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Abstract Image denoising plays a significant role in the application of remote
sensing images, since the noise not only deteriorates the visual quality, but also and
more important, causes the performance drop of many computer vision algorithms,
e.g., segmentation and object recognition. However, denoising is a quite challenging
task, due to the complicated, nonlinear distribution of noises. In this paper, we
propose an iterative adaptive Wiener filter for remote sensing image denoising, by
exploring statistical characteristics of local similar patches. Given a noisy image, the
proposed approach aims to pursuit a restored image, with sufficiently good quality. In
the proposed method, firstly, a low-pass filter is applied to the observed noisy image.
The resulted image is set as an initial version of the restored image, which is fed into
the following iterative rounds and refined to progressively approximate to
“noise-free” signal. In each round, we divide the image being processed into over-
lapping patches. Each one will be assigned into a group, by searching similar patches
in its neighboring areas. Then the optimal Wiener filter model is estimated adaptively
for each group, and performed on these involved patches. Since the sampled patches
are overlapping, the resulted image is achieved by averaging on overlapped, filtered
patches. After that, the resulted image will be processed in the same way in the next
round. With the procedure repeated, the noises are gradually alleviated and the
refined image is approached to “noise-free” one. Finally, the algorithm terminates
when the image changes little of two neighboring iterations. The contribution of our
paper lies in two aspects. First, we propose a novel Wiener filter strategy, which takes
advantage of image self-similarity to estimate filter parameters adaptively. Second,
iterative scheme can refine the results progressively, which significantly improve the
image quality. Experimental results demonstrate that the proposed method outper-
forms state of the art methods and can significantly improve both the subjective and
the objective quality of noisy remote sensing images.

D. Wang (&) � Y. Liu � Z. Zhao � Z. Song
Beijing Institute of Spacecraft System Engineering, Beijing, China
e-mail: wangdan_ict_hit@163.com

X. Zhang
Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China

© Springer International Publishing AG 2017
H.P. Urbach and G. Zhang (eds.), 3rd International Symposium of Space Optical
Instruments and Applications, Springer Proceedings in Physics 192,
DOI 10.1007/978-3-319-49184-4_36

361



Keywords Remote sensing image � Wiener filter � Patch similarity � Denoisng

1 Introduction

Image denoising is an important technique for remote sensing images, which are
easily contaminated by noise when acquired from satellites via remote sensor. The
noise not only deteriorates the visual quality of remote sensing images, but also and
more important, causes the performance drop of image processing algorithms, e.g.,
segmentation and object recognition, which limits the application of remote sensing
images. In order to remove the noise, numerous image denoising algorithms [1–8]
are proposed based on different image prior models and achieve significant
improvement on image quality in the last thirty years. The Wiener filter is the
optimal filter in the sense of the mean square errors (MSE), which is derived by
minimizing the MSE between the estimated image and desired noise-free image.
However, the Wiener filter assumes that the signal is stationary and known, which
cannot be satisfied for noisy images in practice.

In recent years, many modifications on Wiener filters are proposed to improve
denoising performance andmake it applicable to practical noisy images. The adaptive
Wiener filter is proposed in [3], which derives the filter parameters for every pixel by
calculating the corresponding signal variance in a sliding window centered at the
target pixels. In [4], Jin et al. further improve it by combining two adaptive Wiener
filters in both spatial domain and wavelet domain. Considering the different char-
acteristics of images, Zhou and Cheng [5] improve the wavelet domain Wiener filter
by determining an optimal threshold and neighboring window size for every wavelet
subband. Considering the image nonlocal similarity, the famous nonlocal means filter
[6] estimated the latent noise-free pixel by a weighted average of its surrounding
pixels, where the weights are based on the distances of the patch intensities between
the target patch and the reference patches. In [7], Lin et al. applied the nonlocal means
filter to the noisy images first to generate an initial estimation of the original image,
and then derived the wavelet domainWiner filter with the initial estimation to remove
noise by shrinking wavelet coefficients. In [8], Mohamed and Hardie proposed a
novel multi-patch adaptiveWiener filter algorithm for image restoration, which uses a
single-pass spatial-domain weighted sum of all pixels within all of the similar patches
to form the estimate each desired pixel. The multi-patch based methods are very
useful in denoising problem and also utilized in [9, 10].

In this paper, we propose an iterative adaptive Wiener filter (IAWF) to reduce
noise for remote sensing images. The proposed IAWF can also be regarded as a
multi-patch collaborative filter, which derives a specific Wiener filter for each group
of similar image patches. For a noisy image, an initial estimation is first generated by
applying a low-pass filter. Then, the initial estimated image is divided into different
patches, and similar patches in a neighborhood are clustered into one group. For each
group, the optimal Winer filter is derived based on the statistical characteristic of the
similar patches in the initial estimation and the noise variance. Since these image
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patches are overlapping, the filtered image is reconstructed by averaging all the
samples from different patches corresponding to same position. This procedure is
performed iteratively by taking the previous output image as the latent original
signals to calculate the signal covariance matrix and updating the noise level based
on the difference between the noisy image and the output image from previous
iteration. Along with the noise reduction, the derived Wiener filters approach the
optimal ones and achieve significant performance improvement compared with other
denoising methods. Experimental results on remote sensing images show that the
proposed methods can obviously improve their subjective and objective quality.

The remainder of this paper is organized as follows. In Sect. 2, we first formulate
the denoising problem and the optimal Winer filter. Section 3 introduces the
framework of the proposed iterative adaptive Wiener filter and the details of the
proposed algorithm. Experimental results are reported in Sects. 4 and 5 concludes
the paper.

2 Denoising with Winer Filter

For an image I x, the corresponding noisy image contaminated by additive noise
with identical independent distribution can be formulated as

y ¼ xþ n : ð1Þ

Here x, y and n are original image, noisy image and noise, which are organized
into vector form. The Wiener filter, f, is the optimal linear estimator by minimizing
the mean square errors between original image and filtered image,

f ¼ min
f

x� fyk k22: ð2Þ

Then the optimization problem can be solved as

f ¼ Rx Rx þ r2nI
� ��1

; ð3Þ

where r2n is the noise variance, I is an unit matrix and Rx is the covariance matrix of
the original signals, which is a real symmetric matrix. The eigen-expansion of Rx is
given by

Rx ¼ E xxT
� � ¼ UKUT ¼

XN
k¼1

kkukuTk ; ð4Þ

where kk is the eigenvalue of Rx, uk is the corresponding eigenvector, N is
the number of eigenvalues of Rx, and U ¼ ½u1; u2; . . .; uN � and K ¼
diag½k1; k2; . . .; kN �. Then, the Wiener filter in Eq. (3) can be rewritten as
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f ¼ U eKUT ¼
XN
k¼1

kk
kk þ r2n

ukuTk ; ð5Þ

and

eK ¼ diag
k1

k1 þ r2n
;

k2
k2 þ r2n

; . . .;
kN

kN þ r2n

� �
: ð6Þ

Since U is actually the Karhunen-Loeve Transform (KLT) matrix, the Wiener
filter in Eq. (5) is equivalent to applying, applies the soft-thresholding operation to
KLT coefficients. This kind of filters is widely used image sparsity based denoising
methods [11–13], which first transform the image from spatial domain to sparse
domains, e.g., wavelet domain, and threshold the sparse signals to reduce noise.
The KLT is the optimal transform for signal decorrelation to get its sparse repre-
sentation. However, since it is a signal-dependent transform constructed with the
eigenvectors of the original signal covariance, it is difficult to be applied to image
denoising problem without original signals.

3 The Proposed Iterative Adaptive Wiener Filter

In this paper, we propose a novel iterative adaptive Wiener filter for remote sensing
image denoising problem. Figure 1 shows the framework of the proposed method.
The noisy image is first filtered with a low-pass filter to get an initial estimation for
the original image, and then the initial estimated image is further divided into many
groups with similar patches. Specifically, for each patch, the K most similar patches
are acquired by searching in a local area surrounding it according to Euclidean
distance of the image patch vectors,

Fig. 1 The framework of the proposed iterative adaptive Wiener filter
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dij ¼ x̂ 0ð Þ
i � x̂ 0ð Þ

j

��� ���2
2
: ð7Þ

where x̂ 0ð Þ
i is the ith image patch in the initial estimation image. For image patch

group, Gij ¼ x̂ 0ð Þ
ij jj ¼ 1; 2; . . .;K

n o
, the covariance matrix Rx is estimated with

Eq. (8) from these image patch vectors assuming they follows the same distribution.

bRx ¼ 1
K

XK
j¼1

x̂ 0ð Þ
ij x̂ 0ð Þ

ij

h iT
�llT ; ð8Þ

and

l ¼ 1
K

XK
j¼1

x̂ 0ð Þ
ij : ð9Þ

The noise variance of I y is estimated using the robust median estimator in
wavelet domain as proposed by Donoho in [11], which is calculated as

r̂n ¼ medianð cj jÞ=0:6745; ð10Þ

where c is the coefficient vector of the diagonal band of 2D wavelet in the first level.
Based on the derived covariance matrix and noise level, the near-optimal Wiener
filter for each similar patch group can be derived with Eqs. (4), (5) and (8). Then,
the derived filters are applied to the corresponding image patches to reduce their
noise. Finally, the image in the kth iteration is reconstructed by averaging the
multiple estimates for each pixel,

x̂ kð Þ i; jð Þ ¼ 1
Xij

		 		X
t2Xij

x̂ kð Þ
t ði0; j0Þ; ð11Þ

where Xij is the set composed of image patches that include the image pixel
x̂ kð Þ i; jð Þ. Coordinates i; jð Þ and ði0; j0Þ indicate the same sample under the whole
image and the image patch coordinate systems, respectively.

Since the initial estimation is not accurate, most of noise cannot be removed by
the Wiener filters in the first iteration cannot reduce most of noise. Therefore, we
perform the above procedure iteratively, and take the output of previous iteration as
the estimation of original signal in current iteration. The noise level need be updated
with the following equation,

r kð Þ
n ¼ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r 0ð Þ
n

h i2
�var x̂ k�1ð Þ � x̂ 0ð Þð Þ

r
; ð12Þ

where var �ð Þ is the function to calculate the variance of vectors, and s is a scale factor.

Remote Sensing Image Denoising with Iterative Adaptive … 365



4 Experimental Results

In this section, we carry out the proposed IAWF on noisy remote sensing images to
verify its performance by comparing with other methods. The compared methods
include adaptive Wiener filter (AWF) [14], OptNeighShrink method [5], BLS-GSM
[15] and nonlocal means filter (NLM) [6]. We randomly download 15 remote
sensing images captured by LandSat-7, from website of United States Geological
Survey.1 These images are captured by LAND SAT 7 ETM+ with spatial resolution
30 m. Gaussian noise is added to the images artificially, to verify the performance
of the proposed method. Since the noise level is an important parameter for different
denoising methods and is unknown in practice, we estimate it with the method in
[11]. In the proposed method, we apply the AWF to the noisy images to generate
the initial estimation, and set its parameter as rn=20 to avoid oversmoothing the
image. The proposed algorithm is terminated when the mean absolution difference
(MAD) of images between two iterations is smaller than 1.0, and the number of
similar patches in one group is 50. The scale factor in Eq. (12) is 0.3.

The experimental results are measure by the Peak Signal-to-Noise ratio (PSNR)
in decibels (dB), i.e.,

PSNR ¼ 10 � log10
2552

MSE
; ð13Þ

where MSE is the mean square error between the original signal and the distorted
signal. The denoised image with high quality is closer to the original one when
PSNR is higher. Table 1 shows the PSNR results on 15 remote sensing images
contaminated by Gaussian noise with different noise levels. From the PSNR results,
we can see that the proposed method can efficiently improve the quality of noisy
remote sensing images. Our method achieves 5.87 and 9.41 dB improvement on
average for these noisy images when noise standard deviations are 20 and 60.
Compared with other denoising methods, the proposed method also achieves
around 0.45–1.29 and 0.21–4.21 dB at rn = 20 and 60, respectively. Especially,
our method takes the AWF as the initial estimation, and further improves its quality
significantly. Since the PSNR quality metric is not well consistent with perceptual
quality, we also take the widely used quality metric, Structural Similarity Index
Metric (SSIM) [16], to further verify the performance of our proposed method.
Based on the SSIM results in Table 2, our method also achieves the best quality
compared with other methods. Figure 2 gives an example remote sensing image. It
shows the subjective results for noisy images with noise standard deviation rn = 60
and the corresponding denoised images with different methods. We can see that the
images restored by the proposed method show more visual pleasing results.
Although the BLS-GSM and NLM methods can remove the noise obviously, they
also smooth out many details in the original image. Our method achieves a good

1http://landsat.usgs.gov//gallery_view.php?category=nocategory&thesort=pictureId.
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tradeoff between the noise reduction and image detailed structure preservation.
Since our method estimate the threshold for singular values from similar patch
group, the filtering strength can well adapt to image content. In addition, the
overlapping of patches makes one pixel has multiple estimation independently,
which is useful to noise reduction with independent distribution. Therefore, our
method achieves a good tradeoff between the noise reduction and image detailed
structure preservation.

5 Conclusion

In this paper, we proposed an iterative adaptive Wiener filter by utilizing the filtered
similar image patches to predict the covariance matrix of original signals and derive
the optimal Wiener filter for each group of image patches. The final reconstructed
image is the average of all the filtered samples from different patches corresponding
to the same position. The iterative strategy makes the derived Wiener filters
approach the optimal ones with the noise reduction. Based on the experimental
results, the proposed IAWF significantly improves the quality of noisy remote

Fig. 2 Subjective image quality comparison for desnoised remote sensing images with different
methods, a noisy image, b AWF results, c OptNeighShrink results, d BLS-GSM results, e NLM
results, f the results of the proposed method
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sensing images. Furthermore, it is also an very practical method since all the
parameters are estimated from the noisy images.
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