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Abstract In this paper we establish some vector inequalities related to Schwarz
and Buzano results. Applications for norm and numerical radius inequalities of two
bounded operators are given as well.
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1 Introduction

Let .H; h�; �i/ be an inner product space over the real or complex numbers field K.
The following inequality is well known in literature as the Schwarz’s inequality

kxk kyk � jhx; yij for any x; y 2 H: (1)

The equality case holds in (1) if and only if there exists a constant � 2 K such that
x D �y:

In 1985 the author [5] (see also [23]) established the following refinement of (1):

kxk kyk � jhx; yi � hx; ei he; yij C jhx; ei he; yij � jhx; yij (2)

for any x; y; e 2 H with kek D 1:

Using the triangle inequality for modulus we have

jhx; yi � hx; ei he; yij � jhx; ei he; yij � jhx; yij
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and by (2) we get

kxk kyk � jhx; yi � hx; ei he; yij C jhx; ei he; yij
� 2 jhx; ei he; yij � jhx; yij ;

which implies the Buzano’s inequality [2]

1

2
Œkxk kyk C jhx; yij� � jhx; ei he; yij (3)

that holds for any x; y; e 2 H with kek D 1:

For other Schwarz and Buzano related inequalities in inner product spaces, see
[1–10, 12–15, 17, 19–25, 27–36], and the monographs [11, 16] and [18].

Now, let us recall some basic facts on orthogonal projection that will be used in
the sequel.

If K is a subset of a Hilbert space .H; h�; �i/, the set of vectors orthogonal to K is
defined by

K? WD fx 2 H W hx; ki D 0 for all k 2 Kg :

We observe that K? is a closed subspace of H and so forms itself a Hilbert space.
If V is a closed subspace of H, then V? is called the orthogonal complement of V .
In fact, every x in H can then be written uniquely as x = v C w, with v in V and w
in K?. Therefore, H is the internal Hilbert direct sum of V and V?, and we denote
that as H D V ˚ V?:

The linear operator PV W H ! H that maps x to v is called the orthogonal
projection onto V . There is a natural one-to-one correspondence between the set
of all closed subspaces of H and the set of all bounded self-adjoint operators P
such that P2 D P. Specifically, the orthogonal projection PV is a self-adjoint linear
operator on H of norm � 1 with the property P2

V D PV . Moreover, any self-adjoint
linear operator E such that E2 D E is of the form PV , where V is the range of
E. For every x in H, PV.x/ is the unique element v of V , which minimizes the
distance kx � vk. This provides the geometrical interpretation of PV.x/: it is the
best approximation to x by elements of V .

Projections PU and PV are called mutually orthogonal if PUPV D 0. This is
equivalent to U and V being orthogonal as subspaces of H. The sum of the two
projections PU and PV is a projection only if U and V are orthogonal to each other,
and in that case PUCPV D PUCV :The composite PUPV is generally not a projection;
in fact, the composite is a projection if and only if the two projections commute, and
in that case PUPV D PU\V .

A family
˚
ej

�
j2J of vectors in H is called orthonormal if

ej ? ek for any j; k 2 J with j ¤ k and
��ej

�� D 1 for any j; k 2 J:
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If the linear span of the family
˚
ej

�
j2J is dense in H; then we call it an orthonormal

basis in H:

It is well known that for any orthonormal family
˚
ej

�
j2J we have Bessel’s

inequality

X

j2J

ˇ̌˝
x; ej

˛ˇ̌2 � kxk2 for any x 2 H:

This becomes Parseval’s identity

X

j2J

ˇ̌˝
x; ej

˛ˇ̌2 D kxk2 for any x 2 H;

when
˚
ej

�
j2J an othonormal basis in H:

For an othonormal family E D ˚
ej

�
j2J we define the operator PE W H ! H by

PE x WD
X

j2J

˝
x; ej

˛
ej ; x 2 H: (4)

We know that PE is an orthogonal projection and

hPE x; yi D
X

j2J

˝
x; ej

˛ ˝
ej; y

˛
; x; y 2 H and hPE x; xi D

X

j2J

ˇ̌˝
x; ej

˛ˇ̌2
; x 2 H:

The particular case when the family reduces to one vector, namely E D feg ; kek D
1; is of interest since in this case Pex WD hx; ei e; x 2 H;

hPex; yi D hx; ei he; yi ; x; y 2 H (5)

and Buzano’s inequality can be written as

1

2
Œkxk kyk C jhx; yij� � jhPex; yij (6)

that holds for any x; y; e 2 H with kek D 1:

Motivated by the above results we establish in this paper some vector inequalities
for an orthogonal projection P that generalizes amongst others the Buzano’s
inequality (6). Applications for norm and numerical radius inequalities are provided
as well.
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2 Vector Inequalities for a Projection

Assume that P W H ! H is an orthogonal projection on H, namely it satisfies the
condition P2 D P D P�: We obviously have in the operator order of B .H/ that
0 � P � 1H .

The following result holds:

Theorem 1. Let P W H ! H is an orthogonal projection on H: Then for any x; y 2
H we have the inequalities

kxk kyk � hPx; xi1=2 hPy; yi1=2 � jhx; yi � hPx; yij : (7)

and

kxk kyk �
�
kxk2 � hPx; xi

�1=2 �
kyk2 � hPy; yi

�1=2 � jhPx; yij : (8)

Proof. Using the properties of projection, we have

hx � Px; y � Pyi D hx; yi � hPx; yi � hx; Pyi C hPx; Pyi (9)

D hx; yi � 2 hPx; yi C ˝
P2x; y

˛

D hx; yi � hPx; yi
for any x; y 2 H:

By Schwarz’s inequality we have

kx � Pxk2 ky � Pyk2 � jhx � Px; y � Pyij2 (10)

for any x; y 2 H:

Since, by (7), we have

kx � Pxk2 D kxk2 � hPx; xi ; ky � Pyk2 D kyk2 � hPy; yi ;

then by (10) we have

�
kxk2 � hPx; xi

� �
kyk2 � hPy; yi

�
� jhx; yi � hPx; yij2 (11)

for any x; y 2 H:

Using the elementary inequality that holds for any real numbers a; b; c; d

.ac � bd/2 � �
a2 � b2

� �
c2 � d2

�
;
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we have

�
kxk kyk � hPx; xi1=2 hPy; yi1=2

�2 �
�
kxk2 � hPx; xi

� �
kyk2 � hPy; yi

�
(12)

for any x; y 2 H:

Since

kxk � hPx; xi1=2 ; kyk � hPy; yi1=2 ;

then

kxk kyk � hPx; xi1=2 hPy; yi1=2 � 0;

for any x; y 2 H:

By (11) and (12) we get

�
kxk kyk � hPx; xi1=2 hPy; yi1=2

�2 � jhx; yi � hPx; yij2

for any x; y 2 H; which, by taking the square root, is equivalent to the desired
inequality (7).

Observe that, if P is an orthogonal projection, then Q WD 1H � P is also a
projection. Indeed we have

Q2 D .1H � P/2 D 1H � 2P C P2 D 1H � P D Q:

Now, if we write the inequality (7) for the projection Q we get the desired
inequality (8).

Corollary 1. With the assumptions of Theorem 1, we have the following refinements
of Schwarz inequality:

kxk kyk � hPx; xi1=2 hPy; yi1=2 C jhx; yi � hPx; yij (13)

� jhPx; yij C jhx; yi � hPx; yij � jhx; yij

and

kxk kyk �
�
kxk2 � hPx; xi

�1=2 �
kyk2 � hPy; yi

�1=2 C jhPx; yij (14)

� jhx; yi � hPx; yij C jhPx; yij � jhx; yij

for any x; y 2 H:



168 S.S. Dragomir

Remark 1. Since

jhx; yi � hPx; yij � jhx; yij � jhPx; yij

then by the first inequality in (13) we have

kxk kyk � hPx; xi1=2 hPy; yi1=2 C jhx; yij � jhPx; yij

that produces the inequality

kxk kyk � jhx; yij � hPx; xi1=2 hPy; yi1=2 � jhPx; yij � 0 (15)

for any x; y 2 H:

We notice that the second inequality follows by Schwarz’s inequality for the
nonnegative self-adjoint operator P:

Since

jhx; yi � hPx; yij � jhPx; yij � jhx; yij

then by (13) we have

kxk kyk � hPx; xi1=2 hPy; yi1=2 C jhx; yi � hPx; yij
� hPx; xi1=2 hPy; yi1=2 C jhPx; yij � jhx; yij ;

which implies that

kxk kyk C jhx; yij � hPx; xi1=2 hPy; yi1=2 C jhPx; yij
� 2 jhPx; yij

and is equivalent to

1

2
Œkxk kyk C jhx; yij� � 1

2

h
hPx; xi1=2 hPy; yi1=2 C jhPx; yij

i
(16)

� jhPx; yij

for any x; y 2 H:

The inequality between the first and last term in (16), namely

1

2
Œkxk kyk C jhx; yij� � jhPx; yij (17)

for any x; y 2 H is a generalization of Buzano’s inequality (3).



Vector Inequalities for a Projection in Hilbert Spaces and Applications 169

From the inequality (14) we can state that

kxk kyk � jhPx; yij �
�
kxk2 � hPx; xi

�1=2 �
kyk2 � hPy; yi

�1=2

(18)

� jhx; yi � hPx; yij

for any x; y 2 H:

From the inequality (14) we also have

kxk kyk �
�
kxk2 � hPx; xi

�1=2 �
kyk2 � hPy; yi

�1=2 C jhPx; yij
� jhx; yi � hPx; yij C jhPx; yij � jhPx; yij � jhx; yij C jhPx; yij
D 2 jhPx; yij � jhx; yij ;

which implies that

1

2
Œkxk kyk C jhx; yij� � 1

2

��
kxk2 � hPx; xi

�1=2 �
kyk2 � hPy; yi

�1=2
	

(19)

C1

2
ŒjhPx; yij C jhx; yij� � jhPx; yij

for any x; y 2 H:

The case of orthonormal families which is related to Bessel’s inequality is of
interest.

Let E D ˚
ej

�
j2J be an othonormal family in H: Then for any x; y 2 H we have

from (13) and (14) the inequalities

kxk kyk �
0

@
X

j2J

ˇ
ˇ˝x; ej

˛ˇˇ2

1

A

1=2 0

@
X

j2J

ˇ
ˇ˝y; ej

˛ˇˇ2

1

A

1=2

(20)

C
ˇ̌
ˇ̌
ˇ̌hx; yi �

X

j2J

˝
x; ej

˛ ˝
ej; y

˛
ˇ̌
ˇ̌
ˇ̌

�
ˇ̌
ˇ̌
ˇ̌
X

j2J

˝
x; ej

˛ ˝
ej; y

˛
ˇ̌
ˇ̌
ˇ̌ C

ˇ̌
ˇ̌
ˇ̌hx; yi �

X

j2J

˝
x; ej

˛ ˝
ej; y

˛
ˇ̌
ˇ̌
ˇ̌ � jhx; yij

and

kxk kyk �
0

@kxk2 �
X

j2J

ˇ̌˝
x; ej

˛ˇ̌2

1

A

1=2 0

@kyk2 �
X

j2J

ˇ̌˝
y; ej

˛ˇ̌2

1

A

1=2

(21)
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C
ˇ̌
ˇ̌
ˇ̌

*
X

j2J

˝
x; ej

˛ ˝
ej; y

˛
+ˇ̌
ˇ̌
ˇ̌

�
ˇ
ˇ̌
ˇ̌
ˇ
hx; yi �

X

j2J

˝
x; ej

˛ ˝
ej; y

˛
ˇ
ˇ̌
ˇ̌
ˇ
C

ˇ
ˇ̌
ˇ̌
ˇ

X

j2J

˝
x; ej

˛ ˝
ej; y

˛
ˇ
ˇ̌
ˇ̌
ˇ

� jhx; yij :

By (15) and (16) we have

kxk kyk � jhx; yij (22)

�
0

@
X

j2J

ˇ̌˝
x; ej

˛ˇ̌2

1

A

1=2 0

@
X

j2J

ˇ̌˝
y; ej

˛ˇ̌2

1

A

1=2

�
ˇ̌
ˇ̌
ˇ
ˇ

*
X

j2J

˝
x; ej

˛ ˝
ej; y

˛
+ˇ̌
ˇ̌
ˇ
ˇ

� 0

and

1

2
Œkxk kyk C jhx; yij� � 1

2

0

@
X

j2J

ˇ̌˝
x; ej

˛ˇ̌2

1

A

1=2 0

@
X

j2J

ˇ̌˝
y; ej

˛ˇ̌2

1

A

1=2

C 1

2

ˇ̌
ˇ̌
ˇ
ˇ

**
X

j2J

˝
x; ej

˛ ˝
ej; y

˛
++ˇ̌

ˇ̌
ˇ
ˇ

�
ˇ̌
ˇ̌
ˇ
ˇ

*
X

j2J

˝
x; ej

˛ ˝
ej; y

˛
+ˇ̌
ˇ̌
ˇ
ˇ

(23)

for any x; y 2 H:

The inequality between the first and last term in (23) provides a generalization of
Buzano’s inequality for orthonormal families E D ˚

ej
�

j2J .
The following result holds:

Theorem 2. Let P W H ! H is an orthogonal projection on H: Then for any x; y 2
H we have the inequalities

jhx; yi � 2 hPx; yij � kxk kyk ; (24)

jhx; yi � hPx; yij (25)

� min



kxk

�
kyk2 � hPy; yi

�1=2

; kyk
�
kxk2 � hPx; xi

�1=2
�
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� 1

2

�
kxk

�
kyk2 � hPy; yi

�1=2 C kyk
�
kxk2 � hPx; xi

�1=2
	

� 1

2

�
kxk2 C kyk2

�1=2 �
kxk2 C kyk2 � hPy; yi � hPx; xi

�1=2

and

jhPx; yij � min
n
kxk hPy; yi1=2 ; kyk hPx; xi1=2

o
(26)

� 1

2

h
kxk hPy; yi1=2 C kyk hPx; xi1=2

i

� 1

2

�
kxk2 C kyk2

�1=2

.hPx; xi C hPy; yi/1=2 :

Proof. Observe that

kx � 2Pxk2 D kxk2 � 4 Re hx; Pxi C 4 hPx; Pxi
D kxk2 � 4 hx; Pxi C 4

˝
P2x; x

˛

D kxk2 � 4 hx; Pxi C 4 hPx; xi D kxk2

for any x 2 H:

Using Schwarz’s inequality we have

kxk kyk D kx � 2Pxk kyk � jhx � 2Px; yij D jhx; yi � 2 hPx; yij

for any x; y 2 H and the inequality (24) is proved.
By Schwarz’s inequality we also have

kx � Pxk kyk � jhx � Px; yij D jhx; yi � hPx; yij

and

kxk ky � Pyk � jhx; y � Pyij D jhx; yi � hx; Pyij D jhx; yi � hPx; yij

for any x; y 2 H; which implies the first inequality in (25).
The second and the third inequalities are obvious by the elementary inequalities

min fa; bg � 1

2
.a C b/ ; a; b 2 RC

and

ac C bd � �
a2 C b2

�1=2 �
c2 C d2

�1=2
; a; b; c; d 2 RC:

The inequality (26) follows from (25) by replacing P with 1H � P:
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Remark 2. By the triangle inequality we have

kxk kyk C jhx; yij � jhx; yi � 2 hPx; yij C jhx; yij � 2 jhPx; yij ;

which implies that [see also (16) and (19)]

1

2
Œkxk kyk C jhx; yij� � jhPx; yij (27)

for any x; y 2 H:

From (25) we also have

jhPx; yij (28)

� jhx; yij C min



kxk

�
kyk2 � hPy; yi

�1=2

; kyk
�
kxk2 � hPx; xi

�1=2
�

and

jhx; yij (29)

� jhPx; yij C min



kxk

�
kyk2 � hPy; yi

�1=2

; kyk
�
kxk2 � hPx; xi

�1=2
�

for any x; y 2 H:

Now, if E D ˚
ej

�
j2J is an orthonormal family, then by the inequalities (24)

and (25) we have

ˇ̌
ˇ̌
ˇ
ˇ
hx; yi � 2

X

j2J

˝
x; ej

˛ ˝
ej; y

˛
ˇ̌
ˇ̌
ˇ
ˇ

� kxk kyk ; (30)

and
ˇ̌
ˇ̌
ˇ̌hx; yi �

X

j2J

˝
x; ej

˛ ˝
ej; y

˛
ˇ̌
ˇ̌
ˇ̌ (31)

� min

8
<̂

:̂
kxk

0

@kyk2 �
X

j2J

ˇ̌˝
y; ej

˛ˇ̌2

1

A

1=2

; kyk
0

@kxk2 �
X

j2J

ˇ̌˝
x; ej

˛ˇ̌2

1

A

1=2
9
>=

>;
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� 1

2

2

6
4kxk

0

@kyk2 �
X

j2J

ˇ̌˝
y; ej

˛ˇ̌2

1

A

1=2

C kyk
0

@kxk2 �
X

j2J

ˇ̌˝
x; ej

˛ˇ̌2

1

A

1=2
3

7
5

� 1

2

�
kxk2 C kyk2

�1=2

0

@kxk2 C kyk2 �
X

j2J

ˇ
ˇ˝y; ej

˛ˇˇ2 �
X

j2J

ˇ
ˇ˝x; ej

˛ˇˇ2

1

A

1=2

for any x; y 2 H:

From (28) we also have

ˇ̌
ˇ
ˇ̌
ˇ

X

j2J

˝
x; ej

˛ ˝
ej; y

˛
ˇ̌
ˇ
ˇ̌
ˇ

� jhx; yij C min

8
<̂

:̂
kxk

0

@kyk2 �
X

j2J

ˇ
ˇ˝y; ej

˛ˇˇ2

1

A

1=2

; kyk
0

@kxk2 �
X

j2J

ˇ
ˇ˝x; ej

˛ˇˇ2

1

A

1=2
9
>=

>;

(32)

for any x; y 2 H:

3 Inequalities for Norm and Numerical Radius

Let .HI h�; �i/ be a complex Hilbert space. The numerical range of an operator T is
the subset of the complex numbers C given by Gustafson and Rao [26, p. 1]:

W .T/ D fhTx; xi ; x 2 H; kxk D 1g :

The numerical radius w .T/ of an operator T on H is defined by Gustafson and
Rao [26, p. 8]:

w .T/ D sup fj�j ; � 2 W .T/g D sup fjhTx; xij ; kxk D 1g :

It is well known that w .�/ is a norm on the Banach algebra B .H/ and the
following inequality holds true:

w .T/ � kTk � 2w .T/ ; for any T 2 B .H/ :

Utilizing Buzano’s inequality (3) we obtained the following inequality for the
numerical radius [13] or [15]:
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Theorem 3. Let .HI h�; �i/ be a Hilbert space and T W H ! H a bounded linear
operator on H: Then

w2 .T/ � 1

2

h
w

�
T2

� C kTk2
i

: (33)

The constant 1
2

is best possible in (33).

The following general result for the product of two operators holds [26, p. 37]:

Theorem 4. If A; B are two bounded linear operators on the Hilbert space
.H; h�; �i/ ; then w .AB/ � 4w .A/ w .B/ : In the case that AB D BA; then w .AB/ �
2w .A/ w .B/ : The constant 2 is best possible here.

The following results are also well known [26, p. 38].

Theorem 5. If A is a unitary operator that commutes with another operator B; then

w .AB/ � w .B/ : (34)

If A is an isometry and AB D BA; then (34) also holds true.

We say that A and B double commute if AB D BA and AB� D B�A: The following
result holds [26, p. 38].

Theorem 6. If the operators A and B double commute, then

w .AB/ � w .B/ kAk : (35)

As a consequence of the above, we have [26, p. 39]:

Corollary 2. Let A be a normal operator commuting with B: Then

w .AB/ � w .A/ w .B/ : (36)

A related problem with the inequality (35) is to find the best constant c for which
the inequality

w .AB/ � cw .A/ kBk

holds for any two commuting operators A; B 2 B .H/ : It is known that 1:064 < c <

1:169; see [3, 32] and [33].
In relation to this problem, it has been shown in [24] that
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Theorem 7. For any A; B 2 B .H/ we have

w

�
AB C BA

2


� p

2w .A/ kBk : (37)

For other numerical radius inequalities see the recent monograph [18] and the
references therein.

The following result holds.

Theorem 8. Let P W H ! H be an orthogonal projection on the Hilbert space
.H; h�; �i/ : If A; B are two bounded linear operators on H; then

jhBPAx; xij � 1

2

�kAxk kB�xk C jhBAx; xij� (38)

and

kBPAxk � 1

2
ŒkAxk kBk C kBAxk� (39)

for any x 2 H:

Moreover, we have

w .BPA/ � 1

2
ŒkAk kBk C w .BA/� (40)

and

kBPAk � 1

2
ŒkAk kBk C kBAk� : (41)

Proof. From the inequality (17) we have

jhPAx; B�yij � 1

2

�kAxk kB�yk C jhAx; B�yij�

that is equivalent to

jhBPAx; yij � 1

2

�kAxk kB�yk C jhBAx; yij� (42)

for any x; y 2 H:

If we take y D x in (42), then we get (38).
Taking the supremum over y 2 H with kyk D 1 in (42) we have

kBPAxk D sup
kykD1

jhBPAx; yij � 1

2
sup

kykD1

�kAxk kB�yk C jhBAx; yij�
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� 1

2

"

kAxk sup
kykD1

kB�yk C sup
kykD1

jhBAx; yij
#

D 1

2
ŒkAxk kBk C kBAxk�

for any x 2 H.
The inequalities (40) and (41) follow from (38) and (39) by taking the supremum

over x 2 H with kxk D 1:

Corollary 3. Let P W H ! H be an orthogonal projection on the Hilbert space
.H; h�; �i/ : If A; B are two bounded linear operators on H; then

jhAPAx; xij � 1

2

�kAxk kA�xk C ˇ
ˇ˝A2x; x

˛ˇˇ� (43)

and

kAPAxk � 1

2

�kAxk kAk C ��A2x
���

(44)

for any x 2 H:

Moreover, we have

w .APA/ � 1

2

h
kAk2 C w

�
A2

�i
(45)

and

kAPAk � 1

2

h
kAk2 C ��A2

��
i

: (46)

Remark 3. Let e 2 H; kek D 1: If we write the inequalities (38) and (39) for the
projector Pe defined by Pex D hx; ei e; x 2 H; we have

jhAx; eij jhBe; xij � 1

2

�kAxk kB�xk C jhBAx; xij� (47)

and

jhAx; eij kBek � 1

2
ŒkAxk kBk C kBAxk� (48)

for any x 2 H:
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Now, if we take the supremum over x 2 H; kxk D 1 in (48), then we get

kA�ek kBek � 1

2
ŒkAk kBk C kBAk� (49)

for any e 2 H; kek D 1:

If in (49) we take B D A; we have

kA�ek kAek � 1

2

h
kAk2 C ��A2

��
i

(50)

for any e 2 H; kek D 1:

If in (47) we take B D A; then we get

jhAx; eij jhe; A�xij � 1

2

�kAxk kA�xk C ˇ̌˝
A2x; x

˛ˇ̌�
(51)

for any x 2 H and e 2 H; kek D 1; and in particular

jhAe; eij2 � 1

2

�kAek kA�ek C ˇ
ˇ˝A2e; e

˛ˇˇ� (52)

for any e 2 H; kek D 1:

Taking the supremum over e 2 H; kek D 1 in (52) we recapture the result in
Theorem 3.

For a given operator T we consider the modulus of T defined as jTj WD .T�T/1=2 :

Corollary 4. Let P W H ! H be an orthogonal projection on the Hilbert space
.H; h�; �i/ : If A; B are two bounded linear operators on H; then

w .BPA/ � 1

2
w .BA/ C 1

4

���jAj2 C jB�j2
��� : (53)

In particular, we have

w .APA/ � 1

2
w

�
A2

� C 1

4

��
�jAj2 C jA�j2

��
� : (54)

Proof. From the inequality (38) we have

jhBPAx; xij � 1

2

�kAxk kB�xk C jhBAx; xij� (55)

� 1

2
jhBAx; xij C 1

4

h
kAxk2 C kB�xk2

i
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for any x 2 H; where for the second inequality we used the elementary inequality

ab � 1

2

�
a2 C b2

�
; a; b 2 R. (56)

Since

kAxk2 C kB�xk2 D hAx; Axi C hB�x; B�xi D hA�Ax; xi C hBB�x; xi
D

D�
jAj2 C jB�j2

�
x; x

E

for any x 2 H; then from (55) we have

jhBPAx; xij � 1

2
jhBAx; xij C 1

4

D�
jAj2 C jB�j2

�
x; x

E
(57)

for any x 2 H:

Taking the supremum over x 2 H; kxk D 1 in (57) we get the desired result (53).

Remark 4. We observe that by (52) we have

jhAe; eij2 � 1

2

�kAek kA�ek C ˇ
ˇ˝A2e; e

˛ˇˇ� (58)

� 1

2

ˇ
ˇ˝A2e; e

˛ˇˇ C 1

4

h
kAek2 C kA�ek2

i

D 1

2

ˇ
ˇ˝A2e; e

˛ˇˇ C 1

4

D�
jAj2 C jA�j2

�
e; e

E

for any e 2 H; kek D 1:

Taking the supremum over e 2 H; kek D 1 in (58) we get

w2 .A/ � 1

2
w

�
A2

� C 1

4

��
�jAj2 C jA�j2

��
� ; (59)

for any bounded linear operator A:

Since
�
��jAj2 C jA�j2

�
�� �

�
��jAj2

�
�� C

�
��jA�j2

�
�� D 2 kAk2 ;

then the inequality (59) is better than the inequality in Theorem 3.

The following result also holds:

Theorem 9. Let P W H ! H be an orthogonal projection on the Hilbert space
.H; h�; �i/ : If A; B are two bounded linear operators on H; then
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w

�
B

�
1

2
1H � P


A


� 1

4

���jAj2 C jB�j2
��� : (60)

In particular, we have

w

�
A

�
1

2
1H � P


A


� 1

4

���jAj2 C jA�j2
��� : (61)

Proof. From the inequality (24) we have

jh.1H � 2P/ Ax; B�xij � kAxk kB�xk ;

that is equivalent to

ˇ̌
ˇ
ˇ

�
B

�
1

2
1H � P


Ax; x

�ˇ̌
ˇ
ˇ � 1

2
kAxk kB�xk (62)

for any x 2 H:

Using the elementary inequality (56) we have

1

2
kAxk kB�xk � 1

4

�
kAxk2 C kB�xk2

�
D 1

4

D�
jAj2 C jB�j2

�
x; x

E

and by (62) we get

ˇ̌
ˇ
ˇ

�
B

�
1

2
1H � P


Ax; x

�ˇ̌
ˇ
ˇ � 1

4

D�
jAj2 C jB�j2

�
x; x

E
(63)

for any x 2 H:

Taking the supremum over x 2 H; kxk D 1 in (63) we get the desired result (60).

Remark 5. If we take in (60) P D 1H; then we get [18, p. 6]

w .BA/ � 1

2

���jAj2 C jB�j2
��� (64)

for any A; B bounded linear operators on H:
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