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Abstract Summation formulas of the Euler–Maclaurin and Abel–Plana and their
connections with several kinds of quadrature rules are studied. Besides the history
of these formulas, several of their modifications and generalizations are consid-
ered. Connections between the Euler–Maclaurin formula and basic quadrature
rules of Newton–Cotes type, as well as the composite Gauss–Legendre rule
and its Lobatto modification are presented. Besides the basic Plana summa-
tion formula a few integral modifications (the midpoint summation formula, the
Binet formula, Lindelöf formula) are introduced and analysed. Starting from the
moments of their weight functions and applying the recent MATHEMATICA package
OrthogonalPolynomials, recursive coefficients in the three-term recurrence
relation for the corresponding orthogonal polynomials are constructed, as well as
the parameters (nodes and Christoffel numbers) of the corresponding Gaussian
quadrature formula.
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1 Introduction and Preliminaries

A summation formula was discovered independently by Leonhard Euler [18, 19] and
Colin Maclaurin [35] plays an important role in the broad area of numerical analysis,
analytic number theory, approximation theory, as well as in many applications in
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other fields. This formula, today known as the Euler–Maclaurin summation formula,

nX

kD0
f .k/ D

Z n

0

f .x/ dx C 1

2
.f .0/C f .n//

C
rX

�D1

B2�
.2�/Š

�
f .2��1/.n/ � f .2��1/.0/

� C Er.f /; (1)

was published first time by Euler in 1732 (without proof) in connection with the
problem of determining the sum of the reciprocal squares,

1C 1

22
C 1

32
C � � � ; (2)

which is known as the Basel problem. The brothers Johann and Jakob Bernoulli,
Leibnitz, Stirling, etc. also dealt intensively by such a kind of problems. In modern
terminology, the sum (2) represents the zeta function of 2, where more generally

�.s/ D 1C 1

2s
C 1

3s
C � � � .s > 1/:

Although at that time the theory of infinite series was not exactly based, it was
observed a very slow convergence of this series, e.g. in order to compute directly
the sum with an accuracy of six decimal places it requires taking into account at
least a million first terms, because

1

n C 1
<

C1X

kDnC1

1

k2
<
1

n
:

Euler discovered the remarkable formula with much faster convergence

�.2/ D log2 2C
C1X

kD1

1

2k�1k2
;

and obtained the value �.2/ D 1:644944 : : : (with seven decimal digits). But the
discovery of a general summation procedure (1) enabled Euler to calculate �.2/ to
20 decimal places. For details see Gautschi [25, 26] and Varadarajan [61].

Using a generalized Newton identity for polynomials (when their degree tends to
infinity), Euler [19] proved the exact result �.2/ D �2=6. Using the same method
he determined �.s/ for even s D 2m up to 12,

�.4/ D �4

90
; �.6/ D �6

945
; �.8/ D �8

9450
; �.10/ D �10

93555
; �.12/ D 691�12

638512875
:
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Sometime later, using his own partial fraction expansion of the cotangent function,
Euler obtained the general formula

�.2�/ D .�1/��1 22��1B2�
.2�/Š

�2�;

where B2� are the Bernoulli numbers, which appear in the general Euler–Maclaurin
summation formula (1). Detailed information about Euler’s complete works can be
found in The Euler Archive ( http://eulerarchive.maa.org).

We return now to the general Euler–Maclaurin summation formula (1) which
holds for any n; r 2 N and f 2 C2rŒ0; n�. As we mentioned before this formula
was found independently by Maclaurin. While in Euler’s case the formula (1) was
applied for computing slowly converging infinite series, in the second one Maclaurin
used it to calculate integrals. A history of this formula was given by Barnes [5], and
some details can be found in [3, 8, 25, 26, 38, 61].

Bernoulli numbers Bk .B0 D 1, B1 D �1=2, B2 D 1=6, B3 D 0, B4 D �1=30,
: : :) can be expressed as values at zero of the corresponding Bernoulli polynomials,
which are defined by the generating function

text

et � 1 D
C1X

kD0
Bk.x/

tk

kŠ
:

Similarly, Euler polynomials can be introduced by

2ext

et C 1
D

C1X

kD0
Ek.x/

tk

kŠ
:

Bernoulli and Euler polynomials play a similar role in numerical analysis and
approximation theory like orthogonal polynomials. First few Bernoulli polynomi-
als are

B0.x/ D 1; B1.x/ D x � 1

2
; B2.x/ D x2 � x C 1

6
; B3.x/ D x3 � 3x2

2
C x

2
;

B4.x/ D x4 � 2x3 C x2 � 1

30
; B5.x/ D x5 � 5x4

2
C 5x3

3
� x

6
; etc.

Some interesting properties of these polynomials are

B0
n.x/ D nBn�1.x/; Bn.1 � x/ D .�1/nBn.x/;

Z 1

0

Bn.x/ dx D 0 .n 2 N/:

The error term Er.f / in (1) can be expressed in the form (cf. [8])

Er.f / D .�1/r
C1X

kD1

Z n

0

ei2�kt C e�i2�kt

.2�k/2r
f .2r/.x/ dx;

http://eulerarchive.maa.org
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or in the form

Er.f / D �
Z n

0

B2r.x � bxc/
.2r/Š

f .2r/.x/ dx; (3)

where bxc denotes the largest integer that is not greater than x. Supposing f 2
C2rC1Œ0; n�, after an integration by parts in (3) and recalling that the odd Bernoulli
numbers are zero, we get (cf. [28, p. 455])

Er.f / D
Z n

0

B2rC1.x � bxc/
.2r C 1/Š

f .2rC1/.x/ dx: (4)

If f 2 C2rC2Œ0; n�, using Darboux’s formula one can obtain (1), with

Er.f / D 1

.2r C 2/Š

Z 1

0

ŒB2rC2 � B2rC2.x/�
�n�1X

kD0
f .2rC2/.k C x/

�
dx (5)

(cf. Whittaker and Watson [65, p. 128]). This expression for Er.f / can be also
derived from (4), writting it in the form

Er.f / D
Z 1

0

B2rC1.x/
.2r C 1/Š

�n�1X

kD0
f .2rC1/.k C x/

�
dx

D
Z 1

0

B0
2rC2.x/

.2r C 2/Š

�n�1X

kD0
f .2rC1/.k C x/

�
dx;

and then by an integration by parts,

Er.f / D
"

B2rC2.x/
.2r C 2/Š

�n�1X

kD0
f .2rC1/.k C x/

�#1

0

�
Z 1

0

B2rC2.x/
.2r C 2/Š

�n�1X

kD0
f .2rC2/.k C x/

�
dx:

Because of B2rC2.1/ D B2rC2.0/ D B2rC2, the last expression can be represented
in the form (5).

Since

.�1/r ŒB2rC2 � B2rC2.x/� � 0; x 2 Œ0; 1�;

and

Z 1

0

ŒB2rC2 � B2rC2.x/� dt D B2rC2;



Summation Formulas of Euler–Maclaurin and Abel–Plana 433

according to the Second Mean Value Theorem for Integrals, there exists � 2 .0; 1/

such that

Er.f / D B2rC2
.2r C 2/Š

�n�1X

kD0
f .2rC2/.k C �/

�
D nB2rC2
.2r C 2/Š

f .2rC2/.�/; 0 < � < n:

(6)

The Euler–Maclaurin summation formula can be considered on an arbitrary
interval .a; b/ instead of .0; n/. Namely, taking h D .b � a/=n, t D a C xh, and
f .x/ D f ..t � a/=h/ D '.t/, formula (1) reduces to

h
nX

kD0
'.a C kh/ D

Z b

a
'.t/ dt C h

2
Œ'.a/C '.b/�

C
rX

�D1

B2�h2�

.2�/Š

�
'.2��1/.b/ � '.2��1/.a/

� C Er.'/; (7)

where, according to (6),

Er.'/ D .b � a/
B2rC2h2rC2

.2r C 2/Š
'.2rC2/.�/; a < � < b: (8)

Remark 1. An approach in the estimate of the remainder term of the Euler–
Maclaurin formula was given by Ostrowski [47].

Remark 2. The Euler–Maclaurin summation formula is implemented in MATHE-
MATICA as the function NSum with option Method -> Integrate.

2 Connections Between Euler–Maclaurin Summation
Formula and Some Basic Quadrature Rules
of Newton–Cotes Type

In this section we first show a direct connection between the Euler–Maclaurin
summation formula (1) and the well-known composite trapezoidal rule,

Tnf WD
nX

kD0
00f .k/ D 1

2
f .0/C

n�1X

kD1
f .k/C 1

2
f .n/; (9)

for calculating the integral

Inf WD
Z n

0

f .x/ dx: (10)
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This rule for integrals over an arbitrary interval Œa; b� can be presented in the form

h
nX

kD0
00'.a C kh/ D

Z b

a
'.t/ dt C ET.'/; (11)

where, as before, the sign
P00 denotes summation with the first and last terms

halved, h D .b � a/=n, and ET.'/ is the remainder term.

Remark 3. In general, the sequence of the composite trapezoidal sums converges
very slowly with respect to step refinement, because of jET.'/j D O.h2/. However,
the trapezoidal rule is very attractive in numerical integration of analytic and
periodic functions, for which '.t C b � a/ D '.t/. In that case, the sequence of
trapezoidal sums

Tn.'I h/ WD h
nX

kD0
00'.a C kh/ D h

nX

kD1
'.a C kh/ (12)

converges geometrically when applied to analytic functions on periodic intervals or
the real line. A nice survey on this subject, including history of this phenomenon, has
been recently given by Trefethen and Weideman [59] (see also [64]). For example,
when ' is a .b � a/-periodic and analytic function, such that j'.z/j � M in the
half-plane Im z > �c for some c > 0, then for each n � 1, the following estimate

jET.'/j D
ˇ̌
ˇTn.'I h/ �

Z b

a
'.t/ dt

ˇ̌
ˇ � .b � a/M

e2�cn=.b�a/ � 1
holds. A similar result holds for integrals over R.

It is well known that there are certain types of integrals which can be transformed
(by changing the variable of integration) to a form suitable for the trapezoidal
rule. Such transformations are known as Exponential and Double Exponential
Quadrature Rules (cf. [44–46, 57, 58]). However, the use of these transformations
could introduce new singularities in the integrand and the analyticity strip may be
lost. A nice discussion concerning the error theory of the trapezoidal rule, including
several examples, has been recently given by Waldvogel [63].

Remark 4. In 1990 Rahman and Schmeisser [51] gave a specification of spaces
of functions for which the trapezoidal rule converges at a prescribed rate as n !
C1, where a correspondence is established between the speed of convergence and
regularity properties of integrands. Some examples for these spaces were provided
in [64].

In a general case, according to (1), it is clear that

Tnf � Inf D
rX

�D1

B2�
.2�/Š

�
f .2��1/.n/ � f .2��1/.0/

� C ET
r .f /; (13)

where Tnf and Inf are given by (9) and (10), respectively, and the remainder term
ET

r .f / is given by (6) for functions f 2 C2rC2Œ0; n�.
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Similarly, because of (7), the corresponding formula on the interval Œa; b� is

h
nX

kD0
00'.a C kh/ �

Z b

a
'.t/ dt D

rX

�D1

B2�h2�

.2�/Š

�
'.2��1/.b/ � '.2��1/.a/

� C ET
r .'/;

where ET
r .'/ is the corresponding remainder given by (8). Comparing this with (11)

we see that ET.'/ D ET
0 .'/.

Notice that if '.2rC2/.x/ does not change its sign on .a; b/, then ET
r .'/ has the

same sign as the first neglected term. Otherwise, when '.2rC2/.x/ is not of constant
sign on .a; b/, then it can be proved that (cf. [14, p. 299])

jET
r .'/j � h2rC2 j2B2rC2j

.2r C 2/Š

Z b

a
j'.2rC2/.t/j dt � 2

� h

2�

�2rC2 Z b

a
j'.2rC2/.t/j dt;

i.e., jET
r .'/j D O.h2rC2/. Supposing that

R C1
a j'.2rC2/.x/j dx < C1, this holds

also in the limit case as b ! C1. This limit case enables applications of the
Euler–Maclaurin formula in summation of infinite series, as well as for obtaining
asymptotic formulas for a large b.

A standard application of the Euler–Maclaurin formula is in numerical inte-
gration. Namely, for a small constant h, the trapezoidal sum can be dramatically
improved by subtracting appropriate terms with the values of derivatives at the
endpoints a and b. In such a way, the corresponding approximations of the integral
can be improved to O.h4/, O.h6/, etc.

Remark 5. Rahman and Schmeisser [52] obtained generalizations of the trapezoidal
rule and the Euler–Maclaurin formula and used them for constructing quadrature
formulas for functions of exponential type over infinite intervals using holomorphic
functions of exponential type in the right half-plane, or in a vertical strip, or in the
whole plane. They also determined conditions which equate the existence of the
improper integral to the convergence of its approximating series.

Remark 6. In this connection an interesting question can be asked. Namely, what
happens if the function ' 2 C1.R/ and its derivatives are .b � a/-periodic, i.e.,
'.2��1/.a/ D '.2��1/.b/, � D 1; 2; : : : ? The conclusion that Tn.'I h/, in this case,
must be exactly equal to

R b
a '.t/ dt is wrong, but the correct conclusion is that ET.'/

decreases faster than any finite power of h as n tends to infinity.

Remark 7. Also, the Euler–Maclaurin formula was used in getting an extrapolating
method well-known as Romberg’s integration (cf. [14, pp. 302–308 and 546–523]
and [39, pp. 158–164]).

In the sequel, we consider a quadrature sum with values of the function f at the
points x D k C 1

2
, k D 0; 1; : : : ; n � 1, i.e., the so-called midpoint rule

Mnf WD
n�1X

kD0
f
�

k C 1

2

�
:
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Also, for this rule there exists the so-called second Euler–Maclaurin summation
formula

Mnf � Inf D
rX

�D1

.21�2� � 1/B2�
.2�/Š

�
f .2��1/.n/ � f .2��1/.0/

� C EM
r .f /; (14)

for which

EM
r .f / D n

.2�1�2r � 1/B2rC2
.2r C 2/Š

f .2rC2/.�/; 0 < � < n;

when f 2 C2rC2Œ0; n� (cf. [39, p. 157]). As before, Inf is given by (10).
The both formulas, (13) and (14), can be unified as

Qnf � Inf D
rX

�D1

B2�.�/

.2�/Š

�
f .2��1/.n/ � f .2��1/.0/

� C EQ
r .f /;

where � D 0 for Qn � Tn and � D 1=2 for Qn � Mn. It is true, because of the fact
that [50, p. 765] (see also [10])

B�.0/ D B� and B�
�1
2

�
D .21�� � 1/B�:

If we take a combination of Tnf and Mnf as

Qnf D Snf D 1

3
.Tnf C 2Mnf /;

which is, in fact, the well-known classical composite Simpson rule,

Snf WD 1

3

"
1

2
f .0/C

n�1X

kD1
f .k/C 2

n�1X

kD0
f
�

k C 1

2

�
C 1

2
f .n/

#
;

we obtain

Snf � Inf D
rX

�D2

.41�� � 1/B2�
3.2�/Š

�
f .2��1/.n/ � f .2��1/.0/

� C ES
r .f /: (15)

Notice that the summation on the right-hand side in the previous equality starts with
� D 2, because the term for � D 1 vanishes. For f 2 C2rC2Œ0; n� it can be proved
that there exists � 2 .0; n/, such that

ES
r .f / D n

.4�r � 1/B2rC2
3.2r C 2/Š

f .2rC2/.�/:
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For some modification and generalizations of the Euler–Maclaurin formula, see
[2, 7, 20–22, 37, 55, 60]. In 1965 Kalinin [29] derived an analogue of the Euler–
Maclaurin formula for C1 functions, for which there is Taylor series at each positive
integer x D �,

Z b

a
f .x/ dx D

C1X

kD0

	 kC1 � .	 � 1/kC1

.k C 1/Š
hkC1

nX

�D1
f .k/.a C .� � 	/h/;

where h D .b � a/=n, and used it to find some new expansions for the gamma
function, the  function, as well as the Riemann zeta function.

Using Bernoulli and Euler polynomials, Bn.x/ and En.x/, in 1960 Keda [30]
established a quadrature formula similar to the Euler–Maclaurin,

Z 1

0

f .x/ dx D Tn C
n�1X

kD0
Ak

�
f .2kC2/.0/C f .2kC2/.1/

� C Rn;

where

Tn D 1

n

nX

kD0
00f

� k

n

�
; Ak D

2kC2X

�D1

B�E2kC3��
�Š.2k C 3 � �/Šn� .k D 0; 1; : : : ; n � 1/;

and

Rn D f .2nC2/.�/
nC1X

mD1

2B2mE2n�2mC3
.2m/Š.2n � 2m C 3/Šn2m

.0 � � � 1/

for f 2 C2nC2Œ0; 1�, where Bn D Bn.0/ and En D En.0/. The convergence of Euler–
Maclaurin quadrature formulas on a class of smooth functions was considered by
Vaskevič [62].

Some periodic analogues of the Euler–Maclaurin formula with applications to
number theory have been developed by Berndt and Schoenfeld [6]. In the last
section of [6], they showed how the composite Newton–Cotes quadrature formulas
(Simpson’s parabolic and Simpson’s three-eighths rules), as well as various other
quadratures (e.g., Weddle’s composite rule), can be derived from special cases
of their periodic Euler–Maclaurin formula, including explicit formulas for the
remainder term.
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3 Euler–Maclaurin Formula Based on the Composite
Gauss–Legendre Rule and Its Lobatto Modification

In the papers [15, 48, 56], the authors considered generalizations of the Euler–
Maclaurin formula for some particular Newton–Cotes rules, as well as for 2- and
3-point Gauss–Legendre and Lobatto formulas (see also [4, 17, 33, 34]).

Recently, we have done [40] the extensions of Euler–Maclaurin formulas by
replacing the quadrature sum Qn by the composite Gauss–Legendre shifted formula,
as well as by its Lobatto modification. In these cases, several special rules have been
obtained by using the MATHEMATICA package OrthogonalPolynomials (cf.
[9, 43]). Some details on construction of orthogonal polynomials and quadratures of
Gaussian type will be given in Sect. 5.

We denote the space of all algebraic polynomials defined on R (or some its
subset) by P, and by Pm � P the space of polynomials of degree at most m .m 2 N/.

Let w� D wG
� and �� D �G

� , � D 1; : : : ;m, be weights (Christoffel numbers) and
nodes of the Gauss–Legendre quadrature formula on Œ0; 1�,

Z 1

0

f .x/ dx D
mX

�D1
wG
� f .�G

� /C RG
m.f /: (16)

Note that the nodes �� are zeros of the shifted (monic) Legendre polynomial

�m.x/ D
�2m

m

��1
Pm.2x � 1/:

Degree of its algebraic precision is d D 2m � 1, i.e., RG
m.f / D 0 for each f 2

P2m�1. The quadrature sum in (16) we denote by QG
mf , i.e.,

QG
mf D

mX

�D1
wG
� f .�G

� /:

The corresponding composite Gauss–Legendre sum for approximating the inte-
gral Inf , given by (10), can be expressed in the form

G.n/
m f D

n�1X

kD0
QG

mf .k C �/ D
mX

�D1
wG
�

n�1X

kD0
f .k C �G

� /: (17)

In the sequel we use the following expansion of a function f 2 CsŒ0; 1� in
Bernoulli polynomials for any x 2 Œ0; 1� (see Krylov [31, p. 15])

f .x/ D
Z 1

0

f .t/ dt C
s�1X

jD1

Bj.x/

jŠ

�
f .j�1/.1/ � f .j�1/.0/

� � 1

sŠ

Z 1

0

f .s/.t/Ls.x; t/ dt;

(18)
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where Ls.x; t/ D B�
s .x � t/� B�

s .x/ and B�
s .x/ is a function of period one, defined by

B�
s .x/ D Bs.x/; 0 � x < 1; B�

s .x C 1/ D B�
s .x/: (19)

Notice that B�
0 .x/ D 1, B�

1 .x/ is a discontinuous function with a jump of �1 at each
integer, and B�

s .x/, s > 1, is a continuous function.
Suppose now that f 2 C2rŒ0; n�, where r � m. Since the all nodes �� D �G

� ,
� D 1; : : : ;m, of the Gaussian rule (16) belong to .0; 1/, using the expansion (18),
with x D �� and s D 2r C 1, we have

f .��/ D I1f C
2rX

jD1

Bj.��/

jŠ

�
f .j�1/.1/ � f .j�1/.0/

�

� 1

.2r C 1/Š

Z 1

0

f .2rC1/.t/L2rC1.��; t/ dt;

where I1f D R 1
0

f .t/ dt.
Now, if we multiply it by w� D wG

� and then sum in � from 1 to m, we obtain

mX

�D1
w� f .��/ D

� mX

�D1
w�

�
I1f C

2rX

jD1

1

jŠ

� mX

�D1
w�Bj.��/

� �
f .j�1/.1/ � f .j�1/.0/

�

� 1

.2r C 1/Š

Z 1

0

f .2rC1/.t/
� mX

�D1
w�L2rC1.��; t/

�
dt;

i.e.,

QG
mf D QG

m.1/

Z 1

0

f .t/ dt C
2rX

jD1

QG
m.Bj/

jŠ

�
f .j�1/.1/ � f .j�1/.0/

� C EG
m;r.f /;

where

EG
m;r.f / D � 1

.2r C 1/Š

Z 1

0

f .2rC1/.t/QG
m .L2rC1. �; t// dt:

Since

Z 1

0

Bj.x/ dx D
(
1; j D 0;

0; j � 1;

and

QG
m.Bj/ D

mX

�D1
w�Bj.��/ D

(
1; j D 0;

0; 1 � j � 2m � 1;
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because the Gauss–Legendre formula is exact for all algebraic polynomials of
degree at most 2m � 1, the previous formula becomes

QG
mf �

Z 1

0

f .t/ dt D
2rX

jD2m

QG
m.Bj/

jŠ

�
f .j�1/.1/ � f .j�1/.0/

� C EG
m;r.f /: (20)

Notice that for Gauss–Legendre nodes and the corresponding weights the
following equalities

�� C �m��C1 D 1; w� D wm��C1 > 0; � D 1; : : : ;m;

hold, as well as

w�Bj.��/C wm��C1Bj.�m��C1/ D w�Bj.��/.1C .�1/j/;

which is equal to zero for odd j. Also, if m is odd, then �.mC1/=2 D 1=2 and
Bj.1=2/ D 0 for each odd j. Thus, the quadrature sum

QG
m.Bj/ D

mX

�D1
w�Bj.��/ D 0

for odd j, so that (20) becomes

QG
mf �

Z 1

0

f .t/ dt D
rX

jDm

QG
m.B2j/

.2j/Š

�
f .2j�1/.1/ � f .2j�1/.0/

� C EG
m;r.f /: (21)

Consider now the error of the (shifted) composite Gauss–Legendre formula (17).
It is easy to see that

G.n/
m f � Inf D

n�1X

kD0

�
QG

mf .k C � / �
Z kC1

k
f .t/ dt

	

D
n�1X

kD0

�
QG

mf .k C � / �
Z 1

0

f .k C x/ dx

	
:

Then, using (21) we obtain

G.n/
m f � Inf D

n�1X

kD0

8
<

:

rX

jDm

QG
m.B2j/

.2j/Š

�
f .2j�1/.k C 1/ � f .2j�1/.k/

� C EG
m;r.f .k C � //

9
=

;

D
rX

jDm

QG
m.B2j/

.2j/Š

�
f .2j�1/.n/ � f .2j�1/.0/

� C EG
n;m;r.f /;
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where EG
n;m;r.f / is given by

EG
n;m;r.f / D � 1

.2r C 1/Š

Z 1

0

�n�1X

kD0
f .2rC1/.k C t/

�
QG

m .L2rC1. �; t// dt: (22)

Since L2rC1.x; t/ D B�
2rC1.x � t/ � B�

2rC1.x/ and

B�
2rC1.��/ D B2rC1.��/; B�

2rC1.�� � t/ D � 1

2r C 2

d

dt
B�
2rC2.�� � t/;

we have

QG
m .L2rC1. �; t// D QG

m



B�
2rC1. � � t/

� � QG
m



B�
2rC1. � /�

D � 1

2r C 2
QG

m

�
d

dt
B�
2rC2. � � t/

�
;

because QG
m .B2rC1. � // D 0. Then for (22) we get

.2r C 2/ŠEG
n;m;r.f / D

Z 1

0

�n�1X

kD0
f .2rC1/.k C t/

�
QG

m

�
d

dt
B�
2rC2. � � t/

�
dt:

By using an integration by parts, it reduces to

.2r C 2/ŠEG
n;m;r.f / D F.t/QG

m



B�
2rC2. � � t/

� ˇ̌
ˇ
1

0
�

Z 1

0

QG
m



B�
2rC2. � � t/

�
F0.t/ dt;

where F.t/ is introduced in the following way

F.t/ D
n�1X

kD0
f .2rC1/.k C t/:

Since B�
2rC2.�� � 1/ D B�

2rC2.��/ D B2rC2.��/, we have

F.t/QG
m



B�
2rC2. � � t/

� ˇ̌
ˇ
1

0
D 


F.1/ � F.0/
�
QG

m



B�
2rC2. � /�

D QG
m .B2rC2. � //

Z 1

0

F0.t/ dt;

so that

.2r C 2/ŠEG
n;m;r.f / D

Z 1

0

�
QG

m .B2rC2. � // � QG
m



B�
2rC2. � � t/

��
F0.t/ dt:
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Fig. 1 Graphs of t 7! gG
m;r.t/, r D m (solid line), r D m C1 (dashed line), and r D m C2 (dotted

line), when m D 1, m D 2 (top), and m D 3, m D 4 (bottom)

Since

gG
m;r.t/ WD .�1/r�mQG

m

�
B2rC2. � / � B�

2rC2. � � t/
�
> 0; 0 < t < 1; (23)

there exists an � 2 .0; 1/ such that

.2r C 2/ŠEG
n;m;r.f / D F0.�/

Z 1

0

QG
m

�
B2rC2. � / � B�

2rC2. � � t/
�

dt:

Typical graphs of functions t 7! gG
m;r.t/ for some selected values of r � m � 1 are

presented in Fig. 1.
Because of continuity of f .2rC2/ on Œ0; n� we conclude that there exists also � 2

.0; n/ such that F0.�/ D nf .2rC2/.�/.
Finally, because of

R 1
0

QG
m

�
B�
2rC2. � � t/

�
dt D 0, we obtain that

.2r C 2/ŠEG
n;m;r.f / D nf .2rC2/.�/

Z 1

0

QG
m ŒB2rC2. � /� dt:

In this way, we have just proved the Euler–Maclaurin formula for the com-
posite Gauss–Legendre rule (17) for approximating the integral Inf , given by (10)
(see [40]):
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Theorem 1. For n;m; r 2 N .m � r/ and f 2 C2rŒ0; n� we have

G.n/
m f � Inf D

rX

jDm

QG
m.B2j/

.2j/Š

�
f .2j�1/.n/ � f .2j�1/.0/

� C EG
n;m;r.f /; (24)

where G.n/
m f is given by (17), and QG

mB2j denotes the basic Gauss–Legendre
quadrature sum applied to the Bernoulli polynomial x 7! B2j.x/, i.e.,

QG
m.B2j/ D

mX

�D1
wG
� B2j.�

G
� / D �RG

m.B2j/; (25)

where RG
m.f / is the remainder term in (16).

If f 2 C2rC2Œ0; n�, then there exists � 2 .0; n/, such that the error term in (24)
can be expressed in the form

EG
n;m;r.f / D n

QG
m.B2rC2/
.2r C 2/Š

f .2rC2/.�/: (26)

We consider now special cases of the formula (24) for some typical values of m.
For a given m, by G.m/ we denote the sequence of coefficients which appear in the
sum on the right-hand side in (24), i.e.,

G.m/ D ˚
QG

m.B2j/
�1

jDm D ˚
QG

m.B2m/;Q
G
m.B2mC2/;QG

m.B2mC4/; : : :
�
:

These Gaussian sums we can calculate very easily by using MATHEMATICA

Package OrthogonalPolynomials (cf. [9, 43]). In the sequel we mention
cases when 1 � m � 6.

Case m D 1. Here �G
1 D 1=2 and wG

1 D 1, so that, according to (25),

QG
1 .B2j/ D B2j.1=2/ D .21�2j � 1/B2j;

and (24) reduces to (14). Thus,

G.1/ D


� 1

12
;
7

240
;� 31

1344
;
127

3840
;� 2555

33792
;
1414477

5591040
;�57337
49152

;
118518239

16711680
; : : :

�
:

Case m D 2. Here we have

�G
1 D 1

2

�
1 � 1p

3

�
; �G

2 D 1

2

�
1C 1p

3

�
and wG

1 D wG
2 D 1

2
;

so that QG
2 .B2j/ D 1

2



B2j.�

G
1 /C B2j.�

G
2 /

� D B2j.�
G
1 /. In this case, the sequence of

coefficients is

G.2/ D


� 1

180
;
1

189
;� 17

2160
;
97

5346
;� 1291411

21228480
;
16367

58320
;�243615707
142767360

; : : :

�
:
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Case m D 3. In this case

�G
1 D 1

10

�
5 � p

15
�
; �G

2 D 1

2
; �G

3 D 1

10

�
5C p

15
�

and

wG
1 D 5

18
; wG

2 D 4

9
; wG

3 D 5

18
;

so that

QG
3 .B2j/ D 5

9
B2j.�

G
1 /C 4

9
B2j.�

G
2 /

and

G.3/ D


� 1

2800
;

49

72000
;� 8771

5280000
;
4935557

873600000
;� 15066667

576000000
;
3463953717

21760000000
; : : :

�
:

Cases m D 4; 5; 6. The corresponding sequences of coefficients are

G.4/ D


� 1

44100
;

41

565950
;� 3076

11704875
;
93553

75631500
;� 453586781

60000990000
;
6885642443

117354877500
; : : :

�
;

G.5/ D

� 1

698544
;

205

29719872
;� 100297

2880541440
;

76404959

352578272256
;� 839025422533

496513166929920
; : : :

�
;

G.6/ D

� 1

11099088
;

43

70436520
;� 86221

21074606784
;

147502043

4534139665440
;� 1323863797

4200045163776
; : : :

�
:

The Euler–Maclaurin formula based on the composite Lobatto formula can be
considered in a similar way. The corresponding Gauss-Lobatto quadrature formula

Z 1

0

f .x/ dx D
mC1X

�D0
wL
� f .�L

� /C RL
m.f /; (27)

with the endnodes �0 D �L
0 D 0, �mC1 D �L

mC1 D 1, has internal nodes �� D �L
� ,

� D 1; : : : ;m, which are zeros of the shifted (monic) Jacobi polynomial,

�m.x/ D
�2m C 2

m

��1
P.1;1/m .2x � 1/;

orthogonal on the interval .0; 1/ with respect to the weight function x 7! x.1 � x/.
The algebraic degree of precision of this formula is d D 2m C 1, i.e., RL

m.f / D 0 for
each f 2 P2mC1.



Summation Formulas of Euler–Maclaurin and Abel–Plana 445

For constructing the Gauss-Lobatto formula

QL
m.f / D

mC1X

�D0
wL
� f .�L

� /; (28)

we use parameters of the corresponding Gaussian formula with respect to the weight
function x 7! x.1 � x/, i.e.,

Z 1

0

g.x/x.1 � x/ dx D
mX

�D1
bwG
� g.b�G

� /C bRG
m.g/:

The nodes and weights of the Gauss-Lobatto quadrature formula (27) are (cf. [36,
pp. 330–331])

�L
0 D 0; �L

� D b�G
� .� D 1; : : : ;m/; �L

mC1 D 1;

and

wL
0 D 1

2
�

mX

�D1

bwG
�

b�G
�

; wL
� D bwG

�

b�G
� .1 �b�G

� /
.� D 1; : : : ;m/; wL

mC1 D 1

2
�

mX

�D1

bwG
�

1 �b�G
�

;

respectively. The corresponding composite rule is

L.n/m f D
n�1X

kD0
QL

mf .k C �/ D
mC1X

�D0
wL
�

n�1X

kD0
f .k C �L

� /;

D .wL
0 C wL

mC1/
n00X

kD0
f .k/C

mX

�D1
wL
�

n�1X

kD0
f .k C �L

� /: (29)

As in the Gauss–Legendre case, there exists a symmetry of nodes and
weights, i.e.,

�L
� C �L

mC1�� D 1; wL
� D wL

mC1�� > 0 � D 0; 1; : : : ;m C 1;

so that the Gauss-Lobatto quadrature sum

QL
m.Bj/ D

mC1X

�D0
wL
�Bj.�

L
� / D 0

for each odd j.
By the similar arguments as before, we can state and prove the following result.
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Theorem 2. For n;m; r 2 N .m � r/ and f 2 C2rŒ0; n� we have

L.n/m f � Inf D
rX

jDmC1

QL
m.B2j/

.2j/Š

�
f .2j�1/.n/ � f .2j�1/.0/

� C EL
n;m;r.f /; (30)

where L.n/m f is given by (29), and QL
mB2j denotes the basic Gauss-Lobatto quadrature

sum (28) applied to the Bernoulli polynomial x 7! B2j.x/, i.e.,

QL
m.B2j/ D

mC1X

�D0
wL
�B2j.�

L
� / D �RL

m.B2j/;

where RL
m.f / is the remainder term in (27).

If f 2 C2rC2Œ0; n�, then there exists � 2 .0; n/, such that the error term in (30)
can be expressed in the form

EL
n;m;r.f / D n

QL
m.B2rC2/
.2r C 2/Š

f .2rC2/.�/:

In the sequel we give the sequence of coefficients L.m/ which appear in the sum
on the right-hand side in (30), i.e.,

L.m/ D ˚
QL

m.B2j/
�1

jDmC1 D ˚
QL

m.B2mC2/;QL
m.B2mC4/;QL

m.B2mC6/; : : :
�
;

obtained by the Package OrthogonalPolynomials, for some values of m.
Case m D 0. This is a case of the standard Euler–Maclaurin formula (1), for

which �L
0 D 0 and �L

1 D 1, with wL
0 D wL

1 D 1=2. The sequence of coefficients is

L.0/ D

1

6
;� 1

30
;
1

42
;� 1

30
;
5

66
;� 691

2730
;
7

6
;�3617

510
;
43867

798
;�174611

330
;
854513

138
; : : :

�
;

which is, in fact, the sequence of Bernoulli numbers fB2jg1
jD1.

Case m D 1. In this case �L
0 D 0, �L

1 D 1=2, and �2 D 1, with the corresponding
weights wL

0 D 1=6, wL
1 D 2=3, and wL

2 D 1=6, which is, in fact, the Simpson formula
(15). The sequence of coefficients is

L.1/ D

1

120
;� 5

672
;
7

640
;� 425

16896
;
235631

2795520
;�3185
8192

;
19752437

8355840
;�958274615

52297728
; : : :

�
:

Case m D 2. Here we have

�L
0 D 0; �L

1 D 1

10
.5 � p

5/; �L
2 D 1

10
.5C p

5/; �L
3 D 1

and wL
0 D wL

3 D 1=12, wL
1 D wL

2 D 5=12, and the sequence of coefficients is

L.2/ D


1

2100
;� 1

1125
;
89

41250
;� 25003

3412500
;
3179

93750
;� 2466467

11953125
;
997365619

623437500
; : : :

�
:
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Case m D 3. Here the nodes and the weight coefficients are

�L
0 D 0; �L

1 D 1

14
.7 � p

31/; �L
2 D 1

2
; �L

3 D 1

14
.7C p

31/; �L
4 D 1

and

wL
0 D 1

20
; wL

1 D 49

180
; wL

2 D 16

45
; wL

3 D 49

180
; wL

4 D 1

20
;

respectively, and the sequence of coefficients is

L.3/ D


1

35280
;� 65

724416
;

38903

119857920
;� 236449

154893312
;
1146165227

122882027520
; : : :

�
:

Cases m D 4; 5. The corresponding sequences of coefficients are

L.4/ D


1

582120
;� 17

2063880
;

173

4167450
;� 43909

170031960
;
160705183

79815002400
;� 76876739

3960744480
; : : :

�
;

L.5/ D


1

9513504
;� 49

68999040
;

5453

1146917376
;� 671463061

17766424811520
;
1291291631

3526568534016
; : : :

�
:

Remark 8. Recently Dubeau [16] has shown that an Euler–Maclaurin like formula
can be associated with any interpolatory quadrature rule.

4 Abel–Plana Summation Formula and Some Modifications

Another important summation formula is the so-called Abel–Plana formula, but it
is not so well known like the Euler–Maclaurin formula. In 1820 Giovanni (Antonio
Amedea) Plana [49] obtained the summation formula

C1X

kD0
f .k/ �

Z C1

0

f .x/ dx D 1

2
f .0/C i

Z C1

0

f .iy/ � f .�iy/

e2�y � 1 dy; (31)

which holds for analytic functions f in ˝ D ˚
z 2 C W Re z � 0

�
which satisfy the

conditions:

1ı lim
jyj!C1

e�j2�yjjf .x ˙ iy/j D 0 uniformly in x on every finite interval,

2ı
Z C1

0

jf .x C iy/ � f .x � iy/je�j2�yj dy exists for every x � 0 and tends to zero

when x ! C1.
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This formula was also proved in 1823 by Niels Henrik Abel [1]. In addition, Abel
also proved an interesting “alternating series version”, under the same conditions,

C1X

kD0
.�1/kf .k/ D 1

2
f .0/C i

Z C1

0

f .iy/ � f .�iy/

2 sinh�y
dy: (32)

Otherwise, this formula can be obtained only from (31). Note that, by subtracting
(31) from the same formula written for the function z 7! 2f .2z/, we get (32).

For the finite sum Sn;mf D
nX

kDm

.�1/kf .k/, (32) the Abel summation formula

becomes

Sn;mf D 1

2

�
.�1/mf .m/C .�1/nf .n C 1/

�

�
Z C1

�1
�
.�1/m m.y/C .�1/n nC1.y/

�
wA.y/ dy; (33)

where the Abel weight on R and the function 
m.y/ are given by

wA.x/ D x

2 sinh�x
and 
m.y/ D f .m C iy/ � f .m � iy/

2iy
: (34)

The moments for the Abel weight can be expressed in terms of Bernoulli numbers as

�k D
8
<

:

0; k odd;



2kC2 � 1� .�1/

k=2BkC2
k C 2

; k even:
(35)

A general Abel–Plana formula can be obtained by a contour integration in the
complex plane. Let m; n 2 N, m < n, and C."/ be a closed rectangular contour with
vertices at m ˙ ib, n ˙ ib, b > 0 (see Fig. 2), and with semicircular indentations of
radius " round m and n. Let f be an analytic function in the strip ˝m;n D ˚

z 2 C W
m � Re z � n

�
and suppose that for every m � x � n,

lim
jyj!C1

e�j2�yjjf .x ˙ iy/j D 0 uniformly in x;

and that

Z C1

0

jf .x C iy/ � f .x � iy/je�j2�yj dy

exists.
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Fig. 2 Rectangular contour C."/

The integration
Z

C."/

f .z/

e�i2�z � 1 dz;

with " ! 0 and b ! C1, leads to the Plana formula in the following form
(cf. [42])

Tm;nf �
Z n

m
f .x/ dx D

Z C1

�1



n.y/ � 
m.y/

�
wP.y/ dy; (36)

where


m.y/ D f .m C iy/ � f .m � iy/

2iy
and wP.y/ D jyj

ej2�yj � 1 : (37)

Practically, the Plana formula (36) gives the error of the composite trapezoidal
formula (like the Euler–Maclaurin formula). As we can see the formula (36) is
similar to the Euler–Maclaurin formula, with the difference that the sum of terms

B2j

.2j/Š



f .2j�1/.n/ � f .2j�1/.m/

�

replaced by an integral. Therefore, in applications this integral must be calculated
by some quadrature rule. It is natural to construct the Gaussian formula with respect
to the Plana weight function x 7! wP.x/ on R (see the next section for such a
construction).

In order to find the moments of this weight function, we note first that if k is odd,
the moments are zero, i.e.,

�k.w
P/ D

Z

R

xkwP.x/ dx D
Z

R

xk jxj
ej2�xj � 1 dx D 0:
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For even k, we have

�k.w
P/ D 2

Z C1

0

xkC1

e2�x � 1 dx D 2

.2�/kC2

Z C1

0

tkC1

et � 1 dt;

which can be exactly expressed in terms of the Riemann zeta function �.s/,

�k.w
P/ D 2.k C 1/Š�.k C 2/

.2�/kC2 D .�1/k=2 BkC2
k C 2

;

because the number k C 2 is even. Thus, in terms of Bernoulli numbers, the
moments are

�k.w
P/ D

8
<

:

0; k is odd;

.�1/k=2 BkC2
k C 2

; k is even:
(38)

Remark 9. By the Taylor expansion for 
m.y/ (and 
n.y/) on the right-hand side
in (36),


m.y/ D f .m C iy/ � f .m � iy/

2iy
D

C1X

jD1

.�1/j�1y2j�2

.2j � 1/Š f .2j�1/.m/;

and using the moments (38), the Plana formula (36) reduces to the Euler–Maclaurin
formula,

Tm;nf �
Z n

m
f .x/ dx D

C1X

jD1

.�1/j�1
.2j � 1/Š�2j�2.wP/



f .2j�1/.n/ � f .2j�1/.m/

�

D
C1X

jD1

B2j

.2j/Š



f .2j�1/.n/ � f .2j�1/.m/

�
;

because of �2j�2.wP/ D .�1/j�1B2j=.2j/. Note that Tm;nf is the notation for the
composite trapezoidal sum

Tm;nf WD
nX

kDm

00f .k/ D 1

2
f .m/C

n�1X

kDmC1
f .k/C 1

2
f .n/: (39)

For more details see Rahman and Schmeisser [53, 54], Dahlquist [11–13], as well
as a recent paper by Butzer, Ferreira, Schmeisser, and Stens [8].

A similar summation formula is the so-called midpoint summation formula. It
can be obtained by combining two Plana formulas for the functions z 7! f .z � 1=2/
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and z 7! f ..z C m � 1/=2/. Namely,

Tm;2n�mC2f
� z C m � 1

2

�
� Tm;nC1f

�
z � 1

2

�
D

nX

kDm

f .k/;

i.e.,

nX

kDm

f .k/ �
Z nC1=2

m�1=2
f .x/ dx D

Z C1

�1
�

m�1=2.y/ � 
nC1=2.y/

�
wM.y/ dy; (40)

where the midpoint weight function is given by

wM.x/ D wP.x/ � wP.2x/ D jxj
ej2�xj C 1

; (41)

and 
m�1=2 and 
nC1=2 are defined in (37), taking m WD m � 1=2 and m WD n C 1=2,
respectively. The moments for the midpoint weight function can be expressed also
in terms of Bernoulli numbers as

�k.w
M/ D

Z

R

xk jxj
ej2�xj C 1

dx D
8
<

:

0; k is odd;

.�1/k=2.1 � 2�.kC1// BkC2
k C 2

; k is even:
(42)

An interesting weight function and the corresponding summation formula can be
obtained from the Plana formula, if we integrate by parts the right side in (36) (cf.
[13]). Introducing the so-called Binet weight function y 7! wB.y/ and the function
y 7!  m.y/ by

wB.y/ D � 1

2�
log



1� e�2�jyj� and  m.y/ D f 0.m C iy/C f 0.m � iy/

2
; (43)

respectively, we see that dwB.y/= dy D �wP.y/=y and

d

dy

n�

n.y/ � 
m.y/

�
y
o

D 1

2i

d

dy

n�
f .n C iy/ � f .n � iy/

���
f .m C iy/ � f .m � iy/

�o

D  n.y/ �  m.y/;

so that

Z C1

�1
�

n.y/ � 
m.y/

�
wP.y/ dy D

Z C1

�1
�

n.y/ � 
m.y/

�
.�y/ dwB.y/

D
Z C1

�1
�
 n.y/ �  m.y/

�
wB.y/ dy;
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because wB.y/ D O.e�2�jyj/ as jyj ! C1. Thus, the Binet summation formula
becomes

Tm;nf �
Z n

m
f .x/ dx D

Z C1

�1
�
 n.y/ �  m.y/

�
wB.y/ dy: (44)

Such a formula can be useful when f 0.z/ is easier to compute than f .z/.
The moments for the Binet weight can be obtained from ones for wP. Since

�k.w
P/ D

Z

R

ykwP.y/ dy D
Z

R

yk.�y/ dwB.y/ D .k C 1/�k.w
B/;

according to (38),

�k.w
B/ D

8
<

:

0; k is odd;

.�1/k=2 BkC2
.k C 1/.k C 2/

; k is even:
(45)

There are also several other summation formulas. For example, the Lindelöf
formula [32] for alternating series is

C1X

kDm

.�1/kf .k/ D .�1/m
Z C1

�1
f .m � 1=2C iy/

dy

2 cosh�y
; (46)

where the Lindelöf weight function is given by

wL.x/ D 1

2 cosh�y
D 1

e�x C e��x
: (47)

Here, the moments

�k.w
L/ D

Z

R

xk

e�x C e��x
dx

can be expressed in terms of the generalized Riemann zeta function z 7! �.z; a/,
defined by

�.z; a/ D
C1X

�D0
.� C a/�z:

Namely,

�k.w
L/ D

(
0; k odd;

2.4�/�k�1kŠ
�
�



k C 1; 1

4

� � � 

k C 1; 3

4

��
; k even:

(48)
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5 Construction of Orthogonal Polynomials and Gaussian
Quadratures for Weights of Abel–Plana Type

The weight functions w .2 fwP;wM;wB;wA;wLg/ which appear in the summation
formulas considered in the previous section are even functions on R. In this section
we consider the construction of (monic) orthogonal polynomials �k .� �k.wI � /
and corresponding Gaussian formulas

Z

R

f .x/w.x/ dx D
nX

�D1
A� f .x�/C Rn.wI f /; (49)

with respect to the inner product .p; q/ D R
R

p.x/q.x/w.x/ dx .p; q 2 P/. We note
that Rn.wI f / � 0 for each f 2 P2n�1.

Such orthogonal polynomials f�kgk2N0 and Gaussian quadratures (49) exist
uniquely, because all the moments for these weights �k .� �k.w//, k D 0; 1; : : : ,
exist, are finite, and �0 > 0.

Because of the property .xp; q/ D .p; xq/, these (monic) orthogonal polynomials
�k satisfy the fundamental three–term recurrence relation

�kC1.x/ D x�k.x/ � ˇk�k�1.x/; k D 0; 1; : : : ; (50)

with �0.x/ D 1 and ��1.x/ D 0, where fˇkgk2N0 .D fˇk.w/gk2N0 / is a sequence
of recursion coefficients which depend on the weight w. The coefficient ˇ0 may be
arbitrary, but it is conveniently defined by ˇ0 D �0 D R

R
w.x/ dx. Note that the

coefficients ˛k in (50) are equal to zero, because the weight function w is an even
function! Therefore, the nodes in (49) are symmetrically distributed with respect to
the origin, and the weights for symmetrical nodes are equal. For odd n one node is
at zero.

A characterization of the Gaussian quadrature (49) can be done via an eigenvalue
problem for the symmetric tridiagonal Jacobi matrix (cf. [36, p. 326]),

Jn D Jn.w/ D

2

66666664

˛0
p
ˇ1 O

p
ˇ1 ˛1

p
ˇ2

p
ˇ2 ˛2

: : :

: : :
: : :

p
ˇn�1

O
p
ˇn�1 ˛n�1

3

77777775

;

constructed with the coefficients from the three-term recurrence relation (50) (in our
case, ˛k D 0, k D 0; 1; : : : ; n � 1).

The nodes x� are the eigenvalues of Jn and the weights A� are given by A� D
ˇ0v

2
�;1, � D 1; : : : ; n, where ˇ0 is the moment �0 D R

R
w.x/ dx, and v�;1 is the first

component of the normalized eigenvector v D Œv�;1 � � � v�;n�T (with vT
�v� D 1)
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corresponding to the eigenvalue x� ,

Jnv� D x�v�; � D 1; : : : ; n:

An efficient procedure for constructing the Gaussian quadrature rules was given
by Golub and Welsch [27], by simplifying the well-known QR algorithm, so that
only the first components of the eigenvectors are computed.

The problems are very sensitive with respect to small perturbations in the data.
Unfortunately, the recursion coefficients are known explicitly only for some

narrow classes of orthogonal polynomials, as e.g. for the classical orthogonal
polynomials (Jacobi, the generalized Laguerre, and Hermite polynomials). How-
ever, for a large class of the so-called strongly non-classical polynomials these
coefficients can be constructed numerically, but procedures are very sensitive with
respect to small perturbations in the data. Basic procedures for generating these
coefficients were developed by Walter Gautschi in the eighties of the last century
(cf. [23, 24, 36, 41]).

However, because of progress in symbolic computations and variable-precision
arithmetic, recursion coefficients can be today directly generated by using the
original Chebyshev method of moments (cf. [36, pp. 159–166]) in symbolic form
or numerically in sufficiently high precision. In this way, instability problems can
be eliminated. Respectively symbolic/variable-precision software for orthogonal
polynomials and Gaussian and similar type quadratures is available. In this regard,
the MATHEMATICA package OrthogonalPolynomials (see [9] and [43]) is
downloadable from the web site http://www.mi.sanu.ac.rs/~gvm/. Also, there is
Gautschi’s software in MATLAB (packages OPQ and SOPQ). Thus, all that is
required is a procedure for the symbolic calculation of moments or their calculation
in variable-precision arithmetic.

In our case we calculate the first 2N moments in a symbolic form (list mom),
using corresponding formulas (for example, (38) in the case of the Plana weight
wP), so that we can construct the Gaussian formula (49) for each n � N. Now,
in order to get the first N recurrence coefficients {al,be} in a symbolic form,
we apply the implemented function aChebyshevAlgorithm from the Package
OrthogonalPolynomials, which performs construction of these coefficients
using Chebyshev algorithm, with the option Algorithm->Symbolic. Thus, it
can be implemented in the MATHEMATICA package OrthogonalPolynomials
in a very simple way as

<<orthogonalPolynomials‘
mom=Table[<expression for moments>,{k,0,199}];
{al,be}=aChebyshevAlgorithm[mom,Algorithm->Symbolic]
pq[n_]:=aGaussianNodesWeights[n,al,be,

WorkingPrecision->65,Precision -> 60]
xA = Table[pq[n],{n,5,40,5}];

http://www.mi.sanu.ac.rs/~{}gvm/
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where we put N D 100 and the WorkingPrecision->65 in order to obtain
very precisely quadrature parameters (nodes and weights) with Precision->60.
These parameters are calculated for n D 5.5/40, so that xA[[k]][[1]] and
xA[[k]][[2]] give lists of nodes and weights for five-point formula when k=1,
for ten-point formula when k=2, etc. Otherwise, here we can calculate the n-point
Gaussian quadrature formula for each n � N D 100.

All computations were performed in MATHEMATICA, Ver. 10.3.0, on MacBook
Pro (Retina, Mid 2012) OS X 10.11.2. The calculations are very fast. The running
time is evaluated by the function Timing in MATHEMATICA and it includes only
CPU time spent in the MATHEMATICA kernel. Such a way may give different
results on different occasions within a session, because of the use of internal system
caches. In order to generate worst-case timing results independent of previous
computations, we used also the command ClearSystemCache[], and in that
case the running time for the Plana weight function wP has been 4:2ms (calculation
of moments), 0:75 s (calculation of recursive coefficients), and 8 s (calculation
quadrature parameters for n D 5.5/40).

In the sequel we mention results for different weight functions, whose graphs are
presented in Fig. 3.

1. Abel and Lindelöf Weight Functions wA and wL These weight functions are
given by (34) and (47), and their moments by (35) and (48), respectively. It is
interesting that their corresponding coefficients in the three-term recurrence relation
(50) are known explicitly (see [36, p. 159])

ˇA
0 D �A

0 D 1

4
; ˇA

k D k.k C 1/

4
; k D 1; 2; : : : ;

and

ˇL
0 D �L

0 D 1

2
; ˇL

k D k2

4
; k D 1; 2; : : : :

Fig. 3 Graphs of the weight functions: (left) wA (solid line) and wL (dashed line); (right) wP (solid
line), wB (dashed line) and wM (dotted line)
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Thus, for these two weight functions we have recursive coefficients in the explicit
form, so that we go directly to construction quadrature parameters.

2. Plana Weight Function wP This weight function is given by (37), and the
corresponding moments by (38). Using the Package OrthogonalPolynomials
we obtain the sequence of recurrence coefficients fˇP

k gk�0 in the rational form:

ˇP
0 D 1

12
; ˇP

1 D 1

10
; ˇP

2 D 79

210
; ˇP

3 D 1205

1659
; ˇP

4 D 262445

209429
; ˇP

5 D 33461119209

18089284070
;

ˇP
6 D 361969913862291

137627660760070
; ˇP

7 D 85170013927511392430

24523312685049374477
;

ˇP
8 D 1064327215185988443814288995130

236155262756390921151239121153
;

ˇP
9 D 286789982254764757195675003870137955697117

51246435664921031688705695412342990647850
;

ˇP
10 D 15227625889136643989610717434803027240375634452808081047

2212147521291103911193549528920437912200375980011300650
;

ˇP
11 D 587943441754746283972138649821948554273878447469233852697401814148410885

71529318090286333175985287358122471724664434392542372273400541405857921
;

etc.
As we can see, the fractions are becoming more complicated, so that already ˇP

11

has the “form of complexity” f72=71g, i.e., it has 72 decimal digits in the numerator
and 71 digits in the denominator. Further terms of this sequence have the “form of
complexity” f88=87g, f106=05g, f129=128g, f152=151g, : : :, f13451=13448g.

Thus, the last term ˇP
99 has more than 13 thousand digits in its numerator and

denominator. Otherwise, its value, e.g. rounded to 60 decimal digits, is

ˇP
99 D 618:668116294139071216871819412846078447729830182674784697227:

3. Midpoint Weight Function wM This weight function is given by (41), and the
corresponding moments by (42). As in the previous case, we obtain the sequence of
recurrence coefficients fˇM

k gk�0 in the rational form:

ˇM
0 D 1

24
; ˇM

1 D 7

40
; ˇM

2 D 2071

5880
; ˇM

3 D 999245

1217748
; ˇM

4 D 21959166635

18211040276
;

ˇM
5 D 108481778600414331

55169934195679160
; ˇM

6 D 2083852396915648173441543

813782894744588335008520
;

ˇM
7 D 25698543837390957571411809266308135

7116536885169433586426285918882662
;

ˇM
8 D 202221739836050724659312728605015618097349555485

45788344599633183797631374444694817538967629598
;

ˇM
9 D 14077564493254853375144075652878384268409784777236869234539068357

2446087170499983327141705915330961521888001335934900402777402200
;
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etc. In this case, the last term ˇM
99 has slightly complicated the “form of complexity”

f16401=16398g than one in the previous case, precisely. Otherwise, its value
(rounded to 60 decimal digits) is

ˇM
99 D 619:562819405146668677971154899553589896235540274133472854031:

4. Binet Weight Function wB The moments for this weight function are given
in (38), and our Package OrthogonalPolynomials gives the sequence of
recurrence coefficients fˇB

k gk�0 in the rational form:

ˇB
0 D 1

12
; ˇB

1 D 1

30
; ˇB

2 D 53

210
; ˇB

3 D 195

371
; ˇB

4 D 22999

22737
; ˇB

5 D 29944523

19733142
;

ˇB
6 D 109535241009

48264275462
; ˇB

7 D 29404527905795295658

9769214287853155785
;

ˇB
8 D 455377030420113432210116914702

113084128923675014537885725485
;

ˇB
9 D 26370812569397719001931992945645578779849

5271244267917980801966553649147604697542
;

ˇB
10 D 152537496709054809881638897472985990866753853122697839

24274291553105128438297398108902195365373879212227726
;

ˇB
11 D 100043420063777451042472529806266909090824649341814868347109676190691

13346384670164266280033479022693768890138348905413621178450736182873
;

etc. Numerical values of coefficients ˇB
k for k D 12; : : : ; 39, rounded to 60 decimal

digits, are presented in Table 1.
For this case we give also quadrature parameters xB

� and AB
� , � D 1; : : : ; n, for n D

10 (rounded to 30 digits in order to save space). Numbers in parenthesis indicate the
decimal exponents (Table 2).
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Table 1 Numerical values of the coefficients ˇB
k , k D 12; : : : ; 39

k ˇB
k

12 9.04066023436772669953113936026048174933621963537072222675357

13 10.4893036545094822771883713045926295220972379893834049993209

14 12.2971936103862058639894371400919176597365509004516453610177

15 13.9828769539924301882597606512787300859080333154700506431789

16 16.0535514167049354697156163650062601783515764970917711361702

17 17.9766073998702775925694723076715543993147838556500117187847

18 20.3097620274416537438054147204948968937016485345196881526453

19 22.4704716399331324955179415715079221089953862901823520893038

20 25.0658465489459720291634003225063053682385176354570207084270

21 27.4644518250291336091755589826462226732286473857913864921713

22 30.3218212316730471268825993064057869944873787313809977426698

23 32.9585339299729872199940664514120882069601000999724796349878

24 36.0776989312992426451533209008554523367760033115543468301504

25 38.9527066823115557345443904104810462991593233805616588397077

26 42.3334900435769572113818539488560973399147861411953446717663

27 45.4469608500616210144241757375414510828484368311407665782656

28 49.0892031290125977081648833502750872924491998898068036677541

29 52.4412887514153373125698560469961084271478607455930155529787

30 56.3448453453418435384203659474761135421333046623523607025848

31 59.9356839071658582078525834927521121101345464090376940621335

32 64.1004227559203545279066118922379177529092202107679570943670

33 67.9301407880182211863677027451985358165225510069351193013587

34 72.3559405552117019696800529632362179107517585345562462880100

35 76.4246546268296897525850904222875264035700459112308348153069

36 81.1114032372479654848142309856834609745026942246296395824649

37 85.4192212764109726145856387173486827269888223681684704599999

38 90.3668147238641085955135745816833777807870911939721581625005

39 94.9138371000098879530762312919869274587678241868936940165561

Table 2 Gaussian quadrature parameters xB
� and AB

� , � D 1; : : : ; n, for ten-point rule

� xB
�C5 .D �xB

6��/ AB
�C5 .D AB

6��/

1 1:19026134410869931041299717296.�1/ 3:95107541334705577733788440045.�2/
2 5:98589257742219693357956162107.�1/ 2:10956883221363967243739596594.�3/
3 1:25058028819024934653033542222 4:60799503427397559669146065886.�5/
4 2:12020925569172605355904853247 2:63574272352001106479781030329.�7/
5 3:34927819645835833349223106504 1:76367377463777032308587486531.�10/
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62. Vaskevič, V.L.: On the convergence of Euler-Maclaurin quadrature formulas on a class of
smooth functions. Dokl. Akad. Nauk SSSR 260(5), 1040–1043 (Russian) (1981)

63. Waldvogel, J.: Towards a general error theory of the trapezoidal rule. In: Gautschi, W.,
Mastroianni, G., Rassias, Th.M. (eds.) Approximation and Computation: In Honor of Gradimir
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