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Abstract. Quantum message authentication codes are families of keyed
encoding and decoding maps that enable the detection of tampering on
encoded quantum data. Here, we study a new class of simulators for quan-
tum message authentication schemes, and show how they are applied in
the context of two codes: the Clifford and the trap code. Our results show
for the first time that these codes admit an efficient simulation (assum-
ing that the adversary is efficient). Such efficient simulation is typically
crucial in order to establish a composable notion of security.

1 Introduction

Quantum cryptography is the study of the security of information processing in
a quantum world. While quantum key distribution [4] is today the most widely
successful quantum cryptographic technology [7,12], quantum information effec-
tively re-defines many cryptographic paradigms [6]. Among these is the need for
new definitions and protocols for cryptographic tasks that operate on quantum
data, such as quantum secret sharing [9] and quantum multi-party computa-
tion [3]. Another fundamental task is quantum message authentication.

Quantum message authentication schemes, introduced in [2], are families of
keyed encoding and decoding maps which allow for the detection of tampering
on encoded quantum data. These codes were originally given in a very efficient
form, based on purity testing [2], and were shown to also satisfy a composable
security notion [14].

Further quantum message authentication schemes have been proposed,
including the signed polynomial code[1,3], the trap code [5] and the Clifford
code [1,11]. These schemes have a nice algebraic form, which makes them par-
ticularly easy to study. Perhaps the main reason for interest in these schemes is
that they have a sufficient amount of “structure” to enable evaluation of quan-
tum gates over the encoded data (this technique is called quantum computing on
authenticated data (QCAD)). This has lead to protocols for multi-party quantum
computation [3], quantum one-time programs [5] and the verification of quantum
computations [1].

The security of quantum message authentication schemes is typically defined
in terms of the existence of a simulator that, given access only to the ideal func-
tionality for quantum message authentication (which is a virtual device that
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either transmits the quantum data directly and outputs “accept”, or replaces it
with a dummy state and outputs “reject”), is able to emulate the behaviour of
the adversary so that the real-world protocol (involving the adversary) is statis-
tically indistinguishable from the ideal-world protocol (involving the simulator).
This type of definition fits in the quantum Universal Composability (UC)[8,16]
framework, as long as we add a further condition: if the adversary runs in poly-
nomial time, so must the simulator (an efficient simulation). Until now, direct
efficient simulations were known only for the purity-testing based codes [2].

In this work, we show a new family of efficient simulators for quantum mes-
sage authentication schemes. The main idea is that the simulator replaces the
entire codeword by half-EPR pairs (keeping the remaining half to itself), and
runs the adversary on these entangled states (as well as the reference system for
the original input). After the attack is applied, the simulator performs Bell basis
measurements in order to verify the integrity of the EPR pairs. So long as enough
EPR pairs are found to be intact, the simulator makes the ideal functionality
“accept”; otherwise, it makes it “reject”. It is well-known that this Bell basis
measurement will detect any non-identity Pauli attack—given the structure of
the codes that we analyze, we show that this is sufficient.

We apply this type of simulator to the Clifford and trap quantum message
authentication codes. We note that the Clifford code was previously proven
secure according to an algebraic definition, without an efficient simulation [1,11],
and that the trap scheme was proven secure according to a simulator for a more
elaborate ideal functionality for quantum one-time programs [5]. We thus estab-
lish for the first time efficient simulators for these codes (note, however, that we
make extensive use of the algebraic tools developed in these prior works, and
that we achieve the same security bounds). We also note that the idea of using
EPR-pair testing as a proof technique for quantum message authentication has
appeared in [2], where a more elaborate type of testing (called purity testing) is
used.

Roadmap. The remainder of the paper is structured as follows. In Sect. 2, we
give some details on the standard notation and well-known facts that are used
throughout. In Sect. 3, we formally define quantum message authentication in
terms of correctness and security. Section 4 gives the Clifford and trap schemes,
while in Sect. 5 we show security of the schemes.

2 Preliminaries

Here, we present basic notation (Sect. 2.1) and well-known facts about the Pauli
(Sect. 2.2) and Clifford (Sect. 2.3) groups.

2.1 Basic Notation

We assume the reader is familiar with the basics of quantum information [15],
but nevertheless give a quick review of the most relevant notation in this
section. We will use the density operator formalism to represent quantum states.
Density matrices are represented with a greek letter, typically ρ. The subscripts
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of the quantum states indicate which spaces (registers) the states reside in. We
therefore represent the density operator for the state in the M register as ρM .

The trace norm of a state, ρ, denoted ‖ρ‖1, is defined as ‖ρ‖1 = tr[
√

ρ†ρ].
The trace distance between two states ρ and σ, denoted D(ρ, σ), is defined
as D(ρ, σ) = 1

2 ‖ρ − σ‖1. The trace distance is a measure of distiguishability
between the two states ρ and σ. The trace distance is equal to 0 if and only
if ρ and σ are the same state (and therefore indistinguishable) and the trace
distance is equal to 1 if and only if ρ and σ are orthogonal (and therefore perfectly
distinguishable). The trace norm, and therefore the trace distance, satisfies the
triangle inequality: ‖ρ + σ‖1 ≤ ‖ρ‖1 + ‖σ‖1.

Let B(H) be the space of bounded linear operators acting on a Hilbert space,
H. Given A ⊆ B(H1) and B ⊆ B(H2) then given a linear map T from A → B,
T is called positive if T (A) ≥ 0 for all positive A ∈ A. T is a completely positive
map, (CP map), if T ⊗ Id : A ⊗ B → B(H1) ⊗ B(Cn) is positive for all n ∈ N.
In this case, Id is the identity map on B(Cn) and Cn is isomorphic to a complex
Hilbert space of dimension n. A map, T , is trace preserving if tr(T (ρ)) = tr(ρ).
T is a quantum channel if it is a completely positive and trace preserving map
(CPTP map). A family of quantum maps is polynomial-time if they can be
written as a polynomial-time uniform family of quantum circuits. A quantum
state is polynomial-time generated if it given as the output of a polynomial-time
quantum map (which takes as input the all-zeros state) [17].

A permutation map, denoted throughout by π, is a unitary operation that
acts on n qubits and permutes the order of the n qubits. This can equivalently
be seen as a permutation, σ, of the indices of the qubits, where π would take the
ith qubit to the σ(i)th position. Permutation maps are orthogonal, real valued
matrices so π−1 = π†. We use Πn to denote the set of all permutation maps on
n qubits.

We denote a two-qubit maximally entangled pure state as |Φ+〉 = 1√
2
(|00〉 +

|11〉). This is one of four Bell states. The other three Bell states are also maxi-
mally entangled pure states, |Φ−〉 = 1√

2
(|00〉−|11〉), |Ψ+〉 = 1√

2
(|01〉+ |10〉), and

|Ψ−〉 = 1√
2
(|01〉− |10〉). The four Bell states are orthogonal and form a basis for

two-qubit states. The four Bell states are therefore perfectly distinguishable and
so we can perform a projective measurement into the Bell basis and determine
which of the four Bell states we have. This is called a Bell basis measurement.

An [[n, 1, d]]-code is a quantum error correcting code that encodes one logical
qubit into n qubits and has distance d; if d = 2t+1, the code can correct up to t
bit or phase flips. We assume that the decoding map can always be applied, but
if more than t errors are present, it is not guaranteed to decode to the original
input.

2.2 Pauli Matrices

The single-qubit Pauli matrices are given by:

I =
[
1 0
0 1

]
,X =

[
0 1
1 0

]
, Z =

[
1 0
0 −1

]
, and Y = iXZ =

[
0 −i
i 0

]
. (1)
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Recall that if we allow complex coefficients, the any single-qubit gate can be
written as a linear combination of the four single-qubit Pauli matrices.

An n-qubit Pauli matrix is given by the n-fold tensor product of single-
qubit Paulis. We denote the set of all n-qubit Pauli matrices by Pn, where
|Pn| = 4n. Any n-qubit unitary operator, U , can also be written as a linear
combination of n-qubit Paulis, again allowing for complex coefficients. This gives
U =

∑
P∈Pn

αP P , with
∑

P∈Pn
|αP |2 = 1, since U is unitary. This is called the

Pauli decomposition of a unitary quantum operation.
The Pauli weight of an n-qubit Pauli, denoted ω(P ), is the number of non-

identity Paulis in the n-fold tensor product. We will also define sets of Paulis
composed only of specific Pauli matrices, such as {I,X}⊗n which is the set of
all n-qubit Paulis composed of only I and X Paulis, or {I, Z}⊗n which is the
set of all n-qubit Paulis composed of only I and Z Paulis. Finally, Paulis are
self-inverses, so P = P−1 = P †.

The following lemma, called the Pauli Twirl [10], shows how we can greatly
simplify expressions that involve the twirling of an operation by the Pauli
matrices:

Lemma 2.1 (Pauli Twirl). Let P, P ′ be Pauli operators. Then for any ρ it
holds that:

1
|Pn|

∑

Q∈Pn

Q†PQρQ†P ′†Q =

{
0, P 
= P ′

PρP †, otherwise .

2.3 Clifford Group

The Clifford group, Cn, on n qubits are unitaries that map Pauli matrices to
Pauli matrices (up to a phase of ±1 or ±i). Specifically, if P ∈ Pn, then for all
C ∈ Cn, αCPC† ∈ Pn, for some α ∈ {±1,±i}. Not only do Cliffords map Paulis
to Paulis, but they do so with a uniform distribution [1]:

Lemma 2.2 (Clifford Randomization). Let P be a non-identity Pauli oper-
ator. Applying a random Clifford operator (by conjugation) maps it to a Pauli
operator chosen uniformly over all non-identity Pauli operators. More formally,
for every P , Q ∈ Pn \ {I}, it holds that:

∣∣{C ∈ Cn|C†PC = Q}∣∣ =
|Cn|

|Pn| − 1
.

We also state a lemma that is analogous to the Pauli twirl, the Clifford
Twirl [10].

Lemma 2.3 (Clifford Twirl). Let P 
= P ′ be Pauli operators. For any ρ it
holds that: ∑

C∈Cn

C†PCρC†P ′C = 0.

Finally, we note that sampling a uniformly random Clifford can be done effi-
ciently [13].
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3 Quantum Message Authentication

Following [11], we define a quantum message authentication scheme as a pair of
encoding and decoding maps that satisfy the following:

Definition 1 (Quantum Message Authentication Scheme). A quantum
message authentication scheme is a polynomial-time set of encoding and decod-
ing channels {(EM→C

k ,DC→MF
k ) | k ∈ K}, where K is the set of possible keys, M

is the input system, C is the encoded system, and F is a flag system that
is spanned by two orthogonal states: |acc〉 and |rej〉, such that for all ρM ,
(Dk ◦ Ek)(ρM ) = ρM ⊗ |acc〉 〈acc|.

In order to define security for a quantum message authentication scheme,
we first consider a reference system R, so that the input can be described as
ρMR and we can furthermore assume that the system consisting of the encoded
message, together with the reference system, undergoes a unitary adversarial
attack UCR. For a fixed key, k, we thus define the real-world channel as:

Ek
MR→MRF : ρMR → (Dk ⊗ IR)(UCR(Ek ⊗ IR)(ρMR)U†

CR), (2)

where IR is the identity map on the reference system, R. From now on, we will
not include the identity maps, since it will be clear from context which system
undergoes a linear map and which one does not.

Security is given in terms of the existence of a simulator, which has access
only to the ideal functionality. This ideal functionality either accepts (and leaves
the message register M intact), or rejects (and outputs a fixed state ΩM ); the
simulator can interact with the ideal functionality by selecting accept or reject.
In both cases, the simulator can also alter the reference system R. This ideal-
world process is modeled by the quantum channel F , called the ideal channel,
where for each attack, UCR, there exists two CP maps U acc and U rej acting
only on the reference system R such that U acc + U rej = 1:

FMR→MRF : ρMR → (1M ⊗ U acc
R )ρMR ⊗ |acc〉 〈acc|

+trM ((1M ⊗ U rej
R )ρMR)ΩM ⊗ |rej〉 〈rej| . (3)

Definition 2 (Security of Quantum Message Authentication). Let
{(EM→C

k ,DC→MF
k ) | k ∈ K} be a quantum message authentication scheme,

with keys k chosen from K. Then the scheme is ε-secure if for all attacks, there
exists a simulator such that:

D
( 1

|K|
∑

k∈K
Ek(ρMR),F (ρMR)

)
≤ ε,∀ρMR. (4)

Furthermore, we require that if Ek is polynomial-time in the size of the input
register M , then F is also polynomial-time in the size of the input register, M .

We note that this definition is similar to the definition in [11]; however we
require a polynomial-time simulation whenever the attack is polynomial-time.
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This does not limit the proof to polynomial-time attacks, but merely restricts
the simulator to have at most the complexity of the attack. This condition being
satisfied is typically a crucial ingredient in order for the composability to carry
through [16].

4 Quantum Message Authentication Schemes

Here, we present two quantum message authentication schemes, the Clifford
code (Sect. 4.1) and the trap code (Sect. 4.2). The two encoding procedures both
proceed by appending trap qubits (in a fixed state) to the message register, and
then twirling by a Clifford (for the Clifford code) or a Pauli (for the trap code).
The trap code also has a permutation in addition to the Pauli twirl acting on the
message register. Decoding simply consists of undoing the permutation in the
trap code and then in both cases measuring the traps to check for any sign of
tampering. In the case of the Clifford code, only one set of traps (all in the same
state) is needed because the Clifford twirl breaks any Pauli attack into a uniform
mixture of Paulis which is detected on the traps with high probability. The trap
code, however, relies on two sets of traps (in two different states) with both
a Pauli twirl and a permutation of the message and trap qubits. Furthermore,
the trap scheme requires that we first encode the input message into an error
correcting code (essentially, this is because the Pauli twirl is not as powerful as
the Clifford twirl and will catch only high-weight Pauli attacks with the error
correcting code taking care of the low-weight ones).

4.1 The Clifford Code

We define a message authentication scheme using a Clifford encryption as follows:

1. The encoding, EM→C
k , takes as input an n-qubit message in the M system; it

appends an additional d-qubit trap register in the state |0〉 〈0|⊗d. A uniformly
random Clifford is then applied to the resulting n+d-qubit register, according
to the key, k. The output register is called C.
Mathematically, the encoding, EM→C

k , indexed by a secret key, k, on input
ρM (where Ck the kth Clifford) is given by:

Ek : ρM → Ck(ρM ⊗ |0〉 〈0|⊗d)C†
k. (5)

2. The decoding, DC→MF
k , takes the C register and applies the inverse Clifford,

according to the key, k. The last d qubits are then measured in the compu-
tational basis. If this measurement returns |0〉 〈0|⊗d then an additional qubit
|acc〉 〈acc| is appended in the flag system, F . If the measurements return any-
thing else, then the remaining system, M , is traced out and replaced with a
fixed n-qubit state, ΩM , and an additional qubit, |rej〉 〈rej|, is appended in
the flag system.
Mathematically, the decoding, DC→MF

k , also indexed by the secret key, k, is
given by:
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Dk : ρC → tr0(PaccC
†
k(ρC)CkP†

acc) ⊗ |acc〉 〈acc|
+trM,0(PrejC

†
k(ρC)CkP†

rej)ΩM ⊗ |rej〉 〈rej| , (6)

where Pacc = 1⊗n ⊗ |0〉 〈0|⊗d and Prej = 1⊗(n+d) − Pacc are measurement
projectors representing the trap qubits being in their initial states or altered,
respectively. Finally, tr0 refers to the trace over the d trap qubits.

4.2 The Trap Code

We define a trap code message authentication scheme as follows:

1. The encoding, EM→C
k , takes as input ρM and applies an [[n, 1, d]]-error cor-

recting code to the single-qubit M register, which will correct up to t errors
(where d = 2t+1). It then appends two additional n-qubit trap registers, the
first in the state |0〉 〈0|⊗n and the second in the state |+〉 〈+|⊗n. The result-
ing 3n-qubit register is then permuted and a Pauli encryption is applied,
according to the key, k. The resulting register is called C.
Mathematically the encoding, EM→C

k , indexed by a two-part secret key k =
(k1, k2) is given by:

Ek : ρM → Pk2πk1(EncM (ρM ) ⊗ |0〉 〈0|⊗n ⊗ |+〉 〈+|⊗n)π†
k1

Pk2 , (7)

where EncM (ρM ) represents the input state after the error correcting code
has been applied to the M system, πk1 is the kth

1 permutation and Pk2 is the
kth
2 Pauli matrix.

We note that we use the error-correcting properties of the code only (it is
sufficient in our context to simply correct low-weight Paulis on the message,
as opposed detecting them and rejecting).

2. The decoding, DC→MF
k , takes the C register and applies the inverse Pauli and

then the inverse permutation according to the key, k. The last n qubits are
then measured in the Hadamard basis and the second last n qubits are mea-
sured in the computational basis. If these two measurements return |+〉 〈+|⊗n

and |0〉 〈0|⊗n respectively, then an additional qubit |acc〉 〈acc| is appended in
the flag system F and the resulting M register is decoded (according to the
error correcting code applied in the encoding). If the measurements return
anything else, then the remaining system M is traced out and replaced with
a fixed single-qubit state ΩM and an additional qubit, |rej〉 〈rej|, is appended
in the flag system.
Define PE = {P ⊗ R ⊗ Q|P ∈ Pn, R ∈ {I, Z}⊗n, Q ∈ {I,X}⊗n}. Then
define the measurement projector corresponding to the protocol accepting as
Pacc = 1⊗n ⊗ |0〉 〈0|⊗n ⊗ |+〉 〈+|⊗n. The accepted states are then the states
that can be achieved by applying any P ∈ PE to ρM ⊗ |0〉 〈0|⊗n ⊗ |+〉 〈+|⊗n.
We define Prej = 1⊗3n − Pacc, the measurement projector corresponding to
the protocol rejecting, where the states achieved by applying any P ∈ P3n\PE

to EncM (ρM ) ⊗ |0〉 〈0|⊗n ⊗ |+〉 〈+|⊗n are rejected.
Mathematically, the decoding, DC→MF

k , also indexed by the two-part secret
key, k, is given by:
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Dk : ρC → DecM tr0,+(Paccπ
†
k1

Pk2(ρC)Pk2πk1P†
acc) ⊗ |acc〉 〈acc|

+trM,0,+(Prejπ
†
k1

Pk2(ρC)Pk2πk1P†
acc)ΩM ⊗ |rej〉 〈rej| , (8)

where DecM is the decoding of the error correcting code applied in the encryp-
tion and tr0,+ refers to the trace over the last two sets of n trap qubits.

5 Security of Quantum Message Authentication Schemes

In this section, we present simulation-based proofs for the Clifford (Sect. 5.1)
and the trap (Sect. 5.2) codes. At a high level, the security of the two codes
is analyzed in very similar ways (see the discussion in Sect. 1). The main idea
(in both cases) is to use a simulator that replaces the encoded message in C
with half EPR pairs, without encryption in the Clifford code, and with only
a permutation in the trap code; the attack is then applied to these half EPR
pairs, as well as any reference system R. From there we are able to compare the
accepted and rejected states between the real world and ideal protocols in order
to find the upper bound for the trace distance between them. We will notice that
these differences are the cases where the real world protocol accepts something
that the simulator rejects. Specifically, this is where an attack gets through and
changes a logical qubit but is not detected in the traps. Of course, these same
states are not rejected by the real world protocol but they are rejected by the
simulator. Because the Clifford twirl maps any non-identity Pauli attack to a
uniform mixture of non-identity Paulis, the bound for this distance is simple
to compute in the case of the Clifford code. In the case of the trap code, a
more complicated argument is needed based on permuting the attack and a
combinatorial argument that bounds the undetected attacks that can alter the
logical data.

5.1 Security of the Clifford Code

Simulator. Recall (Sect. 3) that the simulator interacts with the ideal func-
tionality by only altering the reference system and selecting either accept or
reject. Given the attack, UCR, to which the simulator has access, the simu-
lator will apply the attack to half EPR pairs in place of the C system and
then perform a Bell basis measurement on the EPR pairs. It will select accept
if the EPR pairs are still in their original state, and reject otherwise. Let
PU

acc = 1MR ⊗ |Φ+〉 〈Φ+|⊗(n+d)
C1C2

and PU
rej = 1− PU

acc. The ideal channel is then:

FMR→MRF : ρMR →
trC1C2(PU

accUC1R(ρMR ⊗ |Φ+〉 〈Φ+|⊗(n+d)

C1C2
)U†

C1RPU †
acc ) ⊗ |acc〉 〈acc|

+trM (trC1C2(PU
rejUC1R(ρMR ⊗ |Φ+〉 〈Φ+|⊗(n+d)

C1C2
)

U†
C1RPU †

rej ))ΩM ⊗ |rej〉 〈rej| . (9)
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According to the above, we define U acc and U rej that satisfy Eq. (3) as:

U acc : ρR → trC1C2(PU
accUC1R(ρR ⊗ |Φ+〉 〈Φ+|⊗(n+d)

C1C2
)U†

C1RPU †
acc ), (10)

and

U rej : ρR → trC1C2(PU
rejUC1R(ρR ⊗ |Φ+〉 〈Φ+|⊗(n+d)

C1C2
)U†

C1RPU †
rej ). (11)

For a fixed attack UCR =
∑

P∈Pn+d

αP PC ⊗UP
R , with

∑

P∈Pn+d

|αP |2 = 1, we note

the effects of U acc and U rej , recalling, of course, that U acc(ρMR) is understood
to be (1M ⊗ U acc)(ρMR), with the same understanding for U rej :

U acc(ρMR) = trC1C2(PU
accUC1R(ρMR ⊗ |Φ+〉 〈Φ+|⊗(n+d)

C1C2
)U†

C1RPU †
acc )

= |α1|2 (1M ⊗ U1
R)ρMR(1M ⊗ U1†

R ) (12)

U rej(ρMR) = trC1C2(PU
rej

( ∑

P �=1

|αP |2 PC1 ⊗ UP
R

)

(ρMR ⊗ |Φ+〉 〈Φ+|⊗(n+d)

C1C2
)
( ∑

P �=1

|αP |2 PC1 ⊗ UP†
R

)
PU †

rej )

=
∑

P �=1

|αP |2 (1M ⊗ UP
R )(ρMR)(1M ⊗ UP†

R ). (13)

We are now ready to state and prove our main theorem on the security of
the Clifford message authentication scheme.

Theorem 5.1. Let {(ES→C
k ,DC→SF

k ) | k ∈ K} be the Clifford quantum message
authentication scheme, with parameter d. Then the Clifford code is an ε-secure
quantum authentication scheme, for ε ≤ 3

2d
.

Proof. We will follow the proof structure used in [1,11].
Using the simulator described above, we wish to show that:

D
( 1

|K|
∑

k∈K
Ek(ρMR),F (ρMR)

)
≤ ε,∀ρMR. (14)

Consider a general attack UCR, written as UCR =
∑

P∈Pn+d

αP PC ⊗UP
R where

∑

P∈Pn+d

|αP |2 = 1. The real-world channel is then represented as:

Ek
MR→MRF : ρMR → Dk

(( ∑

P∈Pn+d

αP PC ⊗ UP
R

)
Ek(ρMR)

( ∑

P∈Pn+d

αP PC ⊗ UP†
R

))
. (15)



Efficient Simulation for Quantum Message Authentication 81

We will use ψ = ρMR ⊗ |0〉 〈0|⊗d to simplify the following expressions. Con-
sider the effect of the real protocol on input ρMR with attack

∑

P∈Pn+d

αP PC ⊗UP
R ,

conditioned on acceptance:

1
|K|

∑

kεK
tr0

(
PaccC

†
k

( ∑

P∈Pn+d

αP PC ⊗ UP
R

)
(CkψC†

k)

( ∑

P∈Pn+d

αP P †
C ⊗ UP†

R

)
CkP†

acc

)
⊗ |acc〉 〈acc| . (16)

Now we can apply the Clifford Twirl (Lemma 2.3), since the sum over all keys
is, of course, the sum over all Cliffords (since the keys index all n + d-qubit
Cliffords) and then simply split the sum over all Paulis into the case with the
identity Pauli from the attack, and all other Paulis. What we are left with is:

1
|K|

∑

kεK
tr0

( ∑

P∈Pn+d

|αP |2 PaccC
†
k(PC ⊗ UP

R )(CkψC†
k)

(P †
C ⊗ UP†

R )CkP†
acc

)
⊗ |acc〉 〈acc|

=
1

|K|
∑

kεK
tr0

(
|α1|2 PaccC

†
k(1C ⊗ U1

R)(CkψC†
k)

(1C ⊗ U1†
R )CkP†

acc

)
⊗ |acc〉 〈acc|

+
1

|K|
∑

kεK
tr0

( ∑

P �=1

|αP |2 PaccC
†
k(PC ⊗ UP

R )(CkψC†
k)

(P †
C ⊗ UP†

R )CkP†
acc

)
⊗ |acc〉 〈acc| . (17)

Clearly the first term is exactly what the simulator will accept, and the second
term is in exactly the right form to use a Clifford Randomization (Lemma2.2),
resulting in:

= U acc(ρMR) ⊗ |acc〉 〈acc|
+

1
|Cn| tr0

( ∑

P̃ �=1

∑

P �=1

|αP |2 |Cn|
|Pn| − 1

Pacc(P̃C ⊗ UP
R )ψ

(P̃ †
C ⊗ UP†

R )P†
acc

)
⊗ |acc〉 〈acc| . (18)

The P̃ s are the results of the Clifford Randomization applied to a Pauli, P . The
randomization is not applied to the reference system, so the UP

R terms are not
changed by the randomization. We can use the properties of the trace to move
the trace inside the first sum, and we can move the |Cn|

|Pn|−1 coefficient out of both
of the sums:
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= U acc(ρMR) ⊗ |acc〉 〈acc|
+

1
|Cn|

|Cn|
|Pn| − 1

( ∑

P̃ �=1

tr0
∑

P �=1

|αP |2 Pacc(P̃C ⊗ UP
R )ψ

(P̃ †
C ⊗ UP†

R )P†
acc

)
⊗ |acc〉 〈acc| . (19)

We recognize the R register in the second sum as the states that the simulator
will reject. Recall that the simulator is in terms of the sum over all non-identity
Paulis and includes the αP coefficients. We can therefore write the previous line
in terms of the simulator as:

= U acc(ρMR) ⊗ |acc〉 〈acc|
+

1
|Pn+d| − 1

( ∑

P̃ �=1

tr0Pacc(P̃C(U rej(ρMR)

⊗ |0〉 〈0|⊗d)P̃ †
C)P†

acc

)
⊗ |acc〉 〈acc| . (20)

If we let Pt be the set of all Paulis that do not alter the trap qubits, then when
we apply Pacc to the above, we end up with the sum over the P̃ ∈ Pt \ {1}.
Therefore the previous line can be simplified to:

= U acc(ρMR) ⊗ |acc〉 〈acc|
+

1
|Pn+d| − 1

∑

P̃∈Pt\1
tr0(P̃C(U rej(ρMR) ⊗ |0〉 〈0|⊗d)P̃ †

C) ⊗ |acc〉 〈acc| .

(21)

The effect of the real protocol on input ρMR with attack
∑

P∈Pn+d

αP PC ⊗UP
R ,

conditioned on rejection, can be manipulated in the same way:

1
|K|

∑

kεK

(
trM,0

(
PrejC†

k

( ∑

P∈Pn+d

αP PC ⊗ UP
R

)
(Ck(ψ)C†

k)

( ∑

P∈Pn+d

αP P †
C ⊗ UP†

R

)
CkP†

rej

))
ΩM ⊗ |rej〉 〈rej|

=
1

|K|
∑

kεK

(
trM,0(|α1|2 PrejC

†
k(1C ⊗ U1

R)(Ck(ψ)C†
k)

(1C ⊗ U1†
R )CkP†

rej)
)
ΩM ⊗ |rej〉 〈rej|

+
1

|K|
∑

kεK

(
trM,0

( ∑

P �=1

|αP |2 PrejC
†
k(PC ⊗ UP

R )(Ck(ψ)C†
k)

(P †
C ⊗ UP†

R )CkP†
rej

))
ΩM ⊗ |rej〉 〈rej|
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=
1

|Pn+d| − 1

∑

P̃ �=1

∑

P �=1

|α|2
(
trM,0(Pacc(P̃C ⊗ UP

R )(ψ)

(P̃ †
C ⊗ UP†

R )P†
acc)

)
ΩM ⊗ |rej〉 〈rej|

= trM (U rej(ρMR))ΩM ⊗ |rej〉 〈rej|
− 1

|Pn+d| − 1
trM

( ∑

P∈Pt\1
U rej(ρMR)

)
ΩM |rej〉 〈rej|

= trM (U rej(ρMR))ΩM ⊗ |rej〉 〈rej|

− 4n2d − 1
|Pn+d| − 1

trM (U rej(ρMR))ΩM ⊗ |rej〉 〈rej| . (22)

When we combine the accepted states and the rejected states into the real world
protocol given by Eq. (15), we can write it in terms of the simulator as:

Dk(UCREk(ρMR)U†
CR)

=U acc(ρMR) ⊗ |acc〉 〈acc|
+

1
|Pn+d| − 1

∑

P̃∈Pt\1
tr0(P̃C(U rej(ρMR) ⊗ |0〉 〈0|⊗d)P̃ †

C) ⊗ |acc〉 〈acc|

+ trM (U rej(ρMR))ΩM ⊗ |rej〉 〈rej|

− 4n2d − 1
|Pn+d| − 1

trM (U rej(ρMR))ΩM ⊗ |rej〉 〈rej| . (23)

We can therefore write Eq. (14) as:

1
2

∥∥∥U acc(ρMR) ⊗ |acc〉 〈acc|

+
1

|Pn+d| − 1

∑

P̃∈Pt\1
tr0(P̃C(U rej(ρMR) ⊗ |0〉 〈0|⊗d)P̃ †

C) ⊗ |acc〉 〈acc|

+trM (U rej(ρMR))ΩM ⊗ |rej〉 〈rej|

− 4n2d − 1
|Pn+d| − 1

trM (U rej(ρMR))ΩM ⊗ |rej〉 〈rej|

−(U acc(ρMR) ⊗ |acc〉 〈acc| + trM (U rej(ρMR))ΩM ⊗ |rej〉 〈rej|)
∥
∥∥
1

=
1
2

∥
∥∥

1
|Pn+d| − 1

∑

P̃∈Pt\1
tr0(P̃C(U rej(ρMR) ⊗ |0〉 〈0|⊗d)P̃ †

C) ⊗ |acc〉 〈acc|

− 4n2d − 1
|Pn+d| − 1

trM (U rej(ρMR))ΩM ⊗ |rej〉 〈rej|
∥∥∥
1

(24)
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Since |Pt \ 1| = 4n2d − 1, and the maximum trace distance between two states
is 1, we can see that by the triangle inequality, the above is bounded by:

≤ 4n2d − 1
|Pn+d| − 1

=
4n2d − 1
4n+d − 1

=
1 − 1

4n2d

2d − 1
4n2d

≤ 3 × 1
2d

. (25)

This concludes the proof, showing that the Clifford code is 3
2d

-secure. ��

This is identical to the bound of 6
2d

achieved in [11] when we consider that we
use the trace distance in our definition of security, and [11] uses the trace norm,
which differs from the trace distance by a factor of 2.

5.2 Security of the Trap Code

Simulator. Recall (Sect. 3) that the simulator interacts with the ideal function-
ality by only altering the reference system and selecting either accept or reject.
Given the attack, UCR, to which the simulator has access, the simulator will
apply the attack to randomly permuted half EPR pairs in place of the C system
and then de-permute the EPR pairs and perform a Bell basis measurement. It
will select accept if the first n of the EPR pairs have ≤ t errors, the next n of the
EPR pairs are either unchanged or have phase flip errors, and the last n of the
EPR pairs are either unchanged or have bit flip errors. It will select reject oth-
erwise. Let PF = {P ⊗ R ⊗ Q|P ∈ Pn, ω(P ) ≤ t, R ∈ {I, Z}⊗n, Q ∈ {I,X}⊗n}.
Specifically, PF is the set of all Paulis that the ideal protocol will accept being
applied to the half EPR pair—Paulis that would apply at most t non-identity
Paulis on the message space and would not alter the |0〉 〈0|⊗n or the |+〉 〈+|⊗n

traps in the real world protocol. Finally, define the measurement projector cor-
responding to the simulator selecting accept as:

PU
acc =

∑

Q∈{I,X}⊗n

∑

R∈{I,Z}⊗n

∑

P∈Pn|ω(P )≤t

1MR ⊗ (P ⊗ R ⊗ Q)C1

|Φ+〉 〈Φ+|⊗3n

C1C2
(P ⊗ R ⊗ Q)C1

=
∑

P∈PF

1MR ⊗ (PC1 |Φ+〉 〈Φ+|⊗3n

C1C2
P †

C1
), (26)

and the measurement projector corresponding to the simulator selecting reject
as:

PU
rej = 1 − PU

acc. (27)
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The ideal channel with attack UC1R is therefore:

FMR→MRF : ρMR → trC1C2

1
|Π3n|

∑

π∈Π3n

(
PU

accπ
†
C1

UC1RπC1

(ρMR ⊗ |Φ+〉 〈Φ+|⊗3n

C1C2
)π†

C1
U†

C1RπC1PU †
acc

)
⊗ |acc〉 〈acc|

+trM

(
trC1C2

1
|Π3n|

∑

π∈Π3n

(
PU

rejπ
†
C1

UC1RπC1(ρMR ⊗ |Φ+〉 〈Φ+|⊗3n

C1C2
)

π†
C1

U†
C1RπC1PU †

rej

))
ΩM ⊗ |rej〉 〈rej| . (28)

For a fixed attack UCR =
∑

P∈P3n

αP PC ⊗UP
R , with

∑

P∈P3n

|αP |2 = 1 and where

for the sake of brevity we will represent ρMR ⊗ |Φ+〉 〈Φ+|⊗3n
C1C2

with φMRC1C2 ,
the ideal channel becomes:

FMR→MRF : ρMR →

trC1C2

1
|Π3n|

∑

π∈Π3n

(

PU
accπ

†
C1

( ∑

P∈P3n

αP PC1 ⊗ UP
R

)
πC1φMRC1C2

π†
C1

( ∑

P∈P3n

αP PC1 ⊗ UP†
R

)
πC1PU †

acc ⊗ |acc〉 〈acc|

+ trM

(
PU

rejπ
†
C1

( ∑

P∈P3n

αP PC1 ⊗ UP
R

)
πC1φMRC1C2

π†
C1

( ∑

P∈P3n

αP PC1 ⊗ UP†
R

)
πC1PU †

rej

)
ΩM ⊗ |rej〉 〈rej|

)

. (29)

From here we will move the permutations to act on the attack Paulis, since
they’re all applied to the same register, C1:

= trC1C2

1
|Π3n|

∑

π∈Π3n

(
(
PU

acc

( ∑

P∈P3n

αP π†
C1

PC1πC1 ⊗ UP
R

)
φMRC1C2

( ∑

P∈P3n

αP π†
C1

PC1πC1 ⊗ UP†
R

)
PU †

acc

)
⊗ |acc〉 〈acc|

+ trM

(
PU

rej

( ∑

P∈P3n

αP π†
C1

PC1πC1 ⊗ UP
R

)
φMRC1C2

( ∑

P∈P3n

αP π†
C1

PC1πC1 ⊗ UP†
R

)
PU †

rej

)
ΩM ⊗ |rej〉 〈rej|

)

. (30)
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Finally we apply the projectors:

= trC1C2

1
|Π3n|

∑

π∈Π3n

(
( ∑

P |π†Pπ∈PF

|αP |2 (π†
C1

PC1πC1 ⊗ UP
R )(φMRC1C2)

(π†
C1

PC1πC1 ⊗ UP†
R )

)
⊗ |acc〉 〈acc|

+trM

( ∑

P |π†Pπ/∈PF

|αP |2 (π†
C1

PC1πC1 ⊗ UP
R )(φMRC1C2)

(π†
C1

PC1πC1 ⊗ UP†
R )

)
ΩM ⊗ |rej〉 〈rej|

)

. (31)

We are now ready to present our main theorem on the security of the trap
code:

Theorem 5.2. Let {(ES→C
k ,DC→SF

k ) | k ∈ K} be the trap quantum message
authentication scheme with parameter t, the number of bit or phase flip errors
that the error correcting code applied to the input message qubit can correct.
Then the trap code is an ε-secure quantum message authentication scheme, for
ε ≤ (13 )t+1.

Proof. Using the simulator described above, we wish to show that:

D
( 1

|K|
∑

k∈K
Ek(ρMR),F (ρMR)

)
≤ ε,∀ρMR. (32)

Consider a general attack UCR, written as UCR =
∑

P∈P3n

αP PC ⊗ UP
R with

∑

P∈P3n

|αP |2 = 1. Let ψ = EncM (ρMR) ⊗ |0〉 〈0|⊗n ⊗ |+〉 〈+|⊗n. The real-world

channel is then represented as:

Ek
MR→MRF : ρMR → Dk

(( ∑

P∈P3n

αP PC ⊗ UP
R

)
Ek(ρMR)

( ∑

P∈P3n

αP PC ⊗ UP†
R

))
(33)

=
1

|K| tr0,+

∑

kεK

(

DecM

(
Paccπ

†
k1

Pk2

( ∑

P∈P3n

αP PC ⊗ UP
R

)
Pk2πk1ψ

π†
k1

Pk2

( ∑

P∈P3n

αP PC ⊗ UP†
R

)
Pk2πk1P†

acc

)
⊗ |acc〉 〈acc|

+ trM

(
Prejπ

†
k1

Pk2

( ∑

P∈P3n

αP PC ⊗ UP
R

)
(Pk2πk1ψπ†

k1
Pk2)

( ∑

P∈P3n

αP PC ⊗ UP†
R

)
Pk2πk1P†

rej

)
ΩM ⊗ |rej〉 〈rej|

)

. (34)
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From here we apply the Pauli Twirl (Lemma2.1):

=
1

|K1| tr0,+

∑

k1εK1

(

DecM

(
Paccπ

†
k1

( ∑

P∈P3n

|αP |2 (PC ⊗ UP
R )πk1ψ

π†
k1

(PC ⊗ UP†
R )

)
πk1P†

acc

)
⊗ |acc〉 〈acc|

+ trM

(
Prejπ

†
k1

( ∑

P∈P3n

|αP |2 (PC ⊗ UP
R )πk1ψ

π†
k1

(PC ⊗ UP†
R )

)
πk1P†

rej

)
ΩM ⊗ |rej〉 〈rej|

)

. (35)

Since the permutations act on the same register as the attack Paulis, we can
move the permutations to be considered to be acting on the Paulis instead of
the message and traps:

=
1

|K1| tr0,+

∑

k1εK1

(

DecM

(
Pacc

( ∑

P∈P3n

|αP |2 (π†
k1

PCπk1 ⊗ UP
R )ψ

(π†
k1

PCπk1 ⊗ UP†
R )

)
P†

acc

)
⊗ |acc〉 〈acc|

+ trM

(
Prej

( ∑

P∈P3n

|αP |2 (π†
k1

PCπk1 ⊗ UP
R )ψ

(π†
k1

PCπk1 ⊗ UP†
R )

)
P†

rej

)
ΩM ⊗ |rej〉 〈rej|

)

. (36)

Finally we apply the projectors and notice that K1 = Π3n:

=
1

|Π3n| tr0,+

∑

πεΠ3n

(

DecM

( ∑

P |π†Pπ∈PE

|αP |2 (π†PCπ ⊗ UP
R )ψ

(π†PCπ ⊗ UP†
R )

)
⊗ |acc〉 〈acc|

+ trM

( ∑

P |π†Pπ∈P3n\PE

|αP |2 (π†PCπ ⊗ UP
R )ψ

(π†PCπ ⊗ UP†
R )

)
ΩM ⊗ |rej〉 〈rej|

)

. (37)

Then:

1
2

∥∥
∥

1
|K|

∑

k∈K
Ek(ρMR) − F (ρMR)

∥∥
∥
1

=
1
2

∥∥∥
1

|Π3n|
∑

πεΠ3n

(

tr0,+

(
DecM

( ∑

P |π†Pπ∈PE

|αP |2 (π†PCπ ⊗ UP
R )ψ
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(π†PCπ ⊗ UP†
R )

)
⊗ |acc〉 〈acc|

+ trM

( ∑

P |π†Pπ∈P3n\PE

|αP |2 (π†PCπ ⊗ UP
R )ψ

(π†PCπ ⊗ UP†
R )

)
ΩM ⊗ |rej〉 〈rej|

)

− trC1C2

( ∑

P |π†Pπ∈PF

|αP |2 (π†
C1

PC1πC1 ⊗ UP
R )(φMRC1C2)

(π†
C1

PC1πC1 ⊗ UP†
R )

)
⊗ |acc〉 〈acc|

− trMC1C2

( ∑

P |π†Pπ/∈PF

|αP |2 (π†
C1

PC1πC1 ⊗ UP
R )(φMRC1C2)

(π†
C1

PC1πC1 ⊗ UP†
R )

)
ΩM ⊗ |rej〉 〈rej|

)∥∥∥
1
. (38)

We will subtract the accepted states in the ideal protocol from those accepted
in the real protocol and we will subtract the rejected states in the real protocol
from the rejected states in the ideal protocol. Note that PE \ PF = {P ⊗ R ⊗
Q|P ∈ Pn, ω(P ) > t,R ∈ {I, Z}⊗n, Q ∈ {I,X}⊗n}.

=
1
2

∥∥∥
1

|Π3n|
∑

πεΠ3n

∑

P |π†Pπ∈PE \PF

(

tr0,+

(
DecM (|αP |2 (π†PCπ ⊗ UP

R )ψ

(π†PCπ ⊗ UP†
R ))

)
⊗ |acc〉 〈acc|

− trMC1C2

(
|αP |2 (π†

C1
PC1πC1 ⊗ UP

R )(φMRC1C2)

(π†
C1

PC1πC1 ⊗ UP†
R )

)
ΩM ⊗ |rej〉 〈rej|

)∥∥
∥
1
. (39)

Here we will use the triangle inequality to remove the sums from the trace
distance:

≤ 1
2

1
|Π3n|

∑

π∈Π3n

∑

P |π†Pπ∈PE \PF

∥
∥∥tr0,+

(
DecM (|αP |2 (π†PCπ ⊗ UP

R )ψ

(π†PCπ ⊗ UP†
R ))

)
⊗ |acc〉 〈acc|

− trMC1C2

(
|αP |2 (π†

C1
PC1πC1 ⊗ UP

R )(φMRC1C2)

(π†
C1

PC1πC1 ⊗ UP†
R )

)
ΩM ⊗ |rej〉 〈rej|

∥
∥∥
1
. (40)

Since the maximum trace distance between two states is 1 we have:

≤ 1
|Π3n|

∑

k1εK1

∑

P |π†Pπ∈PE \PF

|αP |2 . (41)
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Now if we let ηP be the number of permutations, π of P such that π†Pπ ∈
PE \ PF , then the above can be written as:

=
1

|Π3n|
∑

P∈P3n

ηP × |αP |2 . (42)

In AppendixA, we give Lemma A.1, which gives us ηP ≤ (
n

t+1

)
(t + 1)!

(3n − (t + 1))!. Thus, since
∑

P∈P3n

|αP |2 = 1, the above expression can be

bounded by:

≤ 1
(3n)!

×
(

n

t + 1

)
(t + 1)!(3n − (t + 1))!

=

n∏

i=1

i
3n−t−1∏

i=1

i

n−t−1∏

i=1

i
3n∏

i=1

i

=

n∏

i=n−t

i

3n∏

i=3n−t

i

=
t∏

i=0

n − t + i

3n − t + i

≤
t∏

i=0

1
3

=
(1

3

)t+1

(43)

Therefore, D
(

1
|K|

∑

k∈K
Ek(ρMR),F (ρMR)

)
≤ (13 )t+1,∀ρMR. ��

We note that this is very similar to the bound in [5] of (23 )d/2: note that the
trap code in [5] uses the error detection property of the code. Since a code of
distance d can detect up to d/2 errors, this bound is consistent with our bound
of (13 )t+1.
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A Appendix

Lemma A.1. For a fixed P ∈ P3n, let ηP denote the number of permutations
π of P such that π†Pπ ∈ PE \ PF Then for all P :

ηP ≤
(

n

t + 1

)
(t + 1)!(3n − (t + 1))! . (44)

An intuitive argument for the above lemma is that ηP can be upper-bounded
by fixing a Pauli P ∈ {I,X}3n of weight t+1. We show that a Pauli with greater
weight will have ≤ ηP possible allowed permutations. To find the number of
possible allowed permutations, we will consider the first n positions, where we
require at least t+1 non-identity Paulis (for a total of

(
n

t+1

)
(t+1)! permutations).

The remaining positions are then simply permuted, since we have used all of the
non-identity Paulis already, contributing a multiplicative factor of (3n− (t+1))!
permutations. This is formalized below (where we also consider general attack
Paulis consisting of combinations of X, Y and Z).
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Proof. In order to find an upper bound for ηP , we look to find the Pauli, P , that
has the largest number of permutations, π, such that π†Pπ ∈ PE \ PF .

For a Pauli P with ω(P ) = d, we write d = dx +dy +dz +x1+y+z1+x2+z2
for values dx, dy, dz, x1, y, z1, x2, z2 as follows:
1. dx, dy, dz where dx + dy + dz = t + 1. These are the t + 1 X, Y , and Z Paulis

that must be applied to the first n qubits for the Pauli to be in PE \ PF .
2. y where y + dy is the total number of Y Paulis in P and y are the additional

Y Paulis applied to the first n qubits. Note that Y Paulis cannot be applied
to either set of traps without altering them.

3. x1, x2 where x1 + x2 + dx is the total number of X Paulis in P and x1 are
the additional X Paulis applied to the first n qubits and x2 are the X Paulis
applied to the |+〉 〈+|⊗n traps.

4. z1, z2 where z1 + z2 + dz is the total number of Z Paulis in P and z1 are
the additional Z Paulis applied to the first n qubits and z2 are the Z Paulis
applied to the |0〉 〈0|⊗n traps.

Then the possible permutations on P are found by multiplying the following
terms:
1.

(
n

dx,dy,dz,n−t−1

)
dx!dy!dz! Which is the number of ways to choose the required

t + 1 spots for the minimum number of Paulis applied to the first n qubits,
multiplied by the number of ways of permuting each of the sets of X, Y , and
Z Paulis. Note that this term simplifies to n!

(n−t−1)! ,
2.

(
n−t−1

x1

)
x1!, the number of ways to apply x1 additional X Paulis to the first

n qubits,
3.

(
n−t−1−x1

y

)
y!, the number of ways to apply y additional Y Paulis to the first

n qubits,
4.

(
n−t−1−x1−y

z1

)
z1!, the number of ways to apply z1 additional Z Paulis to the

first n qubits,
5.

(
n
x2

)
x2!, the number of ways to apply x2 X Paulis to the n traps that will not

be changed by them,
6.

(
n
z2

)
z2!, the number of ways to apply z2 Z Paulis to the n traps that will not

be changed by them, and
7. (3n − (dx + dy + dz + x1 + y + z1 + x2 + z2))! the number of ways to permute

the remaining identity qubits, which simplifies to (3n − d)!.

The product, once simplified, is then:

ηP =
n!n!n!(3n − d)!

(n − t − 1 − x1 − y − z1)!(n − x2)!(n − z2)!

=
n∏

n−t−x1−y−z1

i

n∏

n−x2+1

i

n∏

n−z2+1

i

3n−t−1−x1−y−z1−x2−z2∏

i=1

i (45)

Since t is fixed, in order to maximize the above expression, we need to min-
imize x1, y, z1, x2, z2. This is achieved by setting x1 = y = z1 = x2 = z2 = 0,

and therefore d = t + 1: we thus find that ηP ≤
n∏

n−t
i
3n−t−1∏

i=1

i =
(

n
t+1

)
(t + 1)!

(3n − (t + 1))!. ��



Efficient Simulation for Quantum Message Authentication 91

References

1. Aharonov, D., Ben-Or, M., Eban, E.: Interactive proofs for quantum compu-
tations. In: Innovations in Computer Science–ICS 2010, pp. 453–469 (2010).
arXiv:0810.5375
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