Analysis of Big Data Platform with OpenStack
and Hadoop

Xiaoyan Li', Zhihui Lu'®™®, Nini Wang?, Jie Wu?, and Shalin Huang®

! School of Computer Science, Fudan University, Shanghai 200433, China
{xylil4, 1zh}@fudan. edu. cn
% Engineering Research Center of Cyber Security, Auditing and Monitoring,
Ministry of Education, Shanghai 200433, China
{14210240052, jwu}@fudan. edu. cn
3 Wangsu Science & Technology Co., Ltd., Shanghai 200433, China
sallyhuang@chinanetcenter. com

Abstract. In the era of big data, the cloud infrastructure needs to strongly
support big data. As a distributed computational framework, Hadoop is one of
the de facto leading software tools for solving big data problems. The cloud
infrastructure has been proven to be a good support for three-tier architecture
applications. In this paper, we construct a Hadoop big data platform based on
OpenStack cloud. At the same time, we design three experimental scenarios,
carry out a set of experiments using the standard Hadoop benchmarks
TestDFSIO, TeraSort and PI, and examine the performance. Our experiments
reveal that the disk read operation of physical servers can be a bottleneck for
TestDFSIO and TeraSort. Wider allocation of VMs over physical servers
achieves better performance for read jobs of TestDFSIO and TeraSort. For
CPU-intensive job PI, the best practice is to centralize the allocation of VMs
over physical machines.

Keywords: Hadoop - Benchmarks - Big data -+ HDFS - Cluster + Openstack -
Cloud

1 Introduction

Big data [1] era is coming. Many definitions of big data are given by researchers such
as big data [2] is the data that is massive, too fast or too hard for existing tools to handle
and process. Here massive means the size of data can range from petabytes (PB) to
exabytes (EB) or to zettabytes (ZB) [3]. It can be generated through many sources like
business processes, transactions, social networking sites, web servers, etc. and remains
in structured as well as unstructured form [4].

Big data refers to the technologies and architectures, which were developed to
capture, store, process and run better quality volumes of data in lesser amount of time
or even in real time [5]. It is a system that lets digitize massive amounts of information
and amalgamating it with on hand databases.

Hadoop [6] (Apache) is one of these big data technologies and is one of the de facto
leading software tools for solving big data problems. Hadoop provides a distributed

© Springer International Publishing AG 2016
G. Wang et al. (Eds.): APSCC 2016, LNCS 10065, pp. 375-390, 2016.
DOI: 10.1007/978-3-319-49178-3_29

376 X. Li et al.

computational framework Map-Reduce and a reliable scalable distributed file system
HDFS(Hadoop Distributed File System) for the analysis and transformation of large
amounts of data [7].

MapReduce [8] provides a computational framework for data processing. An MR
program only consists of two functions, called Map and Reduce, which are supplied by
the user and depend on the user’s purposes.

A map function is used to process input key/value pairs and generate intermediate
key/values, and a reduce function is used to merge all intermediate pairs associated
with the same key and then generate outputs [9].

In recent years, the cloud infrastructure has been proven to be a good support for
three-tier architecture applications, such as websites. But in the era of big data, the
cloud infrastructure needs to strongly support big data application platform, such as
Hadoop and Spark. In this paper, we propose a cloud-based framework based on
OpenStack using Hadoop as a big data platform. At the same time, we design three
experimental scenarios, carry out a set of experiments using the standard Hadoop
benchmarks, namely TestDFSIO, TeraSort and PI, and examine the performance.

The rest of this paper is organized as follows: we review related work in Sect. 2.
In Sect. 3, experimental setup is given. In Sect. 4, we design three experimental sce-
narios. Section 5 shows the results and the conclusions. Finally, we summarize the
considerations and propose our future work in Sect. 6.

2 Related Work

To reduce the machine management difficulties, virtualization is used as a key tech-
nique for easy deployment, configuration, scheduling and efficient resource utilization.
Xen [10], Kernel-based Virtual Machine (KVM) [11] and VMware [12] are
well-known virtualization softwares. In [13], Jack Li et al. found that KVM was better
for disk reading. So we examine the performance of VM Hadoop clusters on KVM
from VM number, configuration and allocation.

Ishii M et al. built in [14] a Hadoop performance model and examined how the
performance was affected by changing VM configuration, allocation of VMs over
physical machines, and multiplicity of jobs. They found that performance of the
I/O-intensive jobs was more sensitive to the virtualization overhead than that of
CPU-intensive jobs. In our paper, we choose I/O-intensive job and CPU-intensive job
to figure out the performance differences among different VM placements over physical
servers and the influence of the number of VMs when the number of total VCPUs and
total memory are fixed.

In [15], the authors proposed a simple big data workload differentiation, their
results show that CPU intensive workloads consume more power and memory band-
width while disk intensive workloads usually require more memory. But they didn’t
find out the bottlenecks of CPU intensive or disk intensive workloads.

In [16], Fan et al. designed a heuristic performance diagnostic tool which evaluates
the validity and correctness of virtualized Hadoop by analyzing the job traces of
popular big data benchmarks. With this tool, users could quickly identify the bottleneck

Analysis of Big Data Platform with OpenStack and Hadoop 377

according to hints provided by this tool. We find the bottlenecks of TestDFSIO and
TeraSort in our paper.
The main contributions we make are listed below:

e QOur experiments reveal that the disk read operation of physical servers can be a
bottleneck for TestDFSIO and TeraSort.

e We find that if there is enough resource, the best practice is to increase the number
of VMs and not to increase the number of VCPUs in a VM for I/O intensive job.

e QOur experiments show that wider allocation over physical servers achieves better
performance for read jobs of TestDFSIO and TeraSort. For CPU-intensive job PI,
the best practice is to centralize the allocation of VMs over physical machines.

3 Experimental Setup

In this section, we describe the environment for our experiments. In Sects. 3.1 and 3.2,
we give an overview of our experimental scenario and physical configurations, and in
Sect. 3.3, we provide a brief overview of the benchmarks we adopt.

3.1 OpenStack Cloud-Based Hadoop

Figure 1 provides an overview of the environment for our experiments.

EIN BTN EIN ETH ETH ETH ETH KON
L Lo o B | e o B S

/mbari &bbix
w

[

| master | (| master |
[aove 1 siove JEN sive [iove [siove [N sove [sove | SN
and get metrics
‘ — - 1 1 . ~ .) Experiment
{ slave | slave NG slave [slave Ml slave [slave [slave | slave | environment

Fig. 1. Big data platform design

We use OpenStack as our cloud platform to launch the VM resource pool we need
in the experiment, and we use Ambari to deploy Hadoop cluster into VM resource
pool. And through installing one Zabbix server, we build a monitor system to retrieve
metrics from the Hadoop clusters.

378 X. Li et al.

3.2 Physical Configurations

Table 1 provides an overview of physical configurations we use for our experiments.

Table 1. Hardware configuration

Physical machine

Processor Xeon E5-2603 v3
Memory 64 G

Operating System | CentOS 7.1

Disk dell-10 k-2 TB

3.3 Benchmark

Several benchmarks are tested from Hadoop example applications: PI, TestDFSIO, and
TeraSort.

e PI
PI is a map/reduce program that estimates pi using a quasi-Monte Carlo method
[17]. The map tasks are all independent and the single reduce task gathers very little
data from the map tasks.

e TestDFSIO
TestDFSIO is a map/reduce program that reads/writes random data from/to large
files. It is mainly used to test the I/O speed of the cluster.

e TeraSort
TeraSort is a standard benchmark created by Jim Gray. TeraSort is a two-phase
Hadoop workload that performs in-place sort of all the words of a given data file.

4 Scenario Design

We design three experimental scenarios to examine the performance of Hadoop in this
paper. We run the I/O intensive and CPU intensive experiments to see if there is
difference between them. TestDFSIO is the I/O-intensive job, TeraSort and PI are the
CPU-intensive jobs.

We get metrics such as memory usage, CPU utilization, read/write speed of disk,
network input/output throughput along with other metrics by Zabbix. We select typical
metrics to analyze their characteristics and achieve the purpose of each scenario.

4.1 Cluster Scalability Test

Target for Cluster Scalability Test: The purpose of this scenario is to figure out the
bottleneck resource of VM/PM by adding VMs of same spec to the cluster.

Analysis of Big Data Platform with OpenStack and Hadoop 379

Experiment Assumption for Cluster Scalability Test: The disk I/O of physical
servers can be the bottleneck for I/O-intensive job, while CPU can be the bottleneck for
CPU-intensive job. That is, in this scenario, disk write or read operation is the bot-
tleneck for TestDFSIO, and CPU is the bottleneck for TeraSort.

Environment Brief Diagram: This environment makes some specific designs. All the
VMs are in one cluster, which includes one master and several slaves. The slaves are all
configured in the same way. But we use the cluster in three kinds of situations. Every
job runs separately in one situation and the metrics are different. This allows us to
compare results and draw conclusions. The total resources of three scenarios increase
proportionately.

All the slaves are divided into three kinds of situations to do the test job. We launched
VMs with proportional configuration and quantity. We rationally use the resources.

The Configuration and Distribution: There are totally 9 physical machines to deploy
this environment. Every physical machine runs centOS 7.1 as operating system and all
the virtual machines are Ubuntu 12.04. The Hadoop version is 2.6. We separate
managing and monitoring nodes with job nodes. One master node, one Ambari server
node and one Zabbix server node are on one physical machine. All the slave nodes are
on the other 8 physical machines according to the arrangement as Fig. 2 shows. The
configurations are shown in Table 2.

=)
| | |
10G Switch #1
| |
_— | —— represents compute node
‘ ’ ‘ m ‘) —— represents VM and its quantity

Fig. 2. Cluster scalability test environment diagram

L0G Switch #2

Table 2. Configuration table of cluster scalability test

Node CPU | Memory | Disk
Master 2 cores |8 G 100 G
Slave 1 cores |5 G 80 G

Ambari server |1 core |2 G 100 G
Zabbix server | 8 cores | 16 G 100 G

4.2 VM Specification Test

Target for VM Specification Test: The purpose of this scenario is to figure out the
influence of the number of VMs when the number of total VCPUs and total memory
are fixed.

380 X. Li et al.

Experiment Assumption for VM Specification Test: The disk I/O of physical ser-
vers can be bottlenecks for I/O-intensive job which we will prove in the cluster scal-
ability scenario, while CPU intensive job is less sensitive to disk I/O if the number of
VCPUs does not exceed the number of physical cores. That is, in this scenario, for
I/O-intensive job, the cluster with more VMs will perform better. And for a CPU
intensive job, the number of VMs in a cluster does not make a difference since the total
number of VCPUs, in addition to being enough, are equal to or less than the total
physical cores.

Environment Brief Diagram: For this environment, all the VMs are divided into two
clusters as Fig. 3 shows, each including one master and several slaves. The slaves in
the same cluster use the same configuration and differ from the slaves in the other
cluster. Every job runs separately in two clusters and the metrics are different. This
allows us to compare the results and draw conclusions. The total resources of two
clusters are the same.

} —

|

|

I 10G Switch #2
0

|

(| —— represents compute node

____________ g - —— represents VM and its quantity
Cluster A Cluster B

Fig. 3. VM Specification Test environment diagram

All the slaves are divided into two clusters to do the test job. We launch VMs with
proportional configuration and quantity. We rationally use the resources.

The Configuration and Distribution: We use the same Hadoop version, operating
systems and configurations for specification test as the ones for scalability test.

The configurations are shown in Table 3.

Analysis of Big Data Platform with OpenStack and Hadoop 381

Table 3. Configuration table of VM specification test

Node CPU | Memory | Disk

Master 2 cores |8 G 100 G
Slaves in cluster A |4 cores | 10 G 100 G
Slaves in cluster B | 2 cores |5 G 100 G
Ambari server 1core [2G 100 G
Zabbix server 8 cores | 16 G 100 G

4.3 VM Placement Test

Target for VM Placement Test: The purpose of this scenario is to figure out the
performance differences among different VM placements over physical servers with
homogeneous VMs.

Experiment Assumption for VM Placement Test: In this scenario, for the
I/O-intensive job, when the number of VMs in a physical server is changed, the
centralized allocation needs more disk read and writes. Thus, the wider allocation over
physical servers achieves a better performance.

Since the number of VCPUs used in VMs is less than the number of physical cores
so that no context switch occurs, the VM allocation over physical servers does not
affect the CPU-intensive job case.

Environment Brief Diagram: All the slaves are divided into three clusters to do the
test job as Fig. 4 shows. We launched VMs which functioned as slaves with the same
configuration.

10G Switch #2

Cluster A

Cluster B [T | —— represents compute node

I —— represents VM and its quantity

|
|
1
i
| 106 Switch #1
|
|
|
1
{
|

Fig. 4. VM placement test environment diagram

The Configuration and Distribution: We use the same Hadoop version, operating
systems and configurations for VM placement test as the ones for the scalability test.

The configurations are shown in Table 4.

382 X. Li et al.

Table 4. Configuration table of VM placement test

Node CPU | Memory | Disk
Master 2 cores |8 G 100 G
Slaves lcore ([5G 80 G

Ambari server |1 core |2 G 100 G
Zabbix server | 8 cores | 16 G 100 G

5 Results and Discussion

5.1 Cluster Scalability Test

I/O-intensive Job-TestDFSIO: We set the VMs to 12, 24, 36, 48, set the map number
to 8, 80, 800, 1600, 4000, set the reduce number to 1 and the file size to 128 M. The
map number is equal to the total data size divided by the file size. As the reduce phase
only need to collect and summarize all the statistical information of map tasks, we set
the reduce number to 1. After we finish the write job of TestDFSIO, we record the total
time of job printed in the Hadoop running console, the data size and calculate the total
throughput as Fig. 5 shows.

< Total Throughput > = < Total datasize > / <Job execution time >

When the data scale is set to 500 G, the hard disks volume of each task node is not
enough during the process when VMs are 12 and 24, so the experiment of 500 G data
can’t be performed.

From Fig. 5 we can see that in most cases, when the data size is fixed, the total
throughput is higher with a larger VM number. When the data size is more than 100 G
with VMs at 48, the increment speed of total throughput is lower as the write job
reaches the bottleneck.

Total Throughput for TestDFSIO(write)

throughput(MB/s)

1G 10G 100G 200G 500G

data scale

—.—12VM —8—24VM 36VM 48VM

Fig. 5. Total throughput for TestDFSIO write job

Analysis of Big Data Platform with OpenStack and Hadoop

383

So we get data from Zabbix when the data scale is 100 GB and draw the figures to
find the bottleneck of TestDFSIO write job.
For the TestDFSIO write job, only map tasks execute actual workload. From Fig. 6
we can see 4 points as below:

10000

9000

8000

7000

6000

5000

(Mbps)

4000

3000

2000

1000

0

(1) Disk throughput reaches above 7000 Mbps/8 PM (both in VM / PM layer.)

TestDFSIO-Write-48VM-100G-PHYSICAL

TestDFSIO-Write-48VM-100G-VIRTUAL

AR

Total Read speed of disk
Total Write speed of disk
Total Network input throughput
Total Network output

AW

A N \
’\/\J\I\.A “\Vﬁ "\\' ’\\ /\\

(Mbps)

5000 ‘ v
N \ 4000

Fig. 6. Metrics for TestDFSIO write job

——— Total Read speed of disk \ 3000
L ===Total Write speedofdisk. _ _ | - = = = = = = = 1] B | [
Total Network input throughput PAl Th: 2068Mbps
Total Network output 1000
- 0
50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350
time(s) time(s)

400

(2) Actual total throughput is 2068 Mbps. The disk throughput is much more than the
actual total throughput as HDFS replica working during write job.
(3) Virtual environment: The network throughput is almost three times as much as the
actual total throughput as HDFS replica working during write job and the HDFS
replica is 3.
(4) Physical environment: Network transfer is less than virtual environment as local
VM transfer within one PM is hidden from PM view.

From Fig. 7 we can see CPU isn’t fully utilized either in physical machines or in
virtual machines, so CPU isn’t the bottleneck.

TestDFSIO-Write-48VM-100G-PHYSICAL-CPU

[Total CPU idleness

I Total CPU utilization

200 250 300

50 100 150 200 250
time(s) time(s)

Fig. 7. Physical and Virtual CPU for TestDFSIO write job

TestDFSIO-Write-48VM-100G-VIRTUAL-CPU

[0 Total CPU idleness

Total CPU utilization

300

350

400

384 X. Li et al.

We use the same configuration for read jobs as the one for writes. After we finish
the read job of TestDFSIO, we record the relevant data as Fig. 8 shows.

Total Throughput for TestDFSIO(read)
350
300
5 250
s
= 200 I
= —
3 7
£ 150
2 s,
© 100 //T%———...___.
50 -
| |
0
16 106 1006 200G 500G
data scale
——12VM —8—24VM 36VM 48VM

Fig. 8. Total throughput for TestDFSIO read job

When data scale is set to 500 G, the reason why the experiments can’t be performed
when VMs are 12 and 24 is the same as that for the write job.

From the Fig. 8 we can draw the same conclusion for read jobs as the one for
writes.

So we get data from Zabbix and draw the figures to find the bottleneck of
TestDFSIO read job. As the CPU utilization of read job is almost the same as that of
the write job and CPU isn’t fully utilized, we can conclude that CPU isn’t the
bottleneck.

For TestDFSIO read job, only map tasks execute actual workload. From Fig. 9 we
can see 3 points as below:

TestDFSIO-Read-48VM-100G-PHYSICAL TestDFSIO-Read-48VM-100G-VIRTUAL
5000
5000] Total Read speed of disk N Total Read speed of disk
4500 = Total Write speed of disk 4500 Total Write speed of disk
Total Network input throughput Total Network input throughput
4000 Total Network output throughput 4000 Total Network output throughput

B WY T
it LR e e

L I

[50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
time(s) time(s)

Fig. 9. Metrics for TestDFSIO read job

Analysis of Big Data Platform with OpenStack and Hadoop 385

(1) Disk throughput is 2500-3000 Mbps/8 PM, which is much lower than that of
write.

(2) Actual Total Throughput is 2048 Mbps, which is almost the same as the disk read
speed.

(3) Physical environment: The number of network transfer is less than the one in
virtual environment as local VM transfer within one PM is hidden from PM view.

Analysis and Conclusion of Cluster Scalability Test: For TestDFSIO write job, disk
write is over 7000 Mbps/8 PM in TestDFSIO write. For the read job, disk read
throughput is 1/3 of the disk write. Since network traffic throughput is higher in write
test, disk read operation seems to be the bottleneck.

Using the same method we find that disk read operation, not the CPU is also the
bottleneck of TeraSort, which doesn’t bear out our assumption. The reason may be that
TeraSort is not a particularly CPU-intensive job, and that it also needs a lot of writing
and reading. So it is consistent with the assumption of the I/O-intensive job.

For the scalability test, we conclude that for TestDFSIO and TeraSort, the bottle-
neck is disk read operation.

5.2 VM Specification Test

I/O-intensive Job-TestDFSIO: We set the map number to 28, the reduce number to 1
and the file size to 1000 M. After we finish the write job of TestDFSIO, we record the
relevant data as Fig. 10 shows.

Execution time for TestDFSIO(Write)

|D ID

Job total Map(Ave.) Reduce
allocation pattern

350
300

(SR T I SR N
o o a
o & ©

153
=

execution time(s)

o &

mclusterA m clusterB

Fig. 10. Execution time for TestDFSIO write job

From Fig. 10 we can see that cluster B have better performance than cluster A. The
total time of cluster B is 46 % less than cluster A.

CPU-intensive Job-PI: We change the map number to 28, set the reduce number to 1
and the execute number per map to 5%10°. By changing the number of map and the
execute number per map, we can indicate the desired PI accuracy. The larger of the

386 X. Li et al.

Execution time for Pl

Null

Job total Map(Ave.) Reduce
allocation pattern

execution time(s)
8 8
s o

m clusterA m clusterB

Fig. 11. Execution time for PI

multiplication of these two, the higher the accuracy. As the reduce phase only need to
collect the statistical information of map tasks, we set the reduce number to 1. After we
finish the job of PI, we record the relevant data as Fig. 11 shows.

VMs in cluster A and B are fully used when map number is 100. From Fig. 11 we can
see that the performance of cluster B doesn’t show much difference from that of cluster
A. The performance degradation caused by the VM configuration change is 2 % for PI.

Analysis and Conclusion of VM Specification Test: We first set the map number to
28 for the write job of TestDFSIO. From the total execution time of the job we can see
that for write, cluster B out-performs cluster A by 46 %. So we speculate that for
I/O-intensive jobs, the best practice is to increase the number of VMs and not to
increase the number of VCPUs in a VM.

Then we set the map number to 100 for PI, the performance of cluster B doesn’t
show much difference from that of cluster A. The performance degradation caused by
the VM configuration change is 2 % for PL. So we conclude that for CPU-intensive job,
the number of VMs in a cluster does not make much difference since the total number
of VCPUs is enough and I/O utilization is small enough.

5.3 VM Placement Test

I/O-intensive Job-TestDFSIO: We set the map number to 48, the reduce number to 1
and the file size to 500 M. After we finish the read job of TestDFSIO, we record the
relevant data as Fig. 12 shows.

VMs in cluster A, B and C are fully used when map number is 48. From Fig. 12 we
can see that the total time of cluster A, B and C is increasing. The average time of map
is increasing, too. We conclude that the wider allocation over physical servers achieves
better performance for TestDFSIO.

CPU-intensive Job-TeraSort: We set the map number to 400, the reduce number to
12 and the sort size to 50 G. The map number is equal to the total data size divided by

Analysis of Big Data Platform with OpenStack and Hadoop 387

Execution time for TestDFSIO(Read)

120

100

80

60

20

20
0 || |

Job total Map(Ave.) Reduce
allocation pattern

execution time(s)

W clusterA m clusterB m clusterC

Fig. 12. Execution time for TestDFSIO read job

Execution time for TeraSort
1400 -

1200
1000

800
600
400 I
200
0 ——

Job total Map(Ave.) Reduce(Ave.)
allocation pattern

execution time(s)

m clusterA mclusterB m clusterC

Fig. 13. Execution time for TeraSort

the file size. The reduce number is equal to the number of CPU cores. After we finish
TeraSort job, we record the relevant data as Fig. 13 shows.

VMs in cluster A, B and C are fully utilized. From the Fig. 13 we can see that the
total time difference among the three patterns is mainly caused by the cost of the reduce
phase, and the total time of cluster A, B and C is increasing. We conclude that the
wider allocation over physical servers achieves better performance for TeraSort.

CPU-intensive Job-PI: We set the map number to 48, the reduce number to 1 and the
execute number per map to 1%10°. After we finish the job of PI, we record related data
as Fig. 14 shows.

VMs in cluster A, B and C are fully utilized. From Fig. 14 we can see, the per-
formance of cluster A and B doesn’t show much difference. Cluster C achieves 21 %
better performance than cluster A, achieves 26 % better performance than cluster B.

We conclude that the centralized allocation of VMs over physical machines can
improve the efficiency of the CPU-intensive job-PI.

388 X. Li et al.

Execution time for PI

II II |

lob total Map{Ave) Reduce

executlon time(s)
e e e
5 58 8% 88 88

=]

allocation pattern

mchsterd mchsterB mclusterC

Fig. 14. Execution time for PI

Analysis and Conclusion of VM Placement Test: We set the map number to 48 for
read jobs of TestDFSIO, set the map number to 400 for TeraSort jobs and we make full
use of the VMs in 3 clusters for both of them. For TestDFSIO and TeraSort jobs, the
total time of cluster A, B and C is increasing. So we conclude that the wider allocation
over physical servers achieves better performance for TestDFSIO and TeraSort.

We set the map number to 48 for CPU-intensive job PI and we make full use of the
VMs in this scenario in 3 clusters. Cluster C achieves 21 % better performance than
cluster A, achieves 26 % better performance than cluster B. That is, the most cen-
tralized allocation of VMs over physical machines has the best performance.

For this scenario, we conclude that the wider allocation over physical servers
achieves the better performance for TestDFSIO and TeraSort. The centralized alloca-
tion of VMs over physical machines can improve the efficiency of a CPU-intensive
job-PL

5.4 Summary

For scalability test, we conclude that for both TestDFSIO and TeraSort, the bottleneck
is disk read operation.

For VM specification test, we conclude that for the I/O intensive job, the best
practice is to increase the number of VMs and not to increase the number of VCPUs in
a VM, for CPU intensive job-PI, the number of VMs in a cluster does not make big
difference. The conclusion is the same as [14].

For the VM placement test, we conclude that the wider allocation over physical
servers achieves the better performance for read job of TestDFSIO and TeraSort.
TeraSort is not a typical CPU intensive job and it conforms to the assumption of the I/O
intensive job. Centralized allocation of VMs over physical machines can improve the
efficiency of a CPU-intensive job PI, which is not consistent with the conclusion of
[14], possibly due to some context switch.

Analysis of Big Data Platform with OpenStack and Hadoop 389

6 Conclusion and Prospect

In this paper, we have designed three experimental scenarios and compared their
performances. Our experiments revealed that the disk read operation of physical servers
can be bottlenecks for TestDFSIO and TeraSort. If the resource is enough, the best
practice is to increase the number of VMs and not to increase the number of VCPUs in
a VM for I/O intensive job. Wider allocation over physical servers achieves better
performance for read job of TestDFSIO and TeraSort. For CPU-intensive job PI, the
best practice is to centralize allocation of VMs over physical machines.

In our future work, the model of Hadoop will be studied and docker will be
integrated into the big data system. We will test Hadoop performance by comparing
HDEFS and Ceph. Moreover, the rationality of parameter selection such as the number
of map and reduce tasks and the influence of data size need to be further investigated.

Acknowledgments. This work is supported by Shanghai 2016 Innovation Action Project under
Grant 16DZ1100200-Data-trade-supporting Big data Testbed. This work is also supported by
2016-2019 National Natural Science Foundation of China under Grant No. 61572137-Multiple
Clouds based CDN as a Service Key Technology Research, Shanghai 2015 Innovation Action
Project under Grant No. 1551110700 - New media-oriented Big data analysis and content
delivery key technology and application, and Fudan-Hitachi Innovative Software Technology
Joint Project-Cloud Platform Design for Big data.

References

1. Snijders, C., Matzat, U., Reips, U.D.: “Big Data”: big gaps of knowledge in the field of
internet science. Int. J. Internet Sci. 7(1), 1-5 (2012)

2. Madden, S.: From databases to big data. IEEE Internet Comput. 16(3), 4-6 (2012)

3. Kotiyal, B., Kumar, A., Pant, B., et al.: Big data: mining of log file through Hadoop. In: 2013
International Conference on Human Computer Interactions (ICHCI), pp. 1-7. IEEE (2013)

4. Patel, A.B., Birla, M., Nair, U.: Addressing big data problem using Hadoop and Map
Reduce. In: 2012 Nirma University International Conference on Engineering (NUiCONE),
pp.- 1-5. IEEE (2012)

5. Nandimath, J., Banerjee, E., Patil, A., et al.: Big data analysis using Apache Hadoop. In:
2013 IEEE 14th International Conference on Information Reuse and Integration (IRI),
pp. 700-703. IEEE (2013)

6. Hadoop. http://Hadoop.apache.org/Introduction

7. Song, G., Meng, Z., Huet, F., et al.: A Hadoop MapReduce performance prediction method.
In: High Performance Computing and Communications, pp. 820-825. IEEE (2013)

8. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun.
ACM 51(1), 107-113 (2008)

9. Yang, H., Dasdan, A., Hsiao, R.L., et al.: Map-reduce-merge: simplified relational data
processing on large clusters. In: Proceedings of the 2007 ACM SIGMOD International
Conference on Management of Data, pp. 1029-1040. ACM (2007)

10. Ko, B.M., Lee, J., Jo, H.: Toward enhancing block I/O performance for virtualized Hadoop
cluster. In: Proceedings of the 2014 IEEE/ACM 7th International Conference on Utility and
Cloud Computing, pp. 481-482. IEEE Computer Society (2014)

http://Hadoop.apache.org/Introduction

390

11.

12.

13.

14.

15.

16.

17.

X. Li et al.

Vasconcelos, P.R.M., de Aratjo Freitas, G.A.: Performance analysis of Hadoop MapReduce
on an OpenNebula cloud with KVM and OpenVZ virtualizations. In: 2014 9th International
Conference for Internet Technology and Secured Transactions (ICITST), pp. 471-476. IEEE
(2014)

Kontagora, M., Gonzalez-Velez, H.: Benchmarking a MapReduce environment on a full
virtualisation platform. In: 2010 International Conference on Complex, Intelligent and
Software Intensive Systems (CISIS), pp. 433-438. IEEE (2010)

Li, J., Wang Q, Jayasinghe D, et al.: Performance overhead among three hypervisors: an
experimental study using Hadoop benchmarks. In: 2013 IEEE International Congress on Big
Data, pp. 9-16. IEEE (2013)

Ishii, M., Han, J., Makino, H.: Design and performance evaluation for Hadoop clusters on
virtualized environment. In: The International Conference on Information Networking 2013
(ICOIN), pp. 244-249. IEEE (2013)

Aggarwal, S., Phadke, S., Bhandarkar, M.: Characterization of Hadoop jobs using
unsupervised learning. In: 2010 IEEE Second International Conference on Cloud Computing
Technology and Science (CloudCom), pp. 748-753. IEEE (2010)

Bortnikov, E., Frank, A., Hillel, E., et al.: Predicting execution bottlenecks in map-reduce
clusters. Presented as part of the, p. 18 (2012)

Yin, J., Qiao, Y.: Performance modeling and optimization of MapReduce programs. In: 2014
IEEE 3rd International Conference on Cloud Computing and Intelligence Systems, pp. 180—
186. IEEE (2014)

	Analysis of Big Data Platform with OpenStack and Hadoop
	Abstract
	1 Introduction
	2 Related Work
	3 Experimental Setup
	3.1 OpenStack Cloud-Based Hadoop
	3.2 Physical Configurations
	3.3 Benchmark

	4 Scenario Design
	4.1 Cluster Scalability Test
	4.2 VM Specification Test
	4.3 VM Placement Test

	5 Results and Discussion
	5.1 Cluster Scalability Test
	5.2 VM Specification Test
	5.3 VM Placement Test
	5.4 Summary

	6 Conclusion and Prospect
	Acknowledgments
	References

