
Meta-algorithm to Choose a Good On-Line
Prediction (Short Paper)

Alexandre Dambreville1(B), Joanna Tomasik2, and Johanne Cohen3

1 LRI, CentraleSupélec, Université Paris-Sud,
Université Paris-Saclay, Orsay, France

Alexandre.Dambreville@lri.fr
2 LRI, CentraleSupélec, Université Paris-Saclay, Orsay, France

Joanna.Tomasik@lri.fr
3 LRI, CNRS, Université Paris-Saclay, Orsay, France

Johanne.Cohen@lri.fr

Abstract. Numerous problems require an on-line treatment. The varia-
tion of the problem instance makes it harder to solve: an algorithm used
may be very efficient for a long period but suddenly its performance
deteriorates due to a change in the environment. It could be judicious
to switch to another algorithm in order to adapt to the environment
changes.

In this paper, we focus on the prediction on-the-fly. We have several
on-line prediction algorithms at our disposal, each of them may have a
different behaviour than the others depending on the situation. First, we
address a meta-algorithm named SEA developed for experts algorithms.
Next, we propose a modified version of it to improve its performance in
the context of the on-line prediction.

We confirm the efficiency gain we obtained through this modification
in experimental manner.

1 Introduction

Let us assume that we have several algorithms at our disposal to solve a given
problem. One of them may perform very well for a situation but badly for another
situation whereas for another algorithm it is the opposite. If we were in an off-
line scenario, we could determine in which situation we are and select the best
algorithm once for all. In this paper, we address an on-line scenario, i.e. the
environment may change with time and evolve from one situation to another. Our
goal is to use a meta-algorithm that dynamically switches among the available
algorithms.

First, we analyse a meta-algorithm named Strategic Expert meta-Algorithm
(SEA) [3] and discuss its advantages and drawbacks in Sect. 2. Next, we modifie
it (Sect. 3) to make it fit the environment quicker. We evaluate the performance
of our meta-algorithm through numerical experiments in Sect. 4.

c© Springer International Publishing AG 2016
B. Bonakdarpour and F. Petit (Eds.): SSS 2016, LNCS 10083, pp. 126–130, 2016.
DOI: 10.1007/978-3-319-49259-9 10



Meta-algorithm to Choose a Good On-Line Prediction 127

2 Existing Meta-algorithm, SEA

Let us assume that we have n algorithms at our disposal. We denote Mi the
average payoff of algorithm i since we used it, and Ni the number of steps
on which we use algorithm i when it is selected. SEA (Strategic Expert meta-
Algorithm [3]) alternates the exploration and exploitation phases as described
in Algorithm 1:

Algorithm 1. SEA
1: For each i ∈ [[1; n]], Mi ← 0, Ni ← 0, iter ← 1
2: procedure SEA
3: loop
4: U ← Random(0, 1)
5: if U < 1/iter then i ← Random([[1; n]]) � Exploration phase;
6: else i ← argmax

i∈[[1;n]]
Mi � Exploitation phase;

7: Ni ← Ni + 1.
8: Execute algorithm i for Ni steps;
9: R ← average payoff of i during these Ni steps;

10: Mi ← Mi + 2
Ni+1

(R − Mi);
11: iter ← iter + 1;
12: end loop
13: end procedure

The analysis of the SEA algorithm leads us to formulate a list of its advan-
tages and a list of its drawbacks. Its strengths are:

1. If the environment does not change, SEA is able to find the best algorithm
which fits the situation.

2. If the environment does change, the average reward of SEA is at least as good
as the average reward of the best algorithm when it was played in infinite time
(see Theorem 3.1 of [3]).

Its weaknesses are:

1. It is proved that, in the long run, all of the algorithms will be used countless
times by SEA. However, if there are many algorithms available, some of them
might not be tried before a long time. Indeed, the more the time passes, the
smaller the probability of an exploration is (Lemma 3.1 of [3]).

2. SEA computes the mean Mi since the first iteration that is why Mi suffers
from inertia when the number of iterations increases. Even a drastic change
for the average payoff R may be impossible to be detected what slows down
the switching between algorithms. In certain situations, it would have been
advantageous to switch to a very efficient algorithm, but SEA is not reactive
enough to do it (see Figs. 2a and b).



128 A. Dambreville et al.

3 Our Dynamic SEA

We modify SEA, trying to overcome its weaknesses mentioned above. For the
second point, to make the mean be more reactive, instead of a long run mean,
for Mi, we use the average payoff during the last Ni steps, i.e. at line 10 of
Algorithm 1, we put Mi ← R. It allows SEA to have a good overview of the
recent performance of an algorithm. Now, to switch to another algorithm, SEA
just has to wait for a new exploration. This brings us to the first point of the
drawbacks: an exploration may take a long time to come and it will take even
much more time to try each algorithm.

In order to ensure more frequent explorations, we reset our meta-algorithm
occasionally. During the exploitation of an algorithm i (line 6 of Algorithm 1), if
the payoff is smaller compared to the previous iteration, we set ∀i′ �= i,Mi′ = ∞
(after line 9). With this mechanism, the next exploitations will try each algorithm
(different than i) at least once and then determine the best of them for the actual
situation. Likewise, we use this mechanism to overcome the first weakness listed
and we make our version of SEA try each algorithm at least once. Thereby we
avoid having an untested algorithm for too long time.

4 Experiments

We start this section by explaining the experimental setup used. We evaluate our
meta-algorithm for the following prediction problem. Let (Di) be a positive inte-
ger sequence. This sequence is disturbed by a noise (Ni), which give us a jammed
sequence (Ji) = (Di+Ni). At time i we receive the real data Di and the jammed
data for the next step Ji+1. Our goal at each time i is to recover Di+1 from Ji+1.
We denote (Ri+1) the result of our recovering. To measure the performance of
the result at time i, we propose to use a reward δi = exp

(
−

∣∣∣Ri−Di

Di

∣∣∣
)
, whose

value always is in (0; 1]. If we obtain Ri = Di (the optimal result), the reward
reaches the maximal value and δi = 1. Moreover, the farther from Di our result
Ri is, the closer to 0 the reward δi is.

Fig. 1. Three bandits

Our proposition consists in using
multi-armed bandit algorithms [1]. A
bandit is a method that offers us
several strategies, represented by its
arms, to play. Each arm has a cer-
tain reward attributed. At each time, a
player choses a bandit arm and expects
to win, i.e. to maximize the mean of
the rewards obtained. In our problem,
each arm corresponds to a modifica-
tion of Ji, expressed in terms of a per-
centage (x%) of Ji. We denote (Arm)(Ji) = Ji + x%(Ji) = Ri the effect of an
arm on the jammed value Ji.



Meta-algorithm to Choose a Good On-Line Prediction 129

In our experiments, we use the trace of the 1998 World Cup Web site [2],
which gives the number of requests by hour on the site as (Di) (this trace
is commonly used in the context of evaluation of scheduling algorithms). We
generate different kind of noise on this trace in order to pinpoint the effect of our
modifications and validate the dynamic version of SEA. We use a Gaussian noise
for (Ni): at each time i, we set the mean and the variance as percentages of Di:
Ni = N (Diμ%,Diσ%). More precisely, we divide (Di) into three equal parts and
we add a different noise on each of them. We denote n1 → n2 → n3 the sequence
of noise used. The four types of noise we use are: n+20,±3 = N (+20%, 3%),
n−20,±3 = N (−20%, 3%), n0,±3 = N (0%, 3%) and n0,±30 = N (0%, 30%).

For the first three noise variants, we have three bandit algorithms, one spe-
cialized for each environment as illustrated in Fig. 1. The last noise variant has a
great variability that makes it unpredictable for any of our bandit algorithms. We
consider three scenarii: n−20,±3 → n20,±3 → n0,±3, n0,±3 → n−20,±3 → n20,±3

and n0,±30 → n0,±30 → n0,±30.
We show our results in Fig. 2 which represent the evolution of the average

reward of our algorithms. Each curve is the mean of one hundred different runs
of the algorithm.

Fig. 2. Mean rewards of our algorithms



130 A. Dambreville et al.

The half-width of confidential intervals computed at confidence level α = 0.05
never exceeds 1.5 % of the corresponding mean. We do not thus incorporate them
in the figures.

We discuss the results of our experiments for n−20,±3 → n20,±3 → n0,±3 and
for n0,±3 → n−20,±3 → n20,±3 depicted in Figs. 2a and b respectively.

We build Ni in such a way that each bandit algorithm outperforms the others
for a third of the time, and indeed, it is what we note in Figs. 2a and b. We
observe that the SEA algorithm follows the best algorithm in average as time
grows. Nevertheless, due to the inertia of the mean, SEA is very slow to switch
from an algorithm to another. At the opposite, the Dynamic SEA can fit the
environment very quickly.

For the last experiment in which the prediction is characterized by an exces-
sive variability of the noise (Fig. 2c), both SEA and Dynamic SEA follow the first
bandit (Fig. 1a) which has the best reward in average. Whatever the situation,
Dynamic SEA is at least as good as SEA.

5 Conclusion

At first, we tested the SEA algorithm to dynamically choose an algorithm among
those available. We observed the deterioration of SEA performance with time.
The modification we brought to SEA improved its reactivity and its overall
performance.

Acknowledgment. The PhD thesis of Alexandre Dambreville is financed by Labex
Digicosme within the project E-CloViS (Energy-aware resource allocation for Cloud
Virtual Services).

References

1. Bubeck, S., Cesa-Bianchi, N.: Regret analysis of stochastic and nonstochastic multi-
armed bandit problems. Found. Trends Mach. Learn. 5, 1–122 (2012)

2. http://ita.ee.lbl.gov/html/contrib/WorldCup.html
3. Farias, D.P.D., Megiddo, N.: Combining Expert Advice in Reactive Environments.

J. ACM 53, 762–799 (2006)

http://ita.ee.lbl.gov/html/contrib/WorldCup.html

	Meta-algorithm to Choose a Good On-Line Prediction (Short Paper)
	1 Introduction
	2 Existing Meta-algorithm, SEA
	3 Our Dynamic SEA
	4 Experiments
	5 Conclusion
	References


