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Preface

The goal of developing a phone recognition system (PRS) is to derive the sequence
of basic sound units from the speech signal. Most of the state-of-the-art PRSs are
developed using spectral features such as Mel frequency cepstral coefficients.
Spectral features mainly represent the gross shape of the vocal tract, but not the
information related to the excitation source or the positioning and movements of
various articulators. But, the production of each sound unit is characterized by
articulatory and excitation source features in addition to vocal tract features. It is
impossible to produce a sound unit without having an appropriate source of exci-
tation. The rate of vibration of vocal folds varies from one phone to another phone
based on their inherent characteristics as well as the influence of coarticulation
characteristics due to the presence of adjacent phones. The positioning and
movement of various articulators during the production of a sound unit change from
one sound unit to another. A unique combination of articulators in the vocal tract
and specific source of excitation results in production of a particular sound unit.
In this work, the articulatory and excitation source features are explored for
improving the performance of PRSs. The articulatory features (AFs) are derived
from the spectral features using feedforward neural networks (FFNNs). Five AF
groups, namely manner, place, roundness, frontness, and height, are considered.
Five different AF-based tandem PRSs are developed using the combination of
spectral features and AFs derived from FFNNs of each AF group. The systematic
analysis of phone-level accuracies contributed by each AF group is carried out.
Hybrid PRSs are developed by combining the evidences from AF-based tandem
PRSs using weighted combination approach. It is observed that the use of AFs in
addition to spectral features has lead to improvement in the performance of PRSs.
The excitation source information is derived by processing linear prediction
(LP) residual of the speech signal. The use of excitation source information has
shown improvement in the performance of PRSs. The robustness of proposed
excitation source features is demonstrated using white and babble noisy speech
samples. The PRSs developed using the combination of vocal tract and excitation
source features are more robust to noise than the PRSs developed using vocal tract
features alone. The performance of tandem PRSs is improved using excitation



vi Preface

source features in addition to spectral features. The performance of PRSs developed
using articulatory and excitation source features across read, extempore, and con-
versation modes of speech is analyzed, and results are compared. The use of
articulatory and excitation source features has shown improvement in all the three
modes of speech.

This book is mainly intended for researchers working on speech recognition
area. This book is also useful for the young researchers, who want to pursue
research in speech processing with an emphasis on articulatory and excitation
source features. Hence, this may be recommended as the text or reference book for
the postgraduate level advanced speech processing course. This book has been
organized as follows:

Chapter 1 introduces basic concepts of speech recognition and its applications.
The articulatory and excitation source features are described briefly. Chapter 2
provides compendious reviews about the use of articulatory and excitation source
features to develop speech recognition systems. Chapter 3 discusses the proposed
approaches to derive and use AFs for phone recognition task. The development of
tandem and hybrid PRSs using AFs is proposed. Chapter 4 describes the proposed
methods to parameterize and use the excitation source information to perform
phone recognition. The use of excitation source features to improve robustness of
PRSs is also discussed. Chapter 5 investigates the use of articulatory and excitation
source features to improve performance of PRSs across read, extempore, and
conversation modes of speech. Chapter 6 provides a brief summary and conclusion
of this book with a glimpse toward the scope for possible future work.

We would especially like to thank all professors of computer science and
engineering, I[IT Kharagpur for their moral encouragement and technical discus-
sions during course of editing and organization of this book. Special thanks to our
colleagues at Indian Institute of Technology Kharagpur, India, for their cooperation
to carry out the work. We are grateful to our parents and family members for their
constant support and encouragement. Finally, we thank all our friends and
well-wishers.

Kharagpur, India K. Sreenivasa Rao
Bangalore, India Manjunath K.E.
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Chapter 1
Introduction

1.1 Speech Recognition Systems

In the present world, it is very hard to live without any interaction with machines.
Major way of communication between the man and the machine is happening through
hardware interfaces such as keyboard, mouse, and touch screen. The most convenient
way of communication for humans is speech. Hence, it would be very efficient to
have speech mode of communication between the man and the machine. This can be
accomplished by developing speech recognition (speech understanding) [1-3] and
speech synthesis (speech generation) systems [4—6]. Speech recognition systems
are used for decoding the message conveyed in the speech signal into text. Speech
recognition systems can be either phone-based or syllable-based. Phones represent
the basic sound units in a language, whereas the syllables represent the sound units
composed of a central nucleus, which is mostly a vowel, with optional initial and
final consonants. In this book, we have discussed the phone-based speech recognition
systems called phone recognition systems (PRSs). The purpose of developing a PRS
is to derive a sequence of basic sound units from the speech signal. PRS has a wide
range of applications in domains such as health care, military, telephony, dictation,
robotics, and home automation. The PRS is used in developing systems for speech-
to-text conversion, language recognition, and audio search engine.

The machine learning approaches such as hidden Markov models (HMMs), feed-
forward neural networks (FFNNs), and support vector machines (SVMs) are used
to develop PRSs. HMMs are used to model the sequence of vocal tract shapes con-
tributed to the production of sound unit, with local spectral variability modeled using
mixtures of Gaussian densities [7]. The FFNNs and SVMs have good discriminative
power to distinguish between correct output class and the rival ones [8]. In the context
of phone recognition, discrimination between vocal tract shapes offered by various
sound units is exploited by the FFNNs and SVMs. Generally, the standard spectral
features such as linear prediction cepstral coefficients (LPCCs) or Mel frequency
cepstral coefficients (MFCCs) are used for developing PRSs. The production of each

© The Author(s) 2017 1
K.S. Rao and Manjunath K.E., Speech Recognition Using Articulatory

and Excitation Source Features, SpringerBriefs in Speech Technology,

DOI 10.1007/978-3-319-49220-9_1



2 1 Introduction

—| Class 1

Speech Signal

4 7

.. Decoded
Feature | Decision
. » Class 2 > . Class
Extraction Mechanism
L ) Label

> Class N

Fig. 1.1 Block diagram of phone recognition system

sound unit is characterized by articulatory and excitation features in addition to vocal
tract features. Hence, in this work, the articulatory and excitation source features are
explored in addition to spectral features with an intent to improve the performance
of PRSs.

The block diagram of PRS is shown in Fig. 1.1. Features are extracted from the
input speech signal by the feature extraction block. The extracted features are checked
against of N phonetic classes. The decision mechanism block will decode the class
label of the input utterance. In this work, HMMs are used for developing PRSs.

1.2 Articulatory Features for Phone Recognition Systems

The articulators such as lips, teeth, tongue, alveolar ridge, hard palate, velum, and
glottis are involved in speech production. The articulatory features (AFs) represent
the configuration (i.e., positioning) and movement of various articulators during
the production of a sound unit. The AFs change from one sound unit to another.
AFs can be broadly classified into five groups, namely (i) place, (ii) manner, (iii)
roundness, (iv) frontness, and (v) height. The sound units in International Phonetic
Alphabet (IPA) chart are arranged based on AFs [9]. The place and manner AF
groups capture the characteristics of consonants, while the roundness, frontness, and
height AF groups capture the characteristics of vowels. The physical positioning and
movements of various articulators can be represented either as continuous values or
as discrete values. In this work, the AFs are represented using discrete values. For
example, the discrete values for roundness AF group are rounded, unrounded [10].
The significance of having five AF groups to capture various AFs is as follows:
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Place of articulation: The air coming out from lungs is obstructed in the vocal tract
to produce a sound unit. Different sound units are produced by obstructing airstream
in different ways with varying degrees of constriction. Place of articulation rep-
resents the point of contact between active and passive articulators in the vocal tract,
at which obstruction occurs during the production of a consonant. The lower lip and
tongue are the typical active articulators, and the remaining articulators represent the
passive articulators. For example, the active lower lip comes in contact with passive
upper lip to produce a bilabial sound unit. There are eleven different place of artic-
ulations.

Manner of articulation: Manner of articulation represents the way in which
the air escapes from the vocal tract to produce a consonant. For example, the plosive
sounds are produced by complete blockage of air followed by a sudden release of
air. There are eight different manner of articulations.

Roundedness: Roundedness indicates whether the lips are rounded or not, during
the production of a vowel.

Frontness: Frontness indicates the horizontal position of the tongue relative to
the front of the mouth, during the production of a vowel.

Height: Height denotes the vertical position of the tongue during the production
of a vowel relative to the aperture of the jaw [11].

AFs contain lexical and phonetic information. The speech variability such as
coarticulation effect between adjacent sound units is captured by AFs. The AFs
act as additional clues, which aid in discriminating between various sound units.
AFs provide supplementary information, which can be used along with the spectral
features to improve the performance of PRSs.

1.3 Excitation Source Features for Phone
Recognition Systems

According the source—filter model of speech production, speech is produced by
exciting a linear acoustic filter with an excitation source [12]. The vocal folds form
the main source of excitation, and the vocal tract can be viewed as linear acoustic
filter. In the speech production system, vocal tract system acts as a time-varying
resonator and can be treated as a time-varying filter. The variations in the vocal
tract shape can be captured using time-varying filter in the form of resonances and
antiresonances of speech spectrum. Just a mere shape of vocal tract without an
excitation source would not be sufficient to produce a speech. It is not possible to
produce a sound unit without having an appropriate source of excitation. Let us
consider bilabial plosive consonants, namely /p/ is unvoiced and /b/ is voiced.
Both /p/ and /b/ have same place and manner of articulations, but differ only in
their excitation type. This means that both /p/ and /b/ are produced due to same
vocal tract shape, but differ in type of excitation. Similarly, there are many other
consonants which are produced due to same vocal tract shape but differ in type of
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excitation. Similarly, the source of excitation at gross level is same for all vowels, but
they differ due to variations in the shape of the vocal tract. Different phones can be
distinguished by their unique combination of excitation source and vocal tract shape.
The sounds produced due to vibration of the vocal folds are called voiced sounds,
and the sounds produced without vibration of the vocal folds are called unvoiced
sounds. The periodic opening and closing of the vocal folds result in the harmonic
structure in voiced speech signals. The rate of vibration of vocal folds is called the
fundamental frequency (FO) of the source of excitation. The periodicity of glottal
pulses in the excitation signal can be used for determining the FO. FO varies from one
phone to another phone based on their inherent characteristics as well as the influence
of coarticulation characteristics due to the presence of adjacent phones [13]. In [14]
and [15], it is reported that the excitation source information derived from linear
prediction (LP) residual of the speech signal contains phone-specific characteristics.
The characteristics of excitation source features vary from one sound unit to another
sound unit. Hence, it is very essential to use the excitation source features in addition
to vocal tract features for better discrimination of different classes of phones. Since
the excitation source features are robust to the degradations caused by noise [16],
excitation source features can be explored for developing robust PRSs.

1.4 Objective and Scope of the Work

Most of the state-of-the-art PRSs are developed using spectral features such as
MFCCs or LPCCs. Spectral features mainly represent the gross shape of the vocal
tract, but not the information related to the excitation source or the positioning and
movements of various articulators. But, the production of each sound unit is charac-
terized by articulatory and excitation features in addition to vocal tract features. A
unique combination of articulators in the vocal tract and specific source of excitation
results in the production of a particular sound unit. The performance of PRSs can
be significantly improved with the use of articulatory and excitation source features
along with the spectral features. The primary objective of this book is to improve the
performance of PRSs using articulatory and excitation source features in addition
to spectral features. The AFs are derived from the spectral features using FFNNs.
The evidences obtained from five different AF groups are combined using weighted
combination approach to enhance the performance of PRSs. The excitation source
features are derived from the LP residual of the speech signal. The excitation source
features along with spectral features are used to improve the performance of PRSs.
The significance of articulatory and excitation source features is also analyzed for
three basic modes of speech, namely read, extempore, and conversation modes.
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1.5 Proposed Organization of the Book

e This chapter provides brief introduction about PRS and its applications. Articula-
tory and excitation source features are described briefly. The objective and scope
of the present work is discussed. The chapter-wise organization of the book is
provided at the end of this chapter.

e Chapter?2 provides compendious reviews about the use of articulatory and excita-
tion source features to develop speech recognition systems. The literature review
for the speech recognition is provided. Various speech features and models used
in the context of speech recognition are briefly reviewed in this chapter. Related
works using articulatory and excitation source features to improve the performance
of speech recognition systems are explained.

e Chapter3 discusses the proposed approaches to derive and use AFs for phone
recognition task. The prediction of AFs for five different AF groups is discussed.
The development of tandem and hybrid PRSs using AFs is proposed. The perfor-
mance of tandem and hybrid PRSs is evaluated, and the results are analyzed.

e Chapter4 describes the proposed methods to parameterize the excitation source
information for phone recognition task. The development of PRSs using combi-
nation of spectral and excitation source features is described. The development
of robust PRSs using spectral and excitation source features is discussed. The
performance of PRSs is evaluated, and the results are compared.

e Chapter5 explains the development of PRSs using articulatory and excitation
source features for read, extempore, and conversation modes of speech. The per-
formance of PRSs across read, extempore, and conversation modes of speech is
determined, and the results are analyzed.

e Chapter 6 summarizes the contributions of the present work and provides future
directions.
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Chapter 2
Literature Review

2.1 Introduction

Speech recognition is one of the most active areas of research from last six decades.
Many important contributions in speech recognition research are reported in past
25 years. Several researchers have attempted to use articulatory and excitation source
features to improve performance of speech recognition systems. There are a very
limited number of works using excitation source features for speech recognition,
while there are a good number of works exploring the AFs for speech recognition.
Few prior works related to the use of articulatory and excitation source features
for developing speech recognition systems are briefly discussed in this chapter. The
organization of this chapter is as follows : The prior works related to the speech
recognition are discussed in Sect.2.2. Section2.3 describes the prior works on the
development of speech recognition systems using articulatory features (AFs). In
Sect. 2.4, the prior works related to the development of speech recognition systems
using excitation source features are explained. Section2.5 summarizes this chapter.

2.2 Prior Works on Speech Recognition

From the existing literature, it is observed that there are lot of works available in
the area of speech recognition. This section lists only few important contributions in
speech recognition research. In 1959, D.B. Fry [1] presented about the future direc-
tions for speech recognition research. He has summarized the working of the human
recognition system and described the importance of modeling the speech recognition
by machine in a similar way to that of human recognition system. Since the human
recognition mechanism depends on both acoustic cues and language characteristics,
the language-specific information and spectral features must be combined to improve
the performance of speech recognition systems.
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In 1973, Raj Reddy et al. [2] have developed a HEARSAY system for voice-
chess application. The task of HEARSAY system is to recognize a spoken move in
a given board position. The model used hypothesis and test paradigm with a set of
cooperating independent parallel processes. The information from all the processes
is collectively used to recognize the spoken utterance.

In 1976, G.M. White et al. [3] carried out isolated-word recognition using city
names and alpha digits. The linear predictive analysis for preprocessing and dynamic
programming for classification are used. It is observed that the use of data reduction
techniques leads to the reduction in the performance of speech recognition systems.

In 1988, R.P. Lippmann [4] used neural networks for isolated-word recognition.
The performance of neural networks is compared with conventional classifiers such
as Gaussian and k-nearest neighbor classifiers. The vowel and digit classification
experiments are performed. It is observed that neural networks perform better than
conventional classifiers for both vowel and digit classification experiments.

In 1989, A. Waibel et al. [5] used time delay neural network (TDNN) for iso-
lated phoneme recognition. The isolated phoneme recognizer was developed using
3 phonemes, namely /b/, /d/, /g/. Three-layered TDNN with error backpropagation
is used. The phone recognition accuracy of 98.5% is reported.

In 1989, L.R. Rabiner [6] proposed hidden Markov models (HMMs) for
continuous-speech recognition. Three basic problems of HMMs are addressed.
Implementation issues related to use HMMs for developing speech recognition sys-
tems are explained. The connected-digit and isolated-word recognizers are devel-
oped. This is one of the very important contributions to speech recognition research.

In 1989, K.-F. Lee et al. [7] used HMMs for developing a continuous-speech
recognizer. TIMIT speech corpus with 39 phones is used. Linear prediction cepstral
coefficients (LPCCs) are used as spectral features, and Viterbi decoding was used
for decoding the test utterances.

In 1990, F. Fallside et al. [8] have developed continuous-speech recognizer
using neural networks. TIMIT corpus with 61 phones is used. The development
of phoneme-to-word recognizer is described.

In 1994, H.A. Bourlard et al. [9] proposed hybrid HMM/multilayer perceptron
(MLPs) approach for speech recognition. In hybrid HMM/MLP approach, the state
emission probabilities of HMMs are estimated using MLPs. Speech recognition
systems are developed using HMMs, MLPs, and combination of HMMs/MLPs.
TIMIT speech corpus with 61 phones is used. Viterbi decoding is used for decoding
test utterances. The performance of hybrid system developed using the combination
of HMMSs/MLPs is higher compared to other two systems.

In 2000, H. Hermansky et al. [10] proposed the development for tandem speech
recognition systems. In tandem speech recognition systems, the output of the first
stage is used as feature to develop the second stage. The posterior probabilities
obtained from MLPs in the first stage are used as acoustic observations to develop
the speech recognition system in the second stage using HMMs. This leads to the
combination of discriminative feature processing ability of MLP in the first stage
with distribution modeling ability of HMM in the second stage. A reduction of 35%
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in the relative error rate compared to conventional Gaussian mixture model (GMM)-
HMM-based system is observed.

In 2008, H. Ketabdar et al. [11] proposed a method for more accurate estimation of
phone posteriors by the first stage of tandem speech recognition systems. The phone
posteriors are better estimated by integrating phonetic and lexical knowledge along
with discriminative knowledge. The phonetic and lexical knowledge is captured by
using long temporal context. More accurately estimated phone posteriors resulted in
the improvement of performance of tandem systems.

Much of the work is not reported in the context of Indian languages. Since the
basic units in Indian languages are syllables, the syllable-based speech recognition
systems are more appropriate for Indian languages. The syllable is more stable unit
than phone as it captures the coarticulation effect well. Few works exploring the
syllable-based speech recognition systems for Indian languages are listed below.

In 2004, S.V. Gangashetty et al. [12] have developed syllable-based speech recog-
nition systems for three Indian languages, namely Telugu, Hindi, and Tamil. The
syllables are generalized to consonant-vowel (CV) units. The CV units in the con-
tinuous speech are spotted using vowel onset points (VOPs) as the anchor points.
Support vector machines (SVMs) and autoassociative neural networks (ANNs) are
used for developing classification models.

In 2005, S.V. Gangashetty et al. [13] have proposed hybrid HMM/SVM systems
by combining the evidences from HMMs and SVMs. The maximum-likelihood esti-
mates of HMMs are combined with the discriminative knowledge captured by SVMs
to recognize CV units more accurately. Hybrid HMM/SVM systems have outper-
formed both HMM-based and SVM-based systems.

In 2012, A.K. Vuppala et al. [14, 15] have proposed two-stage CV recognition
system for improving the performance of syllable-based speech recognition system.
Two-stage CV recognition system consists of HMMs in the first stage and SVMs
in the second stage. HMMs are used for detecting vowel category, while the SVMs
are used for detecting consonant category of the CV unit. Telugu broadcast news
corpus is used to evaluate the performance of two-stage CV recognition system. It
is found that two-stage CV recognition system outperformed the HMM-based and
SVM-based single-stage systems. VOP detection methods are discussed in [16, 17].
Syllable-based speech recognition systems are reported in [18].

Few works related to isolated-word recognition systems in the context of Indian
languages are listed below. In 2011, K. Kumar et al. [19] have developed isolated-
word recognizer for Hindi using HMMs. In 2012, M. Dua et al. [20] have developed
an isolated-word recognizer for Punjabi using HMMs.

In recent years, dramatic improvement in the performance of speech recognition
systems is achieved by using deep neural networks (DNNs). In 2012, Abdel-rahman
Mohamed et al. [21, 22] have used DNNs for speech recognition. DNNs have many
layers of hidden units and very large number of parameters. DNNs take coefficients of
several frames as input and produce posterior probabilities as output. It is shown that
the HMMs with each state modeled using posterior probabilities of DNNs outperform
the HMMs with each state modeled using the mixture of Gaussians.
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In 2013, A. Graves et al. [23] have explored deep recurrent neural networks for
speech recognition. Deep recurrent neural networks involve stacking of multiple
recurrent hidden layers on top of each other. The obtained results are comparable
with that of DNNs.

In 2013, Tara N. Sainath et al. [24] explored convolutional neural networks
(CNNs) for large vocabulary speech recognition (LVCSR). The behavior of fea-
tures obtained from CNNss is studied for different LVCSR tasks. The behavior of
CNNs is compared with DNNs and GMMs. It is found that the CNNs have higher
performance compared to DNNs and GMMs. The experiments are conducted using
broadcast news corpus and switchboard corpus.

In 2014, Laszlo Toth [25] proposed the use of maxout activation function for
CNNss to improve the performance of CNN-based speech recognition systems. It is
found that the use of maxout active function resulted in the reduction of phone error
rate up to 6%.

In general, speech can be broadly classified into read, extempore, and conversation
modes of speech. Read speech involves reading out from the notes such as news
reading. Extempore mode of speech is delivered without the aid of notes such as
public speaking or delivering a lecture in a class. Conversation mode of speech
is an interactive, spontaneous communication between two or more people. More
details on read, extempore, and conversation modes of speech are given in Sect.5.2.
All the works described above have used read speech corpus. Few works related to
extempore and conversation modes of speech are listed as below.

In 2003, J.L. Gauvain et al. [26] have developed conversational telephone speech
recognition system using telephone conversational speech corpus. Speaker normal-
ization and speaker adaptation techniques are employed to improve the performance
of conversation speech recognition system.

In 2005, Florian Metze [27] has performed conversational speech recognition. The
articulatory features are used to improve the performance of conversational speech
recognition systems.

In 2013, Shridhara M V et al. [28] have developed a phone recognition system
(PRS) for Kannada language using HMMs. Separate PRSs are developed for read,

Table 2.1 Summary of prior works on speech recognition

e Speech recognition research till 1989, mainly concentrated on the development of
isolated-word recognizers

e Development of speech recognition systems using HMMs proposed by Lawrence R. Rabiner
in 1989 is one of the major breakthroughs in speech recognition research

e Development of continuous-speech recognition systems started mostly after 1989

e Speech recognition systems are generally developed using HMMs, neural networks, and SVMs

e Tandem and hybrid approaches are most commonly used to improve the performance of
speech recognition systems

o State-of-the-art LVCSR systems are developed using CNNs and large amount of training data
using DNNs
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extempore, and conversation modes of speech, and the results are compared. The
phone recognition systems for Bengali and Odia are reported in [29, 30]. A summary
of the prior works on speech recognition is provided in Table2.1.

2.3 Prior Works on Speech Recognition Using
Articulatory Features

There are some works exploring the AFs to improve the performance of speech
recognition systems. Some of the recent ones are listed as follows: In 2002, Katrin
Kirchhoff et al. [31] have used AFs to develop the robust speech recognition sys-
tems. The continuous-digit recognition using telephone speech and conversational
speech recognition are carried out. It is shown that AF-based systems are capable
of achieving superior performance at high noise levels. The combination of acoustic
and AFs consistently leads to a significant reduction of word error rate across all
acoustic conditions.

In 2005, Florian Metze [27] has used the AFs to improve the performance of
conversational speech recognition systems. In 2007, O. Cetin et al. [32] have used
AFs to develop the tandem PRSs. The AFs are derived by training MLPs using
spectral features. Fisher and switchboard speech corpora are used. The derived AF
evidences along with perceptual linear prediction features are used to improve the
word error rate.

In 2007, Joe Frankel et al. [33] used AFs to develop tandem PRSs. MLP-based
AF classifiers are trained using 2000 hours of telephone speech. The recognition
accuracies of AF-tandem PRSs are higher than those of phone posterior-based tandem
PRSs.

In 2009, Sabato Marco Siniscalchi et al. [34] have used the acoustic-phonetic
information to develop speech recognition systems. The acoustic-phonetic informa-
tion contained the place and manner of articulation. A bank of speech event detec-
tors are used to score place and manner of articulation events using lattice rescoring
approach, to derive acoustic-phonetic information. Three tasks, namely continuous-
speech recognition, connected-digit recognition, and LVCSR, are carried out. It is
found that in all the three cases, systems developed using acoustic-phonetic infor-
mation have shown higher performance.

In 2013, Vikramjit Mitra et al. [35] have estimated articulatory trajectories from
speech signals using neural networks. The articulatory trajectories indicate the place
of constriction. The estimated articulatory trajectories are combined with MFCCs
to develop LVCSR systems. Results show that the use of articulatory information
improves the performance in both clean and noisy environments.

In all of the existing works, the AFs are mostly used as tandem features to improve
the recognition accuracy of speech recognition systems. Hence, we have proposed
weighted combination approach to combine the evidences derived from five dif-
ferent AF groups. The hybrid PRSs are developed using weighted combination of
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Table 2.2 Summary of prior works on speech recognition using articulatory features

e AFs are used for developing robust speech recognition systems

e AFs are mostly used as tandem features to improve the performance of speech recognition
systems

e There are no works exploring the AFs to improve the performance of speech recognition
systems in the context of Indian languages

e In this book, a weighted combination approach is proposed to combine the evidences derived
from different AF groups and AFs are explored in the context of Indian languages using Bengali

various AFs. The systematic analysis of the enhancement of phone-level accuracies
contributed by each AF group is carried out. The analysis is carried out by devel-
oping separate hybrid PRSs based on the consonant AFs and vowel AFs. From the
literature, it is observed that there are no works exploring the AFs to improve the
performance of PRSs in the context of Indian languages. Hence, in this book, we have
explored AFs in the context of Indian languages using Bengali. Since the AFs pro-
vide supplementary information for phone recognition, the combination of spectral
and articulatory features may lead to significant improvement in the performance
of PRSs. The objective of our study is to use AFs to improve the phone recogni-
tion accuracy of PRSs. A summary of the prior works on speech recognition using
articulatory features is provided in Table2.2.

2.4 Prior Works on Speech Recognition Using Excitation
Source Features

There are very limited works exploring the excitation source features for speech
recognition. Some of the recent works exploring the excitation source features for
speech recognition are listed as follows. In 1996, Jialong He et al. [36] have used
linear prediction (LP) residual features, containing excitation source information,
to improve the performance of isolated-word recognizer. HMM-based speaker-
independent isolated-word recognizer is developed using OGI-ISOLET speech cor-
pus. An improvement of 13% was observed in the recognition accuracy. They have
concluded that LP residual features contain useful information for speech recognition
and act as complementary information to improve the recognition accuracy.

In 1998, Rathinavelu Chengalvarayan [37] has used LP residual features, contain-
ing excitation source information, to improve the performance of city name recog-
nizer. A combination of LPCCs and LP residual features leads to the reduction of 8%
in the string error rate [37]. In 2008, M. Chetouani et al. [38] claim that LP residual
feature contains both linguistic and speaker information.
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Table 2.3 Summary of prior works on speech recognition using excitation source features

e Excitation source features are mostly used for improving the performance of isolated-word
recognition systems

e There are no works exploring the excitation source features for continuous-speech recognition

e Excitation source features for developing continuous-speech recognition systems are proposed

In 2011, N. Dhananjaya et al. [39] have hypothesized the manner of articula-
tion (MOA) using excitation source information. HMM-based MOA recognizer is
developed for five broad MOA categories using TIMIT speech corpus. The acoustic-
phonetic information extracted from excitation source features is used to detect and
correct the errors at the output of HMM-based MOA recognizer.

In all of the existing works, the excitation source features are mostly used for
improving the performance of isolated-word recognition systems. In [36, 37], the
excitation source features are used for improving the recognition accuracies of the
isolated spoken letter recognizer and the city name recognizer, respectively. There are
no works exploring the excitation source features for continuous-speech recognition.
Hence, in this book, we have explored excitation source features for developing
continuous-speech recognition systems. From the literature, it is observed that there
are no works exploring the excitation source features to improve the performance
of PRSs in the context of Indian languages. Hence, in this book, we have explored
excitation source features in the context of Indian languages using Bengali. The
objective of our study is to improve the performance of PRSs using the combination
of vocal tract and excitation source features. A summary of the prior works on speech
recognition using excitation source features is provided in Table 2.3.

2.5 Summary

In this chapter, overview of prior works on speech recognition and the existing works
related to articulatory and excitation source features for developing speech recogni-
tion systems are briefly described. There are no works exploring the excitation source
features for continuous-speech recognition. Articulatory features are mostly used as
tandem features to improve the performance of speech recognition systems. There
are no works exploring the articulatory and excitation source features to improve
the performance of speech recognition systems in the context of Indian languages.
Hence, in this book, articulatory and excitation source features are explored for an
Indian language Bengali.
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Chapter 3
Articulatory Features for Phone Recognition

3.1 Introduction

In the previous chapter, we have discussed about the existing works related to speech
recognition using articulatory and excitation source features. In this chapter, artic-
ulatory features (AFs) are explored for improving the performance of the phone
recognition systems (PRSs). In this work, AFs are derived from the spectral features
using feedforward neural networks (FFNN5s) [1]. Mel frequency cepstral coefficients
(MFCCs) are used for representing the spectral features. We have considered five
AF groups, namely manner, place, roundness, frontness, and height. Five differ-
ent AF-based tandem PRSs are developed using the combination of MFCCs and
AFs derived from FFNNs. Hybrid PRSs are developed by combining the evidences
from AF-based tandem PRSs using weighted combination approach. Baseline PRS
is developed using hidden Markov models (HMMs) with MFCCs as features. TIMIT
and Bengali read speech corpora are considered for developing PRSs. The perfor-
mance of hybrid PRSs is compared with the baseline PRS and phone posterior (PP)-
based tandem PRS. The systematic analysis of phone-level accuracies contributed
by each AF group is carried out.

This chapter is organized as follows: Sect. 3.2 describes the speech corpora used in
this work. Section 3.3 discusses the different types of feature extraction techniques
used in this work. Section3.4 describes the development of baseline and tandem
PRSs. Section 3.5 provides the details of development of hybrid PRSs using weighted
combination scheme. Section 3.6 compares the results of the proposed method with
that of the existing methods available in the literature. Section 3.7 summarizes the
contents of this chapter.

© The Author(s) 2017 17
K.S. Rao and Manjunath K.E., Speech Recognition Using Articulatory

and Excitation Source Features, SpringerBriefs in Speech Technology,

DOI 10.1007/978-3-319-49220-9_3



18 3 Articulatory Features for Phone Recognition

3.2 Speech Corpora

For developing and analyzing the performance of proposed phone recognition sys-
tems, speech corpora of Bengali and English languages are considered. The Phonetic
and Prosodically Rich Transcribed (PPRT) speech corpus developed at IIT Kharag-
pur is used for Bengali language, and for English language, well-known TIMIT
database is chosen. The details of PPRT and TIMIT speech corpora are discussed in
the following subsections.

3.2.1 Bengali Speech Corpus

The Phonetic and Prosodically Rich Transcribed Bengali speech corpus developed
at IIT Kharagpur is used in this study [2]. The speech corpus contains speech data
collected in read, extempore , and conversation modes of speech. The duration of
read speech is 1.2 h, while the duration of extempore and conversation speech is 2.5h
each. PPRT speech corpus contains 16 bit precision, 16 kHz speech wave files in three
modes of speech. The speech data in all the three modes of speech are transcribed
using International Phonetic Alphabet (IPA) chart. IPA provides one symbol for
each distinctive sound. IPA contains unique symbols for denoting 59 consonants, 28
vowels, 31 diacritics, and 19 additional signs. The variations in the consonants and
vowels are represented using diacritics. The additional signs indicate suprasegmental
qualities such as length, tone, stress, and intonation. Although there are about 160
symbols in IPA chart, a particular language can be represented by using very less
number of symbols [3]. In our case, we were able to represent speech utterances in
Bengali language with 64 IPA symbols plus one hyphen used for indicating silence.
The speech data is organized in the form of sentences to carry out experiments. The
data used for training and testing was from different speakers. For training, around
80% of data was used and remaining 20% of data was used for testing. Table 3.1
shows the number of speakers and the number of sentences used in this study. The
details of count of speakers and the count of sentences are shown separately for read,
extempore, and conversation modes of speech. First column indicates three modes
of speech. Second and third columns show the number of speakers for male and
female genders, respectively, while the fourth and fifth columns indicate the count
of sentences present in training and testing set, respectively.

3.2.2 TIMIT Speech Corpus

TIMIT speech corpus is a read speech corpus designed for carrying out acoustic-
phonetic studies. The corpus was jointly designed by Massachusetts Institute of
Technology, SRI International and Texas Instruments. TIMIT is widely used in
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Table 3.1 The number of speakers and number of sentences of read, extempore, and conversation
modes of Bengali speech corpus

Speech mode No. of speakers No. of sentences

Male Female Training set Testing set
Read 8 13 687 166
Extempore 7 4 1195 264
Conversation 22 8 1284 310

development and evaluation of automatic speech recognition systems. TIMIT corpus
contains 16 bit precision, 16 kHz speech wave files along with time-aligned ortho-
graphic, phonetic, and word transcriptions for each utterance. The transcriptions in
TIMIT are hand-verified [4]. The training set and core test set, as suggested in TIMIT
documentation, are used for training and testing, respectively. The training set con-
tained data from 462 speakers. Each speaker has spoken 10 short sentences of about
3 to 5s. The complete train set contained 4620 sentences. The core test set involves
24 speakers with 8 sentences from each speaker. Thus, the complete core test set
contained 192 sentences.

3.3 Feature Extraction

In this section, feature extraction techniques to derive spectral and articulatory fea-
tures are discussed. MFCC features are used for representing the spectral features.
The AFs are derived from spectral features using FFNNs. The details of extraction
of MFCCs and AFs are discussed in the following subsections.

3.3.1 Mel-frequency Cepstral Coefficients

MFCCs capture the gross shape of vocal tract or oral cavity associated with the
production of a sound unit. The following procedure is used for extracting MFCCs
from the speech signal. The speech signal is divided into frames with a duration of
25ms [5]. A frame shift of 10ms is employed for locating the adjacent frames. The
blocked frames are Hamming-windowed to reduce the edge effect while taking the
discrete Fourier transform (DFT) on the signal. For each frame, cepstral coefficients
are computed using Mel-filter bank with 26 Mel filters. The speech is parameterized
into 13 MFCCs including Oth cepstral coefficient and their first and second-order
derivatives, resulting in a total of 39 components. More details on MFCC features
are given in Appendix A.
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3.3.2 Extraction of Articulatory Features

In this study, we have considered five AF groups namely place, manner, frontness,
roundness, and height. The following subsections describe the details of prediction
of AFs using FFNNs.

3.3.2.1 Articulatory Features

The AFs provide crisp representation of each sound unit, in terms of the positioning
and movement of various articulators involved in the production of a specific sound
unit. AFs vary from one sound unit to another sound unit. Spectral features such as
MFCC:s capture only the gross shape of the vocal tract, but not the minute variations
in the shape of vocal tract. The co-articulation effect between adjacent sound units is
captured by AFs. The AFs provide additional clues for discriminating among various
sound units. The use of AFs in the development of PRSs can significantly improve
the performance of PRSs. In this study, we have considered five AF groups namely
place, manner, frontness, roundness, and height. The discrete information about the
positioning and movement of articulators with respect to five AF groups is captured.
Each AF group along with their possible AF values is shown in Table 3.2. Table 3.2
shows the articulatory feature specification for Bengali and TIMIT datasets. First
column indicates the AF group and the cardinality. The cardinality indicates the
number of features in an AF group. Second column lists the possible feature values
for each AF group. The possible feature values for manner AF group are same for
both Bengali and TIMIT datasets, while the possible feature values for remaining

Table 3.2 Articulatory feature specification for Bengali and TIMIT datasets

Bengali (Read Speech)

AF group (Cardinality) Features

Place (9) Bilabial, labiodental, alveolar, retroflex, palatal, velar, glottal,
vowel, silence

Manner (6) Plosive, fricative, approximant, nasal, vowel, silence

Roundness (4) Rounded, unrounded, nil, silence

Frontness (5) Front, mid, back, nil, silence

Height (6) High, low, mid-high, mid-low, nil, silence

TIMIT (Read Speech)

Place (8) Bilabial, labiodental, alveolar, palatal, velar, glottal, vowel, silence

Manner (6) Plosive, fricative, approximant, nasal, vowel, silence

Roundness (5) Rounded, unrounded, diphthong, nil, silence

Frontness (6) Front, mid, back, diphthong, nil, silence

Height (7) High, low, mid-high, mid-low, diphthong, nil, silence
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AF groups are different for Bengali and TIMIT datasets. Since certain diphthongs
in TIMIT dataset are grouped as separate feature, the feature values for roundness,
frontness, and height AF groups are different in Bengali and TIMIT datasets.
This is because, deciding the roundness, frontness, and height feature values for
certain diphthongs in TIMIT dataset is ambiguous.

Figures 3.1 and 3.2 show the histogram of occurrences for vowel and consonant
AFs, respectively. The X —axis denotes different consonant and vowel AFs, and the
Y — axis indicates the number of occurrences for each AF value. In case of vowel
AFs, it can be observed that mid value of frontness AF group has least number of
occurrences, while the unrounded value of roundness AF group has highest number
of occurrences. In case of consonant AFs, the number of plosives and alveolars is
higher, whereas the number of glottals and labiodentals is lower.
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Fig. 3.1 Histogram of occurrences for vowel articulatory features
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Fig. 3.2 Histogram of occurrences for consonant articulatory features
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3.3.2.2 Prediction of Articulatory Features

In this work, frame-level AFs for each AF group are predicted from the spectral fea-
tures using AF-predictors. Separate AF-predictors are developed for each AF group.
We have explored both HMMs and FFNNSs for developing AF-predictors. Figure 3.3
shows the block diagram of prediction of manner AFs. HMM- and FFNN-based AF-
predictors are developed for manner AF group using MFCCs. The predicted feature
values represent the manner AFs.

Figure 3.4 illustrates the prediction of manner AFs for ten frames using posteri-
ogram representation. In order to get better visualization of posteriogram distribution
across all the feature values, we have plotted the posteriogram using non-consecutive
frames. The darker spots in the posteriogram indicate higher posterior probability,
while the pale spots indicate lower posterior probability. The labels in the X-axis
of posteriogram indicate the feature values of manner AF group. MFCCs extracted
from each frame are fed to manner AF-predictor to derive the posteriogram distribu-
tion for that specific frame. The sum of all the posterior probabilities obtained for a
frame will be equal to 1. The posteriogram distribution represents the manner AFs.
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Fig. 3.4 Illustration of prediction of manner articulatory features for ten frames using posteriogram
representation
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Fig. 3.5 Block diagram of the prediction of articulatory features

Similar kinds of AF-predictors are developed for all five AF groups, as shown in
Fig.3.5. AFs for a particular AF group are predicted using the AF-predictor of that
specific group.

Mapping Phone Labels to AF Labels

For training HMMs and FFNNs to develop AF-predictors, we require the speech
data which is transcribed at AF level. The AF-level transcription indicates the tran-
scription derived using AF labels. Since the transcription is available at phone level,
we derive the AF-level transcription by mapping the phone labels in the phone-level
transcription to AF labels. An AF label of an AF group represents a possible AF value
for that specific AF group. The possible AF labels for each AF group are shown in
Table 3.2. The mapping of each phone label into a set of AF labels of various AF
groups for Bengali and TIMIT datasets is shown in Tables 3.3 and 3.4, respectively.
First column in Table3.3 lists unique IPA symbols used in Bengali transcription,
while the first column in Table 3.4 lists unique phones used in TIMIT transcription.
Second to sixth columns show the corresponding place, manner, roundness, front-
ness, and height AF values, respectively, for each phone. The mapping for Bengali
dataset is derived using IPA chart [3], whereas the mapping for TIMIT dataset is
derived with the aid of TIMIT to IPA mapping as shown in [6].

Development of AF-Predictors Using HMMs

HMM is a stochastic signal model with finite set of states, and each state is associated
with a probability distribution. Transitions among the states are governed by a set of
probabilities known as transition probabilities. In a particular state, an outcome or
observation can be generated, according to the associated probability distribution.
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Table 3.3 Mapping of phone labels to AF groups in Bengali (read speech) dataset

Phones Articulatory Feature Groups
Place Manner |Roundness|Frontness| Height
a vowel vowel unrounded |  front low
vowel vowel rounded back |mid-high
e3 vowel vowel unrounded mid mid-low
i1 vowel vowel unrounded |  front high
a vowel vowel unrounded | back low
9 vowel vowel unrounded mid  |mid-high
D vowel vowel rounded back low
uu vowel vowel rounded back high
e vowel vowel unrounded | front |mid-high
] vowel vowel rounded back | mid-low
xe vowel vowel unrounded | front | mid-low
kk"gg"| velar plosive nil nil nil
" k&"| palatal plosive nil nil nil
tt"dd" | retroflex plosive nil nil nil
tth dd"| alveolar | plosive nil nil nil
pp" bb"| bilabial plosive nil nil nil
m bilabial nasal nil nil nil
n retroflex nasal nil nil nil
7 velar nasal nil nil nil
n alveolar nasal nil nil nil
s[3 alveolar fricative nil nil nil
fv |labiodental| fricative nil nil nil
h glottal fricative nil nil nil
] palatal |approximant nil nil nil
rarl alveolar |approximant nil nil nil
1 retroflex |approximant nil nil nil
labiodental |approximant nil nil nil
sil silence silence silence silence | silence

In this study, HMM-based systems are developed using a set of context-independent
HMMs. A 4-state left-to-right HMM model with a 64 mixture continuous-density
diagonal-covariance Gaussian mixture model per state is used to model each sound
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Table 3.4 Mapping of phone labels to AF groups in TIMIT dataset

25

Phones Articulatory feature groups

Place Manner Roundness Frontness Height
aa vowel vowel unrounded back low
ae vowel vowel unrounded front low
ah vowel vowel unrounded back mid-low
ax ax-h axr vowel vowel unrounded mid mid-high
ay vowel vowel unrounded front diphthong
eh vowel vowel unrounded front mid-low
er vowel vowel unrounded mid mid-low
ey vowel vowel unrounded front diphthong
ihix iy vowel vowel unrounded front high
uh ux uw vowel vowel rounded back high
ow vowel vowel rounded back diphthong
ao vowel vowel rounded back mid-low
oy aw vowel vowel diphthong diphthong diphthong
k kel g gcl velar plosive nil nil nil
ttclddeldx | alveolar plosive nil nil nil
p pel b bel bilabial plosive nil nil nil
q glottal plosive nil nil nil
th dh s sh alveolar fricative nil nil nil
chjhzzh palatal fricative nil nil nil
fv labiodental fricative nil nil nil
hh hv glottal fricative nil nil nil
lelr alveolar approximant | nil nil nil
w labiodental approximant | nil nil nil
y palatal approximant | nil nil nil
m em bilabial nasal nil nil nil
n nx en alveolar nasal nil nil nil
ng eng velar nasal nil nil nil
epi pau h# silence silence silence silence silence

unit. HMMs are trained using maximum likelihood approach. The global means
and variances are computed from the training data to create flat-start HMMs. The
embedded re-estimation is carried out on the flat-start HMMs using Baum—Welch
algorithm. The number of iterations carried out during re-estimation for Bengali and
TIMIT datasets is eight and eleven, respectively. Viterbi decoding is used for finding
the hidden sequence of states within a phone, thereby decoding a speech signal into
sequence of phones. The open source HTK toolkit is used for building HMM models

[7]. More details on HMMs are given in Appendix B.1.



26 3 Articulatory Features for Phone Recognition
Development of AF-Predictors Using FFNNs

FFNNs are widely explored for developing various speech systems [8—10]. The
procedure for developing FFNN-based systems is described in this section. Initially,
the frame-level AF labels are assigned for each speech utterance in the training set.
For capturing the hidden relations between MFCC features and the AF values of the
sound unit, the MFCC feature vectors are given as input and information about AF
label is given as output during training of the neural network. The nodes of the network
at the input layer have linear functionality, and the nodes at the hidden (second) and
output (third) layers have nonlinear functionality. We have experimented with FFNN's
of multiple hidden layers, but it was observed that the performance is slightly better
using single hidden layer. The lower performance of FFNNs with multiple hidden
layers is may be because of insufficient training data. During training, multiple passes
are made through the entire set of training data. Each pass is called an epoch. Initially,
we start with a learning rate of 0.008. After each epoch, the performance of the
FFNN s is measured with a small set of training data, called the cross-validation set,
which is held out from main training. The training process will be stopped after the
epoch at which the increment in performance improvement is less than 0.5% with
cross-validation dataset. The advantage of cross-validation-based adaptive training
scheme is that it provides some protection against over-training. The result of training
a FFNN is a set of weights. The softmax nonlinearity activation function is used at
output layer to constrain posterior probabilities to lie between zero and one and sum
to one. The weights associated with the edges between the nodes can then be used as
an acoustic model to convert the features of an unseen test utterance into posterior
probabilities of each class. The posterior probabilities are used for representing the
AFs of a sound unit. The open source quicknet software is used for training FFNNs
[11]. Detailed description on FFNNs is given in Appendix B.2.

We have used a memoryless FFNN classifier, which means the outputs depend
only on the inputs at that moment. Since the interpretation of the speech sound
is highly context-dependent, there is a need to capture the contextual information.
The temporal context can be captured by feeding certain frames on either side of
the current frame along with the current frame to the input layer. In this study, the
temporal context is captured by feeding one frame on either side of the current frame
along with the current frame to the input layer. This results in a temporal context of
3 frames with a duration of 45 ms. The number of nodes in input layer (NNIL) is
determined using Eq.3.1.

NNIL = No. of frames in temporal context X No.of MFCCs per frame (3.1)

According to Eq. 3.1 the number of nodes in input layer becomes 117, i.e.,3 x 39 =
117. The hidden layers with different number of hidden units are tried out. Among
all those hidden layers, the hidden layer with 585 hidden units is chosen as a trade-
off between computation time required for training FFNNs and performance of the
FFNNs. The size of output layer for each AF group is equal to the cardinality of that
AF group as shown in Table 3.2. Table 3.5 shows the number of epochs carried out
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Table 3.5 Number of Epochs carried out during training of FFNN-based AF-predictors for Bengali
and TIMIT datasets

AF Group Number of Epochs used for training
Bengali TIMIT
Place 10 7
Manner 8 7
Roundness 8 6
Frontness 7 6
Height 9 6

during training the FFNNs for various AF groups of Bengali and TIMIT datasets.
First column indicates the AF group. Second and third columns show the number of
epochs carried out for Bengali and TIMIT datasets, respectively.

3.3.2.3 Performance Evaluation of AF-Predictors

The accuracy of AF-predictors is determined by comparing the decoded AF labels
with the reference transcription of AF labels by performing an optimal string match-
ing using dynamic programming [7]. Once the optimal alignment is found, the num-
ber of substitution errors (S), deletion errors (D), and insertion errors (I) is deter-
mined. Deletion error indicates that a label is present in the reference transcription
but not found in decoded transcription. The substitution error represents that a label
in the reference transcription is substituted with some other label in the decoded
transcription. The insertion error indicates that a label is present in the is decoded
transcription but not found in reference transcription. The recognition accuracy in
percentage is calculated using Eq.3.2.

N-D-S-1

Percentage Accuracy = x 100% 3.2)

where N is the total number of labels in the reference transcriptions.

Table 3.6 shows the accuracy of prediction of AFs for different AF groups of
Bengali and TIMIT datasets. First column indicates the AF group. Second and third
columns show AFs prediction accuracies for Bengali dataset, while the fourth and
fifth columns tabulates the AFs prediction accuracies for TIMIT dataset. The results
are shown separately for HMM-based and FFNN-based systems. It can be observed
that the prediction accuracy of all the AF groups is higher with FFNNs compared to
HMMs for Bengali dataset, while the prediction accuracy of most of the AF groups is
higher with FFNNs compared to HMMs for TIMIT dataset. Although the prediction
accuracies of frontness and height AF groups of TIMIT dataset are higher with HMMs
compared to FFNNS, the difference in their prediction accuracies is not significant.
Since FFNNs have higher recognition accuracies for all AF groups of Bengali dataset
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Table 3.6 Prediction accuracy (%) of AF-Predictors of different AF groups

AF group Prediction accuracy (%) of AF-Predictors

Bengali TIMIT

HMMs FFNNs HMMs FFNNs
Place 55.04 70.35 60.59 67.88
Manner 67.51 74.40 68.47 75.06
Roundness 68.16 78.58 63.13 64.31
Frontness 67.64 74.01 63.00 62.53
Height 62.57 67.75 61.11 60.29

and for majority of AF groups in TIMIT dataset, we have used the FFNNs for
predicting the AFs of various AF groups. As FFNNs provide a discriminative way
of estimating posterior probabilities [12], it is more advantageous to use FFNNs for
developing AF-predictors. The combination of discriminative knowledge captured
by AF-predictors and the sequential knowledge captured by HMMs (during the
development of PRSs) leads to a kind of hybrid FFNN/HMM system, which has
higher potential for improving the recognition accuracies. The following observations
are made during the prediction of AFs for different AF groups.

Place: Labiodentals have poor classification accuracy (CA). {labiodental — bilabial,
retroflex — alveolar} misclassfications observed. All the groups have significant
misclassifications into alveolars. Alveolars and velars have more deletion errors.

Manner: Plosives have very poor CA, which is mainly because of their misclassi-
fications into nasals. Plosives are also misclassified into silence, and this is mostly
because of misclassifications of unvoiced plosives such as {p,7,k} into silence. Vowels
have highest CA.

Roundness: {unrounded — rounded} misclassification is more prominent. Conso-
nants grouped as nil are mainly misclassified into vowels and have more deletion
eITors.

Frontness: mid is mainly misclassified to back and has got least CA. Consonants
grouped as nil are mainly misclassified into vowels and have more deletion errors.

Height: {high — mid-high, mid-low — mid-high} misclassifications are prominent.
mid-high has least CA. Consonants grouped as nil are mainly misclassified into
mid-low.

Tables 3.7, 3.8, 3.9, 3.10, and 3.11 show the confusion matrices for place, man-
ner, roundness, frontness, and height articulatory features (AFs), respectively. The
confusion matrices for HMM-based AF-predictors are shown here. Similarly, the
confusion matrices could be generated for all the AF-predictors.
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Table 3.8 Confusion matrix obtained from HMM-based manner AF-predictor (CA = classification
accuracy)

Fricative | Nasal |Plosive |Silence | Approximant | Vowel |CA(%)
Fricative 397 22 5 3 5 1 91.7
Nasal 3 548 3 1 26 0 94.3
Plosive 67 231 1373 31 50 1 78.3
Silence 0 0 1 383 1 0 99.5
Approximant 7 115 10 5 471 3 77.1
Vowel 21 104 10 10 161 2600 89.5

Table 3.9 Confusion matrix obtained from HMM-based roundness AF-predictor (CA = classifi-
cation accuracy)

Consonant Rounded Silence Unrounded CA(%)
Consonant 2621 123 85 54 90.9
Rounded 0 931 6 54 939
Silence 0 1 389 0 99.7
Unrounded 6 146 7 1826 92.0

Table 3.10 Confusion matrix obtained from HMM-based frontness AF-predictor (CA = classifi-

cation accuracy)

Back Front Mid Consonant | Silence CA(%)
Back 1563 47 185 2 6 86.7
Front 20 988 14 1 3 96.3
Mid 30 2 142 0 0 81.6
Consonant 64 43 148 2662 86 88.6
Silence 0 0 0 0 387 100

Table 3.11 Confusion matrix obtained from HMM-based height AF-predictor (CA = classification

accuracy)
High Low Mid-high | Mid-low | Consonant | Silence CA(%)
High 522 23 60 120 0 6 71.4
Low 5 784 47 49 0 5 88.1
Mid-high | 55 70 463 96 1 7 66.9
Mid-low 6 42 25 490 0 3 86.6
Consonant| 54 88 60 188 2729 56 86.0
Silence 0 0 1 0 0 386 99.7
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3.3.3 Prediction of Phone Posterior Features

PPs are predicted from the spectral features using FFNNs. FFNNs perform the phone
classification at frame level. Although HMMs can be used for estimating phone pos-
teriors, FFNNs are employed for this purpose. This is because, FFNNs being dis-
criminative classifiers provide a discriminative way of estimating phone posteriors,
while the sequential knowledge capturing ability of HMMs is exploited in later stage
of development of PRSs using HMMs. The PPs of phone classes of each frame
p(q: = i|x;), where ¢; is a phone at time t,i = 1, 2 ... N, and x; is the acoustic
feature vector at time ¢ such that

N
Zp(z‘) =1,
i=1

where N = Total number of phone classes.

i = indicates pecific phone class. (3.3)

FFNN is trained, for predicting the PPs, using the procedure mentioned in
Sect.3.3.2.2. The weights associated with the edges between the nodes are used
as the acoustic model to convert the features of an unseen test utterance into phone
posteriors of each class. Figure 3.6 illustrates the prediction of PPs for ten frames
using posteriogram representation. For better visualization of posteriogram distrib-
ution across all the phones, posteriogram is plotted using non-consecutive frames.
The darker spots in the posteriogram indicate higher posterior probability, while the
pale spots indicate lower posterior probability. The labels in the X-axis of posteri-
ogram indicate the phones used for training the FFNNs. MFCCs extracted from each
frame are fed to manner AF-predictor to derive the posteriogram distribution for that
specific frame. The sum of all the posterior probabilities obtained for a frame will
be equal to 1. The posteriogram distribution represents the PPs. The PPs contain the
discriminative knowledge for discriminating between various phonetic units [12].
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Fig. 3.6 Illustration of prediction of phone posteriors for ten frames using posteriogram represen-
tation
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The dimension of generated PPs will be equal to the number of phones considered
for training FFNNs. We have used a temporal context of 3 frames, which results in a
input layer of 117 units. The hidden layer with 585 hidden units is used. The size of
output layer is equal to the number of phones considered for training FFNNs [12].

3.4 Development of Baseline and Tandem Phone
Recognition Systems

In this study, we have developed Bengali and English PRSs using HMMs. The num-
ber of phones considered for developing Bengali and TIMIT PRSs is 35 and 48,
respectively. Most frequently occurring phones in the IPA transcription were consid-
ered for building Bengali PRS. The 61 phones of TIMIT dataset are downsized to
48 phones by using the approach shown in [13]. HMM-based PRSs are developed
using the procedure mention in Sect. 3.3.2.2. The baseline PRSs are developed using
MFCC:s as features. We have developed AF-based tandem PRSs using combination
of MFCCs and the predicted AFs as features. The AFs for each AF group are pre-
dicted from the spectral features using the FFNNs, as per the procedure mentioned
in Sect.3.3.2.2. In tandem approach, FFNNs are first trained to perform the classi-
fication at frame level, and then, the frame-level posterior probability estimates of
the FFNNSs are used as the acoustic observations in HMMs. The predicted AFs of a
particular AF group are augmented with MFCCs to develop AF-based tandem PRS
for that AF group [14]. Separate tandem PRSs are developed using the AFs predicted
from each AF group. This leads to the development of five different AF-based tan-
dem PRSs. Figure 3.7 shows the block diagram of manner AF-based tandem PRS.
Manner AFs are predicted using manner AF-predictor as shown in Fig. 3.3. The pre-
dicted manner AFs are combined with MFCCs to develop HMM-based tandem PRS.
Similarly, five different tandem PRSs are developed using the predicted AFs from
each AF group.

Figure 3.8 illustrates the manner AF-based tandem PRS for ten frames using
posteriogram representation. The MFCCs are augmented with the posteriogram
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Fig. 3.7 Block diagram of the manner AF-based tandem PRS
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Fig. 3.8 Illustration of manner AF-based tandem PRS for ten frames using posteriogram represen-
tation

Table 3.12 Phone recognition accuracy (%) of baseline and AF-based tandem PRSs

Features Recognition sccuracy (%)
Bengali TIMIT

MFCCs (Baseline) 45.48 58.45
MFCCs + Place AFs 48.89 60.93
MFCCs + Manner AFs 47.74 61.43
MFCCs + Roundness AFs 47.28 60.75
MFCCs + Frontness AFs 46.59 61.11
MFCCs + Height AFs 48.60 61.58

distribution of manner AFs obtained in first stage (shown in Fig.3.4). The com-
bination of MFCCs and manner AFs is then fed to manner AF-based tandem PRS
for decoding the phones in the input speech utterance.

Phone recognition accuracy is determined as per the procedure mentioned in
Sect.3.3.2.3. Table 3.12 shows the phone recognition accuracies of baseline and tan-
dem PRSs for Bengali and TIMIT datasets. First column shows the different types
of features used in the development of PRSs. Second and third columns indicate the
recognition accuracies of TIMIT and Bengali PRSs, respectively. It can be observed
that all tandem PRSs have higher recognition accuracy compared to their respec-
tive baseline PRSs. The combination of MFCCs and place AF's has shown highest
recognition accuracy for Bengali dataset, while the combination of MFCCs and
height AF's has shown highest recognition accuracy for TIMIT dataset. Among all
the vowel AFs, the height A Fs have shown superior performance for both Bengali
and TIMIT datasets.

It is observed that the CA of aspirated plosives is decreased in all the five AF-
based tandem PRSs, whereas the CA of most of unaspirated plosives, fricatives, and
approximants is increased in all the AF-based tandem PRSs compared to baseline
system. The CA of silence has improved in all the AF-based tandem PRSs compared
to baseline system. The analysis of each AF-based tandem PRS is as follows:
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Place AF-based tandem PRS: The CA of nasals and aspirated plosives is decreased,
while the CA of all other subgroups is improved. Approximants and nasals have
shown the highest and lowest improvements, respectively.

Manner AF-based tandem PRS: The CA of labiodentals is decreased, while the
CA of all other subgroups is improved. Vowel and glottal subgroups have shown the
highest improvement compared to baseline PRSs.

Roundness AF-based tandem PRS: The CA of both rounded and unrounded vowels
isimproved. The improvement in the CA of rounded vowels is much higher compared
to that of unrounded vowels.

Frontness AF-based tandem PRS: The CA of all the vowels is improved. The back
vowels have shown highest improvement in their CAs, while the mid-vowels have
shown least improvement in their CAs.

Height AF-based tandem PRS: The CA of all the vowels is improved. The mid-low
subgroup has shown least improvement in the CA, while the mid-high subgroup has
shown highest improvement in the CA.

3.5 Hybrid Phone Recognition Systems Using
Articulatory Features

Hybrid PRSs are developed by combining AF-based tandem PRSs using weighted
combination scheme. The performance of Hybrid PRSs is compared with PP-based
tandem PRSs. The following subsections describe the details of development and
performance evaluation of hybrid PRSs.

3.5.1 Development of Hybrid Phone Recognition Systems
Using Articulatory Features

The hybrid PRSs are developed by combining AF-based tandem PRSs using weighted
combination approach. In weighted combination scheme, the posterior probabilities
from different PRSs are combined at frame level [15]. The combined posterior prob-
ability P(j) of each frame with N phone classes, in the test utterance, is given by the
Eq.3.4. The weighting factor w; varies from O to 1 with a step size of 0.1 and sum

k
upto 1 (e, D w; = 1).
i=1
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k
For each frame, P(j)= zwi * pi(J),
i=1
where, juvaries from1to N.
N = Total number of phone classes.
Jj = indicates specific phone class.
k = Number of PRSs considered for combining.
i = indicates specific PRS.
3.4)

Hybrid systems are developed by using the following combinations of AF-based
tandem PRSs: (i) place and manner; (ii) roundness, frontness, and height; and (iii)
place, manner, roundness, frontness, and height (i.e., all AF-based tandem PRSs).
As the place and manner AFs mainly capture the characteristics of consonants, the
hybrid PRSs developed using place and manner AF-based tandem PRSs are called
consonant-AF-based hybrid PRSs. Since the roundness, frontness, and height AFs
mainly capture the characteristics of vowels, the hybrid PRSs developed using round-
ness, frontness, and height AF-based tandem PRSs are called vowel-AF-based hybrid
PRSs. The hybrid PRSs developed using combination of all the five AF-based tandem
PRSs are called all-AF-based hybrid PRSs. PP-based tandem PRSs are developed
to compare the performance of AF-based hybrid PRSs with PP-based tandem PRSs.
The PPs are predicted as per the procedure mentioned in Sect.3.3.3. The combina-
tion of MFCCs and PPs is used for developing PP-based tandem PRSs using HMMs.
Figure 3.9 illustrates the PP-based tandem PRS for ten frames using posteriogram
representation. The MFCCs are augmented with the posteriogram distribution of
PPs obtained in first stage (shown in Fig.3.6). The combination of MFCCs and PPs
is then fed to PP-based tandem PRS for decoding the phones in the input speech
utterance.

Figure 3.10 shows the block diagram of development of hybrid PRSs. MFCCs are
combined with the predicted AFs of each AF group to develop tandem PRSs for each
AF group. The scores from all the five tandem PRSs are combined using weighted

BMFCCs | + 1 ' ' T | |

39MFCCs | + 2 il
39 MFCCs | + 3| B

39MFCCs | + 4
39mrces | + s
IOMFCCs | + 6
39MFCCs | + 7/ 0
J9MFCCs | + 8} .

39MFCCs | + o} .
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Fig. 3.9 Illustration of PP-based tandem phone recognition system for ten frames using posteri-
ogram representation
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Fig. 3.10 Block diagram of hybrid phone recognition systems

Table 3.13 Weighting factors used for developing Hybrid PRSs using weighted combination
approach

Hybrid PRS Weighting factors

Bengali TIMIT

wl w2 w3 w4 w5 wl w2 w3 w4 w5
consonant-AF- 0.5 0.5 - - - 0.5 0.5 - - -
based
vowel-AF-based | - - 0.3 0.3 0.4 - - 0.3 0.3 0.4
all-AF-based 0.3 0.2 0.2 0.1 0.2 0.3 0.1 0.2 0.1 0.3

combination approach. The scores are combined such that optimal recognition accu-
racy is achieved.

Table 3.13 shows the optimal weighting factors used for developing hybrid PRSs
using weighted combination approach. First column lists the different types of hybrid
PRSs. Second to sixth columns indicate the weighting factors for Bengali dataset,
while the last five columns indicate the weighting factors for TIMIT dataset. The
hyphen (-) symbol in Table3.13 indicates that the particular weighting factor is
not applicable for the corresponding hybrid PRS. The weighting factors wl, w2,
w3, w4, and w5 correspond to place, manner, roundness, frontness, and height AF-
based tandem PRSs, respectively. Among all the combinations of weighting factors
considered, the weighting factors listed in Table 3.13 have shown highest recogni-
tion accuracies. From Table3.13, it can be observed that equal weightage is given
for both place and manner AF-based tandem PRSs to develop consonant-AF-based
hybrid PRSs. In the development of vowel-AF-based hybrid PRSs, a higher weigh-
tage is given to the evidence of height AF-based tandem PRSs compared to the
evidences from roundness and frontness AF-based tandem PRSs. This is because,
the height AF-based tandem PRSs have higher recognition accuracy compared to
roundness and frontness AF-based tandem PRSs, as shown in Table 3.12. This is true
for both Bengali and TIMIT datasets. The place AF-based tandem PRS, which has
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highest recognition accuracy among all the AF-based tandem PRSs, is given high-
est weightage in the development of Bengali all-AF-based hybrid PRS. Further, we
have also combined PP-based tandem PRS and all-AF-based hybrid PRS to develop
PP-and-All-AF-based hybrid PRS using the weighting factors 0.3 and 0.7,
respectively.

3.5.2 Performance Evaluation of Hybrid Phone
Recognition Systems

The phone recognition accuracies of hybrid PRSs is determined as per the procedure
mentioned in Sect.3.3.2.3. Table3.14 shows the phone recognition accuracies of
PP-based and AF-based hybrid PRSs. First column lists the various of PRSs. Second
and third columns show the recognition accuracies for Bengali and TIMIT datasets,
respectively. It can be observed that the performance of hybrid PRSs is higher than
any of the AF-based tandem PRSs. The improvement in the recognition accuracies of
hybrid PRSs is consistent; i.e., the recognition accuracy of all-AF-based Hybrid PRSs
is higher than both consonant-AF-based and vowel-AF-based hybrid PRSs. Among
consonant-AF-based and vowel-AF-based hybrid PRSs, the vowel-AF-based hybrid
PRSs have higher recognition accuracies. all-AF-based hybrid PRSs have higher
recognition accuracy compared to PP-based tandem PRSs. The PP-and-All-AF-
based hybrid PRSs have shown highest recognition accuracy with an improvement
of 7.13% and 6.31% for Bengali and TIMIT datasets, respectively, compared to their
baseline PRSs.

In all the hybrid PRSs, most of the vowels and unaspirated plosives have shown
improvements in their CAs, while most of semivowels, nasals, fricatives, and aspi-
rated plosives have reduction in their CAs. The reduction in the CA of aspirated
plosives is mostly because of their misclassification into corresponding unaspirated
plosives. The CAs of vowels is more in vowel-AF-based hybrid PRSs compared to
that of consonant-AF-based hybrid PRSs, while the CAs of consonants is more in
consonant-AF-based hybrid PRSs compared to that of vowel AF-based hybrid PRSs.

Table 3.14 Phone recognition accuracy (%) of PP-based and AF-based hybrid phone recognition
systems using Bengali and TIMIT datasets

PRSs using different features Recognition accuracy (%)
Bengali TIMIT

MFCCs (Baseline) 45.48 58.45
PP-based Tandem PRS 48.97 62.59
consonant-AF-based Hybrid PRS 49.95 61.82
vowel-AF-based Hybrid PRS 51.28 63.04
all-AF-based Hybrid PRS 52.24 63.81
PP-and-All-AF-based Hybrid PRS | 52.61 64.76
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Phone Recognition Accuracies of Bengali PRSs
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Fig.3.11 Results of baseline, tandem, and hybrid PRSs plotted using bar graphs for Bengali dataset

Silence has shown improvement in all hybrid PRSs. all-AF-based hybrid PRSs have
the CA of vowels, which is in between the CA of vowel-AF-based and consonant-
AF-based hybrid PRSs. all-AF-based hybrid PRSs have higher CA of consonants
compared to vowel-AF-based and consonant-AF-based hybrid PRSs. This is mainly
because of the improvement in the CA of unaspirated plosives. The CA of semivow-
els is same in both consonant-AF-based and all-AF-based hybrid PRSs. PP-and-All-
AF-based hybrid PRSs have highest recognition accuracy in all the subgroups. The
improvement in the recognition accuracy of consonants is much higher in PP-and-
All-AF-based hybrid PRSs compared to improvements in all other subgroups. The
recognition accuracy of semivowels in PP-and-All-AF-based hybrid PRS is almost
same as that of baseline PRS.

Figures3.11 and 3.12 show the results of hybrid PRSs in comparison with the
baseline and tandem PRSs plotted using bar graphs for Bengali and TIMIT datasets,
respectively. From the Figs.3.11 and 3.12, it can be observed that the trend in
improvement of performance is similar in both Bengali and TIMIT PRSs.

3.6 Discussion of Results

In this work, we have proposed AFs in addition to the well-known spectral features
for enhancing the accuracy of the PRSs. From the conducted studies, it is observed
that the AFs mainly contribute to resolve the ambiguity in discriminating the phones
belonging to certain specific groups. The phones belong to these groups cannot
be discriminated by spectral features alone, because all these phones are produced
due to similar vocal tract configuration. But, due to the variation in the positioning
and movements of various articulators, these phones can be discriminated using
appropriate articulatory features.
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Fig. 3.12 Results of Baseline, tandem, and hybrid PRSs plotted using bar graphs for TIMIT dataset

In this section, we discuss about the performance of the proposed PRSs developed
using AFs and compare the results with the state-of-the-art PRSs. In this work,
the proposed PRSs are evaluated using Bengali and TIMIT speech databases. The
Bengali speech database was developed recently at II'T Kharagpur [2], and hence,
we are unable to provide the comparative results of state-of-the-art methods on this
database. Even though there exists several works on TIMIT speech database, there
are certain difficulties involved in the comparison of the results from different works.
Few of these difficulties are listed: (i) The number of phones used for developing and
evaluating the phone recognizers is not uniform across the works; (ii) the training and
testing sets are not consistent across the works; and (iii) the use of language-related
information (i.e., language model) is not consistent across all the works. In the midst
of all these difficulties, we have compared the performance of the proposed PRSs
with few closely related works and tried to analyze the reasons for either increase or
decrease in the recognition accuracy. In order to have consistency in comparison with
different works, we have listed all the results in terms of the recognition accuracies.
We have expressed all the word error rates and the phone error rates in terms of
recognition accuracies.

In 1989, K. Lee et al. have developed context-independent (CI) phone recognizer
using HMMs. The training set consists of 2830 sentences from 357 speakers, while
the testing set consists of 160 sentences from 20 speakers. It is observed that the
phone recognizer developed using 39 phones and without any language model (LM)
has a recognition accuracy of 58.77%. In our work, the baseline PRS with 39 phones
has shown a recognition accuracy of 63.62%, which is much higher than 58.77%
[13]. In 1992, S.J. young has developed a HMM-based phoneme recognizer using
the TIMIT dataset. It is found that CI phone recognizer has a recognition accuracy
of 52.7% with 39 phones [16]. The training set consists of SI and SX sentences and
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testing test contained 160 randomly chosen sentences. Compared to the above work,
the performance of our proposed PRS is much better [16, 17].

In 2008, H. Ketabdar et al. have developed a hybrid HMM-/ANN-based phone
recognizer using the TIMIT dataset. The standard training and testing sets with 39
phones are used. A long temporal context of 19 frames is used to capture the lexical
knowledge. The language-related information is captured using a bigram language
model. A recognition accuracy of 71.5% was reported [12]. In this work, we have
achieved a recognition accuracy of 71.13%, which is very close to the performance
mentioned in the work reported above [12]. The distinction between these two works
is due to the following reasons: (i) In [12], the phone recognizer is developed using
hybrid HMM/ANN model with a bigram language model (LM), but in our work,
phone recognizer is developed using HMMs with no LM; (ii) phone recognition
system developed in [12] captures the lexical knowledge using a temporal context of
19 frames, whereas in our work, we have considered the temporal context of 3 frames.
In 2009, S. M. Siniscalchi et al. have used the AFs to improve the performance of
the HMM-based phone recognizer. A bank of speech event detectors are used to
determine the AFs, through a lattice rescoring method. The standard training and
testing sets with a set of 45 phones are used. The best obtained result of a CI phone
recognizer with no LM has a recognition accuracy of 64.84% [18]. For comparing
the results of the above-mentioned system in [18], we have evaluated the proposed
PRS with 45 phones, and the recognition accuracy is observed to be 66.78%, which
is slightly better compared to the above-mentioned system [18].

In 2011, Dhanajaya et al. have developed HMM-based phone recognizers using
the TIMIT dataset. The recognition accuracies obtained using 39 and 48 phones are
61.70% and 56.28%, respectively [19]. In this work, we have achieved recognition
accuracies of 63.62% and 58.45% for the baseline PRS using 39 and 48 phones,
respectively. By comparing results of [19] with the results obtained in the current
work, it can be found that the results obtained in this work are much better compared
to that of [19]. In 2011, L. Toth has developed a HMM-based phone recognizer using
the TIMIT dataset. The baseline CI phone recognizer with 39 phones has shown a
performance of 66.96% [20]. The results obtained from the baseline system of the
current study are slightly lower compared to the results of baseline system shown in
[20]. The low recognition accuracy by our baseline system may be due to variation
in the training dataset used, compared to the PRS developed in [20].

In 2011, R. Rasipuram et al. have used the AFs to improve the performance of
the PRSs using TIMIT dataset [21]. The AFs are estimated by training two stages
of the multilayer perceptrons (MLPs). First stage takes PLP coefficients as the input
and produces AFs as the output. The AFs obtained from the first stage are enhanced
by training a second MLP in the second stage. These enhanced AFs along with PPs
are used as features to train PRS. The interfeature dependencies between different
AF groups are captured using multitask learning (MTL) approach.

Unlike [21], in this work, we have used single-staged MLP to derive AFs. Although
the best recognition accuracy reported in [21] is 74.0%, the performance of the PRS
developed using the AFs and PPs produced by the first stage is 70.4%. However,
the performance of the proposed hybrid PRS is 71.13%, which is better than that of
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base-mtl-af+ph PRS in [21]. In [21], AFs are divided into eight AF groups. Naturally,
the articulatory posterior probabilities estimated using eight AF groups have more
discriminative information compared to the AFs estimated using five AF groups. In
[21], 39 phones are used for both training and testing the PRS. But, in our work, we
have used 48 phones for training the PRS and 39 phones for testing. The proposed
method will produce better or comparable results with that of [21], if we make
following changes: (i) using enhanced AFs produced by the second-stage MLP, (ii)
use of MTL method to capture the interdependencies between different AF groups,
(iii) use of eight AF groups as described in [21], and (iv) use of 39 phones for both
training and testing.

In 2013, A. Graves et al. have developed phone recognizer using deep recurrent
neural networks (RNNs) and reported a highest recognition accuracy of 82.3% [22].
In 2014, L. Toth has developed a phone recognizer using convolutional deep maxout
networks (CDMNs) and obtained a highest recognition accuracy of 83.5% [23]. In
2014, V. Peddinti et al. have developed a phone recognizer using the combination
of CNNs and DNNs called CNN/DNN combination networks (CDCNs) [24]. The
highest reported recognition accuracy with context-independent HMMs is 81.8%.
Although the performance of the proposed method is lesser (i.e., 71.13%) compared
to the performance of [22-24], it could be preferred because of the following reasons:

Less Complex: The simplicity of the architecture is measured in terms of number
of layers and size of each layer. The architecture of the proposed method is much
simpler compared to RNNs, CDMNs, and CDCNs, because of the following reasons:

1. RNNs and CDMNs have 3 and 4 hidden layers, respectively, whereas the proposed
approach uses FFNNs with one hidden layer.

2. CDCNs have 2 convolutional layers with 256 hidden units per layer and 4 fully
connected layers with 1,024 hidden units per layer. Hence, the architecture of
CDCNes is very complex compared to the FFNNs with one hidden layer used in
the proposed method.

3. The size of each layer varies between 2714 and 3890 units in CDMNs, which is
much higher compared to the 585 units present in the hidden layer of the proposed
method.

4. Each input to CDCNs has 2970 parameters. The number of parameters in an
hidden layer with 1024 units are 3041280 (around 3 million). The total number
of parameters in a network with 2 convolutional and 3 fully connected hidden
layers is equal to 10644480, which is very much larger compared to the 68445
parameters used in the proposed hybrid PRS.

Less Training Time: The proposed system requires less training time compared
to the RNNs, CDMNs, and CDCNs, because of the following reasons:
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1. Bidirectional RNNs used in [22] process the data in both forward and backward
directions. This leads to large number of computations and increases the training
time.

2. CDMNs takes 2856 input parameters, which is much higher compared to the 351
input parameters used in the proposed method.

3. The size of the CDCNs input is 2970, which is larger than the input size of 351
used in the proposed system.

4. The computation of scatter features used in [24] requires large number of com-
putations.

5. CDMNs and CDCNs perform operations such as weight sharing and pooling,
which involve significant number of computations, thereby increasing the overall
training time.

Less Training Data: The proposed approach works well even with smaller train-
ing datasets such as TIMIT, due to smaller size of the input layer. Although CDMNs
and CDCNss are trained using TIMIT dataset in [23, 24], respectively, ideally CDMNs
and CDCNs should be trained using large training datasets. This is because, CDMNs
and CDCNs have large number of input parameters (i.e., large input feature vector),
which requires large amount of training data. The use of smaller datasets for training
might result in problems such as curse of dimensionality.

Table 3.15 summarizes the highlights of the comparative performance of the pro-
posed PRSs with the existing PRSs on the TIMIT dataset.

3.7 Summary

In this chapter, the articulatory features are explored for improving the performance
of PRSs. HMM-based Bengali and English PRSs are developed using spectral and
articulatory features. The use of articulatory features in addition to spectral features
lead to improvement in the performance of PRSs. MFCCs are used as spectral fea-
tures. AFs are derived from spectral features using FFNNs. Five AF groups, namely
(i) place, (ii) manner, (iii) roundness, (iv) frontness, and (v) height, are considered.
Five different AF-based tandem PRSs are developed using the AFs predicted from
each AF group. Hybrid PRSs are developed by combining the AF-based tandem
PRSs using weighted combination approach. all-AF-based hybrid PRSs outperform
the conventional PP-based tandem PRSs. all-AF-based hybrid PRSs have higher
recognition accuracy compared to consonant-AF-based and vowel-AF-based hybrid
PRSs. PP-and-All-AF-based hybrid PRSs developed using combination of all-AF-
based hybrid PRSs and PP-based tandem PRSs have shown the highest recognition
accuracy. The best obtained results have shown an improvement of 7.13% and 6.31%
for Bengali and TIMIT datasets, respectively.



References 45

References

13.

14.

15.

16.

17.

18.

19.

20.

21.

. Manjunath K.E., K. Sreenivasa Rao, M. Gurunath Reddy, Two-Stage Phone Recognition Sys-

tem using Articulatory and Spectral Features, in IEEE International Conference on Signal
Processing and Communication Engineering Systems, pp. 107-111 (2015)

. S.B. Sunil Kumar, K. Sreenivasa Rao, D. Pati, Phonetic and prosodically rich transcribed speech

corpus in indian languages: Bengali and Odia, in IEEE International Oriental COCOSDA
(OCOCOSDA), pp. 1-5 (2013)

. The International Phonetic Association, Handbook of the international phonetic association,

Cambridge University Press, http://www.langsci.ucl.ac.uk/ipa/index.html

. J. Garofolo et al., TIMIT Acoustic-phonetic continuous speech corpus LDC93S1. (Philadel-

phia: Linguistic Data Consortium, 1993), http://catalog.ldc.upenn.edu/LDC93S1

. L. Rabiner, B.-H. Juang, B. Yegnanarayana, Fundamentals of Speech Recognition (Pearson

Education, 2008)

. M.Roch, IPA/CMU/TIMIT phone mappings and American English examples, http://roch.sdsu.

edu/cs682/IPA-CMU-TIMIT-Phoneset.pdf

. S. Young et al., The Hidden markov model toolkit and HTK book, Cambridge University

Engineering Department, http://htk.eng.cam.ac.uk

. K. Sreenivasa Rao, Role of Neural network models for developing speech systems, SADHANA,

in Academy Proceedings in Engineering Sciences, Indian Academy of Sciences, Vol. 36, Part-5,
(Springer, Oct 2011), pp. 783-836

. AK. Vuppala, S. Chakrabarti, K. Sreenivasa Rao, Feature mapping using neural network

models for coded speech recognition, in International Conference on Cognitive and Neural
systems (2010)

. A.K. Vuppala, K. Sreenivasa Rao, Neural network models for speech recognition in mobile

environments, in International Conference on Cognitive and Neural systems (2009)

. S. Wegmann et al., QuickNet software and documentation, Speech group at International Com-

puter Science Institute, http://www.icsi.berkeley.edu/icsi/groups/speech

. H. Ketabdar, H. Bourlard, Hierarchical integration of phonetic and lexical knowledge in phone

posterior estimation, in /IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), pp. 4065—4068 (2008)

K.-F. Lee, H.-W. Hon, Speaker-independent phone recognition using hidden Markov models.
IEEE Trans. Acoust. Speech Sig. Process. 37, 1641-1648 (1989)

H. Hermansky, D.P.W. Ellis, S. Sharma, Tandem connectionist feature extraction for conven-
tional HMM systems, in IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), pp. 1635-1638 (2000)

K. Sreenivasa Rao, S.G. Koolagudi, Recognition of emotions from video using acoustic and
facial features, in Signal, Image and Video Processing (SIViP), pp. 1-17 (2013)

S.J. Young, The general use of tying in phone-based hmm speech recognizers, in /EEE Inter-
national Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 1-569-1-572
(1992)

C. Lopes, E. Perdigao, Phone recognition on the TIMIT database. Speech Technol. 285-302
(2011)

S.M. Siniscalchi, C.-H. Lee, A study on integrating acoustic-phonetic information into lattice
rescoring for automatic speech recognition. Speech Commun. 51, 1139-1153 (2009)

N. Dhananjaya, B. Yegnanarayana, V.G. Suryakanth, Acoustic-phonetic information from exci-
tation source for refining manner hypotheses of a phone recognizer, in IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 5252-5255 (2011)

L. Toth, A hierarhical context-dependent neural network architecture for improved phone
recognition, in /EEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), pp. 5040-5043 (2011)

R. Rasipuram, M. Magimai-Doss, Improving articulatory feature and phoneme recognition
using multitask learning. Artif. Neural Netw. Mach. Learn. (ICANN) 6791, 299-306 (2011)


http://www.langsci.ucl.ac.uk/ipa/index.html
http://catalog.ldc.upenn.edu/LDC93S1
http://roch.sdsu.edu/cs682/IPA-CMU-TIMIT-Phoneset.pdf
http://roch.sdsu.edu/cs682/IPA-CMU-TIMIT-Phoneset.pdf
http://htk.eng.cam.ac.uk
http://www.icsi.berkeley.edu/icsi/groups/speech

46

22.

23.

24.

3 Articulatory Features for Phone Recognition

A. Graves, A. Mohamed, G. Hinton, Speech recognition with deep recurrent neural networks, in
IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) (2013)
L. Toth, Convolutional deep maxout networks for phone recognition, in International Speech
Communication Association (INTERSPEECH), pp. 1078-1082 (2014)

V. Peddinti, T.N. Sainath, S. Maymon, B. Ramabhadran, D. Nahamoo, V. Goel, Deep scattering
spectrum with deep neural networks, in I[EEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP), pp. 210-214 (2014)



Chapter 4
Excitation Source Features for Phone
Recognition

4.1 Introduction

According to the theory of speech production, speech is produced by exciting the
vocal tract system with an excitation source [1]. The vocal tract acts as time-varying
linear acoustic filter and the vocal folds act as main source of excitation. The state-
of-the-art phone recognition systems (PRSs) are mostly developed using vocal tract
features, and the excitation source features are not much explored for developing
PRS:s. Since, the speech is produced by the combination of vocal tract and excitation
source characteristics, there is a need for investigating excitation source features in
addition to vocal tract system features to improve the performance of PRSs. Hence, in
this chapter, we have explored excitation source features to improve the performance
of PRSs. The excitation source features have many applications such as language
identification [2, 3], emotion recognition [4, 5], speaker verification [6, 7], and
speaker recognition [8, 9].

The excitation source information is derived by processing linear prediction (LP)
residual of speech signal. The vocal tract information is captured using Mel fre-
quency cepstral coefficients (MFCCs). TIMIT and Bengali read speech corpora are
considered for developing PRSs. Further, the excitation source features are explored
for developing tandem and robust PRSs.

This chapter is organized as follows: Sect. 4.2 describes the feature extraction tech-
niques used for extracting the excitation source features. In Sect. 4.3, the development
of PRSs using vocal tract and excitation source features is discussed. The develop-
ment of tandem PRSs is explained in Sect. 4.4. Section4.5 discusses the development
of robust PRSs using excitation source features. Section 4.6 summarizes the contents
of this chapter.
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4.2 Extraction of Excitation Source Features

In this work, MFCC features are used for capturing vocal tract information, while the
residual Mel frequency cepstral coefficients (RMFCCs) and Mel power differences
of spectrum in sub-bands (MPDSS) features are considered for capturing excitation
source information. MFCC features are extracted as per the procedure mentioned in
Sect.3.3.1. In this section, feature extraction techniques for capturing the excitation
source information are discussed. As LP residual mainly contains excitation source
information [8, 10-12], in this work, the features derived from LP residual are used
to represent excitation source information. Section4.2.1 describes the procedure for
computing LP residual from the speech signal. Sections4.2.2 and 4.2.3 describe the
techniques for parameterizing the excitation source information.

4.2.1 Computation of LP Residual

In LP analysis, the sample s(n) is estimated as a linear weighted sum of the past
samples. The predicted sample §(n) is given by

P
3m) == as(n—k) 4.1)
k=1

where p is the order of prediction, and {a; }, k=1, 2, ..., pis the set of linear prediction
coefficients (LPCs). The LPCs are obtained by minimizing the mean-squared error
between the predicted sample value and the actual sample value over the analysis
frame. The error e(n) between the predicted value $(n) and actual value s(n) is given
by

P
e(n) = s(n) —sn) =sn) + Zaks(n —k) “4.2)

k=1

This error e(n) is called the LP residual of the speech signal [ 13]. LP residual signal
essentially carries all information that has not been captured by the LP coefficients.
LP residual mainly contains excitation source information [8, 10, 11].

4.2.2 Mel Power Differences of Spectrum in Sub-bands

In case of voiced sound units, the rate of vocal folds vibration varies from one
sound unit to another. Hence, the periodic information or the harmonic structure of
the excitation source also varies from one sound unit to another. The periodicity
information in the excitation source can be determined by measuring the difference
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between peaks and dips of the LP residual spectrum. The power spectrum p(k) of the
LP residual signal R(k) is determined using the relation p(k) = |R(k) |>. The power
differences of spectrum in sub-bands (PDSS) features are used for representing the
periodicity information present in the excitation source signal [14, 15]. The PDSS
is determined using the spectral flatness (SF) measure of the power spectrum in sub-
bands. Spectral flatness can be measured by the ratio of geometric mean (GM) to
arithmetic mean (AM) of the power spectrum. PDSS of residual sub-band spectra is
given by the relation PDSS = 1 — SF and is computed as shown in the Eq. 4.3.

1

[Hi’;mk)} |

Vi)=10-—— =
>, pk

(4.3)

where N; = H; — L; + 1 is the number of frequency points in ith filter. The L; and H;
are the lower and upper limits of the frequency in ith sub-band, respectively. Since,
0 < SF < 1, the values of PDSS also vary from O to 1. Higher the periodicity of the
LP residual spectrum then the PDSS value is closer to 1.0 and lower the periodicity
of the LP residual spectrum then the PDSS value is closer to 0.0. If the spectrum
has peaks and dips, i.e., the dynamic range is more, then GM is less than AM and
PDSS value is close to one, which implies that the spectrum is more periodic. If
the spectrum is nearly flat, i.e., the dynamic range is less, then GM ~ AM and the
PDSS value will be close to zero, which implies that the spectrum is less periodic.
So, PDSS measure gives information about the periodicity nature of the spectrum.
Sub-band spectra are obtained by multiplying the residual power spectrum with a
filter bank. The PDSS values are computed from each sub-band using Eq.4.3. In this
work, the Mel-filter banks are used for computing the PDSS from Mel sub-bands.
The motivation for using Mel filters is that the Mel-filter bank is designed based on
Mel scale of auditory perception. The Mel-filter bank provides less spectral samples
to lower bands and more samples to higher bands (beyond 1kHz). Since, the Mel
filter-bank is used for dividing the power spectrum into sub-bands, the PDSS features,
thus obtained are called Mel PDSS (MPDSS) features.

The sequence of operations in deriving MPDSS features is shown in Fig.4.1.
LP residual of the speech signal is obtained by applying inverse filtering on the
speech signal as described in Sect.4.2.1. LP residual signal is windowed into frames
with duration of 25 ms with consecutive frame overlap by 10 ms. discrete Fourier
transform (DFT) is applied on each frame of LP residual to get LP residual spectrum.
The power spectrum is obtained by taking the square of the magnitude of LP residual
spectrum. The power spectrum is then passed through a Mel-filter bank with m Mel
filters. PDSS for each Mel filter is calculated using Eq.4.3. The PDSS coefficients
from all the Mel filters together represent the MPDSS feature vector. The MPDSS
feature vector contains m coefficients.

The distribution of MPDSS features is analyzed by plotting the MPDSS feature
distribution of six broad phonetic subgroups. The distribution of MPDSS features of a
subgroup is captured by training a Gaussian mixture model (GMM) with 16 mixtures
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using MPDSS features of that specific subgroup. Separate GMMs are trained using
the MPDSS features of each subgroup. The average of the means of 16 mixtures
of GMM:s is considered for plotting the MPDSS feature distribution for a subgroup.
Since, we have considered a Mel-filter bank with 25 Mel filters, each MPDSS feature
has 25 coefficients. Figure 4.2 shows the distribution of MPDSS features of different
phonetic subgroups. In Fig. 4.2, X-axis represents the mean frequency of each sub-
band in Hz and the Y-axis denotes the MPDSS coefficient value. Mean frequency
of a sub-band is obtained by taking the mean of the lowest and highest frequencies
of that sub-band. Mean frequency is then rounded off to the nearest integer value.

The six subgroups considered in this work are vowels, nasals, semivowels, voiced
stops, fricatives, and unvoiced stops. It can be observed that there is clear separation
among the features of all the subgroups. All the voiced groups are at the top, which
indicates that their MPDSS value is closer to 1.0 and they have higher periodicity.
All the unvoiced groups are at the bottom, which indicates that their MPDSS value
is far below 1.0 and they have less periodicity. The feature distributions of nasals
and approximants (semivowels) are overlapping. This is because both nasals and
approximants are sonorants and both have similar characteristics. The top most plot
in Fig. 4.2 corresponds to vowels, which are highly periodic while the bottom most
plot corresponds to unvoiced stops, which are aperiodic. The MPDSS features are
explored for speaker verification in [6, 7].
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4.2.3 Residual Mel Frequency Cepstral Coefficients

The MFCCs extracted from LP residual signal are called Residual MFCCs (RMFCCs).
RMFCCs are used for parameterizing the excitation source information present in
the LP residual signal [15, 16]. The sequence of operations in deriving RMFCC
features is shown in Fig. 4.3. LP residual of the speech signal is obtained by applying
inverse filtering on the speech signal as described in Sect.4.2.1. LP residual signal is
windowed into frames with duration of 25 ms with consecutive frame overlap by 10
ms. DFT is applied on each frame of LP residual to get LP residual spectrum. The LP
residual spectrum is then passed through a Mel-filter bank with 26 Mel filters. Dis-
crete cosine transform (DCT) is applied over the Mel-filtered LP residual spectrum
to obtain cepstral coefficients. These cepstral coefficients are called RMFCCs, as
they are obtained by performing cepstral analysis over LP residual spectrum. In this
study, 13 RMFCCs along with their delta and delta—delta coefficients yielding a total
of 39 components are considered. The RMFCC features are explored for speaker
verification in [6, 7].

4.3 Phone Recognition Systems Using Excitation Source
and Vocal Tract System Features

In this study, we have developed Bengali and English PRSs using HMMs. HMM-
based PRSs are developed using the procedure mentioned in Sect. 3.3.2.2. The num-
ber of phones considered for developing Bengali and TIMIT PRSs are 35 and 48,
respectively. Phone recognition accuracy is determined as per the procedure men-
tioned in Sect. 3.3.2.3. Table 4.1 shows the recognition accuracy of PRSs developed
using different types of features for Bengali and TIMIT datasets. First column shows
the different types of features used in development of PRSs. Second and third columns
indicate the recognition accuracies of TIMIT and Bengali PRSs, respectively.
From Table 4.1, it is observed that the use of excitation source information resulted
in improvement of phone recognition accuracy (see 6, 7 and 8 rows). The PRSs
developed using excitation source features alone have poor recognition accuracy
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Table 4.1 Phone recognition accuracy (%) of PRSs using spectral and excitation source features
for Bengali and TIMIT datasets

Features Recognition accuracy (%)
Bengali TIMIT

MPDSS 11.40 14.93
RMFCC 25.72 35.74
RMFCC + MPDSS 27.30 41.03
MFCCs (Baseline) 45.48 58.45
MFCC + MPDSS 47.29 59.47
MFCC + RMFCC 48.31 60.03
MFCC + RMFCC + MPDSS | 48.66 59.53

compared to the PRSs developed using MFCC features (see 2, 3, 4, and 5 rows).
This is because MFCCs mainly represent vocal tract information and the vocal tract
has major message-bearing articulators, playing a crucial role in production of a
sound unit compared to excitation source. The phone recognition accuracy obtained
using RMFCC features is higher than the phone recognition accuracy obtained using
MPDSS features. This indicates that excitation information is better captured by
RMFCC features than MPDSS features. The recognition accuracy obtained using
MPDSS alone is least, which indicates that the periodic information captured by
MPDSS features alone would not be sufficient to recognize a phone accurately.
The combination of RMFCCs and MPDSS has shown higher recognition accuracy
than either of RMFCCs or MPDSS features alone. The combination of MFCCs,
RMFCCs, and MPDSS has shown highest recognition accuracy for Bengali, whereas
the combination of MFCCs and RMFCCs has shown highest recognition accuracy
for TIMIT dataset. This shows that the combination of vocal tract and excitation
source information helps in better discrimination among different types of phones.
The PRSs with highest recognition accuracy have shown an improvement of 3.18%
and 1.58% for Bengali and TIMIT datasets, respectively. Though the performance
of PRSs developed using excitation source features alone is poor, but it has a good
ability to recognize vowels better than other phones [15, 16].

It is observed that, the improvement in the recognition accuracy of combination
of MFCCs and excitation source features is mainly because of the improvement in
classification accuracies of unaspirated stops. This is because, the excitation source
features contain the information for discriminating between aspirated and unaspirated
plosive consonants. The strength of excitation is different in aspirated and unaspirated
stops. The improvement in classification accuracy of unaspirated plosive consonants
is mainly because of the reduction in misclassification of unaspirated plosives to
aspirated plosives. There was no improvement in the classification accuracies of
nasals and semivowels. The improvement in the classification accuracies of {a,e,0}
vowels is observed. The classification accuracies of {aa,i,u} vowels is reduced with
the combination of MFCCs and excitation source features. This is mainly because,
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the misclassification exists among the following pairs of vowels: {aa — a,i —
e,u — o}. The use of excitation source features along with MFCCs, resulted in
reducing the confusion among the following pairs: {k — g, ¢ — k,j — ch,p —
b,d — D,t — T}. All of the previously mentioned pairs consist of the stops with
the same manner and place of articulation, but differing only in their excitation, i.e.,
voiced or unvoiced phones. Hence, it is clearly observed that the use of excitation
source features is responsible for improving the recognition accuracy.

4.4 Tandem Phone Recognition Systems Using Excitation
Source and Vocal Tract Features

Most common approach that is used to improve recognition accuracy of PRSs is
to develop tandem systems [17]. In this study, we have used the excitation source
features to further enhance the performance of tandem PRSs.

4.4.1 Development of Tandem Phone Recognition Systems

The tandem PRSs are composed of two or more stages. In tandem systems, the phone
posteriors (PPs) obtained from the first stage will be used as features for developing
PRS at the second stage. Generally, the tandem systems are developed using phone
posteriors and spectral features such as MFCCs, which mainly represent vocal tract
information. Hence, in this study, we have combined phone posteriors with both
vocal tract and excitation source information with an intent to improve performance
of PRSs. The block diagram of proposed tandem PRS is shown in Fig.4.4. The PPs
are predicted in the first stage using the procedure mentioned in Sect.3.3.3. The
predicted PPs are appended with MFCCs and excitation source features to form
the feature vectors for second stage. In the second stage, HMM-based PRSs are
developed using various combinations of MFCCs, RMFCCs, MPDSS along with
the phone posteriors. The test utterances are decoded using a decoder at the end of
second stage.

4.4.2 Performance Evaluation of Tandem Phone Recognition
Systems

The recognition accuracy of tandem PRS is determined as per the procedure men-
tioned in Sect.3.3.2.3. Table4.2 shows the recognition accuracy of tandem PRSs
developed using Bengali and TIMIT datasets. First column shows the different types
of features used in development of tandem PRSs. Second and third columns indicate
the recognition accuracies of Bengali and TIMIT tandem PRSs, respectively.
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Table 4.2 Phone recognition accuracy (%) of tandem PRSs (PPs = phone posteriors)

Features Recognition accuracy (%)
Bengali TIMIT

MFCCs (Baseline) 45.48 58.45
PPs 45.69 59.23
MPDSS + PPs 46.54 60.56
RMFCC + PPs 47.22 61.60
RMFCC + MPDSS + PPs 47.80 62.32
MFCC + PPs 48.97 62.59
MFCC + MPDSS + PPs 49.14 63.04
MFCC + RMFCC + PPs 49.43 63.67
MFCC + RMFCC + MPDSS | 49.57 63.19
+ PPs

From Table4.2, it can be observed that the phone recognition accuracy of tan-
dem systems is improved by using excitation source features along with MFCCs
and PPs. It can be found that the tandem systems developed using PPs alone have
higher recognition accuracy than the tandem systems developed using MFCCs alone.
The combination of PPs and MFCCs has higher recognition accuracy compared to
combination of PPs and excitation source features. This indicates that the vocal
tract information contains more phone-specific information. The proposed features,
which are the combination of PPs, vocal tract features, and excitation source fea-
tures, have shown highest performance among all other features. Among RMFCC
and MPDSS features, RMFCCs perform better. This is because, in MPDSS only
periodicity information is used for discriminating between various phones, whereas
the RMFCCs use the spectral information in the LP residual to discriminate among
different phones. Spectral information such as weak formant structure present in
the LP residual is captured by RMFCCs. The combination of MFCCs, RMFCCs,
MPDSS, and PPs has highest recognition accuracy for Bengali dataset, whereas the
combination of MFCCs, RMFCCs, and PPs has highest recognition accuracy for
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TIMIT dataset. The reduction in the performance of TIMIT dataset with the combi-
nation of MFCCs, RMFCCs, MPDSS, and PPs features compared to the combination
of MFCCs, RMFCCs, and PPs features might be because of the higher dimension-
ality of the combination of MFCCs, RMFCCs, MPDSS, and PPs features. Since,
the Bengali and TIMIT PRSs are developed using different number of phones, the
combination of MFCCs, RMFCCs, MPDSS, and PPs features has lower dimension
for Bengali compared to TIMIT dataset, i.e., 138 for Bengali and 151 for TIMIT
dataset. The best obtained results have shown an improvement of 4.09% and 5.22%
for Bengali and TIMIT datasets, respectively.

The PRSs developed using combination of excitation source features and phone
posteriors have higher recognition accuracy compared to PRSs developed using
phone posteriors alone. The following observations are made in PRSs developed
using combination of excitation source features and phone posteriors in compari-
son with the PRSs developed using phone posteriors alone. The classification accu-
racy of fricatives and most of the nasals is reduced. The vowels {a,i,u} have shown
improvement in their classification accuracies, while the vowels {aa,e,0} have shown
reduction in their classification accuracies. This is mainly because of the following
pairs of misclassifications: {aa — a, 0 — u, e — i}. Most of the unaspirated plo-
sives have shown improvement in their classification accuracies, whereas most of
the aspirated plosives have shown reduction in their classification accuracies. This
is because, the excitation source features contain the information for discriminating
between aspirated and unaspirated plosive consonants. The improvement in classifi-
cation accuracy of unaspirated plosive consonants is mainly because of the reduction
in misclassification of unaspirated plosives to aspirated plosives. The PRSs devel-
oped using combination of MFCCs and phone posteriors have higher recognition
accuracy compared to PRSs developed using the combination of excitation source
features and phone posteriors. The overall classification accuracies of vowels, nasals,
and fricatives increased in the PRSs using combination of MFCCs and phone poste-
riors. This is because, the MFCCs have better capability to recognize vowels, nasals,
and fricatives compared to excitation source features. The misclassification exists
between aspirated and unaspirated plosive consonants. The following observations
are made in the PRSs developed using the combination of MFCCs, excitation source
features, and phone posteriors in comparison with the PRSs developed using the
combination of MFCCs and excitation source features. The classification accura-
cies of most of the plosives, semivowels, and fricatives are increased, whereas the
classification accuracies of most of the nasals are decreased. The vowels {a,i,o,u}
have shown improvement in their classification accuracies, while the vowels {aa,e}
have shown reduction in their classification accuracies. This is mainly because of the
following pairs of misclassifications: {aa — a, e — i}.
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4.5 Robust Phone Recognition Systems Using Excitation
Source and Vocal Tract Features

In this section, the use of excitation source features to develop robust PRSs is dis-
cussed. Itis observed that the excitation source features are robust to the degradations
caused by noise [18]. Hence, we have attempted to demonstrate the robustness of
PRSs using excitation source features [15]. The PRSs are developed using clean
speech for TIMIT and Bengali datasets as per the procedure mentioned in Sect.4.3.
Separate PRSs are developed using following features: (i) MFCCs, (ii)) MPDSS, (iii)
RMFCCs, (iv) combination of MFCCs and MPDSS, and (v) combination of MFCCs
and RMFCCs. The recognition accuracy of PRS at a particular signal-to-noise ratio
(SNR) is determined by testing the PRS (developed with features from clean speech)
using the noisy speech signals of specific SNR. The test utterances are generated by
degrading the clean speech signal with additive noises taken from the NOISEX-92
database [19]. The test utterances of various SNRs ranging from 20 to —10 dB are
generated.

In this work, white and babble noises are considered to study the robustness of
excitation source features. White noise consists of all the frequencies in the audible
range 20Hz to 20kHz, and it has equal energy at all frequencies and a flat spectrum.
The examples of white noise include rain shower, running fan, sound produced
by a television or radio when no signal is being received. The addition of white
noise affects the speech signal evenly and uniformly at all frequencies regardless
of the signal strength distribution in the frequency domain. Babble noise refers to
the mixture of speech signals produced by a group of people talking simultaneously.
This kind of noise is usually found in large public gatherings. Since the babble
noise consists of a continuous low, murmuring sound from multiple speakers, the
phone recognition in additive babble noise is challenging. The noises are added to
speech signal to generate speech signals with various SNRs. LP residual signal at a
particular SNR is obtained by inverse filtering of the noisy speech signal of specified
SNR. MFCC features are extracted from the speech signals of various SNRs, while
the excitation source features, i.e., MPDSS and RMFCC:s, are extracted from the LP
residual signals of various SNRs. The features extracted at a particular SNR are used
for determining the recognition accuracy at that SNR. The speech signals of different
SNRs are generated by using additive white and babble noises.

Figures4.5 and 4.6 show the subgroup-level MPDSS feature distribution of Ben-
gali language, at different SNRs with additive white and babble noises, respectively.
In Figs.4.5 and 4.6, X-axis represent the sub-band number and the Y-axis denote
the MPDSS coefficient value. The six broad phonetic subgroups considered are:
vowels, nasals, semivowels, voiced stops, fricatives, and unvoiced stops. It can be
observed that as the noise level increases, the separation between different subgroups
decreases. This means that as the noise level increases, the discrimination between
phones becomes difficult. The fricatives and voiced stops overlap with each other
in almost all the sub-bands, whereas the nasals and approximants overlap with each
other only in lower sub-bands. As the noise level increases, the overall value of
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MPDSS coefficients decreases, i.e., for 20 dB SNR, the highest MPDSS coefficient
is near 0.8 for both noises, whereas for —10 dB SNR the highest MPDSS coefficient
of white and babble noises are near 0.6 and 0.65, respectively. This is because, as the
noise level increases the harmonic structure in the excitation signal starts degrading
and the periodicity information in the speech signal decreases. At —10 dB SNR,
the degradation in formant structure is very high in case of white noise, compared
to babble noise. Hence, the periodicity information captured by MPDSS is better
for the speech signal with additive babble noise than that of additive white noise.
This results in more clear separation among the various subgroups of the MPDSS
feature distribution of additive babble noise than that of the additive white noise at
—10 dB SNR. The subgroups converge toward higher sub-bands in additive white
noise, while the subgroups converge toward lower sub-bands in additive babble noise.
The separation is more clear in higher sub-bands compared to the lower sub-bands
for additive babble noise, whereas it is vice-versa for additive white noise. This is
because, the formant structures are clearly visible in the speech signals with addi-
tive babble noise even at lower SNRs such as —5 and —10 dB SNRs, whereas the
formant structures at lower SNRs are not visible in the speech signals with additive
white noise. Hence, the harmonic structure captured by MPDSS features is better in
case of additive babble noise than additive white noise. The babble noise has more
energy in lower frequencies compared to the energy in higher frequencies. Hence, the
addition of babble noise results in the speech signals with more degradations in their
lower frequencies compared to their higher frequencies. This leads to higher MPDSS
coefficient values at higher sub-bands compared to lower sub-bands, as depicted in
Fig.4.6.

Table4.3 shows the phone recognition accuracy of PRSs using additive white
and babble noises for Bengali and TIMIT datasets. First column shows the SNRs.
The second to sixth columns indicate recognition accuracies for Bengali dataset,
whereas the last five columns show the recognition accuracies for TIMIT dataset.
Second column indicates the recognition accuracy obtained using MFCCs features.
The third and fourth columns show the recognition accuracy obtained using MPDSS
and RMFCCs, respectively, while the fifth and sixth columns indicate the recognition
accuracy obtained using the combination of MFCCs and excitation source features.
Similarly, last five columns give the phone recognition accuracies of TIMIT PRSs.
It is observed that the combination of MFCCs and excitation source features has
superior performance in almost all the cases. The recognition accuracy obtained
using excitation source features alone is less than that of MFCCs alone. Although the
performance of MPDSS features is lowest in almost all the cases, but the degradation
in the recognition accuracy of MPDSS features is not very drastic as compared to all
other features. The degradation in the performance of RMFCC features is drastic at
higher SNRs, but as the noise level increases, the degradation becomes slow. This
indicates that the RMFCC features are more robust to higher noise levels.

Figure 4.7 shows the plot of variation of phone recognition accuracies with respect
to different SNRs using additive white noise. In Fig. 4.7, X-axis refers to the SNRs in
dB and Y-axis denotes the phone recognition accuracies in percentage. The follow-
ing observations are made on the PRSs with additive white noise. In majority of the
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Table 4.3 Phone recognition accuracy (%) of robust PRSs using additive white and babble noises
(MF = MFCC, MP = MPDSS, RM = RMFCC, SNR in dB)

White noise
SNR | Bengali TIMIT

MF MP RM MF + |MF + |MF MP RM MF + | MF +
MP RM MP RM

Clean |45.48 |11.4 2572 |47.29 |48.31 |58.45 |1493 |35.74 |59.47 |60.03
20 33.00 9.37 2234 |37.09 |38.81 |36.62 9.57 9.66 [37.79 |41.28
10 23.32 7.59 |16.63 |2645 |26.39 |22.92 6.59 8.37 2340 |24.85
5 19.00 6.35 |11.43 |22.03 |21.57 |17.76 5.09 6.65 |17.51 |18.93
16.39 4.92 5.64 |18.57 |18.76 |13.43 3.85 6.05 |[11.24 |13.06
=5 13.28 3.13 272 |11.94 |14.23 9.18 2.55 4.26 4.34 7.31
-10 8.66 2.00 2.02 3.97 6.18 4.09 1.60 3.31 2.69 3.15
Babble noise
Clean [4548 |114 2572 |47.29 |48.31 |58.45 |14.93 3574 |59.47 |60.03
20 40.66 |10.88 |23.65 |43.83 |43.63 |47.70 |13.13 |10.07 |50.05 |49.71
10 30.65 |10.26 |13.97 |34.63 |34.01 |33.64 9.85 8.92 |36.67 |36.81
5 23.90 9.34 8.56 |27.89 |26.28 |25.09 7.75 835 |27.72 |27.56
0 17.91 6.86 497 |21.87 |21.99 |18.34 6.31 7.27 |18.61 |20.20
-5 13.75 5.14 3.16 |16.54 |18.32 |11.78 4.84 6.23 |11.09 |15.19
—10 10.60 4.13 2.37 |12.89 |14.35 8.63 4.15 5.42 5.89 |11.86

cases, the combination of MFCCs and excitation source features perform better than
the MFCCs alone. In the lower SNRs, i.e., —5 and —10 dB SNRs, the performance
of all the three features is almost same. At —10 dB SNR, the MFCCs perform better
than the combination of MFCC and excitation source features. This is because, at
—10 dB SNR, there would not be much periodicity information present in the exci-
tation source features. In Fig. 4.5, MPDSS feature distribution of various subgroups
at —10 dB SNR overlaps with each other, almost leading to a single line. Hence, the
discrimination among the various subgroups is very less at —10 dB SNR. Among the
two excitation source features, RMFCC features perform better than MPDSS fea-
tures. The combination of MFCCs and MPDSS features has least phone recognition
accuracies at —5 and —10 dB SNRs for Bengali and at 0, —5, and —10 dB SNRs
for TIMIT. This is because, at 0, —5, and —10 dB SNRs, the level of white noise
is higher than or equal to the level of signal and the spectral flatness of the white
noise is close to 1.0. From Eq.4.3, it can be computed that when the SF is close to
1.0 then MPDSS becomes close to 0.0, indicating a lower periodicity. Hence, the
performance of PRSs below 0 dB SNR s less.

Figure 4.8 shows the plot of variation of phone recognition accuracies with respect
to different SNRs using additive babble noise. In Fig. 4.8, X-axis refers to the SNRs in
dB and Y-axis denotes the phone recognition accuracies in percentage. The following
observations are made on the PRSs with additive babble noise. In case of TIMIT, the
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Fig. 4.7 Recognition accuracies of Bengali PRSs at different SNRs with additive white noise
(X-axis = SNRs in dB and Y-axis = phone recognition accuracies (%))
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Fig. 4.8 Recognition accuracies of Bengali PRSs at different SNRs with additive babble noise
(X-axis = SNRs in dB and Y-axis = phone recognition accuracies (%))

performance of combination of MFCCs and MPDSS features degrades at —5 and
—10 dB SNRs. In Bengali PRSs, the combination of MFCCs and excitation source
features has shown highest performance in all SNRs for additive babble noise, while
the additive white noise has shown highest performance only in higher SNRs. This
is because, the separation among various subgroups at lower SNRs is much better
in case additive babble noise compared to additive white noise. Among the two
excitation source features, the RMFCC features perform better at lower SNRs, while
the MPDSS features perform better at higher SNRs.
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4.6 Summary

In this chapter, the excitation source features are explored for improving performance
of PRSs. HMM-based PRSs are developed using vocal tract and excitation source
features using Bengali and TIMIT datasets. MFCCs are used as vocal tract features,
while the RMFCCs and MPDSS are used as excitation source features. The use of
excitation source information in addition to vocal tract information has improved the
performance of PRSs. As the vocal tract has major role in speech production, the
PRSs developed using only vocal tract information have higher recognition accuracy
compared to the PRSs developed using excitation source information alone. The use
of excitation source features has lead to further improvement in the performance of
tandem PRSs. The tandem PRSs developed using the combination of phone posteri-
ors, excitation source information, and vocal tract information have shown highest
performance. We have also explored excitation source features to develop robust
PRSs. The robustness of PRSs is improved using excitation source information in
addition to the vocal tract information. The performance of PRSs is higher in case
of additive babble noise compared to additive white noise.
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Chapter 5

Articulatory and Excitation Source Features
for Phone Recognition in Read, Extempore
and Conversation Modes of Speech

5.1 Introduction

In previous two chapters, the articulatory and excitation source features are explored
to improve the performance of phone recognition systems (PRSs) developed using
read speech corpora. In this chapter, the articulatory and excitation source features
are explored using extempore and conversation modes of speech. The performance of
PRSs across read, extempore, and conversation modes of speech is compared, and the
results are analyzed. This chapter is organized as follows: Sect. 5.2 briefly describes
the different modes of speech. Section 5.3 discusses the feature extraction techniques
used for extracting the articulatory and excitation source features across three modes
of speech. In Sect. 5.4, the development of tandem PRSs using articulatory features is
described. Section 5.5 discusses the development of hybrid PRSs for read, extempore,
and conversation modes of speech. The development of PRSs for three modes of
speech using excitation source features is explained in Sect.5.6. The analysis of
results across read, extempore, and conversation modes of speech is carried out in
Sect.5.7. Section 5.8 summarizes the contents of this chapter.

5.2 Different Modes of Speech

In general, speech can be broadly classified into read, extempore, and conversation
modes of speech. The significance of classification of speech into three modes of
speech is as follows:

e Read speech: Read speech involves reading out from the notes such as television
news reading. It is a highly constrained mode of speech, where the message content
is made available to the speaker prior. It is more structured, planned, and prepared
well in advance. Read speech is delivered using more formal language, and it is
one-sided. The speaker prosody variations are minimal in read speech.

© The Author(s) 2017 65
K.S. Rao and Manjunath K.E., Speech Recognition Using Articulatory

and Excitation Source Features, SpringerBriefs in Speech Technology,

DOI 10.1007/978-3-319-49220-9_5



66 5 Articulatory and Excitation Source Features for Phone Recognition ...

e Extempore speech: Extempore speech is delivered without the aid of notes. The
subject speaks with confidence and in a bold fashion. The speaker attempts to
create an atmosphere to capture the attention of listeners. Delivering a lecture to
students in a class is an example of extempore speech. It is more vigorous, flexible,
and spontaneous. The extempore mode of speech is also called lecture mode of
speech. The prosody usually varies within a limited set of constraints.

e Conversation speech: The conversation mode of speech is a form of interactive,
spontaneous communication between two or more people, who are following the
rules of etiquette. Conversation speech is spontaneous because the conversation
proceeds unpredictably. It is informal, unstructured, and unorganized. Conversa-
tion speech involves free speaking style with no constraints. In conversation mode
of speech, both message and prosody are free from constraints.

It is essential to build separate PRSs for each mode of speech to perform the phone
recognition across three modes of speech in an efficient way. Hence, in this chapter,
we have analyzed the articulatory and excitation source features in three modes
of speech. The articulatory and excitation source features are used for improving
the performance of the PRSs in three modes of speech. The performance of PRSs
across read, extempore, and conversation modes of speech is evaluated, and the
results are analyzed. Bengali speech corpus with speech data in read, extempore, and
conversation modes of speech is considered. The details of the speech corpus are
given in Sect.3.2.1.

5.3 Feature Extraction

In this section, the feature extraction techniques to derive the articulatory and excita-
tion source features are discussed. Mel frequency cepstral coefficients (MFCCs) are
used for representing the spectral features. Residual Mel frequency cepstral coeffi-
cients (RMFCCs) and Mel power differences of spectrum in sub-bands (MPDSS)
features are used for capturing the excitation source information. MFCC features
are extracted as per the procedure mentioned in Sect.3.3.1 [1, 2]. The excitation
source features are extracted using the procedure mentioned in Sect.4.2. The AFs
are extracted using the procedure given in Sect.3.3.2 [3, 4]. The specific details of
extracting the articulatory features (AFs) from extempore and conversation modes
of speech are described in the following subsections.

5.3.1 Articulatory Features for Extempore and Conversation
Modes of Speech

Table 5.1 shows the articulatory feature specification for extempore and conversa-
tion modes of speech. First column indicates the AF group and the cardinality. The
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Table 5.1 Articulatory feature specification for extempore and conversation modes of speech

Extempore and conversation modes of speech (Bengali)

AF group (Cardinality) Features

Place (8) Bilabial, alveolar, retroflex, palatal, velar, glottal, vowel, silence
Manner (6) Plosive, fricative, approximant, nasal, vowel, silence
Roundness (4) Rounded, unrounded, nil, silence

Frontness (5) Front, mid, back, nil, silence

Height (6) High, low, mid-high, mid-low, nil, silence

cardinality indicates the number of features in an AF group. Second column lists
the possible feature values for each AF group. The articulatory feature specification
for read speech is shown in Table 3.2. The AF specification in Table 3.2 differs by
Table5.1 in place AF group. This is because, the cardinality of place AF group of
read speech is 9, whereas the cardinality of place AF group of extempore speech
and conversation speech is 8. Higher cardinality of place AF group in read speech
is due to the presence of labiodental feature value. The labiodental stands for sounds
like /v/, but the Bengali speakers have a tendency to use /bh/ in place of /v/. Hence,
the labiodental feature value is not found in pl/ace AF group of extempore and con-
versation modes of speech. However, we found very few instances of labiodental
sound units in read speech, which is mainly because of the pronunciations of nouns
involving /v/.

5.3.2 Prediction of Articulatory Features

The frame-level AFs for each AF group are predicted from spectral features using AF-
predictors. The AF-predictors are developed using hidden Markov models (HMMs)
and Feedforward neural networks (FFNNs). Separate AF-predictors are developed
for each AF group of read, extempore, and conversation modes of speech. For training
HMMs and FFNNS, to develop AF-predictors, the AF-level transcription is required.
Hence, the phone labels are mapped to AF labels for extempore and conversation
modes of speech.

Table 5.2 shows the mapping of each phone label into a set of AF labels of various
AF groups for extempore and conversation modes of speech. First column lists the
unique International Phonetic Alphabet (IPA) symbols found in IPA transcription.
Second to sixth columns show the corresponding place, manner, roundness, frontness,
and height AF values, respectively, for each phone. The mapping is derived using IPA
chart [5]. The mapping of phone label to AF labels of different AF groups for read
speech is shown in Table 3.3. The mapping of phone label to AF labels in Table 3.3
differs by Table 5.2 due to the presence of labiodental AF value in place AF group
of Table 3.3. The labiodental AF value is absent in Table 5.2.
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Table 5.2 Mapping of phone labels to AF groups for extempore and conversation modes of speech

Phones Articulatory Feature Groups
Place | Manner |Roundness|Frontness| Height
a vowel vowel unrounded |  front low
e3 vowel vowel unrounded mid mid-low
D vowel vowel rounded back low
a vowel vowel unrounded |  back low
xe vowel vowel unrounded | front | mid-low
29 vowel vowel unrounded mid  |mid-high
e vowel vowel unrounded | front |mid-high
vowel vowel rounded front | mid-low
3 vowel vowel rounded mid mid-low
i1 vowel vowel unrounded |  front high
Y vowel vowel rounded front high
) vowel vowel rounded back |mid-low
o vowel vowel rounded back |mid-high
uu vowel vowel rounded back high
kk"gg"| velar plosive nil nil nil
" &gk" | palatal | plosive nil nil nil
t " d d" [retroflex| plosive nil nil nil
tt" d d" [alveolar| plosive nil nil nil
pp" b b"| bilabial | plosive nil nil nil
m bilabial nasal nil nil nil
n retroflex nasal nil nil nil
| velar nasal nil nil nil
n palatal nasal nil nil nil
n alveolar nasal nil nil nil
s[3 et |alveolar| fricative nil nil nil
fv bilabial | fricative nil nil nil
h glottal | fricative nil nil nil
X velar fricative nil nil nil
s retroflex| fricative nil nil nil
] palatal |approximant nil nil nil
rirl |alveolar [approximant nil nil nil
1 retroflex |approximant nil nil nil
bilabial |approximant nil nil nil
sil silence silence silence silence | silence

The procedure for developing the AF-predictors using HMMs and FFNNs is
described in Sect.3.3.2.2. FFNNs with the size of input layer equal to 117 are used.
The size of the hidden layer in the FFNNSs is 585. The size of output layer for each
AF group is equal to the cardinality of that AF group as shown in Table 5.1. Table 5.3
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Table 5.3 Number of epochs carried out during training of FFNN-based AF-predictors for read,
extempore, and conversation modes of speech

AF group Number of epochs used for training
Read Extempore Conversation
Place 10 11 7
Manner 8 6 7
Roundness 8 6 6
Frontness 7 6 6
Height 9 10 8

shows the number of epochs carried out during training the FFNNs for various AF
groups of read, extempore, and conversation modes of speech. First column indicates
the AF group. Second, third, and fourth columns show the number of epochs carried
out for read, extempore, and conversation modes of speech, respectively.

5.3.3 Performance Evaluation of AF-Predictors

The accuracy of AF-predictors is determined as per the procedure mentioned in
Sect.3.3.2.3. Table 5.4 shows the accuracy of prediction of AFs for different AF
groups of read, extempore, and conversation modes of speech. First column indicates
the AF group. Second and third columns show AFs’ prediction accuracies for read
speech, while the fourth and fifth columns tabulate the AFs’ prediction accuracies for
extempore speech. Last two columns show the prediction accuracies for conversation
speech. The results are shown separately for HMM-based and FFNN-based systems.
It is observed that the prediction accuracy of all the AF groups is higher in FFNNs
compared to HMMs for read and conversation modes of speech, while the prediction
accuracy of most of the AF groups is higher in FFNNs compared to HMMs for
extempore speech. Since FFNNs have higher recognition accuracies for all AF groups
of read, conversation modes of speech and for majority of AF groups in extempore
speech, we have used the FFNNs for predicting the AFs of various AF groups.

5.4 Articulatory Feature-Based Tandem Phone
Recognition Systems

In this study, we have developed PRSs for read, extempore, and conversation modes
of speech of Bengali using HMMs. The number of phones considered for developing
PRSs forread, extempore, and conversation modes of speechis 35,31, and 31, respec-
tively. Most frequently occurring phones in the IPA transcription are considered for
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Table 5.4 Prediction accuracy (%) of AF-predictors of different AF groups across read, extempore,
and conversation modes of speech

AF group | Prediction accuracy (%) of AF-predictors

Read Extempore Conversation

HMMs FFNNs HMMs FFNNs HMMs FFNNs
Place 55.04 70.35 51.26 62.39 48.72 61.97
Manner 67.51 74.40 63.57 68.19 56.25 65.65
Roundness | 68.16 78.58 68.35 65.19 61.58 66.50
Frontness | 67.64 74.01 64.37 60.99 58.66 66.48
Height 62.57 67.75 58.30 61.61 55.06 63.17

Table 5.5 Phone recognition accuracy (%) of AF-based tandem PRSs across read, extempore, and
conversation modes of speech

Features Recognition Accuracy (%)
Read Extempore Conversation

MFCCs (Baseline) 45.48 39.58 37.20
MFCCs + Place AFs 48.89 42.15 40.66
MFCCs + Manner AFs 47.74 41.11 40.18
MFCCs + Roundness AFs 47.28 40.46 38.45
MFCCs + Frontness AFs 46.59 40.75 38.85
MFCCs + Height AFs 48.60 42.93 39.40

building PRSs. HMM-based PRSs are developed using the procedure mentioned
in section ‘“Development of AF-Predictors using HMMSs”. The baseline PRSs are
developed using MFCCs as features. AF-based tandem PRSs are developed using
the combination of MFCCs and the predicted AFs as features. The AFs for each AF
group are predicted from the spectral features using the FFNNSs, as per the procedure
mentioned in Sect.3.3.2.2. Five AF-based tandem PRSs are developed separately,
for read, extempore, and conversation modes of speech. Phone recognition accuracy
is determined as per the procedure mentioned in Sect.3.3.2.2. Table5.5 shows the
phone recognition accuracies of baseline and AF-based tandem PRSs of read, extem-
pore, and conversation modes of speech. First column shows the different types of
features used in the development of PRSs. Second, third, and fourth columns indicate
the recognition accuracies obtained using read, extempore, and conversation modes
of speech, respectively.

It is observed that all AF-based tandem PRSs have higher recognition accu-
racy compared to baseline PRSs in all three modes of speech. Among vowel AF
groups, the height AF-based tandem PRSs have shown higher recognition accuracy
in all the three modes of speech. Among consonant AF groups, the place AF-based
tandem PRSs have shown higher recognition accuracy in all the three modes of
speech. Place AF-based tandem PRSs of read and conversation modes of speech
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have highest recognition accuracy, whereas the height AF-based tandem PRS has
highest recognition accuracy in extempore mode of speech. The average improve-
ment in the recognition accuracy of AF-based tandem PRSs using read, extempore,
and conversation modes of speech is 2.34, 1.9, and 2.30%, respectively. The average
improvement in the recognition accuracy is nearly same in read and conversation
modes of speech, while the average improvement in the recognition accuracy is least
in extempore speech compared other two modes.

5.5 Hybrid Phone Recognition Systems Using
Articulatory Features

Hybrid PRSs are developed by combining AF-based tandem PRSs using weighted
combination scheme. Three hybrid PRSs, namely (i) consonant-AF-based hybrid
PRS, (ii) vowel-AF-based hybrid PRS, and (iii) all-AF-based hybrid PRS, are devel-
oped using the combinations mentioned in Sect.3.5.1. PP-based tandem PRSs are
developed across read, extempore, and conversation modes of speech to compare
the performance of AF-based hybrid PRSs with PP-based tandem PRSs. Table 5.6
shows the optimal weighting factors used for developing hybrid PRSs of extempore
and conversation modes of speech. The optimal weighting factors for developing
hybrid PRSs of read speech are shown in Table 3.13. First column lists the differ-
ent types of hybrid PRSs. Second to sixth columns indicate the weighting factors
for extempore speech, while the last five columns indicate the weighting factors
for conversation speech. The hyphen (-) symbol in Table 5.6 indicates that the par-
ticular weighting factor is not applicable for the corresponding hybrid PRS. The
weighting factors wl, w2, w3, w4, and w5 correspond to place, manner, round-
ness, frontness, and height AF-based tandem PRSs, respectively. It can be observed
that the AF-based tandem PRS having higher recognition accuracy in Table 5.5 will
have a higher weighting factor in the corresponding AF group of Table 5.6 and vice
versa. Further, we have also combined PP-based tandem PRSs and all-AF-based
hybrid PRSs in all three modes of speech to develop PP-and-All-AF-based hybrid
PRS:s. The optimal weighting factors used for combining PP-based tandem PRSs and

Table 5.6 Weighting factors used for developing hybrid PRSs using weighted combination
approach

Hybrid PRS Weighting Factors

Extempore Conversation

wl w2 w3 w4 w5 wl w2 w3 w4 w5
consonant-AF- | 0.6 0.4 - - - 0.5 0.5 - - -
based
vowel-AF-based | — - 0.1 0.4 0.5 - - 0.4 0.2 0.4
all-AF-based 0.3 0.2 0.1 0.1 0.3 0.4 0.1 0.1 0.1 0.3
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Table5.7 Phone recognition accuracy (%) of hybrid PRSs across read, extempore, and conversation
modes of speech

PRSs using different features Recognition accuracy (%)
Read Extempore Conversation

MFCCs (Baseline) 45.48 39.58 37.20
PP-based tandem PRS 48.97 40.60 42.14
consonant-AF-based Hybrid PRS 49.95 43.97 42.05
vowel-AF-based hybrid PRS 51.28 44.89 41.52
all-AF-based hybrid PRS 52.24 45.70 42.97
PP-and-All-AF-based hybrid PRS 52.61 46.24 44.15

all-AF-based hybrid PRSs are 0.2 and 0.8 for extempore speech and 0.4 and 0.6 for
conversation speech. Since, in conversation speech, PP-based tandem PRS and all-
AF-based hybrid PRS have almost the same performance, a nearly equal weightage
is given to both PP-based tandem PRS and all-AF-based hybrid PRS by using the
optimal weighting factors of 0.4 and 0.6. But, in extempore speech, PP-based tandem
PRS has much lower performance than all-AF-based hybrid PRS; hence, a higher
weightage is given to all-AF-based hybrid PRS than PP-based tandem PRS.

The performance of hybrid PRSs is determined as per the procedure mentioned
in Sect.3.3.2.3. Table 5.7 shows the phone recognition accuracies of hybrid PRSs.
First column lists different types of hybrid PRSs. Second, third, and fourth columns
show the recognition accuracies of read, extempore, and conversation hybrid PRSs,
respectively.

It is found that the performance of hybrid PRSs is higher than any of the AF-based
tandem PRSs in all the three modes of speech. The improvement in the recogni-
tion accuracies of hybrid PRSs is consistent in all three modes of speech. Among
consonant-AF-based and vowel-AF-based hybrid PRSs, the vowel-AF-based hybrid
PRSs have higher recognition accuracy for read and extempore modes of speech,
while the consonant-AF-based hybrid PRSs have higher recognition accuracy for
conversation speech. It is observed that consonants have shown improvement in
consonant-AF-based hybrid PRSs compared to vowels and it is vice versa for vowel-
AF-based hybrid PRSs. In all-AF-based hybrid PRSs, both consonants and vowels
have shown higher improvement compared to baseline PRSs. all-AF-based hybrid
PRSs have higher recognition accuracy compared to PP-based tandem PRSs. The
PP-and-All-AF-based hybrid PRSs have shown highest recognition accuracy. The
highest improvement obtained in the recognition accuracy of read, extempore, and
conversation modes of speech is 7.13, 6.66, and 6.95%, respectively. Read speech
has higher improvement in recognition accuracy compared to other two modes. The
improvement in the performance of conversation speech is nearly same as that of
extempore speech. The improvement in the recognition accuracy of read and extem-
pore modes of speech is mainly due to the use of AFs, whereas much of the improve-
ment for conversation speech is due to the use of PPs. Without the use of PPs, the
highest improvement in the recognition accuracy of conversation speech obtained is
5.77%, which is less than that of extempore speech.
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5.6 Phone Recognition Systems Using Excitation Source
and Vocal Tract System Features

In this study, MFCC features are used for capturing the vocal tract information. The
excitation source information from LP residual is parameterized into two feature sets,
namely (i) RMFCCs and (ii) MPDSS. The procedure for developing HMM-based
PRSs is mentioned in section “Development of AF-Predictors using HMMs”. The
number of phones considered for developing PRSs for read, extempore, and con-
versation modes of speech is 35, 31 and 31, respectively. Most frequently occurring
phones in the transcription are considered for developing the PRSs. Phone recogni-
tion accuracy is determined as per the procedure mentioned in Sect. 3.3.2.3. Table 5.8
shows the recognition accuracy of PRSs developed using different types of features
for read, extempore, and conversation modes of speech. First column shows the
different types of features used in development of PRSs. Second, third, and fourth
columns indicate the recognition accuracies of read, extempore, and conversation
modes of speech, respectively.

From Table 5.8, it is observed that the use of excitation source information resulted
in the improvement of phone recognition accuracy in all three modes of speech (see
6, 7, and 8 rows). The PRSs developed using excitation source features alone have
poor recognition accuracy compared to the PRSs developed using MFCC features
in all three modes of speech (see 2, 3, 4, and 5 rows). This indicates that discrimina-
tive ability of MFCCs to discriminate among various phones is higher compared to
excitation source features. The phone recognition accuracy obtained using RMFCC
features is higher than the phone recognition accuracy obtained using MPDSS fea-
tures in all the three modes of speech. The combination of RMFCCs and MPDSS has
shown higher recognition accuracy in all three modes of speech compared to either of
RMFCCs or of MPDSS features alone. The combination of MFCCs, RMFCCs, and
MPDSS has shown highest recognition accuracy in all three modes of speech. This
shows that the combination of vocal tract and excitation source information helps

Table 5.8 Phone recognition accuracy (%) of PRSs developed using excitation source and vocal
tract system features across read, extempore, and conversation modes of speech

Features Recognition accuracy (%)

Read Extempore Conversation
MPDSS 11.40 11.73 8.28
RMFCC 25.72 24.28 21.68
RMFCC + MPDSS 27.30 26.73 22.33
MFCCs (Baseline) 45.48 39.58 37.20
MFCC + MPDSS 47.29 41.96 37.84
MFCC + RMFCC 48.31 42.78 38.16
MFCC + RMFCC + | 48.66 42.86 39.17
MPDSS
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in better discrimination among different types of phones. The highest improvement
obtained in the recognition accuracy of read, extempore, and conversation modes of
speech is 3.18, 3.28, and 1.97%, respectively. Since the read and extempore modes
of speech have similar characteristics, the improvement in the recognition accuracy
is nearly same in read and extempore modes of speech.

It is observed that the improvement in the recognition accuracy of combination
of MFCCs and excitation source features is mainly because of the improvement in
classification accuracies of unaspirated stops. This is because, the excitation source
features contain the information for discriminating between aspirated and unaspi-
rated plosive consonants. The improvement in classification accuracy of unaspirated
plosive consonants is mainly because of the reduction in the misclassification of
unaspirated plosives to aspirated plosives. Since the conversation speech has less
number of unaspirated consonants compared other two modes, the improvement
obtained due to the reduction of misclassification of unaspirated plosives to aspi-
rated plosives is less. Hence, the overall improvement in the recognition accuracy of
conversation speech is less compared to read and extempore modes of speech.

5.7 Analysis Across Read, Extempore, and Conversation
Modes of Speech

The performance of PRSs is analyzed in all three modes of speech by considering five
broad phonetic subgroups. The five broad phonetic subgroups considered are plo-
sives, nasals, fricatives, vowels, and approximants (semivowels). The performance
of PRSs using five subgroups is shown in Table 5.9. First column shows the features
used for developing PRSs. Second, third, and fourth columns show the recogni-
tion accuracies obtained using read, extempore, and conversation modes of speech,
respectively. From Table 5.9, it can be found that the performance of PRSs using
either articulatory or excitation source features in addition to vocal tract features is
higher than the performance of PRSs using vocal tract information alone. The com-
bination of MFCCs and AFs has shown higher recognition accuracy compared to
the combination of MFCCs and excitation source features. The highest improvement
obtained at subgroup level for read, extempore, and conversation modes of speech is

Table 5.9 Phone recognition accuracy (%) of PRSs by considering five broad phonetic subgroups

Features Recognition accuracy (%)

Read Extempore Conversation
MFCCs 75.69 66.88 66.55
MFCCs + RMFCCs | 76.75 69.76 67.85
+ MPDSS
PP-and-All-AF-based |79.04 71.35 69.04
hybrid PRS




5.7 Analysis Across Read, Extempore, and Conversation ... 75

3.35,4.47, and 2.49%, respectively. Although the PRSs based on five broad phonetic
subgroups cannot be directly used for developing speech recognition systems, they
can be used as a first-level classifiers in some applications such as automatic lan-
guage identification systems and audio retrieval systems. It can be observed that the
extempore and conversation PRSs, which had less than 40% phone-level accuracies
with MFCCs, have around 70% subgroup level accuracies with MFCCs and AFs.
Hence, the use of articulatory and excitation source features is very effective across
all three modes of speech.

The analysis of PRSs developed using five broad phonetic subgroups in three
modes of speech is as follows: In read speech, it is observed that the vowels, approx-
imants, and plosives are more accurately detected using AFs than excitation source
features, while the nasals and fricatives have better classification accuracy in PRSs
using excitation source features than that of AFs. The detection of silence is more
accurate in both AFs and excitation source features compared to spectral features. We
can exploit the advantages of both AF-based system and excitation source feature-
based system by using the AF-based system to recognize vowels, approximants,
and plosives and the excitation source feature-based system to recognize nasals and
fricatives. In extempore mode of speech, it is observed that the fricatives and nasals
perform better with AFs, while the plosives and vowels have higher classification
accuracy using excitation source features. We can take benefit from both the sys-
tems, by using AFs to recognize nasals and fricatives and excitation source features
to recognize vowels and plosives. This kind of combination will lead to much bet-
ter improvement at subgroup level. Semivowels have lowest classification accuracy.
The misclassification mainly exists between vowels and semivowels. However, the
misclassification of vowels into semivowels has reduced in both AF-based and exci-
tation source feature-based systems. In conversation mode of speech, fricatives have
higher classification accuracy with both AFs and excitation source features compared
to MFCCs. Nasals and vowels are more accurately recognized in AF-based systems.
The plosives have higher classification accuracy with the excitation source features
compared to AFs. We can further improve the overall performance of system by
combining in such a way that the fricatives and plosives are recognized using excita-
tion source features, while the nasals and vowels are recognized using AFs, and the
approximants are decoded using spectral features. It is found that plosives are mainly
misclassified to approximants, because of the confusion between voiced plosives and
approximants. Nasals have least classification accuracy, which are mainly misclassi-
fied into approximants. This is because, both nasals and approximants are sonorants
and both have similar characteristics. In general, it is observed that the excitation
source features have higher recognition accuracy for plosives and fricatives in all
three modes of speech, whereas the nasals and vowels have better recognition accu-
racy using AFs. Generally, the approximants have higher classification accuracy with
spectral features.

The reasons for misclassification of phones are examined across read, extempore,
and conversation modes of speech. In case of read speech, the sentences which are
read very fast have more number of errors. This is because, locating the phones in
the speech signal, even manually, is very difficult in the sentences which are read
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very fast, i.e., all the perceived sound units are not present in the speech signal. The
more number of errors in extempore speech is due to the presence of long pauses
(silences). In extempore speech, speakers have a tendency to leave long pauses,
while thinking for what needs to be delivered next. The long pauses (silences) are
misclassified into unvoiced consonants. The errors in conversation speech are due
to the following reasons: (i) Speakers have a tendency to use certain words of other
language such as English, while having a conversation in Bengali, (ii) speakers speak
very fast in conversation such that all the perceived sound units can not be located in
the speech signal, and (iii) presence of background noises or the noises introduced
by the communication channels, in case of the conversation data collected from
television or radio channels.

We have also analyzed the recognition errors with respect to position of the sound
units in all three modes of speech. In read speech, in case of two consecutive vowels or
consecutive vowel semivowel pair, only one vowel is recognized. The word {inouka }
is recognized as {inuka}, where {ou} is decoded as {u}. If a consonant is repeated
twice in a word, then it is recognized as single consonant. The word { jammu} is
decoded as { jamu}. If there are two consecutive words such that the ending of the
first word and the beginning of the second word both are unvoiced consonants like
{k, p, t}, then one of unvoiced consonant is omitted by the recognizer. The pair of two
consecutive words {kishap kode} isrecognized as {kishap ode}, where {k} present
in the beginning of the second word is missed. In extempore speech, the problems
due to repeated consonants and consecutive vowels as explained in read speech are
observed. Along with them, there are few other problems which are listed as follows.
If the word is spoken very fast, then some of phones in the middle of the word will
not be recognized. If a word starts after a silence and the beginning of the word is an
unvoiced consonant, such as {k, p, t}, then the unvoiced consonants in the beginning
of the word will not be recognized. For example, { < silence > kibhabe} will be
recognized as { < silence > ibhabe}.Inthe words ending with a Consonant-Vowel-
Consonant (CVC) syllable, the last consonant will be omitted by the recognizer.
The word {kabor} will be decoded as {kabo}, where {r} present at the end of the
word is missed. All the errors which occur in both read and extempore modes of
speech are also observed in conversation mode of speech. But, the errors due to CVC
syllable present in the end of a word are very severe. Since the conversation speech
is generally spoken very fast, there are lot of errors in the middle of the words. The
length (duration) of the phones present in the middle of the words is extremely less.
Many phones present in the middle of the word are not recognized, which is a major
source of error in conversation mode of speech.

Further, the performance of PRSs is analyzed in all three modes of speech by
merging all the unaspirated consonants to aspirated consonants. Table5.10 shows
the improvement in the recognition accuracy of PRSs in three modes of speech
after merging unaspirated consonants to aspirated consonants. The improvement in
the baseline PRSs is compared with the PRSs developed using the combination of
MFCCs and excitation source features.

From Table 5.10, it can be found that the improvement in the performance, after
merging the unaspirated consonants to aspirated consonants, is higher in baseline



5.7 Analysis Across Read, Extempore, and Conversation ... 77

Table 5.10 Improvement (%) in the performance of PRSs across read, extempore, and conversation
modes of speech after merging unaspirated and aspirated consonants

Features Recognition Accuracy (%)

Read Extempore Conversation
MFCCs (Baseline) 1.62 1.59 2.24
MFCC + RMFCC + MPDSS 1.22 0.49 1.63

PRSs compared to the PRSs using the combination of MFCCs and excitations source
features in all three modes of speech. The improvement obtained by merging aspirated
and unaspirated consonants is less in case of the PRSs developed using combination
of spectral and excitation source features. This is because, the excitation source
features used for developing the PRSs have reduced the misclassification between
unaspirated and aspirated consonants. Hence, it is clear that the use of excitation
source features results in reduction of misclassification between unaspirated and
aspirated consonants. It is also observed that the use of excitation source features
results in reduction of misclassification among the pairs of phones with same manner
and place of articulation, but differs only in their excitation in all the three modes of
speech. This clearly indicates that the use of excitation source features is responsible
for improving the recognition accuracy in all the three modes of speech.

The reasons for higher recognition accuracy of read speech compared to extem-
pore and conversation modes of speech are as follows: Read speech involves reading
out from the notes and uses a more formal language. The amount of phonetic and
prosodic information captured in the read speech is more stable and systematic,
compared to extempore and conversation modes of speech. Since the read speech is
prepared well in advance and delivered in a more structured and constrained way,
the quality of read speech is much better compared to extempore and conversation
modes of speech. In case of read speech, almost all the perceived sound units could
be located in the speech signal.

Extempore speech is delivered spontaneously without the aid of notes. Hence,
it has several irregularities, such as uneven (non-uniform) pauses and unexpected
breaks. These irregularities result in poor phonetic and unstructured prosodic infor-
mation.

In case of conversation speech, most of the sentences are spoken very fast and
locating the phones in the speech signal, even manually, is very difficult. All the
perceived sound units could not be located in the speech signal. The speakers have
a tendency to use certain words of other language such as English, while having
a conversation in Bengali, which leads to more number of errors. In case of the
conversation data, which is collected from television or radio channels, there exists
background noises or the noises introduced by the communication channels, and it
results in poor quality of the speech signal.

Hence, the overall quality of read speech is better than conversation and extempore
modes of speech. The characteristics of most of the sound units in read speech are
steady and stable, whereas in case of extempore and conversation modes of speech,
the characteristics of sound units are not stable and lot of variance is observed. Hence,
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in our studies, we have observed better accuracy in case of read speech compared to
extempore and conversation modes of speech. Since the quality of extempore speech
is better than conversation speech, the recognition accuracy of extempore speech is
better than that of conversation speech.

5.8 Summary

In this chapter, the performance of PRSs across read, extempore, and conversa-
tion modes of speech is analyzed using articulatory and excitation source features.
The combination of articulatory and spectral features has led to the improvement
of recognition accuracy in all three modes of speech. Hybrid PRSs are developed
and compared across read, extempore, and conversation modes of speech. all-AF-
based hybrid PRSs outperform the conventional PP-based tandem PRSs in all three
modes of speech. PP-and-All-AF-based hybrid PRSs have shown highest recogni-
tion accuracy. The highest improvement obtained in the recognition accuracy of read,
extempore, and conversation modes of speech is 7.13, 6.66, and 6.95%, respectively.
Read speech has higher improvement in recognition accuracy compared to other two
modes. The improvement in the performance of conversation speech is nearly same
as that of extempore speech. The improvement in the recognition accuracy of read
and extempore modes of speech is mainly due to the use of AFs, whereas much
of the improvement for conversation speech is due to the use of PPs. The use of
excitation source information in addition to vocal tract information has improved the
performance of PRSs across all three modes of speech. The PRSs developed using
only excitation source information have lower recognition accuracy compared to the
PRSs developed using vocal tract information alone. The use of excitation source
features for developing PRSs reduces the misclassification between unaspirated and
aspirated plosives, which leads to the improvement of phone recognition accuracy.
Among the three PRSs developed using excitation source features, the extempore
speech PRS has shown highest improvement in the performance, while the conver-
sation speech PRS has shown least improvement. The improvement obtained in the
performance using AFs is much higher compared to the improvement obtained using
excitation source features.
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Chapter 6
Summary and Conclusion

6.1 Summary of the Book

In this work, articulatory and excitation source features are explored for improving the
performance of phone recognition systems (PRSs). Methods are proposed to extract
articulatory and excitation source features from the given speech signal. Pattern
recognition models such as hidden Markov models (HMMs) and feedforward neural
networks (FFNN5s) are explored for deriving the articulatory features (AFs) from the
speech signal. The excitation source information present in the linear prediction (LP)
residual of the speech signal is captured using two sets of features. It is observed that
the use of either AFs or excitation source features along with the spectral features
improves the performance of PRSs. The improvement achieved using combination
spectral and AFs is much higher compared to the improvement obtained using the
combination of spectral and excitation source features. It is found that the excitation
source features can be used for improving the robustness of PRSs. In this work,
HMMs are used for building PRSs. TIMIT and Bengali speech corpora are used
for evaluating the proposed features. The proposed features and models are also
evaluated on read, extempore, and conversation modes of speech in Bengali. TIMIT
PRSs are developed using 48 phones. The number of phones used for developing
PRSs of read, extempore, and conversation modes of speech in Bengali language
are 35, 31, and 31, respectively [1, 2]. Mel frequency cepstral coefficients (MFCCs)
containing vocal tract information are used as spectral features. The tandem PRSs are
developed by using FFNNSs in the first stage to derive phone posteriors, and HMMs
in the second stage for mapping the combination of spectral and posterior features
to phone identities.

The articulatory features are explored for improving the performance of PRSs.
Five AF groups, namely (i) place, (ii) manner, (iii) roundness, (iv) frontness, and
(v) height, are considered. AFs for each AF group are derived by training separate
FFNNs for each AF group. Five different AF-based tandem PRSs are developed using
the combination of MFCCs, and AFs derived for each AF group. Hybrid PRSs are
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developed by combining the evidences from AF-based tandem PRSs using weighted
combination approach. The performance of hybrid PRSs is compared with the base-
line PRS and phone posteriors (PP)-based tandem PRS. Hybrid PRS developed using
evidences from all five AF groups is having higher performance compared to the
hybrid PRS developed using evidences from subset of five AF groups. It is found
that the hybrid PRS developed using AFs from all the five AF groups outperforms the
conventional PP-based tandem PRS. PP- and-All-AF-based hybrid PRS has shown
highest recognition accuracy. The highest improvement obtained in the recognition
accuracy of read, extempore, and conversation modes of speech is 7.13, 6.66, and
6.95%, respectively. TIMIT PRS has shown an improvement of 6.31% in recognition
accuracy. Read speech has shown highest improvement in the recognition accuracy.
The improvement in performance of extempore and conversation modes of speech
are almost same. The AFs are mainly responsible for improving the performance of
read and extempore modes of speech, whereas the improvement in the performance
of conversation speech is mainly due to PPs [3, 4].

The excitation source information is parameterized using two techniques: residual
Mel frequency cepstral coefficients (RMFCCs) and Mel power differences of spec-
trum in sub-bands (MPDSS). The use of excitation source information in addition
to vocal tract information has improved the performance of PRSs in all three modes
of speech. The PRSs developed using only excitation source information have lower
recognition accuracy compared to the PRSs developed using vocal tract informa-
tion alone [5]. Among the three Bengali PRSs developed using excitation source
features, the extempore speech PRS has shown highest improvement in the perfor-
mance, while the conversation speech PRS has shown least improvement [4]. The
combination of spectral and excitation source features is used for developing robust
PRSs. The robustness of the proposed excitation source features in phone recogni-
tion is analyzed using white and babble noisy speech samples. It is found that the
performance of PRSs is higher in case of additive babble noise than that of additive
white noise [6].

6.2 Contributions of the Book

The major contributions of this work can be summarized as follows:

e Speech data in read, extempore, and conversation modes of Bengali language is
collected and manually transcribed using international phonetic alphabet chart.

e Methods are proposed to derive the articulatory features from the spectral features
using FFNNSs.

e The development of phone recognition systems using combination of spectral and
articulatory features is proposed.

e Methods are proposed to capture the excitation source information from the LP
residual of the speech signal.
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e The development of phone recognition systems using combination of spectral and
excitation source features is proposed.

e The articulatory and excitation source features are analyzed across read, extem-
pore, and conversation modes of speech.

6.3 Future Scope of Work

e In this book, articulatory and excitation source features are explored separately to
improve the performance of PRSs. In future, the combination of articulatory and
excitation source features can be explored to improve the performance of PRSs.

e In this study, AFs are derived from the spectral features using FFNNSs. Instead, the
AFs derived from signal processing techniques can be explored for improving the
performance of PRSs. The signal processing techniques such as modified group
delay function, strength of excitation derived from zero-frequency filtered signal
can be used to derive AFs.

e In this work, the discriminative features, which are used in developing tandem
PRSs, are derived using FFNNs. The discriminative classifiers such as support
vector machines (SVM) can be explored instead of FFNNs.

e In this book, articulatory and excitation source features are explored for developing
phone-based speech recognition systems. Instead, syllable-based speech recogni-
tion systems can be considered to demonstrate the performance improvement using
articulatory and excitation source features.

e In this work, we have considered LP residual signal as excitation signal. In future,
the glottal volume velocity can be considered as excitation signal, and similar study
can be carried out.

e In this work, LP residual signal is parameterised using RMFCCs and MPDSS. One
can explore other parametrization techniques such as the glottal flow derivative
parameters to parameterize the LP residual signal.

e In this study, articulatory and excitation source features are used for improving
the performance of HMM-based PRSs. In future, the articulatory and excitation
source features can be used for improving the performance of PRSs developed
using deep neural networks.

e In this book, we have analyzed the robustness of excitation source features using
additive white and babble noises with fixed SNR. However, in real-life appli-
cations, the test samples may be degraded by various background noises with
different SNRs. In future, this work can be extended with varying noise types and
noise levels.

e Proposed articulatory and excitation source features may be explored for other
Indian languages. The variations in recognition accuracies across different Indian
languages can be analyzed.

e By exploiting the availability of transcribed speech in multiple Indian Languages,
the performance of individual PRSs (i.e. the PRS of each language) may be
improved.
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Appendix A
MFCC Features

The MFCC feature extraction technique basically includes windowing the signal,
applying the DFT, taking the log of the magnitude, and then warping the frequencies
on a Mel scale, followed by applying the inverse DCT. The detailed description of
various steps involved in the MFCC feature extraction is explained below.

1. Pre-emphasis: Pre-emphasis refers to filtering that emphasizes the higher fre-
quencies. Its purpose is to balance the spectrum of voiced sounds that have a steep
roll-off in the high-frequency region. For voiced sounds, the glottal source has
an approximately —12 dB/octave slope [1]. However, when the acoustic energy
radiates from the lips, this causes a roughly 4-6 dB/octave boost to the spectrum.
As aresult, a speech signal when recorded with a microphone from a distance has
approximately a —6 dB/octave slope downward compared to the true spectrum of
the vocal tract. Therefore, pre-emphasis removes some of the glottal effects from
the vocal tract parameters. The most commonly used pre-emphasis filter is given
by the following transfer function

H(z)=1-bz"' (A1)

where the value of b controls the slope of the filter and is usually between 0.4 and
1.0 [1].

2. Frame blocking and windowing: The speech signal is a slowly time-varying
or quasi-stationary signal. For stable acoustic characteristics, speech needs to be
examined over a sufficiently short period of time. Therefore, speech analysis must
always be carried out on short segments across which the speech signal is assumed
to be stationary. Short-term spectral measurements are typically carried out over
20ms windows, and advanced every 10ms [2, 3]. Advancing the time window
every 10ms enables the temporal characteristics of individual speech sounds to
be tracked, and the 20ms analysis window is usually sufficient to provide good
spectral resolution of these sounds, and at the same time short enough to resolve
significant temporal characteristics. The purpose of the overlapping analysis is
that each speech sound of the input sequence would be approximately centered
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at some frame. On each frame, a window is applied to taper the signal towards
the frame boundaries. Generally, Hanning or Hamming windows are used [1].
This is done to enhance the harmonics, smooth the edges, and to reduce the edge
effect while taking the DFT on the signal.

DFT spectrum: Each windowed frame is converted into magnitude spectrum by
applying DFT.

N-1
—j2mnk

X(k)y=> x(me v 0<k<N-1 (A.2)
n=0

where N is the number of points used to compute the DFT.

Mel spectrum: Mel spectrum is computed by passing the Fourier transformed
signal through a set of band-pass filters known as Mel-filter bank. A Mel is a unit
of measure based on the human ears perceived frequency. It does not correspond
linearly to the physical frequency of the tone, as the human auditory system
apparently does not perceive pitch linearly. The Mel scale is approximately a
linear frequency spacing below 1 kHz and a logarithmic spacing above 1 kHz [4].
The approximation of Mel from physical frequency can be expressed as

f
Smea = 2595 10g10 (l + m) (A.3)

where f denotes the physical frequency in Hz, and f),.; denotes the perceived
frequency [2].

Filter banks can be implemented in both time domain and frequency domain. For
MFCC computation, filter banks are generally implemented in frequency domain.
The center frequencies of the filters are normally evenly spaced on the frequency
axis. However, in order to mimic the human ears perception, the warped axis,
according to the nonlinear function given in Eq. (A.3), is implemented. The most
commonly used filter shaper is triangular, and in some cases the Hanning filter
can be found [1]. The triangular filter banks with Mel frequency warping is given
in Fig. A.1.

The Mel spectrum of the magnitude spectrum X (k) is computed by multiplying
the magnitude spectrum by each of the of the triangular Mel weighting filters.

N—-1
s(m) = > [IXWK)P Hu(b)]: O<m=<M~—1 (A4)
k=0

where M is total number of triangular Mel weighting filters [5, 6]. H,, (k) is the
weight given to the k" energy spectrum bin contributing to the m'" output band
and is expressed as:
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with m ranging from O to M — 1.

. Discrete cosine transform (DCT): Since the vocal tract is smooth, the energy

levels in adjacent bands tend to be correlated. The DCT is applied to the trans-
formed Mel frequency coefficients produces a set of cepstral coefficients. Prior
to computing DCT, the Mel spectrum is usually represented on a log scale. This
results in a signal in the cepstral domain with a quefrequency peak corresponding
to the pitch of the signal and a number of formants representing low quefre-
quency peaks. Since most of the signal information is represented by the first
few MFCC coefficients, the system can be made robust by extracting only those
coefficients ignoring or truncating higher order DCT components [1]. Finally,
MFCC is calculated as [1]

N mn(m — 0.5)
ket n=01,2...,C—1

c(n) = log (s(m))cos(
mZZ,) 10 m

(A.6)
where c(n) are the cepstral coefficients, and C is the number of MFCCs. Tradi-
tional MFCC systems use only 8—13 cepstral coefficients. The zeroth coefficient
is often excluded since it represents the average log-energy of the input signal,
which only carries little speaker-specific information.
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6. Dynamic MFCC features: The cepstral coefficients are usually referred to as
static features, since they only contain information from a given frame. The extra
information about the temporal dynamics of the signal is obtained by computing
first and second derivatives of cepstral coefficients [7-9]. The first-order derivative
is called delta coefficients, and the second-order derivative is called delta—delta
coefficients. Delta coefficients tell about the speech rate, and delta—delta coeffi-
cients provide information similar to acceleration of speech. The commonly used
definition for computing dynamic parameter is [7]

i ki (n + 1)

Acm (n) = =1 (A7)

2 il

i=—T

where c,, (1) denotes the m'" feature for the n’” time frame, k; is the i’" weight,
and T is the number of successive frames used for computation. Generally T is
taken as 2. The delta—delta coefficients are computed by taking the first-order
derivative of the delta coefficients.
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Appendix B
Pattern Recognition Models

In this work, hidden Markov model (HMM), support vector machine (SVM), and
auto-associative neural network (AANN) models are used to capture the pattern
present in features. HMMs are used to capture the sequential information present
in feature vectors for CV recognition. SVMs are used to capture the discriminative
information present in the feature vectors for CV recognition. AANN models are used
to capture the nonlinear relations among the feature vectors for speaker identification.
The following sections briefly describe the pattern recognition models used in this
study.

B.1 Hidden Markov Models

Hidden Markov models (HMMs) are the commonly used classification models in
speech recognition [1]. HMMs are used to capture the sequential information present
in feature vectors for developing PRSs. HMM is a stochastic signal model which is
referred to as Markov sources or probabilistic functions of Markov chains. This model
is an extension to the concept of Markov model which includes the case where the
observation is a probabilistic function of the state. HMM is a finite set of states, each
of which is associated with a probability distribution. Transitions among the states are
governed by a set of probabilities called transition probabilities. In a particular state,
an outcome or observation can be generated, according to the associated probability
distribution. Here, only the outcome is known and the underlying state sequence is
hidden. Hence, it is called a hidden Markov model.
Following are the basic elements that define HMM:

1. N, Number of states in the model,

S= {51,582, cur... sy}
2. M, Number of distinct observation symbol per state,
V= {Vl, V2, ....VM}
3. State transition probability distribution A = {a;; }, where
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aij = Plg =sjlg=si]. 1<i,j <N (B.1)

4. Observation symbol probability distribution in state j,
B={b;(k)}, where

bj(k) = P [w at tlg, = 5] I<j<N,1<k<M (B.2)
5. Initial state distribution IT = {I1; }, where
IIj=Plgr=s] 1<i<N (B.3)

So, a complete specification of an HMM requires specification of two model
parameters (N and M), specification of observation symbols, and the specification of
three probability measures A, B, I1. Therefore, HMM is indicated by the compact
notation

A= (A, B, I

Given that state sequence g = (q1¢2...gr) is unknown, the probability of obser-
vation sequence O = (0lo2...07), given the model A, is obtained by summing the
probability of over all possible state sequences g as follows:

Polh) = D 714,bg,(01)a4,4,b4,(02).-g; g, by, (07) (B.4)

q1-925--4T

where 7, is the initial state probability of g1, and T is length of observation sequence.

B.2 FeedForward Neural Networks

FFNNSs are the artificial neural networks, where the information moves from the
input layer to output layer through the hidden layer in forward direction with no
loops in the network. FFNNs are used to capture the nonlinear relationship between
the feature vectors and the phonetic sound units. FFNNs map an input feature vector
into one of the phonetic units, among the set of phonetic sound units used for training
the FFNN models. Each unit in one layer of the FFNN has directed connections to
the units in the subsequent layer. FFNNs consist of an input layer, an output layer,
and one or more hidden layers. The number of units in the input is equal to the
dimension of feature vectors, while the number of units in output layer is equal to
the number of phonetic sound units being modeled. The hidden and output layers
are nonlinear, whereas the input layer is linear. The nonlinearity is achieved using
activation functions such as sigmoid, softmax. The general structure of three-layered
FFNN is as shown in Fig. B.1. A three-layered FFNN has one input layer, one hidden
layer, and one output layer.
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Fig. B.1 General structure Hidden Layer
of three-layered
FeedForward neural
networks

The feature vectors are fed to the input layer, and the corresponding phone labels
are fed to the output layer of the FFNN. FFNNs are trained using a learning algorithm
such as back-propagation algorithm [2, 3]. The back-propagation algorithm is most
commonly used in the development of speech recognition applications using FFNNs.
In back-propagation algorithm, the calculated output is compared with the correct
output, and the error between them is computed using a predefined error function. The
error is then back-propagated through the network, and the weights of the network
are adjusted based on the computed error. The weights are adjusted using a nonlinear
optimization method such as gradient descent method. This process is repeated for
sufficiently large number of training examples till the network converges. After the
completion of training phase, the weights of the network are used for decoding the
phonetic sound units in the spoken utterances. Determining the network structure is
an optimization problem. At present, there are no formal methods for determining
the optimal structure of a neural network. The key factors that influence the neural
network structure are amount of training data, learning ability of the network, and
capacity to generalize the acquired knowledge.
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