presented that may be interesting in itself. This
extension, denoted AST-CV, is an implementation of CV86 in a synchronous
system where reliable processes need not start at the very same round. The
main idea of the first stage is to run CV86 within each segment of the ring that
happens to wake up at precisely the same time. Then, adjacent endpoints of such
segments fix their colors by giving priority to the segment that began earlier.
Somewhat surprisingly this approach works even when all segments happen to
consist of a single process. In the second stage it is shown how to derive the wait-
free algorithm WLC from AST-CV. When a process starts (asynchronously with
respect to other processes), it obtains information on the “current state” of the
processes at distance at most O(log∗ n) from it; then, using the information
obtained, the process executes alone a purely local simulation of AST-CV, at
the end of which it obtains its final color.

The new algorithm shows how it is possible to extend the scope of a synchro-
nous failure-free algorithm to run on asynchronous and crash-prone processes,
without losing its fundamental locality properties, and at the cost of only a small
constant number of rounds. Up to the best of our knowledge this is the first time
the design of fault-tolerant asynchronous algorithms on top of a synchronous

1 CV86 was designed for trees in the PRAM model. It can be easily adapted to failure-
free message-passing synchronous systems, for a ring, or a chain of processes.

2 Assuming n ≥ 2, log∗ n is the number of times the function “log2” needs to be applied
in the invocation log2(log2(log2 ...(log2 n)....)) to obtain value 1. Let us remember
that log∗(approx. number of atoms in the universe) = 5.

112 A. Castañeda et al.

communication network is considered from the locality perspective. However
this is certainly not the first work that relates synchronous and asynchronous
systems, a few examples follow. From very early on the performance of asynchro-
nous processes with access to a global clock has been considered [1]. The per-
formance of wait-free algorithms running on top of partially synchronous, fully-
connected systems has been of interest for some time, e.g. [10,14]. The opposite
problem, of running a synchronous algorithm in an asynchronous (failure-free)
network was introduced in [2], and there are extensions even to the case where
links are assumed to crash and recover dynamically [3]. In globally asynchronous
locally-synchronous (GALS) design for microprocessor networks, the system is
partitioned into synchronous blocks of logic which communicate with each other
asynchronously [17]. An example of a reliable network infrastructure is provided
by the highly popular Synchronous Optical Networking (SONET), which pro-
vides synchronous transport signals for fiber-optic based transmissions on top of
which asynchronous algorithms may be deployed.

Roadmap. The remaining of the paper is organized as follows. Section 2 presents
the first contribution, namely the DECOUPLED model. Section 3 presents first
the distributed graph coloring problem and then a version of CV86 tailored
for a ring. Section 4 presents the extension of CV86 which does not require
simultaneous starting times, and Sect. 5 derives the algorithm WLC. Finally,
Sect. 6 concludes the paper. Due to page limitations, the missing proofs can be
found in [8].

2 The Two-Component-Based Model

Here the DECOUPLED model is presented, where asynchronous crash-prone
processes running a wait-free algorithm are mounted on top of a reliable, syn-
chronous network.

Communication component. The communication component is modelled by
a connected graph G of n vertices. Its vertices represent nodes, nd1, ...,
ndn. Each node ndi is a communication device connected with two types
of entities. It is connected with its neighbor nodes in G, and to its local
process pi, in charge of running the wait-free algorithm. A node is con-
nected to each of these entities through an input port and an output port.
Moreover, a node ndi is a device
in charge only of transmitting mes-
sages (the actual computation of
the wait-free algorithm is per-
formed by the process pi).

Each edge of G represents a
reliable communication link, which
does not corrupt, lose, create,
nor duplicate messages. Similarly,
nodes do not fail in any way. The

Making Local Algorithms Wait-Free: The Case of Ring Coloring 113

communication component is synchronous. All its entities and message exchanges
proceed in a lock-step manner. More precisely, there is a global clock which gov-
erns the progress of the communication component: at every clock tick3, each
node ndi reads its input ports (from its neighbor nodes, and from its process
pi), composes a message from what it has read, and sends this message on all its
output ports (to its neighbor nodes, and to pi). Every message is received in the
same clock tick as the one in which it was sent. Recall that the communication
component is always active: at every clock tick, each node ndi sends and receives
messages, independently of the behaviour of its associated process pi.

Computing component. Each communication node ndi has an associated sequen-
tial process pi. A process pi can communicate only with its node ndi. A process
is asynchronous, which means that it proceeds at its own speed, which can vary
along with time, and is independent of the sped of other processes. Moreover,
processes may crash, and when a process crashes it never recovers. As processes
are asynchronous, they can wake up at arbitrary times to participate in an
algorithm. Therefore, when a process wakes up, it may find messages from its
input port waiting to be read, which were sent by its neighbors that started the
algorithm before it, as described below.

Interaction between the components. The input and output ports connecting
a process pi with its node ndi have two buffers (in our algorithms they are
bounded). The one denoted outi is from pi to ndi, while the one denoted ini

is from ndi to pi, initially empty. When a process starts, it writes in outi some
value, which may depend on the problem being solved. At every communication
step, node ndi first receives a message from each of its neighbors, and reads the
local buffer outi. Then, it packs the content of these messages and the current
value of outi into a single message, sends it to its neighbors, and writes it in
ini. Notice that a process pi, D time units after it started, can have information
from processes in the graph at distance up to D from it.

The global ticks of the communication component govern when each commu-
nication step happens. In addition, each tick is associated to a global time. Given
a process pi, tsi is the global time at which pi wakes up and starts executing.
Thanks to the underlying messages exchanged by the communication nodes at
every clock tick (communication step), a process pi which started participating
in the algorithm can know (a) which of its neighbors (until some predefined
distance D) started the algorithm, and (b) at which time they started4. More
precisely, considering a process pi that starts at time sti, after D time units, pi

can have information from processes in the graph at distance up to D from it.

3 We use the “time” and “clock tick” terminology for the communication component,
to prevent confusion with the “round” terminology used in the description of the
CV86 and AST-CV algorithms.

4 The assumption that processes know the global time is made only to simplify the
description of our algorithms. All that a process pi needs to know is the relative order
of wake up with respect to its neighbors, which can be deduced from the content of
the buffers at wake up time sti.

114 A. Castañeda et al.

Initial knowledge. Each of the n pairs made up of a communication node (ndi)
and a process (pi) has a unique identity idi. It is assumed that each identity can
be encoded in log n bits. Initially, a process knows its identity, the value of n, and
possibly the graph G. Moreover, while a process knows that no two processes
have the same identity, it does not know the identities of the other processes.

Power of the model. The DECOUPLED model behaves exactly like the LOCAL
model, in the absence of failures and presence of synchrony: all processes run in
lock-step manner until decisions are made. Thus, if there is an algorithm solving
a given problem in DECOUPLED, then one can easily obtain an algorithm
solving the corresponding problem in LOCAL. The rest of the paper presents
WLC, a 3-vertex coloring algorithm for a ring, showing that, in principle, the
other direction is possible as well.

3 Distributed Graph Coloring and a Look at Cole and
Vishkin’s Algorithm

In the 3-coloring problem, each vertex of a graph is assigned a color from a set
of three possible colors, in such a way that no two adjacent vertices have the
same color. In sequential computing, deciding if a graph can be 3-colored is a
famous NP-complete problem [12].

3.1 Graph Coloring

In the context of synchronous systems, there is an Ω(log∗ n) rounds lower bound
on the number communication rounds needed to 3-color the nodes of a ring [16],
and the CV86 algorithm solves the problem in log∗ n+3 rounds [7]. A monograph
entirely devoted to distributed graph coloring can be found in [5].

The structure of Cole and Vishkin’s algorithm. This algorithm assumes that the
underlying bi-directional communication graph has a logical orientation, such
that each process has at most a single predecessor. It assumes that the processes
have distinct identities, each consisting of O(log n) bits. The algorithm can be
decomposed in two phases.

– Phase 1. From n colors to six colors. An original and clever bit-level technique
is first used (see below), which allows the processes to be properly colored
with six colors. Starting with colors encoded with log n bits (node identities),
a sequence of synchronous communication steps is executed, such that in each
step a process computes a new proper color whose size in bits is exponentially
smaller than the previous one. This is repeated until attaining at most six
colors, which requires log∗ n communication rounds.

– Phase 2. From six colors to three colors. The algorithm uses then a simple
reduction technique to reduce the number of colors from six to three. This
requires three additional rounds (each one eliminating a color).

Making Local Algorithms Wait-Free: The Case of Ring Coloring 115

Features of CV86. Those are the following: it is local, it’s time complexity is
log∗ n + 3, time optimal [16], and deterministic. Combining the locality and
determinism properties, it follows that the final color of a process depends only
on the log∗ n + 3 identities of the processes on its predecessor path.

3.2 A Version of Cole and Vishkin’s Algorithm Suited to a Ring

A version of CV86 suited to a ring in Fig. 1. The two neighbors of a process
pi are denoted predi and nexti. The local variable colori contains initially the
identity of pi, using log n bits. Let m = �log n� − 1. The initial value of colori

is a sequence of (m + 1) bits bm, bm−1, · · · , b1, b0, and no two processes have the
same initial sequence of bits. We say that “by is at position y”, i.e., the position
of a bit in a color is defined by starting from position 0 and going from right to
left.

Underlying principle. The aim is, from round to round, to compress as much as
possible the size of the colors of the processes, while keeping invariant the prop-
erty that no two neighbors have the same color. Basically, a process compares
its current color with the one of its predecessor, to define its new color (using
the logical orientation of the ring).

The two issues that have then to be solved are (i) how to compare current
colors and how to compute a new shorter color (while maintaining adjacent
processes with different colors), and (ii) how many iterations have to be executed
to get to at most three colors.

(01) colori ← bit string representing pi’s identity;
(02) when r = 1, 2, ..., log∗ n do % Part 1: reduction from n colors to 6 colors %
(03) begin synchronous round
(04) send color(colori) to nexti;
(05) receive color(color p) from predi;
(06) x = position (starting at 0 from the right) where colori and color p differ;
(07) colori ← bit string encoding the binary value of x followed at its right

by bx (first bit of colori where colori and color p differ)
(08) end synchronous round;

% Here colori ∈ {0, 1, · · · , 5}; Part 2: reduction from 6 to 3 colors %
(09) when r = log∗ n + 1, log∗ n + 2, log∗ n + 3 do
(10) begin synchronous round
(11) send color(colori) to predi and nexti;
(12) receive color(color p) from predi and color(color n) from nexti;
(13) let k be r − log∗ n + 2; % k ∈ {3, 4, 5} %
(14) if (colori = k) then colori ← min({0, 1, 2} \ {color p, color n}) end if
(15) end synchronous round;

% Here colori ∈ {0, 1, 2} %
(16) return(colori).

Fig. 1. Cole and Vishkin’s synchronous algorithm for a ring (code for pi)

116 A. Castañeda et al.

Description of the algorithm. Let r denote the current round number. Initialized
to 1, it takes then the successive values 2, 3, etc. It is a global variable provided
by the synchronous system, which can be read by all processes. Each process pi

first defines its current color as the bit string representing its identity (line 01).
As already indicated, it is assumed that each identity can be coded in log n bits.
Then pi executes synchronous rounds until it obtains its final color (line 16).
The total number of rounds that are executed is log∗ n + 3, which decompose
into two parts.

The first log∗ n rounds (lines 03–08) allow each process pi to compute a color
in the set {0, 1, · · · , 5}. Considering a round r, let k be an upper bound on the
number of different colors at the beginning of round k, and m be the smallest
integer such that k ≤ 2m. Hence, at round r, the color of a process is coded
on m bits. After a send/receive communication step (lines 04–05), a process pi

compares its color with the one it has received from its predecessor (color p),
and computes (starting at 0 from the right), the rightmost bit position x where
they differ (line 06). Then (line 07), pi defines its new color as the bit sequence
whose prefix is the binary encoding of x in log m bits and suffix is the first bit
of its current color where both colors differ, namely bx.

Consider two neighbor processes during a round r. If they have the same value
for x, due to the bit suffix they use to obtain their new color, they necessarily
obtain different new colors. If they have different values for x, they trivially have
different new colors. It is easy to see that the round r reduces the number of
colors from k to at most 2�log k� ≤ 2m. It is shown in [7] that, after at most
log∗ n rounds, the binary encoding of a color requires only three bits, where the
suffix bx is 0 or 1, and the prefix is 00, 10, or 01. Hence, only six color values are
possible.

The second part of the algorithm consists of three additional rounds, each
round eliminating one of the colors in {3, 4, 5} (lines 10–15). Each process first
exchanges its color with its two neighbors. Due to the previous log∗ n rounds,
these three colors are different. Hence, if its color is 3, pi selects any color in
{0, 1, 2} not owned by its neighbors. This is then repeated twice to eliminate the
colors 4 and 5.

Proofs of the algorithm correctness and its time complexity can be found
in [7]. A simple way to go from a ring to a chain is described in [8].

4 Extending Cole and Vishkin’s Algorithm
to Asynchronous Starting Times

This section presents an extension of CV86 for synchronous systems, where reli-
able processes may start at different rounds.

4.1 Asynchronous Starting Times and Unit-Segment

Asynchronous starting times. Let sti denote the round number at which process
pi wakes up and starts participating in the algorithm. A process may start at

Making Local Algorithms Wait-Free: The Case of Ring Coloring 117

any time, but when it starts, it does so at the beginning of a round, and then
runs synchronously.

Notion of a unit-segment. A unit-segment is a maximal sequence of consecutive
processes in the ring, pa, pnexta , · · · , ppredz

, pz, that start the algorithm in the
same round.

A unit-segment is identified by a starting time (round number), and any two
contiguous unit-segments are necessarily associated with distinct starting times.
It follows that, from an omniscient observer’s point of view, and at any time, the
ring can be decomposed into a set of unit-segments, some of these unit-segments
being contiguous, while others are separated by processes that have not yet
started (or will never start, due to an initial crash). In the particular case where
all processes start simultaneously, the ring is composed of a single unit-segment,
and if all start at different times, it is composed of n unit-segments.

4.2 A Coloring Algorithm with Asynchronous Starting Times

This section presents the local algorithm AST-CV, which allows processes to
start at different Each process executes Δ = log∗ n + 6 rounds. The algorithm is
decomposed into four parts.

Starting round of the algorithm. The underlying synchronous system defines the
first round (r = 1) as being the round at which the first process(es) starts the
algorithm. Hence, when such a process pi starts the algorithm, we have sti = 1.
Then, the progress of r is managed by the system synchrony.

Part 1 and Part 2. These parts are described in Fig. 2. Considering a unit-
segment (identified by a starting time st) they are a simple adaptation of CV86,
which considers the behavior of any process pi belonging to this unit-segment.

A process pi executes first log∗ n synchronous rounds. During each round,
it sends its current color to its neighbors, and receives their current colors.
msg pred = ⊥ if there is no message from predi (line 04).

In line 05, pi can tell if its predecessor belongs to the same unit-segment
from the st value received. If so, pi executes CV86. If its predecessor belongs
to a different unit-segment or has not yet started the algorithm, pi considers a
fictitious predecessor whose identity is the same as its own identity, except for
the first bit, starting from the right (see the last paragraph of Annex Sect. 3.2).
Lines 06–10 constitute the core of CV86, which exponentially fast reduces the
bit size representation of colori at every round, to end up with a color in the set
{0, 1, · · · , 5} after log∗ n rounds.

Part 2 of AST-CV (lines 13–21) is the same as the part in CV86 that reduces
the set of colors in each unit-segment from at most six to at most three [7], and
hence, at the end of this part, the processes of the unit-segment identified by sti
have obtained a proper color within their unit-segment. Moreover, if the process
is internal to its unit-segment, it will have obtained its final color (after log∗ n+3
rounds).

118 A. Castañeda et al.

init: colori: bit string initialized to pi’s identity; sti: starting round of pi;
when pi starts, there are three cases for each of its neighbors predi and nexti:
(a) it already started the algorithm;
(b) it starts the algorithm at the very same round;
(c) it will start the algorithm at a later round.
In the first case, the messages sent in previous rounds by the corresponding
neighbor are in pi’s input buffer, and can be consequently read by pi.
In the last case, to simplify the presentation, we consider that pi
receives a dummy message.
fict predi: fictitious process whose identity is the same as pi’s identity except
for its first bit (starting from the right); used as predecessor in case pi discovers
it is a left end of a unit-segment.

================ Part 1 : reduction from n colors to 6 colors =====
(01)when r = sti, sti + 1, ..., (sti − 1) + log∗ n do
(02)begin synchronous round
(03) send color(0, sti, colori) to nexti and predi;
(04) receive msg predi from predi;
(05) if (msg predi = color(0, sti, col))
(06) then x= first position (starting right at 0) where colori and col differ;
(07) colori ← bit string encoding the binary value of x followed at
(08) its right by bx (first bit of colori where colori and col differ)
(09) else pi has no predecessor (it is an end process of its unit segment) it
(10) considers fict predi as its predecessor and executes lines 06-08
(11) end if;
(12)end synchronous round;

% Here colori ∈ {0, 1, · · · , 5}
================== Part 2 : reduction from 6 to 3 colors ======
(13)when r = (sti − 1) + log∗ n + 1, (sti − 1) + log∗ n + 2, (sti − 1) + log∗ n + 3 do
(14)begin synchronous round
(15) send color(0, sti, colori) to predi and nexti;
(16) color set ← ∅;
(17) if color(0, sti, color p) received from predi

then color set ← color set ∪ color p end if;
(18) if color(0, sti, color n) received from nexti

then color set ← color set ∪ color n end if;
(19) let k be r − (sti − 1 + log∗ n) + 2; % k ∈ {3, 4, 5} %
(20) if (colori = k) then colori ← any color from {0, 1, 2} \ color set end if
(21)end synchronous round;
===
% Here colori ∈ {0, 1, 2}, and the unit segment including pi is properly colored but
% two end processes of two consecutive unit segments may have the same color

Fig. 2. Initialization, Part 1, and Part 2, of AST-CV (code for pi)

Message management. Let us observe that, as not all processes start at the same
round, it is possible that, while executing a round of the synchronous algorithm
of Fig. 2, a process pi receives a message color(0, st,−) with st �= sti from its
predecessor, or messages color(j,−) (where j ∈ {1, 2, 3}, sent in Parts 3 or 4)

Making Local Algorithms Wait-Free: The Case of Ring Coloring 119

In the following parts of the algorithm, each process pi uses local variables
denoted colori[j, nbg], where j ∈ {1, 2, 3} and nbg ∈ {predi, nexti}.
These variables are initialized to −1 (no color) and updated when pi receives
a message color(j,−) from predi or nexti. Due to the fact that the
processes do not start the algorithm at the same round, process pi may
have received messages color(j,−) during previous synchronous rounds.

== Part 3 : colori can be changed only if pi is the left end of its unit-segment
(22)when r = (sti − 1) + log∗ n + 4 do
(23)begin synchronous round
(24) send color(1, colori) to predi and nexti;
(25) for each j ∈ {1, 2, 3} do
(26) if (color(j, color) received from predi in a round ≤ r)

then colori[j, predi] ← color end if;
(27) if (color(j, color) received from nexti in a round ≤ r)

then colori[j, nexti] ← color end if
(28) end for;
(29) if (sti > sti[predi]) then % pi has not priority
(30) case (sti = sti[nexti]) then

colori ← a color in {0, 1, 2} \ {colori[2, predi], colori[1, nexti]}
(31) (sti > sti[nexti]) then

colori ← a color in {0, 1, 2} \ {colori[2, predi], colori[2, nexti]}
(32) (sti < sti[nexti]) then colori ← a color in {0, 1, 2} \ {colori[2, predi]}
(33) end case
(34) end if
(35)end synchronous round;

== Part 4 : colori can be changed only if pi is the right end of its unit-segment
(36)when r = (sti − 1) + log∗ n + 5 do
(37)begin synchronous round
(38) send color(2, colori) to predi and nexti;
(39) same statements as in lines 25-28;
(40) if (sti > sti[nexti]) then % pi has not priority
(41) case (sti = sti[predi]) then

colori ← a color in {0, 1, 2} \ {colori[2, predi], colori[3, nexti]}
(42) (sti > sti[predi]) then

colori ← a color in {0, 1, 2} \ {colori[3, predi], colori[3, nexti]}
(43) (sti < sti[predi]) then colori ← a color in {0, 1, 2} \ {colori[3, nexti]}
(44) end case
(45) end if
(46)end synchronous round;
== Additional round to inform the neighbors that will start later
(47)when r = (sti − 1) + log∗ n + 6 do send color(3, colori) to predi and nexti;
(48)return(colori).

Fig. 3. Part 3 and Part 4 of AST-CV (code for pi)

from one or both of its neighbors. To simplify and make clearer the presentation,
the reception of these messages is not indicated in Fig. 2. It is implicitly assumed
that, when they are received during a synchronous round, these messages are

120 A. Castañeda et al.

saved in the local memory of pi (so that they can be processed later, if needed,
at lines 25–28 and line 39 of Fig. 3).

Moreover, a process pi learns the starting round of predi (resp., nexti) when
it receives for the first time a message color(0, st,−) from predi (resp. nexti).
To not overload the presentation, this is left implicit in the description of the
algorithm.

Part 3 and Part 4. These parts are described in Fig. 3. If pi is a left end, or
a right end, or both, of a unit-segment5, its color at the end of Part 2 is not
necessarily its final color, because Part 1 and Part 2 color different unit-segments
independently from each other. Hence, it is possible for two contiguous unit-
segments to be such that the left end of one, say pi, and the right end of the
other, say pj , have colori = colorj .

The aim of Part 3 and Part 4 is to resolve these coloring conflicts. To this
end, each process pi manages six local variables, denoted colori[j, nbg], where
j ∈ {1, 2, 3} and nbg ∈ {predi, nexti}. They are initialized to −1 (no color).

Solving the conflict between neighbors belonging to contiguous unit-segments. A
natural idea to solve a coloring conflict between two neighbor processes belonging
to different unit-segments, consists in giving “priority” to the unit-segment whose
starting time is the first.

Let sti[predi] (resp., sti[nexti]) be the knowledge of pi on the starting time
of its left (resp., right) neighbor. If predi has not yet started let sti[predi] = +∞
(and similarly for nexti). Thanks to this information, pi knows if it is at the left
(resp., right) end of a unit-segment: this is the case if sti �= sti[predi] (resp., if
sti �= sti[nexti]). Moreover, if pi is a left (resp., right) end of a unit-segment, it
knows that it has not priority if sti > sti[predi] (resp., sti > sti[nexti]). If such
cases, pi may be required to change its color to ensure it differs from the color
of its neighbor belonging to the priority contiguous unit-segment.

The tricky cases are the ones of the unit-segments composed of either a single
process p or two processes pa and pb. This is because, in these cases, it can be
required that p (possibly twice, once as right end, and once as left end of its
unit-segment), or once pa and once pb (in the case of a 2-process unit-segment),
be forced to change the color they obtained at the end of Part 2, to obtain a final
color consistent with respect to their neighbors in contiguous unit-segments. To
prevent inconsistencies from occurring, it is required that (in addition to the
previous priority rule) (a) first a left end process of a unit-segment modifies its
color with respect to its predecessor neighbor (which belongs to its left unit-
segment), and (b) only then a right end process of a unit-segment modifies its
color if needed (this specific order is immaterial; the other order –first right, then
left– would be equally fine).

Conflict resolutions rules summary. Let us consider a process pi.

5 If pi is both a left end and a right end of a unit-segment, it forms its own unit-
segment.

Making Local Algorithms Wait-Free: The Case of Ring Coloring 121

– If pi is inside a unit-segment (i.e., sti = sti[predi] = sti[nexti]), or is the left
end of a unit-segment and predi began after it (i.e., sti < sti[predi]), or is the
right end of a unit-segment and nexti began after it (i.e., sti < sti[nexti]),
then the color it obtained at the end of Part 2 is its final color.

– If pi is the left end of a unit-segment and predi began before pi (i.e., sti >
sti[predi]), then pi may be forced to change its color. This is done in Part
3. The color pi obtains at the end of Part 3 will be its final color, if it is
not also the right end of its unit-segment and nexti began before it (i.e.,
sti > sti[nexti]).

– This case is similar to the previous one. If pi is the right end of a unit-segment
and nexti began before it (i.e., sti > sti[nexti]), pi may be forced to change
its color to have a final color different from the one of nexti. This is done in
Part 4.

Recall that a process that is neither the left end, nor the right end of a unit-
segment obtains its final color in Part 2. It follows that, during Part 3 and Part
4, such a process only needs to execute the sending of messages color(j,−),
j ∈ {1, 2, 3} it lines 24,38, and 47 (the other statements cannot change its color).

Part 3. This part is composed of a single round (lines 22–35). A process pi

sends first to its neighbors a message color(1, c) carrying the color c it has
obtained at the end of Part 2. Then, according to the messages it received from
them up to the current round, pi updates its local variables colori[j, predi] and
colori[j, nexti] (lines 25–28).

Part 4. This part, composed of a single round (lines 36–46), is similar to the pre-
vious one. Due to the predicate of line 40, the lines 41–44 are executed only if pi is
the right end of its unit segment. Their meaning is similar to the one of lines 30–
33. Finally, pi sends (line 47) to its two neighbors the message color(3, colori)
to inform them of its last color, in case it was modified in Part 4.

An execution of AST-CV and a proof of the following theorem are given
in [8].

Theorem 1. If pi and pj wake up and are neighbors, their final colors are dif-
ferent and in the set {0, 1, 2}.

4.3 Properties of the Algorithm

AST-CV inherits the two most important properties from CV86: locality and
determinism. A proof of the algorithm is given in [8].

– The locality property of CV86 states that a process obtains its final color by
log∗ n+3 rounds. In AST-CV, it obtains it log∗ n+6 rounds after its starting
round.

– In CV86, the determinism property states that the final color of a process
depends only of the identities of the consecutive processes which are its
log∗ n + 3 predecessors on the ring. In AST-CV, its final color depends only
of the starting times and the identities of the consecutive processes which are
its log∗ n + 6 predecessors on the ring.

122 A. Castañeda et al.

5 From Asynchronous Starting Times to Wait-Freedom

This section presents the WLC (Wait-free Local Coloring) algorithm for the
DECOUPLED model described in Sect. 2, which 3-colors the processes of a ring.
This algorithm consists of two consecutive stages executed independently by each
process pi. The first stage is a communication stage during which pi, whatever
its starting time, obtains enough information to execute its second stage, which
consists of a communication-free computation.

The following solvability notion incorporates asynchrony and failures, as
needed by the DECOUPLED model. An algorithm wait-free solves m-coloring
if for each of its executions: (1) Validity. The final color of any process is in
{0, ...,m − 1}. (2) Agreement. The final colors of any two neighbor nodes in the
graph are different. (3) Termination. All processes that take an infinite number
of steps decide a final color.

5.1 On the Communication Side

A ring structure for the synchronous communication network. The neighbors of
a node ndi (or process pi with a slight abuse of language) are denoted as before,
predi and nexti.

On the side of the communication nodes. While each input buffer ini is initially
empty, each output buffer outi is initialized to 〈i,+∞,⊥〉. When a process starts
its participation in the algorithm, it writes the pair 〈i, sti, idi〉 in outi, where sti
is its starting time (as defined by the current tick of the clock governing the
progress of the underlying communication component), and idi is its identity.

As already described, at every clock tick (underlying communication step),
ndi first receives two messages (one from each neighbor), and reads the local
buffer outi. Then, it packs the content of these two messages and the content of
outi (which can be 〈i,+∞,⊥〉 if pi has not yet started) into a single message,
sends it to its two neighbors, and writes it in ini (full-information behavior of a
node).

5.2 Wait-Free Algorithm: First a Communication Stage

Let pi be a process that starts the algorithm at time sti = t. As previously
indicated, this means that, at time t (clock tick defined by the communication
component), pi writes 〈i, t, idi〉 in its output buffer outi. Then pi waits until time
t + Δ where Δ = log∗ n + 5. (6). At the end of this waiting period, and as far
pi is concerned, the “dices are cast”. No more physical communication will be
necessary. As we are about to see, pi obtained enough information to compute
alone its color: the rest of the algorithm executed by pi is purely local (see below).
This feature, and the fact that the starting time of a process depends only on
it, makes the algorithm wait-free.
6 Being asynchronous, the waiting of pi during an arbitrary long (but finite) period

does not modify its allowed behavior.

Making Local Algorithms Wait-Free: The Case of Ring Coloring 123

It follows from the underlying communication component that, at time t+Δ,
pi has received information (i.e., a triplet 〈j, st, idj〉) from all the processes at
distance at most Δ of it. If st = t, pi knows that pj started the algorithm at
the same time as itself. If st < t (resp., st > t), pi knows that pj started the
algorithm before (resp., after) it. (If st = +∞ –we have then idj = ⊥– and pj

is at distance d from it, pi knows that pj did not start the algorithm before the
clock tick t + Δ − d.)

5.3 Wait-Free Algorithm: Then a Local Simulation Stage of
AST-CV

At the end of its waiting period, pi has information (triplets composed of an
index, a starting time –possibly +∞–, and a process identity –possibly ⊥–) of
all the processes at distance Δ = log∗ n + 5 from it, and also from the processes
at distance k that started before sti + Δ − k (each triplet from process pj at
distance k was propagated from it to a process p� at distance Δ from pi, and
then from p� to pi). More precisely, for each of these processes pj , pi knows
whether pj started before it (stj < sti), at the same time as it (stj = sti), or
after it (stj > sti).

Simulation of AST-CV. It follows from the previous observation that, after its
waiting period, pi has all the inputs (starting times and process identities) needed
to simulate AST-CV and compute its final color, be it inside a unit-segment, the
left end of a unit-segment, the right end of a unit-segment, or both ends of a unit-
segment (a maximal sequence of consecutive processes that start the algorithm
at the same time).

More precisely, the purely local simulation by a process pi is a follows. Start-
ing from round 0, pi simulates sti +Δ rounds of AST-CV, this simulation involv-
ing the processes from which it has the initial information 〈j, stj , idj〉 and are
s.t. stj ≤ sti.

Notice that the crash of a process pj has no impact on the termination and
the correctness of the coloring of other processes. This follows from the locality
property of AST-CV, and the fact that as soon as a process has obtained a
triplet 〈j, stj , idj〉 (where stj ≤ sti), it considers pj as competing for a color,
whatever is its behavior after it started participating in the algorithm.

Optimality of WLC. When it executes WLC, each process waits during O(log∗ n)
time units, which occurs during the communication phase. This duration is
asymptotically optimal as (1) Ω(log∗ n) is a lower bound on the number of
time units needed to color the nodes of a ring with at most three colors [16] in
LOCAL, and (2) when there is neither asynchrony nor failures, DECOUPLED
behaves like LOCAL.

6 Conclusion

The paper proposed a model where communication and processing are decou-
pled, consisting of asynchronous crash-prone processes that run on top of a

124 A. Castañeda et al.

reliable synchronous network. This DECOUPLED model is weaker than the
synchronous model (on the process side) and stronger than the asynchronous
crash-prone model (on the communication side), while encompassing in a single
framework two fundamental issues of distributed computing, locality [16] and
wait-freedom [13].

A 3-coloring algorithm for a ring was derived for the DECOUPLED model.
This algorithm uses as a subroutine a generalization of Cole and Vishkin’s algo-
rithm [7]. A process needs to obtain initial information from processes at distance
at most O(log∗ n) of it. As far as we know, this is the first wait-free local coloring
algorithm, which colors a ring with at most three colors.

In contrast to LOCAL, in the DECOUPLED model, after d rounds of com-
munication, a process collects the initial inputs of only a subgraph of its d-
neighborhood. The paper has shown that, despite this uncertainty, it is possible
to combine locality and wait-freedom, as far as 3-coloring is concerned. The
keys to this marriage were (a) the decoupling of communication and processing,
and (b) the design of a synchronous coloring algorithm (AST-CV), where the
processes are reliable, proceed synchronously, but are not required to start at
the very same round, which introduces a first type of asynchrony among the
processes. As we have seen, the heart of this algorithm lies in the consistent col-
oring of the border vertices of subgraphs which started at different times (unit
segments).

It would be interesting if this methodology applies to other coloring algo-
rithms, or even to other distributed graph problems which are solvable in the
LOCAL model.

Acknowledgments. This work has been partially supported by the French ANR
project DESCARTES, devoted to abstraction layers in distributed computing. The
first author was supported in part by UNAM PAPIIT-DGAPA project IA101015. The
fourth author is currently on leave at CSAIL-MIT and was supported in part by UNAM
PAPIIT-DGAPA project IN107714.

References

1. Arjomandi, E., Fischer, M., Lynch, N.: Efficiency of synchronous versus asynchro-
nous distributed systems. J. ACM 30(3), 449–456 (1983)

2. Awerbuch, B.: Complexity of network synchronization. JACM 32(4), 804–823
(1985)

3. Awerbuch B., Patt-Shamir B., Peleg D., Saks M.: Adapting to asynchronous
dynamic networks (extended abstract). In: Proceedings of the 24th ACM Sym-
posium on Theory of Computing (STOC 1992), pp. 557–570 (1992)

4. Barenboim, L., Elkin, M.: Deterministic distributed vertex coloring in polyloga-
rithmic time. J. ACM 58(5), 23 (2011)

5. Barenboim, L., Elkin, M.: Distributed Graph Coloring, Fundamental and Recent
Developments, 155 p. Morgan & Claypool Publishers (2014)

6. Barenboim, L., Elkin, M., Kuhn, F.: Distributed (Delta+1)-coloring in linear (in
Delta) time. SIAM J. Comput. 43(1), 72–95 (2014)

Making Local Algorithms Wait-Free: The Case of Ring Coloring 125

7. Cole, R., Vishkin, U.: Deterministic coin tossing with applications to optimal par-
allel list ranking. Inf. Control 70(1), 32–53 (1986)

8. Castañeda, A., Delporte, C., Fauconnier, H., Rajsbaum, S., Raynal, M.: Wait-
freedom and locality are not incompatible (with distributed ring coloring as an
example). Technical report #2033, 19 p., IRISA, University of Rennes, France
(2016)

9. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. J. ACM 32(2), 374–382 (1985)

10. Fraigniaud, P., Gafni, E., Rajsbaum, S., Roy, M.: Automatically adjusting concur-
rency to the level of synchrony. In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784,
pp. 1–15. Springer, Heidelberg (2014)

11. Fraigniaud, P., Korman, A., Peleg, D.: Towards a complexity theory for local dis-
tributed computing. J. ACM 60(5), 16 (2013). Article 35

12. Garey, M.R., Johnson, D.S.: Computers, Intractability: A Guide to the Theory of
NP-Completeness, 340 p. W.H. Freeman, New York (1979)

13. Herlihy, M.P.: Wait-free synchronization. ACM Trans. Program. Lang. Syst. 13(1),
124–149 (1991)

14. Keidar, I., Rajsbaum, S.: On the cost of fault-tolerant consensus when there are
no faults: preliminary version. ACM SIGACT News 32(2), 45–63 (2001)

15. Kuhn, F., Moscibroda, T., Wattenhofer, R.: What cannot be computed locally! In:
Proceedings of the 23rd ACM Symposium on Principles of Distributed Computing,
pp. 300–309. ACM Press (2004)

16. Linial, N.: Locality in distributed graph algorithms. SIAM JC 21(1), 193–201
(1992)

17. Meincke, T., et al.: Globally asynchronous locally synchronous architecture for
large high-performance ASICs. In: Proceedings of the IEEE International Sympo-
sium on Circuits and Systems (ISCAS 1999), vol. 2, pp. 512–515 (1999)

18. Naor, M., Stockmeyer, L.: What can be computed locally? SIAM J. Comput. 24(6),
1259–1277 (1995)

19. Peleg, D.: Distributed computing, a locally sensitive approach. SIAM Monographs
on Discrete Mathematics and Applications, 343 p. (2000). ISBN 0-89871-464-8

20. Raynal, M.: Fault-Tolerant Agreement in Synchronous Message-Passing Systems,
165 p. Morgan & Claypool Publishers (2010). ISBN 978-1-60845-525-6

21. Raynal, M.: Communication and Agreement Abstractions for Fault-Tolerant Asyn-
chronous Distributed Systems,251 p. Morgan & Claypool Publishers (2010). ISBN
978-1-60845-293-4

22. Raynal, M.: Concurrent Programming: Algorithms, Principles, and Foundations,
530 p. Springer (2013). ISBN 978-3-642-32026-2

23. Suomela, J.: Survey of local algorithms. ACM Comput. Surv. 45(2), 40 (2013).
Art. 24

	Making Local Algorithms Wait-Free: The Case of Ring Coloring
	1 Introduction
	2 The Two-Component-Based Model
	3 Distributed Graph Coloring and a Look at Cole and Vishkin's Algorithm
	3.1 Graph Coloring
	3.2 A Version of Cole and Vishkin's Algorithm Suited to a Ring

	4 Extending Cole and Vishkin's Algorithm to Asynchronous Starting Times
	4.1 Asynchronous Starting Times and Unit-Segment
	4.2 A Coloring Algorithm with Asynchronous Starting Times
	4.3 Properties of the Algorithm

	5 From Asynchronous Starting Times to Wait-Freedom
	5.1 On the Communication Side
	5.2 Wait-Free Algorithm: First a Communication Stage
	5.3 Wait-Free Algorithm: Then a Local Simulation Stage of AST-CV

	6 Conclusion
	References

