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Preface

ICITS 2016, the 9th International Conference on Information-Theoretic Security, was
held in Tacoma, Washington, USA, during August 9–12, 2016. The conference took
place on the campus of the University of Washington, Tacoma. The general and
program co-chairs were Paulo Barreto (UW Tacoma and University of Sao Paulo) and
Anderson C.A. Nascimento (UW Tacoma).

ICITS covers all aspects of information-theoretic security, from relevant mathe-
matical tools to theoretical modeling to implementation. ICITS 2016 was an event in
cooperation with The International Association for Cryptologic Research (IACR).

ICITS 2016 had two tracks, a conference and a workshop track. Conference-track
articles appear in the proceedings, whereas workshop-track contributions were only
presented on-site with a talk. This two-track format has the advantage of bringing
together researchers from various areas with different publication cultures.

There were 40 submitted papers, 32 to the conference track and eight to the
workshop track. In all, 14 submissions were accepted for the conference track and six
for the workshop track. All submissions were reviewed by at least three members of the
Program Committee, who sometimes were assisted by external reviewers. These pro-
ceedings contain the accepted papers for the conference track.

There were four invited talks:

– “Obfuscation Without the Vulnerabilities of Multilinear Maps,” Sanjam Garg (UC
Berkeley)

– “Tools for Quantum and Reversible Circuit Compilation and Applications to
Quantum Cryptanalysis,” Martin Roetteler (Microsoft Research)

– “Information Theoretic Techniques Underlying Secure Obfuscation,” Amit Sahai
(UCLA)

– “New Techniques for Information-Theoretic Indistinguishability,” Stefano Tessaro
(UC Santa Barbara)

We would like to thank the Steering Committee of ICITS, in particular Yvo Des-
medt and Rei Safavi-Naini. We also thank the Program Committee members and
external reviewers for their careful work. We are grateful to the wonderful local
organizing team here at UW Tacoma: BrieAnna Bales, Zaide Chavez, Bob Landowski,
Mike McMillan, Tyler Pederson, and Yana Wilson.

Finally, we would like to thank all the authors who submitted papers to ICITS 2016.

September 2016 Anderson C.A. Nascimento
Paulo Barreto
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Efficient Threshold Secret Sharing Schemes
Secure Against Rushing Cheaters

Avishek Adhikari1, Kirill Morozov2, Satoshi Obana3, Partha Sarathi Roy4(B),
Kouichi Sakurai4, and Rui Xu5

1 Department of Pure Mathematics, University of Calcutta, Kolkata, India
avishek.adh@gmail.com

2 School of Computing, Tokyo Institute of Technology, Tokyo, Japan
morozov@c.titech.ac.jp

3 Faculty of Computer and Information Sciences, Hosei University, Tokyo, Japan
obana@hosei.ac.jp

4 Faculty of Information Science and Electrical Engineering, Kyushu University,
Fukuoka, Japan

royparthasarathi0@gmail.com, sakurai@csce.kyushu-u.ac.jp
5 Information Security Group, KDDI Research, Inc., Fujimino, Japan

ru-xu@kddi-research.jp

Abstract. In this paper, we consider two very important issues namely
detection and identification of k-out-of-n secret sharing schemes against
rushing cheaters who are allowed to submit (possibly forged) shares after
observing shares of the honest users in the reconstruction phase. Towards
this, we present four different schemes. Among these, first we present two
k-out-of-n secret sharing schemes, the first one being capable of detecting
(k − 1)/3 cheaters such that |Vi| = |S|/ε3 and the second one being
capable of detecting n − 1 cheaters such that |Vi| = |S|/εk+1, where S
denotes the set of all possible secrets, ε denotes the successful cheating
probability of cheaters and Vi denotes set all possible shares. Next we
present two k-out-of-n secret sharing schemes, the first one being capable
of identifying (k−1)/3 rushing cheaters with share size |Vi| that satisfies
|Vi| = |S|/εk. This is the first scheme, whose size of shares does not grow
linearly with n but only with k, where n is the number of participants. For
the second one, in the setting of public cheater identification, we present
an efficient optimal cheater resilient k-out-of-n secret sharing scheme
against rushing cheaters having the share size |Vi| = (n−t)n+2t|S|/εn+2t.

A. Adhikari—Research is partially supported by National Board for Higher
Mathematics, Department of Atomic Energy, Government of India, Grant No.
2/48(10)/2013/NBHM(R.P.)/R&D II/695. The author is also thankful to DST,
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laborative research work under India Japan Cooperative Science Programme (vide
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Research is partially supported by JST, CREST.
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Research (C) 15K00193 from Japan Society for the Promotion of Science.
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The proposed scheme achieves flexibility in the sense that the security
level (i.e., the cheater(s) success probability) is independent of the secret
size. Each of the four proposed schemes has the smallest share size among
the existing schemes having the mentioned properties in the respective
models.

Keywords: Secret sharing · Cheating detection · Cheater
identification · Rushing cheaters · Universal hash · Reed-Solomon code

1 Introduction

In the basic form of secret sharing scheme [3,19], it is assumed that everyone
involved in the protocol is honest or semi-honest. However, in the real life sce-
nario, this assumption may not hold. It may happen that some participants
behave maliciously during the execution of the protocol. Malicious participants
may submit incorrect shares resulting in reconstruction of an incorrect secret.
This observation leads to some interesting protocols viz. cheating detectable
secret sharing scheme (CDSS), cheater identifiable secret sharing scheme (CISS),
robust secret sharing scheme (RSS), verifiable secret sharing scheme (VSS).

However, most schemes known so far implicitly assume existence of fully
simultaneous network, and they do not deal with cheating by rushing cheaters
who submit their shares after observing shares of honest users. Constructing a
secret sharing scheme secure against rushing cheaters is important in many real
life applications. For example, consider the following scenario where there is no
trusted party to reconstruct a secret and to detect/identify cheaters, and each
user independently reconstructs the secret by receiving shares of the other users
sent through the network which is not fully simultaneous. Since the network is
not fully simultaneous, rushing cheaters can determine how to forge their shares
after receiving shares of honest users. Rushing cheaters are so powerful that it
is difficult to construct a scheme with small share size. In fact, most of efficient
schemes whose bit lengths of shares do not grow linearly with n (i.e., the number
of participants) (e.g., [1,2,5,10,12,13,16]) are vulnerable to cheating by rushing
cheaters.

In this paper we study information-theoretically secure k-out-of-n secret shar-
ing schemes secure against rushing cheaters with the following properties:

– secret reconstruction algorithm is allowed to perform multiple rounds of inter-
action with shareholders,

– t or less (computationally unlimited) rushing cheaters who submit their shares
after observing shares of honest users are detected/identified with probability
1 − ε even when k shares are submitted in secret reconstruction,

– probability distribution of a secret does not affect the successful cheating prob-
ability ε of rushing cheaters.
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1.1 State of the Art and Our Results

Tompa and Woll [20] first presented a cheating detectable secret sharing scheme
(CDSS). That work is followed by several other works (for example, [1,2,5,7,13,
16]). However, all these schemes can only detect cheating, without revealing the
exact identity of the cheaters, who submitted incorrect shares.

McElice and Sarwate [11] pointed out cheater identification in secret shar-
ing schemes by observing the connection between Shamir threshold scheme and
Reed-Solomon error correcting codes. However, such approach requires more
than k participants in the reconstruction phase of a (k, n) threshold secret shar-
ing scheme to identify cheaters. The question is whether cheater identification
is possible or not with the minimum number of shares (namely k), which are
required to reconstruct the secret. Cheater Identifiable Secret Sharing (CISS)
is the answer to this question. There are two types of cheater identification
in secret sharing: private as e.g. in [4,15,17] and public as e.g. in [6,10,12,22].
A reconstruction algorithm of CISS with public cheater identification can be
run by an external entity. This is an essential advantage of CISS with public
cheater identification over those with private one. However, CISS with public
cheater identification is only possible for the case of honest majority [10,12],
while for the case of CISS with private cheater identification honest majority
is not required [9]. Many CISS schemes with different features appear in the
literature. The schemes differ on the number of tolerable cheaters, type of the
adversary (rushing or not), reconstruction efficiency, and flexibility (security level
is flexible or not). We call the scheme flexible, when the security level (i.e. success
probability of the cheater(s)) can be set independently, i.e., independent of the
secret size. Flexibility provides the power of partial customization of length of
random strings, according to the requirement.

To have a comparison among the schemes present in the literature, let us
first fix the notations. Here, we denote the number of malicious or cheating
participants by t in a (k, n) CISS, where (k, n) are the parameters as in an
ordinary threshold scheme, i.e., the number of participants is n, and any k of
them will be able to reconstruct the secret, while any k −1 (or less) of them will
have no information about the secret. It has been proved in [10] and [12] that
a CISS scheme, with public cheater identification, capable of identifying up to t
cheaters, is possible if and only if t < k/2. So any publicly cheater identifiable
CISS scheme with k = 2t+1 is said to be an optimal cheater resilient. The lower
bound [10] on the share size |Vi| of such schemes is |Vi| ≥ |S|−1

ε + 1, where |S| is
the size of the secret and ε is cheater’s success probability. In [12], two publicly
cheater identifiable CISS schemes with optimal cheater resilience were proposed.
However, both of them were inefficient. Choudhury [6] came up with an efficient
solution, but the scheme in [6] deals with multiple secrets. In the case of a single
secret, the scheme of [6] is not an optimal one. One improvement came from
Xu et al. [22] but they did not achieve the optimal share size. Moreover, their
scheme is not an optimal cheater resilient as it tolerates t < k/3 cheaters. In [18],
Roy et al. provided a CISS scheme with better share size than [6] with optimal
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Table 1. Comparison of proposed CDSS with existing CDSS.

Scheme # Cheaters Share size Rushing

[5] t < k |Vi| = |S|/ε2 No

[14] t < n |S|( k−1
ε

)2 No

Proposed t < k/3 |Vi| = |S|/ε3 Yes

Proposed t < n |Vi| = |S|/εk+1 Yes

cheater resilience. Xu et al. [23] further proposed an optimal cheater resilient
CISS with improved share size.

Our Contribution: The contributions of the paper are to present four efficient
k-out-of-n secret sharing schemes.

1. We present two CDSS schemes, each of which is the first scheme in their
respective model, such that the bit length of shares does not grow linearly
with n. We compare the properties of the existing CDSS schemes in Table 1.

2. We also present two public CISS schemes against rushing cheaters. We com-
pare the properties of existing CISS schemes with public cheater identification
in Table 2.

From Table 2 we can see that our share size is smaller than all the other
schemes within the same category except for that of Xu et al. [23]. However, for
the cases t = 1 and t = 2, the proposed CISS has smaller share size as compared

Table 2. Comparison of proposed CISS with existing CISS.

Scheme # Cheaters Share size Efficiencya Rushing Flexibility

[10] k/3 |S|/εt+2 Yes No Yes

[12] k/3 |S|/ε Yes No Yes

[22] k/3 |S|/εn−t+1 Yes Yes No

Proposed k/3 |S|/εk Yes Yes No

[12] k/2 (n · (t + 1) · 23t−1|S|)/ε No No No

[12] k/2 ((n · (t + 1) · 23t)2|S|)/ε No No No

[6]b k/2 (t + 1)3n|S|/ε3n Yes Yes No

[18] k/2 (t + 1)2n+k−3|S|/ε2n+k−3 Yes Yes No

[23]c k/2 (n − t)n+t+2|S|/εn+t+2 Yes Yes No

Proposed k/2 (n − t)n+2t|S|/εn+2t Yes Yes Yes
aThis column indicates, whether computational complexity of the reconstruction phase
is polynomial in the number of participants n or not.
bShare size with respect to a single secret.
cWith an additional assumption that the adversary can only corrupt k participants who
take part in the reconstruction phase, Xu et al. get even smaller share size, however
we list their share size in the general case for a fair comparison.
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to [23]. Moreover, our scheme provides flexibility in the security level, which is
not a feature of the scheme [23]. We achieve flexibility by adapting authentication
technique from [21]. Recently, Xu et al. presented a scheme capable of identifying
up to (k−1)/3 rushing cheaters [22]. The size of shares |Vi| of the scheme is |Vi| =
|S|/εn−t+1 and the bit size of shares still grows linear in n. We proposed a scheme
capable of identifying (k−1)/3 rushing cheaters which achieves the smallest size
of shares when k < 3

4n+1 and the bit size of shares does not grow linear in n. In
Table 2, the column “Efficiency” indicates, whether computational complexity of
the reconstruction phase is polynomial in the number of participants n or not.

2 Preliminaries

2.1 Secret Sharing Schemes

In the model of secret sharing schemes, there are n users P = {P1, . . . , Pn} and
a dealer D. The set of users who are allowed to reconstruct the secret is char-
acterized by an access structure Γ ⊆ 2P ; that is, users Pi1 , . . . , Pik are allowed
to reconstruct the secret if and only if {Pi1 , . . . , Pik} ∈ Γ . The model consists of
two algorithms: a share generation algorithm ShareGen and a secret reconstruc-
tion algorithm Reconst. The share generation algorithm ShareGen takes a secret
s ∈ S as input and outputs a list (v1, v2, . . . , vn). Each vi ∈ Vi is called a share
and is given to a user Pi. In a usual setting, ShareGen is invoked by the dealer.
The secret reconstruction algorithm Reconst takes a list of shares and outputs a
secret s ∈ S.

A secret sharing scheme SS = (ShareGen,Reconst) is called perfect if the
following two conditions are satisfied for the output (v1, . . . , vn) of ShareGen(ŝ)
where the probabilities are taken over the random tape of ShareGen.

1. if {Pi1 , . . . , Pik} ∈ Γ then Pr[Reconst(vi1 , . . . , vik) = ŝ] = 1,
2. if {Pi1 , . . . , Pik} �∈ Γ then Pr[S = s | Vi1 = vi1 , . . . ,Vik = vik ] = Pr[S = s] for

any s ∈ S.

We note that only perfect secret sharing schemes are dealt with in this paper.

2.2 Cheating Detectable Secret Sharing Against Rushing Cheaters

Tompa and Woll [20] considered the scenario in which cheaters who do not belong
to the access structure submit forged shares in the secret reconstruction phase.
Such cheaters will succeed if the other users participating in the reconstruction
accept an incorrect secret. In this paper, we consider very powerful cheaters
called rushing cheaters who submit forged shares after observing shares of honest
users.

As in the ordinary secret sharing schemes, the model of cheating detectable
secret sharing scheme against rushing cheaters consists of two algorithms.
A share generation algorithm ShareGen is the same as that in the ordinary secret
sharing schemes. A secret reconstruction algorithm Reconst is slightly changed:
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the reconstruction algorithm is modeled as an interactive Turing machine, which
interacts with users multiple times, and users release a part of their shares to
Reconst in each round. Therefore, Reconst takes round identifier rid, user identi-
fier Pi, and part of share vi(rid) and state information stateR as input and outputs
updated state information. When interactions with users are finished, Reconst
outputs either the secret or the special symbol ⊥ (⊥ �∈ S.) Reconst outputs ⊥ if
and only if cheating has been detected.

Figure 1 below models the interaction between users and the reconstruction
algorithm Reconst. Here, a pair of Turing machine A = (A1,A2) representing
rushing cheaters Pi1 , . . . , Pit who try to cheat honest users Pit+1 , . . . , Pim . In the
GameRushing(SS,A),A1 first chooses rushing cheater Pi1 , . . . , Pit to cheat users
Pit+1 , . . . , Pim . Next, in each round, A2 determines the forged share, denoted
by (v′(rid)

i1
, . . . , v

′(rid)
i1

), to be submitted by rushing cheaters. Note that A2 takes
shares (v(rid)

it+1
, . . . , v

(rid)
im

) as input in determining forged shares, which captures
the rushing capability of cheaters.

GameRushing(SS, A)

s ← S (according to the probability distribution over S)
(v1, . . . , vn) ← ShareGen(s)
((i1, . . . , it), (it+1, . . . , im), stateC) ← A1()
stateR ← ∅
for rid = 1 to RidMax do

for � = t + 1 to m do

stateR ← Reconst(rid, Pi� , v
(rid)
i�

, stateR)

done

((v
′(rid)
i1

, . . . , v
′(rid)
it

), stateC) ← A2(rid, (v
(rid)
it+1

, . . . , v
(rid)
im

), (vi1 , . . . , vit), stateC)

for � = 1 to t do

stateR ← Reconst(rid, Pi� , v
′(rid)
i�

, stateR)

done
done
output ← Reconst(·, ·, stateR)

Fig. 1. Game between Reconst and rushing cheaters for CDSS and CISS.

The successful cheating probability ε(SS,A) of the cheaters A against SS =
(ShareGen, Reconst) is defined by

ε(SS,A) = Pr[s′ ← Reconst(·, ·, stateR) : s′ ∈ S ∧ s′ �= s] ,

where the probability is taken over the distribution of S, and the random tapes
of ShareGen and A. The security of cheating detectable secret sharing schemes
against t rushing cheaters are defined as follows:

Definition 1. A k-out-of-n secret sharing SS = (ShareGen,Reconst) is called
(t, ε) cheating detectable against rushing cheaters if ε(SS,A) ≤ ε for any
adversary A.
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2.3 Cheater Identifiable Secret Sharing Against Rushing Cheaters

The model of cheater identifiable secret sharing also consists of a share generation
algorithm ShareGen and a secret reconstruction algorithm Reconst. As in the
model of (t, ε) cheating detectable secret sharing, ShareGen takes a secret as input
and outputs a list of shares (v1, . . . , vn) and Reconst is also modeled as interactive
Turing machine which interacts with users multiple times. The input of Reconst
is the same as for cheating detectable secret sharing, but the final output is
slightly different: Reconst in CISS outputs (ŝ, ∅), if no cheating is detected. On
the other hand, if Reconst detects cheating, it outputs (⊥, L), where “⊥” is a
special symbol indicating detection of cheating and L is a list of cheaters.

The security of cheater identifiable secret sharing is formalized through the
same game as defined in Fig. 1. The cheater Pij submitting an invalid share
succeeds, if Reconst fails to identify Pij as a cheater. The successful cheating
probability of Pij against SS = (ShareGen,Reconst) is denoted as ε(SS,A, Pij )
where the probability ε(SS,A, Pij ) is defined by

ε(SS,A, Pij ) = Pr[(s′, L) ← Reconst(·, ·, stateR) : ij �∈ L].

Based on the above definition, we define the security of secret sharing schemes
capable of identifying cheaters, who submit forged shares as follows:

Definition 2. A k-out-of-n threshold secret sharing scheme, denoted as SS =
(ShareGen,Reconst) is called a (t, ε) cheater identifiable secret sharing scheme,
if: (1) ε(SS,A, Pj) ≤ ε for any A representing set of t or less cheaters L, and
for any cheater Pj ∈ L who submits forged share v′

j �= vj,
(2) Pi �∈ L for any user Pi who does not forge its share.

2.4 Building Blocks of Proposed Schemes

In this subsection, we briefly review building blocks of proposed schemes: Reed-
Solomon codes, almost strongly universal family of hash functions, and k-wise
independent random variables.

Strongly Universal Family of Hash Function: Here, we will review the
definitions and constructions of strongly universal families of hash function.

Definition 3. A family of hash function H : A → B is called ε almost strongly
universal family of hash function (ε-ASU2 for short) if it satisfies following two
conditions:

1. |{h | h ∈ H, h(a) = b}| = |H|/|B| holds for any a ∈ A and for any b ∈ B.
2. For any distinct a, a′ ∈ A and for any b, b′ ∈ B, the following equality holds:

|{h | h ∈ H, h(a) = b, h(a′) = b′}|
|{h | h ∈ H, h(a) = b}| ≤ ε.

H is called strongly universal family of hash function (SU2 for short) if ε = 1/|B|.
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We define a key e of ASU2 to specify an element of a hash family H and use a
notation he to denote an element of the H specified by the key e. It is obvious
that the size of keys of hash family is identical to the size of hash family |H|.

The subscript 2 of ASU2 denotes the strength of hash families, and we can
define the notion of strongly universal hash family SUt of strength t for t ≥ 2 as
follows:

Definition 4. A family of hash function H : A → B is called strongly universal
family of hash function of strength t (SUt for short) if |{h | h ∈ H, h(ai) =
bi(i = 1, . . . , j)}| = |H|/|B|j holds for any distinct a1, a2, . . . , aj ∈ A, for any
(not necessarily distinct) b1, b2, . . . , bj ∈ B and for any j ≤ t.

Here, we will review some known constructions of (almost) strongly hash families
which we will use in the proposed schemes. In [8], the following efficient ASU2

based on polynomials over a finite field is proposed.

Proposition 1. Let e0, e1 ∈ Fp and s = (s1, . . . , sN ) ∈ FpN , then the hash
family H1,N : FpN → Fp defined by H1,N = {h1,N,(e0,e1) | he0,e1(s) = e0 + s1e1 +
s2e

2
1 + · · · sNeN

1 } is N/p-ASU2. Furthermore, the hash family H1,1 : Fp → Fp is
SU2.

It is well known that strongly universal hash families with higher strength are
also constructed based on polynomials over a finite field as follows:

Proposition 2. Let e0, e1, . . . , et−1 ∈ Fp and s ∈ Fp, then the hash family H2,t :
Fp → Fp defined by H2,t = {h2,t,(e0,e1,...,et−1) | h2,t,(e0,e1...,et−1)(s) = e0 + e1s +
e2s

2 + · · · et−1s
t−1} is SUt.

Proposition 3. Let e0, e1 ∈ Fp and si = (si,1, . . . , si,N ) ∈ FpN , then the hash
family H3,N : FpN → Fp defined by H3,N = {h3,N,(e0,e1,1,e1,2,...,e1,n) | he0,e1,i

(si) = ΣN
l=1e

l
0.si,l + e1,i} is N/p-ASU2. Furthermore, h3,N,(e0,e1,1,e1,2,...,e1,n) can

be used to authenticate n messages.

Proof. Let ai = he0,e1,i(si), we calculate the probability that the forged
message and authentication tag are accepted by the authentication key. We
assume the opponent tries her forging after seeing n pairs of message and tag
{s1, a1, . . . , sn, an} and substitutes all the n messages and tags by the following
tuple {s′

1, a
′
1, . . . , s

′
n, a′

n}. The substitution probability is

Pr[at least one forged message-tag pairs in {s′
1, a

′
1, . . . , s

′
n, a′

n} is accepted
| {s1, a1, . . . , sn, an} are accepted ]

Denote by E1 the event that “at least one forged message-tag pair in
{s′

1, a
′
1, . . . , s

′
n, a′

n} is accepted”, and by E2 the event that “{s1, a1, . . . , sn, an}
are accepted”.

We first count how many keys satisfy event E2. This is given by the following
system of equations.
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ΣN
l=1e

l
0.s1,l + e1,i = a1 (1)

ΣN
l=1e

l
0.s2,l + e1,i = a2 (2)

· · · = · · · (3)
ΣN

l=1e
l
0.sn,l + e1,i = an (4)

Taking e0, e1,1, e1,2, . . . , e1,n as unknowns, for any fixed value of e0, there exists
one and only one solution for this system of equations. Thus, there are in total p
solutions to the following equation system. More importantly, each possible key
appears with equal probability.

Next, we count how many keys satisfy both events E1 and E2. The keys
which satisfy both events must in addition satisfy at least one of the following
n equations. In the following equations, we assume that s′

i,j �= si,j for all j ∈
[N ]. This is quite a natural assumption: Since the opponent wants to forge the
messages, she would choose a different message other than what is sent by the
transmitter. The reason that we assume all the forged messages are different
from the authentic ones is simply because this case maximizes the successful
probability of a substitution attack by the opponent.

ΣN
l=1e

l
0.s

′
1,l + e1,i = a′

1 (5)

ΣN
l=1e

l
0.s

′
2,l + e1,i = a′

2 (6)
· · · = · · · (7)

ΣN
l=1e

l
0.s

′
n,l + e1,i = a′

n (8)

If we subtract Eq. (1) by Eq. (5), we get ΣN
l=1e

k
0 .(s1,l−s′

1,l) = a1−a′
1. We rephrase

it as f(e0) = ΣN
l=1e

k
0 .(s1,l − s′

1,l) − (a1 − a′
1) = 0. The function f(e0) represents

a polynomial of degree at most N in the variable e0. Since s1 �= s′
1, for any

(s′
1, a

′
1) of the opponent’s choice, f(e0) �= 0. Thus there exist at most N values

of e0 satisfying Eqs. (9) and (13). We record these values as e∗
0,1,1, . . . , e

∗
0,1,N .

This means that the forged message-tag pair s′
1, a

′
1 would not be accepted as

authentic, if and only if e0 ∈ F \ {e∗
0,1,1, . . . , e

∗
0,1,N}. The same arguments hold

for the message-tag pairs s′
i, a

′
i, that is s′

i, a
′
i will not be accepted as authentic,

if and only if e0 ∈ F \ {e∗
0,i,1, . . . , e

∗
0,i,N}, for any i ∈ [n]. Therefore, for any value

of {s′
1, a

′
1, . . . , s

′
n, a′

n}, there are at most p − (p − N · n) = N · n keys satisfying
the first equation system and at least one equation from the second equation
system. In a nutshell, there are in total at most N · n keys satisfying both event
E2 and event E1, and then Pr[E1|E2] ≤ N · n/p. It is easy to show that for any
particular (s′

i, a
′
i) with s′

i �= si, the probability that it is accepted as authentic is
N/p = N/|F|. Hence, the proposition follows. �
Remark 1. The above proposal is an adaption of the universal hash family by
Wegman and Carter [21].

k-wise Independent Random Variables: k-wise independent random vari-
ables are used to construct schemes presented in Sects. 4 and 6.
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Definition 5. Random variables X1, . . . , Xn over a finite set S are called
k-wise independent if Pr[Xi1 = αi1 , . . . , Xik = αik ] = 1/pk holds for any k
indices i1, . . . , ik ∈ {1, . . . , n} and for any αi1 , . . . , αik ∈ S where p is the cardi-
nality of finite set S.

It is well known that a polynomials of degree k −1 over a finite field can be used
to obtain k-wise independent random variables.

Proposition 4. Let a polynomial r(x) = r0+r1x+· · ·+rk−1x
k−1 be a randomly

chosen polynomial over Fp. Then X1 = r(1),X2 = r(2), . . . ,Xn = r(n) are k-
wise independent random variables over Fp.

We note that the size of memory to store the above k-wise independent variables
X1, . . . , Xn is pk since it suffices to store all the coefficients of r(x).

Reed-Solomon Error Correcting Code: Let C(x) ∈ Fp be a polynomial of
degree at most t, and let i1, . . . , ik be distinct elements of Fp, then it is well known
that (C(i1), C(i2), . . . , C(ik)) constitutes a codeword of the Reed-Solomon code
with minimum Hamming distance k−t. Therefore, when k ≤ 3t+1 (i.e., t < k/3)
holds, the Reed-Solomon code corrects up to t errors with probability 1. Since
the work by McEliece and Sarwate [11] pointing out the capability of Reed-
Solomon codes to identify cheaters in secret sharing schemes, these codes have
been playing the central role in secret sharing scheme capable of preventing
cheating by (k − 1)/3 cheaters (see, e.g. [10,12,22]).

3 A Scheme Capable of Detecting (k − 1)/3 Rushing
Cheaters

In this section, we present a scheme capable of detecting cheating by (k − 1)/3
rushing cheaters. The scheme is constructed based on the schemes presented in
[5,13] which are capable of identifying k − 1 non-rushing cheater.

The basic idea of the proposed scheme is as follows. The share generation
algorithm ShareGen generates shares (vs,1, . . . , vs,n) of a secret s using Shamir’s
(k, n) threshold scheme. The share generation algorithm also generate shares
(ve,1, . . . , ve,n) for a key e of almost strongly universal hash family H : S → H
using Shamir’s (t + 1, n) threshold scheme. Furthermore, ShareGen generates
shares (va,1, . . . , va,n) for hash value a = he(s) using Shamir’s (k, n) threshold
scheme. The share vi of user Pi is of the form vi = (vs,i, ve,i, va,i).

Since vs,i and va,i are shared using (k, n) threshold scheme, k − 1 users do
not obtain any information about the secret even if they know the value of the
key e. To guarantee security against t rushing cheaters, the secret reconstruction
algorithm Reconst receives part of share (vs,i, va,i) from Pi (i = 1, 2, . . . , k) in
the first round, and then receives ve from Pi in the second round. Since the key e
of hash family is shared using (t + 1, n) threshold scheme, t rushing cheaters do
not obtain any information about e even at the end of the first round. Therefore,
the cheater cannot guess correct hash value a′ for a forged secret s′ in the first
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round. Further, from the error correcting capability of (t+1, n) threshold scheme,
rushing cheaters cannot alter the value of e no matter what shares they submit
in the second round. The above discussion, together with the properties of ASU2,
directly derives the security of the scheme against rushing cheaters. The complete
description of the scheme is given as follows.

Share Generation: On input a secret s ∈ FpN , the share generation algorithm
outputs a list of shares (v1, . . . , vn) as follows:

1. Generate a random polynomial fs(x) ∈ FpN [X] of degree k − 1 such that
fs(0) = s.

2. Generate random polynomials Ce0(x), Ce1(x) ∈ Fp[X] of degree t. We will
use (e0, e1) = (Ce0(0), Ce1(0)) as a key of H1,N .

3. Generate a random polynomial a(x) ∈ Fp of degree k − 1 such that a(0) =
h1,N,(e0,e1)(s).

4. Output a list of share (v1, . . . , vn) where vi = (fs(i), Ce0(i), Ce1(i), a(i)).

Secret Reconstruction: On input m shares (vi1 , . . . , vim) (where m ≥ k and
vi = (vs,i, ve0,i, ve1,i, va,i) for 1 ≤ i ≤ n), the secret reconstruction algorithm
outputs s or ⊥ according to the following procedure:

1. [Round 1] Receive (vs,i1 , va,i1), . . . , (vs,im , va,im) from Pi1 , . . . , Pim ,
respectively.

2. [Round 2] Receive (ve0,i1 , ve1,i1), . . . , (ve0,im , ve1,im) from Pi1 , . . . , Pim ,
respectively.

3. Reconstruct Ce0(x) and Ce1 from ve0,i1 , . . . , ve0,im and ve1,i1 , . . . , ve1,im ,
respectively, using a decoding algorithm of generalized Reed-Solomon Code
(e.g., Berlekamp-Welch algorithm), and compute e0 = Ce0(0) and e1 =
Ce1(0).

4. Output ⊥ if error is detected.
5. Reconstruct ŝ = fŝ(0) and â = fâ(0) from vs,i1 , . . . , vs,im and va,i1 , . . . , va,im ,

respectively.
6. Output ŝ if h1,N,(e0,e1)(ŝ) = â holds. Otherwise, output ⊥.

Theorem 1. If t < k/3 holds then the above scheme is (t, ε) cheating detectable
k-out-of-n secret sharing scheme against rushing cheaters such that |S| = pN , ε =
N/p, and |Vi| = pN+3 ≈ |S|( log |S|

ε log(1/ε) )
3. In particular, |Vi| = |S|/ε3 holds when

N = 1.

Proof. First, we will prove the scheme is perfect. Suppose that users Pi1 , . . . ,
Pik−1 try to compute any partial information about the secret s. Since vs,i1 , . . . ,
vs,ik−1 is generated using Shamir’s (k, n) threshold scheme, they do not obtain
any information about the secret from vs,i1 , . . . , vs,ik−1 . Therefore, the scheme is
proven to be perfect if the equations h1,N,(e0,e1)(s) = a do not reveal any informa-
tion about the secret. Since shares ve0,i and ve1,i are generated using Shamir’s
(t, n) threshold scheme, Pi1 , . . . , Pik−1 obtain values of e0 and e1 from their
shares. However, since a share va,i is generated using Shamir’s (k, n) threshold
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scheme, Pi1 , . . . , Pik−1 obtain no information about the value h1,N,(e0,e1)(s).
Therefore, they do not obtain any information about the secret s even if they
know e0 and e1, which shows that the scheme is perfect.

Next, we prove that if t < k/3 the scheme is (t, ε) cheating detectable.
Here, we consider the worst case where just k users P1, . . . , Pk take part in
secret reconstruction. Without loss of generality, we can assume P1, . . . , Pt

are cheater who try to fool Pt+1, . . . , Pk by submitting (v′
1, . . . , v

′
t) to

the secret reconstruction algorithm. Since cheaters are rushing, cheaters
know all values of s (a value secret reconstructed from (vs,1, vs,2, . . . , vs,k)),
s′ (a value reconstructed from (v′

s,1, . . . , v
′
s,t, vs,t+1 . . . , vs,k)), a (a value

reconstructed from (va,1, va,2, . . . , va,k)) and a′ (a value reconstructed from
(v′

a,1, . . . , v
′
a,t, va,t+1 . . . , va,k)) after observing part of shares (vs,i, va,i) submitted

by honest users Pt+1, . . . , Pk in the first round. However, at this stage, cheaters
do not obtain any information about the values of e0 and e1 since they are
shared among users using Shamir’s (t, n) threshold scheme. Moreover, even rush-
ing cheaters cannot forge part of their shares (ve0,i, ve1,i) in order to alter the
values of e0 and e1 reconstructed. In fact, if cheater Pi forges (ve0,i, ve1,i) into
(v′

e0,i, v
′
e1,i) in the second round, then Pi is identified as a cheater with proba-

bility 1 by t-error correction capability of Reed-Solomon codes. Therefore, the
best strategy for cheater Pi is to submit (ve0,i, ve1,i) as is, which ensures that e0
and e1 are reconstructed without being forged. Now we compute the successful
cheating probability ε of rushing cheaters. The cheaters succeed in cheating if
h1,N,(e0,e1)(s

′) = a′ holds. Since rushing cheater Pi must submit (v′
s,i, v

′
a,i) in the

first round without knowing the values of e0 and e1, The successful cheating prob-
ability of cheaters are computed by Pr[h1,N,(e0,e1)(s

′) = a′ | h1,N,(e0,e1)(s) = a]
where the probability is taken only over e0 and e1 since s, s′, a and a′ are known
to cheaters when they submit (v′

s,i, v
′
a,i). Since H1,N is N/p-ASU2 and (e0, e1) are

chosen uniformly and randomly from the set of keys satisfying h1,N,(e0,e1)(s) = a,
it is easy to see that Pr[h1,N,(e0,e1)(s

′) = a′ | h1,N,(e0,e1)(s) = a] = N/p
holds, which directly implies that the successful cheating probability of cheaters
P1, . . . , Pt is upper bounded by N/p. �

4 A Scheme Capable of Detecting n − 1 Rushing
Cheaters

In this section, we present a scheme capable of detecting cheating by n − 1
rushing cheaters. The idea of the scheme is similar to the scheme presented in
the previous section in the sense that the share generation algorithm generates
a key e of ASU2 and a = he(s) to check the correctness of a secret reconstructed.
However, since t = n − 1 holds, we cannot use error correcting code to ensure
correct reconstruction of e. In the proposed scheme, instead of sharing a single
key e, the share generation algorithm generates a key ei and a hash value ai for
each user Pi who verifies hei

(s) = ai to check the correctness of the secret s.
However, unfortunately, the above naive scheme cannot be perfect since user Pi

can compute (possibly partial) information about the secret from information
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held by Pi: hei
(s) = ai, ei and ai. For example, consider the case where we use

H1,1 defined in Proposition 1 for underlying hash family. In this case, any single
user Pi can compute s from e0,i, e1,i and ai = e0,i +e1,i ·s by s = (ai −e0,i) ·e−1

1,i .
We introduce an additional trick to overcome this problem. Namely, we make

the hash values ai shared among users so that unauthorized set of users cannot
obtain any information about the hash values and therefore any information
about the secret. However, sharing completely independent and random hash
values a1, . . . , an causes the size of shares grow linearly with n. To reduce the size
of share, we make hash values a1, . . . , an derived from (k − 1)-wise independent
random variables, and share the seed a of the random values a1, . . . , an instead of
sharing a1, . . . , an themselves. By replacing completely random a1, . . . , an with
(k − 1)-wise independent random variables does not affect the perfectness of the
resulting scheme since k − 1 users do not obtain any relation among hash values
due to (k − 1)-wise randomness of hash values. The complete description of the
scheme is given as follows.

Share Generation: The share generation algorithm ShareGen takes a secret
s = (s0, s1, . . . , sN−1) ∈ FpN as input and outputs a list of shares (v1, . . . , vn)
according to the following procedure:

1. Generate a random polynomial fs(x) ∈ FpN [X] of degree k − 1 such that
s = fs(0).

2. Generate a random polynomial fa(x) ∈ Fpk−1 [X] of degree k − 1. We will use
fa(0) = (a0, a1, . . . , ak−2) as coefficients of a polynomial a(x) (i.e., a(x) =
a0+a1x+· · · ak−2x

k−2) used to derive hash values in (k−1)-wise independent
manner.

3. Compute keys (ei,0, ei,1) (1 ≤ i ≤ n) of almost strongly universal family H1,N

independently and randomly satisfying h1,N,(ei,0,ei,1)(s) = a(i).
4. Output (v1, . . . , vn) where the share vi of the user Pi is defined by vi =

(fs(i), fa(i), ei,0, ei,1).

Secret Reconstruction:

1. [Round 1] Receive (vs,i1 , va,i1), . . . , (vs,im , va,im) from Pi1 , . . . , Pim ,
respectively.

2. [Round 2] Receive (ei1,0, ei1,1) from (eim,0, eim,1) from Pi1 , . . . , Pim ,
respectively.

3. Reconstruct s and a(x) from (vs,i1 , . . . , vs,im) and (va,i1 , . . . , va,im),
respectively.

4. Check if h1,N,(eij ,0,eij ,1)
(s) = a(ij) holds for all ij (1 ≤ j ≤ m).

5. Output s if the above equation holds for all ij , otherwise output ⊥.

The following theorem gives the security properties of the proposed scheme.

Theorem 2. If t ≤ n−1 holds then the above scheme is (t, ε) cheating detectable
k-out-of-n secret sharing scheme against rushing cheaters such that |S| = pN , ε =
N
p , and |Vi| = pN+k+1 ≈ |S| · ( log |S|

ε log(1/ε) )
k+1. In particular, |Vi| = |S|/εk+1 holds

when N = 1.
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Proof. First, we will prove the scheme is perfect. Suppose that users
Pi1 , . . . , Pik−1 try to compute any partial information about the secret s. Since
vs,i1 , . . . , vs,ik−1 are generated using Shamir’s (k, n) threshold scheme, they do
not obtain any information about the secret from vs,i1 , . . . , vs,ik−1 . Therefore,
the scheme is proven to be perfect if the equations h1,N,(eij ,0,eij ,1)

(s) = a(ij)
(1 ≤ j ≤ k − 1) does not reveal any information about the secret. Since shares
va,i1 , . . . , va,ik−1 (i.e., shares for a = (a0, . . . , ak−2)) is also generated by Shamir’s
(k, n) threshold scheme Pi1 , . . . , Pik−1 obtain no information about the hash
value a(ij). Therefore, the participants cannot obtain any information from the
knowledge h1,N,(eij ,0,eij ,1)

(s) = a(ij), which shows that the scheme is perfect.
Next, we prove that the scheme is (n − 1, ε) cheating detectable. Without

loss of generality, we can assume P2, . . . , Pn are cheaters who try to fool P1

by submitting (v′
2, . . . , v

′
k) to the secret reconstruction algorithm. Since cheaters

are rushing, cheaters know all values of s (a value secret reconstructed from
(vs,1, vs,2, . . . , vs,k)), s′ (a value reconstructed from (vs,1, v

′
s,2, . . . , v

′
s,k)), a(x)

(a polynomial reconstructed from (va,1, va,2, . . . , va,k)) and a′(x) (a polynomial
reconstructed from (va,1, v

′
a,2, . . . , v

′
a,k)) after observing (vs,1, va,1) submitted by

P1 even when k = n. The cheaters succeed in cheating P1 if h1,N,(e1,0,e1,1)(s
′) =

a′(1) holds. We will show the success cheating probability is upper bounded by
N/p. Since cheaters know he1(s) = a(1) the successful cheating probability can
be computed by Pr[h1,N,(e1,0,e1,1)(s

′) = a′(1) | h1,N,(e1,0,e1,1)(s) = a(1)]. From the
second property of the almost strongly universal hash family and the fact e1 is
chosen uniformly and randomly from the set of keys such that h1,N,(e1,0,e1,1)(s) =
a(1), the following equation holds:

Pr[h1,N,(e1,0,e1,1)(s
′) = a′(1) | h1,N,(e1,0,e1,1)(s) = a(1)]

=
|{(e1,0, e1,1) | h1,N,(e1,0,e1,1)(s) = a(1), h1,N,(e1,0,e1,1)(s

′) = a′(1)}|
|{(e1,0, e1,1) | h1,N,(e1,0,e1,1)(s) = a(1)| ≤ ε ,

which directly implies that the successful cheating probability of cheaters
P2, . . . , Pn is upper bounded by N/p. �

5 A Scheme Capable of Identifying (k − 1)/3 Rushing
Cheaters

In this section, we present a scheme capable of identifying (k − 1)/3 rushing
cheaters. The scheme is constructed based on the scheme presented in [12] which
is capable of identifying (k − 1)/3 non-rushing cheater.

Roughly speaking, the share vi of the scheme in [12] consists of (1) a share
vs,i of Shamir’s (k, n) threshold scheme for a secret s, and (2) a hash value
vCi

= h2,t+1(vs,i) where h2,t+1 ∈ H2,t+1 is a strongly universal hash function of
strength t + 1 (see Proposition 2 for the complete description). Unfortunately,
the scheme in [12] is vulnerable to cheating by a single rushing cheater no mat-
ter what order partial shares are sent to the reconstruction algorithm. This is
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because rushing cheaters obtain complete information about the hash function
h2,t+1 before they send v′

Ci
to the reconstruction algorithm.

To make it impossible for rushing cheaters to obtain complete information
about the hash function, we modify the scheme in a way that hash function
h is chosen from H2,k+t instead of H2,t+1. This modification makes rushing
cheater difficult to cheat the scheme since at least k + t shares are required to
obtain complete information about the hash function h. Furthermore, to prevent
rushing cheaters from modifying the hash function h, we introduce an additional
share vE,i in the proposed scheme. Here, vE,i is a share of (n, t + 1) threshold
scheme for a secret (et+1, . . . , et+k−1) ∈ Fpk−1 where et+1, . . . , et+k−1 represent
higher-degree coefficients of h ∈ H2,k+t. With the help of vE,i, we can convert
hash values h(ψi1), . . . , h(ψik) into hash values ĥ(ψi1), . . . , ĥ(ψik) in such a way
that ĥ ∈ H2,t+1 and that ĥ(ψ) is a correct hash value of ψ if and only if h(ψ) is a
correct hash value of ψ. Since converted hash function ĥ is a element of H2,t+1,
we can identify even rushing cheaters, as in the cheater identification procedure
presented in [12]. The complete description of the proposed scheme is as follows:

Share Generation: On input a secret the share generation algorithm outputs a
list of shares (v1, . . . , vn) as follows:

1. Generate a random polynomial fs(x) ∈ Fp[X] of degree k − 1 such that
fs(0) = s.

2. Generate a random polynomial C(x) =
∑k+t−1

i=0 eix
i ∈ Fq[X] of degree k+t−1

where q is a prime power satisfying q ≥ n · p.
3. Generate a random polynomial CE(x) ∈ Fqk−1 [X] of degree t such that

CE(0) = (et+1, et+2, . . . , et+k−2, et+k−1) ∈ Fqk−1 (i.e., CE(0) represents
higher degree coefficients of C(x).)

4. Output a list of share (v1, . . . , vn) where vi = (fs(i), C(ψ(i, fs(i)), CE(i)) and
ψ : [1, n] × Fp → Fq is an arbitrary 1-to-1 function.

Secret Reconstruction: On input m shares (vj1 , . . . , vjm) (where m ≥ k and
vi = (vs,i, vC,i, vE,i) for 1 ≤ i ≤ n), the secret reconstruction algorithm outputs
(s, ∅) or (⊥, L) according to the following procedure:

1. Choose k users i1, . . . , ik arbitrarily.
2. [Round 1] Force Pi1 , . . . , Pik submit (vs,i1 , vC,i1), . . . , (vs,ik , vC,ik), respec-

tively.
3. [Round 2] Force Pi1 , . . . , Pik submit vE,i1 , . . . , vE,ik , respectively.
4. Reconstruct CE(x) using a decoding algorithm of generalized Reed-Solomon

Code.
5. Compute a list L′ by L′ = {ij | vE,ij �= CE(ij)} .
6. Compute (et+1, . . . , et+k−1) = CE(0).
7. Compute v̂C,ij = vC,ij − ∑t+k−1

�=t+1 e� · ψ(ij , vs,ij )
�.

8. Reconstruct Ĉ(x) =
∑t

�=0 e�x
� from v̂C,i1 , . . . , v̂C,ik using a decoding algo-

rithm of generalized Reed-Solomon Code again.
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9. Compute a list L by L = L′ ∪ {ij | v̂C,ij �= Ĉ(ψ(ij , vs,ij ))} .
10. Reconstruct fs(x) from vs,i1 , . . . , vs,ik and output (⊥, L) if L �= ∅. Otherwise,

output (fs(0), ∅).

Theorem 3. If t < k/3 holds then the above scheme is a (t, ε) cheater iden-
tifiable k-out-of-n secret sharing scheme against rushing adversaries such that
|S| = p, ε = 1/q, and |Vi| = p · qk = |S|/εk.

Proof. First, we show that the scheme is perfect. It is well known that the values
vs,i1 , . . . , vs,ik−1 do not reveal any information about the secret since each vs,i is a
share of Shamir’s k-out-of-n secret sharing scheme. Further, it is easy to see that
the knowledge about vC,i and vE,i do not reveal any information about the secret
since the polynomials C(x) and CE(x) are completely independent of the secret s.

Next we show that the scheme is (t, ε) cheater identifiable against rushing
cheaters. The following two facts are important to prove (t, ε) cheater identifia-
bility of the scheme:

1. A family of functions {C(x) | C(x) ∈ Fq[X], deg(C(x)) ≤ t+k−1} is a strong
family of universal hash functions Fq → Fq with strength t + k. Therefore,
even rushing cheaters who observed t shares of cheaters as well as k−1 honest
users cannot send a correct value of C(ψ′) for unknown ψ′ with probability
better than 1/q in the first round.

2. (CE(x1), CE(x2), . . . , CE(xk)) and (Ĉ(x1), Ĉ(x2), . . . , Ĉ(xk)) are codewords
of the Reed-Solomon Code with minimum distance k−t. Therefore, if t < k/3
holds, then CE(x) and Ĉ(x) can be reconstructed correctly even when t points
are forged.

Without loss of generality, we can assume Pk, . . . , Pt+k−1 are cheaters who coop-
eratively cheat users P1, . . . , Pk−1 by forging (part of) their shares. We consider
the worst case where honest users P1, . . . , Pk−1 and the rushing cheater Pk are
chosen to submit their shares to Reconst (this is the worst case since rushing
cheater can observe the most number of shares in cheating).

Since only Pk is a cheater, Pk submits forged v′
s,k in the first round. In this

case, Pk is not identified as a cheater only if he submits correct v′
C,k such that

v′
C,k = C(ψ(v′

s,k, k)) since Reconst can recover correct Ĉ(x) whatever v′
E,k he

submits, and v̂C,k = Ĉ(ψ(v′
s,k, k)) holds if and only if v′

C,k = C(ψ(v′
s,k, k)). It is

easy to see that Pk cannot guess correct v′
C,k with probability better than 1/q

since C(x) belongs to a strongly universal family of hash functions with strength
t + k. where the probability is taken over the random choice of C(x). �
Note: Successful cheating probability ε can be chosen flexibly in the above
scheme by using techniques introduced in [12].

6 A Scheme Capable of Identifying (k − 1)/2 Rushing
Cheaters

In this section, we present a scheme capable of identifying (k − 1)/2 rushing
cheaters. The scheme is based on a standard construction first presented in [17]
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such that the share vi consists of (1) share vs,i of Shamir’s (k, n) threshold
scheme for a secret, (2) keys of ASU2 (unconditionally secure MAC) to check
the correctness of vs,j (j �= i), and (3) hash values to prove the correctness of
vs,i. Unfortunately, the bit length of the resulting scheme still grows linearly
with n. Though, with the help of tag compression technique by Carpentieri [4],
the proposed scheme reduces the number of keys of ASU2, which results in smaller
size of shares compared to the schemes by Roy et al. [18] and by Choudhury [6].
The complete description of the proposed scheme is as follows:

Share Generation: On input a secret s ∈ FpN , the share generation algorithm
ShareGen outputs a list of shares (v1, . . . , vn) as follows:

1. Generate a random polynomial fs(x) of degree at most (k − 1) in x from
FpN [X] such that fs(0) = s and compute fs(i) = vs,i in FpN , where i =
1, . . . , n.

2. Generate a random e0,i ∈R Fp and a random polynomial of degree at most
k − 1 with free coefficient 0, ai(x) = ai,1x + ai,2x

2 + · · · + ai,k−1x
k−1, from

Fp[X].
3. Compute ai,j = ai(j) and e1,i,j = aj(i) − ΣN

l=1e
l
0,i · vs,j,l for i ∈ [n] \ j.

4. Compute vi = (vs,i, ai(x), e0,i, e1,i,1, . . . , e1,i,i−1, e1,i,i+1, . . . , e1,i,n).

Secret Reconstruction: Denote the set of m (≥ k) participants taking part in
the reconstruction as core. On input a list of m shares, the secret reconstruction
algorithm Reconst output a secret and a list of identities of cheaters or ⊥ and a
list of identities of cheaters as follows.

1. [Round 1] Receive v′
s,i, a

′
i,1, . . . , a

′
i,k−1 from each Pi ∈ core.

2. [Round 1] Receive e′
0,i, e

′
1,i,1, . . . , e

′
1,i,n from each Pi ∈ core.

3. Computation: For each Pi ∈ core, computes supporti = {Pj : ΣN
l=1e

′l
0,j ·

v′
s,i,l + e′

1,j,i = a′
i,1j + a′

i,2j
2 + · · · + a′

i,k−1j
k−1} ∪ {Pi}.

If |supporti| < t + 1, then put Pi in L, where L is the list of the cheaters.
4. – If m − |L| ≥ k : Using v′

s,i for all Pi ∈ core \ L, interpolate a poly f ′
s(x).

If degree of f ′
s(x) is less or equal to k, output (f ′

s(0), L) otherwise output
(⊥, L).

– If m − |L| < k : Output (⊥, L).

Lemma 1. The above scheme provides perfect secrecy. That is, any adversary A
controlling any (k − 1) parties during the sharing phase, will get no information
about the secret s.

Proof. Without loss of generality, we may assume that the first (k − 1) partici-
pants, i.e., P1, . . . , Pk−1, are under the control of the adversary A. The listening
adversary has the following information.

⎛

⎜
⎜
⎝

vs,1 a1,1 a1,2 · · · a1,k−1 e0,1 ⊥ e1,1,2 · · · e1,1,n

vs,2 a2,1 a2,2 · · · a2,k−1 e0,2 e1,2,1 ⊥ · · · e1,2,n

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
vs,k−1 ak−1,1 ak−1,2 · · · ak−1,k−1 e0,k−1 e1,k−1,1 e1,k−1,2 · · · e1,k−1,n

⎞

⎟
⎟
⎠



20 A. Adhikari et al.

Now, according to Lagrange’s interpolation, k Shamir shares vs,i fully define
a degree-(k − 1) polynomial. On the other hand, k − 1 such values provide no
information on s, according to the perfect privacy property of Shamir scheme.
Thus, the adversary needs to choose one more vs,i, where i ∈ {1, 2, . . . , n} \ I
and I = {1, 2, . . . , k − 1}. Without loss of generality, we may assume that the
adversary tries to learn vs,k with the information at hand. Note that each player
Pi (i ∈ I) has the information (e0,i, e1,i,k) regarding vs,i. Now,

ΣN
l=1e

l
0,1vs,k,l + e1,1,k = ak,11 + ak,212 + · · · + ak,k−11k−1

ΣN
l=1e

l
0,2vs,k,l + e1,2,k = ak,12 + ak,222 + · · · + ak,k−12k−1

· · · = · · ·
ΣN

l=1e
l
0,k−1ss,k,l + e1,k−1,k = ak,1(k − 1) + ak,2(k − 1)2 + · · · + ak,k−1(k − 1)k−1

Suppose, the adversary A tries to find out vs,k,1. Now, as the matrix
⎡

⎢
⎢
⎣

1 12 . . . 1k−1

2 22 . . . 2k−1

. . . . . . . . . . . .
k − 1 (k − 1)2 . . . (k − 1)k−1

⎤

⎥
⎥
⎦

is non-singular, the above system of linear equations is consistent for all possible
values of vs,k,1. Similarly, for other vs,k,l. So, the best probability for A to guess
vs,k is (1/p)N = 1/pN .

Note also that the adversary can construct such system of linear equations
for every Pj for j ∈ {k, . . . , n}. However, all these systems of equations are con-
sistent. In other words, for any fixed value of vs,k, there exists one and only
one solution satisfying all equations available to the adversary. This essentially
means that all possible values of vs,k are consistent with the view of the adver-
sary. So that the adversary has no information regarding the secret s. Hence,
the theorem. �
Lemma 2. The proposed scheme satisfies correctness condition. That is, during
the reconstruction phase, if any Pi ∈ core is under the control of rushing A
and produces v′

s,i �= vs,i, then except with error probability ε = m−t
|Fp| , Pi will be

identified as a cheater and will be included in the list L.

Proof. Without loss of generality, let core be formed by the first m parties,
namely P1, . . . , Pm, where m ≥ k. Moreover, let P1, . . . , Pt be under the control
of A. Now suppose that P1 submits v′

s,1 �= vs,1 and P1 is not identified as
a cheater. This implies that |support1| ≥ t + 1. In the worst case, P1, . . . , Pt

may be present in support1, as all of them are under the control of A. But
|support1| ≥ t + 1 implies that there exists at least one honest party in core,
say Pj , such that Pj ∈ support1. This is possible only if ΣN

l=1e
l
0,jv

′
s,1,l + e1,j,1 =

ja′
1,1 + j2a′

1,2 + . . . + jk−1a′
1,k−1. Now in Round 1 of reconstruction phase each

player Pi broadcasts vs,i, ai,1, . . . , ai,k−1 and in Round 2 of reconstruction phase
Pi broadcasts e0,i, e1,i,1, . . . , e1,i,i−1, e1,i,i+1, . . . , e1,i,n.
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After round 1 of the reconstruction phase, the cheating adversary can see
the Shamir share and authentication tags of each player. And A also knows the
authentication keys of player P1, P2, . . . , Pt. But he does not know the authen-
tication keys of players Pt+1, . . . , Pm.

Now we evaluate the probability that P1 succeeds in deceiving at least one
honest player to accept her fake share and fake tag. This probability is described
by the following formula.

Pr[at least one player in [Pt+1, . . . Pm] accepts (v′
s,1, a

′
1(x))

| [Pt+1, . . . Pm] accept (vs,1, a1(x), . . . , vs,n, an(x))]

Denote by E1 the event that
“at least one player in [Pt+1, . . . , Pn] accepts (v′

s,1, a
′
1(x))”, and by E2 the event

that “[Pt+1, . . . , Pn] accept vs,1, a1(x), . . . , vs,n, an(x))”.
Now, using the same argument as in Proposition 3, we can conclude that

Pr[E1|E2] < (m − t)/p.
So we get ε-correctness for ε = (m − t)/p. Hence, the theorem. �

Theorem 4. If t < k/2 holds then the above scheme is a (t, ε) cheater iden-
tifiable k-out-of-n secret sharing scheme against rushing adversaries such that
|S| = pN , ε = m−t

p , and |Vi| = |S| (m−t)n+2t

εn+2t .

Remark 2. During the sharing phase, each party gets 1 element from the field
FpN and n + k − 1 elements from the field Fp. So, |Vi| = pN · pn+k−1 = (m −
t)n+2t|S|/εn+2t. So, share size will be at most (n − t)n+2t|S|/εn+2t, when all
the participants participate in the reconstruction phase and share size will be at
least (k− t)n+2t|S|/εn+2t, when only k number of participants participate in the
reconstruction phase. Moreover, if t = 1, 2, the proposed CISS scheme is the best
one, with respect to the share size, among all the existing efficient CISS schemes
secure against rushing adversary when we consider the worst case scenario.

Remark 3. In the proposed CISS, the error probability does not depend on
the size of the secret space. We can independently choose the error probability
according to the security parameter. Hence, our proposed scheme has flexibility
property. So, within the natural restrictions, the parameters can be set flexibly.

7 Concluding Remarks

In this paper, we have presented four k-out-of-n secret sharing schemes secure
against rushing adversaries with the following properties:

– capable of detecting up to (k − 1)/3 rushing cheaters such that |Vi| = |S|/ε3,
– capable of detecting up to n − 1 rushing cheaters such that |Vi| = |S|/εk+1,
– capable of identifying up to (k −1)/3 rushing cheaters such that |Vi| = |S|/εk,
– capable of identifying up to (k − 1)/2 rushing cheaters such that |Vi| =

|S|( (n−t)n+2t

εn+2t ).
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Each of the first three schemes are the first scheme in the respective model, such
that the bit length of shares does not grow linearly with n. The last scheme has
the smallest share size among the schemes in that model.

One important future work is to derive lower bounds on share sizes for various
models of secret sharing schemes secure against rushing cheaters.
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Abstract. In this work we provide a framework for dynamic secret
sharing and present the first dynamic and verifiable hierarchical secret
sharing scheme based on Birkhoff interpolation. Since the scheme is
dynamic it allows, without reconstructing the message distributed, to add
and remove shareholders, to renew shares, and to modify the conditions
for accessing the message. Furthermore, each shareholder can verify its
share received during these algorithms protecting itself against malicious
dealers and shareholders. While these algorithms were already available
for classical Lagrange interpolation based secret sharing, corresponding
techniques for Birkhoff interpolation based schemes were missing. Note
that Birkhoff interpolation is currently the only technique available that
allows to construct hierarchical secret sharing schemes that are efficient
and allow to provide shares of equal size for all shareholder in the hierar-
chy. Thus, our scheme is an important contribution to hierarchical secret
sharing.

Keywords: Hierarchical secret sharing · Distributed storage · Cloud
computing · Long-term security · Birkhoff interpolation · Proactive
secret sharing

1 Introduction

1.1 Motivation and Contribution

Secret sharing is an important primitive that allows to store sensitive data in
distributed fashion. In classical secret sharing schemes any subset of a certain
amount of shareholders can reconstruct the message distributed. This is different
for hierarchical secret sharing [5,11,15,20–22]. Here the shares are generated,
such that not only the amount of shareholders, but also the level in the hierarchy
they are assigned to is crucial for message reconstruction. Assume, for instance,
signature keys are distributed to employees of a company. Then, hierarchical
secret sharing allows to introduce certain conditions to the signing process, e.g.
that at least one department head or senior must attend for a valid signature.
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However, compared to classical secret sharing schemes, the approaches
concerning hierarchical secret sharing are less developed. For instance, dynamic
schemes allowing, without reconstructing the shared massage, to add or remove
shareholders (e.g. to reboot or reinstall servers holding shares), to renew the
shares, and to modify the conditions for accessing the message are available for
classical secret sharing only, while solutions for dynamic hierarchical secret shar-
ing schemes have not been provided yet. Furthermore, classic schemes allow for
verifiability, i.e. each shareholder can verify the correctness of its share received.
For hierarchical secret sharing such algorithms are only available for the very
inefficient early approaches.

Contribution. In this work we provide the first dynamic and verifiable secret
sharing scheme that is hierarchical, efficient, and ideal with respect to the size
of the shares. More precisely, like in [22] our solution uses Birkhoff interpola-
tion to reconstruct the shared message. This allows to compute shares of equal
size for all shareholders independent of their ability to reconstruct the message.
We show how to enhance Birkhoff interpolation based schemes, i.e. disjunctive
secret sharing and conjunctive secret sharing, by algorithms that allow, without
message reconstruction, to add and remove shareholders, to modify the condi-
tions for accessing the message, and to renew shares. Furthermore, our scheme
is verifiable and therefore protects against malicious dealers and shareholders.
Moreover, we provide the first definition of dynamic secret sharing and prove
our scheme secure.

Organization. After providing preliminaries in Sect. 2, we introduce a frame-
work for dynamic secret sharing in Sect. 3. Afterwards, we provide an introduc-
tion to hierarchical secret sharing in Sect. 4, present our verifiable and dynamic
hierarchical secret sharing scheme in Sect. 5, and conclude with a summary and
possible future work in Sect. 6.

1.2 Related Work

Hierarchical Secret Sharing. The first solutions for hierarchical secret shar-
ing have been proposed by Shamir in [20] and Kothari in [15]. In Shamir’s app-
roach the higher a shareholder is in the hierarchy, the more shares it gets, over-
loading the most powerful shareholders. In Kothari’s solution, shareholders are
grouped in sets and for each set an independent secret sharing scheme is instanti-
ated. This requires managing multiple secret sharing schemes and does not allow
for cooperation among sets during the reconstruction. Disjunctive secret shar-
ing as introduced by Simmons in [21], is the first approach using only one secret
sharing scheme and supporting cooperations of shareholders assigned to different
sets, or rather levels in a hierarchy. However, his approach is not ideal meaning
that the higher a shareholder in the hierarchy the larger the share to be stored.
Brickell in [5] improved this by providing a disjunctive secret sharing scheme
that is ideal with respect to the size of the shares, but apart from that rather
inefficient. Later, Ghodosi et al. showed in [11] how to achieve efficient schemes
for specific access structures. Finally, in [22] Tassa further improved this line of
research by providing an efficient disjunctive secret sharing scheme for general
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access structures. Furthermore, he introduced conjunctive secret sharing that
does not only allow concurrency among levels, but strictly requires the presence
of a minimum amount of shareholders from the highest levels. Both conjunctive
and disjunctive secret sharing are good solutions for hierarchical secret sharing
and our contribution builds on Tassa’s work. None of these approaches provide
verifiability, nor do they allow, without reconstructing the shared message, to
add or remove shareholders, to modify the conditions for accessing the message,
nor to renew shares.

Dynamical and Verifiable Hierarchical Secret Sharing. Notions of
dynamic secret sharing have been already proposed, yet with different mean-
ings and less functionalities with respect to our definition. More precisely, in
the one hand, in [4] it is the dealer that decides which shareholders reconstruct
which secret. On the other hand, in [3] it is not possible to add shareholders
without changing all the shares already distributed. Moreover, none of these
approaches are suitable for hierarchical secret sharing nor do they provide ver-
ifiability. The only step towards a dynamic Birkhoff interpolation-based secret
sharing scheme has been made by Pakniat et al. in [17]. It is shown how to renew
shares, but, again, this process does not allow to add or remove shareholders and
to modify the conditions for accessing the message nor does it provide verifia-
bility or addresses conjunctive secret sharing. At the same time, for classical
secret sharing schemes dynamic and verifiable solutions have been developed.
For instance, in [16] it is shown how to add shareholders, in [13] it is shown how
shares can be renewed, and in [12] it is shown how even the entire set of share-
holders and the conditions for accessing the message can be changed. In addition,
all these algorithms come with verifiability. Note that classical secret sharing is
based on Lagrange interpolation and the protocols [13,16], and [12] allowing for
dynamism are defined accordingly. However, these approaches cannot be used for
secret sharing schemes based on Birkhoff interpolation and solutions introducing
dynamism also for these schemes need to be found.

Thus, our work is the first to provide dynamic and verifiable secret sharing
based on Birkhoff interpolation.

2 Preliminaries

Secret sharing is a cryptographic primitive enabling a dealer to distribute a
message among a set of shareholders, each of whom is allocated a share of the
message. More precisely, to distribute a message m ∈ M to a set of shareholders
S = {s1, . . . , sn} the dealer computes shares σ1, . . . , σn ∈ Σ, where M is the
message space and Σ the space of all possible shares. The message can be recon-
structed only when an authorized subset A ⊂ S of these shareholders combine
their shares while unauthorized subsets U ⊂ S are prevented from doing it. The
access structure Γ ∈ P(S)1 determines both sets, i.e. A ∈ Γ and U /∈ Γ . From
now on, the number of shareholders of a subset R ⊂ S is denoted as r := |R|.
1 P(S) denotes the partition of the set S.
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Note that for security we assume that all data communicated by a dealer to
a shareholder and between the shareholders is sent using private channels to
prevent attackers from eavesdropping.

Definition 1. For a message space M, a space of shares Σ, a set of shareholders
S = {s1, . . . , sn}, where i ∈ I is the unique ID of shareholder si ∈ S, and an
access structure Γ ⊂ P(S), a secret sharing scheme is a pair of PPT algorithms
Share and Reconstruct.

Share. It takes as input a message m ∈ M and it outputs n shares σ1, . . . , σn ∈
Σ, where share σi is to be sent to shareholder si, for i = 1, . . . , n.

Reconstruct. It takes as input a set of shares σ1, . . . , σr held by a subset R ⊂ S
of shareholders. It outputs m ∈ M if R ∈ Γ , and ⊥ otherwise.

A secret sharing scheme is perfectly secure if any unauthorized subset of
participants learns nothing about the message in an information-theoretic sense,
while any authorized subset of participants is able to reconstruct the secret
(accessibility). Since our improvements rely on the scheme proposed by Tassa in
[22] we recall here his definition, which uses the Shannon’s entropy H.

Definition 2. Let us assume that m ∈ M is the message distributed by a secret
sharing scheme among a set S of shareholders according to access structure Γ .
For an authorized subset A ∈ S, i.e. A ∈ Γ , let us denote by σA the set of
shares owned by the shareholders si ∈ A, i.e. σA := {σi such that si ∈ A}. The
accessibility of a secret sharing scheme is the property such that: H(m|σA) =
0, ∀ A ∈ Γ. In contrast, any unauthorized subset U ∈ S, i.e. U /∈ Γ , should not
be able to reconstruct the secret. If in addition no information about m ∈ M
is leaked to the shareholders in U , then the secret sharing scheme is perfectly
secure: H(m|σU ) = H(m), ∀ U /∈ Γ.

Another interesting primitive is verifiable secret sharing (VSS) [6]: each algo-
rithm within a secret sharing scheme outputs some audit data allowing to check
whether the algorithms themselves were performed correctly.

Formally, a VSS scheme is a secret sharing scheme with the following addi-
tional requirements.

Definition 3 [18]. The algorithms in which shares are computed are extended
by an additional verification protocol executed between the dealer and the share-
holders S = {s1 . . . sn}, such that the following properties are fulfilled.

Completeness. If the parties computing the shares, e.g. dealers and sharehold-
ers, follow the algorithms correctly, then each shareholder accepts the new
share with probability 1.

Committing. If for any two authorized subsets A1 ⊂ S and A2 ⊂ S, i.e.
A1, A2 ∈ Γ , the shareholders of A1 and A2 accept their shares, then the
following holds except with negligible probability: if mi is the message recon-
structed by the shareholders in Ai (for i = 1, 2), then m1 = m2.

Note that the committing property of Definition 3 holds except with negligible
probability, because this definition covers solutions using Pedersen commitments
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that are unconditionally hiding, but only computationally binding. If Feldmann
commitments are used the verification protocol provides completeness even with
probability 1. However, these commitments are only computationally hiding and
do not ensure confidentiality in the long-term.

3 Dynamic Secret Sharing

The standard secret sharing definition only covers the algorithms Share and
Reconstruct. However, in practice it is desirable that secret sharing schemes pro-
vide algorithms allowing to Add new shareholders and to Reset the entire access
structure (i.e. the conditions for accessing the message and the set of sharehold-
ers). Note that algorithm Reset can be run to refresh the shares only, without
modifying the access structure nor the set of shareholders. The algorithm Add
differs from Reset in the sense that the access structure remains unchanged and
old shareholders keep their shares. This is of practical interest since renewing
shares could be a quite demanding and expensive procedure, e.g. in case shares
are distributed on smartcards. Note that the algorithm Reset allows to remove
shareholders, since the set S of shareholders can be replaced by a subset S′ ⊂ S.
In the framework of dynamic secret sharing, we assume that all communication
channels used guarantee reliable delivery of messages, any two shareholders can
communicate via a private channel, all shareholders can receive messages sent
over a broadcast channel, any shareholder can declare and no shareholder can
spoof its identity, and a majority of the shareholders participating in each algo-
rithm is trustworthy such that wrongly generated shares can be detected. Note
that these are standard assumption for classical secret sharing schemes that pro-
vide verifiability and dynamism and that the latter assumption can be weakened
using the complaint mechanism proposed in [12]. Furthermore, our algorithms
assume a synchronous network, but can easily be adapted to asynchronous net-
works, for instance, by using the techniques proposed in [19]. In the following,
we formally introduce dynamic secret sharing schemes as secret sharing schemes
that in addition allow to perform Add and Reset in distributed fashion.

Definition 4. For a message space M, a space of shares Σ, a set of shareholders
S = {s1, . . . , sn} where i ∈ I is the unique ID of shareholder si ∈ S, and an
access structure Γ ⊂ P(S), a dynamic secret sharing scheme is a tuple of PPT
algorithms Share, Add, Reset, and Reconstruct.

Share. It takes as input a message m ∈ M. It outputs n shares σ1, . . . , σn ∈ Σ,
where share σi is to be sent to shareholder si ∈ S, for i = 1, . . . , n.

Add. It takes as input a set of shares σ1, . . . , σr held by a subset R ⊂ S of
shareholders and the ID i, i.e. i = n + 1, of the new shareholder. If R is
unauthorized, i.e. R /∈ Γ , it outputs ⊥. Otherwise, R ∈ Γ and without mes-
sage reconstruction, it outputs a corresponding share σi ∈ Σ for the new
shareholder si.

Reset. It takes as input a set of shares σ1, . . . , σr held by a subset R ⊂ S of
shareholders, a new set of shareholders S′ = {s′

1, . . . , s
′
n′} (that need not be
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disjoint to S), and an access structure Γ ′ ⊂ P(S′). If R is unauthorized, i.e.
R /∈ Γ , it outputs ⊥. Otherwise, R ∈ Γ and without message reconstruction,
it outputs n′ shares σ′

1, . . . , σ
′
n′ , where share σ′

i is to be sent to each new
shareholder s′

i ∈ S′, for i = 1, . . . , n′. The shares σ1, . . . , σn ∈ Σ held by the
old shareholders are deleted.2

Reconstruct. It takes as input a set of shares σ1, . . . , σr held by a subset R ⊂ S
of shareholders. It outputs m ∈ M if R ∈ Γ , and ⊥ otherwise.

In addition to the algorithms Share, Add, and Reset, a Verifiable and
Dynamic Secret Sharing Scheme provides audit data for verification according to
Definition 3.

4 Secret Sharing Based on Birkhoff Interpolation

Simmons introduced in [21] hierarchical secret sharing as a secret sharing scheme
where shareholders are divided into disjoint levels L0, . . . , L� and the power of
a shareholder to reconstruct the message depends on the level it is assigned to.
The union of all shareholders from all levels constitutes the set of shareholders
S = {s1, . . . , sn}, i.e.

S =
�⋃

h=0

Lh, such that Lh ∩ Lk = ∅ for h �= k.

If nh is the number of shareholders assigned to level Lh, then n = |S| =
∑�

h=0 nh. Furthermore, assume that L0 is the highest level and L� the lowest
level. Clearly, it is expected that less shares are needed to reconstruct the mes-
sage at the higher levels, i.e. shareholders assigned to the highest level have a
larger ability to reconstruct the message. Therefore, denoted by th the threshold
associated to level Lh, for h = 0, . . . , �, it is plausible to assume that the lower
a level the higher the threshold, i.e. 0 < t0 < · · · < t�.

For legibility, in the following we concentrate on conjunctive secret sharing
as introduced by Tassa in [22]. The corresponding solution for disjunctive secret
sharing can be found in brackets.

Definition 5. Assume the existence of a message space M, a space of shares
Σ, and an access structure Γ ⊂ P(S) where th is the threshold for level Lh,
for h = 0, . . . , � with t := t� and t−1 := 0. Furthermore, assume a set of n
shareholders S where the pair (i, j) ∈ I × I is the unique ID of shareholder
si,j ∈ Lh and j := th−1(j := t� − th), for i = 1, . . . , nh and h = 0, . . . , �. Then
a conjunctive (disjunctive) secret sharing scheme is a pair of PPT algorithms
Share and Reconstruct, defined as follows.

Share. It takes as input a message m ∈ M and generates a polynomial f(x) =
a0+a1x+a2x

2+· · ·+at−1x
t−1 where a0 := m (at−1 := m) and the coefficients

2 To renew the shares, the algorithm Reset is run with the old set of shareholder S
and the old access structure Γ as input.
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a1, . . . , at−1 ∈ Fq (a0, . . . , at−2 ∈ Fq) are chosen uniformly at random. It
outputs n shares σi,j ∈ Σ, where share σi,j := f j(i) is to be sent to shareholder
si,j ∈ Lh, for i = 1, . . . , nh and h = 0, . . . , � and f j(x) is the j-th derivative
of the polynomial f(x).

Reconstruct. It takes as input a set of shares held by a subset R ⊂ S of share-
holders. It outputs m ∈ M if R ∈ Γ , where m = a0 (m = at−1) is retrieved
using Birkhoff interpolation. It outputs ⊥ otherwise.

In the following, it is described in details how Birkhoff interpolation is per-
formed such that Reconstruct outputs the message m ∈ M.

Let us assume a subset R ⊂ S of r := |R| shareholders participating in
the reconstruction such that R ∈ Γ . The interpolation matrix associated to
set R is a binary matrix E where entry ei,j is set to ‘1’ if shareholder si,j

participates with share σi,j (that is the j-th derivative of f on position i) and
‘0’ otherwise. The Birkhoff interpolation problem is the problem of finding a
polynomial f(x) = a0 + a1x + a2x

2 + · · · + at−1x
t−1 ∈ Rt−1[x] satisfying the

equalities f j(i) = σi,j , where Rt−1[x] is the ring of the polynomials with degree
at most t − 1.

In the following, I(E) = {(i, j) such that ei,j = 1} is the set containing the
entries of E in lexicographic order, i.e. the pair (i, j) precedes the pair (i′, j′)
if and only if i < i′ or i = i′ and j < j′. The elements of I(E) are denoted
by (i1, j1), (i2, j2), . . . , (ir, jr). Furthermore, we set ϕ := {φ0, φ1, φ2, . . . , φt−1} =
{1, x, x2, . . . , xt} and denote by φj

k the j-the derivative of φk, for k = 0, . . . , t−1.
Then the matrix A(E,X,ϕ) is defined as follows:

A(E,X,ϕ) =

⎛

⎜
⎜
⎜
⎝

φj1
0 (i1) φj1

1 (i1) φj1
2 (i1) · · · φj1

t−1(i1)
φj2
0 (i2) φj2

1 (i2) φj2
2 (i2) · · · φj2

t−1(i2)
...

...
... · · · ...

φjr
0 (ir) φjr

1 (ir) φjr
2 (ir) · · · φjr

t−1(ir)

⎞

⎟
⎟
⎟
⎠

.

Then polynomial f(x) ∈ Rt−1[x] can be reconstructed by computing

f(x) =
t−1∑

k=0

det(A(E,X,ϕk))
det(A(E,X,ϕ))

xk,

where A(E,X,ϕk) is obtained from A(E,X,ϕ) by replacing its (k+1)-th column
with the shares σi,j in lexicographic order.

Note that it depends on the interpolation matrix E whether the Birkhoff
interpolation problem has a unique solution and, consequently, the secret sharing
scheme is accessible (see Appendix A for the necessary and sufficient conditions).
In the following, it is assumed that the access structure Γ is chosen such that
the matrix E leads to a well posed Birkhoff interpolation problem, as already
discussed by Tassa in [22].
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5 Providing a Dynamic and Verifiable Hierarchical Secret
Sharing Scheme

In this section, we show how Tassa’s conjunctive and disjunctive hierarchical
secret sharing schemes can be enhanced by introducing the algorithms Add and
Reset to the existing algorithms Share and Reconstruct. This leads to dynamic
secret sharing, as defined in Definition 4. Note that with respect to algorithm
Reset that renews the shares our construction is more efficient compared to
the protocol proposed in [17]. More precisely, they demand the shareholders to
reconstruct the entire function in distributed fashion while in our scheme one
coefficient of the function is sufficient Furthermore, we show how the algorithms
can be enhanced such that verifiability is provided. In fact, this ensures that the
distributed message cannot be changed by malicious shareholders when these
algorithms are run.

From now on we simplify the notation referring to the shareholders within
subset R ⊂ S as sl and no longer as s(i,j). However, we stress that shareholders
in R are not equal from the hierarchical point of view.

5.1 Distributed Computation of Determinants

To fulfill Definition 4, the algorithms Add and Reset have to be performed with-
out reconstructing the message m ∈ M. This is possible since determinants
det(A(E,X,ϕk)), for k = 0, . . . , t − 1, can be computed in distributed fashion.

Theorem 1. The polynomial f(x) = a0 +a1x+a2x
2 + · · ·+at−1x

t−1 ∈ Rt−1[x]
can be computed by

f(x) =
t−1∑

k=0

akxk =
t−1∑

k=0

r∑

l=1

al,kxk,

where al,k is computed by shareholder sl ∈ R, for l = 1, . . . , r and R ∈ Γ is an
authorized subset of S, with r =: |R|.
Proof. Let us first recall that Laplace’s expansion formula computes the deter-
minant det(A) of an n × n matrix A as the weighted sum of the determi-
nants of n sub-matrices of A, each of size (n − 1) × (n − 1). More precisely
det(A) =

∑n
j′=1 ai,j′(−1)i+j′

det(Ai,j′) =
∑n

i′=1 ai′,j(−1)i′+j det(Ai′,j), where
Ai,j results from A by deleting the i-th row and j-th column.

The fact that A(E,X,ϕ) can be computed by each shareholder from public
information together with Laplace’s expansion formula implies that each share-
holder sl ∈ R, for l = 1, . . . , r, can compute the partial information al,k for
coefficient ak = det(A(E,X,ϕk))

det(A(E,X,ϕ)) , by al,k := σi,j(−1)l−1+k det(Al−1,k(E,X,ϕ))
det(A(E,X,ϕ)) , where

σi,j is the share held by shareholder sl, and Al−1,k(E,X,ϕ) is the matrix that
results from A(E,X,ϕ) by removing the l-th row and the (k + 1)-th column.
From Laplace’s expansion formula it follows that:

r∑

l=1

al,k =
r∑

l=1

σi,j(−1)l−1+k det(Al−1,k(E,X,ϕ))
det(A(E,X,ϕ))

=
det(A(E,X,ϕk))
det(A(E,X,ϕ))

= ak.
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In conclusion, the coefficients ak, for k = 0, . . . , t − 1, of polynomial f(x) =
a0 + a1x + a2x

2 + · · · + at−1x
t−1 are computed as the sum of the partial coef-

ficients al,k, where al,k is computed by shareholder sl ∈ R and R ∈ Γ is an
authorized set. Importantly, this also implies that f(x) =

∑r
l=1 fl(x), where

f(x) =
∑r

l=1 fl(x) =
∑r

l=1

∑t−1
k=0 al,kxk.

In the following, the notation defined above holds. That is, al,k is the par-
tial information held by shareholder sl about the coefficient ak of polynomial
f(x) and fl(x) =

∑t−1
k=0 al,kxk is the partial Birkhoff interpolation polynomial of

shareholder sl. Note that Theorem 1 implies that also derivatives of polynomial
f(x) can be computed in a distributed fashion.

Theorem 2. The j-th derivative f j(x) of polynomial f(x) = a0 + a1x + a2x
2 +

· · · + at−1x
t−1 can be computed in distributed fashion as

f j(x) =
r∑

l=1

f j
l (x),

where f j
l (x) is computed by shareholder sl ∈ R, for l = 1, . . . , r and R ∈ Γ is an

authorized subset of S, with r =: |R|.
Proof. To compute the derivative of polynomial f(x) each shareholder sl ∈ R

first computes its partial Birhkoff interpolation polynomial fl(x) =
∑t−1

k=0 al,kxk.

Then it computes the j-th derivative f j
l (x) =

∑t−1
k=j

k!
(k−j)!al,kxk−j . Note that

due to the sum rule for derivatives, i.e. (f(x) + g(x))′ = f(x)′ + g(x)′, and
f(x) =

∑r
l=1 fl(x) the j-th derivative f j(x) of polynomial f(x) can be computed

by adding all partial derivatives, i.e. f j(x) =
∑r

l=1 f j
l (x).

5.2 Verifiable Algorithms for Dynamic Hierarchical Secret Sharing

In this section, we provide a verifiable dynamic conjunctive and a verifiable
dynamic disjunctive secret sharing scheme using Birkhoff interpolation. The ver-
ification process is described using Feldman commitments [8]. However, it can
easily be adapted to Pedersen commitments [18] to achieve information-theoretic
confidentiality.3 Like in Sect. 4, we focus on conjunctive secret sharing and show
the differences to disjunctive secret sharing in brackets.

Let Γ be an access structure arranged in disjoint levels L0, . . . , L�, where th
is the threshold of level Lh for h = 0, . . . , �. Let us assume a message space M,
a space of shares Σ, and a set of shareholders S where the pair (i, j) ∈ I × I
is the unique ID of shareholder si,j ∈ S, such that j = th−1 (j = t� − th) and
t−1 = 0. Then the algorithms Share, Add, Reset, and Reconstruct for verifiable
dynamic conjunctive (disjunctive) secret sharing are defined as follows.
3 There exists solutions [2,9,10,14] for VSS providing both information-theoretic con-

fidentiality and bindingness. However, they are not secure against a mobile adversary
that is able to collect over time enough share to retrieve the message. The solution
proposed in [2] is an interactive protocol while we only consider non-interactive pro-
tocol having less communication complexity.
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Share. It takes as input a message m ∈ M. This algorithm works like the one
in Definition 5 except that some additional audit data is computed and dis-
tributed. More precisely, the algorithm randomly chooses two large primes
p, q, such that q|(p − 1). Let g be a generator of the q-th order subgroup Fq

of F
∗
p and set M := Fq. After defining the polynomial f(x) = a0 + a1x +

a2x
2 + · · · + at−1x

t−1, where a0 := m (at−1 := m) and a1, . . . , at−1 ∈ Fq

(a0, . . . , at−2 ∈ Fq) are chosen uniformly at random, the dealer commits to
each coefficient ak by computing ck := gak mod p, for k = 0, . . . , t − 1.
It broadcasts the commitments and sends each share σi,j to shareholder
si,j ∈ Lh, for i = 1, . . . , nh and h = 0, . . . , � using a private channel. Share-
holder si,j accepts σi,j as its valid share, if and only if

gσi,j ≡
t−1∏

k=j

c
k!

(k−j)! i
k−j

k = gfj(i).

Add. It takes as input a set of shares σ1, . . . , σr held by a subset R ⊂ S of
shareholders and the ID (i′, j′) of the new shareholder. If R is unauthorized,
i.e. R /∈ Γ , it outputs ⊥. Otherwise, R ∈ Γ and the shareholders compute
σi′,j′ := f j′

(i′) in distributed fashion. More precisely, each shareholder sl ∈ R
performs the following steps, for l = 1, . . . , r.
1. It computes the j′-th derivative of its partial Birkhoff interpolation poly-

nomial at x = i′, i.e.

λl := σl

t−1∑

k=j′

k!
(k − j′)!

(−1)l−1+k det(Al−1,k(E,X,ϕ))
det(A(E,X,ϕ))

i′k−j′
.

2. It randomly splits the result into r values, i.e. λl = δ1,l + · · · + δr,l and
sends δm,l to shareholder sm,j ∈ R, for m = 1, . . . , r and m �= l using a
private channel.

3. It collects all values δl,m received and computes δl :=
∑r

m=1 δl,m.
4. It sends δl to the new shareholder si′,j′ using a private channel and broad-

casts the audit data c0, . . . , ct−1 received during the share algorithm.
The new shareholder si′,j′ computes its share σi′,j′ by adding all values δl

received, i.e. σi′,j′ :=
∑r

l=1 δl. It can verify the correctness of its share by
checking whether

gσi′,j′ ≡
t−1∏

k=j′
c

k!
(k−j′)! i

′k−j′

k = gf(j′)(i′),

using the audit data received from the shareholders.

Reset. It takes as input a set of shares σ1, . . . , σr held by a subset R ⊂ S of
shareholders a new set of shareholders S′ = {s′

1, . . . , s
′
n′}, each accompanied

with a unique ID (i′, j′), and an access structure Γ ′ ⊂ P(S′) with maximal
threshold t′. If R is unauthorized, i.e. R /∈ Γ , it outputs ⊥. Otherwise, R ∈
Γ and the subset of old shareholders jointly computes shares for the new
shareholders in S′. More precisely, each old shareholder sl ∈ R performs the
following steps, for l = 1, . . . , r.
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1. It computes its partial Birkhoff interpolation coefficient

al,0 : = σl(−1)l−1 det(Al−1,0(E,X,ϕ))
det(A(E,X,ϕ))

(
al,t−1 = σl(−1)l+t−2 det(Al−1,t−1(E,X,ϕ))

det(A(E,X,ϕ))
)
.

2. It chooses a polynomial f ′
l (x) = a′

l,0 + a′
l,1x + a′

l,2x
2 + · · · + a′

l,t′−1x
t′−1

of degree t′ − 1, where a′
l,0 = al,0 (a′

l,t−1 = al,t−1) is the partial
Birkhoff interpolation coefficient and coefficients a′

l,1, . . . , a
′
l,t′−1 ∈ Fq

(a′
l,0, . . . , a

′
l,t′−2 ∈ Fq) are chosen uniformly at random.

3. It computes subshare σl,i′,j′ for shareholder s′
i′,j′ ∈ S′ as σl,i′,j′ := f ′j′

l (i′).
4. It sends subshare σl,i′,j′ to shareholder s′

i′,j′ ∈ S using a private channel
and broadcasts the audit data, composed of commitments to each coef-
ficient of polynomial f ′

l (x), i.e. c′
l,k := ga′

l,k , for k = 0, . . . , t′ − 1, and
commitment c0 = gm (ct−1 = gm) of the old polynomial f(x).

5. It deletes its share.
Each new shareholder si′,j′ ∈ S′ computes its share σ′

i′,j′ adding all subshares
σl,i′,j′ received, i.e. σ′

i′,j′ :=
∑r

l=1 σl,i′,j′ . To verify the correctness of share
σl,i′,j′ , each new shareholder si′,j′ ∈ S′ performs the following steps.
1. It checks the function value of each polynomial, i.e.

gσl,i′,j′ ≡
t′−1∏

k=j′
c′
l,k

k!
(k−j′)! i

′k−j′

= gf
′(j′)
l (i′), for l = 1, . . . , r.

2. It checks whether the free coefficient (last coefficient) of all polynomials
f ′

l (i
′) leads to the original message m ∈ M, i.e.

c0 ≡
r∑

l=1

c′
l,0

(

ct−1 ≡
r∑

l=1

c′
l,t′−1

)

.

3. If both equations are satisfied, it accept σ′
i′,j′ as its valid share.

Reconstruct. It takes as input shares held by a subset R ⊂ S of shareholders.
If R ∈ Γ , it outputs m ∈ M reconstructed using Birkhoff interpolation.
It outputs ⊥ otherwise. Having access to the original audit data c0 = ga0

(ct−1 = gat−1) it is possible to verify whether the reconstructed message
m ∈ M is a correct opening value for commitment c0 (ct−1), i.e. gm ≡ c0
(gm ≡ ct−1).

5.3 Security and Efficiency

In this work, our achievement is enhancing Tassa’s protocols by the algorithms
Add and Reset. What we need to show is that even after performing these algo-
rithms no information is leaked and the message can still be reconstructed, i.e.
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perfect security and accessibility are provided. However, merging dynamic secret
sharing with the verification protocol leads to an overall scheme that is either
unconditionally binding or unconditionally hiding. A rigorous analysis can be
found in AppendixB.

With respect to the algorithm Add, to compute a share for a new shareholder
si′,j′ each shareholder sl ∈ A of an authorized subset A ∈ Γ computes f j′

l (i′).
Since this subshare leaks information about the own share, each shareholder
randomly splits and distributes this value to the other shareholders. Then each
shareholder only forwards the sum of all values received, hiding the individual
subshares. Consequently, confidentiality is preserved. Accessibility is provided
since the distributed subshares and the polynomials used for secret sharing are
additively homomorphic. With respect to the algorithm Reset, each shareholder
sl of an authorized subset A ∈ Γ use hierarchical secret sharing to distribute its
share to a new (the same) set of shareholders. While security of this algorithm
follows from the security of the used conjunctive or disjunctive secret sharing
scheme, accessibility is provided by the homomorphic property of polynomials.

Verifiability is achieved with the help of homomorphic and computation-
ally binding commitment schemes. They allow each shareholder si,j to com-
pute a commitment c∗ to its share σi,j using the commitments received, i.e.

c∗ =
∏t−1

k=j c
k!

(k−j)! i
k−j

k = gf(j)(i), where ck is the commitment to coefficient ak,
for k = 0, . . . , t − 1. Thus, by verifying c∗ ≡ gσi,j the correctness of its share can
be checked.

Moreover, we argue that introducing dynamism and verifiability even
increases the overall security of the secret sharing scheme when it is practi-
cally instantiated. If messages are distributed for a long period of time they are
prone to mobile adversaries [13]. Given enough time a mobile adversary is able
to collect enough shares to reconstruct the secret, e.g. by breaking into many
servers storing shares or bribing a sufficient amount of former employees holding
shares. Thus, to provide long-term security it is necessary to renew the shares
from time to time and this is possible due to our Reset algorithm. In addition,
the fact that our dynamic hierarchical secret sharing scheme is also verifiable
ensures protection of shareholders from a malicious dealer and vice versa.

With respect to efficiency, the polynomial f(x) is retrieved computing the
value for each coefficient (see Sect. 4). However, in the secret sharing frame-
work the only coefficient that matters is the free (last) coefficient for conjunctive
(disjunctive) secret sharing. Therefore for message reconstruction only two deter-
minants have to be computed. This leads to a complexity of O(t3) for matrix A
of dimension t × t in case the LU decomposition technique is used [1].

6 Conclusion and Future Work

In this work we introduced a framework for dynamic secret sharing and pre-
sented the first dynamic and verifiable secret sharing scheme based on Birkhoff
interpolation. For future work, we would like to combine this technique with our
solution to allow for distributed computations on secretly shared data.
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Appendix

A Requirements for Birkhoff Interpolation Matrices
Interpolation

In this section the necessary requirements and a sufficient condition for the inter-
polation matrix E are presented, such that the corresponding Birkhoff interpo-
lation problem is well posed. For the corresponding proofs we refer to [22].

Lemma 1. Let A ⊂ S be an authorized subset of shareholders, i.e. A ∈ Γ , and
E the corresponding interpolation matrix, where the entries ei,j of the matrix E
satisfy the following condition:

k∑

j=0

r∑

i=1

ei,j ≥ k + 1, 0 ≤ k ≤ d, (1)

where d is the highest derivative order in the problem and r := |A| is the number
of interpolating points.

Before providing the sufficient condition (Theorem 3), the following definition
is needed.

Definition 6 [22]. In the interpolation matrix E a 1-sequence is a maximal run
of consecutive 1s in a row of the matrix E itself. Namely, it is a triplet of the
form (i, j0, j1) where 1 ≤ i ≤ r and 0 ≤ j0 ≤ j1 ≤ d, such that ei,j = 1 for
all j0 ≤ j ≤ j1, while ei,j0−1 = ei,j1+1 = 0. A 1-sequence (i, j0, j1) is called
supported if E has 1s both to the northwest and southwest of the leading entry
in the sequence, i.e. there exist indexes nw and sw, where inw < i < isw and
jnw, jsw < j0 such that einw,jnw

= eisw,jsw = 1.

Theorem 3. The interpolation Birkhoff problem for an authorized subset A and
the corresponding interpolation matrix E has a unique solution, if the interpola-
tion matrix E satisfies (1) and contains no supported 1-sequence of odd length.

In case the Birkhoff interpolation problem is instantiated over a finite field
Fq with q > 0 a prime number, then also the following condition has to hold.

Theorem 4. The Birkhoff interpolation problem for an interpolation matrix E
has a unique solution over the finite field Fq, if Theorem 3 holds and in addition
also the following inequality is satisfied:

q > 2−d+2 · (d − 1)
(d−1)

2 · (d − 1)! · x
(d−1)(d−2)

2
r , (2)

where d is the highest derivative order of the problem.
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B Security Analysis

Conjunctive secret sharing has been introduced by Tassa in [22] and it has
been proven ideal, perfect secure, and accessible. We argue that the algorithms
Add and Reset we introduced enhance the protocol and do not affect the prop-
erties and the security of the original conjunctive secret sharing scheme. To
prove that, we first provide a high level idea of the proof of perfect security
and accessibility of Tassa’s conjunctive secret sharing scheme. Then, we show
that our dynamic hierarchical secret sharing scheme maintains perfect security
and accessibility. Furthermore, it is possible to cope with malicious dealers and
shareholders including a verification protocol to the algorithm Share,Add,Reset,
and Reconstruct. If Pedersen commitments are used in the verification protocol
unconditional hidingness is maintained while bindingness can only be achieved
computationally. Feldmann commitments instead ensure unconditional binding-
ness, i.e. the correctness of the shares can be guaranteed, but at he expenses of
providing only computational hidingness for the shares. Thus, the latter solution
is not suitable if data is processed for which long-term or even everlasting con-
fidentiality is required. Similarly, it can be proven that Add and Reset maintain
also the same properties of disjunctive secret sharing. However, for readability
in the following we focus on conjunctive secret sharing only.

Roughly speaking, reconstructing a distributed message is equal to finding a
solution of the Birkhoff interpolation problem for a polynomial f(x) = a0+a1x+
a2x

2+· · ·+at−1x
t−1. Thus, Tassa proved the security of his approach by showing

that authorized sets of shareholders A ∈ Γ lead to interpolation matrices E for
which the Birkhoff interpolation problem is well posed. Thus, accessibility is
provided. Furthermore, any unauthorized set of shareholders U /∈ Γ leads to an
unsolvable system and perfect security is therefore proven.

The introduction of the protocols Add and Reset making the Birkhoff inter-
polation based secret sharing scheme dynamic does not affect these properties.
First, we show that accessibility and perfect security is provided if all sharehold-
ers act honestly. This corresponds to the setup of Tassa’s security proof. Second,
we prove that our scheme even provides verifiability, i.e. can cope with malicious
dealers and shareholders.

Theorem 5. The dynamic secret sharing scheme composed of the protocols
Share, Add, Reset, and Reconstruct described in Sect. 5.2 is accessible and per-
fectly secure according to Definition 2.

Proof. The proof for the algorithms Share and Reconstruct follows from Tassa’s
security proof. The algorithms Add and Reset are discussed individually in the
following.

Add. If the shareholders follow the protocol correctly, then all shareholders,
meaning the old set of shareholders together with the new shareholder, only
hold shares of the polynomial f(x) = a0+a1x+a2x

2+· · ·+at−1x
t−1 or of one

of its derivatives. This prevents unauthorized subsets from reconstructing the
message, meaning that perfect security is achieved. However, the share σi′,j′
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for the new shareholder si′,j′ is generated by old shareholders in distributed
fashion. More precisely, each old shareholder uses its share to generate a
piece of information from which the new shareholder si′,j′ can compute its
own share σi′,j′ . Therefore, what is left to show is that no information about
the other shares is leaked during the generation of the share σi′,j′ . To compute
the share of a new shareholder si′,j′ each shareholder sl ∈ A of an authorized
subset A ∈ Γ computes f j′

l (i′), where f j′
l (x) is the j′-th derivative of the

polynomial fl(x). Note that this value leaks information about the share of
sl, since f j′

l (i′) = σl

∑t−1
k=j′

k!
(k−j′)!

(−1)l−1+k det(Al−1,k(E,X,ϕ))
det(A(E,X,ϕ)) i′k−j′

and the lat-

ter part
∑t−1

k=j′
k!

(k−j′)!
(−1)l−1+k det(Al−1,k(E,X,ϕ))

det(A(E,X,ϕ)) i′k−j′
can be computed from

public information. Thus, it generates shares to this value using an additive
secret sharing scheme [7], i.e. computes f j′

l (i′) =
∑

k,sk∈A δk,l, and sends δk,l

to shareholder sk ∈ A. Each shareholder sl then adds all subshares received
by the other shareholders, i.e. δl =

∑
k,sk∈A δl,k, and forwards only the result

δl to the new shareholder. Due to the use of the additive secret sharing scheme
perfect security of all shares remains preserved.

Since
∑

l,sl∈A δl =
∑

l,sl∈A

∑
k,sk∈A δk,l =

∑
k,sk∈A f j′

l (i′) = f j′
(i′) also

accessibility is provided. This ensures that the new shareholder holds together
with the other shareholders a point of polynomial f(x) or of one of its deriv-
atives and the shares of authorized subsets including the new shareholders
can reconstruct the message.

Reset. In this algorithm each shareholder sl ∈ A of an authorized subset A ∈ Γ
uses hierarchical secret sharing to distribute its share to a new set of share-
holders. More precisely, it computes its partial Birkhoff interpolation coeffi-
cient

al,0 := σl(−1)l−1 det(Al−1,0(E,X,ϕ))
det(A(E,X,ϕ))

of coefficient a0 and then chooses a polynomial f ′
l (x) = a′

l,0 + a′
l,1x+ a′

l,2x
2 +

· · · + a′
l,t′−1x

t′−1, where a′
l,0 = al,0, containing this value in the free coeffi-

cient. In this way, shares of shares are sent to the new shareholders, since
only one point of this polynomial or of one of its derivatives is sent. There-
fore, perfect security follows from the perfect security of conjunctive secret
sharing. Furthermore, it computes the value to be sent to a new shareholder
in accordance to the new access structure and the IDs assigned to each new
shareholder. Thus, any unauthorized subset U /∈ Γ cannot reconstruct the
message and perfect security is provided.

Accessibility of this protocol is provided due to the homomorphic property
of polynomials. More precisely each new shareholder si,j receives from each
old shareholder sl share f ′j

l (i) of polynomial f ′
l (x) = a′

l,0 + a′
l,1x + a′

l,2x
2 +

· · · + a′
l,t′−1x

t′−1, where a′
l,0 = al,0 is the partial Birkhoff interpolation coeffi-

cient of a0. Since the new shareholder adds all shares received to compute its
new share it follows that it holds a point of polynomial f ′(x) =

∑
l,sl∈A f ′

l (x)
=

∑
l,sl∈A(a′

l,0 +a′
l,1x+ · · ·+a′

l,t′−1x
t′−1) =

∑
l,sl∈A a′

l,0 +
∑

l,sl∈A a′
l,1 + · · ·+
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∑
l,sl∈A a′

l,t′−1x
t′−1 = a0 +

∑
l,sl∈A a′

l,1 + · · · +
∑

l,sl∈A a′
l,t′−1x

t′−1 or of one
of its derivatives. So the free coefficient of f ′(x) is still a0, meaning that any
authorized subset of the new access structure is still able to retrieve message
a0 = m.

Next we show that our verifiable and dynamic hierarchical secret sharing
scheme indeed provides verifiability. For this we assume a majority of trustworthy
shareholders within an authorized subset. This assumption can be weakened
by letting all shareholders participate during the Add and Reset algorithm and
choose an authorized subset among the majority. This majority can be identified
during Add by checking who reports the same set of commitments to function
f(x) and during Reset by checking who reported the same commitments c0 to
the free coefficient of f(x). Note that the presence of a majority of trustworthy
shareholders is a common assumption of classical secret sharing schemes that
allow to reset access structures, e.g. [12].

Theorem 6. In the presence of a majority of trustworthy shareholders within
an authorized subset the verifiable and dynamic secret sharing scheme composed
of the protocols Share, Add, Reset, and Reconstruct described in Sect. 5.2 is a
verifiable secret sharing scheme according to Definition 3.

Proof. To prove that each authorized subset of shareholders A ∈ Γ reconstruct
the same message a0 = m each shareholder must hold a point of the to-be-
found polynomial f(x) = a0 + a1x + a2x

2 + · · · + at−1x
t−1 or of one of its

derivatives. Furthermore, each shareholder must hold the point assigned to its
ID (i, j) ∈ I × I, i.e. must receive share σi,j = f j(i), where f j(x) is the j-th
derivative of the polynomial f(x). In the following we show for each algorithm
that generates shares, i.e. Share, Add, and Reset, that the shareholders receiving
these shares are able to verify these conditions.

Share. During this algorithm the dealer commits to each coefficient ak of f(x) =
a0 + a1x + a2x

2 + · · · + at−1x
t−1 by computing a commitment ck := gak

mod p, for k = 0, . . . , t − 1. It broadcasts the commitments and sends each
share σi,j to shareholder si,j ∈ Lh, for i = 1, . . . , nh and h = 0, . . . , �. If
shareholder si,j accepts σi,j then the following equation holds

gσi,j ≡
t−1∏

k=j

c
k!

(k−j)! i
k−j

k = gfj(i).

From this it follows directly that incorrect shares can be detected and rejected.
Add. During this algorithm the shareholders sl ∈ A of an authorized subset

A ∈ Γ compute share σi′,j′ for a new shareholder si′,j′ ∈ S in distributed
fashion. Furthermore, each shareholder broadcasts the commitments to the
coefficients ck := gak mod p, for k = 0, . . . , t − 1 received from the dealer.
Under the assumption that at least a majority of these shareholders is honest
the new shareholder has access to a correct set of commitments and can verify
whether
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gσi′,j′ ≡
t−1∏

k=j′
c

k!
(k−j′)! i

′k−j′

k = gfj′
(i′).

From this it follows directly that incorrect shares can be detected and rejected.
Reset. During this algorithm the shareholders sl ∈ A of an authorized subset

A ∈ Γ compute shares for a set of new shareholders S′ = {s′
1, . . . , s

′
n′},

each accompanied with a unique ID (i′, j′) ∈ I × I, and an access structure
Γ ′ ⊂ P(S′). Like for the other algorithms it has to be checked that share σi′,j′

for the shareholder s′
i′,j′ ∈ S′ with ID (i′, j′) ∈ I ×I are computed as f ′j′

(i′).
However, this algorithm has an additional requirement for correctness. The
free coefficient of the to-be-found polynomial must be equal to the message m
distributed by the dealer. To verify the first condition each shareholder si′,j′

of the new access structure checks

gσl,i′,j′ ≡
t′−1∏

k=j′
c′
l,k

k!
(k−j′)! i

′k−j′

= gf ′j′
l (i′), for sl ∈ A,

for each share σl,i′,j′ received from shareholder l of the old set of shareholders.
Finally, it checks that the sum of all shares is a point of a polynomial with
free coefficient a0 = m. This can be verified by multiplying all commitments
to the individual free coefficients, i.e.

c0 ≡
∏

l,sl∈A

c′
l,0 =

∏

l,sl∈A

gal,0 = ga0 = gm.

Under the assumption that a majority of the old shareholders sent the correct
commitments incorrect shares can be detected.

Note that our scheme is also ideal. This clearly comes from the fact that each
shareholder si ∈ R receives a share σi,j ∈ Fq that is a field element of the same
field as the message m ∈ Fq.

C Example of Tassa’s Hierarchical Secret Sharing

In the following, an example explaining how Tassa’s hierarchical secret sharing
scheme [22] works is provided. More precisely, we show a numerical instantiation
of the algorithms Share and Reconstruct described in Definition 5 for conjunctive
secret sharing. Note that we shall perform all computations assuming a finite
field Fq for a very large prime q. Thus, we do not perform the modulo operation
assuming the values computed are always smaller than q.

Share. Let us assume a hierarchy composed of three levels L0, L1, L2 (where L0 is
the highest level and L2 is the lowest level) and thresholds t1 = 1, t2 = 2, t3 = 3.
Furthermore, let us assume the set S is composed of n = 6 shareholders. More
precisely, one shareholder s1,0 is assigned to level L0, two shareholders s1,1, s2,1

are assigned to level L1, and three shareholders s1,2, s2,2, and s3,2 are assigned to
level L2. Finally, let us assume that a dealer wants to secretly share the message
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m := 2. Denoted t := t3, the dealer selects a polynomial f(x) = a0 + a1x + a2x
2

of degree t − 1 setting a0 := 2 and choosing the remaining two coefficients a1, a2

uniformly at random., e.g. a1 = 3, a2 = 1, and f(x) = 2+3x+x2. The shares are
computed as points over f(x) or one of its derivatives f ′(x) = 3+2x or f ′′(x) = 2.
With respect to level L0 shareholder s1,0 gets share σ1,0 = f(1) = 6. With respect
to level L1 shareholder s1,1 gets share σ1,1 = f ′(1) = 5 and shareholder s2,1 gets
share σ2,1 = f ′(2) = 7. With respect to level L2 shareholder s1,2 gets share
σ1,2 = f ′′(1) = 2, shareholder s2,2 gets share σ2,2 = f ′′(2) = 2, and s3,2 gets
share σ3,2 = f ′′(3) = 2.

Reconstruct. For conjunctive secret sharing, the thresholds 0 < t0 < t1 < t2
have to be considered as a chain. More precisely, the access structure defined is
such that the message can be retrieved if at least t2 = 3 shareholders in total
collaborate, at least t1 = 2 of them belong to level L1 or L0, and at least t0 = 1
of them belong to level L0. Without loss of generality, let us assume that the
shareholders collaborating are s1,0, s2,1, and s3,2. The access structure is satisfied
because the corresponding interpolation matrix

E =

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠

leads to a Birkhoff interpolation problem with unique solution (see Appendix A).
The message m = 2 can be retrieved as follows:

1. the set containing the coordinates of E in lexicographic order is I(E) =
{(1, 0), (2, 1), (3, 2)} and the column containing the shares in lexicographic
order is (6, 7, 2)t;

2. the vector of the functions involved is ϕ = {1, x, x2};
3. the matrices involved in the Birkhoff’s reconstruction formula are:

A(E,X,ϕ) =

⎛

⎝
1 1 1
0 1 4
0 0 2

⎞

⎠ , A(E,X,ϕ0) =

⎛

⎝
6 1 1
7 1 4
2 0 2

⎞

⎠ ,

A(E,X,ϕ1) =

⎛

⎝
1 6 1
0 7 4
0 2 2

⎞

⎠ , A(E,X,ϕ2) =

⎛

⎝
1 1 6
0 1 7
0 0 2

⎞

⎠ ;

4. the determinants are det(A(E,X,ϕ)) = 2,det(A(E,X,ϕ0)) = 4,
det(A(E,X,ϕ1)) = 6 and det(A(E,X,ϕ2)) = 2, respectively;

5. applying Birkhoff’s reconstruction formula the coefficients a0, a1, a2 of poly-
nomial f(x) are computed as:

a0 =
det(A(E,X,ϕ0))
det(A(E,X,ϕ))

=
4
2

= 2, a1 =
det(A(E,X,ϕ1))
det(A(E,X,ϕ))

=
6
2

= 3,

a2 =
det(A(E,X,ϕ2))
det(A(E,X,ϕ))

=
2
2

= 1;

6. the polynomial reconstructed is exactly f(x) = 2 + 3x + x2 and the secret is
retrieved as f(0) = a0 = 2.
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Abstract. Quantum-mechanical devices have the potential to trans-
form cryptography. Most research in this area has focused either on
the information-theoretic advantages of quantum protocols or on the
security of classical cryptographic schemes against quantum attacks. In
this work, we initiate the study of another relevant topic: the encryp-
tion of quantum data in the computational setting. In this direction, we
establish quantum versions of several fundamental classical results. First,
we develop natural definitions for private-key and public-key encryption
schemes for quantum data. We then define notions of semantic security
and indistinguishability, and, in analogy with the classical work of Gold-
wasser and Micali, show that these notions are equivalent. Finally, we
construct secure quantum encryption schemes from basic primitives. In
particular, we show that quantum-secure one-way functions imply IND-
CCA1-secure symmetric-key quantum encryption, and that quantum-
secure trapdoor one-way permutations imply semantically-secure public-
key quantum encryption.

1 Introduction

For the full paper, including some proofs and definitions omitted here, see the
arXiv version [5].

Quantum mechanics changes our view of information processing: the ability
to access, operate and transmit data according to the laws of quantum physics
opens the doors to a vast realm of possible applications. Cryptography is one
of the areas that is most seriously impacted by the potential of quantum infor-
mation processing, since the security of most cryptographic primitives in use
today relies on the hardness of computational problems that are easily broken
by adversaries having access to a quantum computer [41].
c© Springer International Publishing AG 2016
A.C.A. Nascimento and P. Barreto (Eds.): ICITS 2016, LNCS 10015, pp. 47–71, 2016.
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While the impact of quantum computers on cryptanalysis is tremendous,
quantum mechanics itself predicts physical phenomena that can be exploited in
order to achieve new levels of security. These advantages were already mentioned
in the late 1970s in pioneering work of Wiesner [47], and have led to the very suc-
cessful theory of quantum key distribution (QKD) [9], which has already seen
real-world applications [6]. QKD achieves information-theoretically secure key
expansion, and has the advantage of relatively simple hardware requirements
(notwithstanding a long history of successful attacks to QKD at the implemen-
tation level [6]).

The cryptographic possibilities of quantum information go well beyond QKD.
Indeed, quantum copy-protection [1], quantum money [2,37,47] and revocable
time-release encryption [44] are just some examples where properties unique to
quantum data enable new cryptographic constructions (see [18] for a survey).
Thanks in part to these tremendous cryptographic opportunities, we envisage
an increasing need for an information infrastructure that enables quantum infor-
mation. Such an infrastructure will be required to support:

– Quantum functionality: honest parties can store, exchange, and compute
on quantum data;

– Quantum security: quantum functionality is protected against quantum
adversaries.

The current state-of-the-art is lacking even the most basic cryptographic
concepts in the context of quantum functionality and quantum adversaries. In
particular, the study of encryption of quantum data (which is arguably one of
the most fundamental building blocks) has so far been almost exclusively limited
to the quantum one-time pad [7] and other aspects of the information-theoretic
setting [19,20] (one notable exception being [17]). The achievability of other basic
primitives such as public-key encryption has not been thoroughly investigated
for the case of fully quantum cryptography. This situation leaves many open
questions about what can be achieved in the quantum world.

1.1 Summary of Contributions and Techniques

In this work, we establish quantum versions of several fundamental classical
(i.e. “non-quantum”) results in the setting of computational security. Following
Broadbent and Jeffrey [17], we consider private-key and public-key encryption
schemes for quantum data. In these schemes, the key is a classical bitstring,1

but both the plaintext and the ciphertext are quantum states. Key genera-
tion, encryption, and decryption are implemented by polynomial-time quantum
algorithms. Such schemes admit an appropriate definition of indistinguishability
security, following the classical approach [17]: the quantum adversary is given
access to an encryption oracle, and must output a challenge plaintext; given
either the corresponding ciphertext or the encryption of |0〉〈0| (each with prob-
ability 1/2), the adversary must decide which was the case.

1 While quantum keys might be of interest, they are not necessary for constructing
secure schemes [17].
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Our main contributions are the following. First, we give several natural for-
mulations of semantic security for quantum encryption schemes, and show that
all of them are equivalent to indistinguishability. This cements the intuition
that possession of the ciphertext should not help the adversary in computing
anything about the plaintext. Second, we give two constructions of encryption
schemes with semantic security: a private-key scheme, and a public-key scheme.
The private-key scheme satisfies a stronger notion of security: indistinguishabil-
ity against chosen ciphertext attacks (IND-CCA1). A more detailed summary of
these contributions follows.

1.1.1 Semantic Security vs. Indistinguishability. Semantic security for-
malizes the notion of security of an encryption scheme under computational
assumptions. Originally introduced by Goldwasser and Micali [30], this defin-
ition posits a game: an adversary is given the encryption of a message x and
some side information h(x), and is challenged to output the value of an objec-
tive function f evaluated at x. An encryption scheme is deemed secure if every
adversary can be closely approximated by a simulator who is given only h(x);
crucially, the simulator must work for every possible choice (h, f) of side infor-
mation and objective function. This models the intuitive notion that having
access to a ciphertext gives the adversary essentially no advantage in computing
functions related to the plaintext.

While semantic security corresponds to a notion of security that is intu-
itively strong, it is cumbersome to use in terms of security proofs. In order
to address this problem, Goldwasser and Micali [30] showed the equivalence of
semantic security with another cryptographic notion, called indistinguishability.
The intuitive description of indistinguishability is also in terms of a game, this
time with a single adversary. The adversary prepares a pair of plaintexts x0 and
x1 and submits them to a challenger, who chooses a uniformly random bit b and
returns the encryption of xb. The adversary then performs a computation and
outputs a bit v; the adversary wins the game if v = b and loses otherwise. An
encryption scheme is deemed secure if no adversary wins the game with prob-
ability significantly larger than 1/2. This definition models the intuitive notion
that the ciphertexts are indistinguishable: whatever the adversary does with one
ciphertext, the outcome is essentially the same if run on the other ciphertext.

In Sect. 4, we define semantic security for the encryption of quantum data—
thus establishing a parallel with the notions and results of encryptions as laid
out by Goldwasser and Micali. When attempting to transfer the definition of
semantic security to the quantum world, the main question one encounters is to
determine the quantum equivalents of h(x) and f(x) as described above (because
of the no-cloning theorem [48], we cannot postulate a polynomial-time experi-
ment that simultaneously involves some quantum plaintext and a function of
the plaintext—see Sect. 4.2 for further discussions related to this issue). We pro-
pose a number of alternative definitions in order to deal with this situation
(Definition 8, and SEM2 and SEM3 appearing in the arXiv version [5].) Perhaps
the most surprising is our definition of SEM (Definition 8), which does away
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completely with the need to explicitly define analogues of the functions h and f ,
instead relying on a message generator that outputs three registers, consisting
of the “plaintext”, “side information” and “target output” (there is no further
structure imposed on the contents of these registers). Intuitively, we think of the
adversary’s goal being to output the value contained in the “target output” reg-
ister. Formally, however, Definition 8 shows that the role of the “target output”
register is actually to help the distinguisher: semantic security corresponding
to the situation where no distinguisher has a non-negligible advantage in telling
apart the real scenario (involving the adversary) and the ideal scenario (involving
the simulator), even given access to the “target output” system. Our main result
in this direction (see Sect. 4.3) is the equivalence between semantic security and
indistinguishability for quantum encryption schemes:

Theorem 1. A quantum encryption scheme is semantically secure if and only
if it has indistinguishable encryptions.

What is more, because our definitions and proofs hold when restricted to the
classical case (and in fact can be shown as generalizations of the standard clas-
sical definitions), our contribution sheds new light on semantic security: to the
best of our knowledge, this is the first time that semantic security has been
defined without the need to explicitly refer to functions h and f .

1.1.2 Quantum Encryption Schemes. In Sect. 5, we give two constructions
of quantum encryption schemes that achieve semantic security (and thus also
indistinguishability, by Theorem 1.) Our constructions make use of two basic
primitives. The first is a quantum-secure one-way function (qOWF). This is
a family of deterministic functions which are efficiently computable in classical
polynomial time, but which are impossible to invert even in quantum polynomial
time. It is believed that such functions can be constructed from certain algebraic
problems [33,36]. The existence of qOWFs implies the existence of quantum-
secure pseudorandom functions (qPRFs) [50]. We show that a qPRF can, in
turn, be used to securely encrypt quantum data with classical private keys.
More precisely, we have the following:

Theorem 2. If quantum-secure one-way functions exist, then so do IND-CCA1-
secure private-key quantum encryption schemes.

The second basic primitive we consider is a quantum-secure one-way permuta-
tion with trapdoors (qTOWP). In analogy with the classical case, a qTOWP is a
qOWF with an additional property: each function in the family is a permutation
whose efficient inversion is possible if one possesses a secret string (the trapdoor).
While our results appear to be the first to consider applications to quantum data,
the notion of quantum security for trapdoor permutations is of obvious relevance
in the security of classical cryptosystems against quantum attacks. Some promis-
ing candidate qTOWPs from lattice problems are known [26,39]. We show that
such functions can be used to give secure public-key encryption schemes for
quantum data, again using only classical keys.
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Theorem 3. If quantum-secure trapdoor one-way permutations exist, then so
do semantically secure public-key quantum encryption schemes.

We remark that Theorems 2 and 3 are analogues of standard results in the
classical literature [28].

1.2 Related Work

Prior work has considered the computational security of quantum methods to
encrypt classical data [34,38,49]. Information-theoretic security for the encryp-
tion of quantum states has been considered in the context of the one-time
pad [7,13,32,35], as well as entropic security [19,20]. Computational indistin-
guishability notions for encryption in a quantum world were proposed in inde-
pendent and concurrent work [17,25]. While [17] considers the encryption of
quantum data (and proposes the first constructions based on hybrid classical-
quantum encryption), [25] considers the security of classical schemes which can
be accessed in a quantum way by the adversary.

The results of [25] are part of a line of research of “post-quantum” cryp-
tography, which investigates the security of classical schemes against quantum
adversaries, with the goal of finding “quantum-safe” schemes. This includes the
study of encryption and signature schemes secure against attacks by quantum
algorithms [10], and also the study of superposition attacks against quantum
oracles [11,45,50]. Still in the model of superposition attacks, [12] studies quan-
tum indistinguishability under chosen plaintext and chosen ciphertext attacks.
This definition was improved in [25] to allow for a quantum challenge phase.
The latter paper also initiates the study of quantum-secure security of classical
schemes and gives the first classical construction of a quantum-secure encryption
scheme from a family of quantum-secure pseudorandom permutations. Another
quantum indistinguishability notion in the same spirit has been suggested (but
not further analyzed) in [46, Definition 5.3].

Several previous works have considered how classical security proofs change
in the setting of quantum attacks (see, e.g., [24,42,43].) Our results can be
viewed as part of this line of work; one distinguishing feature is that we are able
to extend classical security proofs to the setting of quantum functionality secure
against quantum adversaries. This setting has seen increasing interest in the
past decade, with progress being made on several topics: multi-party quantum
computation [8], secure function evaluation [22,23], one-time programs [16], and
delegated quantum computation [14,15].

Outline. The remainder of the paper is structured as follows. In Sect. 2, we set
down basic notation and recall a few standard facts regarding classical and quan-
tum computation. In Sect. 3, we define symmetric-key and public-key encryp-
tion for quantum states (henceforth “quantum encryption schemes”), as well as
a notion of indistinguishability (including IND-CPA and IND-CCA1) for such
schemes. Section 4 defines semantic security for quantum encryption schemes,
and shows equivalence with indistinguishability. Section 5 gives our two construc-
tions for quantum encryption schemes. Finally, we close with some discussion of
future work in Sect. 6.
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2 Preliminaries

We introduce some basic notation for classical (Sect. 2.1) and quantum (Sect. 2.2)
information processing and information-theoretic encryption. Section 2.3 con-
cerns basic issues in efficient algorithms and Sect. 2.4 discusses the use of oracles.

2.1 Classical States, Maps, and the One-Time Pad

Let N be the set of positive integers. For n ∈ N, we set [n] = {1, · · · , n}. Define
{0, 1}∗ := ∪n{0, 1}n. An element x ∈ {0, 1}∗ is called a bitstring, and |x| denotes
its length, i.e., its number of bits. We reserve the notation 0n (resp., 1n) to denote
the n-bit string with all zeroes (resp., all ones).

For a finite set X, the notation x $←−X indicates that x is selected uniformly at
random from X. For a probability distribution S, the notation x ← S indicates
that x is sampled according to S. Given finite sets X and Y , the set of all
functions from Y to X is denoted XY (or sometimes {X → Y }). We will usually
consider functions f acting on binary strings, that is, of the form f : {0, 1}n →
{0, 1}m, for some positive integers n and m. We will also consider function
families f : {0, 1}∗ → {0, 1}∗ defined on bitstrings of arbitrary size. One can
construct such a family simply by choosing one function with input size n, for
each n. We will sometimes abuse notation by stating that f : {0, 1}n → {0, 1}m

defines a function family; in that case, it is implicit that n is a parameter that
indexes the input size and m is some function of n (usually a polynomial) that
indexes the output size. Given a bitstring y and a function family f , the preimage
of f under y is defined by f−1(y) := {x ∈ {0, 1}∗ : f(x) = y}.

We will often write negl(·) to denote a function from N to N which is “negligi-
ble” in the sense that it grows at an inverse-superpolynomial rate. More precisely,
negl(n) < 1/p(n) for every polynomial p : N → N and all sufficiently large n. A
typical use of negligible functions is to indicate that the probability of success
of some algorithm is too small to be amplified to a constant by a feasible (i.e.,
polynomial) number of repetitions.

Given two bitstrings x and y of equal length, we denote their bitwise XOR by
x ⊕ y. Recall that the classical one-time pad encrypts a plaintext x ∈ {0, 1}n by
XORing it with a uniformly random string (the key) r $←−{0, 1}n. Decryption is
performed by repeating the operation, i.e., by XORing the key with the cipher-
text. Since the uniform distribution on {0, 1}n is invariant under XOR by x, the
ciphertext is uniformly random to parties having no knowledge about r [40]. A
significant drawback of the one-time pad is the key length. In order to reduce
the key length, one may generate r pseudorandomly; this key-length reduction
requires making computational assumptions about the adversary.

2.2 Quantum States, Maps, and the One-Time Pad

Given an n-bit string x, the corresponding quantum-computational n-qubit basis
state is denoted |x〉. The 2n-dimensional Hilbert space spanned by n-qubit basis
states will be denoted Hn := span {|x〉 : x ∈ {0, 1}n} . We denote by D(Hn)
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the set of density operators (i.e., valid quantum states) on Hn. These are linear
operators on D(Hn) which are positive-semidefinite and have trace equal to
1. When considering different physical subsystems, we will denote them with
uppercase Latin letters; when a Hilbert space corresponds to a subsystem, we
will place the subsystem label in the subscript. For instance, if F ∪ G ∪ H = [n]
then Hn = HF ⊗ HG ⊗ HH . Sometimes we will write explicitly the subsystems
a state belongs to as subscripts; this will be useful when considering, e.g., the
reduced state on some of the subspaces. For example, we will sometimes express
the statement ρ ∈ D(HF ⊗ HG ⊗ HH) simply by calling the state ρFGH ; in that
case, the state obtained by tracing out the subsystem H will be denoted ρFG.

Given ρ, σ ∈ D(H), the trace distance between ρ and σ is given by half the
trace norm ‖ρ − σ‖1 of their difference. When ρ and σ are classical probability
distributions, the trace distance reduces to the total variation distance. Physi-
cally realizable maps from a state space D(H) to another state space D(H′) are
called admissible—these are the completely positive trace-preserving (CPTP)
maps. For the purpose of distinguishability via input/output operations, the
appropriate norm for CPTP maps is the diamond norm, denoted ‖ · ‖�. The
set of admissible maps coincides with the set of all maps realizable by compos-
ing (i.) addition of ancillas, (ii.) unitary evolutions, (iii.) measurements in the
computational basis, and (iv.) tracing out subspaces. We remark that unitaries
U ∈ U(Hn) act on D(Hn) by conjugation: ρ �→ UρU†. The identity opera-
tor 1n ∈ U(Hn) is thus both a valid map, and (when normalized by 2−n) a valid
state in D(Hn)—corresponding to the classical uniform distribution.

Recall the single-qubit Pauli operators defined as:

I =
(

1 0
0 1

)

, X =
(

0 1
1 0

)

, Y =
(

0 −i
i 0

)

, Z =
(

1 0
0 −1

)

.

The Pauli operators are Hermitian and unitary quantum gates, i.e. P † = P
and P †P = PP † = P 2 = I for all P ∈ {I,X, Y, Z}. It is easy to check that
applying a uniformly random Pauli operator to any single-qubit density operator
results in the maximally mixed state for all ρ ∈ D(H1):

1
4

(ρ + XρX + Y ρY + ZρZ) =
11

2
for all ρ ∈ D(H1). (1)

Since the Pauli operators are self-adjoint, we may implement the above map
by choosing two bits s and t uniformly at random and then applying ρ �→
XsZtρZtXs. To observers with no knowledge of s and t, the resulting state is
information-theoretically indistinguishable from 11/2. Of course, if we know s
and t, we can invert the above map and recover ρ completely.

The above map can be straightforwardly extended to the n-qubit case in
order to obtain an elementary quantum encryption scheme called the quantum
one-time pad. We first set Xj = 1⊗j−1 ⊗ X ⊗1⊗n−j and likewise for Yj and Zj .
We define the n-qubit Pauli group Pn to be the subgroup of SU(Hn) generated
by {Xj , Yj , Zj : j = 1, . . . , n}. Note that Hermiticity is inherited from the single-
qubit case, i.e. P † = P for every P ∈ Pn.
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Definition 4 (quantum one-time pad). For r ∈ {0, 1}2n, we define the
quantum one-time pad (QOTP) on n qubits with classical key r to be the map
Pr :=

∏n
j=1 X

r2j−1
j Z

r2j

j ∈ Pn.

The effect of Pr on any quantum state ρ ∈ D(Hn) is simply

1
22n

∑

r∈{0,1}2n

PrρPr =
1n

2n
. (2)

As before, the map ρ �→ PrρPr (for uniformly random key r) is an
information-theoretically secure symmetric-key encryption scheme for quantum
states.

Just as in the classical case [40], any reduction in key length is not possible
without compromising information-theoretic security [7,13]. Of course, in prac-
tice the key length of the one-time pad (quantumly or classically) is highly
impractical. This is a crucial reason to consider—as we do in this work—
encryption schemes which are secure only against computationally bounded
adversaries.

2.3 Efficient Classical and Quantum Computations

We will refer to several different notions of efficient algorithms. The most basic of
these is a deterministic polynomial-time algorithm (or PT). A PT A is defined by
a polynomial-time uniform2 family A := {An}n∈N of classical Boolean circuits
over some gate set, with one circuit for each possible input size. For a bitstring x,
we define A(x) := A|x|(x). We say that a function family f : {0, 1}n → {0, 1}m

is PT-computable if there exists a PT A such that A(x) = f(x) for all x; it is
implicit that m is a function of n which is bounded by some polynomial, e.g.,
the same one that bounds the running time of A.

A probabilistic polynomial-time algorithm (or PPT) is again a polynomial-
time uniform family of classical Boolean circuits, one for each possible input
size n. The nth circuit still accepts n bits of input, but now also has an addi-
tional “coins” register of p(n) input wires. Note that uniformity enforces that the
function p is bounded by some polynomial. For a PPT A, n-bit input x and p(n)-
bit coin string r, we set A(x; r) := An(x; r). In contrast with the PT case, the
notation A(x) will now refer to the random variable A(x; r) where r $←−{0, 1}p(n).
Overloading notation slightly, A(x) can also mean the corresponding probability
distribution; for example, the set of all possible outputs of A on the input 1n is
denoted supp A(1n).

We define a quantum polynomial-time algorithm (or QPT) to be a
polynomial-time uniform family of quantum circuits, each composed of gates
that may perform general admissible operations, chosen from some finite, uni-
versal set. A commonly used alternative is to specify that the elements of the gate
2 Recall that polynomial-time uniformity means that there exists a polynomial-time

Turing machine which, on input n in unary, prints a description of the nth circuit
in the family.
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set are unitary. In terms of computational power, the models are the same [4],
however using admissible operations (versus unitary ones only) allows us to for-
malize a wider range of oracle-enabled QPT machines (see Sect. 2.4). In general,
a QPT A defines a family of admissible maps from input registers to output
registers: A : D(Hn) → D

(Hu

)
. As before, the nth circuit in the family will

be denoted by An. When ρ is an n-qubit state, A(ρ) denotes the corresponding
u(n)-qubit output state (by uniformity, u is bounded by some polynomial). Over-
loading the notation even further, for n-bit strings x we set A(x) := A(|x〉〈x|).
The expression A(x) = y for classical y is taken to evaluate to true if the output
register of the circuit contains the state |y〉〈y| exactly. Unless explicitly stated,
any statements about the probability of an event involving a QPT are taken over
the measurements of the QPT, in addition to any indicated random variables.
For instance, the expression Prx∈R{0,1}n [A(x) = y] means the probability that,
given a uniformly random input string x, the output register of the nth circuit
of the QPT A executed on |x〉〈x|, after all gates and measurements have been
applied, is in the state |y〉〈y|.

At times, we will define QPTs with many input and output quantum regis-
ters. In these cases, some straightforward bookkeeping (e.g., via an additional
classical register) may be required; for the sake of clarity, we will simply assume
that this has been handled.

Throughout this work, we are concerned only with polynomial-time uniform
computation. That is to say, the circuit families that describe any PT, PPT, or
QPT will always be both of polynomial length and generatable by some fixed
(classical) polynomial-time Turing machine. In particular, we consider uniform
adversaries only—although all of our results carry over appropriately to the
non-uniform setting as well.

2.4 Oracles

We denote by Af an algorithm which has oracle access to some function family f .
Such an algorithm (whether PT, PPT, or QPT) is defined as above, except each
circuit in the algorithm can make use of additional “oracle gates” (one for each
possible input size) which evaluate f . In the case of PTs and PPTs, oracles can
implement any function from bitstrings to bitstrings. In the case of QPTs, we
consider two different oracle types.

First, we allow purely classical oracles. Just as in the case of PTs and PPTs, a
classical oracle implements a function f from bitstrings to bitstrings. In the case
of a QPT with a classical oracle, queries can be made on classical inputs only
(this is sometimes referred to as “standard-security” [50]). We emphasize that
we do not require that the oracle is made reversible, nor do we allow the QPT
to input superpositions. Note that any such oracle can be implemented by an
admissible map, such that classical inputs x are deterministically mapped to f(x)
(to see this, start with a Boolean circuit for f , make it reversible, and then recall
that adding ancillas and discarding output bits are admissible operations). While
it might seem that disallowing superposition inputs is an artificial and unrealistic
restriction, in our case it actually strengthens results. For instance, we will show
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that secure quantum encryption can be achieved using pseudorandom functions
which are secure only against quantum adversaries possessing just classical oracle
access. One can of course also ask for more powerful functions (which are secure
against superposition access, or “quantum-secure” [50]) but this turns out to
be unnecessary in our case. Second, we also allow oracles that are admissible
maps. More precisely, for an admissible map family C, we write AC to denote
a QPT whose circuits can make use of special “oracle gates” which implement
admissible maps from the family C. Each such gate accepts a quantum register
as input, to which it applies the appropriate admissible map from the family, and
returns an output register. It is not necessary for the input and output registers
to have the same number of qubits.

In any case, each use of an oracle gate counts towards the circuit length, and
hence also towards the total computation time of the algorithm. In particular,
no PT, PPT or QPT algorithm may make more than a polynomial number of
oracle calls.

3 Quantum Encryption and Indistinguishability

In this section, we give general definitions of encryption schemes for quantum
data (Sect. 3.1) and a corresponding notion of indistinguishability, including
IND-CPA and IND-CCA1 (Sect. 3.2.)

3.1 Quantum Encryption Schemes

We start by defining secret-key encryption for quantum data. In the following
we assume that the secret key is a classical bitstring, while the plaintext and
the ciphertext can be arbitrary quantum states. We refer to K, HM and HC

as the key space, the message (or plaintext) space, and the ciphertext space,
respectively. We remark that these are actually infinite families of spaces, each
with a number of (qu)bits which scales polynomially with n. We assume that
K := {0, 1}n, so that the key-length is n bits, and the plaintext and the cipher-
text lengths are m ≤ poly(n) and c ≤ poly(n) qubits, respectively. The key-
generation algorithm accepts a description of the security parameter n in unary
and outputs a classical key of length n. Later, we will define an additional Hilbert
space HE in order to model auxiliary information used by some adversary.
Encryption accepts a classical key and a plaintext, and outputs a ciphertext;
decryption accepts a classical key and a ciphertext, and outputs a plaintext.
The correctness guarantee is that plaintexts are preserved (up to negligible error)
under encryption followed by decryption under the same key.

Definition 5. A quantum symmetric-key encryption scheme (or qSKE) is a
triple of QPTs:

1. (key generation) KeyGen : 1n �→ k ∈ K
2. (encryption) Enc : K × D(HM ) → D(HC)
3. (decryption) Dec : K × D(HC) → D(HM )

such that ‖Deck ◦ Enck − 1M‖� ≤ negl(n) for all k ∈ suppKeyGen(1n).



Computational Security of Quantum Encryption 57

In the above, we used a convenient shorthand notation for encryption and
decryption maps with a fixed key k (which is classical), formally defined by
Enck : ρ �→ Enc(k, ρ) and Deck : σ �→ Dec(k, σ).

Next, we define a notion of public-key encryption for quantum data. In addi-
tion to the usual spaces from the symmetric-key setting above, we now also have
a public key of length p(n) ≤ poly(n) bits. We define the related public-key space
as Kpub ⊂ {0, 1}p and reuse K for the corresponding private-key space.

Definition 6. A quantum public-key encryption scheme (or qPKE) is a triple
of QPTs:

1. (key-pair generation) KeyGen : 1n �→ (pk, sk) ∈ Kpub × K
2. (encryption with public key) Enc : Kpub × D(HM ) → D(HC)
3. (decryption with private key) Dec : K × D(HC) → D(HM )

such that ‖Decsk ◦ Encpk − 1m‖� ≤ negl(n) for all (pk, sk) ∈ suppKeyGen(1n).

In this case, we again placed the relevant keys in the subscript.

3.2 Indistinguishability of Encryptions

Following the classical definition, the security notion of quantum indistinguisha-
bility under chosen plaintext attacks has been considered previously for the case
of quantum encryption schemes in [17] and for classical encryption schemes
in [25]. Here, we present the definition from [17], which we slightly extend to
the CCA1 (chosen ciphertext attack) setting. The security definitions are for-
mulated with the public-key (or asymmetric-key) setting in mind, and we clarify
when meaningful differences in the symmetric-key setting arise.

Our definition models a situation in which an honest user encrypts messages
of the adversary’s choice; the adversary then attempts to match the ciphertexts
to the plaintexts. In our formulation, an IND adversary consists of two QPTs:
the message generator and the distinguisher. The message generator takes as
input the security parameter and a public key, and outputs a challenge state
consisting of a plaintext and some auxiliary information. The auxiliary informa-
tion models, for instance, the fact that the output state might be entangled with
some internal state of the adversary itself. Then the distinguisher receives this
auxiliary information, and a state which might be either the encryption of the
original challenge state or the encryption of the zero state. The distinguisher’s
goal is to decide which of the two is the case.

Security in this model requires that the adversary does not succeed with
probability significantly better than guessing. We also define two standard vari-
ants: indistinguishability under chosen plaintext attack (IND-CPA) and indis-
tinguishability under chosen-ciphertext-attack (IND-CCA1). We leave the def-
inition of CCA2 (adaptive chosen ciphertext attack) security as an interesting
open problem. As before, all circuits are indexed by the security parameter.
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Definition 7 (IND). A qPKE scheme (KeyGen,Enc,Dec) has indistinguishable
encryptions (or is IND secure) if for every QPT adversary A = (M,D) we have:
∣
∣Pr

[ D{
(Encpk ⊗ 1E)ρME

}
= 1

] − Pr
[ D{

(Encpk ⊗ 1E)(|0〉 〈0|M ⊗ ρE)
}

= 1
]∣
∣

≤ negl(n), where ρME ← M(pk), ρE = TrM (ρME), and the probabilities are
taken over (pk, sk) ← KeyGen(1n) and the internal randomness of Enc, M,
and D.

– IND-CPA: In addition to the above, M and D are given oracle access to
Encpk.

– IND-CCA1: In addition to IND-CPA, M is given oracle access to Decsk.

Here we use |0〉 〈0|M to denote |0m〉 〈0m|, where m is the number of qubits
in the M register.

The definition is illustrated in Fig. 1. The symmetric-key scenario is the same,
except pk = sk, and M receives only a blank input. We remark that in the
public-key setting, IND implies IND-CPA: an adversary with knowledge of pk
can easily simulate the Encpk oracle. Note that, under CPA, the IND definition
is known to be equivalent to IND in the multiple-message scenario [17].

pk M
Encpk

D
M

E

pk M
|0〉 Encpk

D
M

E

Fig. 1. IND posits that a QPT (M, D) cannot distinguish between these two scenarios

4 Quantum Semantic Security

This section is devoted to defining quantum semantic security (Sect. 4.2), and
showing its equivalence with quantum indistinguishability (Sect. 4.3).

Following the classical definition, the security notion of quantum semantic
security under chosen plaintext attacks has been given previously in [25] for
the case of a special class of quantum states arising when considering quantum
access to classical encryption schemes. Here, we give a more general definition
for arbitrary quantum plaintexts. As we outlined the classical situation with
semantic security in Sect. 1.1, we start with a discussion of some difficulties in
transitioning to the quantum setting. A similar discussion can be found in [25]
and we explain below where and why we make different choices.
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4.1 Difficulties in the Quantum Setting

When attempting to transfer the definition of semantic security to the quantum
world, the main question one encounters is to determine the quantum equivalents
of h(x) and f(x) (as it is relatively clear that the plaintext x would have as
quantum equivalent a quantum state ρM , in a message register, M).

For the case of the side-information, h(x), one might attempt to postulate
that this side information is available via the output of a quantum map Φh,
evaluated on ρM . There are, however, two obvious problems with this approach:
firstly, it is unclear how to simultaneously generate both ρM and Φh(ρM ) (the
main obstacle stemming from the quantum no-cloning Theorem [48], accord-
ing to which it is not possible to perfectly copy an unknown quantum state).3

Secondly, it is well-established that the most general type of quantum side-
information includes entanglement (contrary to the scenario studied in [25]).
We therefore conclude that side information should be modelled simply as an
extra register (called E) such that ρME are in an arbitrary quantum state (as
generated by some process—for a formal description, see Definition 8).

For the case of the target function f , one might also postulate a quantum
map Φf , the goal then (for both the adversary and simulator), being to output
Φf (ρM ). However, given that quantum states and maps form a continuum, one
must exercise care in quantifying when a simulator has successfully simulated
the adversary. We propose three possible tests for quantifying “success” in the
semantic security game, each leading to its own definition. Since we show that
all three definitions are equivalent, we conclude that it is a matter of taste (or
context) which definition to label as the definition of quantum semantic security.
We focus in this section on the first one, which we called SEM, because we find
that it the most natural. We give formal definitions and proofs of equivalence
for all three definitions in the arXiv version [5]. Here is an overview of the three
different notions:

– SEM. In Definition 8, a state ρMEF is generated; intuitively, the contents
of register F can be seen as a “target” output that the adversary tries to
achieve (however, this is not quite the case as we point out shortly). We
then postulate a quantum polynomial time distinguisher who is given the F
register and charged with distinguishing the output of the adversary from the
output of the simulator, with security being associated with the inability of the
distinguisher in telling the two situations apart. We thus see that the role of
register F is actually to assist the distinguisher: semantic security corresponds
to the situation where the distinguisher essentially cannot tell the real from
ideal apart, even with access to the F system.

– SEM2. We specify instead that the state ρMEF be a classical-quantum state.
That is, ρME is quantum, but the register F contains a classical state. Thus,

3 [25] solves the issue by requiring a quantum circuit that takes classical randomness as
input and outputs plaintext states. Hence, multiple plaintext states can be generated
by using the same randomness.
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correlations shared between the two systems are classical only. The require-
ment for security is that the simulator should provide a classical output that
equals the contents of F , essentially just as well as the adversary can.

– SEM3. We introduce a classical function f , thus closely mimicking the clas-
sical definition. Namely, we specify as in SEM2 that F contains a classical
state y, which we furthermore assume to be precisely the results of any mea-
surements used to generate ρME (thus, y is, in a sense, a full “classical descrip-
tion” of ρME). The requirement for security is that the simulator is able to
output f(y) (for any f) with essentially the same probability as the adversary.

4.2 Definition of Semantic Security

As before, we work primarily in the public-key setting; adaptation to the
symmetric-key setting is again straightforward. In our concrete formulation
of SEM (Definition 8), we define the following QPT machines: the message gen-
erator M (which generates ρMEF ), the adversary A, the simulator S and the
distinguisher D.

Definition 8 [SEM]. A qPKE scheme (KeyGen,Enc,Dec) is semantically secure
if for any QPT adversary A, there exists a QPT simulator S such that for all
QPTs M and D,
∣
∣Pr

[ D{
(A ⊗ 1F )(Encpk ⊗ 1EF )ρMEF

}
= 1

] − Pr
[ D{

(S ⊗ 1F )ρEF

}
= 1

]∣
∣

≤ negl(n), where ρMEF ← M(pk), ρEF = TrM (ρMEF ), and the probability is
taken over (pk, sk) ← KeyGen(1n) and the internal randomness of Enc, A, S
and D.

– SEM-CPA: In addition to the above, all QPTs are given oracle access to
Encpk.

– SEM-CCA1: In addition to IND-CPA, M is given oracle access to Decsk.

The interactions among the QPTs are illustrated in Fig. 2. A few remarks
are in order. First, all the registers above are uniformly of size polynomial in n.
Second, the input and output registers of the relevant QPTs are understood from
context, e.g., the expression (S ⊗ 1F )ρEF makes clear that the input register
of S is E. Third, we note that SEM implies SEM-CPA in the public-key setting,
since access to the public key implies simulatability of Encpk. Finally, just as in
the case of IND, adapting to the symmetric-key setting is simply a matter of
setting pk = sk and positing that M receives only a blank input.

The classical (uniform) definition of semantic security is recovered as a special
case, as follows. All of the QPTs are PPTs, and the message generator M out-
puts classical plaintext m, side information h(m) and target function f(m). The
distinguisher D simply checks whether the adversary’s (or simulator’s) output is
equal to the contents of the F register.
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pk M
Encpk A D

M

E

F

pk M S D

M

E

F

Fig. 2. SEM: for all adversaries A there exists a simulator S such that these two
scenarios are indistinguishable

4.3 Semantic Security Is Equivalent to Indistinguishability

While semantic security gives a strong and intuitively meaningful definition of
security, indistinguishability is typically easier to prove and work with. In this
section we show that—just as in the classical setting—the two notions are equiv-
alent. This proves Theorem 1. The equivalence holds for all of the variants of
Definitions 7 and 8: under either public or private-key, we have equivalence of
IND with SEM, IND-CPA with SEM-CPA, and IND-CCA1 with SEM-CCA1.
Here, we focus on the SEM definition; see the Appendix in the arXiv version [5]
for the equivalence with the SEM2 and SEM3 definitions.

Theorem 9 (IND =⇒ SEM). If a quantum encryption scheme (KeyGen,
Enc,Dec) has indistinguishable encryptions (IND), then it is semantically secure
(SEM).

Proof. Suppose that an encryption scheme (KeyGen,Enc,Dec) has indistinguish-
able encryptions. Let A be QPT SEM attacker against semantic security as
in Definition 8. We define the QPT SEM simulator S as follows: S does not
receive Encpk(ρM ), but instead runs A on input (Encpk ⊗ 1E)(|0〉 〈0| ⊗ ρE) and
outputs whatever A outputs. Let M be a QPT SEM message generator that
outputs ρMEF .

Assume for a contradiction the existence of a QPT SEM distinguisher D
which successfully distinguishes the output of A from the output of S (with the
help of register F ), then the combination of A and D successfully distinguishes
(Encpk ⊗ IEF )ρMEF from (Encpk ⊗ IEF )(|0〉 〈0| ⊗ ρEF ), hence contradicting the
indistinguishability. ��

The proof is easily modified for the private-key setting, as well as CPA and
CCA1; see the arXiv version for details [5].

Theorem 10 (SEM =⇒ IND). If a quantum encryption scheme (KeyGen,
Enc,Dec) is semantically secure (SEM), then it has indistinguishable encryptions
(IND).

For the proof, see the arXiv version [5].
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5 Quantum Encryption Schemes

We now turn to the question of existence for encryption schemes for quantum
data. We present two schemes based on the existence of classical functions which
are difficult to invert for quantum computers. The first scheme (Sect. 5.1) is
symmetric-key and IND-CCA1-secure; the second scheme (Sect. 5.2) is public-
key and IND-CPA-secure. By the results of Sect. 4, these schemes are also seman-
tically secure.

5.1 Quantum Symmetric-Key Encryption from One-Way Functions

In this section, we prove Theorem 2: If quantum-secure one-way functions exist,
then so do IND-CCA1-secure private-key quantum encryption schemes.

The proof proceeds in two steps. First, we define quantum-secure one-way
functions (qOWFs) and quantum-secure pseudo-random functions (qPRFs); we
can argue as in the classical world that qPRFs exist if qOWFs do (Theorem 13.)
Second, we show that any qPRF can be used to construct an explicit IND-CCA1-
secure symmetric-key scheme for quantum data.

We begin with the formal definitions of qOWFs and qPRFs, and a statement
of the result connecting the two.

Definition 11. A PT-computable function f : {0, 1}∗ → {0, 1}∗ is a quantum-
secure one-way function (qOWF) if for every QPT A,

Pr
x

$←−{0,1}n

[A(f(x), 1n) ∈ f−1(f(x))] ≤ negl(n).

Definition 12. A PT-computable function family f : {0, 1}n×{0, 1}m → {0, 1}�

is a quantum-secure pseudorandom function (qPRF) if for every QPT D
equipped with a classical oracle,

∣
∣
∣
∣
∣

Pr
k

$←−{0,1}n

[Dfk(1n) = 1] − Pr
g

$←−{{0,1}m→{0,1}�}
[Dg(1n) = 1]

∣
∣
∣
∣
∣
≤ negl(n).

We remark that, to some readers, the restriction to classical oracles might seem
artificial. While one can certainly consider functions with the stronger guaran-
tee of resistance to quantum adversaries with quantum oracle access, stronger
functions are not necessary to establish our results. We thus opt for the weaker
primitive. In either case, the following holds.

Theorem 13. If qOWFs exist, then qPRFs exist.

Since our definitions are in terms of classical oracles, the classical proof that
shows that qOWFs imply qPRFs carries through [29,31]. We remark that
Zhandry [50] extended this result to the case of functions secure against quan-
tum superposition queries, what he calls “quantum-secure PRFs.” It should be
noted that the proof of the Theorem 13 actually implies the existence of a qPRF
for any (polynomial) choice of the parameters m and � in Definition 12.
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We are now ready to proceed with the second part of the proof of Theorem 2,
namely the construction of an encryption scheme from a given qPRF. Essentially,
this scheme encrypts a quantum state ρ by first selecting a random string r, then
inputing r into a qPRF; the output fk(r) is then used as an encryption key for
the quantum one-time pad, Pfk(r) .

Scheme 1. Let f : {0, 1}n × {0, 1}2n → {0, 1}2n be a qPRF. Let qPRF-SKE be
the following triple of QPT algorithms:

1. (key generation) KeyGen(1n): output k $←−{0, 1}n;
2. (encryption) Enck(ρ): choose r $←−{0, 1}2n and output |r〉 〈r| ⊗ Pfk(r)ρPfk(r).
3. (decryption) Deck(σ) : measure the first 2n qubits in the computational basis

to obtain r′ ∈ {0, 1}2n; apply Pfk(r′) to remaining 2n qubits and output the
result.

For simplicity, we chose D(Hn) for the key space and the plaintext space,
and D(H2n) for the ciphertext space; we can easily adapt the above to other
polynomially-related cases by selecting a qPRF with different parameters. Cor-
rectness of Scheme 1 is easily verified.

We show that the scheme is secure against non-adaptive chosen ciphertext
attacks. The classical version of this result is standard, and we use essentially
the same proof; see, e.g., Proposition 5.4.18 in Goldreich’s textbook [28].

Lemma 14. If f is a qPRF, then Scheme 1 is an IND-CCA1-secure symmetric-
key quantum encryption scheme as defined in Definition 7.

Proof. First, we analyse the security of the scheme in an idealized scenario where
f is a truly random function. We claim that in this case, A correctly guesses
the challenge with probability at most 1/2 + negl(n) (see IND’ as defined in
the arXiv version [5]). In fact, this bound holds for a stronger adversary A′,
who has access to a classical oracle for f prior to the challenge, and access to
polynomially many pairs (ri, f(ri)) for random ri, 1 ≤ i ≤ q, after the challenge.
This adversary is stronger than A since it can simulate A by implementing Encf

and Decf oracles using its f oracles. Since the input r into f in the challenge
ciphertext is uniformly random, the probability that any of the polynomially
many oracle calls of A′ uses the same r is negligible. In the case that no oracle
calls use r, the mixtures of the inputs to A′ (including the pairs (ri, f(ri)))
are the same for the original challenge and the zero challenge. This fact can be
verified by first averaging over the values of f(r): since f is uniformly random,
f(r) is also uniformly random as well as independent of the other values of f .
In both cases, applying the quantum one-time pad results in the state:

|r〉 〈r| ⊗ 1
2n

1 ⊗ ρE ⊗ |r1〉 〈r1| ⊗ |f(r1)〉 〈f(r1)| ⊗ · · · ⊗ |rq〉 〈rq| ⊗ |f(rq)〉 〈f(rq)| ,

and indistinguishability follows.
Next, we consider the case that f is a pseudorandom function. We show

that a successful IND-CCA1 adversary A (i.e., one that distinguishes challenges
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with better than negligible probability) can be used to construct a successful
f -adversary A0 (i.e., one that distinguishes f from random with non-negligible
probability.) The adversary A0 is a QPT with classical oracle access to a function
ϕ : {0, 1}2n → {0, 1}2n, and aims to output 0 if ϕ is perfectly random and 1 if
ϕ = fk for some k. Define the simulated oracles

Encϕ : ρ �→
(
r, Pϕ(r)ρPϕ(r)

)
, r $←−{0, 1}2n, and Decϕ : |r′〉 〈r′| ⊗ ρ �→ Pϕ(r′)ρPϕ(r′),

where, as before, we assume that Decϕ measures the first register before decrypt-
ing the second. Note that if ϕ = fk then these are exactly the encryption and
decryption oracles (with key k) of the qPRF-SKE scheme.

The QPT Aϕ
0 proceeds as follows. First, it simulates A, and replies to its

queries to the encryption oracle with Encϕ and its queries to the decryption
oracle with Decϕ. When it transmits the challenge, Aϕ

0 replies with either the
encryption of the challenge, or the encryption of |0n〉 〈0n|, each with probability
1/2. If A responds correctly, Aϕ

0 outputs 1; otherwise it outputs 0. If ϕ = fk

then we have exactly simulated the IND-CCA1 game with adversary A; in that
case, since A is IND-CCA1-breaking, Aϕ

0 outputs 1 with probability at least
1/2 + 1/p(n) for some polynomial p, for infinitely many n.

We conclude that

∣
∣
∣
∣
∣

Pr
k

$←−{0,1}n

[Afk

0 (1n) = 1] − Pr
ϕ

$←−{{0,1}2n→{0,1}2n}
[Aϕ

0 (1n) = 1]

∣
∣
∣
∣
∣
≥ 1/p(n) − negl(n),

(3)

for infinitely many n, i.e., f is not a qPRF. ��
Putting together Theorem 13 and Lemma 14, we arrive at a proof of

Theorem 2.

5.2 Quantum Public-Key Encryption from Trapdoor Permutations

For the construction of public-key schemes, we will need qOWFs with an addi-
tional property: the existence of trapdoors which enable efficient inversion. Fol-
lowing the classical approach of Diffie and Hellman [21], we set down the notion of
a quantum-secure trapdoor one-way permutation (or qTOWP), and then show
how to use any qTOWP to construct IND-CPA secure public-key encryption
schemes for quantum data. This will establish Theorem 3: If quantum-secure
trapdoor one-way permutations exist, then so do semantically secure public-key
quantum encryption schemes..

We begin with a definition of qTOWPs. We require a slight (but standard)
variation of Definition 11, namely the notion of a quantum-secure one-way per-
mutation (or qOWP). A qOWP is a qOWF whose input domains are sets Di;
moreover, the function restricted to any such domain must be a permutation
(from the domain to the corresponding range.) When we augment such a qOWP
with trapdoors, we arrive at the following definition.
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Definition 15. A quantum-secure trapdoor one-way permutation (qTOWP) is
a qOWF

{fi : Di → {0, 1}∗}i∈I

(where each fi is a bijection), together with a triple of PPTs (G,S, I) which

1. (generate (index, trapdoor) pair) supp G(1n) ⊆ (I ∩ {0, 1}n) × {0, 1}n;
2. (sample from domain) for all i ∈ I, supp S(i) = Di;
3. (invert using trapdoor) for all (i, t) ∈ supp G(1n) and all x ∈ Di, I(fi(x), t) =

x.

Before we can describe the public-key scheme and prove its security, we
need two additional (well-known) primitives which can be constructed from any
qOWP, with or without trapdoors. The first is a quantum-secure “hard-core”
predicate, which is a “yes” or “no” question about inputs x which is difficult to
answer if one only knows f(x).

Definition 16. A PT-computable b : {0, 1}∗ → {0, 1} is a hard-core of a qOWP
f if for every QPT A,

Pr
x

$←−{0,1}n

[A(f(x), 1n) = b(x)] ≤ 1
2

+ negl(n).

Theorem 17. ([3], quantum analogue of [27]) If qOWPs exist, then qOWPs
with hard-cores exist.

The other primitive we need is a quantum-secure pseudorandom generator, which
is defined below. The classical proof that hard-cores imply pseudorandom gen-
erators carries over with little modification (see Lemma 19).

Definition 18. A PT-computable deterministic function G : {0, 1}n → {0, 1}m

is a quantum-secure pseudorandom generator (qPRG) if for every QPT D,
∣
∣
∣
∣
∣

Pr
s

$←−{0,1}n

[D(G(s)) = 1] − Pr
y

$←−{0,1}m

[D(y) = 1]

∣
∣
∣
∣
∣
≤ negl(n).

Lemma 19. Suppose f is a qOWP, b its hard-core predicate, and let t be poly-
nomial in n. Then G : s �→ b(f t−1(s))b(f t−2(s)) . . . b(s) is a qPRG.

Proof (Sketch). The proof proceeds almost identically as in the classical case
(see, e.g., [28].) Let D be a quantum adversary that distinguishes G(Un) from
uniform. Note that, as stated in Definition 18, D gets only classical bitstring
outputs from the pseudorandom generator. In the classical proof, one constructs
an adversary A which uses D as a black-box subroutine, and breaks the hard-
core of f . We use the exact same A now; in particular, we only need to invoke
D on classical inputs and read out its (post-measurement) classical outputs (0
or 1). Of course, by virtue of needing to invoke D, A itself will now be a QPT.
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In slightly greater detail, we use a standard hybrid argument to give a
“predictor” algorithm A that, for some index i ≤ t, can predict the i + 1st

bit of G(Un), given as input the first i bits of the output of G. A suc-
ceeds with non-negligible advantage over random, i.e., the probability over s
that A(b(f t−1(s)) . . . b(f t−i(s))) outputs b(f t−(i+1)(s) is at least 1/2 + 1/p(n)
where p(n) is some polynomial. Crucially, since f implements a permutation
over {0, 1}n, we have that b(f i−1(Un)) . . . b(Un) is distributed identically to
b(f t−1(Un)) . . . b(f t−i(Un)). Therefore, given uniform x, and y = f(x), we can
use the output of the predictor, A(b(f i−1(y)) . . . b(y)) = A(b(f i(x)) . . . b(f(x)))
to predict b(x) with non-negligible advantage, in violation of the security guar-
antee of the hard-core predicate. ��

We now have all of the ingredients needed to describe a public-key scheme
for encrypting quantum data.

Scheme 2 Let f be a qTOWP, and let b and G : {0, 1}n → {0, 1}2n be a cor-
responding hard-core and qPRG, respectively. Let qTOWP-PKE be the following
triple of algorithms:

1. ((public, private) key-pair generation) KeyGen(1n): output G(1n) = (i, t) ∈
{0, 1}n × {0, 1}n;

2. (encryption with public key) Enci(ρ):
– apply S(i) to select d ∈ Di, and compute r := G(d);
– output |f2n

i (d)〉 〈f2n
i (d)| ⊗ PrρPr

3. (decryption with private key) Dect(|s〉 〈s| ⊗ σ) :
– for j = 1, . . . , 2n, apply b ◦ (I)j to (s, t); concatenate the resulting bits to

get u ∈ {0, 1}2n;
– output PuσPu.

It remains to show that this scheme is secure against chosen-plaintext attacks.
We first set the following notation. Recall from Sect. 2.2 that a string r of 2n
bits determines a Pauli group element Pr ∈ U(2n). Given an n-qubit register A,
an arbitrary register B, and ρ ∈ D(HA ⊗ HB), define
Pr;A(ρ) := (Pr ⊗ 1B)ρ(Pr ⊗ 1B). Furthermore, Enci(ρ) = |f2n

i (d)〉〈f2n
i (d)| ⊗

PrρPr where r = G(d). We can prove indistinguishability by extending the
hybrid argument in the proof of Lemma 19 in a standard way. To sketch the
argument, first recall that the “predictor” algorithm succeeds at predicting the
j + 1st bit of G(Un) given as input the first j bits of the output of G. Now we
also allow the predictor to read the bits of f2n

i (d). Success implies breaking the
hard-core of f (which is used to define and ensure the security of the qPRG G).
We conclude that the strings

i f2n
i (d) G(s) and i f2n

i (d) r′

are computationally indistinguishable for uniformly random s, r′, and (i, t) ←
G(1n). Hence the states

|i〉 〈i| ⊗ |f2n
i (d)〉〈f2n

i (d)| ⊗ PG(s);M (ρME) and |i〉 〈i| ⊗ |f2n
i (d)〉〈f2n

i (d)| ⊗ Pr′;M (ρME)
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must also be computationally indistinguishable, since they are obtained by the
application of a quantum algorithm to the previous pairs of strings, respectively,
where ρME ← M(i) (i is copied and M is applied to one of the copies, and then
the quantum one-time pad is applied to the result with G(s) or r′, respectively).
The right-hand side encryption above obviously satisfies IND-CPA, so we also
have the computational indistinguishability of

|i〉 〈i| ⊗ |f2n
i (d)〉〈f2n

i (d)| ⊗ Pr′;M (ρME) and

|i〉 〈i| ⊗ |f2n
i (d)〉〈f2n

i (d)| ⊗ Pr′;M (|0〉 〈0|M ⊗ ρE).

By transitivity of computational indistinguishability, we conclude that

|i〉 〈i| ⊗ |f2n
i (d)〉〈f2n

i (d)| ⊗ PG(s);M (ρME) and

|i〉 〈i| ⊗ |f2n
i (d)〉〈f2n

i (d)| ⊗ PG(s);M (|0〉 〈0|M ⊗ ρE)

are indistinguishable, which completes the proof of Theorem 3. ��

6 Conclusion

We have defined semantic security for the encryption of quantum data and
shown its equivalence with indistinguishability; these results are given in the
uniform model for quantum computations, but as is standard classically (see
Chap. 5 of Goldreich’s text [28]), these definitions can be adjusted to the case
of “non-uniform” (but still polynomial-time) adversaries, whose messages need
not be generated efficiently. While the proof is somewhat different, the equiva-
lence of IND and SEM still hold in this case. The constructions of encryption
schemes (IND-CCA1 symmetric-key and IND-CPA public-key) presented above
carry over as well, except that we now require primitives (qPRFs and qTOWPs,
respectively) which are secure against non-uniform adversaries.

6.1 Extensions and Future Work

We now briefly discuss some possible extensions of the above results. In most
cases, these extensions are a matter of modifying our definitions and proofs in a
fairly straightforward way. We leave the other cases as interesting open problems.

– Our definitions of IND-CPA, IND-CCA1 and SEM assume that all of the
relevant messages are generated in polynomial time. In other words, our
results assume “uniform” adversaries. As is standard classically (see Chap. 5 of
Goldreich’s text [28]), these definitions can be adjusted to the case of “non-
uniform” (but still polynomial-time) adversaries, whose messages need not
be generated efficiently. While the proof is of course somewhat different, the
equivalence of IND and SEM still hold in this case. The encryption schemes
(IND-CCA1 symmetric-key and IND-CPA public-key) presented above carry
over as well, except that we now require primitives (qPRFs and qTOWPs,
respectively) which are secure against non-uniform adversaries.
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– Our symmetric-key encryption scheme assumes that the decryption algorithm
measures a portion of the input in order to recover a classical randomness
string, prior to decrypting. One might find this requirement suspicious, e.g., if
a perfect measurement device is too much to assume. This requirement can be
removed, but we then need to assume that the relevant primitives (OWFs and
qPRFs) are secure against superposition queries. This can also be achieved
(see [50]).

– One outstanding open problem is to define and construct schemes for CCA2
(adaptive chosen ciphertext attack) security in the case of the encryption of
quantum states. Classically, CCA2 security is defined as CCA1, with the fur-
ther property that the adversary is allowed to query the decryption oracle
even after the challenge query, provided he does not query about the challenge
ciphertext itself (otherwise the challenger aborts the game.) The obvious way
to define this in the quantum world is to require that every decryption query
performed by the adversary after the challenge query is ‘very different’ from
the challenge query itself (e.g., it is orthogonal to the challenge ciphertext.)
But the problem here is that this condition might be impossible for the chal-
lenger to check: for example, the adversary might embed in a decryption query
a component non-orthogonal to the challenge query, but with such a small
amplitude that the challenger cannot detect it with high probability. Even if
it is unclear whether this issue could raise problems in any actual reduction,
it would be anyway a striking asymmetry to the classical case, because there
would be no way for the challenger to check that the adversary actually ful-
filled the required condition. Hence, giving a satisfactory definition for CCA2
security in the quantum world remains an interesting open problem.
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8. Ben-Or, M., Crépeau, C., Gottesman, D., Hassidim, A., Smith, A.: Secure multi-
party quantum computation with (only) a strict honest majority. In: 47th Annual
IEEE Symposium on Foundations of Computer Science, FOCS 2006, pp. 249–260.
IEEE (2006)

9. Bennett, C., Brassard, G.: Quantum cryptography: public key distribution and coin
tossing. In: Proceedings of the International Conference on Computers, Systems,
and Signal Processing, pp. 175–179 (1984)

10. Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.): Post-Quantum Cryptography.
Springer, Berlin (2009)
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Abstract. Quantum message authentication codes are families of keyed
encoding and decoding maps that enable the detection of tampering on
encoded quantum data. Here, we study a new class of simulators for quan-
tum message authentication schemes, and show how they are applied in
the context of two codes: the Clifford and the trap code. Our results show
for the first time that these codes admit an efficient simulation (assum-
ing that the adversary is efficient). Such efficient simulation is typically
crucial in order to establish a composable notion of security.

1 Introduction

Quantum cryptography is the study of the security of information processing in
a quantum world. While quantum key distribution [4] is today the most widely
successful quantum cryptographic technology [7,12], quantum information effec-
tively re-defines many cryptographic paradigms [6]. Among these is the need for
new definitions and protocols for cryptographic tasks that operate on quantum
data, such as quantum secret sharing [9] and quantum multi-party computa-
tion [3]. Another fundamental task is quantum message authentication.

Quantum message authentication schemes, introduced in [2], are families of
keyed encoding and decoding maps which allow for the detection of tampering
on encoded quantum data. These codes were originally given in a very efficient
form, based on purity testing [2], and were shown to also satisfy a composable
security notion [14].

Further quantum message authentication schemes have been proposed,
including the signed polynomial code[1,3], the trap code [5] and the Clifford
code [1,11]. These schemes have a nice algebraic form, which makes them par-
ticularly easy to study. Perhaps the main reason for interest in these schemes is
that they have a sufficient amount of “structure” to enable evaluation of quan-
tum gates over the encoded data (this technique is called quantum computing on
authenticated data (QCAD)). This has lead to protocols for multi-party quantum
computation [3], quantum one-time programs [5] and the verification of quantum
computations [1].

The security of quantum message authentication schemes is typically defined
in terms of the existence of a simulator that, given access only to the ideal func-
tionality for quantum message authentication (which is a virtual device that
c© Springer International Publishing AG 2016
A.C.A. Nascimento and P. Barreto (Eds.): ICITS 2016, LNCS 10015, pp. 72–91, 2016.
DOI: 10.1007/978-3-319-49175-2 4
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either transmits the quantum data directly and outputs “accept”, or replaces it
with a dummy state and outputs “reject”), is able to emulate the behaviour of
the adversary so that the real-world protocol (involving the adversary) is statis-
tically indistinguishable from the ideal-world protocol (involving the simulator).
This type of definition fits in the quantum Universal Composability (UC)[8,16]
framework, as long as we add a further condition: if the adversary runs in poly-
nomial time, so must the simulator (an efficient simulation). Until now, direct
efficient simulations were known only for the purity-testing based codes [2].

In this work, we show a new family of efficient simulators for quantum mes-
sage authentication schemes. The main idea is that the simulator replaces the
entire codeword by half-EPR pairs (keeping the remaining half to itself), and
runs the adversary on these entangled states (as well as the reference system for
the original input). After the attack is applied, the simulator performs Bell basis
measurements in order to verify the integrity of the EPR pairs. So long as enough
EPR pairs are found to be intact, the simulator makes the ideal functionality
“accept”; otherwise, it makes it “reject”. It is well-known that this Bell basis
measurement will detect any non-identity Pauli attack—given the structure of
the codes that we analyze, we show that this is sufficient.

We apply this type of simulator to the Clifford and trap quantum message
authentication codes. We note that the Clifford code was previously proven
secure according to an algebraic definition, without an efficient simulation [1,11],
and that the trap scheme was proven secure according to a simulator for a more
elaborate ideal functionality for quantum one-time programs [5]. We thus estab-
lish for the first time efficient simulators for these codes (note, however, that we
make extensive use of the algebraic tools developed in these prior works, and
that we achieve the same security bounds). We also note that the idea of using
EPR-pair testing as a proof technique for quantum message authentication has
appeared in [2], where a more elaborate type of testing (called purity testing) is
used.

Roadmap. The remainder of the paper is structured as follows. In Sect. 2, we
give some details on the standard notation and well-known facts that are used
throughout. In Sect. 3, we formally define quantum message authentication in
terms of correctness and security. Section 4 gives the Clifford and trap schemes,
while in Sect. 5 we show security of the schemes.

2 Preliminaries

Here, we present basic notation (Sect. 2.1) and well-known facts about the Pauli
(Sect. 2.2) and Clifford (Sect. 2.3) groups.

2.1 Basic Notation

We assume the reader is familiar with the basics of quantum information [15],
but nevertheless give a quick review of the most relevant notation in this
section. We will use the density operator formalism to represent quantum states.
Density matrices are represented with a greek letter, typically ρ. The subscripts
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of the quantum states indicate which spaces (registers) the states reside in. We
therefore represent the density operator for the state in the M register as ρM .

The trace norm of a state, ρ, denoted ‖ρ‖1, is defined as ‖ρ‖1 = tr[
√

ρ†ρ].
The trace distance between two states ρ and σ, denoted D(ρ, σ), is defined
as D(ρ, σ) = 1

2 ‖ρ − σ‖1. The trace distance is a measure of distiguishability
between the two states ρ and σ. The trace distance is equal to 0 if and only
if ρ and σ are the same state (and therefore indistinguishable) and the trace
distance is equal to 1 if and only if ρ and σ are orthogonal (and therefore perfectly
distinguishable). The trace norm, and therefore the trace distance, satisfies the
triangle inequality: ‖ρ + σ‖1 ≤ ‖ρ‖1 + ‖σ‖1.

Let B(H) be the space of bounded linear operators acting on a Hilbert space,
H. Given A ⊆ B(H1) and B ⊆ B(H2) then given a linear map T from A → B,
T is called positive if T (A) ≥ 0 for all positive A ∈ A. T is a completely positive
map, (CP map), if T ⊗ Id : A ⊗ B → B(H1) ⊗ B(Cn) is positive for all n ∈ N.
In this case, Id is the identity map on B(Cn) and Cn is isomorphic to a complex
Hilbert space of dimension n. A map, T , is trace preserving if tr(T (ρ)) = tr(ρ).
T is a quantum channel if it is a completely positive and trace preserving map
(CPTP map). A family of quantum maps is polynomial-time if they can be
written as a polynomial-time uniform family of quantum circuits. A quantum
state is polynomial-time generated if it given as the output of a polynomial-time
quantum map (which takes as input the all-zeros state) [17].

A permutation map, denoted throughout by π, is a unitary operation that
acts on n qubits and permutes the order of the n qubits. This can equivalently
be seen as a permutation, σ, of the indices of the qubits, where π would take the
ith qubit to the σ(i)th position. Permutation maps are orthogonal, real valued
matrices so π−1 = π†. We use Πn to denote the set of all permutation maps on
n qubits.

We denote a two-qubit maximally entangled pure state as |Φ+〉 = 1√
2
(|00〉 +

|11〉). This is one of four Bell states. The other three Bell states are also maxi-
mally entangled pure states, |Φ−〉 = 1√

2
(|00〉−|11〉), |Ψ+〉 = 1√

2
(|01〉+ |10〉), and

|Ψ−〉 = 1√
2
(|01〉− |10〉). The four Bell states are orthogonal and form a basis for

two-qubit states. The four Bell states are therefore perfectly distinguishable and
so we can perform a projective measurement into the Bell basis and determine
which of the four Bell states we have. This is called a Bell basis measurement.

An [[n, 1, d]]-code is a quantum error correcting code that encodes one logical
qubit into n qubits and has distance d; if d = 2t+1, the code can correct up to t
bit or phase flips. We assume that the decoding map can always be applied, but
if more than t errors are present, it is not guaranteed to decode to the original
input.

2.2 Pauli Matrices

The single-qubit Pauli matrices are given by:

I =
[
1 0
0 1

]

,X =
[
0 1
1 0

]

, Z =
[
1 0
0 −1

]

, and Y = iXZ =
[
0 −i
i 0

]

. (1)
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Recall that if we allow complex coefficients, the any single-qubit gate can be
written as a linear combination of the four single-qubit Pauli matrices.

An n-qubit Pauli matrix is given by the n-fold tensor product of single-
qubit Paulis. We denote the set of all n-qubit Pauli matrices by Pn, where
|Pn| = 4n. Any n-qubit unitary operator, U , can also be written as a linear
combination of n-qubit Paulis, again allowing for complex coefficients. This gives
U =

∑
P∈Pn

αP P , with
∑

P∈Pn
|αP |2 = 1, since U is unitary. This is called the

Pauli decomposition of a unitary quantum operation.
The Pauli weight of an n-qubit Pauli, denoted ω(P ), is the number of non-

identity Paulis in the n-fold tensor product. We will also define sets of Paulis
composed only of specific Pauli matrices, such as {I,X}⊗n which is the set of
all n-qubit Paulis composed of only I and X Paulis, or {I, Z}⊗n which is the
set of all n-qubit Paulis composed of only I and Z Paulis. Finally, Paulis are
self-inverses, so P = P−1 = P †.

The following lemma, called the Pauli Twirl [10], shows how we can greatly
simplify expressions that involve the twirling of an operation by the Pauli
matrices:

Lemma 2.1 (Pauli Twirl). Let P, P ′ be Pauli operators. Then for any ρ it
holds that:

1
|Pn|

∑

Q∈Pn

Q†PQρQ†P ′†Q =

{
0, P 
= P ′

PρP †, otherwise .

2.3 Clifford Group

The Clifford group, Cn, on n qubits are unitaries that map Pauli matrices to
Pauli matrices (up to a phase of ±1 or ±i). Specifically, if P ∈ Pn, then for all
C ∈ Cn, αCPC† ∈ Pn, for some α ∈ {±1,±i}. Not only do Cliffords map Paulis
to Paulis, but they do so with a uniform distribution [1]:

Lemma 2.2 (Clifford Randomization). Let P be a non-identity Pauli oper-
ator. Applying a random Clifford operator (by conjugation) maps it to a Pauli
operator chosen uniformly over all non-identity Pauli operators. More formally,
for every P , Q ∈ Pn \ {I}, it holds that:

∣
∣{C ∈ Cn|C†PC = Q}∣∣ =

|Cn|
|Pn| − 1

.

We also state a lemma that is analogous to the Pauli twirl, the Clifford
Twirl [10].

Lemma 2.3 (Clifford Twirl). Let P 
= P ′ be Pauli operators. For any ρ it
holds that: ∑

C∈Cn

C†PCρC†P ′C = 0.

Finally, we note that sampling a uniformly random Clifford can be done effi-
ciently [13].
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3 Quantum Message Authentication

Following [11], we define a quantum message authentication scheme as a pair of
encoding and decoding maps that satisfy the following:

Definition 1 (Quantum Message Authentication Scheme). A quantum
message authentication scheme is a polynomial-time set of encoding and decod-
ing channels {(EM→C

k ,DC→MF
k ) | k ∈ K}, where K is the set of possible keys, M

is the input system, C is the encoded system, and F is a flag system that
is spanned by two orthogonal states: |acc〉 and |rej〉, such that for all ρM ,
(Dk ◦ Ek)(ρM ) = ρM ⊗ |acc〉 〈acc|.

In order to define security for a quantum message authentication scheme,
we first consider a reference system R, so that the input can be described as
ρMR and we can furthermore assume that the system consisting of the encoded
message, together with the reference system, undergoes a unitary adversarial
attack UCR. For a fixed key, k, we thus define the real-world channel as:

Ek
MR→MRF : ρMR → (Dk ⊗ IR)(UCR(Ek ⊗ IR)(ρMR)U†

CR), (2)

where IR is the identity map on the reference system, R. From now on, we will
not include the identity maps, since it will be clear from context which system
undergoes a linear map and which one does not.

Security is given in terms of the existence of a simulator, which has access
only to the ideal functionality. This ideal functionality either accepts (and leaves
the message register M intact), or rejects (and outputs a fixed state ΩM ); the
simulator can interact with the ideal functionality by selecting accept or reject.
In both cases, the simulator can also alter the reference system R. This ideal-
world process is modeled by the quantum channel F , called the ideal channel,
where for each attack, UCR, there exists two CP maps U acc and U rej acting
only on the reference system R such that U acc + U rej = 1:

FMR→MRF : ρMR → (1M ⊗ U acc
R )ρMR ⊗ |acc〉 〈acc|

+trM ((1M ⊗ U rej
R )ρMR)ΩM ⊗ |rej〉 〈rej| . (3)

Definition 2 (Security of Quantum Message Authentication). Let
{(EM→C

k ,DC→MF
k ) | k ∈ K} be a quantum message authentication scheme,

with keys k chosen from K. Then the scheme is ε-secure if for all attacks, there
exists a simulator such that:

D
( 1

|K|
∑

k∈K
Ek(ρMR),F (ρMR)

)
≤ ε,∀ρMR. (4)

Furthermore, we require that if Ek is polynomial-time in the size of the input
register M , then F is also polynomial-time in the size of the input register, M .

We note that this definition is similar to the definition in [11]; however we
require a polynomial-time simulation whenever the attack is polynomial-time.
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This does not limit the proof to polynomial-time attacks, but merely restricts
the simulator to have at most the complexity of the attack. This condition being
satisfied is typically a crucial ingredient in order for the composability to carry
through [16].

4 Quantum Message Authentication Schemes

Here, we present two quantum message authentication schemes, the Clifford
code (Sect. 4.1) and the trap code (Sect. 4.2). The two encoding procedures both
proceed by appending trap qubits (in a fixed state) to the message register, and
then twirling by a Clifford (for the Clifford code) or a Pauli (for the trap code).
The trap code also has a permutation in addition to the Pauli twirl acting on the
message register. Decoding simply consists of undoing the permutation in the
trap code and then in both cases measuring the traps to check for any sign of
tampering. In the case of the Clifford code, only one set of traps (all in the same
state) is needed because the Clifford twirl breaks any Pauli attack into a uniform
mixture of Paulis which is detected on the traps with high probability. The trap
code, however, relies on two sets of traps (in two different states) with both
a Pauli twirl and a permutation of the message and trap qubits. Furthermore,
the trap scheme requires that we first encode the input message into an error
correcting code (essentially, this is because the Pauli twirl is not as powerful as
the Clifford twirl and will catch only high-weight Pauli attacks with the error
correcting code taking care of the low-weight ones).

4.1 The Clifford Code

We define a message authentication scheme using a Clifford encryption as follows:

1. The encoding, EM→C
k , takes as input an n-qubit message in the M system; it

appends an additional d-qubit trap register in the state |0〉 〈0|⊗d. A uniformly
random Clifford is then applied to the resulting n+d-qubit register, according
to the key, k. The output register is called C.
Mathematically, the encoding, EM→C

k , indexed by a secret key, k, on input
ρM (where Ck the kth Clifford) is given by:

Ek : ρM → Ck(ρM ⊗ |0〉 〈0|⊗d)C†
k. (5)

2. The decoding, DC→MF
k , takes the C register and applies the inverse Clifford,

according to the key, k. The last d qubits are then measured in the compu-
tational basis. If this measurement returns |0〉 〈0|⊗d then an additional qubit
|acc〉 〈acc| is appended in the flag system, F . If the measurements return any-
thing else, then the remaining system, M , is traced out and replaced with a
fixed n-qubit state, ΩM , and an additional qubit, |rej〉 〈rej|, is appended in
the flag system.
Mathematically, the decoding, DC→MF

k , also indexed by the secret key, k, is
given by:
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Dk : ρC → tr0(PaccC
†
k(ρC)CkP†

acc) ⊗ |acc〉 〈acc|
+trM,0(PrejC

†
k(ρC)CkP†

rej)ΩM ⊗ |rej〉 〈rej| , (6)

where Pacc = 1⊗n ⊗ |0〉 〈0|⊗d and Prej = 1⊗(n+d) − Pacc are measurement
projectors representing the trap qubits being in their initial states or altered,
respectively. Finally, tr0 refers to the trace over the d trap qubits.

4.2 The Trap Code

We define a trap code message authentication scheme as follows:

1. The encoding, EM→C
k , takes as input ρM and applies an [[n, 1, d]]-error cor-

recting code to the single-qubit M register, which will correct up to t errors
(where d = 2t+1). It then appends two additional n-qubit trap registers, the
first in the state |0〉 〈0|⊗n and the second in the state |+〉 〈+|⊗n. The result-
ing 3n-qubit register is then permuted and a Pauli encryption is applied,
according to the key, k. The resulting register is called C.
Mathematically the encoding, EM→C

k , indexed by a two-part secret key k =
(k1, k2) is given by:

Ek : ρM → Pk2πk1(EncM (ρM ) ⊗ |0〉 〈0|⊗n ⊗ |+〉 〈+|⊗n)π†
k1

Pk2 , (7)

where EncM (ρM ) represents the input state after the error correcting code
has been applied to the M system, πk1 is the kth

1 permutation and Pk2 is the
kth
2 Pauli matrix.

We note that we use the error-correcting properties of the code only (it is
sufficient in our context to simply correct low-weight Paulis on the message,
as opposed detecting them and rejecting).

2. The decoding, DC→MF
k , takes the C register and applies the inverse Pauli and

then the inverse permutation according to the key, k. The last n qubits are
then measured in the Hadamard basis and the second last n qubits are mea-
sured in the computational basis. If these two measurements return |+〉 〈+|⊗n

and |0〉 〈0|⊗n respectively, then an additional qubit |acc〉 〈acc| is appended in
the flag system F and the resulting M register is decoded (according to the
error correcting code applied in the encoding). If the measurements return
anything else, then the remaining system M is traced out and replaced with
a fixed single-qubit state ΩM and an additional qubit, |rej〉 〈rej|, is appended
in the flag system.
Define PE = {P ⊗ R ⊗ Q|P ∈ Pn, R ∈ {I, Z}⊗n, Q ∈ {I,X}⊗n}. Then
define the measurement projector corresponding to the protocol accepting as
Pacc = 1⊗n ⊗ |0〉 〈0|⊗n ⊗ |+〉 〈+|⊗n. The accepted states are then the states
that can be achieved by applying any P ∈ PE to ρM ⊗ |0〉 〈0|⊗n ⊗ |+〉 〈+|⊗n.
We define Prej = 1⊗3n − Pacc, the measurement projector corresponding to
the protocol rejecting, where the states achieved by applying any P ∈ P3n\PE

to EncM (ρM ) ⊗ |0〉 〈0|⊗n ⊗ |+〉 〈+|⊗n are rejected.
Mathematically, the decoding, DC→MF

k , also indexed by the two-part secret
key, k, is given by:
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Dk : ρC → DecM tr0,+(Paccπ
†
k1

Pk2(ρC)Pk2πk1P†
acc) ⊗ |acc〉 〈acc|

+trM,0,+(Prejπ
†
k1

Pk2(ρC)Pk2πk1P†
acc)ΩM ⊗ |rej〉 〈rej| , (8)

where DecM is the decoding of the error correcting code applied in the encryp-
tion and tr0,+ refers to the trace over the last two sets of n trap qubits.

5 Security of Quantum Message Authentication Schemes

In this section, we present simulation-based proofs for the Clifford (Sect. 5.1)
and the trap (Sect. 5.2) codes. At a high level, the security of the two codes
is analyzed in very similar ways (see the discussion in Sect. 1). The main idea
(in both cases) is to use a simulator that replaces the encoded message in C
with half EPR pairs, without encryption in the Clifford code, and with only
a permutation in the trap code; the attack is then applied to these half EPR
pairs, as well as any reference system R. From there we are able to compare the
accepted and rejected states between the real world and ideal protocols in order
to find the upper bound for the trace distance between them. We will notice that
these differences are the cases where the real world protocol accepts something
that the simulator rejects. Specifically, this is where an attack gets through and
changes a logical qubit but is not detected in the traps. Of course, these same
states are not rejected by the real world protocol but they are rejected by the
simulator. Because the Clifford twirl maps any non-identity Pauli attack to a
uniform mixture of non-identity Paulis, the bound for this distance is simple
to compute in the case of the Clifford code. In the case of the trap code, a
more complicated argument is needed based on permuting the attack and a
combinatorial argument that bounds the undetected attacks that can alter the
logical data.

5.1 Security of the Clifford Code

Simulator. Recall (Sect. 3) that the simulator interacts with the ideal func-
tionality by only altering the reference system and selecting either accept or
reject. Given the attack, UCR, to which the simulator has access, the simu-
lator will apply the attack to half EPR pairs in place of the C system and
then perform a Bell basis measurement on the EPR pairs. It will select accept
if the EPR pairs are still in their original state, and reject otherwise. Let
PU

acc = 1MR ⊗ |Φ+〉 〈Φ+|⊗(n+d)
C1C2

and PU
rej = 1− PU

acc. The ideal channel is then:

FMR→MRF : ρMR →
trC1C2(PU

accUC1R(ρMR ⊗ |Φ+〉 〈Φ+|⊗(n+d)

C1C2
)U†

C1RPU †
acc ) ⊗ |acc〉 〈acc|

+trM (trC1C2(PU
rejUC1R(ρMR ⊗ |Φ+〉 〈Φ+|⊗(n+d)

C1C2
)

U†
C1RPU †

rej ))ΩM ⊗ |rej〉 〈rej| . (9)
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According to the above, we define U acc and U rej that satisfy Eq. (3) as:

U acc : ρR → trC1C2(PU
accUC1R(ρR ⊗ |Φ+〉 〈Φ+|⊗(n+d)

C1C2
)U†

C1RPU †
acc ), (10)

and

U rej : ρR → trC1C2(PU
rejUC1R(ρR ⊗ |Φ+〉 〈Φ+|⊗(n+d)

C1C2
)U†

C1RPU †
rej ). (11)

For a fixed attack UCR =
∑

P∈Pn+d

αP PC ⊗UP
R , with

∑

P∈Pn+d

|αP |2 = 1, we note

the effects of U acc and U rej , recalling, of course, that U acc(ρMR) is understood
to be (1M ⊗ U acc)(ρMR), with the same understanding for U rej :

U acc(ρMR) = trC1C2(PU
accUC1R(ρMR ⊗ |Φ+〉 〈Φ+|⊗(n+d)

C1C2
)U†

C1RPU †
acc )

= |α1|2 (1M ⊗ U1
R)ρMR(1M ⊗ U1†

R ) (12)

U rej(ρMR) = trC1C2(PU
rej

( ∑

P �=1

|αP |2 PC1 ⊗ UP
R

)

(ρMR ⊗ |Φ+〉 〈Φ+|⊗(n+d)

C1C2
)
( ∑

P �=1

|αP |2 PC1 ⊗ UP†
R

)
PU †

rej )

=
∑

P �=1

|αP |2 (1M ⊗ UP
R )(ρMR)(1M ⊗ UP†

R ). (13)

We are now ready to state and prove our main theorem on the security of
the Clifford message authentication scheme.

Theorem 5.1. Let {(ES→C
k ,DC→SF

k ) | k ∈ K} be the Clifford quantum message
authentication scheme, with parameter d. Then the Clifford code is an ε-secure
quantum authentication scheme, for ε ≤ 3

2d
.

Proof. We will follow the proof structure used in [1,11].
Using the simulator described above, we wish to show that:

D
( 1

|K|
∑

k∈K
Ek(ρMR),F (ρMR)

)
≤ ε,∀ρMR. (14)

Consider a general attack UCR, written as UCR =
∑

P∈Pn+d

αP PC ⊗UP
R where

∑

P∈Pn+d

|αP |2 = 1. The real-world channel is then represented as:

Ek
MR→MRF : ρMR → Dk

(( ∑

P∈Pn+d

αP PC ⊗ UP
R

)
Ek(ρMR)

( ∑

P∈Pn+d

αP PC ⊗ UP†
R

))
. (15)
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We will use ψ = ρMR ⊗ |0〉 〈0|⊗d to simplify the following expressions. Con-
sider the effect of the real protocol on input ρMR with attack

∑

P∈Pn+d

αP PC ⊗UP
R ,

conditioned on acceptance:

1
|K|

∑

kεK
tr0

(
PaccC

†
k

( ∑

P∈Pn+d

αP PC ⊗ UP
R

)
(CkψC†

k)

( ∑

P∈Pn+d

αP P †
C ⊗ UP†

R

)
CkP†

acc

)
⊗ |acc〉 〈acc| . (16)

Now we can apply the Clifford Twirl (Lemma 2.3), since the sum over all keys
is, of course, the sum over all Cliffords (since the keys index all n + d-qubit
Cliffords) and then simply split the sum over all Paulis into the case with the
identity Pauli from the attack, and all other Paulis. What we are left with is:

1
|K|

∑

kεK
tr0

( ∑

P∈Pn+d

|αP |2 PaccC
†
k(PC ⊗ UP

R )(CkψC†
k)

(P †
C ⊗ UP†

R )CkP†
acc

)
⊗ |acc〉 〈acc|

=
1

|K|
∑

kεK
tr0

(
|α1|2 PaccC

†
k(1C ⊗ U1

R)(CkψC†
k)

(1C ⊗ U1†
R )CkP†

acc

)
⊗ |acc〉 〈acc|

+
1

|K|
∑

kεK
tr0

( ∑

P �=1

|αP |2 PaccC
†
k(PC ⊗ UP

R )(CkψC†
k)

(P †
C ⊗ UP†

R )CkP†
acc

)
⊗ |acc〉 〈acc| . (17)

Clearly the first term is exactly what the simulator will accept, and the second
term is in exactly the right form to use a Clifford Randomization (Lemma2.2),
resulting in:

= U acc(ρMR) ⊗ |acc〉 〈acc|
+

1
|Cn| tr0

( ∑

P̃ �=1

∑

P �=1

|αP |2 |Cn|
|Pn| − 1

Pacc(P̃C ⊗ UP
R )ψ

(P̃ †
C ⊗ UP†

R )P†
acc

)
⊗ |acc〉 〈acc| . (18)

The P̃ s are the results of the Clifford Randomization applied to a Pauli, P . The
randomization is not applied to the reference system, so the UP

R terms are not
changed by the randomization. We can use the properties of the trace to move
the trace inside the first sum, and we can move the |Cn|

|Pn|−1 coefficient out of both
of the sums:
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= U acc(ρMR) ⊗ |acc〉 〈acc|
+

1
|Cn|

|Cn|
|Pn| − 1

( ∑

P̃ �=1

tr0
∑

P �=1

|αP |2 Pacc(P̃C ⊗ UP
R )ψ

(P̃ †
C ⊗ UP†

R )P†
acc

)
⊗ |acc〉 〈acc| . (19)

We recognize the R register in the second sum as the states that the simulator
will reject. Recall that the simulator is in terms of the sum over all non-identity
Paulis and includes the αP coefficients. We can therefore write the previous line
in terms of the simulator as:

= U acc(ρMR) ⊗ |acc〉 〈acc|
+

1
|Pn+d| − 1

( ∑

P̃ �=1

tr0Pacc(P̃C(U rej(ρMR)

⊗ |0〉 〈0|⊗d)P̃ †
C)P†

acc

)
⊗ |acc〉 〈acc| . (20)

If we let Pt be the set of all Paulis that do not alter the trap qubits, then when
we apply Pacc to the above, we end up with the sum over the P̃ ∈ Pt \ {1}.
Therefore the previous line can be simplified to:

= U acc(ρMR) ⊗ |acc〉 〈acc|
+

1
|Pn+d| − 1

∑

P̃∈Pt\1
tr0(P̃C(U rej(ρMR) ⊗ |0〉 〈0|⊗d)P̃ †

C) ⊗ |acc〉 〈acc| .

(21)

The effect of the real protocol on input ρMR with attack
∑

P∈Pn+d

αP PC ⊗UP
R ,

conditioned on rejection, can be manipulated in the same way:

1
|K|

∑

kεK

(
trM,0

(
PrejC†

k

( ∑

P∈Pn+d

αP PC ⊗ UP
R

)
(Ck(ψ)C†

k)

( ∑

P∈Pn+d

αP P †
C ⊗ UP†

R

)
CkP†

rej

))
ΩM ⊗ |rej〉 〈rej|

=
1

|K|
∑

kεK

(
trM,0(|α1|2 PrejC

†
k(1C ⊗ U1

R)(Ck(ψ)C†
k)

(1C ⊗ U1†
R )CkP†

rej)
)
ΩM ⊗ |rej〉 〈rej|

+
1

|K|
∑

kεK

(
trM,0

( ∑

P �=1

|αP |2 PrejC
†
k(PC ⊗ UP

R )(Ck(ψ)C†
k)

(P †
C ⊗ UP†

R )CkP†
rej

))
ΩM ⊗ |rej〉 〈rej|
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=
1

|Pn+d| − 1

∑

P̃ �=1

∑

P �=1

|α|2
(
trM,0(Pacc(P̃C ⊗ UP

R )(ψ)

(P̃ †
C ⊗ UP†

R )P†
acc)

)
ΩM ⊗ |rej〉 〈rej|

= trM (U rej(ρMR))ΩM ⊗ |rej〉 〈rej|
− 1

|Pn+d| − 1
trM

( ∑

P∈Pt\1
U rej(ρMR)

)
ΩM |rej〉 〈rej|

= trM (U rej(ρMR))ΩM ⊗ |rej〉 〈rej|

− 4n2d − 1
|Pn+d| − 1

trM (U rej(ρMR))ΩM ⊗ |rej〉 〈rej| . (22)

When we combine the accepted states and the rejected states into the real world
protocol given by Eq. (15), we can write it in terms of the simulator as:

Dk(UCREk(ρMR)U†
CR)

=U acc(ρMR) ⊗ |acc〉 〈acc|
+

1
|Pn+d| − 1

∑

P̃∈Pt\1
tr0(P̃C(U rej(ρMR) ⊗ |0〉 〈0|⊗d)P̃ †

C) ⊗ |acc〉 〈acc|

+ trM (U rej(ρMR))ΩM ⊗ |rej〉 〈rej|

− 4n2d − 1
|Pn+d| − 1

trM (U rej(ρMR))ΩM ⊗ |rej〉 〈rej| . (23)

We can therefore write Eq. (14) as:

1
2

∥
∥
∥U acc(ρMR) ⊗ |acc〉 〈acc|

+
1

|Pn+d| − 1

∑

P̃∈Pt\1
tr0(P̃C(U rej(ρMR) ⊗ |0〉 〈0|⊗d)P̃ †

C) ⊗ |acc〉 〈acc|

+trM (U rej(ρMR))ΩM ⊗ |rej〉 〈rej|

− 4n2d − 1
|Pn+d| − 1

trM (U rej(ρMR))ΩM ⊗ |rej〉 〈rej|

−(U acc(ρMR) ⊗ |acc〉 〈acc| + trM (U rej(ρMR))ΩM ⊗ |rej〉 〈rej|)
∥
∥
∥
1

=
1
2

∥
∥
∥

1
|Pn+d| − 1

∑

P̃∈Pt\1
tr0(P̃C(U rej(ρMR) ⊗ |0〉 〈0|⊗d)P̃ †

C) ⊗ |acc〉 〈acc|

− 4n2d − 1
|Pn+d| − 1

trM (U rej(ρMR))ΩM ⊗ |rej〉 〈rej|
∥
∥
∥
1

(24)
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Since |Pt \ 1| = 4n2d − 1, and the maximum trace distance between two states
is 1, we can see that by the triangle inequality, the above is bounded by:

≤ 4n2d − 1
|Pn+d| − 1

=
4n2d − 1
4n+d − 1

=
1 − 1

4n2d

2d − 1
4n2d

≤ 3 × 1
2d

. (25)

This concludes the proof, showing that the Clifford code is 3
2d

-secure. ��

This is identical to the bound of 6
2d

achieved in [11] when we consider that we
use the trace distance in our definition of security, and [11] uses the trace norm,
which differs from the trace distance by a factor of 2.

5.2 Security of the Trap Code

Simulator. Recall (Sect. 3) that the simulator interacts with the ideal function-
ality by only altering the reference system and selecting either accept or reject.
Given the attack, UCR, to which the simulator has access, the simulator will
apply the attack to randomly permuted half EPR pairs in place of the C system
and then de-permute the EPR pairs and perform a Bell basis measurement. It
will select accept if the first n of the EPR pairs have ≤ t errors, the next n of the
EPR pairs are either unchanged or have phase flip errors, and the last n of the
EPR pairs are either unchanged or have bit flip errors. It will select reject oth-
erwise. Let PF = {P ⊗ R ⊗ Q|P ∈ Pn, ω(P ) ≤ t, R ∈ {I, Z}⊗n, Q ∈ {I,X}⊗n}.
Specifically, PF is the set of all Paulis that the ideal protocol will accept being
applied to the half EPR pair—Paulis that would apply at most t non-identity
Paulis on the message space and would not alter the |0〉 〈0|⊗n or the |+〉 〈+|⊗n

traps in the real world protocol. Finally, define the measurement projector cor-
responding to the simulator selecting accept as:

PU
acc =

∑

Q∈{I,X}⊗n

∑

R∈{I,Z}⊗n

∑

P∈Pn|ω(P )≤t

1MR ⊗ (P ⊗ R ⊗ Q)C1

|Φ+〉 〈Φ+|⊗3n

C1C2
(P ⊗ R ⊗ Q)C1

=
∑

P∈PF

1MR ⊗ (PC1 |Φ+〉 〈Φ+|⊗3n

C1C2
P †

C1
), (26)

and the measurement projector corresponding to the simulator selecting reject
as:

PU
rej = 1 − PU

acc. (27)
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The ideal channel with attack UC1R is therefore:

FMR→MRF : ρMR → trC1C2

1
|Π3n|

∑

π∈Π3n

(
PU

accπ
†
C1

UC1RπC1

(ρMR ⊗ |Φ+〉 〈Φ+|⊗3n

C1C2
)π†

C1
U†

C1RπC1PU †
acc

)
⊗ |acc〉 〈acc|

+trM

(
trC1C2

1
|Π3n|

∑

π∈Π3n

(
PU

rejπ
†
C1

UC1RπC1(ρMR ⊗ |Φ+〉 〈Φ+|⊗3n

C1C2
)

π†
C1

U†
C1RπC1PU †

rej

))
ΩM ⊗ |rej〉 〈rej| . (28)

For a fixed attack UCR =
∑

P∈P3n

αP PC ⊗UP
R , with

∑

P∈P3n

|αP |2 = 1 and where

for the sake of brevity we will represent ρMR ⊗ |Φ+〉 〈Φ+|⊗3n
C1C2

with φMRC1C2 ,
the ideal channel becomes:

FMR→MRF : ρMR →

trC1C2

1
|Π3n|

∑

π∈Π3n

(

PU
accπ

†
C1

( ∑

P∈P3n

αP PC1 ⊗ UP
R

)
πC1φMRC1C2

π†
C1

( ∑

P∈P3n

αP PC1 ⊗ UP†
R

)
πC1PU †

acc ⊗ |acc〉 〈acc|

+ trM

(
PU

rejπ
†
C1

( ∑

P∈P3n

αP PC1 ⊗ UP
R

)
πC1φMRC1C2

π†
C1

( ∑

P∈P3n

αP PC1 ⊗ UP†
R

)
πC1PU †

rej

)
ΩM ⊗ |rej〉 〈rej|

)

. (29)

From here we will move the permutations to act on the attack Paulis, since
they’re all applied to the same register, C1:

= trC1C2

1
|Π3n|

∑

π∈Π3n

(
(
PU

acc

( ∑

P∈P3n

αP π†
C1

PC1πC1 ⊗ UP
R

)
φMRC1C2

( ∑

P∈P3n

αP π†
C1

PC1πC1 ⊗ UP†
R

)
PU †

acc

)
⊗ |acc〉 〈acc|

+ trM

(
PU

rej

( ∑

P∈P3n

αP π†
C1

PC1πC1 ⊗ UP
R

)
φMRC1C2

( ∑

P∈P3n

αP π†
C1

PC1πC1 ⊗ UP†
R

)
PU †

rej

)
ΩM ⊗ |rej〉 〈rej|

)

. (30)
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Finally we apply the projectors:

= trC1C2

1
|Π3n|

∑

π∈Π3n

(
( ∑

P |π†Pπ∈PF

|αP |2 (π†
C1

PC1πC1 ⊗ UP
R )(φMRC1C2)

(π†
C1

PC1πC1 ⊗ UP†
R )

)
⊗ |acc〉 〈acc|

+trM

( ∑

P |π†Pπ/∈PF

|αP |2 (π†
C1

PC1πC1 ⊗ UP
R )(φMRC1C2)

(π†
C1

PC1πC1 ⊗ UP†
R )

)
ΩM ⊗ |rej〉 〈rej|

)

. (31)

We are now ready to present our main theorem on the security of the trap
code:

Theorem 5.2. Let {(ES→C
k ,DC→SF

k ) | k ∈ K} be the trap quantum message
authentication scheme with parameter t, the number of bit or phase flip errors
that the error correcting code applied to the input message qubit can correct.
Then the trap code is an ε-secure quantum message authentication scheme, for
ε ≤ (13 )t+1.

Proof. Using the simulator described above, we wish to show that:

D
( 1

|K|
∑

k∈K
Ek(ρMR),F (ρMR)

)
≤ ε,∀ρMR. (32)

Consider a general attack UCR, written as UCR =
∑

P∈P3n

αP PC ⊗ UP
R with

∑

P∈P3n

|αP |2 = 1. Let ψ = EncM (ρMR) ⊗ |0〉 〈0|⊗n ⊗ |+〉 〈+|⊗n. The real-world

channel is then represented as:

Ek
MR→MRF : ρMR → Dk

(( ∑

P∈P3n

αP PC ⊗ UP
R

)
Ek(ρMR)

( ∑

P∈P3n

αP PC ⊗ UP†
R

))
(33)

=
1

|K| tr0,+

∑

kεK

(

DecM

(
Paccπ

†
k1

Pk2

( ∑

P∈P3n

αP PC ⊗ UP
R

)
Pk2πk1ψ

π†
k1

Pk2

( ∑

P∈P3n

αP PC ⊗ UP†
R

)
Pk2πk1P†

acc

)
⊗ |acc〉 〈acc|

+ trM

(
Prejπ

†
k1

Pk2

( ∑

P∈P3n

αP PC ⊗ UP
R

)
(Pk2πk1ψπ†

k1
Pk2)

( ∑

P∈P3n

αP PC ⊗ UP†
R

)
Pk2πk1P†

rej

)
ΩM ⊗ |rej〉 〈rej|

)

. (34)
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From here we apply the Pauli Twirl (Lemma2.1):

=
1

|K1| tr0,+

∑

k1εK1

(

DecM

(
Paccπ

†
k1

( ∑

P∈P3n

|αP |2 (PC ⊗ UP
R )πk1ψ

π†
k1

(PC ⊗ UP†
R )

)
πk1P†

acc

)
⊗ |acc〉 〈acc|

+ trM

(
Prejπ

†
k1

( ∑

P∈P3n

|αP |2 (PC ⊗ UP
R )πk1ψ

π†
k1

(PC ⊗ UP†
R )

)
πk1P†

rej

)
ΩM ⊗ |rej〉 〈rej|

)

. (35)

Since the permutations act on the same register as the attack Paulis, we can
move the permutations to be considered to be acting on the Paulis instead of
the message and traps:

=
1

|K1| tr0,+

∑

k1εK1

(

DecM

(
Pacc

( ∑

P∈P3n

|αP |2 (π†
k1

PCπk1 ⊗ UP
R )ψ

(π†
k1

PCπk1 ⊗ UP†
R )

)
P†

acc

)
⊗ |acc〉 〈acc|

+ trM

(
Prej

( ∑

P∈P3n

|αP |2 (π†
k1

PCπk1 ⊗ UP
R )ψ

(π†
k1

PCπk1 ⊗ UP†
R )

)
P†

rej

)
ΩM ⊗ |rej〉 〈rej|

)

. (36)

Finally we apply the projectors and notice that K1 = Π3n:

=
1

|Π3n| tr0,+

∑

πεΠ3n

(

DecM

( ∑

P |π†Pπ∈PE

|αP |2 (π†PCπ ⊗ UP
R )ψ

(π†PCπ ⊗ UP†
R )

)
⊗ |acc〉 〈acc|

+ trM

( ∑

P |π†Pπ∈P3n\PE

|αP |2 (π†PCπ ⊗ UP
R )ψ

(π†PCπ ⊗ UP†
R )

)
ΩM ⊗ |rej〉 〈rej|

)

. (37)

Then:

1
2

∥
∥
∥

1
|K|

∑

k∈K
Ek(ρMR) − F (ρMR)

∥
∥
∥
1

=
1
2

∥
∥
∥

1
|Π3n|

∑

πεΠ3n

(

tr0,+

(
DecM

( ∑

P |π†Pπ∈PE

|αP |2 (π†PCπ ⊗ UP
R )ψ
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(π†PCπ ⊗ UP†
R )

)
⊗ |acc〉 〈acc|

+ trM

( ∑

P |π†Pπ∈P3n\PE

|αP |2 (π†PCπ ⊗ UP
R )ψ

(π†PCπ ⊗ UP†
R )

)
ΩM ⊗ |rej〉 〈rej|

)

− trC1C2

( ∑

P |π†Pπ∈PF

|αP |2 (π†
C1

PC1πC1 ⊗ UP
R )(φMRC1C2)

(π†
C1

PC1πC1 ⊗ UP†
R )

)
⊗ |acc〉 〈acc|

− trMC1C2

( ∑

P |π†Pπ/∈PF

|αP |2 (π†
C1

PC1πC1 ⊗ UP
R )(φMRC1C2)

(π†
C1

PC1πC1 ⊗ UP†
R )

)
ΩM ⊗ |rej〉 〈rej|

)
∥
∥
∥
1
. (38)

We will subtract the accepted states in the ideal protocol from those accepted
in the real protocol and we will subtract the rejected states in the real protocol
from the rejected states in the ideal protocol. Note that PE \ PF = {P ⊗ R ⊗
Q|P ∈ Pn, ω(P ) > t,R ∈ {I, Z}⊗n, Q ∈ {I,X}⊗n}.

=
1
2

∥
∥
∥

1
|Π3n|

∑

πεΠ3n

∑

P |π†Pπ∈PE \PF

(

tr0,+

(
DecM (|αP |2 (π†PCπ ⊗ UP

R )ψ

(π†PCπ ⊗ UP†
R ))

)
⊗ |acc〉 〈acc|

− trMC1C2

(
|αP |2 (π†

C1
PC1πC1 ⊗ UP

R )(φMRC1C2)

(π†
C1

PC1πC1 ⊗ UP†
R )

)
ΩM ⊗ |rej〉 〈rej|

)
∥
∥
∥
1
. (39)

Here we will use the triangle inequality to remove the sums from the trace
distance:

≤ 1
2

1
|Π3n|

∑

π∈Π3n

∑

P |π†Pπ∈PE \PF

∥
∥
∥tr0,+

(
DecM (|αP |2 (π†PCπ ⊗ UP

R )ψ

(π†PCπ ⊗ UP†
R ))

)
⊗ |acc〉 〈acc|

− trMC1C2

(
|αP |2 (π†

C1
PC1πC1 ⊗ UP

R )(φMRC1C2)

(π†
C1

PC1πC1 ⊗ UP†
R )

)
ΩM ⊗ |rej〉 〈rej|

∥
∥
∥
1
. (40)

Since the maximum trace distance between two states is 1 we have:

≤ 1
|Π3n|

∑

k1εK1

∑

P |π†Pπ∈PE \PF

|αP |2 . (41)



Efficient Simulation for Quantum Message Authentication 89

Now if we let ηP be the number of permutations, π of P such that π†Pπ ∈
PE \ PF , then the above can be written as:

=
1

|Π3n|
∑

P∈P3n

ηP × |αP |2 . (42)

In AppendixA, we give Lemma A.1, which gives us ηP ≤ (
n

t+1

)
(t + 1)!

(3n − (t + 1))!. Thus, since
∑

P∈P3n

|αP |2 = 1, the above expression can be

bounded by:

≤ 1
(3n)!

×
(

n

t + 1

)

(t + 1)!(3n − (t + 1))!

=

n∏

i=1

i
3n−t−1∏

i=1

i

n−t−1∏

i=1

i
3n∏

i=1

i

=

n∏

i=n−t

i

3n∏

i=3n−t

i

=
t∏

i=0

n − t + i

3n − t + i

≤
t∏

i=0

1
3

=
(1

3

)t+1

(43)

Therefore, D
(

1
|K|

∑

k∈K
Ek(ρMR),F (ρMR)

)
≤ (13 )t+1,∀ρMR. ��

We note that this is very similar to the bound in [5] of (23 )d/2: note that the
trap code in [5] uses the error detection property of the code. Since a code of
distance d can detect up to d/2 errors, this bound is consistent with our bound
of (13 )t+1.

Acknowledgements. We would like to thank Florian Speelman for feedback on a
prior version of this work, as well as the anonymous reviewers for useful corrections.

A Appendix

Lemma A.1. For a fixed P ∈ P3n, let ηP denote the number of permutations
π of P such that π†Pπ ∈ PE \ PF Then for all P :

ηP ≤
(

n

t + 1

)

(t + 1)!(3n − (t + 1))! . (44)

An intuitive argument for the above lemma is that ηP can be upper-bounded
by fixing a Pauli P ∈ {I,X}3n of weight t+1. We show that a Pauli with greater
weight will have ≤ ηP possible allowed permutations. To find the number of
possible allowed permutations, we will consider the first n positions, where we
require at least t+1 non-identity Paulis (for a total of

(
n

t+1

)
(t+1)! permutations).

The remaining positions are then simply permuted, since we have used all of the
non-identity Paulis already, contributing a multiplicative factor of (3n− (t+1))!
permutations. This is formalized below (where we also consider general attack
Paulis consisting of combinations of X, Y and Z).
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Proof. In order to find an upper bound for ηP , we look to find the Pauli, P , that
has the largest number of permutations, π, such that π†Pπ ∈ PE \ PF .

For a Pauli P with ω(P ) = d, we write d = dx +dy +dz +x1+y+z1+x2+z2
for values dx, dy, dz, x1, y, z1, x2, z2 as follows:
1. dx, dy, dz where dx + dy + dz = t + 1. These are the t + 1 X, Y , and Z Paulis

that must be applied to the first n qubits for the Pauli to be in PE \ PF .
2. y where y + dy is the total number of Y Paulis in P and y are the additional

Y Paulis applied to the first n qubits. Note that Y Paulis cannot be applied
to either set of traps without altering them.

3. x1, x2 where x1 + x2 + dx is the total number of X Paulis in P and x1 are
the additional X Paulis applied to the first n qubits and x2 are the X Paulis
applied to the |+〉 〈+|⊗n traps.

4. z1, z2 where z1 + z2 + dz is the total number of Z Paulis in P and z1 are
the additional Z Paulis applied to the first n qubits and z2 are the Z Paulis
applied to the |0〉 〈0|⊗n traps.

Then the possible permutations on P are found by multiplying the following
terms:
1.

(
n

dx,dy,dz,n−t−1

)
dx!dy!dz! Which is the number of ways to choose the required

t + 1 spots for the minimum number of Paulis applied to the first n qubits,
multiplied by the number of ways of permuting each of the sets of X, Y , and
Z Paulis. Note that this term simplifies to n!

(n−t−1)! ,
2.

(
n−t−1

x1

)
x1!, the number of ways to apply x1 additional X Paulis to the first

n qubits,
3.

(
n−t−1−x1

y

)
y!, the number of ways to apply y additional Y Paulis to the first

n qubits,
4.

(
n−t−1−x1−y

z1

)
z1!, the number of ways to apply z1 additional Z Paulis to the

first n qubits,
5.

(
n
x2

)
x2!, the number of ways to apply x2 X Paulis to the n traps that will not

be changed by them,
6.

(
n
z2

)
z2!, the number of ways to apply z2 Z Paulis to the n traps that will not

be changed by them, and
7. (3n − (dx + dy + dz + x1 + y + z1 + x2 + z2))! the number of ways to permute

the remaining identity qubits, which simplifies to (3n − d)!.

The product, once simplified, is then:

ηP =
n!n!n!(3n − d)!

(n − t − 1 − x1 − y − z1)!(n − x2)!(n − z2)!

=
n∏

n−t−x1−y−z1

i

n∏

n−x2+1

i

n∏

n−z2+1

i

3n−t−1−x1−y−z1−x2−z2∏

i=1

i (45)

Since t is fixed, in order to maximize the above expression, we need to min-
imize x1, y, z1, x2, z2. This is achieved by setting x1 = y = z1 = x2 = z2 = 0,

and therefore d = t + 1: we thus find that ηP ≤
n∏

n−t
i
3n−t−1∏

i=1

i =
(

n
t+1

)
(t + 1)!

(3n − (t + 1))!. ��
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Abstract. Secure computation through non standard methods, suitable
for users who have to perform the computation without the aid of a
computer, or for settings in which the degree of trustworthiness of the
hardware and software equipments is very low, are an interesting, very
challenging and quite unexplored research topic. In this paper we put
forward a collection of ideas and some techniques which could be use-
ful in order to make some progress in designing protocols with such
properties. Our contribution is twofold: we explore the power of visual
cryptography as a computing tool, exploiting alternative uses and share
manipulations, and we address the central issue of randomness reduction
in visual schemes, by showing a strict relation with existing results in
secure multiparty computation. More specifically, we prove that:
– by properly defining operations on the shares, we show that visual

shares are homomorphic with respect to some functions f . More pre-
cisely, in the two-party case, each user, by applying to his two shares
ai, bi of the secrets a, b the operation, gets a share gi(ai, bi), i = 1, 2,
such that the superposition of g1(a1, b1) and g2(a2, b2) visually pro-
vides, applying the standard Naor and Shamir superposition recon-
struction strategy, the value of the function f ;

– we link our analysis to a general known result on private two-party
computation, and we classify all the boolean functions of two input
bits which admit homomorphic visual share computation;

– we prove that by encoding pixels in groups, instead of encoding each
pixel independently, and exploiting dependencies, some randomness
can be saved if and only if the pixel dependencies can be expressed
through some specific boolean functions. For example, given three
pixels, if the third one is the and or the or of the first two, random-
ness reduction is impossible, while if it is the xor of the first two,
randomness reduction can be achieved.
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1 Introduction

Need for Trust. The unquestionable advantages that offer the diffusion of the
digital technologies come along with new challenges against user privacy and
freedom. One of these challenges is the implicit or explicit need for trust in the
hardware and software equipment, which provides access and processing capabil-
ity to the user for each service of the infrastructure. The average user buys the
hardware from a vendor, and usually his choice is among the products offered
by few big competitors on the market, the basic software is pre-installed, appli-
cations for specific computing needs can be bought or downloaded from Internet
stores, and in all this process the user has to trust that the hardware and software
do all and only what they are supposed to.

Unfortunately, it does not work always this way. A significant example helps
to get the point: participants of a recent international meeting among national
delegates were offered pen-drives equipped with a hidden software for stealing
sensitive data and spying computer activities [2]. Moreover, a lot of research, e.g.,
funded by Departments of Defence, is focusing on how to introduce malware both
in hardware and in software.

After the Snowden leaks, many non-Western countries have realized that
the hardware might not be trustworthy. For example, Cisco sale in China has
plunged [1]; India has decided to switch to typewriters for its top security
documents [3].

It is clear that countermeasures are needed. Secure computation through non
standard methods, which remove the need for trust, suitable for users who have
to perform the computation without the aid of a computer, or for situations
where the degree of trustworthiness of the hardware and software equipments is
very low (as could have been in the above cited meeting), is an interesting, very
challenging and not really explored research topic.

Visual Cryptography. Visual Cryptography can be a tool to build systems where
the degree of trustworthiness that the user needs to have in the system is reduced.
It is a method through which a secret image is encrypted in random-looking
images printed on transparencies. Its captivating peculiarity is that the recon-
struction of the secret is performed without any computational machinery: it is
enough to superpose the transparencies in order to reconstruct the secret. Such
an operation does not require trust in the hardware! It is then not surprising
that hundreds of papers have been published on visual cryptography. Indeed,
the work by Naor-Shamir has more than 2200 citations (Google Scholar).

Motivations. Our research has two motivations. The first motivation is to further
explore the power of visual cryptography as a computing tool. Let us explain why
and summarize the previous work. Several projects are underway for implement-
ing secure multiparty computation. The topic is receiving a lot of attention to
deal with insider attacks, e.g., untrusted software or untrusted hardware. The
idea is that if one cannot trust a single platform, then we can use n of them. If
at most t are not trustworthy, then it seems that secure multiparty computation
will solve the problem. Unfortunately, this argument is false. It is not enough.
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Indeed, the model of secure multiparty computation assumes that t parties are
untrustworthy and that the remaining parties’ computers are trusted !

In many settings such an assumption is unrealistic. Hence, alternative solu-
tions are needed. To this aim, we study private visual share homomorphic com-
putation. Indeed, hybrid systems where visual cryptography is used as an inter-
mediate step within a certain process, in order to mitigate the trust in the digital
equipment providing the service or to cope with specific attacks, have already
been proposed. Chaum’s voting system [7] or the transaction authentication
scheme of [16], are valuable examples of such an approach. Our efforts are there-
fore directed towards identifying strategies for hybrid systems for secure multi-
party computation, where inputs and outputs are provided to/received from the
weakly trusted computer/cluster/cloud through user-friendly low-cost nondigi-
tal technology, e.g., transparencies, and where as much as possible of the com-
putation is performed through untrusted cheap devices (e.g., a system of light
projectors, if visual cryptography is employed), while the rest of the computation
is performed digitally.

The second motivation is to reduce randomness in visual schemes. This moti-
vation finds its origin in the problem of source coding in information theory.
In source coding the problem is to exploit the redundancy in the source, e.g.,
text, to shorten its representation. Obviously, in visual cryptography that seems
impossible, since pixels are transmitted. Indeed, in the large body of literature
on visual cryptography schemes, the encoding process has always been consid-
ered as a pixel-by-pixel operation: in other words, each pixel is shared among
the parties independently and uniformly at random. Such an approach requires a
huge amount of random bits. However, there are cases where the pixels in some
areas of the image are function of pixels in other areas. We would like to explore
such dependencies to reduce randomness.

Secure Visual Computing. Visual Cryptography can be used to perform secure
visual computation. Specifically, in [11], it has been shown that two parties can
privately evaluate a function f(·, ·) of their inputs, x and y, through a pure
physical visual process. One of the parties prepares a set of transparencies and
the other, after receiving a subset of them which represent the inputs of both
parties, performs the visual computation and communicates the result to the
other party. More precisely, the steps of the computation are defined by a circuit
which computes f(·, ·), and gate evaluation visual secret sharing schemes are used
to implement the functionalities of each gate. In the set-up phase, starting from
the output wire, transparencies for all the circuit wires are generated. Later on,
the evaluation consists in superposing properly chosen parts of the transparencies
which represent the inputs held by the parties, until the representation of the
value of the function is visually reconstructed.

Roughly speaking, we could say that visual cryptography is used in [11]
as it is, in a sort of black-box manner: two multi-secret visual secret sharing
schemes are employed in order to implement the functionality of each gate and
produce the transparencies for the input wires of the gate. Such an approach
ends up in an unavoidable doubling of the size at each level of the circuit of the
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transparencies associated to the right wire of each gate, compared to the size of
the transparencies associated to the left wire (see details in [11]). Moreover the
protocol in [11] involves a physical oblivious transfer.

In this paper we would like to understand whether we could do visual private
computation in a different, and perhaps more efficient, way compared to [11] (e.g.
without share expansion and without the need for a physical oblivious transfer).

The key idea we pursue is the following: in digital general solutions for uncon-
ditionally secure multiparty computation (e.g., [4,6,10]) parties process their
shares non-interactively or interactively (e.g., think about the add and multiply
operations of shares defined over a finite field) in order to compute new shares
for the subsequent steps of the computation. The first question we would like to
answer is:

Can we efficiently manipulate the shares so that when superposing the
newly obtained shares (i.e., reconstructing the secret) the result of the com-
putation is revealed while maintaining privacy of the inputs?

In other words, as shown in Fig. 1, we would like to manipulate the trans-
parencies in order to introduce suitable changes on the pixels, in such a way that
the new transparencies, when superposed, visually reconstruct the output value
of a function of the input values, represented through the input transparencies.

Fig. 1. Visual computation model



Private Visual Share-Homomorphic Computation 99

Leds labeling

Fig. 2. Leds digits encoding

Randomness Reduction in Visual Schemes. The construction of the shares in visual
cryptography requires some amount of randomness: for every pixel of the secret
image we need to choose uniformly at random a (distribution) matrix from
a given collection of (distribution) matrices. Some papers have addressed the
issue but in the model in which an image is shared through a pixel-by-pixel
approach (e.g., [12]). Pixel dependencies have not been considered yet. A concrete
example of pixel dependencies in an image is the following. Imagine that the
secret information in an image is represented as digits drawn in a led display
with a total of 7 leds (see Fig. 2). In this case we have that led g is a function of
leds a, b, c and d. Indeed we have that g = ābcd. A more complicated function
ties led f to leds a, b, c, d, e, namely f = eabgd(e + g) = eabābcdd(e + ābcd).

Therefore, the second question we would like to answer is:

Can pixel dependencies be exploited in order to get randomness reduction
in visual cryptography?

Summary of the contribution. We provide the following results.

– Visual Computation. For some boolean functions, we show that it is possible
to provide pixel transformations for producing new shares from received ones,
such that the superposition of the new shares corresponds to a visual compu-
tation of a function defined on the input bits (pixels of the original image).
We provide a full characterization for two-bit input boolean functions.

– Randomness Reduction. We show that there are pixel dependencies for which
it is possible to save randomness during the share construction process and,
surprisingly, others for which saving randomness is not possible.

2 Visual Cryptography

Visual cryptography is a special type of secret sharing in which the secret is
an image and the shares are random-looking images printed on transparencies.
The idea was introduced independently by Kafri and Keren [14], in a random
grid model, and by Naor and Shamir [17], in a deterministic model. Later on,
Yang [18] introduced a probabilistic model, which was shown to be a re-discovery
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of the random grid model in [13]. The probabilistic model was generalized in [9],
which provided a connection between the random grid model and the determin-
istic model.

In a visual cryptography scheme a secret image has to be shared among a
set of participants. A trusted party, the dealer, knows the secret and generates
shares, one for each participant, in the form of a printed transparency. Among the
participants there are some subsets that are allowed to reconstruct the secret by
using collectively their shares. These are called qualified subsets and are denoted
with Q. On the other hand, there are other subsets of participants, called forbid-
den, denoted with F , that are not able to get any information from the shares.
Often Q and F are a partition of the power-set defined on the set of participants.
When this is not the case, for the subsets not included neither in Q nor in F ,
we just don’t care (about their ability to reconstruct the secret or their ability
to acquire information about the secret).

The captivating peculiarity of visual cryptography is that the reconstruction
of the secret is performed without any computational machinery: a set of qualified
participants has to simply superpose the shares (transparencies) in order to
reconstruct the secret. Forbidden participants do not get any information from
the shares, neither by superposing them, nor by any other computation.

A visual cryptography scheme can be described by means of distribution
matrices. Precisely, let n and m be two integers, where n represents the number
of parties and m the pixel expansion (each secret pixel is expanded into m
pixels). A scheme is defined by two collections C◦ and C• of n×m matrices with
elements in {◦, •}. To construct the shares, for each secret pixel, the dealer needs
to randomly choose a distribution matrix M from C◦, if the secret pixel is white,
or from C•, if the secret pixel is black, and to use row i of M to assign the pixels
on the i-th share.

The participants that wish to reconstruct the secret need only to superpose
their shares. The superposition operation will be denoted with the symbol ⊕.

Example 1 (Scheme-(2,2)-NS). The following collections of distribution matri-
ces can be used to realize a deterministic visual cryptography scheme for
Q = {{1, 2}} and F = {{1}, {2}}. This scheme is the instantiation for n = 2 of
the (n, n)-threshold 1 scheme of Naor and Shamir [17]. We call such a scheme
Scheme-(2,2)-NS:

C◦ =
{[◦•

◦•
]

,

[•◦
•◦

]}

C• =
{[◦•

•◦
]

,

[•◦
◦•

]}

.

In order to share a black-and-white image, for each pixel of the image, the dealer
repeats the following steps: randomly chooses a matrix from Cσ where σ is the
color of the pixel that has to be shared. Then, row 1 of the chosen matrix is

1 (k, n)-threshold schemes are schemes in which the collection Q of qualified subsets
of participants consists of all the subsets containing at least k out of n participants,
while the collection F of forbidden subsets consists of all the subsets with at most
k − 1 participants.
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the share for participant 1, and row 2 is the share of participant 2. With this
particular scheme each secret pixel gets expanded into m = 2 pixels.

It should not be hard to see that it is guaranteed that a white secret pixel is
always reconstructed as one white and one black pixel, while a black secret pixel
is always reconstructed as two black pixels. Indeed we have that when the shares
are taken from C◦, the superposition operation performed for the reconstruction
is either [◦•] ⊕ [◦•] = [◦•] or [•◦] ⊕ [•◦] = [•◦] while, when the shares are taken
from C•, the superposition is either [◦•] ⊕ [•◦] = [••] or [•◦] ⊕ [◦•] = [••].

Moreover, a single share does not provide any information about whether
the secret pixel is white or black because each share appears in either one of the
distribution collections.

An example of application of the scheme is given in Fig. 3.

Secret image

2erahS1erahS

Superposition of shares 1 and 2

Fig. 3. Example of shares and superposition for the (2, 2)-scheme.

For the purpose of this paper this scheme is all we need. Thus, we do not
provide further details about visual cryptography. We only recall that Scheme-
(2,2)-NS satisfies correctness (qualified subsets reconstruct the secret) and pri-
vacy (forbidden subsets do not get any information). The interested reader can
find more information in the papers cited at the beginning of the section or
in [8], where a collection of surveys on several aspects of visual cryptography is
provided.

3 Privately Computable Functions

We restrict our attention to two-bit boolean functions and we use the definitions
and the results provided in [15] restricted to the case of two-bit boolean functions.
Parties P1 and P2 need to compute a function f of their private inputs x and y.
In order to do so they use a protocol A to exchange messages and might locally
use random choices.
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Informally a function is privately computable if P1 and P2 can compute
the correct value of the function without learning anything (in the information
theoretic sense) about the other party’s input value. More formally we have the
following definition.

Definition 1 [15]. A boolean function f : {0, 1} × {0, 1} → {0, 1} is privately
computable with respect to P1 if there exists a protocol A that always computes
the correct value, that is A(x, y) = f(x, y), and such that for every pair of inputs
(x, y1) and (x, y2) such that f(x, y1) = f(x, y2), every communication pattern c,
and every string of random bits r1 held by P1, it holds that

Pr(c|r1, (x, y1)) = Pr(c|r1, (x, y2)),

where the probability is taken over all possible random strings of P2. A similar
definition can be stated for P2.

A complete (combinatorial) characterization of privately computable func-
tions was given by Kushilevitz in [15]. In a nutshell, the characterization is
obtained as follows: any function f : {0, 1}n ×{0, 1}n → {0, 1, . . . ,m−1} can be
visualised as a 2n × 2n matrix with entries in {0, 1, . . . ,m − 1}. Let Mf be such
a matrix. A submatrix of Mf is called monochromatic if f is constant over it.

Definition 2. Let M = C × D be a matrix. The relation ∼ on the rows of the
matrix M is defined as follows: x1, x2 ∈ C satisfy x1 ∼ x2 if there exists y ∈ D
such that Mx1,y = Mx2,y. The equivalence relation ≡ on the rows of the matrix
M is defined as the transitive closure of the relation ∼. That is, x1, x2 ∈ C
satisfy x1 ≡ x2 if there exist z1, . . . , z� ∈ C such that x1 ∼ z1 ∼ . . . ∼ z� ∼ x2.
Similarly the relations ∼ and ≡ are defined on the columns of the matrix.

Definition 3. A matrix M is called forbidden if it is not monochromatic, all its
rows are equivalent, and all its columns are equivalent. That is, every x1, x2 ∈ C
satisfy x1 ≡ x2 and every y1, y2 ∈ D satisfy y1 ≡ y2.

Examples of a forbidden submatrices are:

y1 y2
x1 0 0
x2 0 1

y1 y2 y3
x1 0 0 1
x2 2 4 1
x3 2 3 3

If a function is represented by a matrix Mf which contains a forbidden subma-
trix, then f is not privately computable.

Theorem 1 [15]. Let f be a function. If Mf contains a forbidden submatrix
M = C × D, then f is not privately computable.

The special case of Theorem 1, where M is a 2 × 2 submatrix, is useful for
proving that particular functions are not privately computable. It says that if
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there exists x1, x2, y1, y2 ∈ {0, 1} such that f(x1, y1) = f(x1, y2) = f(x2, y1) = a
and f(x2, y2) = b, then f is not privately computable.

Notice that in [15] it was shown that the condition of Theorem1 is not
only necessary but also sufficient. Namely, if the matrix Mf does not contain a
forbidden submatrix then f is privately computable.

It immediately follows that the and and or functions are not privately com-
putable, which, as we will see later, in our problem means that pixel transfor-
mations on transparencies for and and or functions cannot be found.

Kushilevitz’s characterization allows to classify all two-bit boolean functions
by looking at the corresponding matrix Mf .

0 y = 0 y = 1

x = 0 0 0

x = 1 0 0

and y = 0 y = 1

x = 0 0 0

x = 1 0 1

xy y = 0 y = 1

x = 0 0 0

x = 1 1 0

x y = 0 y = 1

x = 0 0 0

x = 1 1 1

xy y = 0 y = 1

x = 0 0 1

x = 1 0 0

y y = 0 y = 1

x = 0 0 1

x = 1 0 1

xor y = 0 y = 1

x = 0 0 1

x = 1 1 0

or y = 0 y = 1

x = 0 0 1

x = 1 1 1

or y = 0 y = 1

x = 0 1 0

x = 1 0 0

xor y = 0 y = 1

x = 0 1 0

x = 1 0 1

y y = 0 y = 1

x = 0 1 0

x = 1 1 0

x+ y y = 0 y = 1

x = 0 1 0

x = 1 1 1

x y = 0 y = 1

x = 0 1 1

x = 1 0 0

x+ y y = 0 y = 1

x = 0 1 1

x = 1 0 1

and y = 0 y = 1

x = 0 1 1

x = 1 1 0

1 y = 0 y = 1

x = 0 1 1

x = 1 1 1

Thus, we can partition the 16 2-bit boolean functions in two groups:

– Group 1: 0,x,y,xor, xor,ȳ,x̄, and1
– Group 2: and,xȳ,x̄y,or,or,x + y, x + y, and and

and state the following corollaries.

Corollary 1. The two-bit boolean functions in Group 1 are privately com-
putable.

Corollary 2. The two-bit boolean functions in Group 2 are not privately com-
putable.

4 Secret Sharing Homomorphism

Benaloh [5] introduced the notion of secret sharing homomorphism. Roughly
speaking a secret sharing scheme is homomorphic if, when sharing two secrets,
the sum of the two shares received by each participant is a share of the sum
of the secrets. For the purpose of this paper we focus our attention on boolean
functions and provide the following definition of a function that is computable
through a secret sharing homomorphism.
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Definition 4. Let f : {0, 1} × {0, 1} → {0, 1} be a function, and let a and
b be two secret bits. Moreover, for i = 1, 2, let ai and bi be the shares of a
and b. Function f is computable through a secret sharing homomorphism (for
short, f is share-homomorphic) if there exist efficient computable functions g1 :
{0, 1}+×{0, 1}+ → {0, 1}+ and g2 : {0, 1}+×{0, 1}+ → {0, 1}+ such that, given
ci = gi(ai, bi) for i = 1, 2, it holds that Rec(c1, c2) = f(a, b), where Rec is the
secret sharing reconstruction function.

If f is share-homomorphic, then two parties, P1 and P2, holding shares of
two secret bits a and b, can compute by themselves, using g1 and g2, new shares
such that, reconstructing the secret from them, they get the same result they
would obtain by applying f to the secret bits a and b.

The share-homomorphic functions are also privately computable. Indeed, intu-
itively, we might look at a and b as to the two secret inputs held by the parties:
then, the shares ai and bi, due to the security property of secret sharing schemes,
do not provide any information about a and b, the computation of ci = g(ai, bi)
is a non-interactive private computation and, hence, does not leak any informa-
tion about a and b. It follows that the computation of f(c1, c2) does not leak any
information about the inputs, apart what can be inferred by each party from
the resulting function value and his own input.

More formally, we prove the following result:

Theorem 2. If f is a share-homomorphic function, then f can be computed
privately in a two-party computation.

Proof. Assume that f is a share-homomorphic function. Let a and b be the
input bits of the two parties and let a1, a2 be shares of a computed by P1

and b1, b2 be shares of b computed by P2. By definition of share-homomorphic
function, there exists two efficiently computable functions g1 and g2 such that
Rec(c1, c2) = f(x, y), where c1 = g1(a1, b1) and c2 = g2(a2, b2). Given this, we
can easily provide a two-party protocol that privately computes f(a, b). Party
P1 sends a2 to party P2 and party P2 sends b1 to party P1. Each party i applies
function gi to compute ci. Then party P1 sends c1 to P2 and P2 sends c2 to P1.
Finally each party computes Rec(c1, c2). By the share-homomorphic function
property we have that Rec(c1, c2) = f(a, b).

The privacy of the input is guaranteed by the sharing scheme: each party
receives only one share from the other party and thus it receives no information
about the other party’s input bit. Notice that also ci cannot contain information
about the input bit since it is computed from one share of a and from one share
of b and each share reveals no information about the input bit.

The converse might not be true.

5 Visual Homomorphic Functions

In this section we explore the use of visual cryptography as the sharing tech-
nique and we consider homomorphic functions that can be computed visually.
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Fig. 4. Model

By Theorem 2 and Corollary 2 we know that all the functions in Group 2 cannot
be share-homomorphic (and thus they cannot be visually share-homomorphic).
So the question we want to ask concerns the functions in Group 1, which we
know are privately computable. Which of these functions is also visually share-
homomorphic? It turns out that they are all visually share-homomorphic.

In order to prove the above assertion we define the following framework,
which is an instantiation of the general model shown in Fig. 1. Two parties need
to securely compute a function f(x, y) of two input bits, x belonging to party
1, and y belonging to party 2. In order to achieve this goal each party, using
a Scheme-(2,2)-NS, splits its own input bit into two visual shares. Then the
party passes one of the shares to the other party (see Fig. 4). At this point both
parties can manipulate the shares in their possession to produce new ones: party
P1 uses g1 to produce c1 and party P2 uses g2 to produce c2. Finally, the two
parties meet and superpose their transparencies c1 and c2 to obtain the result
c1 ⊕ c2. The result of the superposition is a visual representation of f(x, y).
More precisely, the value of the function f is computed visually according to the
Scheme-(2,2)-NSreconstruction rule, i.e., by interpreting [••] as “1” and either
one of {[•◦], [◦•]} as “0”.

We remark that, as we will see shortly, functions g1(·, ·) and g2(·, ·) are not
visual superpositions of shares. However they can be easily (and physically)
implemented since the result is equal to either one of the input shares or to the
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complement of one of the input shares and the complement can be obtained in
several ways, e.g., by rotating the input share by 180 degrees.

Next we show how to instantiate the above protocol for each function in
Group 1. We start by considering the functions x, x̄, y, ȳ, 0, 1. Then we consider
the functions xor and xor.

5.1 Functions X, x̄, y, ȳ, 0, 1

– f = x: g1 = a1 and g2 = a2. In this case we have that c1 = a1 and c2 = a2

and thus c1 ⊕ c2 = a1 ⊕ a2 = x.
– f = x̄: g1 = ā1 and g2 = a2. Complementing the first share of scheme Scheme-

(2,2)-NS, we basically complement the result of the reconstruction, as it is
clear by the following explicit representation of the scheme with the first shares
complemented:

C◦ =
{[•◦

◦•
]

,

[◦•
•◦

]}

C• =
{[•◦

•◦
]

,

[◦•
◦•

]}

When sharing a white pixel (0) we now reconstruct a black pixel (1) and
viceversa. Hence, in this case we have that c1 ⊕ c2 = x̄.

– f = y: As for f = x, just use bi instead of ai.
– f = ȳ: As for f = x̄, just use bi instead of ai.
– f = 0: g1 = a2 and g2 = a2. In this case we have c1 ⊕ c2 = a2 ⊕a2 = a2. Share

a2 can be either [◦•] or [•◦]. In both cases it represents 0.
– f = 1: g1 = ā2 and g2 = a2. In this case we have c1 ⊕ c2 = ā2 ⊕ a2 = [••]

which represents 1.

5.2 Function Xor

For f = xor functions g1 and g2 are a little bit more complicated since they
cannot be expressed as formulas. The following table specifies the functions (the
two functions are equal).

◦• ◦• •◦ •◦
◦• •◦ ◦• •◦

g1(·, ·) = g2(·, ·) ◦• •◦ •◦ ◦•
To prove that the above choice of g1, g2 allows to visually compute the xor

function we proceed with a case-by-case analysis, reported in the following tables.
Notice that r denotes the possible random bits chosen by the parties to create
the shares of their inputs.
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Case 1: x = 0, y = 0

a1 a2 b1 b2 c1 c2 c1 ⊕ c2
r = 00 [◦•] [◦•] [◦•] [◦•] [◦•] [◦•] [◦•] (0)
r = 01 [◦•] [◦•] [•◦] [•◦] [•◦] [•◦] [•◦] (0)
r = 10 [•◦] [•◦] [◦•] [◦•] [•◦] [•◦] [•◦] (0)
r = 11 [•◦] [•◦] [•◦] [•◦] [◦•] [◦•] [◦•] (0)

Case 2: x = 0, y = 1

a1 a2 b1 b2 c1 c2 c1 ⊕ c2
r = 00 [◦•] [◦•] [◦•] [•◦] [◦•] [•◦] [••] (1)
r = 01 [◦•] [◦•] [•◦] [◦•] [•◦] [◦•] [••] (1)
r = 10 [•◦] [•◦] [◦•] [•◦] [•◦] [◦•] [••] (1)
r = 11 [•◦] [•◦] [•◦] [◦•] [◦•] [•◦] [••] (1)

Case 3: x = 1, y = 0

a1 a2 b1 b2 c1 c2 c1 ⊕ c2
r = 00 [◦•] [•◦] [◦•] [◦•] [◦•] [•◦] [••] (1)
r = 01 [◦•] [•◦] [•◦] [•◦] [•◦] [◦•] [••] (1)
r = 10 [•◦] [◦•] [◦•] [◦•] [•◦] [◦•] [••] (1)
r = 11 [•◦] [◦•] [•◦] [•◦] [◦•] [•◦] [••] (1)

Case 4: x = 1, y = 1

a1 a2 b1 b2 c1 c2 c1 ⊕ c2
r = 00 [◦•] [•◦] [◦•] [•◦] [◦•] [◦•] [◦•] (0)
r = 01 [◦•] [•◦] [•◦] [◦•] [•◦] [•◦] [•◦] (0)
r = 10 [•◦] [◦•] [◦•] [•◦] [•◦] [•◦] [•◦] (0)
r = 11 [•◦] [◦•] [•◦] [◦•] [◦•] [◦•] [◦•] (0)

In all cases we have that f(x, y) = xor(x, y).

5.3 Function Xor

The xor function is as the xor with function g2 complemented pixel-wise (◦ ↔ •)
with respect to g1. That is:

◦• ◦• •◦ •◦
◦• •◦ ◦• •◦

g1(·, ·) ◦• •◦ •◦ ◦•

◦• ◦• •◦ •◦
◦• •◦ ◦• •◦

g2(·, ·) •◦ ◦• ◦• •◦
A case by case inspection is very similar to the one already seen for the xor

function with the difference that c2 is complemented (◦ ↔ •). It should be not
difficult to see that complementing c2, the result c1 ⊕ c2 gets also complemented
(1 ↔ 0).

6 On Randomness Saving: Strategies and Impossibility
Results

The classical approach to visual cryptography is to make shares for each pixel,
regardless whether the pixels are correlated, or not. For an example of correlated
pixels see Fig. 2 in the Introduction section. In this section we discuss an approach
to make visual shares of multiple pixels grouped together, exploiting the fact they
might be correlated. We start with an high level discussion and then proceed to
give formal statements.

Obviously, since images superposition is used, we cannot compress the shares.
Indeed, it would require some computer to decompress the shares. However, we
will show that in some circumstances we can reduce the dealer’s randomness.

The first question we pose is what security requirement we impose on such a
new approach. We address this in Sect. 6.1. We then show the unexpected result
that links randomness reduction to secure multiparty computation. We show
impossibility and possibility results.
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6.1 Security Definition

We first motivate the need for a definition. If shares are made for each pixel
independently, then obviously, shares of one pixel are of no help to gain any
information about another pixel. However, if the construction of shares is based
on multiple pixels, then this observation may no longer be true. To better under-
stand this take the following scenario.

Imagine a cabinet document is stored using visual cryptography. Now, when
Prime Minister Tatcher came to power, ministers she inherited from the Heath
Government, leaked parts of such documents to the press. Obviously, we want
that a leak of a part of document stored using visual cryptography, does not leak
anything extra besides what logically follows from the leak. Indeed, if a pixel in
the unleaked part follows logically from the leaked pixels (as g in Fig. 2), then
nothing can be done to prevent this extra leak. In our definition we will indicate
tuples (or vectors) by s. We call x ∈ X the document in question.

Definition 5. We consider two settings. In the first, a traitor leaks xL, some
part of the original document x to an unauthorized subset of participants B′; for
simplicity we can think of xL as some pixels of x and we let L be a set of indices
of the leaked pixels. In the second setting this traitor leaks additionally all visual
secret shares, i.e., sL, corresponding with the leaked pixels. We say that the secret
sharing scheme maintains pixel independence if for any probability distribution
of x ∈ X, for all unauthorized subset B′ of participants,

prob (x | xL, sB′) = prob (x | sL, xL, sB′) , (1)

where sB′ are shares of all or of some pixels of an unauthorized set B′.

6.2 Impossibility Results

We now show that if a pixel is a (deterministic) function of other pixels (as g in
Fig. 2), the reduction of randomness for certain functions is impossible.

For the moment we restrict ourselves to the case that Pixel 3 is
f(Pixel 1,Pixel 2) and that we have two parties and none alone should learn
the secret. We let X = GF (22), i.e., the set of all possible values for the first
two pixels.

We let si,j be the share of Party i of Pixel j. Moreover, when B′ = {1}
or B′ = {2}, we let sB′ be the shares of B′ of the first 2 pixels. Also, we let
xL = f(x), correspond to the 3rd pixel, (i.e., when x ∈ X), and sL = (s1,3, s2,3).

Lemma 1. Suppose that the shares of the three pixels are pixel independent, as
defined in Definition 5. Then, ∀x, x′ ∈ X, for all probability distributions over
X, ∀sL

f(x) = f(x′) =⇒ prob(sL | sB′ , x) = prob(sL | sB′ , x′).
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Proof. We have

prob(x | f(x), sB′ , sL) =
prob(sB′ , x, sL)

prob(sB′ , f(x), sL)
=

prob(sB′ , x | sL)
prob(sB′ , f(x) | sL)

, (2)

and similarly,

prob(x | f(x), sB′) =
prob(sB′ , x)

prob(sB′ , f(x))
= prob(x | f(x)) · F (3)

where F = prob(sB′ | x)/prob(sB′ | f(x)). Since the sharing guarantees pixel
independence, the formula on the left-hand-side in (2) and on the left-hand-side
in (3) are equal, giving

prob(sB′ , x | sL)
prob(sB′ , f(x) | sL)

= prob(x | f(x)) · F . (4)

Then using (4),

prob(sL | sB′ , x) =
prob(sB′ , x | sL) · prob(sL)

prob(sB′ , x)

=
prob(x | f(x)) · F · prob(sB′ , f(x) | sL) · prob(sL)

prob(sB′ , x)

=
prob(x) · F · prob(sB′ , f(x), sL)

prob(f(x)) · prob(sB′ | x) · prob(x)
=

prob(sB′ , f(x), sL)
prob(sB′ , f(x))

.

The result follows by observing that the last expression is identical for x and x′

such that f(x) = f(x′).

We now prove our main theorem. We say that a two-out-of-two visual secret
sharing scheme is share revealing when given pixel j and s1,j , we can uniquely
compute s2,j and similarly, when given pixel j and s2,j , we can uniquely compute
s1,j . Note that Naor-Shamir’s scheme satisfies this condition.

Theorem 3. Let us assume that Pixel 3 = f(Pixel 1, Pixel 2) and that function
f , cannot be privately computed. A dealer trying to reduce the randomness, i.e.,
reuse the randomness used for the shares of Pixel 1 and Pixel 2, when generating
shares of Pixel 3, will breach the pixel independence requirement when using a
visual secret sharing scheme which is share revealing.

Proof. Since B′ = {1} or B′ = {2}, for simplicity, let B′ = {1}. Then Lemma 1
becomes that if f(x) = f(x′) then prob(sL | s{1}, x) = prob(sL | s{1}, x

′), where
s{1} are Party 1’s shares of the first two pixels, which we write from now on as
s1. Since the secret sharing scheme we use is share revealing, the implication of
Lemma 1 is equivalent to

f(x) = f(x′) =⇒ prob(sL | s1, s2) = prob(sL | s1, s
′
2), (5)
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where s2 are the shares of Party 2 of the first two pixels. Condition (5) is exactly
the privacy condition given in Definition 1. So, if f cannot be computed privately
by a two-party protocol, then the pixel independence condition will be violated
when trying to make a share revealing visual secret sharing scheme. (Note that
if we would have taken B′ = {2}, we would have come to a similar formula but
we would had s′

1 instead of s′
2.)

As an application, we show that the dealer cannot reduce randomness when
making shares of LED g in Fig. 2. Indeed, as pointed out earlier, g = ābcd. As
before, we let the four pixels (LEDs) correspond to four parties. The reduction
to show that 4 parties cannot privately compute g = ābcd from ā, b, c, and d
to the impossibility of two parties privately computing xy is well known and
straightforward. Moreover, we have seen that xy is not privately computable.

We remark that if f cannot be computed in a two-party protocol 1-private,
then pixel independence can (obviously) still be achieved choosing s1,3 indepen-
dently of s1,1 and s1,2.

7 Randomness Reduction

On the positive side, we have that all the functions that are visually share-
homomorphic computable, that is, the functions in Group 1, allow for a ran-
domness reduction in the share distribution phase.

More precisely, if the pixels of the secret image can be grouped in triples,
where the third pixel is a function of the first two, and the function belongs to
Group 1, we can construct a scheme that uses random bits only for encoding
the first two pixels. As an example, let us assume that we have groups of three
pixels, each appearing only in one of the following patterns:

[◦◦◦] [◦••] [•◦•] [••◦].

that is, the third pixel is the xor of the first two.
We can construct a generalized Scheme-(2,2)-NSby using the standard

Scheme-(2,2)-NSfor encoding the first two pixels and encoding the third one using
the functions gi that are needed to implement the visual share-homomorphic
computation of the function.

For the xor function, a generalized Scheme-(2,2)-NSfor encoding the patterns
is provided through the following collections C◦◦◦, C◦••, C•◦• and C••◦ of matrices:

C◦◦◦ =
{[◦••◦•◦

◦••◦•◦
]

,

[◦•◦•◦•
◦•◦•◦•

]

,

[•◦•◦◦•
•◦•◦◦•

]

,

[•◦◦••◦
•◦◦••◦

]}

Consider the first distribution matrix and let us look at the first row, that
is [◦••◦•◦]. The first two pixels ◦• come from the first distribution matrix of
C◦ of Scheme-(2,2)-NS, because the first pixel of the triple is ◦; the subsequent
two pixels •◦ come from the second distribution matrix of C◦ of Scheme-(2,2)-
NS, because the second pixel of the triple is also ◦; finally the last two pixels of
[◦••◦•◦] do not come from any distribution matrix but instead they are obtained
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by applying function g = g1 = g2 from Sect. 5.2 to ◦• and •◦. The other dis-
tribution matrices are constructed considering all possible combinations of the
shares from C◦ and C• of Scheme-(2,2)-NS.

In a similar way we construct the other distribution collections:

C◦•• =
{[◦••◦•◦

◦•◦•◦•
]

,

[•◦•◦◦•
•◦◦••◦

]

,

[◦•◦•◦•
◦••◦•◦

]

,

[•◦◦••◦
•◦•◦◦•

]}

C•◦• =
{[•◦•◦◦•

◦••◦•◦
]

,

[•◦◦••◦
◦•◦•◦•

]

,

[◦••◦•◦
•◦•◦◦•

]

,

[◦•◦•◦•
•◦◦••◦

]}

C••◦ =
{[•◦•◦◦•

◦•◦•◦•
]

,

[•◦◦••◦
◦••◦•◦

]

,

[◦••◦•◦
•◦◦••◦

]

,

[◦•◦•◦•
•◦•◦◦•

]}

Notice that, the above scheme needs only two random bits for choosing a
distribution matrix in each collection. A standard visual crypto scheme needs to
use 3 random bits. Moreover, it is immediate to check that:

– each row of each matrix does not provide any information on the group of
pixel it encodes

– superposing the two rows of each matrix of C◦◦◦ we get a row with 3 black
subpixels out of 6

– superposing the two rows of each matrix of C◦•• we get a row with 5 black
subpixels out of 6

– superposing the two rows of each matrix of C•◦• we get a row with 5 black
subpixels out of 6

– superposing the two rows of each matrix of C••◦ we get a row with 5 black
subpixels out of 6

As another example, let us assume that the third pixel is the xor of the first
two:

[•••] [•◦◦] [◦•◦] [◦◦•].

As done before, we can construct a generalized Scheme-(2,2)-NS. In this case
the first rows are exactly as the ones that we have constructed for the xor
function, because function g1 in Sect. 5.3 is equal to function g of Sect. 5.2, while
in the second rows the third 2-pixel pair is obtained applying function g2 in
Sect. 5.3, which is equal to ḡ. The collections are:

C••• =
{[◦•◦•◦•

•◦•◦•◦
]

,

[•◦◦••◦
◦••◦◦•

]

,

[◦••◦•◦
•◦◦•◦•

]

,

[•◦•◦◦•
◦•◦••◦

]}

C•◦◦ =
{[◦•◦•◦•

•◦◦•◦•
]

,

[•◦◦••◦
◦•◦••◦

]

,

[◦••◦•◦
•◦•◦•◦

]

,

[•◦•◦◦•
◦••◦◦•

]}

C◦•◦ =
{[◦•◦•◦•

◦••◦◦•
]

,

[•◦◦••◦
•◦•◦•◦

]

,

[◦••◦•◦
◦•◦••◦

]

,

[•◦•◦◦•
•◦◦•◦•

]}

C◦◦• =
{[◦•◦•◦•

◦•◦••◦
]

,

[•◦◦••◦
•◦◦•◦•

]

,

[◦••◦•◦
◦••◦◦•

]

,

[•◦•◦◦•
•◦•◦•◦

]}
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As before, the above scheme needs only two random bits. Again, it is
immediate to check that:

– each row of each matrix does not provide any information on the group of
pixel it encodes

– superposing the two rows of each matrix of C••• we get a row with 6 black
subpixels out of 6

– superposing the two rows of each matrix of C•◦◦ we get a row with 4 black
subpixels out of 6

– superposing the two rows of each matrix of C◦•◦ we get a row with 4 black
subpixels out of 6

– superposing the two rows of each matrix of C◦◦• we get a row with 4 black
subpixels out of 6.

8 Conclusions and Open Problems

In this paper we have shown that:

– by properly defining operations on the shares, visual shares are homomorphic
with respect to some functions f . In the two-party case, each user, by applying
the operation to his two shares ai, bi of the secrets a, b, gets a share gi(ai, bi),
i = 1, 2, such that the superposition of g1(a1, b1) and g2(a2, b2) visually pro-
vides, applying the standard Naor and Shamir superposition reconstruction
strategy, the value of the function f ;

– by linking our analysis to a general known result on private two-party com-
putation, we have classified all the boolean functions of two input bits which
admit homomorphic visual share computation;

– by encoding group of pixels together, instead of encoding each pixel indepen-
dently as visual cryptography usually does, and exploiting pixel dependencies,
some randomness can be saved. For the case of three pixels, where the third
is a function of the first two, randomness can be saved if and only if the
pixel dependencies can be expressed through functions 0, x, y, xor, xor, ȳ, x̄,
and 1.

– by using reduction arguments, we have provided concrete examples of pixel
dependencies in images which cannot be exploited: in a led display with a total
of 7 leds, which could be used for input-output purposes in secure multiparty
computation hybrid systems, led g is a function of leds a, b, c and d, i.e.,
g = ābcd. Due to the impossibility of exploiting and dependencies there is no
way to save randomness in an implementation based on visual cryptography.
The same result holds for other leds.

Directions for future research include: (i) a formal model for generalized
Scheme-(2,2)-NS(multi-collections of matrices) which encode groups of pixels
together, providing bounds on the randomness and other parameters in terms of
standard Scheme-(2,2)-NS; (ii) Characterization of dependencies among n-tuple
of bits in terms of (n−1)-bit boolean functions; (iii) Look at the power of other
visual crypto models.
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Abstract. Visual cryptography is an increasingly popular crypto-
graphic technique which allows for secret sharing and encryption of
sensitive data. This method has been extended and applied to secure
biometric data in various protocols. In this paper, we propose a gen-
eral framework to help assess the security of these extended biometric
visual cryptographic schemes (e-BVC). First, we formalize the notion
of “perfect resistance against false authentication” under our framework
and show that our formalization captures the traditional false accep-
tance attack under plausible assumptions. Second, we modify the tradi-
tional false acceptance attack and propose a new and generic strategy for
attacking e-BVC schemes. As an application, we present a case analysis
for a recent implementation of a face recognition protocol and verify the
practical impact of our proposed framework and attack in detail.

1 Introduction

Biometric authentication systems are employed worldwide, in both public and
private sectors. For example, facial and fingerprint recognition systems are valu-
able border control tools, and are currently deployed by the United States via the
Global Entry program1 as well as at automated border patrols in the Frankfurt
Rhein-Main international airport2. Biometric authentication systems are conve-
nient for users, requiring no generation and memorization of passwords. However,
there is a greater risk in the event that the database storing biometric informa-
tion is compromised or hacked. One may always create a new password, but
one cannot easily create a new face or fingerprint. Thus confidentiality and pri-
vacy of biometric data is of supreme importance. The sensitive nature of enrolled
biometric information requires heightened security and privacy measures of cryp-
tographic protocols in biometrics. There are several techniques to design secure
biometric schemes. Some examples are biometric cryptosystems [12], cancelable
biometrics [18], secure multiparty computation, encryption, private information
retrieval [4,5,7,8,24], and hybrid biometrics [9,11].

Biometric visual cryptography (BVC) [13,20] is another approach to design
secure and privacy-preserving biometric systems. Visual cryptography (VC)

1 http://www.cbp.gov/travel/trusted-traveler-programs/global-entry.
2 http://www.easypass.de/EasyPass/EN/Service/FAQ/captured-data.html.
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allows for concealing of a secret image such that the recovery procedure does
not require any computation. The main ingredient of a classical visual crypto-
graphic construction is a (t, n)-threshold secret sharing scheme [6,21], where a
secret is divided into n shares and the secret can be recovered if t or more shares
are available. Otherwise, a collection of less than t shares is not supposed to
reveal any information about the secret. For example, when t = n = 2, a secret
image is divided into two secret shares such that none of the shares reveal any
information about the original image. The original image can be reconstructed
only when both shares are combined together. Therefore, VC enjoys the fact that
sensitive information can securely be distributed over several databases rather
than storing it in a central database. Naor and Shamir [15] are credited with the
first visual cryptographic scheme using a (t, n)-threshold secret sharing scheme.
In the case t = 2, reconstruction of an image in [15] is achieved by overlaying
any of the 2 out of n secret shares, where the shares are in the form of trans-
parencies. Semantic security is achieved in [15] because secret transparencies are
indistinguishable from random transparencies, whence they do not reveal any
information about the original image. Ateniese et al. [3] extend the work in [15]
and establish a framework for visual cryptography for general access structures
while preserving semantic security. In [15], the authors discuss how to extend
their scheme (from VC to Extended VC (e-VC)) so that the shares of a secret
image looks like meaningful images rather than random transparencies. This
approach is further extended [2,13] to work with natural images and to improve
the quality of output images. The extension of VC to e-VC in biometrics is
motivated in [20] as follows:

Since these sheets (shared secrets) appear as a random set of pixels, they
may pique the curiosity of an interceptor by suggesting the existence of a
secret image. To mitigate this concern, the sheets could be reformulated
as natural images as stated by Naor and Shamir.

It is noted in [13] that there is a trade-off between the image quality and the
security, and that their e-VC scheme is not perfectly secure. It is also noted that
security assessments should take the human perception into account. Similarly,
[20] reports on an implementation of an e-VC scheme for securing face images.
In particular, equal error rates are presented with respect to a various set of
parameters and databases, and the security of their scheme is discussed based
on experiments. Based on experimental results in [20], several security claims
are made. For example, based on Experiment 7 in [20], it is stated that exposing
the identity of a secret face image by using the sheets alone is difficult. On the
contrary, the picture taken from [20] (see Fig. 1) suggests that a single sheet of
a secret image reveals significant information about the image itself. Similarly,
based on Experiment 8 in [20], it is stated that performing cross-matching across
different applications is difficult. However, we are not aware of a concrete formal
security analysis of the protocols proposed and implemented in [13,20]. Sev-
eral other visual biometric authentication schemes exist such as [14,17,19,20],
but there is no formal framework for analyzing biometric visual cryptographic
schemes and quantifying their security claims.
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Fig. 1. The picture is taken from [20].

In this paper, we initiate the study of formal security analysis of biomet-
ric e-VC schemes (e-BVC). To our knowledge, this is the first comprehensive
attempt that outlines a theoretical analysis and its practical impact on some
recent implementations of biometric authentication schemes. In summary, our
contributions are as follows:

1. In Sect. 2, we develop a framework and describe BVC schemes generically
under our framework. In particular, we show how the face recognition proto-
col, recently proposed by Ross and Othman [20], fits our framework. In our
analysis and examples, we choose [20] because, to our knowledge, it stands
as the state-of-the-art e-BVC implementation with the most reasonable false
accept and false reject rates. Moreover, [20] includes detailed security dis-
cussions with very strong security claims. However, none of the claims were
proven due to the lack of a formal framework. Therefore, [20] is a natural
choice to emphasize the practical impact of our framework.

2. In Sect. 3, we formalize the notion of “perfect resistance against false authen-
tication” under our framework and show that our formalization captures the
traditional false acceptance attack under plausible assumptions; see Defini-
tion 1 and Remark 2.

3. In Sect. 4, we propose a new and generic strategy for attacking e-BVC
schemes. As an application, we present a case analysis for a recent imple-
mentation of a face recognition protocol in [20]. We disprove some of the
security claims in [20] and verify that [20] does not achieve perfect resistance
against false authentication. More concretely, we show that an adversary can
utilize our new attack and authenticate with probability of success greater
than 0.45.

4. As a result of our framework and analysis, we are able to derive a new and
quantifiable upper bound on the security of e-BVC schemes; see Remark 4.

Remark 1. As is common in provable security works [1,22], our framework con-
tains definitions of security games and reductions. The purpose is to provide
more rigor in the security assessment of e-BVC schemes as well as creating
proofs which are easy to verify.
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2 Framework

Visual biometric authentication protocols require an enrollment and an authenti-
cation phase. During enrollment, a biometric image is captured and decomposed
into, say n, obfuscated images. These decomposed components of the image
are then distributed into n databases. During the authentication phase, some
biometric image is captured and systematically compared against reconstructed
images. Here, input to the reconstruction procedure is a subset of images held in
the databases. This “comparison” is performed through a matching algorithm
that computes a matching score. The matching score must exceed a certain value,
so called a matching threshold, for a successful authentication.

To illustrate this idea, we elaborate on one of the biometric authentication
protocols proposed in [20]. During the enrollment phase proposed in the face
recognition scheme in [20], a biometric image is decomposed into two other face
images, called sheets. The sheets are stored in separate databases, and according
to security claim in [20] the individual sheets do not reveal the identity of the
private face image. In fact, the private image is supposed to be recovered only
when both sheets are present. The reconstruction is performed by superimposing
the two sheet images to recover the original biometric image. This process of
overlaying images is equivalent to the OR operator at the bit level [20]. Finally,
the authentication of an image α requires the ORing of all pairs of sheet images
until one ORed pair is a match with α with respect to a given matching threshold.
We formalize this concept as follows.

Let Ω be a space of biometric images and S a space of images (not necessarily
biometric). Note that Ω is a subset of S. In the following, M is a well-ordered
set with “≥” the comparison operator. Our framework requires the following
oracles.

Decomposition is defined by the function

Dn : Ω → S × S × · · · × S
︸ ︷︷ ︸

n copies

,

which decomposes one biometric image into n images (a.k.a. sheets), not
necessarily biometric.
Reconstruction is defined by the function

Rt : S × S × · · · × S
︸ ︷︷ ︸

t copies

→ Ω,

which takes t sheets as input, and constructs a biometric image.
Matching is defined by the function

M : Ω × Ω → M,

which outputs some matching score m0 ∈ M given a pair of biometric images
as input.
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Authentication is defined by the function

Am : Ω × S × S × · · · × S
︸ ︷︷ ︸

t copies

→ {0, 1},

where m ∈ M is the matching threshold of the authentication proto-
col. Am takes a tuple (α, s1, s2, . . . st), α ∈ Ω, si ∈ S as input. Suppose
β = Rt(s1, s2, . . . , st) and m0 = M(α, β). Then the output of Am is 1 if
m0 ≥ m, indicating a successful authentication. Otherwise, Am outputs 0.

Suppose now that Dn(α) = (s1, s2, . . . sn) and β = Rt(si1 , si2 , . . . , sit), where
ij ∈ {1, . . . , n} are pairwise distinct. For the robustness of a system, it is expected
that M(α, β) = m0 ≥ m. That is, Am(α, si1 , si2 , . . . , sit) = 1.

In our framework, we may denote a BVC scheme by the tuple
(Ω,S,M,Dn,Rt,M,Am).

Ross and Othman Scheme in our Framework: The face recognition pro-
tocol presented by Ross and Othman in [20] fits our framework with t = n = 2
as follows. The protocol employs a preselected collection of face images, called
host images. Once a face image α is presented for enrollment, an Active Appear-
ance Model (AAM) is created, as outlined in [10,23], based on facial landmarks
and textures. Once the AAM has been created, the image undergoes annotation
and has an associated registration cost. These factors determine which two host
images h1, h2 are selected for the given image. These three images (α, h1, h2)
are then sent through a digital halftoning and pixel expansion process before
α is decomposed into two sheets. We may denote this decomposition in our
framework as:

D2(α) = (s1(α), s2(α)). (2.1)

The reconstruction algorithm is performed by stacking the two sheet images atop
each other. This is computed as the binary OR operation on each pair of bits in
the sheets. We may denote this process in our framework as:

R2(s1, s2) = s1 ⊕ s2, (2.2)

where ⊕ denotes the binary OR operator.
Due to the nature of the digital halftoning and pixel expansion process, the

stacking of sheets will not fully reconstruct the original image α. However, the
face image will be recognizable to the human visual system as well as by the
matching software. These claims are supported by experimental results in [20].
The matching and authentication oracles M and Am are implemented by the
Verilook SDK [16]. We denote Ross and Othman’s extended biometric authen-
tication scheme (for face recognition) by RO-e-BVC throughout the rest of this
paper.

As mentioned earlier in Sect. 1, RO-e-BVC is based on a further extension of
e-VC, which improves on the quality of output images. The main motivation is
to improve on the performance (e.g. equal error rates) of the biometric scheme.
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The trade-off between image quality and security is already noted in [13] even
though we are not aware of a concrete analysis of this trade-off. On the contrary,
some strong security properties about RO-e-BVC are claimed in [20]. In Sect. 3,
we attempt to quantify the security of BVC schemes with respect to the false
authentication notion. In particular, we show that RO-e-BVC in [20] does not
achieve perfect resistance against false authentication.

3 Revisiting the False Acceptance Attack

First, we recall some common definitions in biometrics. A genuine pair is a pair
of biometric images or some cryptographic transformation of images derived
from the same person or entity. An imposter pair is a pair of biometric images
which do not correspond to the same person. Given some matching oracle M
and authentication oracle Am, we define a Genuine Accept as the event that the
matching oracle M computes a matching score m0 ≥ m, given a genuine pair of
biometric images. That is, Am(α, β) = 1 for a genuine pair (α, β). A False Reject
is the event that Am(α, β) = 0 for a genuine pair (α, β). A Genuine Reject is the
event that M computes m0 < m, given an imposter pair. That is, Am(α, β) = 0
for an imposter pair (α, β). A False Accept is the event that Am(α, β) = 1 for an
imposter pair (α, β). The False Reject Rate FRR(m) with respect to a matching
threshold m is computed by counting the number of false rejects found from a
list of genuine pairs, and diving this number by the size of the list. Similarly, the
False Accept Rate FAR(m) with respect to a matching threshold m is computed
by counting the number of false accepts found from a list of imposter pairs, and
dividing this number by the size of the list.

In a traditional false acceptance attack, an adversary inserts a biometric
image and hopes for a successful authentication. It is known that the success
probability of an adversary in this attack is correlated with the false acceptance
rate of the system. First, we capture this false acceptance rate attack idea and
formalize it under the authentication game GAUTH. In particular, the guessing
strategy in GAUTH corresponds to an adversary who inserts random biometric
images for authentication and whose success probability is asymptotically the
same as the false acceptance rate of the underlying scheme.

Before describing GAUTH, we recall some common definitions in biometrics and
induce some natural structure to the space of biometric images Ω. We assume
that Ω is a universal finite set of biometric images so that Ω = {ω1, ω2, . . . , ω�}.
Let N denote the number of unique individuals with at least one biometric
image contained in Ω. We consider a partitioning of Ω as a disjoint union of Wi

subsets, where Wi denotes the set of all genuine images that correspond to the
ith individual for i = 1, ..., N . In summary, we have

1. For x, y ∈ Ω, if x ∈ Wi and y ∈ Wj for some i �= j, then (x, y) is an imposter
pair.

2. For x, y ∈ Ω, if x, y ∈ Wi for some i, then (x, y) is a genuine pair.
3. W1 ∪ W2 ∪ . . . ∪ WN = Ω, Wi ∩ Wj = ∅ for all i �= j, and

∑N
i=1 |Wi| = |Ω|.
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Now, we are ready to describe GAUTH. Let (Ω,S,M,Dn,Rt,M,Am) represent
an e-BVC scheme. For simplicity, we assume t = n = 2. In GAUTH, A is a
computationally bounded adversary and C represents a challenger. It is assumed
that A knows the parameter set of the e-BVC scheme except the private images
(denoted by Ω′ below). It is also assumed that A has access to the first sheets of
the decomposed biometric images in a database. This is a valid attack scenario
because in an ideal BVC, the first sheet of a decomposed biometric image is not
supposed to reveal any information about the original image.

Authentication Game. GAUTH

1. The challenger C chooses k indices i1, ..., ik uniformly at random, where
1 ≤ k ≤ N . C generates a secret subcollection Ω′ = {wi1 , ..., wik} ⊆ Ω of
private biometric images, where wij ∈ Wij for all j = 1, ..., k.

2. C computes D2(w′) = (s1(w′), s2(w′)) and sends s1(w′) for all w′ ∈ Ω′.
3. A outputs an image w ∈ Ω and wins if Am(w,w′) = 1 for some w′ ∈ Ω′.

We define the success probability of A in GAUTH as Pr[Am(w,w′) = 1], and
the advantage of A attacking an e-BVC scheme in GAUTH as

AdvAUTHA =|Pr[Am(w,w′) = 1] −
∑k

j=1 |Wij |
|Ω| · GAR

− k|Ω| − (
∑k

j=1 |Wij |)
|Ω| · FAR|, (3.1)

where FAR and GAR are the false acceptance and genuine acceptance rates of
the underlying system. The definition of AdvAUTHA makes sense because we show
in Theorem 1 that the adversarial advantage in the guessing attack is zero as
expected.

We are now ready to formalize the notion of perfect resistance against false
authentication based on GAUTH and AdvAUTHA .

Definition 1. We say that an e-BVC scheme resists false authentication if
AdvAUTHA is negligible for all possible A. In particular, we say an e-BVC achieves
perfect resistance against false authentication if AdvAUTHA = 0 for all possible A.

Note that, in an authentication attack, A can always choose w ∈ Ω at random
and hope that Am(w,w′) = 1 for some w′ ∈ Ω′. This concept is formalized in
the following guessing attack.

Guessing Attack. Suppose the adversary A plays the authentication game
GAUTH. Then A receives s1(w′) for all w′ ∈ Ω′. In the guessing attack, A chooses
w ∈ Ω uniformly at random and outputs w.

In the following, we compute the success probability of A in the guessing
attack and conclude that it is practically the same as the false acceptance rate
of the underlying scheme.



Revisiting the False Acceptance Rate Attack 121

Theorem 1. The success probability of A in the guessing attack is

Pr[Am(w,w′) = 1] = min(M, 1),

where

M =

∑k
j=1 |Wij |

|Ω| · GAR +
k|Ω| − (

∑k
j=1 |Wij |)

|Ω| · FAR.

The advantage of A is AdvAUTHA = 0.

Proof. The success probability of A in the guessing attack can be computed as
Pr[Am(w,w′) = 1] = min(M, 1), where M is the expected number of matches
when w is compared against all w′ in the database. We can write

M =
k∑

j=1

[Pr(w ∈ Wij ) Pr(M(w,wij ) ≥ m|w ∈ Wij )

+ Pr(w �∈ Wij ) Pr(M(w,wij ) ≥ m|w �∈ Wij )]

=
k∑

j=1

[ |Wij |
|Ω| · GAR +

|Ω| − |Wij |
|Ω| · FAR

]

=

∑k
j=1 |Wij |

|Ω| · GAR +
k|Ω| − (

∑k
j=1 |Wij |)

|Ω| · FAR,

as required. Finally, AdvAUTHA = 0 follows from (3.1).

Remark 2. In a robust authentication system, it is expected that GAR > FAR,
whence,

Pr[Am(w,w′) = 1] ≥ min(k · FAR, 1). (3.2)

On the other hand, in a practical authentication system, Pr[Am(w,w′) = 1]
cannot be much higher than min(k · FAR, 1) because it is also expected that k
(the number of enrolled users in a database) is much smaller than N (the total
number of users) and so k/N ≈ 0. Consequently, under the plausible assumption
that |Wi| ≈ |Wj | for all i, j, we can write

M =
k

N
· (GAR − FAR) + k · FAR ≈ k · FAR

and

Pr[Am(w,w′) = 1] ≈ min(k · FAR, 1).

Therefore, we see that the guessing attack in GAUTH is a way of formalizing the
so-called false acceptance attack.

Based on Remark 2, we may state the adversarial advantage in GAUTH in a
rather simplified form as follows:

AdvAUTH
∗

A = |Pr[Am(w,w′) = 1] − min(k · FAR, 1)| . (3.3)
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4 A New Strategy for Attacking E-BVC

Note that, in an ideal scheme, one would expect that A’s success probability
is no better than the success probability of a random guess and that A has
zero advantage AdvAUTHA = 0 (or AdvAUTH

∗
A ≈ 0). In this section, we modify the

traditional false acceptance attack and introduce a new strategy for attacking
e-BVC schemes. We compute the success probability and advantage of an adver-
sary in this modified false acceptance attack. Finally, we compare the advantage
of adversaries in the guessing attack and the new false acceptance rate attack.
As an example, our analysis yields that the success probability of an adversary
attacking RO-e-BVC [20] under the new false acceptance rate attack increases
from 0.005 to 0.45.

First, we define new genuine accept (reject) and false accept (reject) notions.

Definition 2. Let (Ω,S,M,Dn,Rt,M,Am) represent an e-BVC scheme.
GAR′(m) (or, simply GAR′) is defined to be a function of the matching threshold
m and denotes the rate at which M(s1(α), β) ≥ m given that (α, β) is a genuine
pair. Similarly, FAR′(m) (or, simply FAR′) is a function of m and denotes the
rate at which M(s1(α), β) ≥ m given that (α, β) is an imposter pair.

Note that in an ideal e-BVC scheme one would intuitively expect that
GAR′ ≈ 0 and FAR′ ≈ 0 because a sheet of a biometric image is not sup-
posed to reveal any information about the image itself. Our new authentication
attack and its analysis in Theorem2 confirms this intuition by showing that the
success probability and the advantage of an adversary increases as GAR′ and
FAR′ increase.

A New Authentication Attack (N-AUTH). Suppose A plays GAUTH and
so she receives a set of sheets {s1,j : s1,j = s1(wij ), wij ∈ Ω′, j = 1, ..., k}.A
chooses an index j ∈ [1, k] uniformly at random and outputs s1,j as an attempt
for authentication.

Theorem 2. The success probability of A in N-AUTH is

Pr[Am(w,w′) = 1] = min(GAR′ + (k − 1)FAR′, 1), (4.1)

and the simplified advantage of A is

AdvAUTH
∗

A =
∣
∣min(GAR′ + (k − 1)FAR′, 1) − min(k · FAR, 1)

∣
∣ . (4.2)

Proof. Note that A in N-AUTH outputs s1,j = s1(wij ), where (wij , w
′) is an

imposter pair for all w′ ∈ Ω′ except when w′ = wij . Therefore, s1,j and the set
Ω′ form (k − 1) imposter pairs and 1 genuine pair in total, and we can compute
the success probability of A in N-AUTH

Pr[Am(w,w′) = 1] = min(GAR′ + (k − 1)FAR′, 1). (4.3)

It follows from (3.3) that

AdvAUTH
∗

A =
∣
∣min(GAR′ + (k − 1)FAR′, 1) − min(k · FAR, 1)

∣
∣ .
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Remark 3. In an ideal e-BVC, s1(α) is not supposed to reveal any information
about the original image α. Therefore, it is expected that the three distributions
{(s1(α), β) : (α, β) is genuine}, {(s1(α), β) : (α, β) is imposter}, and {(α, β) :
(α, β) is imposter} are indistinguishable, and hence GAR′ ≈ FAR′ ≈ FAR. This
implies that, an ideal e-BVC satisfies

AdvAUTH
∗

A =
∣
∣min(GAR′ + (k − 1)FAR′, 1) − min(k · FAR, 1)

∣
∣

≈ ∣
∣min(k · FAR′, 1) − min(k · FAR, 1)

∣
∣ ≈ 0.

In other words, N-AUTH does not yield any adversarial advantage over the
guessing attack for ideal e-BVC, as expected.

Remark 4. Based on our analysis of the guessing attack and the new authenti-
cation attack, we can conclude that the success probability of an adversary in
an authentication game GAUTH is

Pr[Am(w,w′) = 1] ≥ max
[
min(GAR′ + (k − 1)FAR′, 1),min(k · FAR, 1)

]
.

This gives a quantifiable upper bound on the security of e-BVC schemes, where
the quantification is performed based on the size k of the system database, and
measurable rates GAR′, FAR′, and FAR. On the other hand, one should be
careful assessing the security of the system as this is only an upper bound on
the security based on just two attack methods. There may exist other and better
attacks in general.

4.1 A Case Analysis for RO-e-BVC

As described earlier in Sect. 2, a visual face recognition protocol (RO-e-BVC)
was proposed and implemented in [20]. More concretely, the scheme in [20] is
implemented for 2 different databases (IMM and XM2VTS) and each database
is considered with respect to 3 different datasets (A, F, and G) with a various
number of host images. Several experiments were conducted in [20] to analyze the
security and privacy-preserving properties of RO-e-BVC. In particular, Experi-
ment 3 in [20] considers the possibility of matching one of the secret sheets of an
image against the image itself, and does not consider this as a security threat.

On the contrary, we observe based on the illustration in Fig. 15 in [20]
that at least one of the sheets of the decomposed images looks similar to the
original image. Therefore, an adversary is expected to have significant advan-
tage in attacking RO-e-BVC by mounting the N-AUTH attack as described
in Sect. 3. In fact, in Experiment 3 in [20] it is reported that the equal error
rate of a particular implementation of the RO-e-BVC scheme is very small:
FAR = FRR ≈ 0 when the IMM database is used with the dataset A and
FAR = FRR ≈ 0.005 when the XM2VTS database is used with the dataset
A. It is also reported under the same setting that if single sheets are com-
pared against original images then the resultant equal error rates are greater
than 0.45. In other words, FAR′ = 1 − GAR′ > 0.45. It follows from Theo-
rem 2 that the success probability of an adversary in attacking RO-e-BVC under
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N-AUTH is Pr[Am(w,w′) = 1] > 0.45, which is significantly greater than the
success probability of an adversary in attacking RO-e-BVC under the traditional
false acceptance attack, or equivalently the guessing attack. We conclude that
RO-e-BVC in [20] does not achieve perfect resistance against false authenti-
cation and adversaries can gain significant advantage in attacking RO-e-BVC
under N-AUTH.

5 Conclusion

We formalized the notion of “perfect resistance against false authentication”
for biometric visual cryptographic schemes and showed that our formalization
captures the traditional false acceptance attack under plausible assumptions.
We also introduced a new and effective attack strategy for e-BVC schemes. Our
quantitative analysis verifies the practical impact of our framework and offers a
concrete upper bound on the security of e-BVC.
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Abstract. Algebraic Manipulation Detection (AMD) Codes detect
adversarial noise that is added to a coded message which is stored in
a storage that is opaque to the adversary. We study AMD codes when
the storage can leak up to ρ log |G| bits of information about the stored
codeword, where G is the group that contains the codeword and ρ is a
constant. We propose ρ-AMD codes that provide protection in this new
setting. We define weak and strong ρ-AMD codes that provide security
for a random and an arbitrary message, respectively. We derive concrete
and asymptotic bounds for the efficiency of these codes featuring a rate
upper bound of 1 − ρ for the strong codes. We also define the class of
ρLV -AMD codes that provide protection when leakage is in the form of
a number of codeword components, and give constructions featuring a
family of strong ρLV -AMD codes that asymptotically achieve the rate
1 − ρ. We describe applications of ρ-AMD codes to, (i) robust ramp
secret sharing scheme and, (ii) wiretap II channel when the adversary
can eavesdrop a ρ fraction of codeword components and tamper with all
components of the codeword.

1 Introduction

Algebraic Manipulation Detection (AMD) Codes [1] protect messages against
additive adversarial tampering, assuming the codeword cannot be “seen” by
the adversary. In AMD codes, a message is encoded to a codeword that is an
element of a publicly known group G. The codeword is stored in a private storage
which is perfectly opaque to the adversary. The adversary however can add an
arbitrary element of G to the storage to make the decoder output a different
message. A δ-secure AMD code guarantees that any such manipulation succeeds
with probability at most δ. Security of AMD codes has been defined for “weak”
and “strong” codes: weak codes provide security assuming message distribution
is uniform, while strong codes guarantee security for any message distribution.
Weak AMD codes are primarily deterministic codes and security relies on the
randomness of the message space. Strong AMD codes are randomized codes
and provide security for any message. AMD codes have wide applications as a
building block of cryptographic primitives such as robust information dispersal
[1], and anonymous message transmission [1], and have been used to provide a
generic construction for robust secret sharing schemes from linear secret sharing
schemes [1].
c© Springer International Publishing AG 2016
A.C.A. Nascimento and P. Barreto (Eds.): ICITS 2016, LNCS 10015, pp. 129–150, 2016.
DOI: 10.1007/978-3-319-49175-2 7
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AMD codes with leakage were first considered in [2] where the leakage was
defined for specific parts of the encoding process. An α-weak AMD code with
linear leakage, also called α-weak LLR-AMD code, is a deterministic code that
guarantees security when part of the message is leaked but the min-entropy of
the message space is at least 1 − α fraction of the message length (in bits).
An α-strong LLR-AMD is a randomized code that guarantees security when
the randomness of encoding, although partially leaked, has at least min-entropy
(1 − α) log |R| where R is the randomness set of encoding.

In this paper we consider leakage from the storage that holds the code-
word. This effectively relaxes the original model of AMD codes that required
the codeword to be perfectly private. As we will show this model turns out to
be more challenging compared to LLR-AMD models where the leakage is in a
more restricted part in the encoding process.

A more detailed relation between our model and LLR-AMD models is given
in Sect. 3.1.

Our work

We define ρ-Algebraic Manipulation Detection (ρ-AMD) codes as an extension
of AMD codes when the storage that holds the codeword (an element of G), leaks
up to ρ log |G| bits of information about the codeword. We assume the adver-
sary can apply an arbitrary function to the storage and receive up to ρ log |G|
bits of information about the codeword. Similar to the original AMD codes, we
define weak and strong ρ-AMD codes as deterministic and randomized codes
that guarantee security for a uniformly distributed message and any message,
respectively.

Efficiency of ρ-AMD codes is defined concretely (similar to [1]) and asymptot-
ically (using the rate of the code family, which is the asymptotic ratio of the mes-
sage length to the codeword length, as the message length approaches infinity). We
prove concrete bounds for both strong and weak ρ-AMD codes and a non-trivial
upper bound 1−ρ on the rate of the strong ρ-AMD codes. Comparison of bounds
for different models of AMD codes is summarized in Table 1.

Table 1. G denotes the size of the group G that codewords live in and M denotes the
size of the message set M. δ is the security parameter.

Codes Concrete bound Rate bound

Strong AMD G ≥ M−1
δ2

+ 1 1

Strong ρ-AMD G1−ρ ≥ M−1
δ2

+ 1 1 − ρ

α-strong LLR-AMD G ≥ (M−1)(1−e−1)

δ
2

1−α
+ 1 1

Weak AMD G ≥ M−1
δ

+ 1 1

Weak ρ-AMD G ≥ M−1
δ

+ 1 and M ≥ Gρ

δ
1

α-weak LLR-AMD G ≥ (M−1)(1−e−1)

δ
1

1−α
+ 1 and G ≥ Mα(M−1)(1−e−1)

δ
+ 1 1

1+α
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For construction, we use the relationship between ρ-AMD codes and
LLR-AMD codes, to construct (non-optimal) ρ-AMD codes, and leave the con-
struction of rate optimal ρ-AMD codes as an interesting open problem. We how-
ever define a special type of leakage in which leakage is specified by the number
of codeword components that the adversary can select for eavesdropping. The
model is called limited-view ρ-AMD (ρLV -AMD). The ρLV -AMD adversary is
allowed to select a fraction ρ of the codeword components, and select their tam-
pering (offset) vector after seeing the values of the chosen components. This
definition of limited-view adversary was first used in [3] where the writing power
of the adversary was also parametrized. We give an explicit construction of strong
ρLV -AMD codes that achieve rate 1 − ρ, using an AMD code and a wiretap II
code as building blocks. We note that this rate is achievable for large constant
size alphabets, if we allow a seeded encoder involving a universal hash family (see
[15]). That is the alphabet size depends on the closeness to the actual capacity
value. Also we do not know if 1 − ρ is the capacity of strong ρLV -AMD codes.
Finding the capacity of strong ρLV -AMD codes however is an open question
as the type of leakage (component wise) is more restricted than strong ρ-AMD
codes. We also construct a family of weak ρLV -AMD codes that achieve rate 1
for any leakage parameter ρ.

We consider two applications. The first application can be seen as parallel to
the application of the original AMD codes to robust secret sharing scheme. The
second application is a new variation of active adversary wiretap channel II.

Robust Ramp Secret Sharing Scheme. A (t, r,N)-ramp secret sharing
scheme [7,13] is a secret sharing scheme with two thresholds, t and r, such
that any t or less shares do not leak any information about the secret while
any r or more shares reconstruct the secret and if the number a of shares is
in between t and r, an a−t

r−t fraction of information of the secret will be leaked.
We define a robust ramp secret sharing scheme as a ramp secret sharing scheme
with an additional (ρ, δ)-robustness property which requires that the probabil-
ity of reconstructing a wrong secret, if up to t + �ρ(r − t)� shares are controlled
by an active adversary, is bounded by δ. Here ρ is a constant. We will show
that a (t, r,N, ρ, δ)-robust secret sharing scheme can be constructed from a lin-
ear (t, r,N)-ramp secret sharing scheme, by first encoding the message using a
ρ-AMD code with security parameter δ, and then using the linear ramp secret
sharing scheme to generate shares.

Wiretap II with an Algebraic Manipulation Adversary. Wiretap model of
communication was proposed by Wyner [4]. In wiretap II setting [5], the goal is to
provide secrecy against a passive adversary who can adaptively select a fraction
ρ of transmitted codeword components to eavesdrop. We consider active wire-
tap II adversaries that in addition to eavesdropping the channel, algebraically
manipulate the communication by adding a noise (offset) vector to the sent code-
word. The code must protect against eavesdropping and also detect tampering.
An algebraic manipulation wiretap II code is a wiretap II code with security
against an eavesdropping adversary and so the rate upper bound for wiretap
II codes is applicable. Our construction of ρLV -AMD codes gives a family of
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algebraic manipulation wiretap II codes which achieve this rate upper bound
and so the construction is capacity-achieving. The result effectively shows that
algebraic manipulation detection in this case can be achieved for “free” (without
rate loss), asymptotically

Table 2 summarizes the code constructions and applications.

Table 2. Summary of codes constructed in this paper and their applications.

Codes constructed Asymptotic rate Applications

strong ρ-AMD N.A. (ρ, δ)-robust ramp secret sharing

strong ρLV -AMD 1 − ρ (ρ, 0, δ)-algebraic adversary wiretap II

weak ρ-AMD N.A. N.A.

weak ρLV -AMD 1 N.A.

Related works

Related Works. AMD codes were proposed in [1] and have found numerous
applications. A work directly comparable to ours is [2] where LLR-AMD code
with different leakage models for weak and strong codes are introduced. Our
leakage model uses a single leakage model for both weak and strong codes and
is a natural generalization of the original AMD codes. The relation between
our model and LLR-AMD codes is given in Sect. 3.1. More generally, there is a
large body of work on modelling leakage and designing leakage resilient systems.
A survey can be found in [6].

Ramp secret sharing schemes (ramp SSS) are introduced in [7]. Robust secret
sharing schemes (robust SSS) are well studied (see for example [1]). To our
knowledge robust ramp secret sharing schemes (robust ramp SSS) have not been
considered before. In a robust SSS, robustness is defined only when the number
of the compromised players is below the privacy threshold of the underling SSS.
Our definition of robust ramp SSS has robustness guarantee even when the
number of compromised players is bigger than the privacy threshold.

Wiretap II model with active adversary was first studied in [14], where the
eavesdropped components and tampered components are restricted to be the
same set. A general model of wiretap II adversaries with additive manipula-
tion was defined in [8]. In this model (called adversarial wiretap or AWTP) the
adversary can read a fraction ρr, and add noise to a fraction ρw, of the codeword
components. The goal of the encoding scheme is to provide secrecy and guaran-
tee reliability (message recovery) against this adversary. A variation of AWTP
called eAWTP is studied in [15], where erasure of codeword components instead
of additive tampering is considered. Interestingly, both AWTP and eAWTP have
the same capacity 1 − ρr − ρw. The alphabet of known capacity-achieving codes
are, O( 1

ξ4

1
ξ2 ) for AWTP codes and O(2

1
ξ2 ) for eAWTP codes, respectively, where

ξ is the difference of the actual rate and capacity [15]. The adversary of algebraic
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manipulation wiretap II codes defined in this paper can be seen as the AWTP
adversary with ρr = ρ and ρw = 1, yielding 1−ρr −ρw < 0. In this case recover-
ing the message is impossible. Our results on algebraic manipulation wiretap II
show that a weaker goal against active attack, that is to detect manipulation of
the message, is achievable and can be achieved with capacity 1 − ρ, which is the
same as the capacity of wiretap II codes with no security against active attacks.

Organization: In Sect. 2, we give notations and introduce AMD codes (with/
without leakage) and wiretap II codes. In Sect. 3, we define ρ-AMD codes and
derive efficiency bounds. In Sect. 4, we study ρLV -AMD codes and give concrete
constructions. In Sect. 5, we give two applications.

2 Preliminaries

Calligraphy letters X denote sets and their corresponding capital letters denote
the cardinality, |X | = X. Boldface letters x denote vectors. x|S denotes the
sub-vector of x consisting of the components specified by the index set S. [n]
denotes {1, 2, · · · , n}. Capital boldface letters X denote random variables, and

X ← X denotes sampling of the random variable X from the set X , with X $← X
denoting a uniform distribution in sampling. The statistical distance between X
and Y that are both defined over the set W, is defined as,

SD(X,Y) � 1
2

∑

w∈W
|Pr[X = w] − Pr[Y = w]|.

We say X and Y are δ-close if SD(X,Y) ≤ δ. The min-entropy H∞(X) of a
random variable X ← X is

H∞(X) = − log max
x∈X

Pr[X = x].

The (average) conditional min-entropy H̃∞(X|Z) of X conditioned on Z is
defined [9] as,

H̃∞(X|Z) = − log
(
EZ=z max

x
Pr[X = x|Z = z]

)
.

The following bound on the amount of information about one variable that can
leak through a correlated variable is proved in [9].

Lemma 1 [9]. Let X ← X and Z ← Z with � = log |Z|. Then

H̃∞(X|Z) ≥ H∞(X) − �.

Definition 1. An (M,G, δ)-algebraic manipulation detection code, or (M,G, δ)-
AMD code for short, is a probabilistic encoding map Enc : M → G from a set
M of size M to an (additive) group G of order G, together with a deterministic
decoding function Dec : G → M⋃{⊥} such that Dec(Enc(m)) = m with prob-
ability 1 for any m ∈ M. The security of an AMD code requires that for any
m ∈ M, Δ ∈ G, Pr[Dec(Enc(m) + Δ) /∈ {m,⊥}] ≤ δ.
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The AMD code above is said to provide strong security. Weak AMD codes
provide security for randomly chosen messages. Efficiency of (M,G, δ)-AMD
codes is measured by the effective tag size which is defined as the minimum tag
length min{log2 G} − u, where the minimum is over all (M,G, δ)-AMD codes
with M ≥ 2u. Concrete lengths are important in practice, and additionally, the
asymptotic rate (defined as the limit of the ratio of message length to codeword
length as the length grows to infinity) of both weak and strong AMD codes has
been shown [1] to be 1.

Lemma 2 [1]. Any weak, respectively strong, (M,G, δ)-AMD code satisfies

G ≥ M − 1
δ

+ 1, respectively, G ≥ M − 1
δ2

+ 1.

The following construction is optimal with respect to effective tag size.

Construction 1 [1]. Let Fq be a field of size q and characteristic p, and let d
be any integer such that d+2 is not divisible by p. Define the encoding function,

Enc : Fd
q → F

d
q × Fq × Fq,m �→ (m, r, f(r,m)), where f(r,m) = rd+2 +

d∑

i=1

mir
i.

The decoder Dec verifies a tagged message (m, r, t) by comparing t = f(r,m)
and outputs m if agree; ⊥ otherwise. (Enc,Dec) gives a (qd, qd+2, d+1

q )-AMD
code.

Definition 2 (strong LLR-AMD) [2]. A randomized code with encoding func-
tion Enc : M × R → X and decoding function Dec : X → M⋃{⊥} is a
(M,X, |R|, α, δ)-strong LLR-AMD code if for any m ∈ M and any r ∈ R,

Dec(Enc(m, r)) = m, and for any adversary A and variables R $← R and Z
such that H̃∞(R|Z) ≥ (1 − α) log |R|, it holds for any m ∈ M:

Pr[Dec(Enc(m,R) + A(Z)) /∈ {m,⊥}] ≤ δ, (1)

where the probability is over the randomness of encoding.

Definition 3 (weak LLR-AMD) [2]. A deterministic code with encoding
function Enc : M → X and decoding function Dec : X → M⋃{⊥} is a
(M,X,α, δ)-weak LLR-AMD code if for any m ∈ M, Dec(Enc(m)) = m, and
for any adversary A and variables M ← M and Z such that H̃∞(M|Z) ≥
(1 − α) log |M|, it holds:

Pr[Dec(Enc(M) + A(Z)) /∈ {M,⊥}] ≤ δ, (2)

where the probability is over the randomness of the message.

In the above two definitions, leakages are from randomness (bounded by
H̃∞(R|Z) ≥ (1 − α) log |R|) and message space (bounded by H̃∞(M|Z) ≥
(1 − α) log |M|), respectively.
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Wiretap II Codes. Wiretap II model [5] of secure communication considers
a scenario where Alice wants to send messages to Bob over a reliable channel
that is eavesdropped by an adversary, Eve. The adversary can read a fraction ρ
of the transmitted codeword components, and is allowed to choose any subset
(the right size) of their choice. A wiretap II code provides information-theoretic
secrecy for message transmission against this adversary.

Definition 4. A (ρ, ε) wiretap II code, or (ρ, ε)-WtII code for short, is a proba-
bilistic encoding function Enc : Fk

q → F
n
q , together with a deterministic decoding

function Dec : F
n
q → F

k
q such that Dec(Enc(m)) = m for any m ∈ F

k
q . The

security of a (ρ, ε)-WtII code requires that for any m0,m1 ∈ F
k
q , any S ⊂ [n] of

size |S| ≤ nρ,

SD(Enc(m0)|S ;Enc(m1)|S) ≤ ε (3)

A rate R is achievable if there exists a family of (ρ, ε)-WtII codes with encoding
and decoding functions {Encn,Decn} such that limn→∞ k

n = R.

The above definition of security is in line with [8] and is stronger than the original
definition [5], and also the definition in [10].

Lemma 3 [8]. The achievable rate of (ρ, 0)-WtII codes is upper bounded by 1−ρ.

When ε = 0 is achieved in (3), the distribution of any ρ fraction of the code-
word components is independent of the message. This is achieved, for example,
by the following construction of wiretap II codes.

Construction 2 [5]. Let G(n−k)×n be a generator matrix of a [n, n − k] MDS

code over Fq. Append k rows to G such that the obtained matrix
[

G

G̃

]

is non-

singular. Define the encoder WtIIenc as follows.

WtIIenc(m) = [r,m]
[

G

G̃

]

, where r $← F
n−k
q .

WtIIdec uses a parity-check matrix Hk×n of the MDS code to first compute the
syndrome, HxT , and then map the syndrome back to the message using the one-
to-one correspondence between syndromes and messages. The above construction
gives a family of (ρ, 0)-WtII codes for ρ = n−k

n .

3 AMD Codes for Leaky Storage

We consider codes over a finite field Fq, where q is a prime power, and assume
message set M = F

k
q and the storage stores an element of the group G = F

n
q .
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3.1 Definition of ρ-AMD

Definition 5. An (n, k)-coding scheme consists of two functions: a randomized
encoding function Enc : Fk

q → F
n
q , and deterministic decoding function Dec :

F
n
q → F

k
q ∪ {⊥}, satisfying Pr[Dec(Enc(m)) = m] = 1, for any m ∈ F

k
q . Here

probability is taken over the randomness of the encoding algorithm.
The information rate of an (n, k)-coding scheme is k

n .

We now define our leakage model and codes that detect manipulation in
presence of this leakage. Let X = Enc(m) for a message m ∈ M, and AZ

denote an adversary with access to a variable Z, representing the leakage of
information about the codeword.

Definition 6 (ρ-AMD). An (n, k)-coding scheme is called a strong ρ-AMD
code with security parameter δ if Pr[Dec(AZ(Enc(m))) /∈ {m,⊥}] ≤ δ for
any message m ∈ F

k
q and adversary AZ whose leakage variable Z satisfies

H̃∞(X|Z) ≥ H∞(X) − ρn log q, and is allowed to choose any offset vector in
F

n
q to add to the codeword.

The code is called a weak ρ-AMD code if security holds for M $← F
k
q (rather

than an arbitrary message distribution). The encoder in this case is deterministic
and the probability of outputing a different message is over the randomness of
the message.

A family {(Encn,Decn)} of ρ-AMD codes is a set of (n, k(n))-coding schemes
indexed by the codeword length n, where for any value of δ, there is an N ∈ N such
that for all n ≥ N , (Encn,Decn) is a ρ-AMD code with security parameter δ.

A rate R is achievable if there exists a family {(Encn,Decn)} of ρ-AMD codes
such that limn→∞

k(n)
n = R as δ approaches 0

Our definition bounds the amount of leakage in comparison with an adver-
sary who observes up to ρn components of the stored codeword. We call this
latter adversary a Limited-View (LV) adversary [3]. According to Lemma 1, the
min-entropy of the stored codeword given an LV-adversary will be H̃∞(X|Z) ≥
H∞(X)− ρn log q. We require the same min-entropy be left in the codeword, for
an arbitrary leakage variable Z accessible to the adversary.

Figure 1 shows places of leakage in AMD encoding in our model, and the
models in Definitions 2 and 3.

Fig. 1. The arrow shows the part of the system that leaks.
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Proposition 1. Let X denote a random variable representing the codeword of
a message m (M for weak codes), and Z denote the leakage variable of the
adversary AZ who uses the leakage information to construct the best offset vector
to make the decoder output a different message. For a ρ-AMD code with security
parameter δ, we have H̃(X|Z) ≥ log 1

δ .

Proof. We write the proof for strong ρ-AMD codes. (The proof for weak ρ-AMD
codes follows similarly.) According to the security definition of ρ-AMD codes,
we have

Pr[Dec(AZ(X)) /∈ {m,⊥}] ≤ δ,

where the probability is over the randomness of X, and is the expectation over
z ∈ Z. If the adversary with the leakage variable Z = z can correctly guess the
value x of X, then a codeword x′ corresponding to another message m′ can be
constructed to cause the decoder to output m′, by using Az(X) = X + (x′ − x).
We then have

Pr[Dec(AZ(X)) /∈ {m,⊥}|Z = z] ≥ max
x

Pr[X = x|Z = z],

which by taking expectation over z ∈ Z yields

Ez (Pr[Dec(AZ(X)) /∈ {m,⊥}|Z = z]) ≥ Ez

(
max
x

Pr[X=x|Z = z]
)

= 2−H̃(X|Z),

The last equality follows from the definition of conditional min-entropy. The
desired inequality then follows directly from the security definition of ρ-AMD
codes as follows.

2−H̃(X|Z) ≤ Pr[Dec(AZ(X)) /∈ {m,⊥}|Z = z] ≤ δ ⇐⇒ H̃(X|Z) ≥ log
1
δ
.

��
Definition 7. Let C denote the set of codewords of a code, and Cm denote the
set of codewords corresponding to the message m, i.e. Cm = {Enc(m, r)|r ∈ R}.
A randomised encoder is called regular if |Cm| = |R| for all m.

We note that because the code has zero decoding error when there is no adversary
corruption, we have

Cm ∩ Cm′ = ∅, ∀m,m′ ∈ M. (4)

This means that for regular randomised encoders, a codeword uniquely deter-
mines a pair (m, r). Assuming that the randomized encoder uses r uniformly
distributed bits, the random variable X = Enc(m,R) is flat over Cm.

Lemma 4. The relations between Strong LLR-AMD codes and strong ρ-AMD
codes are as follows.
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1. If there exists a regular randomized encoder for a (qk, qn, 2r, α, δ)-strong LLR-
AMD code, then there is an encoder for strong ρ-AMD code with security
parameter δ and leakage parameter ρ where ρ ≤ αr

n log q .
2. If there exists a regular randomized encoder for a strong ρ-AMD code with

security parameter δ and leakage parameter ρ, then there is an encoder for a
(qk, qn, 2r, α, δ)-strong LLR-AMD code with α and r where α ≤ nρ log q

r and
r ≥ log 1

δ + nρ log q.

Proof of Lemma 4 is given in Appendix A.
In [2], it is shown that the optimal AMD code in Construction 1 gives a

(qd, qd+2, q, α, d+1
q1−α )-strong LLR-AMD code. The parameters of this LLR-AMD

code are k = d, n = d + 2, r = log q and δ = d+1
q1−α . A simple mathematical

manipulation of these equations gives α = 1 − logq
n−1

δ , and substituting them
into Lemma 4, item 1, we obtain

ρ ≤ (1 − logq
n−1

δ ) log q

n log q
=

1 − logq
n−1

δ

n
.

This results in the following.

Corollary 1. The code in Construction 1 is a strong ρ-AMD code with k = d,

n = d + 2, security parameter δ and leakage parameter ρ ≤ 1−logq
n−1

δ

n .

It is easy to see that ρ < 1
n . Thus the resulting construction of strong ρ-AMD

codes can only tolerate a very small leakage. Moreover the upper bound on ρ
vanishes as n goes to infinity and so this construction cannot give a non-trivial
family of strong ρ-AMD code. We note that the same construction resulted in a
family of strong LLR-AMD codes with asymptotic rate 1.

Lemma 5. The relations between weak LLR-AMD codes and weak ρ-AMD codes
are as follows.

1. A (qk, qn, α, δ)-weak LLR-AMD code is a weak ρ-AMD code with security
parameter δ and leakage parameter ρ satisfying ρ ≤ αk

n .
2. A weak ρ-AMD code with security parameter δ and leakage parameter ρ is a

(qk, qn, α, δ)-weak LLR-AMD code satisfying α ≤ ρn
k .

Proof of Lemma 5 is given in Appendix B.
A construction of (qd, qd+1, α, 2

q1−αd ) weak LLR-AMD codes is given in
[2, Theorem 2]. The code has parameters k = d, n = d + 1 and δ = 2

q1−αd .

A simple mathematical manipulation of these equations gives α = 1−logq
2
δ

n−1 , and
so from Lemma 5, item 1, we obtain

ρ ≤ (1−logq
2
δ

n−1 )(n − 1)
n

=
1 − logq

2
δ

n
.
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Corollary 2. The code in [[2], Theorem 2] is a weak ρ-AMD code with k = d,

n = d + 1, security parameter δ and leakage parameter ρ ≤ 1−logq
2
δ

n .

This construction gives ρ-AMD codes with small ρ, and cannot be used to con-
struct a family of ρ-AMD codes for ρ > 0.

3.2 Efficiency Bounds for ρ-AMD Codes

Theorem 1. If an (n, k)-coding scheme is a strong ρ-AMD code with security
parameter δ, then,

k ≤ n(1 − ρ) +
2 log δ − 1

log q
. (5)

The achievable rate of strong ρ-AMD codes is upper bounded by 1 − ρ.

Proof. Consider a strong ρ-AMD code with security parameter δ. By
Proposition 1, H̃∞(X|Z) ≥ log 1

δ should hold for any Z satisfying H̃∞(X|Z) ≥
H∞(X) − ρn log q. In particular, the inequality should hold for Z such that
H̃∞(X|Z) = H∞(X) − ρn log q. We then have H∞(X) − ρn log q ≥ log 1

δ . On
the other hand, we always have log |Cm| ≥ H∞(X), where Cm denotes the set of
codewords corresponding to message m, which is the support of X. This gives the
following lower bound on |Cm|.

|Cm| ≥ 2ρn log q

δ
=

qρn

δ
. (6)

Now consider the adversary randomly choose an offset Δ �= 0n, we have

δ ≥ Pr[Enc(m) + Δ ∈ ∪m′ �=mEm′ ]

≥ |⋃m′ �=m Em′ |
|Fn

q | − 1

(4),(6)

≥ (qk − 1) · qρn

δ

qn − 1
.

(7)

Therefore,

k ≤ n(1 − ρ) +
2 log δ − 1

log q
.

��
Proposition 2. If an (n, k)-coding scheme is a weak ρ-AMD code with security
parameter δ, then qρn−k ≤ δ and qk−1

qn−1 ≤ δ.

Proof of Proposition 2 is given in Appendix C.

4 Limited-View ρ-AMD Codes

We consider a special type of leakage where the adversary chooses a subset
S, |S| = ρn (n is the codeword length), and the codeword components associ-
ated with this set will be revealed to them. The adversary will then use this
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information to construct their offset vector. A tampering strategy is a function
from F

n
q to F

n
q which can be described by the notation fS,g, where S ⊂ [n] and

a function g : Fnρ
q → F

n
q , with the following interpretation. The set S specifies

a subset of ρn indexes of the codeword that the adversary choose. The function
g determines an offset for each read value on the subset S. A ρLV -AMD code
provides protection against all adversary strategies. (This approach to defining
tampering functions is inspired by Non-Malleable Codes (NMC) [11].)

Let S [nρ] be the set of all subsets of [n] of size nρ. Let M(Fnρ
q ,Fn

q ) denote
the set of all functions from F

nρ
q to F

n
q , namely, M(Fnρ

q ,Fn
q ) := {g : Fnρ

q → F
n
q }.

Definition 8 (Fadd
ρ ). The class of tampering function Fadd

ρ , consists of the set
of functions F

n
q → F

n
q , that can be described by two parameters, S ∈ S [nρ] and

g ∈ M(Fnρ
q ,Fn

q ). The set Fadd
ρ of limited view algebraic tampering functions are

defined as follows.

Fadd
ρ =

{
fS,g(x) | S ∈ S [nρ], g ∈ M(Fnρ

q ,Fn
q )

}
, (8)

where fS,g(x) = x + g(x|S) for x ∈ F
n
q .

Definition 9 (ρLV -AMD). An (n, k)-coding scheme is called a strong ρLV -
AMD code with security parameter δ if Pr[Dec(f(Enc(m))) /∈ {m,⊥}] ≤ δ for
any message m ∈ F

k
q and any fS,g ∈ Fadd

ρ . It is called a weak ρLV -AMD code if
it only requires the security to hold for a random message M ← F

k
q rather than

an arbitrary message m.

We first give a generic construction of strong ρLV -AMD codes from WtII
codes and AMD codes.

Construction 3. Let (AMDenc,AMDdec) be a (qk, qn′
, δ)-AMD code and let

(WtIIenc,WtIIdec) be a linear (ρ, 0)-wiretap II code with encoder WtIIenc :
F

n′
q → F

n
q . Then (Enc,Dec) defined as follows is a strong ρLV -AMD codes with

security parameter δ.
{

Enc(m) = WtIIenc(AMDenc(m));
Dec(x) = AMDdec(WtIIdec(x)).

When instantiated with the (qk, qk+2, k+1
q )-AMD code in Construction 1 and

the linear (ρ, 0)-wiretap II code in Construction 2, we obtain a family of strong
ρLV -AMD codes with security parameter k+1

q that achieves rate 1 − ρ.

Proof. Since both AMDenc and WtIIenc are randomised encoders, in this proof
we write the randomness of a randomized encoder explicitly. Let I denote the
randomness of AMDenc and let J denote the randomness of WtIIenc. As illus-
trated in Fig. 2, a message m is first encoded into an AMD codeword AI

m =
AMDenc(m, I). The AMD codeword AI

m is then further encoded into a WtII
codeword, which is the final ρLV -AMD codeword: Enc(m) = WtIIenc(AI

m, J).
According to (3), SD

(
WtIIenc(Ai1

m, J)|S ;WtIIenc(Ai2
m, J)|S

)
= 0. This says
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Fig. 2. WtII◦AMD construction with Ai
m denoting the values of AMDenc(m)

that AI
m and Enc(m)|S are independent random variables, in particular, I and

Enc(m)|S are independent. According to Definition 9, to show that (Enc,Dec)
is a strong ρLV -AMD code with security parameter δ, we need to show that for
any message m, and any fS,g ∈ Fadd

ρ , Pr[Dec(fS,g(Enc(m))) /∈ {m,⊥}] ≤ δ,
where the probability is over the randomness (I,J) of the encoder Enc. We show
this in two steps.

Step 1. In this step, we assume that Enc(m)|S = a has occurred and bound the
error probability of (Enc,Dec) under this condition. We compute

Pr[Dec(fS,g(Enc(m))) /∈ {m,⊥}|(Enc(m)|S = a)]
= Pr[Dec(Enc(m) + g(a)) /∈ {m,⊥}|(Enc(m)|S = a)]
= Pr[AMDdec(WtIIdec(WtIIenc(AMDenc(m, I),J) + g(a))) /∈ {m,⊥}

|(Enc(m)|S = a)]
= Pr[AMDdec(AMDenc(m, I) + WtIIdec(g(a))) /∈ {m,⊥}|(Enc(m)|S = a)]
= Pr[AMDdec(AMDenc(m, I) + WtIIdec(g(a))) /∈ {m,⊥}],
≤ δ,

where the third equality follows from the linearity of (WtIIenc,WtIIdec), the last
equality follows from the fact that I and Enc(m)|S are independent discussed in
the beginning of the proof, and the inequality follows trivially from the security
of (AMDenc, AMDdec).

Step 2. In this step, we conclude the first part of the proof by showing

Pr[Dec(fS,g(Enc(m))) /∈ {m,⊥}]

=
∑

a

Pr[Enc(m)|S = a] · Pr[Dec(fS,g(Enc(m))) /∈ {m,⊥}|(Enc(m)|S = a)]

≤
∑

a

Pr[Enc(m)|S = a] · δ

= δ,

where the inequality follows from Step 1.
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Finally, the rate of the (ρ, 0)-wiretap II code in Construction 2 is k+2
n = 1−ρ.

So the asymptotic rate of the strong ρLV -AMD code family is

lim
n→∞

k

n
= lim

n→∞
(1 − ρ)n − 2

n
= 1 − ρ.

��
We next show a construction of weak ρLV -AMD codes that achieves asymp-

totic rate 1.

Construction 4. Let Fq be a finite field of q elements. Let G be a k × k non-
singular matrix over Zq−1 such that each column of G consists of distinct entries,
i.e., gi,j �= gi′ ,j for any j and i �= i

′
. Assume the entries of G (viewed as inte-

gers) is upper-bounded by ψk for constant ψ, i.e., gi,j ≤ ψk. Then the following
construction gives a family of weak LV-AMD codes of asymptotic rate 1 with any
leakage parameter ρ < 1.

Enc : (F∗
q)

k → (F∗
q)

k × Fq : m �→ (m||f(m, G)),

where F
∗
q denotes the set of non-zero elements of Fq and the tag f(m, G) is

generated as follows.1

f(m, G) =
k∑

j=1

k∏

i=1

m
gi,j

i . (9)

The decoder dec checks if the first k-tuple of the input vector, when used in 9,
match the last component.

The proof of Construction 4 is given in Appendix D.
Concrete constructions of the matrix G can be found in [[2], Remark 2].

5 Applications

5.1 Robust Ramp SSS

A Secret Sharing Scheme (SSS) consists of two algorithms (Share,Recover). The
algorithm Share maps a secret s ∈ S to a vector S = (S1, . . . , SN ) where the
shares Si are in some set Si and will be given to participant Pi. The algorithm
Recover takes as input a vector of shares S̃ = (S̃1, . . . , S̃N ) where S̃i ∈ Si

⋃{⊥},
where ⊥ denotes an absent share. For a (t,N)-threshold SSS, t shares reveal no
information about the secret s and t + 1 shares uniquely recover the secret s.
For a (t, r,N)-ramp SSS [7] with (Sharersss,Recoverrsss) as sharing and recover-
ing algorithms, the access structure is specified by two thresholds. The privacy
1 The message distribution in this construction is not exactly uniform over F

k
q but

(F∗
q)

k. So this construction can achieve security even when the message distribution
is not uniform.
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threshold is t, and the reconstruction threshold is r. In a (t, r,N)-ramp SSS,
subsets of t or less shares do not reveal any information about the secret, and
subsets of r or more shares can uniquely recover the secret s. A set of shares of
size t < a < r may leak some information about the secret. In particular, we
consider ramp schemes in which a set of t + α(r − t) shares leak α fraction of
secret information.

Definition 10 ((t, r,N))-(Ramp Secret Sharing Scheme). A (t, r,N)-ramp
secret sharing scheme is consist of a pair of algorithms (Sharersss,Recoverrsss),
where Sharersss randomly maps a secret s ∈ S to a share vector S = (S1, · · · , SN )
and Recoverrsss deterministically reconstruct a s̃ ∈ S or output ⊥, satisfy the
following.

– Privacy: The adversary can access up to r − 1 shares. If the number of shares
accessed by the adversary is a ≤ t, no information will be leaked about the
secret. If the number of leaked share is a = t+α(r − t), where 0 < α < 1, then
H̃∞(S|Si1 · · · Sia

) ≥ H∞(S) − α log |S|2, for S ← S and any {i1, · · · , ia} ⊂
[N ].

– Reconstruction: Any r correct shares can reconstruct the secret s.

A linear ramp SSS has the additional property that the Recover function is
linear, namely, for any s ∈ G, any share vector S of s, and any vector S

′
(possibly

containing some ⊥ symbols), we have Recoverrsss(S + S
′
) = s + Recoverrsss(S

′
),

where vector addition is defined element-wise and addition with ⊥ is defined by
⊥ +x = x+ ⊥=⊥ for all x. In a linear SSS, the adversary can modify the shares
S̃i = Si +Δi, such that the difference Δ = s̃−s between the reconstructed secret
and the shared secret, is known.

In a (t,N, δ)-robust SSS, for any t + 1 shares with at most t shares modified
by the adversary, the reconstruction algorithm can recover the secret s, or detect
the adversarial modification and output ⊥, with probability at least 1 − δ [1].
That is with probability at most δ the secret is either not recoverable, or a wrong
secret is accepted. A modular construction of the robust SSS using an AMD code
and a linear SSS is given by Cramer et al. [1].

We define robust ramp secret sharing scheme when the adversary can adap-
tively corrupt up to t + ρ(r − t) shares, where 0 < ρ < 1 is a constant (level of
robustness against active adversaries).

Definition 11 ((t, r,N, ρ, δ)-Robust Ramp Secret Sharing Scheme).
A (t, r,N, ρ, δ)-robust ramp secret sharing scheme is consist of a pair of algo-
rithms (Sharerrsss,Recoverrrsss), where Sharerrsss randomly maps a secret s ∈ S to
a share vector S = (S1, · · · , SN ) and Recoverrrsss deterministically reconstruct a
s̃ ∈ S or output ⊥, satisfy the following.

– Privacy: The adversary can access up to r − 1 shares. If the number of
shares accessed by the adversary is a ≤ t, no information will be leaked

2 This definition of leakage is seemingly different from [13], where uniform distribution
of secret S is assumed and Shannon entropy is used instead of min-entropy.
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about the secret. If the number of leaked share is a = t + α(r − t), where
0 < α < 1, then H̃∞(S|Si1 · · · Sia

) ≥ H∞(S) − α log |S|, for S ← S and any
{i1, · · · , ia} ⊂ [N ].

– Reconstruction: Any r correct shares can reconstruct the secret s.
– Robustness: For any r shares with at most t + ρ(r − t) corrupted shares, the

probability that either the secret is correctly reconstructed, or the adversary’s
modifications being detected, is at least 1 − δ.

We propose a general construction of robust ramp secret sharing scheme
using a ρamd-AMD and (t, r,N)-ramp secret sharing scheme.

Theorem 2. Consider a linear (t, r,N)-ramp secret sharing scheme with the
algorithm pair (Sharersss,Recoverrsss) and shares Si ∈ F

m
q , i = 1, · · · , N , and

let (Enc,Dec) be a ρamd-AMD code F
k
q → F

n
q , with failure probability δamd and

n = (r − t)m. Then there is a robust ramp secret sharing scheme with algo-
rithm pair (Sharerrsss,Recoverrrsss) given by Sharerrsss(s) = Sharersss(Enc(s)) and
Recoverrrsss(S̃) = Dec(Recoverrsss(S̃)) is a (t, r,N, ρ, δ)-Robust Ramp Secret Shar-
ing Scheme with ρ ≤ ρamd and δ ≤ δamd.

Proof. First, we show that if the adversary reads at most t+ρ(r − t) shares, the
ρamd-AMD codeword c leaks at most ρn log q informations. Since the ρamd-AMD
codeword is encoded by a (t, r,N) ramp secret sharing scheme, t shares will not
leak any information about the ρamd-AMD codeword c. Given that the share size
|Si| ≤ qm and n = (r − t)m, the leakage of the extra ρ(r − t) shares will leak at
most ρn log q bit of information about the ρamd-AMD codeword c.

Second, we show that the resulting secret sharing scheme is δ-robust. For
a secret s, let S ← Sharerrsss(s) be the original share vector and S̃ be the cor-
rupted one, and let S

′
= S̃ − S. For any r shares, the failure probability of the

reconstruction is given by,

Pr[Recoverrrsss(S̃) /∈ {s,⊥}]
(1)
= Pr[Dec(Recoverrsss(S) + Recoverrsss(S

′
)) /∈ {s,⊥}]

= Pr[Dec(Enc(s) + Δ) /∈ {s,⊥}],

where Δ = Recoverrsss(S
′
) is chosen by the adversary A, and (1) uses the linearity

of the ramp scheme. In choosing Δ, the adversary A can use at most ρ fraction
of information in the ρamd-AMD codeword c = Enc(s). Since at most ρn log q
information bit is leaked to the adversary, that is H̃∞(C|Z) ≥ H∞(C)−ρn log q,
from the definition of ρamd-AMD code with ρ ≤ ρamd, the decoding algorithm
Dec outputs correct secret s, or detects the error ⊥, with probability at least
1− δamd. This means that the ramp secret sharing scheme is robust and outputs
either the correct secret, or detects the adversarial tampering, with probability
at most 1 − δ ≥ 1 − δamd. Thus a (t, r,N)-ramp secret sharing scheme and a
ρamd-AMD with security parameter δamd, give a (t, r,N, ρ, δ)-robust ramp secret
sharing scheme with δ ≤ δamd and ρ ≤ ρamd. ��

5.2 Wiretap II with Algebraic Adversary

The Wiretap II [5] problem considers a passive adversary that can read a ρ frac-
tion of the codeword components and the goal is to prevent the adversary from
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learning information about the sent message. Wiretap II with an active adversary
has been considered in [14] and later generalized in [8,15]. In this latter general
model, called Adversarial Wiretap (AWTP) mode, the adversary is characterized
by two parameters ρr and ρw, denoting the fraction of the codeword components
the adversary can “read” and “modify additively”, respectively. The goal is two-
fold: to prevent the adversary from obtaining any information (secrecy) and, to
recover the message despite the changes made by the adversary (reliability). It
was proved [8] that in AWTP model, where the adversary can write to a ρw frac-
tion of the codeword components additively, secure and reliable communication
is possible if, ρr +ρw < 1. This says that when ρr +ρw > 1, one can only hope for
weaker type of security, for example, secrecy and error detection. We consider
wiretap II with an algebraic adversary, who can read a ρ fraction of the codeword
components and tamper with the whole codeword algebraically, namely, adding
a non-zero group element to the codeword (codewords are assumed to live in a
group). The adversary in this model is equivalent to the AWTP adversary with
ρr = ρ and ρw = 1. But the coding goal of wiretap II with an algebraic adversary
is different from AWTP.

Definition 12. An algebraic tampering wiretap II channel is a communication
channel between Alice and Bob that is (partially) controlled by an adversary Eve
with two following two capabilities.

– Read: Eve adaptively selects a fraction ρ of the components of the transmitted
codeword c = c1, · · · , cn to read, namely, Eve’s knowledge of the transmitted
codeword is given by Z = {ci1 , · · · , ciρn

}, where S = {i1, · · · , iρn} ⊂ [n] is
chosen by Eve.

– Write: Assume c ∈ G for some additive group G. Eve chooses an “off-set”
Δ ∈ G according to Z and add it to the codeword c, namely, the channel
outputs c + Δ.

Definition 13 ((ρ, ε, δ)-algebraic tampering wiretap II). ((ρ, ε, δ)-
(AWtII))] A (ρ, ε, δ)-AWtII code is a coding scheme (Enc,Dec) that guarantees
the following two properties.

– Secrecy: For any pair of messages m0 and m1, any S ⊂ [n] of size |S| ≤ nρ,
(3) should hold, namely,

SD(Enc(m0)|S ;Enc(m1)|S) ≤ ε.

– Robustness: If the adversary is passive, Dec always outputs the correct mes-
sage. If the adversary is active, the probability that the decoder outputs a wrong
message is bounded by δ. That is, for any message m and any ρ-algebraic tam-
pering wiretap II adversary A,

Pr[Dec(A(Enc(m))) /∈ {m,⊥}] ≤ δ.

The secrecy of (ρ, ε, δ)-AWtII code implies that a (ρ, ε, δ)-AWtII code is a
(ρ, ε)-WtII code. The following rate upper bound follows directly from Lemma 3.
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Corollary 3. The rate of (ρ, 0, δ)-AWtII codes is bounded by R ≤ 1 − ρ.

The robustness property of (ρ, ε, δ)-AWtII code is the same as the secu-
rity of a strong ρLV -AMD code (see Definition 9). Furthermore, the construc-
tion of ρLV -AMD codes in Construction 3 uses a (ρ, 0)-WtII code to encode
c = AMDenc(m), which guarantees secrecy with respect to any pair of (c0, c1),
and hence secrecy with respect to any pair of (m0,m1). These assert that
Construction 3 yields a family of (ρ, 0, δ)-AWtII codes.

Corollary 4. There exists a family of (ρ, 0, δ)-AWtII codes that achieves rate
R = 1 − ρ.

6 Conclusion

We considered an extension of AMD codes when the storage leaks information
and the amount of leaked information is bounded by ρ log |G|. We defined ρ-
AMD codes that provide protection in this scenario, both with weak and strong
security, and derived concrete and asymptotic bounds on the efficiency of codes
in these settings. Table 1 compares our results with original AMD codes and
an earlier work (called LLR-AMD) that allow leakage in specific parts of the
encoding process. Unlike LLR-AMD that uses different leakage requirements
for the weak and strong case, we use a single model to express the leakage
and require that the left-over entropy of the codeword be lower bounded. This
makes our analysis and constructions more challenging. In particular, optimal
constructions of LLR-AMD codes follow directly from the optimal constructions
of original AMD codes. However constructing optimal ρ-AMD code, in both weak
and strong model, remain open. We gave an explicit construction of a family of
codes with respect to a weaker notion of leakage (ρLV -AMD ) whose rate achieves
the upper bounds of the ρ-AMD codes. We finally gave two applications of the
codes to robust ramp secret sharing schemes and algebraic manipulation wiretap
II channel.

Appendices

A Proof of Lemma 4

Proof. Assume a regular encoder and consider a message m.
The codeword X = Enc(m,R) where the randomness of encoding R is a uni-

formly distributed r-bit string. Now consider an adversary with leakage variable
Z. Because of the one-to-one property of the regular encoder, we have

H∞(X) = H∞(R) = r, (10)

and

H̃∞(X|Z) = − logEz (maxx Pr[X = x|Z = z])
= − logEz (maxr Pr[R = r|Z = z])
= H̃∞(R|Z).

(11)
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For a leakage variable Z, we consider two classes of adversaries denoted by
AZ and BZ , depending on the conditions that they must satisfy, as follows:
AZ() is an adversary whose leakage variable must satisfy a lower bound on
H̃∞(R|Z) and, BZ() is an adversary whose leakage variable must satisfy a lower
bound on H̃∞(X|Z). Both adversaries, when applied to a vector x, use their
leakage variables to select an offset vector to be added to a codeword. That is
AZ(x) = x + Δz where Δz ∈ Fn

q is chosen dependent on the leakage Z = z. We
have the same definition for BZ(x) = x + Δz.

i. strong LLR-AMD code ⇒ strong ρ-AMD
Now consider a (qk, qn, 2r, α, δ)-strong LLR-AMD code C with encoder and
decoder pair, (Enc,Dec). For an adversary AZ whose leakage variable satisfies
H̃∞(R|Z) ≥ (1 − α)r, we have

Pr[Dec(AZ(Enc(m,R))) /∈ {m,⊥}] ≤ δ,

where the probability is over the randomness of encoding, and is an expectation
over z ∈ Z.

Note that using (10) and (11), the AZ adversary is also a BZ adversary
satisfying,

H̃∞(X|Z) ≥ H̃∞(X) − αr (12)

Both these adversaries have the same leakage variable Z and so any algorithm
Offset(z) used by one, taking the value Z = z as input and finding the offset Δz,
can be used by the other also (the two adversaries have the same information).
This means that the success probabilities of the two adversaries are the same,

Pr[Dec(AZ(Enc(m,R))) /∈ {m,⊥}] = Pr[Dec(BZ(Enc(m,R))) /∈ {m,⊥}] ≤ δ.

For ρ-AMD codes, security is defined against a BZ adversary whose leakage
variable Z satisfies,

H̃∞(X|Z) ≥ H∞(X) − ρn log q (13)

Comparing (13) and (12), we conclude that C is a ρ-AMD code for ρ values that
satisfy αr ≥ ρn log q, namely ρ ≤ αr

n log q .

ii. strong ρ-AMD ⇒ strong LLR-AMD code
An argument similar to i. immediately gives that the (qk, qn, 2r, α, δ)-strong
LLR-AMD code obtain from ρ-AMD code should satisfy α ≤ ρn log q

r . Next we
show the bound on r follows from Proposition 1 together with (10). Indeed, by
Proposition 1, H̃∞(X|Z) ≥ log 1

δ should hold for any Z satisfying H̃∞(X|Z) ≥
H∞(X) − ρn log q. In particular, we must have H∞(X) − ρn log q ≥ log 1

δ . Now
we can use (10) to conclude that r ≥ log 1

δ + ρn log q. ��
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B Proof of Lemma 5

Proof. The encoder Enc is a one-to-one correspondence between messages and
codewords. Consider a message variable M ← M (in particular, the uniform

distribution is emphasized by Mu
$← M). The codeword is a variable X =

Enc(M). Now consider an adversary with leakage variable Z. Because of the
one-to-one property of the encoder, we have

H∞(X) = H∞(M), (14)

and

H̃∞(X|Z) = − logEz (maxx Pr[X = x|Z = z])
= − logEz (maxm Pr[M = m|Z = z])
= H̃∞(M|Z).

(15)

For a leakage variable Z, we consider two classes of adversaries denoted by
AZ and BZ , depending on the conditions that they must satisfy, as follows:
AZ() is an adversary whose leakage variable must satisfy a lower bound on
H̃∞(M|Z) and, BZ() is an adversary whose leakage variable must satisfy a lower
bound on H̃∞(X|Z). Both adversaries, when applied to a vector x, use their
leakage variables to select an offset vector to be added to a codeword. That is
AZ(x) = x + Δz where Δz ∈ Fn

q is chosen dependent on the leakage Z = z. We
have the same definition for BZ(x) = x + Δz.

i. weak LLR-AMD code ⇒ weak ρ-AMD
Now consider a (qk, qn, α, δ)-weak LLR-AMD code C with encoder and
decoder pair, (Enc,Dec). For an adversary AZ whose leakage variable satisfies
H̃∞(M|Z) ≥ (1 − α)k log q, we have

Pr[Dec(AZ(Enc(M))) /∈ {M,⊥}] ≤ δ,

where the probability is over the randomness of encoding, and is an expectation
over z ∈ Z.

Note that using (14) and (15), the AZ adversary is also a BZ adversary
satisfying,

H̃∞(X|Z) ≥ (1 − α)k log q (16)

Both these adversaries have the same leakage variable Z and so any algorithm
Offset(z) used by one, taking the value Z = z as input and finding the offset Δz,
can be used by the other also (the two adversaries have the same information).
This means that the success probabilities of the two adversaries are the same,

Pr[Dec(AZ(Enc(M))) /∈ {M,⊥}] = Pr[Dec(BZ(Enc(Mu))) /∈ {Mu,⊥}] ≤ δ.

For ρ-AMD codes, security is defined against a BZ adversary whose leakage
variable Z satisfies,

H̃∞(X|Z) ≥ H∞(X) − ρn log q, where X = Enc(Mu). (17)
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Comparing (17) and (16), we conclude that C is a ρ-AMD code for ρ values that
satisfy αk ≥ ρn, namely ρ ≤ αk

n .

ii. weak ρ-AMD ⇒ weak LLR-AMD code
An argument similar to i. immediately gives that the (qk, qn, α, δ)-weak LLR-
AMD code obtain from ρ-AMD code should satisfy α ≤ ρn

k . ��

C Proof of Proposition 2

Proof. By Proposition 1, H̃∞(X|Z) ≥ log 1
δ should hold for any Z satisfying

H̃∞(X|Z) ≥ H∞(X)−ρn log q. In particular, we must have H∞(X)−ρn log q ≥
log 1

δ . Since the message M of weak ρ-AMD is uniform and the encoder is one-
to-one correspondence, H∞(X) = H∞(M) = k log q. We conclude that k log q −
ρn log q ≥ log 1

δ , namely,

qρn−k ≤ δ. (18)

Similar to the proof of Theorem 1, we also consider a random attack strategy.
Then the total number of valid codewords that do not decode to M is at least
(qk −1), which is the number of offsets that lead to undetected manipulations. A
randomly chosen offset (Δ �= 0n) leads to undetected manipulation with proba-
bility at most

qk − 1
qn − 1

and we must have

qk − 1
qn − 1

≤ δ. (19)

��

D Proof of Construction 4

Proof. Let β be a primitive element of Fq. Then every element mi ∈ F
∗
q can be

written as a power of β: mi = βm
′
i . (9) is rewritten as follows.

f(m, G) =
k∑

j=1

β
∑k

i=1 m
′
igi,j mod (q−1).

According to [[2], Theorem 4] and the proof therein, (Enc, Dec) satisfies
Pr[Dec(Enc(m) + Δ(Zρ)) /∈ {m,⊥}] ≤ ψk

q−1 as long as the leakage parameter
ρ satisfies k − (k + 1)ρ ≥ 1. What is left to show is for any ρ < 1 and δ > 0,
there exists an N such that for all k + 1 ≥ N , k − (k + 1)ρ > 0 and ψk

q−1 ≤ δ

are both satisfied. Indeed, k − (k + 1)ρ = k(1 − ρ) − ρ, which is bigger than 1 if
k > 1+ρ

1−ρ . So we can simply let N = � 1+ρ
1−ρ� + 1. And ψk

q−1 ≤ δ can be achieved by
choosing a big enough q, for example, q = ω(ψk) and choose a big enough k. ��
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Abstract. In this work we revisit the SPDZ multiparty computation
protocol by Damg̊ard et al. for securely computing a function in the
presence of an unbounded number of dishonest parties. The SPDZ pro-
tocol is distinguished by its fast performance. A downside of the SPDZ
protocol is that one single dishonest party can enforce the computation
to fail, meaning that the honest parties have to abort the computation
without learning the outcome, whereas the cheating party may actually
learn it. Furthermore, the dishonest party can launch such an attack
without being identified to be the cheater. This is a serious obstacle
for practical deployment: there are various reasons for why a party may
want the computation to fail, and without cheater detection there is lit-
tle incentive for such a party not to cheat. As such, in many cases, the
protocol will actually fail to do its job.

In this work, we enhance the SPDZ protocol to allow for cheater detec-
tion: a dishonest party that enforces the protocol to fail will be identified
as being the cheater. As a consequence, in typical real-life scenarios, par-
ties will actually have little incentive to cheat, and if cheating still takes
place, the cheater can be identified and discarded and the computation
can possibly be re-done, until it succeeds.

The challenge lies in adding this cheater detection feature to the orig-
inal protocol without increasing its complexity significantly. In case no
cheating takes place, our new protocol is as efficient as the original SPDZ
protocol which has no cheater detection. In case cheating does take place,
there may be some additional overhead, which is still reasonable in size
though, and since the cheater knows he will be caught, this is actually
unlikely to occur in typical real-life scenarios.

1 Introduction

The SPDZ MPC Protocol. Since the initial theoretical possibility results for mul-
tiparty computation (MPC) in the late eighties [2,5,8,10], much effort has been
put into reducing the (communication and computation) complexity of MPC,
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and we are now at a stage where MPC is at the verge of being practical. One
of the currently known protocols that is (close to) efficient enough for practi-
cal deployment is the so-called SPDZ protocol by Damg̊ard et al. [7], and its
variations from [6]. The efficiency of the SPDZ protocol is due to a clever mix
of cryptographic operations, which can mostly be pushed into a preprocessing
phase, and very efficient information-theoretic techniques.

The SPDZ MPC protocol offers security against a dishonest majority, i.e.,
there is no bound on the number of corrupt parties the protocol can tolerate:
even if all but one of the parties are corrupt, that one single party is still pro-
tected. A downside of such protocols with security against a dishonest majority
is that they are inherently susceptible to a “denial-of-service” attack: even one
single dishonest party can enforce the protocol to fail, meaning that the honest
parties have to abort the computation without learning the outcome, whereas
the cheating party may actually learn it. Furthermore, the SPDZ MPC protocol
is such that the cheating party who launches the attack remains covert: the (hon-
est) parties know that there is a cheater among them that caused the protocol
to fail, but they have no way to identify the culprit. As such, with little effort
and with nothing to fear, a single party can prevent the SPDZ protocol from
doing its job.

Identifiable vs Non-identifiable Abort. We feel that such an non-identifiable
abort, where the honest parties cannot identify the cheating party that caused
the abort, is a serious drawback for practical deployment. In real-life scenarios,
there are many reasons for why a party may be tempted to enforce the protocol
to fail: he may know or suspect that he is not going to like the outcome, he
may gain an advantage by learning the outcome but preventing the others from
learning it, he may want to sabotage the computation out of malevolence, etc.
And of course, if that party does not have to fear any consequence because he
knows that he will not be caught, there is little incentive for him not to cheat.
As such, in real-life scenarios, it is not unlikely that such an abort will actually
take place. Furthermore, once such an abort does take place, the affected hon-
est parties are stuck — there is nothing they can do: they cannot call anyone to
account, and re-trying the computation is (almost) useless, because the cheating
party can just re-do the attack.

In contrast to this is the concept of identifiable abort, where we require that,
as a consequence of launching a denial-of-service attack, the cheating party will
be identified as being the culprit. Obviously, for a protocol that offers identifiable
abort, there is much less incentive for a party to cheat and enforce the protocol
to fail, because he knows that he will be caught and have to deal with the
consequences. Thus, if there is some severe enough punishment, an abort is
unlikely to occur. Furthermore, even if an abort does occur, the affected honest
parties have room for further actions: not only can they call the cheating party
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to account, they can also re-do the computation with the culprit excluded, and
this way they can still obtain the outcome of the computation eventually.1

We point out that non-identifiable abort is no issue in case of two-party
computation: if the protocol fails then it is clear to the honest party that the
other party must be cheating.

Our Results. We propose a new version of the SPDZ protocol that supports
identifiable abort: if the protocol aborts then at least one dishonest party will
be identified as having cheated. We emphasize that the challenge lies in adding
identifiability to SPDZ without increasing its complexity too much; in particular,
we want the protocol to run (almost) as fast as the original version in case parties
do not misbehave (too much). This is what our protocol achieves.

– In case no cheating takes place, i.e., all the players behave honesty, our protocol
is essentially as efficient as the original SPDZ protocol: namely, it has an
asymptotic communication complexity of O(n) point-to-point communications
per gate and an asymptotical computational cost of O(n) field operations per
gate.
We perform extra broadcasts compared to the original SPDZ protocol, but
since their number is independent of the circuit size, this can be neglected for
large enough circuits.

– In case cheating does take place, but to an extent that the protocol can handle
it and does not abort, our protocol is slower by a factor at most 2, hence still
with an asymptotic complexity of O(n) per gate for both communication and
computation.
Again, the extra broadcasts can be neglected.

– In case cheating takes place and the protocol does abort (with identification),
we distinguish between the following two cases (which case occurs depends on
the kind of cheating):

• Identification with no agreement: Every honest player has identified at
least one player as a cheater, but there may not be agreement among the
honest players about the list of cheaters.2 In this case, our protocol is
slower still by a factor 2 only.

• Identification with agreement: There is common agreement among the
honest players about at least one player being a cheater. In this case, our
protocol may take substantially longer to identify the cheater, namely in
this case the number of cryptographic operations to be performed grows
with the size of the circuit.

Thus, the only case when our version is significantly slower than the original
SPDZ protocol is when a dishonest player cheats so bluntly that he is publicly

1 One has to be careful with this “solution” though: collaborating dishonest parties
that remained passive during the first run may now adjust their inputs, given that
they have learned the output from the first (failed) run.

2 But every player that is identified by an honest player to be a cheater is a cheater;
thus, this case can only occur if there is more than one cheater.
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recongnized as being a cheater. However, in many practical scenarios, there seems
to be little gain for a dishonest player in slowing down the protocol at the cost
of being publicly caught as a cheater, and thus having to face the consequences.
Therefore, in typical scenarios, our protocol is similarly efficient as the original
SPDZ protocol but, in contrast to the original version, it discourages dishonest
players from enforcing the protocol to abort.

Related Work. Cheater detection is achieved by early MPC protocols such as [8],
and by other protocols that are based on the paradigm that players prove in zero-
knowledge that they followed the protocol instructions honestly. However, the
high communication complexity of these protocols make them unsuitable for
practical deployment.

On the other hand, recent MPC protocols (in a so-called offline/online model)
are designed to have very high efficiency, like the protocols from the SPDZ fam-
ily [6,7], which feature a very attractive asymptotic communication and com-
putational complexity of O(n) per multiplication gate (for the online phase).
However, these protocols do not offer cheater detection. An earlier protocol by
Bendlin et al. [3] offers a very weak form of cheater detection: namely, at least one
honest player will identify a dishonest one, but other honest players may have
no clue on the identity of cheating parties; the protocol has a computational
complexity of O(n2) per multiplication gate.

The work by Ishai et al. [9] is the first to rigorously define and discuss the
notion of cheater detection (in the universal-composability model of Canetti [4]);
the article presents a general compiler that adds cheater detection to any semi-
honest MPC protocol in the preprocessing model.

A very recent protocol, due to Baum et al. [1], builds up on the Bendlin
et al. approach and achieves full cheater detection with a communication and
computational complexity of O(n2) per multiplication gate; this also improves
on the best protocol obtained by means of the techniques by Ishai et al.

The goal of our work is to develop a MPC protocol that is “strictly stronger”
than SPDZ, in that when not under attack it has the same running time than
SPDZ, and when under attack it either gives away cheaters or the protocol
can handle the attack and still has the same (asymptotic) running time than
SPDZ. This is achieved by our protocol, but is not achieved by any of the above.
Indeed, in case no severe cheating takes place, our protocol is at most a fac-
tor 2 slower than SPDZ, hence achieving a communication and computation
complexity of O(n) per multiplication gate. If cheating does take place to the
extent that the protocol aborts, than either we obtain a weaker notion of cheater
detection (“identification with no agreement”) at the same cost, or we obtain
the same notion (“identification with agreement”), but with a overhead in local
computations.
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2 The Original SPDZ Protocol

2.1 The Setting

SPDZ allows n players P1, · · · , Pn holding private inputs over a finite field Fq to
securely evaluate an arithmetic circuit C on their inputs. We assume a synchro-
nous point-to-point communication network that allows for perfectly private and
reliable communication between any two players. We also consider a broadcast
channel, though this one may have to be implemented using the point-to-point
channels (and cryptographic techniques).

2.2 Ingredients

SPDZ follows the standard paradigm and computes the circuit C on shared
values. At the core are additive sharings, for which the following nota-
tion/terminology is used.

– A [·]-sharing of a value z ∈ Fq is an additive sharing of z, meaning that each
player Pi holds a random share zi ∈ Fq subject to

∑
i zi = z. This is denoted

by [z] = (z1, · · · , zn).

Furthermore, to ensure correctness, every shared value is accompanied by a
sharing of an authentication tag for the shared value. This is formalized as
follows.

– For an arbitrary but fixed α ∈ Fq, a 〈·〉α-sharing of z consists of [·]-sharings
of z and of α · z, i.e., 〈z〉α =

(
[z], [α · z]

)
. The element α is called the global

key, and αz is called the tag of z and usually denoted by γ(z). If α is clear
from the context, we may write 〈·〉 instead of 〈·〉α.

We say that a sharing [z] or a sharing 〈z〉α =
(
[z], [γ(z)]

)
is privately opened

to a player Pi if each player Pj sends his share zj to Pi via a point-to-point and
Pi computes z :=

∑
j zj . We say that a sharing is publicly opened if it is privately

opened to a designated “king player” Pk, and then Pk sends the reconstructed
value z to all the players via point-to-point channels.3

Note that (for a fixed global key α) a 〈·〉α-sharing is linear, in the sense that
linear combinations can be computed on the shares:

〈z + w〉 = 〈z〉 + 〈w〉 :=
(
[zi + wi]i=1,··· ,n, [γ(z)i + γ(w)i]i=1,··· ,n

)

〈λz〉 = λ · 〈z〉 :=
(
[λzi]i=1,··· ,n, [λγ(z)i]i=1,··· ,n

)
.

Furthermore, if α is [·]-shared then the same holds for addition with a con-
stant:

〈λ + z〉 = λ + 〈z〉 :=
(
[λ + z1, z2, · · · , zn], [λα1 + γ(z)1, · · · , λαn + γ(z)n]

)
.

Finally, a triple
(〈a〉α, 〈b〉α, 〈c〉α

)
is called a multiplication triplet if it consists

of three 〈·〉α-shared random values a, b, c subject to ab = c.
3 We emphasize that, by definition, these private and public openings do not involve

any checking of the correctness of z by means of its tag; this will have to be done
on top.
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2.3 Outline of the SPDZ Protocol

SPDZ is divided into a offline (or pre-processing) phase, and an online phase.
The idea is to push most of the (somewhat) expensive cryptographic techniques
into the offline phase (which can be executed before the inputs to the computa-
tion — or even the actual computation — are known), and rely mainly on very
efficient information-theoretic techniques in the online phase.

More concretely, in the offline phase the players make use of an additive-
homomorphic and somehwhat multiplicative-homomorphic encryption scheme
Enc to produce

– a [·]-sharing [α] of a random and unknown global key α,
– a list of 〈·〉α-sharings 〈r〉α of random and unknown values r, and
– a list of multiplication triplets

(〈a〉α, 〈b〉α, 〈c〉α

)
with random and unknown

a, b, c = ab.

Additionally, sort of as a “side product” of the generation of all these sharings
with the help of the encryption scheme Enc, the following is given at the end of
the offline phase for every [·]-sharing [z] = (z1, . . . , zn) that occurs as (first or sec-
ond) component of a 〈·〉α-sharing (as well as for the [·]-sharing [α]). Every player
Pi is committed to his share zi by means of an encryption ezi

:= Enc(zi, ρzi
) of zi

that is publicly known, and player Pi knows the corresponding randomness ρzi
.

Recall that Enc is additively-homomorphic, so that linear combinations (and
addition with constants) can be computed on the commitments.

The actual computation takes place in the online phase. By using the sharings
produced in the offline phase as a resource, the online phase can be executed
to a large extent by means of very efficient information-theoretic techniques —
the number of cryptographic operations needed is independent of the circit size.
Concretely, the online phase is composed of the following gadgets.

– Input sharing: For each input x held by a player Pi, a fresh (meaning: yet
unused) sharing 〈r〉α from the offline phase is selected and privately opened
to Pi. Pi then sends ε := x − r to all the players, and altogether the players
can then compute a sharing of x as 〈x〉α = ε + 〈r〉α.

– Distributed addition (and multiplication/addition with constants): For each
addition gate in the circuit with shared inputs 〈z〉α and 〈y〉α, a sharing of z+y
is computed (non-interactively) as 〈z + y〉α = 〈z〉α + 〈y〉α. Correspondingly
for multiplication/addition with a constant.

– Distributed multiplication: For each multiplication gate in the circuit with
shared inputs 〈z〉α and 〈y〉α, a sharing of z · y is computed (interactively)
by means of the multiplication subprotocol below, which consumes one fresh
multiplication triple from the offline phase.

– Output reconstruction: For each shared output value 〈z〉α, the players publicly
reconstruct z.
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– Tag checking: For a shared value 〈z〉α = ([z], [γ(z)]) that has been publicly
opened, the players can check the correcntess of z as follows. Every player Pi

computes yi := γ(z)i−z·αi and broadcasts a commitment of yi, and then every
player opens the commitment and the players compute y :=

∑
i yi = γ(z)−z·α.

If y = 0 then z is declared to be correct; otherwise, it is declared incorrect
and the protocol is immediately aborted.

We do not detail how these gadgets are put together, in particular how/when
exactly the tag checking is used, as this is not very relevant to us. However, let
us emphasize that a single dishonest player can easily enforce the protocol to
abort, e.g., by submitting an incorrect share for a sharing 〈z〉α that is publicly
opened and then checked; the check will recognize (with high probability) that
the reconstructed value z is incorrect, and so the protocol will abort, but there
is no way for the honest players to find out who submitted an incorrect shares.
Hence, any such dishonest player gets away with it, and hence there is no incen-
tive for a dishonest player not to cheat, should it give him any advantage or
satisfaction whatsoever.

Multiplication subprotocol
A fresh multiplication triplet

(〈a〉, 〈b〉, 〈c〉) is selected, and the following is
performed.

1. The players compute 〈ε〉 := 〈z − a〉 and 〈δ〉 := 〈y − b〉.
2. The sharings 〈ε〉 and 〈δ〉 are publicly opened:

– 〈ε〉 and 〈δ〉 are privately opened to a designated king player Pk, and
– Pk sends ε and δ to the others player via the point-to-point channels.

3. The players compute 〈z · y〉 := 〈c〉 + ε〈b〉 + δ〈a〉 + εδ.

3 Our Protocol

3.1 An Overview of Our Protocol

We explain on a high level how our protocol works. First, notice that there are
three distinct ways for dishonest players to disrupt the protocol execution (and
enforce an abort in the original SPDZ protocol):

– During the input sharing phase, dishonest players could send incorrect shares
of r to Pi, or Pi could send inconsistent values ε to the players.4

– During the multiplication step, dishonest players could send incorrect shares
of ε and δ to the king player.

4 Note that there is no issue of ε being incorrect since any ε corresponds to a possible
input for Pi.
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– During the multiplication step, a dishonest king player could send false and/or
inconsistent values for ε and δ.

– In the output reconstruction phase, dishonest players could announce false
shares of the output.

We will focus on the two possible attacks in the multiplication step, since our
techniques to deal with those can easily be used to also deal with the attacks in
the input sharing and output reconstruction phases.

As pointed out above, the players have two “checking mechanisms” available
in order to verify the correctness of a reconstructed value z:

– they can use the tag γ(z) of z to check the correctness of z, and
– they can use the commitments to check the correctness of the shares zi.

The former technique is very efficient but cannot be used to identify who
submitted a false share in case of an incorrect z; this can be done by the latter,
but that one is computationally more expensive, and so we want to avoid it as
much as possible and use it only as a “last resort”.

Now, a first and straightforward approach to achieve cheater detection but
use the computationally expensive techniques only as a last resort, seems as
follows: first, use the “cheap” tag checks to verify the correctness of every recon-
structed value (as in the original SPDZ protocol), and then resort to the com-
mitments if and only if an error is detected, in order to find out who claimed an
incorrect value.

Unfortunately, this does not work. The reason is that only the king player
knows the shares of, say, ε. As such, if ε claimed by the king player turns out
to be incorrect, there is no way for an honest player to distinguish the case of a
dishonest player Pi who has sent an incorrect share εi to the king player, from
the case of a dishonest king player who pretends that he has received an incorrect
share εi from Pi. There is no way such a dispute can be resolved, even with the
help of the commitments — except if these shares are broadcast from the start,
but that would greatly increase the complexity of the protocol.

To deal with such a situation, we use an idea from dispute control: we re-do
(part of) the computation in such a way that this particular dispute cannot
occur anymore (essentially by choosing a fresh king player). Since the number
of disputes is bounded, this means that there is a limit on how often something
needs to be re-done, and setting the parameters right ensures that this merely
gives a factor-2 blowup.

On the other hand, if a dishonest player Pi keeps on claiming an incorrect
share for, say, ε, even when the players are asked to broadcast their shares because
a fault was detected, then the players can use the (computationally expensive)
commitments to find the incorrect share, and the honest players will unanimously
identify Pi as cheater.

The overall structure of (the computation phase of) our protocol is thus as
follows.



Cheater Detection in SPDZ Multiparty Computation 159

Set-up: The circuit C is divided into consecutive blocks, each comprising
ca. |C|/n gates (where “consecutive” here means that C can be evalu-
ated in a block-by-block manner). Furthermore, a list Lsuspects of suspect
players is initialized as the empty set.
Computation: Sequentially, for each block the following is done:
I. A king player Pk /∈ Lsuspects is selected, and the computation is

done as in the normal SPDZ protocol by repeatedly invoking the
multiplication sub-protocol and doing local computations.

II. Once the block has been processed, a checking protocol BlockCheck is
invoked that verifies the correctness of the computation. BlockCheck
has three possible outcomes:

• Success: The block has been correctly processed. In this case, the
players simply move to the next block.

• Fail with Conflict: The block has not been correctly processed,
and Pk accuses some player(s) of faulty behaviour. In this case,
Pk and all accused players are added to Lsuspects, and the players
go back to step I. and re-do the computation with a “fresh” Pk �∈
Lsuspects. Should Lsuspects now consist of all players then the
protocol stops; in this case, every honest player has identified at
least one dishonest player.

• Fail with Agreement: The block has not been correctly processed,
and it is guaranteed that some player has broadcast an incorrect
share during the run of BlockCheck. In this case, the players
make use of the commitments to unanimously identify the cheat-
ing player.

3.2 The Checking Protocol BlockCheck

We will now provide a more precise discussion of the check-phase mentioned in
the previous section. What it will do is check the correctness and consistency
of all the ε’s and δ’s that were announced by the king player during the multi-
plication subprotocols in the block to be checked. Let us write 〈z(1)〉, · · · , 〈z(t)〉
for the sharings of these ε’s and δ’s. This means that each player Pi has com-
municated his share z

(j)
i to Pk, who in turn has computed z(j) =

∑
i z

(j)
i and

communicated it to all other players. In the following discussion, we will denote
by z̃

(j)
i the actual share communicated by Pi to Pk (so that if Pi is dishonest,

it may be the case that z̃
(j)
i �= z

(j)
i ), and by z̃(j) the value that Pk has commu-

nicated to the other players. However, we emphasize that that Pk is dishonest
then he may be inconsistent with the value of z̃(j), different players may receive
different values for z̃(j).
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The subprotocol Block Check now works as follows. As a first step, as check-
ing each value individually is too expensive, a quasi-random linear combination
of the 〈z(j)〉’s is computed:

Step 1: The players run a subroutine Rand to produce a random element
e, and they compute the linear combination 〈z〉 :=

∑
h eh〈z(h)〉.

Let z̃i and z̃ be the respective linear combinations of z̃
(1)
i , · · · , z̃

(t)
i and of

z̃(1), · · · , z̃(t). The correctness of z̃ is then verified as follows.

Step 2: Public Reconstruction. Each player broadcasts his share of 〈z〉,
upon which the king player Pk broadcasts a list of players that he accuses
of inconsistent behaviour; if he does so, BlockCheck outputs the message
“Fail with Conflict” and the list of accused players.

If Pk has not accused anybody, then each player can broadcast an accu-
sation against Pk, stating that the value z̃ that he received is different from
z (which is now public, since its shares have been broadcast). If that is the
case, then once again we are in the “Fail-with-Conflict” case: BlockCheck
outputs the corresponding error message and the list of players accusing Pk.

Now if no accusations have been produced, the next step consists in checking
the tag of the now-public value z̃:

Step 3: Tag Checking. If no accusations have been produced in Step 2,
then players check the tags of 〈z〉 = ([z], [γ(z)]); this is done running a
subroutine ZeroTest on [γ(z)] − z̃[α], which outputs � if it is a sharing of
0, and ⊥ if it is not (except with small probability).

BlockCheck outputs the message “Success” if the tag check succeeds,
and “Fail with Agreement” if it fails.

Note that in step 3 above, the players cannot just do a public reconstruction
of the sharing [γ(z)]−z̃[α] to check whether it is a sharing of zero, because in case
it is not, the value of γ(z) − z̃α reveals information on α. That is why a slightly
more involved subroutine ZeroTest is invoked, which publicly reconstructs a
random multiple of [γ(z)] − z̃[α].

If the tag check in step 3 above fails, then this means that a dishonest player
Pi must have broadcast a false share zi during step 2, or (as we will see) he
has broadcast some false share as part of the execution of ZeroTest; in either
case, he has broadcast a linear combination (with coefficients that may depend
on the z̃(i)) of values he is committed to, by means of the commitments from
the preprocessing phase and by the linearity of all computations. Pi can and
will now be publicly identified as cheater by means of a protocol CommitCheck,
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which simply asks the players to open the commitments to the claimed and
broadcast values. We note that CommitCheck causes a significant overhead to
the efficiency of the protocol because the players need to perform computations
on a large number of commitments, proportional to the size of the circuit; in
return, however, it publicly identifies a cheating player.

Note that due to space contstraints, the details of the subroutines Rand,
CommitCheck and ZeroTest are given in the appendix, but they are pretty much
as expected (except for the issue mentioned above regarding ZeroTest).

3.3 Security of Our Protocol

In this section we argue security of our protocol. We focus on the actual compu-
tation phase; similar techniques allow us to secure the input-sharing and output-
reconstruction phases as well.

The security of the protocol clearly relies on the secrecy of the global key α,
which we measure as follows. Let v denote the adversary’s view at a given point
in the online protocol.5 Then, the adversary’s (average) guessing probability of
the global key α is given by

pguess(α|v) :=
∑

v̂

p(v = v̂) · max
α̂

p(α = α̂|v = v̂) .

In AppendixA we will prove the following security properties for the checking
protocol BlockCheck. Recall, the purpose of BlockCheck is to verify the correct-
ness and consistency6 of z̃(1), · · · , z̃(t), which is the collection of values that Pk

announces as the reconstructed values for 〈ε〉 and 〈δ〉 for each invocation of the
multiplication subprotocol in the checked block.

Proposition 1. BlockCheck satisfies the following:

– Correctness of BlockCheck: if all players behave honestly and hence all z̃(h) are
correct and consistently announced by Pk, then BlockCheck outputs “Success”
with probability 1.

– Soundness of BlockCheck: if at least one of the z̃(h) is incorrect, i.e. �= z(h), or
inconsistently announced by Pk, then the following holds except with probability
at most

δ = (2|C|/n + 1)/q + pguess(α|v) ,

where v is the adversary’s view before the execution of BlockCheck.
BlockCheck outputs a “Fail”; furthermore, if it outputs “Fail with Conflict”,

5 Here and below, when we make information-theoretic statements, we understand
v to not include the encryptions/commitments of the honest parties shares etc.
that were produced during the preprocessing phase. Adding these elements to the
adverary’s view of course renders the information-theoretic statements invalid, but
has a negligible effect with respect to a computationally bounded adversary.

6 Recall that dishonest Pk may send different values for z̃(i) to different players.
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then either the king player Pk or all of the accusing players are dishonest
(or both), and if it outputs “Fail with Agreement”, then all z̃(h) have been
consistently announced by Pk, and a dishonest player has broadcast as part
of BlockCheck an incorrect version of a value to which he is committed by
means of a linear combination (depending on the z̃(h)’s) of the commitments
produced in the preprocessing phase.

Notice that for the above soundness error to be small, we need to bound
pguess(α|v). Clearly, at the beginning of the online phase it is 1/q, but it may
increase during the course of the protocol. We have the following upper bound,
which will be proved in AppendixA:

Proposition 2. Throughout the entire protocol, the adversary’s guessing prob-
ability of α is bounded by

pguess(α|v) ≤ 1
q − 2n

+
2n

q
.

Finally, for completeness, we state here that CommitCheck, which will be
invoked if BlockCheck results in “Fail with Agreement”, does the job and iden-
tifies a dishonest player. Crucial for CommitCheck to work properly is that the
z̃(h) have been consistently announced by Pk (so that there is agreement on the
linear combination to be computed on the commitments), but this is ensured by
the soundness of BlockCheck.

Proposition 3. Under the binding property of the underlying commitment
scheme, if a dishonest player has broadcast as part of BlockCheck an incorrect
value, then this player will be publicly identified by CommitCheck. Furthermore,
no honest player will incorrectly be identified as being dishonest.

The security of the protocol is now straightforward: as a worst-case scenario,
we will assume that the adversary controls all but one of the players. First notice
that if the adversary decides to behave (semi)-honestly, then by the correctness
of BlockCheck the protocol will reach the end of the circuit and CommitCheck
will not be executed.

On the other hand, if the adversary misbehaves in (at least) one of the
invocations of the multiplication subprotocol in one of the blocks, either by
sending an incorrect share of 〈ε〉 or 〈δ〉 to Pk, or by having dishonest Pk announce
inconsistent values (or both), then this will be detected by BlockCheck that
will announce “Fail with Conflict” or “Fail with Agreement”, depending on the
adversary’s precise behavior.

In the case of a “Fail with Conflict”, the incorrect data is dismissed and
the block is rebooted with a fresh king player that is not in the list Lsuspects

of suspect players. Since every re-boot adds a new player to Lsuspects, namely
the previous king player, we can have at most n such reboots in total before the
protocol produces the correct output or before Lsuspects is “full”, and in that case
the protocol stops and every honest player has correctly identified at least one
dishonest player (because an honest player ends up in Lsuspects only by accusing
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a dishonest player). Notice that the commitment check is not executed in this
case. On the other hand, if BlockCheck ends with a “Fail with Agreement”, then
CommitCheck is invoked and will publicly identify a dishonest player.

As for the overall error probability, by combining the soundness error of
BlockCheck with the bound on pguess, and observing that BlockCheck is invoked
at most 2n times — as we have n blocks plus at most n reboots — we obtain an
overall error probability of at most

ε = 2n ·
(

1
q − 2n

+
2|C|/n + 2n + 1

q

)

To sum up, and using a similar checking mechanism for ensuring correctness
of the input-sharing and the output-reconstruction phases, our new multiparty
computation protocol satisfies the following.

Theorem 1. For any computationally bounded adversary that cannot break the
encryptions/commitments used in the preprocessing phase, except with negligible
probability, an execution of our protocol results in one of the following cases
(depending on the adversary’s strategy):

I. Success: the protocol reaches the end of the circuit and outputs the correct
result to all players. In this case, CommitCheck is not executed.

II. Identification without agreement: the protocol aborts, but each honest player
has identified at least one dishonest player. Also in this case, CommitCheck
is not executed.

III. Identification with agreement: the protocol aborts, and the honest players
have in-agreement identified at least one dishonest player.

Furthermore, in all cases, the adversary learns no information on the honest
players’ inputs, beyond the result of evaluating the circuit C on the inputs.

3.4 The Complexity of Our Protocol

We discuss in this section the complexity of our protocol; as with the previous
sections, we focus on the multiplication check, which is the most expensive part
of our protocol. The input sharing and the output reconstruction, moreover, can
be analyzed in a similar fashion (i.e., in the general case they yield a complexity
of the same order of magnitude as the original SPDZ, and exceed it only to
unanimously identify a dishonest player).

We thus focus on the multiplication check. We first study the complexity of
processing and checking a single block:

– First, the gates of the block are evaluated as in standard SPDZ; this yields a
complexity of |C|/n ·O(n) = O(|C|) field operations (in total over all players)
and the same number of field elements for point-to-point communication, and
no broadcasts.
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– At the end of the block, the subprotocol BlockCheck is executed. Its com-
putation complexity is dominated by computing the linear combination of
t = 2 · |C|/n sharings on n shares in step 1; in total, as we will see in
AppendixA.2, BlockCheck has a computation complexity of O

(|C| + n2
)

field operations, plus preparing 4n commitments. Its communication complex-
ity consists of no point-to-point communication, and 3n broadcasts of field
elements and 4n of commitments and openings.

Now as we have seen, BlockCheck can lead an execution of CommitCheck,
to a re-boot of the current block, or simply to the processing of the following
block. The exact cost of CommitCheck depends on how the commitments were
implemented, but it certainly causes a significant overhead given that it involves
a number of cryptographic operations that grows with the size of the circuit;
however, CommitCheck leads to the public exposure of a dishonest player, so
there is little incentive for the adversary to enforce this. As argued in Sect. 3.3,
we can have at most n reboots in total before the protocol aborts; as such,
the overhead of the reboots causes at most a factor 2 overhead to the ordinary
computation of the n blocks.

We thus get the following result summarizing the complexity of our protocol:

Proposition 4. Except in the case where CommitCheck is enforced by the adver-
sary, which would lead to an identification-with-agreement of at least a dishonest
player, our protocol has the following complexity:

– Computation: O
(
n|C|+n3

)
field operations, plus preparing 8n2 commitments

(as part of Rand and of ZeroTest);
– Communication: O

(
n|C|) field elements for point-to-point communication plus

O
(
n2

)
broadcasts.7

In case CommitCheck is executed, the communication complexity remains the
same, while players need to execute O

(
n2|C|) cryptographic operations on top

of the original computational complexity.8

Compared to the original SPDZ protocol, in case all players behave honestly,
our protocol is as efficient as the original protocol, up to an additive overhead
caused by an increased number of commitments and broadcasts9, but this over-
head is independent of the circuit size and thus negligible except for small cir-
cuits. In case of active cheating — unless a dishonest player cheats so bluntly that
7 Note that we treat broadcast as a given primitive here; implementing it using the

point-to-point communication and, say, digital signatures, causes some (communi-
cation and computation) overhead, but this overhead is independent of the circuit
size.

8 The actual cost of these cryptographic operations depends on how the commitment
scheme is implemented.

9 Plus that we have to do real broadcasts, whereas in the original SPDZ protocol
without cheater detection it is good enough to do a simple consistency check and
abort as soon as there is an inconsistency.
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CommitCheck is invoked and he will be publicly identified as being a cheater —
the (computation and communication) complexity of our protocol is larger by a
factor 2 only, plus the same kind of additive overhead that does not depend on
the circuit size.

4 Conclusion

We presented an alternative to the original SPDZ multiparty computation proto-
col. In contrast to the original protocol, our version allows for cheater detection.
As such, our protocol is much less vulnerable to a “denial of service” attack: if
a dishonest player enforces the protocol to abort, he will be identified and mea-
sures can be taken. Furthermore, in our protocol, this feature comes essentially
for free: as long as everything works as supposed, our protocol is as efficient
as the original SPDZ (up to an additive overhead that is negligible except for
small circuits); but as soon as a fault is detected, instead of simply aborting
and being clueless about who cheated, we can proceed and — depending on the
adversary’s behavior — still complete the computation or identify cheaters with-
out agreement with a factor 2 overhead, or identify cheaters with agreement but
with a significant overhead.

As such, we think that our multiparty computation protocol is an attractive
alternative to the original SPDZ protocol when considering real life scenarios
where dishonest parties may have various incentives for sabotaging an execution.

An obvious open problem is to have agreement on the cheater(s) in all cases,
and/or without a significant overhead; however, this seems hard to achive with-
out increasing the complexity of the honest execution.

A The Protocol BlockCheck in Detail

We shall now begin the study of the sub-protocol Block Check; we first establish
some notation rules that will be used in the whole section: t will denote a positive
integer; we assume that t multiplication opening values 〈z(1)〉, · · · , 〈z(t)〉 have
been publicly opened via a king player Pk, and we will use the following notation:
for each shared value 〈z(h)〉,
– each player Pj has sent z

(h)
j to Pk;

– z̃
(h)
j denotes the value received by Pk from Pj (so if Pj is honest, z̃

(h)
j = z

(h)
j );

– Pk has computed and sent to each Pj the value z(h);
– z̃(h)(j) denotes the value received by each Pj from Pk (so if Pk is honest,

z̃(h)(j) = z(h)).

The goal of BlockCheck is to detect errors in this process; as we have seen, the
first step of the check consists in computing a (quasi-) random linear combination
of the values to be checked. This is performed by generating a seed via the
subroutine Rand, and then using the powers of the seed as coefficients of the
linear combination. We first define Rand, which assumes that players have access
to a commitment scheme (as in standard SPDZ):
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Rand:
The protocol is used to generate a random seed e ∈ Fq.

(i) Each player Pj selects random ej ← Fq and broadcasts a commitment
Commit(ej) to it;

(ii) all the commitments are then opened, so that all players get e1, · · · , en;
(iii) the output of Rand is the value e :=

∑n
j=1 ej .

We now show that any error that occurred during the opening of the values
〈z(1)〉, · · · , 〈z(t)〉 will affect their linear combination as well (with high probabil-
ity); the proof is a standard argument, and is omitted here. We refer to the full
version of the paper for the details.

Lemma 1. Let e be a seed generated by Rand; consider the following linear
combination with coefficients given by the powers of e:

〈z〉 :=
t∑

h=1

eh · 〈z(h)〉, z̃(j) :=
t∑

h=1

eh · z̃(h)(j) for any j = 1, · · · , n.

Assume that for a given index h ∈ {1, · · · , t} the value received by a given player
Pj is incorrect, i.e. z̃(h)(j) �= z(h); then z̃(j) �= z except with probability t/q.

Similarly, if the values received by two players Pj and Pi for an index h are
different (i.e. z̃(h)(j) �= z̃(h)(i)), then the same will hold for the corresponding
linear combinations, i.e. z̃(j) �= z̃(i) except with probability t/q.

The next step of BlockCheck is the “public opening and conflict” phase; it
has already been defined in previous sections, but we will re-write it here in
order to make this chapter as self-contained as possible:

PublicOpening:
The protocol takes as input a shared value [z] and the index k of the king
player Pk; initialize the boolean value b to � and the list L to the empty
set ∅.

(i) For each j = 1, · · · , n, player Pj broadcast zj and Pk broadcast z̃j ; if the
two values do not coincide, set b = ⊥ and L ← L ∪ {Pj}.

(ii) If b = ⊥, the protocol stops and output (⊥, L).
(iii) Players set z̃ :=

∑
j zj ; for each j = 1, · · · , n, player Pj broadcasts z̃(j).

If this value is different from z̃, set b = ⊥ and L ← L ∪ {Pj}.
(iv) The protocol outputs (b, L, z̃).

The following lemma is a direct consequence of the definition of the algorithm,
and states that the public opening routine is correct and sound:
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Lemma 2. Let (b, L, z̃) be the output of PublicOpening ([z]) with king player
Pk; we then have the following properties:

– (correctness) if 〈z〉 has been correctly reconstructed and players follow the
instructions of the protocol, then b = � and L = ∅.

– (soundness) if z̃(j) �= z̃(i) for some honest players Pj and Pi, then b = ⊥ and
L �= ∅.
Furthermore, in this case either Pk or all players in L are dishonest.

The last step consists in checking the tags of the value 〈z〉 = ([z], [γ(z)]); as
we have previously discussed, this is performed by using the subroutine ZeroTest
to check that the value [γ(z)] − z̃[α] opens to 0.

As hinted in Sect. 3.2, we need to be careful when checking the tags via
ZeroTest, as this can increase the adversary’s guessing probability of α. We
introduce the following definition to model the information on α possessed by
the adversary:

Definition 1. Given a distribution p(x, v), we say that the distribution of x
given v is a list of size m if there exists a (conditional) distribution p(	|v), where
the range of 	 consists of lists of m elements in the range of x, such that the
following two properties hold for the joint distribution p(x, v, 	) := p(x, v) ·p(	|v):

(I) p(x ∈ 	) ≤ max�̂∈Im(�) p(x ∈ 	̂);

(II) p(x|v = v̂, 	 = 	̂, x /∈ 	̂) = p(x|x /∈ 	̂) for every v̂, 	̂ such that the formula is
well-defined.

In a nutshell, we use the above definition to formalize the following situation:
let v denote the adversary’s view and x := α; assume that the distribution of α
given v is a list of size m. This means that the adversary has tried to guess the
value of α for m consecutive times, and he has learned whether his guess was
correct or not after each guess.

We now state the basic properties of ZeroTest, which will in turn imply the
desired properties of the tag check; we assume that ZeroTest outputs a boolean
value b ∈ {�,⊥}, marking whether the input opens to zero or not, and some
extra data that will be omitted in the following lemma.

Lemma 3. Let b be the output of ZeroTest ([x]); we then have the following
properties:

– (correctness): if x = 0 and players follow the instructions of the protocol, then
b = � with probability 1.

– (soundness): consider the joint distribution p(x, v0), where v0 denotes the
adversary’s view before the execution of ZeroTest. Then

p(b = �) ≤ 1/q + pguess(x|v0).
Furthermore, if x = 0 but b = ⊥, then a dishonest player has broadcast an
incorrect version of a value to which he is committed by means of a linear
combination of the commitments produced in the preprocessing phase.
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– (privacy): Assume that x is uniformly distributed and that the distribution of
x given v0 is a list of size m0. Then after the execution of ZeroTest([x]), the
distribution of x given v is a list of guesses of size at most m := m0+1, where
v denotes the adversary’s view after the execution of ZeroTest.

Now that we have fixed the notation for the subroutines, we can state the
definition of BlockCheck in a more formal way:

BlockCheck:
The protocol takes as input a block and the index k of the king player Pk;
denote by 〈z(1)〉, · · · , 〈z(t)〉 the multiplication opening values of the block.

(i) Players execute Rand to get a random seed e ∈ Fq, then compute the
linear combination 〈z〉 :=

∑t
h=1 eh〈z(h)〉.

(ii) Run
(
b, L, z̃

) ← PublicOpening ([z]); if b = ⊥, BlockCheck stops and
outputs the message “Fail with Conflict” together with the list L.

(iii) Run
(
b, (〈a〉, 〈b〉, 〈c〉), 〈r〉) ← ZeroTest ([γ(z)] − z̃[α]).

(iv) If b = �, output the message “Success”;
if b = ⊥, output the message “Fail with Agreeement” together with the
elements

(
(〈a〉, 〈b〉, 〈c〉), 〈r〉).

We can now prove the properties of BlockCheck claimed in Sect. 3.3; we omit
the proof here, as it can be easily derived from the definition of BlockCheck.

Proposition 5. BlockCheck satisfies the following:

Correctness of BlockCheck: if all players behave honestly and hence all z̃(j) are
correct and consistently announced by Pk, then BlockCheck outputs “Success”
with probability 1.

Soundness of BlockCheck: if at least one of the z̃(j) is incorrect, i.e. �= z(j), or
inconsistently announced by Pk, then the following holds except with probability
at most

δ = (2|C|/n + 1)/q + pguess(α|v) ,

where v is the adversary’s view before the execution of BlockCheck. BlockCheck
outputs “Fail”; furthermore, if it outputs “Fail with Conflict”, then either the
king player Pk or all of the accusing players are dishonest (or both), and if it out-
puts “Fail with Agreement”, then all z̃(j) have been consistently announced by Pk,
and a dishonest player has broadcast as part of BlockCheck an incorrect version
of a value to which he is committed by means of a linear combination (depending
on the z̃(j)’s) of the commitments produced in the preprocessing phase.

Finally, we can now prove the bound on the adversary’s guessing probability
of the global key α:

Proposition 6. Throughout the entire protocol, the adversary’s guessing prob-
ability of α is bounded by

pguess(α|v) ≤ 1
q − 2n

+
2n

q
.
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Proof. Clearly, the adversary can increase his guessing probability only during
the execution of ZeroTest; this, by definition of BlockCheck, is executed only
when the value z̃ is consistent among players, so that its input is equal to [x] :=
[γ(z)] − z̃[α] = (z − z̃)[α]. Hence we can assume as a worst-case scenario that
z �= z̃, so that the adversary’s guessing probabilities of α and of x coincide.

Notice that at the beginning of the computation, the distribution of α given
the adversary’s view is a list of guesses of size 0; hence we can inductively
apply Lemma 3, so that during the execution of the protocol the distribution
of α given the adversary’s view is a list of guesses of size at most 2n (recall
that BlockCheck, and hence ZeroTest, is executed at most 2n times). Hence
according to Definition 1, and given that α is uniformly distributed, there exists
a distribution p(	|v) with the following properties:

(I) p(α ∈ 	) ≤ 2n/q;
(II) maxα̂,�̂ p(α = α̂|v = v̂, 	 = 	̂, α /∈ 	̂) = 1/(q − m).

Now from this we can deduce the claimed upper bound on the guessing
probability: indeed, by using the law of total probability with the events (α ∈ 	)
and (α /∈ 	), we obtain

pguess(α|v) =
∑

v̂

p(v = v̂) · max
α̂

p(α = α̂|v = v̂) ≤ 1
q − 2n

+
2n

q
.

�

A.1 The Tag Checking in Detail

We discuss in this section the sub-routine ZeroTest, meant to check whether
some shared value [x] is equal to zero or not. The key point is that we cannot
simply open [x]: indeed, in the actual scenario this value will be equal to [γ(z)]−
z̃[α] for some shared value 〈z〉; now the adversary could select any value Δz and
let z̃ = z + Δz, so opening [γ(z)] − z̃[α] = Δz · [α] will actually let the adversary
learn the global key α. This is not a problem in the original SPDZ protocol,
since it will abort if the value does not open to 0, but it is a problem for our
protocol, which carries on even if the result is not zero. To avoid this, we will
perform a multiplication of [x] with a random shared value:

ZeroTest:
The protocol takes as input a shared value [x].

(i) Players select a random shared value 〈r〉 and a fresh multiplication triplet
(〈a〉, 〈b〉, 〈c〉).

(ii) Players compute [rx] with multiplication triplet (〈a〉, 〈b〉, 〈c〉) as
described in Section 2, but with a different communication model: instead
of sending their data to a king player that acts as a relay, they will broad-
cast a commitment to it, then open all the commitments before moving
to the next round.



170 G. Spini and S. Fehr

(iii) Each player Pj broadcasts a commitment Commit((rx)j) to his share of
[rx], then all commitments are opened, so that players obtain rx.

(iv) Set b = � if rx = 0, b = ⊥ otherwise; output
(
b, (〈a〉, 〈b〉, 〈c〉), 〈r〉).

From now on, we will adopt a slight abuse of notation by writing formulae
such as ZeroTest([x]) = b, i.e. considering only the boolean value among the
outputs of the protocol. We first prove that the subprotocol is correct and sound:

Lemma 4. ZeroTest satisfies the following properties:

– Correctness: if players follow the instructions of the protocol, ZeroTest([0]) =
� with probability 1.

– Soundness: consider the joint distribution p(x, v0), where v0 denotes the adver-
sary’s view before the execution of ZeroTest; then

p(ZeroTest([x]) = �) ≤ 1/q + pguess(x|v0).
Furthermore, if x = 0 but b = ⊥, then a dishonest player has broadcast an
incorrect version of a value to which he is committed by means of a linear
combination of the commitments produced in the preprocessing phase.

Proof

– Correctness: trivially, ZeroTest will open [r · 0] = [0].
– Soundness: by definition of the protocol, the output of ZeroTest([x]) is equal

to � if and only if b = 0, where

b := (r − r̃)(x − x̃) − ỹ

where r is a variable uniformly distributed and independent of x, x̃, r̃ and ỹ, and
the variables r̃, x̃ and ỹ are chosen by the adversary, and are thus determined
by his current view (since we can assume without loss of generality that the
adversary is deterministic).

Now notice that for any v̂0 we have the following inequality:

p((r − r̃(v̂0))(x − x̃(v̂0)) = 0|v0 = v̂0) ≤ 1/q + max
v̂

p(x = x̂|v0 = v̂0)

In turn, by applying the law of total probability to p((r − r̃)(x − x̃) − ỹ = 0)
with the events (v0 = v̂0), we obtain the following inequality:

p((r − r̃)(x − x̃) − ỹ = 0) ≤ 1/q + pguess(x|v0) .

Finally, if x = 0 but b = ⊥, then necessarily a player has communicated
some incorrect values during ZeroTest; hence since all communications are per-
formed by broadcast, he is committed to the incorrect value, so that the claim
is proved. �
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Finally, we need to discuss the privacy of ZeroTest; we first remark that
Definition 1, formalizing our privacy notion, yields the following consequences:

Remark 1. Assume that the uniform distribution x is a list of size m given v;
we then have the following properties:

(i) p(x ∈ 	) ≤ m/q (immediate consequence of (I));
(ii) p(x = y|x /∈ 	) ≤ 1/(q − m) for any y = y(v) (consequence of (II) via the

law of total probability).

Furthermore, let r be a random variable independent of both v and x, and set
v′ := (v, r). Then it trivially holds that if p(x, v) satisfies the above definition,
then so does p(x, v′).

Lemma 5. Given a distribution p(x, v0), where v0 denotes the adversary’s view,
assume that the uniform distribution of x given v0 is a list of size m0. Then after
the execution of ZeroTest([x]), the distribution of x given v is a list of guesses
of size at most m := m0 + 1, where v denotes the adversary’s view after the
execution of ZeroTest.

Proof. By looking at the instructions to compute and open [xr] to Pi, we see
that what the adversary can learn the following values (plus random sharings of
them): γ := x−a, δ := r − b and π := (r − r̃)(x− x̃), where a, b and r are jointly
uniformly distributed and independent of each other and of v, x, x̃, r̃.

x̃ and r̃ are chosen by the adversary, and are thus determined by his view
(since we assume without loss of generality that the adversary is deterministic).

Now given the adversary’s view v0 before the execution of ZeroTest, the
adversary’s current view is equal to (v0, γ, δ, π); notice that a and b are (jointly)
random and independent of x, r, v0 and π, and thus so are γ = x − a and
δ = r − b, so that we may restrict the view to v := (v0, π) (cf. Remark 1)10.

Now by inductive hypothesis, there exists a conditional distribution p(	0|v0)
such that properties I and II hold for p(x, v0, 	0) := p(x, v0)·p(	0|v0); in a natural
way, we define the new distribution to be

p(	 = (x1, · · · , xm0 , xm)|v) := p(	0 = (x1, · · · , xm0)|v0) · p(x̃(v0) = xm|v0).

We now prove that properties I and II hold for p(x, v, 	): first of all, notice that
p (x ∈ 	) = p (x ∈ 	0)+p (x = x̃(v0)|x /∈ 	0)·p (x /∈ 	0). Hence thanks to Remark 1
we have that

p (x ∈ 	) ≤ m0/q +
(
1/(q − m0)

) · (
(q − m0)/q

)
= m/q .

Hence property I holds; we can thus focus on property II. As a first step,
notice that

p(x|v = (v̂0, π̂), 	 = 	̂, x /∈ 	̂) = p(x|v0 = v̂0, 	0 = 	̂0, x /∈ 	̂0, x �= x̃(v̂0))

10 For the same reason, we omit here the fact that the view also contain random sharings
of x − a, r − b and π.
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since if x /∈ 	̂, then in particular x �= x̃(v̂0); hence we can re-write π = π̂ as
r = r̃(v0) + π̂/(x − x̃(v̂0)), and can be removed because r is independent of x,
v0 and 	0. We thus get the following equality:

p(x|(v0, π) = (v̂0, π̂), 	 = 	̂, x /∈ 	̂) = p(x|x /∈ 	̂0, x �= x̃(v̂0))

which means that property II holds. �

A.2 The Complexity of the Block Check

We briefly discuss in this section the complexity of BlockCheck, which was
presented in Sect. 3.4. First notice that since each block contains at most |C|/n
gates, there are at most 2|C|/n multiplication opening values to be checked in
each block; we thus get the following complexity:

– 4n commitments need to be prepared, broadcast and opened (n to produce a
random seed via Rand, and 3n during ZeroTest);

– the computational complexity of a block check is in O
(|C| + n2

)
field opera-

tions (excluding computation on commitments), essentially given by the cost
of computing the linear combination of the values to be checked;

– finally, the block check requires broadcasting 3n field elements for the dispute
phase of PublicOpening. Notice that we do not use point-to-point communi-
cation.

B The Commitment Check

We now discuss how to authenticate shares of a value; as remarked in Sect. 2, for
every shared value z that is [·]-shared in the pre-processing phase each player Pi

holds randomness ρzi
and the value ezi

:= Enc(zi, ρzi
) has been broadcast. We

give here the details on how to use these encryptions as a commitment scheme:

EncryptionCheck:
the protocol takes as input the index i of a player Pi and his share zi =
∑M

h=1 λ(h)z
(h)
i , where all

[
z(h)

]
are computed in the preprocessing phase;

let e
(h)
i := Enc

(
z
(h)
i , ρ

(h)
i

)
(these values are public, cf. Section 2).

(i) Players set ei :=
∑M

h=1 λ(h)e
(h)
i ;

(ii) Pi computes and broadcasts ρi :=
∑M

h=1 λ(h)ρ
(h)
i ;

(iii) players set ei ← Enc (zi, ρi).

If ei = Enc (zi, ρi), the protocol outputs �; otherwise, it outputs ⊥.

Trivially, if Pi behaves honestly, EncryptionCheck will output �; on the
other hand, if the share z̃i he submitted is not correct, then the output will be
⊥ since Enc (zi, ρi) �= Enc (z̃i, ρ̃i) for any possible randomness ρ̃i.
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We are now ready to define the protocol CommitCheck, that simply applies
EncryptionCheck to all shares submitted during the multiplication of two values:

CommitCheck:
The protocol takes as input the index i of a player Pi, a shared value 〈z〉
and the values (〈a〉, 〈b〉, 〈c〉), 〈r〉 used to check its tag.

(i) Run EncryptionCheck(zi) for Pi, denote by b1 its output;
(ii) run EncryptionCheck(γ(z)i − z̃αi − ai) for Pi, denote by b2 its output;
(iii) run EncryptionCheck(ri − bi) for Pi, denote by b3 its output;
(iv) run EncryptionCheck(ci + (γ(z) − z̃α − a) bi + (r − b)ai + (γ(z) − z̃α −

a)(r − b)) for Pi, denote by b4 its output.

Output b1 ∧ b2 ∧ b3 ∧ b4.

The following proposition summarizes the security property of CommitCheck;
we omit the proof, as it can be easily deduced from the definition of the protocol.

Proposition 7. Under the binding property of the underlying commitment
scheme, if a dishonest player has broadcast as part of BlockCheck an incorrect
value, then this player will be publicly identified by CommitCheck. Furthermore,
no honest player will incorrectly be identified as being dishonest.

C Checking the Input and Output of the Computation

We show in this section how to secure the input-sharing and output-
reconstruction phases; we use the main ideas and techniques of the multiplication
check.

We first describe in more detail how the input sharing is performed in the
original SPDZ protocol: each shared value 〈r〉 produce in the preprocessing phase
comes with another type of sharing, denoted by

�r� :=
(
[r],

(
βi, γ(r)i

1, · · · , γ(r)i
n

)
i=1,··· ,n

)
,

where each player Pi holds ri, βi, γ(r)i
1, · · · , γ(r)i

n and rβi =
∑

j γ(r)j
i for any

i. Now in classical SPDZ, whenever a player Pi holds input x, a random shared
value �r� is selected; then each player Pj communicates rj and γ(r)j

i to Pi, who
computes r and checks that rβi =

∑
j γ(r)j

i ; Pi can then broadcast either an
error message or the value ε := x − r. The input is then shared as 〈r〉 + ε.

We add to this protocol our system of accusations and, as a last resort, the
commitment checks:
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InputShare:
The protocol is used to share an input x held by player Pi; a fresh king
player Pk and a shared value 〈r〉, �r� are selected.

(i) for each j �= i, player Pj sends (rj , γ(r)j
i ) to Pk, who in turn communi-

cates these elements to Pi.
(ii) Pi computes y := rβi −∑

j γ(r)j
i . If y = 0, he broadcasts (�, ε := x − r);

players share x as 〈r〉 + ε and the protocol stops.
(iii) If y �= 0, Pi broadcasts ⊥. Then for each j �= i, player Pj broadcasts

(rj , γ(r)j
i ).

(iv) The king player Pk broadcast a list L of players that he accuses of incon-
sistent behaviour; if L �= ∅, then Pk and all the players in L are added to
the list of suspect players. InputShare is then rebooted; if all player are
suspect, then the overall protocol aborts.

(v) If L = ∅, then Pi can accuse Pk of inconsistent behaviour; if that is the
case, Pi and Pk are added to the list of suspect players, and the protocol
is rebooted. If all player are suspect, then the overall protocol aborts.

(vi) Given that all values are now public, players run EncryptionCheck(rj)

and EncryptionCheck
(
γ(r)j

i

)
. If all players pass the encryption check,

Pi is deemed dishonest and the protocol aborts

The following proposition follows from the definition of InputShare and
proves that the protocol is secure:

Proposition 8. Let x be an input held by player Pi; InputShare satisfies the
following properties:

– Correctness: if players behave honestly, InputShare(x) produces no accusa-
tions and players obtain a 〈·〉-sharing of x.

– Soundness: if a player different from Pi behaves dishonestly during the execu-
tion of InputShare, then except with probability 1/q he will be deemed suspect
or dishonest.

– Privacy: if Pi is honest, the adversary’s guessing probability of x is equal to
maxx̂ p(x = x̂).

We now introduce an output-checking phase which makes use of the pro-
tocols introduced in the previous sections: it simply reconstructs the output,
then checks its tag with ZeroTest and, if an error is detected, requires player to
authenticate their shares via CommitCheck.

OutputCheck:
The protocol takes as input the shared value 〈z〉, output of the circuit.

(i) Each player Pi broadcasts his share zi of [z];
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(ii) players set z̃ ← ∑
i zi; they then run ZeroTest ([γ(z)] − z̃[α]). Denote by(

b, (〈a〉, 〈b〉, 〈c〉), 〈r〉) its output;
(iii) if b = �, the protocol stops and output outputs z̃;
(iv) if b = ⊥, then player run b(i) ← CommitCheck(〈z〉) with values

(〈a〉, 〈b〉, 〈c〉), 〈r〉 for each player Pi; if b(i) = ⊥, the protocols outputs
the message “Pi dishonest” and stops.

The following proposition proves that the protocol is correct and sound;
we omit the proof here, as it can be easily obtained from the definition of
OutputCheck, and refer to the full version of the paper for the details.

Proposition 9. OutputCheck satisfies the following properties:

– Correctness: if players submit the correct shares of [z] and behave honestly
during ZeroTest, then OutputCheck will output the correct value z;

– Security: assume that z̃ �= z or that the adversary behaved dishonestly in the
ZeroTest phase; then OutputCheck will produce an accusation to a dishonest
player except with probability 1/q + pv, where pv is the adversary’s guessing
probability of α given his view v.
In the concrete setting, this error probability will be equal to 1/q + 1/(q − 2n).
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Abstract. We study the problem of error correction for computationally
bounded channels under chosen-codeword attacks (CCA). In the CCA
setting, the channel can introduce a p-fraction of errors by accessing to
the encoding and the decoding oracles. Since the unique decoding is not
possible for p ≥ 1/4, we consider list-decodable codes. We present an
optimal-rate coding scheme by assuming the existence of one-way func-
tions. The construction is based on the list-decodable code of Guruswami
and Smith [5] for computationally bounded channels.

1 Introduction

The problem of error correction for computationally bounded channels was first
studied by Lipton [9]. He reduced the problem of error correction in the secret-
key (or shared randomness) setting to the problem of error correction in binary
symmetric channels (BSC). In his scheme, a message m is encoded into c =
π−1(C(m)) ⊕ μ, where C is an error correcting code for BSC, and π and μ are a
random bit permutation and a random mask, respectively, which are privately
shared between the sender and the receiver. When an error e was introduced,
on input y = c ⊕ e, the decoder sends π(y ⊕ μ) = C(m) ⊕ π(e) to the decoder
of C. Since π(e) is like a random error in BSC, C can correct it. The scheme
can achieve an optimal rate in the secret-key setting since there are several
optimal-rate (capacity-achieving) schemes for BSC [1,2]. Lipton showed that,
by assuming a pseudorandom generator exists, the length of the secret key can
be reduced to n−d for any constant d > 0, where n is the length of c.

Lipton’s scheme beautifully reduced the error correction in the secret-key
setting to that in BSC. However, the scheme only achieves one-time security.
Thus, in order to send k messages reliably, we need to generate k secret keys.
The situation is very similar to that of the one-time pad for secret-key encryption.

In modern cryptography, more powerful attacks are considered for encryption
schemes, for which the one-time pad is not secure. In a chosen-plaintext attack
(CPA), an adversary is allowed to access to the encryption oracle. In addition,
the adversary can access to the decryption oracle in a chosen-ciphertext attack
(CCA). The CCA security is widely accepted as the standard security notion for
encryption schemes.

In this work, we introduce an analogous notion to chosen-ciphertext attack
security, called chosen-codeword attack (CCA) security, for the problem of
c© Springer International Publishing AG 2016
A.C.A. Nascimento and P. Barreto (Eds.): ICITS 2016, LNCS 10015, pp. 177–189, 2016.
DOI: 10.1007/978-3-319-49175-2 9
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error correction. Intuitively, a coding scheme is said to be CCA secure if for
any probabilistic polynomial-time (PPT) adversarial channel, the scheme can
correct any error introduced by the channel even if it can access to both the
encoding and the decoding oracles. We assume that adversarial channels can
introduce at most p-fraction errors, where p ∈ (0, 1/2) is called the error rate.
The CCA security of the coding scheme captures strong attack scenarios, in
which adversarial channels can introduce errors by using various information
obtained via the encoding and decoding functions.

We present an optimal-rate coding scheme that is CCA secure in the secret-
key setting. The construction is based on the framework of Guruswami and
Smith [6], which provides a one-time secure coding scheme for computationally
bounded channels.

It is first observed that, in order to tolerate attacks using the encoding ora-
cle, it is necessary to relax the goal of decoding to list decoding, where the
decoder outputs a polynomial-size list containing an original message. As dis-
cussed in [10], if an adversarial channel can obtain polynomially-many valid
codewords, the channel can cause a non-negligible error for unique decoding
when the error rate p > 1/4. Thus, we aim to construct a list-decodable code
with optimal rate 1 − H(p) − ε for any constant ε, where p is the error rate and
H(·) is the binary entropy function.

Guruswami and Smith [6] showed an optimal-rate list-decodable code for
computationally bounded channels. Their scheme does not assume the existence
of a shared secret key. However, they only presented a probabilistic construction
that is not fully explicit. To implement their scheme, the sender and the receiver
need to share the random coins privately to the channel. The only probabilistic
part of [6] is a primitive called a pseudorandom code, which is a list-decodable
code whose codewords themselves are pseudorandom. We would like to construct
an explicit scheme that is secure against polynomial-time channels. Since the
scheme of [6] can been seen as an explicit scheme in the secret-key setting. We
aim to construct an explicit secret-key code that is CCA secure for polynomial-
time adversaries.

Our scheme is built with several cryptographic primitive including pseudo-
random generators, pseudorandom functions, and secure message authentication
codes. All the three primitives can be constructed by assuming the existence of
one-way functions [3,4,7].

1.1 Ideas of the Construction

Our approach is to enhance the error correctability of the scheme of [6] to have
CCA security. In order to prove CCA security, we need to show that the responses
of the encoding/decoding oracles are useless for an adversarial channel. It is
sufficient to show that the oracle responses can be simulated without using the
secret key.

We observe that the codewords of the scheme [5] are pseudorandom. Thus,
simulation of the encoding oracle can be done by preparing a random string
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for every oracle query. When an adversarial channel makes the i-th query mi

to the encoding oracle, the simulator responds with a random string ci. By
pseudorandomness of codewords, the simulation can be done successfully.

To achieve CCA security, we need to simulate the decoding oracle. As in
achieving CCA security for encryption schemes, we employ a message authen-
tication code (MAC). To encode a message m, we first generate a MAC tag
τ of m, and feed (m, τ) to the encoder. By this modification, the adversarial
channel cannot generate a valid codeword without querying the encoding oracle.
Otherwise, such a channel can be used for breaking the security of MAC. As
in simulating the encoding oracle, we use a list of pairs (mi, ci) for every oracle
query mi to the encoding oracle, where ci is a random string. On querying y to
the decoding oracle, the simulator responds with the list of all mi for which the
corresponding codeword ci is within a distance �pn� from y. Since the encoding
of [6] is inherently probabilistic, it seems necessary to check exponentially-many
possible codewords of mi for each i. However, this problem can be resolved by
making the encoding deterministic, which can be done by using a pseudoran-
dom function F . In encoding a message m, the value Fsk(m) is used as random
coins for the encoder, where sk is the secret key of F shared between the sender
and the receiver. As long as sk is secret, Fsk(m) looks random. Since there is a
unique codeword for each message mi, the responses of the decoding oracle can
be simulated in the above way.

We employ several cryptographic primitives, and hence our construction is
relatively simple compared to the original construction of [6]. We could avoid
using a randomness-efficient sampler, a generator of t-wise independent permu-
tations, a generator of t-wise independent strings, and a code correcting t-wise
independent errors. Instead, we use standard cryptographic primitives, a pseudo-
random generator, a pseudorandom function, and a message authentication code.

1.2 Related Work

Lipton [9] introduced the notion of computationally bounded channels, and pro-
posed an optimal-rate scheme that has one-time security in the secret-key setting.

Langberg [8] studied secret-key coding schemes for computationally
unbounded channels, and showed the existence of an optimal-rate coding scheme
with optimal secret-key size.

Micali et al. [10,11] proposed a coding scheme in the public-key setting in
which the encoder has a secret key of digital signature and the decoder has the
corresponding verification key. They considered an attack scenario in which an
adversarial channel can observe several valid codewords. However, their security
model is essentially different from the model in which the channel can access to
the encoding oracle. In the model of [10,11], the sender can use the time stamp
to encode messages. Since the channel is not allowed to access to the signing
oracle, it cannot obtain multiple codewords with the same time stamp. Indeed,
the use of time stamps allows to circumvent the impossibility of unique decoding.
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Guruswami and Smith [6] studied coding schemes for computationally
bounded channels where the time complexity is a prior bounded polynomial.
They presented a probabilistic construction of an optimal-rate coding scheme in
which neither a secret key nor a public key is used.

2 Preliminaries

2.1 Notations

For n ∈ N, we write [n] = {1, 2, . . . , n}. For a finite set Σ and an integer n ∈ N,
x ∈ Σn is called a vector or string over the alphabet Σ. A function f : N → N

is called negligible in n if for every positive polynomial p(·), there exists n0 ∈ N

such that for every integer n > n0, f(n) < 1/p(n). We write negl(·) as a negligible
function. The uniform distribution over {0, 1}n is denoted by Un.

2.2 Error-Correcting Codes

The Hamming distance between two vectors x, y ∈ Σn is defined to be Δ(x, y) =
|{i ∈ [n] : xi �= yi}|, where x = (x1, . . . , xn) and y = (y1, . . . , yn). The Hamming
weight of x ∈ Σn is wt(x) = |{i ∈ [n] : xi �= 0}|. For a finite set Σ and
R ∈ (0, 1], a code over an alphabet Σ with an information rate R is a mapping
C : Σk → Σn, where k/n = R. We refer to k and n as the message length and
the code length, respectively. An encoded message C(x) is called a codeword. We
also refer to C as the set {C(x) : x ∈ Σk} of the codewords.

A code C over Σ is called (δ, L)-list decodable if for any y ∈ Σn, there is at
most � ≤ L codewords c1, . . . , c� ∈ C such that Δ(y, ci) ≤ δn for all i ∈ [�].

3 Formal Model

We define a coding scheme that is parameterized by a security parameter n,
which is equal to the code length.

Definition 1 (Secret-Key Coding Scheme). A secret-key coding scheme Π
consists of three polynomial-time algorithms Setup, Enc, Dec, a finite alphabet
Σ, and an information rate R. For every sufficiently large k ∈ N, let n = 	k/R
.
On input 1n, Setup outputs the secret key sk. On input 1n, sk, and a message
m ∈ Σk, Enc outputs a codeword c ∈ Σn. On input 1n, pk, and a string y ∈ Σn,
Dec outputs a message m ∈ Σk or ⊥. The input of the parameter 1n to Enc
and Dec may be omitted for simplicity. It is required that for every k and key
sk generated by Setup(1n), it holds that Pr[Decsk(Encsk(m)) = m] = 1 for any
m ∈ {0, 1}k.

An adversarial channel W consists of two algorithms W1 and W2. To define
the error correctability, we define the following game for a coding scheme over Σ
of rate R. First, the setup algorithm generates the secret key. Then, W1 chooses
a challenge message m∗ ∈ Σk. After that, on input the codeword c∗ of the
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chosen message, W2 outputs y ∈ Σn, where n = 	k/R
. A channel is called
p-error if W2, on input c∗, always outputs y satisfying Δ(c∗, y) ≤ �pn�. We say
that W is probabilistic polynomial-time (PPT) if both W1 and W2 run in time
polynomial in n.

We define the security against chosen-codeword attack (CCA security). In
this security, the encoding oracle Encsk(·) and the decoding oracle Decsk(·) are
available to an adversarial channel. Since the unique decoding is not possible if
the channel can access to the encoding oracle and the error rate p > 1/4, we say
that a coding scheme is CCA secure if the scheme can output a polynomial-size
list that contains the challenge message.

Definition 2 (CCA Security). Let Π = (Setup,Enc,Dec, Σ,R) be a secret-
key coding scheme of rate R, and W = (W1,W2) an adversarial channel. For
k ∈ N, we define the advantages of W as

AdvCCA
W,Π (k)

= Pr

⎡

⎢
⎣m∗ /∈ L :

sk ← Setup(1n), (m∗, st) ← W
Encsk(·),Decsk(·)
1 (1n),

c∗ ← Encsk(m∗), y∗ ← W
Encsk(·),Decsk(·)
2 (st, c∗),

L ← Decsk(y∗)

⎤

⎥
⎦ ,

where n = 	k/R
. We say Π is (p, T, ε)-CCA secure if AdvCCA
W,Π (k) ≤ ε(n) for

every p-error probabilistic T (n)-time channel W .

4 Our Construction

4.1 Overview

Our construction is based on the framework of Guruswami and Smith [6].
A message m is encoded as π−1(C(m)) ⊕ μ, where C is a random-error

correcting code, π is a random bit permutation, and μ is a random mask. This
part is called a payload codeword, and is divided into � − κ blocks C1, . . . , C�−κ.
The seeds sπ and sμ for π and μ should be shared between the sender and
the receiver. We will not include sπ and sμ in the secret key. Instead, we will
send them privately by jamming them into the payload codeword. The control
information s is encoded by a Reed-Solomon code, so that it will be recovered by
a (generalized) list decoding. Let (f(α1), . . . , f(ακ)) be the encoded information,
where each αi is an element of a finite field, and f is the polynomial corresponding
to the control information s. Then, each pair of element (αi, f(αi)) is encoded
into a block Di by a pseudorandom code (PRC). The resulting blocks D1, . . . , Dκ

are randomly mixed into the payload blocks (C1, . . . , C�−κ). The information V
of the positions of the control-information blocks is also included into the control
information s. By the property of PRC, each block Ci is pseudorandom. Since
the payload codeword is masked by a random string μ, the resulting codeword
is also pseudorandom.

In decoding, first, the list decoding of the pseudorandom code is applied to
each block. Then, a list of pairs (αj , βjh)h is recovered for each j. By applying the
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(generalized) list decoding of the Reed-Solomon code to the list {(αj , βjh)h}j , we
can recover a list of control information. For each candidate control information
s, by recovering π, μ, V from s, the payload part is decoded with the decoder of
the random-error correcting code.

As described in Sect. 1.1, we use pseudorandom functions (PRF) to make
the encoding deterministic. The first PRF is used for generating the control
information from a message m. The second PRF is for sampling random coins
for the pseudorandom code. Also, as explained in Sect. 1.1, we add a MAC tag
to the message m. The secret key consists of the two keys of PRFs and the secret
keys of MAC and PRC.

4.2 Ingredients

We use the following tools in our construction:

– A random p-error correcting code REC : {0, 1}R′n → {0, 1}n of rate R′ =
1−H(p)−ε′ for any positive constant ε′. It is required that for every message
m ∈ {0, 1}R′n and error vector e ∈ {0, 1}n of Hamming weight at most �pn�,
the decoder of REC, on input REC(m) ⊕ π(e), outputs m with probability at
least 1−negl(n), where π is a random bit permutation. Any capacity-achieving
code in binary symmetric channels with cross-over probability p satisfies the
property.

– A Reed-Solomon code RS : Fk+1 → F
n of rate R1 = O(ε) that enables a gen-

eralized list decoding. For n distinct elements {α1, . . . , αn} from a finite field
F, the codeword of m = (m0, . . . ,mk) ∈ F

k+1 is RS(m) = (f(α1), . . . , f(αn)),
where f(X) = m0+m1X+ · · ·+mkXk. The list decoding property guarantees
that, given n distinct pairs (αi, βi) ∈ F

2 for i ∈ [n], one can find a list P of all
polynomials f of degree at most k that satisfy f(αi) = βi for at least t values
of i ∈ [n]. Sudan’s algorithm [12] is sufficient for our purpose. It runs in time
polynomial in n and log |F|, and works as long as the agreement parameter
t >

√
2kn. The size of the list P is at most

√
2n/k.

– A pseudorandom code family PRC = {PRCs : {0, 1}R2b ×{0, 1}b → {0, 1}b} of
rate R2 indexed by a key s ∈ {0, 1}b with the following properties: (1) For any
constant ε < 1/2, PRCs is (1/2 − ε, L)-list decodable with high probability,
where L and R2 only depend on ε, independent of b, and the probability is
taken over s ∈ {0, 1}b; (2) For any m ∈ {0, 1}R2b, PRCs(m,Ub) is pseudoran-
dom. Specifically, it is required that for any nc-time adversary and a sequence
of q = nd messages (m1, . . . ,mq) ∈ ({0, 1}R2b)q, it is difficult to distinguish
(PRC(m1, r1), . . . ,PRC(m�, rq)) from Uqb with probability more than 1/nc,
where c, d > 0 are constants, and each ri is chosen uniformly at random from
{0, 1}b.
A probabilistic construction with parameters R2 ≥ εO(1) and L ≤ (1/ε)O(1)

is presented in [6]. Their construction can be seen as an explicit construc-
tion in the secret-key setting, where a shared key s is used for choosing a
pseudorandom generator for nc-time adversaries. By setting b = O(log n), the
list-decoding algorithm can be performed in time polynomial in n. We use this
explicit construction in our scheme.
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– A pseudorandom generator (PRG) G : {0, 1}n → {0, 1}p(n), where p(·) is
any polynomial. It is required that for any PPT algorithm, it is difficult to
distinguish G(Un) from the uniform distribution Up(n). Such G exists assuming
one-way functions exist [7].

– A pseudorandom function (PRF) family F = {Fn}n∈N, where Fn = {Fs :
{0, 1}n → {0, 1}n}s∈{0,1}n is a collection of functions indexed by a key s ∈
{0, 1}n. For any PPT algorithm, it is difficult to distinguish whether it has
oracle access to Fs or a random function. Such F can be constructed assuming
the existence of one-way functions [4,7].

– A message authentication code (MAC) (Tag,Vrfy), where the key is chosen
uniformly at random from {0, 1}n. It guarantees that for any PPT adversary,
given access to Tag and Vrfy oracles, it is difficult to forge a pair (m, t) of a
message and a tag that passes the verification of Vrfy. We use a code with
short tag. Namely, on input a key s ∈ {0, 1}n and a message m ∈ {0, 1}n, Tag
outputs a tag t ∈ {0, 1}nγ

for some constant γ ∈ (0, 1). Such a code exists
assuming the existence of one-way functions [3,4,7].

– A generator P for permutations π : [n] → [n] of the set [n] that uses O(n log n)
bits to specify a permutation. We use a straightforward construction in which
a permutation is chosen from the set of the possible n! permutations of [n].
For a vector x = (x1, . . . , xn) ∈ {0, 1}n, we write π(x) = (y1, . . . , yn), where
yπ(i) = xi for i ∈ [n].

4.3 The Construction

For any positive real p < 1/2 and ε, we construct a code of rate R = 1−H(p)−ε
that is p-CCA secure. We assume that 2ε < 1/2 − p. For a message length
k ∈ N, the code length is n = 	k/R
. For any message m ∈ {0, 1}k, the encoded
codeword c ∈ {0, 1}n consists of � blocks (B1, . . . , B�), where each block Bi is
of length b = c log n for some constant c > 0, and thus � = n/(c log n). We set
the following parameters: λ = nγ for a constant γ ∈ (0, 1), n′ = 	(k + λ)/R′
 =
(� − κ)b, κ = �6λ/(R1R2b)�, where R′ is the rate of REC, R1 = O(ε2/L2) is the
rate of RS over F with |F| = 2R2b/2, and R2 = εO(1) is the rate of PRC.

Setup Algorithm. On input a parameter 1n, the setup algorithm chooses four
random keys s1, s2, s3, s4 ∈ {0, 1}n for two PRF families F1 and F2, a MAC
(Tag,Vrfy), and a PRC family PRC, respectively. The first PRF F1 con-
sists of {F 1

s : {0, 1}k → {0, 1}3λ}s∈{0,1}n . The second PRF F2 consists of
{F 2

s : {0, 1}k × [�] → {0, 1}b}s∈{0,1}n . The tagging algorithm Tag, on input a
secret key s3 and a message m ∈ {0, 1}k, outputs a tag of length λ. The secret
key SK is (s1, s2, s3, s4).

Encoding Algorithm. The encoding consists of the payload encoding and the
control-information encoding. On input a message m ∈ {0, 1}k, the control infor-
mation s = (sπ, sμ, sV ) ∈ {0, 1}3λ is generated as F 1

s1
(m), where |sπ| = |sμ| =

|sV | = λ.



184 K. Yasunaga

m

REC(m, )

1(REC(m, ))

1(REC(m, )) µ

µ

REC

1

s

f ( 1), f ( 2 ), , f ( )

1, f ( 1) , f ( )

RS

PRC PRC

n = ( )b

k = n

b = c logn

( ) blocks

b

3

n = b

Fig. 1. Construction of the code

The payload codeword is generated as follows: first, the tag τ = Tags3
(m)

is generated, and a PRG Gπ : {0, 1}λ → {0, 1}O(n log n) is used to produce
r = Gπ(sπ). We use r and P (the generator of permutation of the set [n′]) to
generate a permutation π = P (r). A PRG Gμ : {0, 1}λ → {0, 1}n′

is used to
generate μ = Gμ(sμ). Finally, we take π and REC : {0, 1}k+λ → {0, 1}n′

to
produce the payload codeword cp = π−1(REC(m, τ)) ⊕ μ.

In the control-information encoding, first, s is encoded to a codeword
(f(α1), . . . , f(ακ)) by Reed-Solomon code RS of rate R1 over a finite field F.
A PRG GV : {0, 1}λ → [�]κ is used to generate r′ = GV (sV ). We use r′

to produce a set V = {v1, . . . , vκ} of distinct κ random samples in [�]. Let
PRC : F

2 × {0, 1}b → {0, 1}b be a pseudorandom code of rate R2 that is
(p + ε, L)-list decodable, where p + ε < 1/2 − ε, R2 = εO(1), and L = (1/ε)O(1).
For i ∈ [κ], each pair of elements (αi, f(αi)) is encoded to the vi-th block
Bvi

= PRC((αi, f(αi)), F 2
s2

(m, i)), where the output of PRF is used for random
coins. The control-information codeword is (Bv1 , Bv2 , . . . , Bvκ

).
The payload codeword cp is divided into � − κ blocks (Bi1 , Bi2 , . . . , Bi�−κ

),
where ij is the j-th smallest element in [�] \ V , and each block Bi ∈ {0, 1}b and
n′ = (� − κ)b. The final codeword is (B1, B2, . . . , B�) ∈ ({0, 1}b)� = {0, 1}n.

The construction is summarized in Fig. 1.

Decoding Algorithm. On input y ∈ {0, 1}n, divide y into � blocks
(Y1, Y2, . . . , Y�) ∈ ({0, 1}b)�.
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For i ∈ [�], decode block Yi by the list-decoding algorithm of PRC. By com-
bining the output lists for all i ∈ [�], a list L1 of pairs {(αj , βjh)h}j for j ∈ [κ] is
obtained. The size of L1 is at most �L. Then, apply the list-decoding algorithm of
RS to L1 with an agreement parameter t = εκ/2 to generate a list L2 of control
information s̃ = (s̃π, s̃μ, s̃V ). The size of L2 is at most

√
2/R1 = O(L/ε).

Let L3 be the empty list. For each s̃ = (s̃π, s̃μ, s̃V ) ∈ L2, do the following.
Recover π̃ = P (Gπ(s̃π)), μ̃ = G(s̃μ), and Ṽ = {v1, . . . , vκ}, where GV (s̃V ) is used
to produce Ṽ . Let ỹ be the concatenation of blocks (Yi1 , Yi2 , . . . , Yi�−κ

) ∈ {0, 1}n′
,

where ij is the j-th smallest element in [�] \ Ṽ . Decode z̃ = π(ỹ ⊕ μ̃) with the
decoding algorithm of REC. Let (m̃, τ̃) be the output. If Vrfy(m̃, τ̃) outputs false,
go back and choose next s̃ from L2. Otherwise, recover s̃′ as Fs1(m̃). If s̃′ �= s̃,
go back and choose next s̃ from L2. Else, recover the encoded message c̃ for
a message m̃ and a control information s̃ by following the encoding algorithm.
Check if the Hamming distance between c̃ and y is at most �pn�. If so, add m̃
to L3; and otherwise do nothing. Then, go back and choose next s̃ from L2.

After choosing all elements in L2, output L3 if L3 �= ∅, and ⊥ otherwise.

The Rate of the Code. For any positive constant p < 1/2 and ε, we choose a
random p-error correcting code of rate R′ = 1 − H(p) − ε′ such that 0 < ε′ < ε.
It holds that R′ = (k + λ)/n′. The length of the control-information blocks is
κb ≤ c0b for sufficiently large constant c0. Thus, the rate of the code is

R =
k

n′ + κb
≥ R′n′ − λ

n′ + c0b
= R′ − R′c0b/λ + 1

(n′ + c0b)/λ
.

Note that b = c log n and λ = nγ for γ ∈ (0, 1). Since R′c0b/λ = o(1) and
(n′ + c0b)/λ = Ω(n1−γ), we have that R = 1 − H(p) − ε′ − O(n−(1−γ)) ≥
1 − H(p) − ε for sufficiently large n.

5 Security Proof

We prove the following theorem.

Theorem 1. Assume that there exist one-way functions. For any positive con-
stants p < 1/2, ε, c, the coding scheme of rate R ≥ 1 − H(p) − ε described in
Sect. 4.3 is (p, nc, n−c)-CCA secure.

Proof. We prove the security with a sequence of hybrid games where the first
game corresponds to the original CCA security game.

– Game0: The original CCA security game between the challenger and the
channel.

1. The secret key SK = (s1, s2, s3, s4) ∈ {0, 1}4n is chosen uniformly at
random.

2. The channel makes queries for m ∈ {0, 1}k to the encoding oracle and
for y ∈ {0, 1}n to the decoding oracle, and outputs m∗ ∈ {0, 1}k. The
responses of the oracles are made according to the encoding and the
decoding algorithms.
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3. Let s = (sπ, sμ, sV ) = F 1
s1

(m∗). The payload codeword is generated as
π−1(REC(m, τ)) ⊕ μ, where π = P (Gπ(sπ)), τ = Tags3

(m∗), μ = Gμ(sμ).
Then, s is encoded as (f(α1), . . . , f(ακ)) by RS. Let V ∗ = {v1, . . . , vκ}
be the set generated from the seed r′ = GV (sV ). The vi-th block Bvi

is generated as PRCs4((αi, f(αi)), F 2
s2

(m, i)). The payload codeword is
divided into � − κ blocks (Bi1 , . . . , Bi�−κ

), where ij is the j-th smallest
element in [�]\V ∗. The challenge codeword c∗ = (B1, B2, . . . , B�) is given
to the channel.

4. The channel makes queries to the encoding and the decoding oracles, and
outputs y∗ ∈ {0, 1}n such that Δ(y, c∗) ≤ �pn�.

5. Let L be the output of the decoding algorithm on input y∗. If m∗ /∈ L,
the channel wins. Otherwise, the channel loses.

– Game1: The same as Game0 except that all the outputs of PRFs are replaced
with uniformly random strings. Specifically, s is chosen uniformly at random,
and the uniformly random bits are used as random coins for PRC.

– Game2: The same as Game1 except that all the outputs of PRGs are replaced
with uniformly random strings. Specifically, the input to the permutation gen-
erator P and (v1, . . . , vκ) are chosen uniformly at random.

– Game3: The same as Game2 except that for every query m to the encoding
oracle and the challenge message m∗, the corresponding codeword is generated
by choosing a uniformly random string from {0, 1}n.

– Game4: The same as Game3 except that for every query m to the encoding
oracle, prepare an entry (m, c) in a list LQ, where c is the codeword of m.
The pair of the challenge message and codeword (m∗, c∗) is also included in
LQ. For every query m to the encoding oracle, responds with c such that
(m, c) ∈ LQ; for every query y to the decoding oracle, respond with a list
{m ∈ {0, 1}k : (m, c) ∈ LQ and Δ(y, c) ≤ �pn�}.

– Game5: The same as Game4 except that the channel is not allowed to query
the oracles at Steps 2 and 4.

The probability that a channel wins is called an advantage of the channel.
First, it can be shown that the advantage of any PPT channel in Game1 is

negligibly close to that in Game0. This is because the keys s1 and s2 for PRFs
are not disclosed to the channel, and thus the security of PRF guarantees it.

It follows from the security of PRG that the advantage of any PPT channel
in Game2 is negligibly close to that in Game1.

In Game3, all the codewords are chosen uniformly at random. The change is
not detected by nc-time channels with advantage more than n−c for any c > 0
because for each codeword, the payload part is masked by a random string μ,
and the control-information part is pseudorandom due to the property of PRC.
Thus, the advantage of any PPT channel in Game3 is close to that in Game2
within n−c.

Lemma 1. Let c > 0 be any constant. For any nc-time channel, the advantage
in Game4 is close to that in Game3 within n−c.
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Proof. It is necessary to prove that the response to the oracle queries can be
replaced with the responses using the list LQ.

Assume that there exists an nc-time channel W for which the advantage in
Game4 is greater than that in Game3 by n−c. By fixing the random coins of W ,
there is a deterministic channel W0 that achieves the same advantages as W .

Since W0 is deterministic, we can prepare a list LQ for answering the oracle
queries by W0. The list LQ is constructed as follows. Let mi be the i-th query
to the encoding oracle, and yi the i-th query to the decoding one. For each
mi, choose ci ∈ {0, 1}n uniformly at random, and add (mi, ci) to LQ. The pair
(m∗, c∗) of the challenge message and ciphertext is also added to LQ. Then, for
each yi, we sample the number �i ∈ N, which represents the number of valid
codewords within a distance �pn� from yi. The number �i is chosen according
to the distribution D such that Pr[D = j] = pj for j ∈ [2Rn], where pj is the
probability that a fixed Hamming ball of radius pn contains j codewords when
all codewords are chosen uniformly at random. For chosen �i, if the number of
codewords cj in LQ satisfying Δ(yi, cj) ≤ �pn� is less than �i, add pairs (mj , cj)
of random message and codeword to LQ so that �i = |{(mj , cj) ∈ LQ|Δ(yi, cj) ≤
�pn�}|. Since each �j is bounded above by a polynomial in n, the size of LQ is
also bounded by a polynomial in n.

Note that, since it is necessary to generate MAC tags to generate valid code-
words, W0 cannot generate valid codewords by himself. Since each message has
the unique codeword, W0 cannot generate a valid codeword c′ of a message m
from the codeword c(�= c′) of m obtained by querying to the encoding oracle.
Thus, all valid codewords appeared in the game are included in the list LQ.

Since every response to the encoding query looks random for W0, the encod-
ing oracle can be simulated by using LQ. For each decoding query yi, the response
by using LQ is equivalent to that of the decoding oracle of random codes. There-
fore, both the encoding and the decoding oracles can be simulated successfully.

Next, we show that the channel cannot generate query y for which there is
some (m, c) ∈ LQ satisfying Δ(y, c) ≤ �pn�, but the decoding algorithm outputs
a list in which m is not included. It means that, on input y, the decoder fails to
recover m. We show that the decoding algorithm can recover m for such y with
high probability.

For (m, c) ∈ LQ, let e = y ⊕ c. For an error vector e ∈ {0, 1}n and a set
V ⊆ [n], which specifies the positions of the control blocks, we say that V is
good for e if there are at least εκ/2 control blocks in which the fraction of errors
is at most p + ε.

Let π and V be the permutation and the set that are generated in encoding
m to c. Then, V is independent of e. This is because the payload part of c is
pseudorandom by the random mask μ, and the control-information part of c is
also pseudorandom by the property of PRC. Thus, the information on V is not
revealed from c, and hence V is independent of e. Since V is chosen uniformly at
random independently from e, V is good for e except with negligible probability.
The analysis can be done in a similar way to the proof of [6, Lemma 7.11].
When V is good for e, due to the list-decoding property of PRC, the decoding
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algorithm can generate a list L1 that contains correct symbols f(αi) for at least
εκ/2 control blocks. Since the PRC decoding outputs a list at most L, the size
of L1 is at most �L. On input L1, the list decoding of RS outputs a list L2 of
size O(L/ε) that contains the correct control information s = (sπ, sμ, sV ), which
is equal to the value of PRF F 1

s1
on input m. Given the correct value s, the

correct values of π, μ, V can be recovered. By the same reason as for V , π is
chosen uniformly at random independently from e. Thus, it follows from the p-
error correctability of REC that the decoder of REC outputs the correct m with
probability at least 1 − negl(n).

We have proved that for any query y to the decoding oracle, (1) if there is
no (m, c) ∈ LQ satisfying Δ(y, c) ≤ �pn�, the decoder output ⊥; (2) if there is
(m, c) ∈ LQ satisfying Δ(y, c) ≤ �pn�, the decoder outputs a list containing m.
Therefore, the response of the decoding oracle in Game2 can be replaced with
the response using LQ as in Game3. The statement follows. ��
Next, we show that for any PPT channel W that has the advantage ε in Game4,
there is a PPT channel W ′ that has the same advantage in Game5. It is sufficient
to show that W ′ can simulate the encoding and decoding oracles for W in Game4.
As described in the proof of Lemma 1, by preparing the list LQ, W ′ can simulate
the encoding and the decoding oracles for W in Game4.

Finally, we argue that the advantage of any nc-time channel W in Game5
is at most n−c. Note that the only valid codeword W obtains in Game5 is the
challenge codeword c∗ of the challenge message m∗. As discussed in the proof of
Lemma 1, it is difficult for W to generate y for which Δ(y, c∗) ≤ �pn� and the
decoder outputs ⊥ or a list in which m∗ is not included. Therefore, the advantage
of any nc-time channel in Game5 is at most n−c.

We have proved that, for any nc-time channel, the advantages in Gamei are
close each other within n−c for i ∈ {0, 1, 2, 3, 4, 5}, and the advantage in Game5
is at most n−c. By taking a constant c sufficiently large enough, we can conclude
that, for any nc-time channel, the advantage in Game0 is at most n−c, which
implies that the coding scheme is (p, nc, n−c)-CCA secure. ��
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Abstract. Even though zero-knowledge has existed for more than 30
years, few generic and efficient constructions for zero-knowledge exist. In
this paper, we present a new kind of commitment scheme on which we
can build a novel and efficient zero-knowledge protocol for circuit sat-
isfiability. Our commitment scheme can be constructed in a black-box
manner from any commitment scheme. We can prove knowledge of the
AES-key which map a particular plaintext to a particular ciphertext in
less than 300 milliseconds with a soundness-error of 2−40. The commu-
nication complexity of our protocol is less then 5 · k · |C| where k is the
statistical security parameter and |C| is the circuit size.

1 Introduction

Zero-knowledge was introduced in 1985 by Goldwasser et al. in their seminal
paper [16] introducing interactive proof system and the concept of knowledge
complexity.

Informally, a zero-knowledge proof is an interactive protocol that allows a
prover to persuade a verifier of the validity of some NP statement where the
prover is given as input a witness that the statement is true. Essentially, the
verifier should learn nothing more than the fact that the prover knows a witness
that satisfies the statement.

One motivating example is that of graph isomorphism: the NP statement
here is that two graphs are isomorphic. The witness is an isomorphism held by
the prover mapping one graph into the other. One obvious way for the prover
to convince the verifier would be to send the isomorphism. However, this reveals
much more information than the one bit of information to be conveyed, namely
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whether the graphs are isomorphic or not. Zero-knowledge proofs are interactive
proof systems that allows a prover to convince a verifier of the validity of a
statement without providing him any additional information. In particular, the
verifier cannot use his view in a zero-knowledge proof for a given statement, to
prove the validity of the same statement to another party.

Following this groundbreaking work, [1] showed that for any relation that
can be proven by an interactive proof system, it can also be proven in zero-
knowledge. Thus, the potential for applications of zero-knowledge is expansive.
A large body of work has shown that specialized efficient constructions for spe-
cific NP relations are possible. However, even though zero-knowledge has existed
for more than 30 years, there are still very few generic constructions for zero-
knowledge. Moreover, the generic constructions that do exist, use the relatively
impractical Karp reductions [19] to NP-complete languages [15].

Generic constructions for zero-knowledge are starting to emerge. The recent
line of work starting with [18] focus on the novel idea of using garbled circuits for
zero-knowledge proofs of generic statements. This line of work was continued by
Frederiksen et al. in [12] where they build specialized garbling schemes tailored
for zero-knowledge proofs. The garbling approach communicates at least one
symmetric encryption per And-gate in the circuit. Similarly, for security para-
meter κ and circuit size n our protocol exhibits worst-case communicated com-
plexity O(nκ). In contrast to the garbling approach, our protocol only requires
a small constant of bits per and-triple (roughly five). On the other hand, we
have [17] with worst-case complexity O(n) when the prover uses the scalable
multiparty computation technique from [11]. However, this construction is quite
involved and even nine years after its publication no implementation is provided
yet1. Naturally for large enough circuits [17] should be faster. We conjecture that
our scheme, given its smaller constants, outperforms their (in terms of execu-
tion time) construction for practical application-sized circuits like AES (∼ 40K
gates).

In parallel with our work, the work of [13] also construct an efficient zero-
knowledge protocol based on commitment schemes. In their work, they first study
the concrete efficiency of [17]. They then construct a more efficient protocol by
first generating a sigma protocol with constant soundness error and then run
this protocol many times in parallel. Their idea to construct such a protocol by
extending [17], they construct a secure computation protocol with three parties
such that the view of any two parties reveal no information.

Another main selling point for our construction is that it is conceptually sim-
ple: only an understanding of the notion for commitments and xor-sharing are
necessary to master it. Also, we demonstrate that our construction is practical
by presenting an implementation which exhibits small running times. In partic-
ular we present an example application where the prover proofs knowledge of
an AES-encryption-key encrypting a particular public plaintext to a particular
public ciphertext. To sum up, our protocol is no novelty in terms of asymptotic
complexity, however, we emphasize that the concrete constants are small, its

1 Though the authors say an implementation is under way.
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construction is conceptually simple (an advantage when selling it to non-crypto
experts) and it takes only a moderate effort to implement.

1.1 Contribution

In this paper, we present a novel approach for achieving generic zero-knowledge
proofs. Similar to the line of work using garbled circuits, our construction uses the
idea of proving knowledge of a satisfying assignment for a circuit. However, our
construction differs from the garbling approach in several ways. Our construction
is very simple, using only one primitive, a commitment scheme. Our construction
is similar to [21] which over a finite field F has complexity O(|F| · n) for a field
of size |F| > κ. Their approach operates on a gate-by-gate basis. As our field
is small, namely F2, we bundle the entire circuit together obtaining a string of
size O(n) and prove all gates in one go with soundness one-quarter and then we
repeat 2.5κ rounded up times.

In contrast to the garbling approach, our scheme is public-coin zero-
knowledge. More precisely, the challenge from the verifier is sampled uniformly
at random. This means that the Fiat-Shamir heuristic could be applied to our
protocol to make it non-interactive.

Our protocol for zero-knowledge is universally composable (UC). The proto-
col relies on a commitment that we construct that has a special property. Namely,
that it possible for the committer to prove linear relationships among committed
bits by using a zero-knowledge proof. Our scheme is also information-theoretic.
It can be constructed in a black-box manner from any commitment scheme.

Our scheme can be efficiently instantiated in the random oracle model. How-
ever, this introduces the extra assumption. Recent work on commitments in the
standard model prove to be even more efficient and add no additional assump-
tions, see the PKC 2015 paper in [7] (improving on [10]). By using their scheme,
it makes our construction extremely efficient. This is because their scheme only
relies on encoding for a linear code like Reed-Solomon, which can be done effi-
ciently using the FFT-transform.

In a bit more detail, we take a similar approach to the one used in [3,9,20].
In these works, they also use commitments which allows proofs of linear relation-
ships to prove statements in zero-knowledge. Their commitments, however, only
commit to individual bits. To commit to a bit b, the sender selects at random s
pairs of bits b0i , b

1
i such that b0i ⊕ b1i = b and commits to each of these bits indi-

vidually. This is known as Rudich’s trick. Unfortunately, each commitment has
an overhead of s commitments. By virtue of [22], the overhead of their protocol
in the information-theoretic setting with correlated randomness is quadratic in
the security parameter. In contrast, the overhead of our protocol in that setting
is linear in the security parameter.

We employ strings in our construction, using a novel way of committing to
bit-strings that enables zero-knowledge proofs of linear relations. In particular,
we present efficient protocols for proving equality and inequality of bits in a
string given two regular commitments to the xor-sharing of that string. From
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this proof, we can also show by using auxiliary bits that for a committed string
m and for indices i, j, k, we have that mi ∧ mj = mk.

From this, we build protocols for circuit satisfiability where a prover proves
to a verifier that he has knowledge of a witness w that satisfies the circuit.
The prover does this by committing to a truth assignment of all gates in the
circuit along with some additional information. Then he proves relationships
(corresponding to the gates of the circuit) between bits in the committed string.
We leave out the details of the UC construction to the full version of this paper.

By the hiding property of the commitment scheme, the verifier learns nothing
about the inputs to the circuit. In the end, the prover essentially opens the output
bit of the circuit by proving that the output bit of the circuit committed to is
one and this is essentially the only new information that the verifier learns.

For a circuit of size n with ι input gates, α and-gates and β linear gates our
construction communicates 4α + β bits of data with soundness one-quarter. To
form a secure protocol with security 2−κ, we repeat our construction 2.5κ times
realizing a protocol with communication complexity O(κn). We emphasize once
again that the constants involved are small.

We first present our xor-commitment scheme. This is followed by honest-
verifier zero-knowledge proofs about committed values for xor-commitments. We
then proceed to describe an honest-verifier zero-knowledge protocol for circuit
satisfiability. Finally, we describe a benchmark implementation with AES.

2 Definitions and Notation

2.1 Universal Composability

The UC framework was introduced by Canetti in [4] to analyse the security of
cryptographic protocols and primitives under arbitrary composition. It follows
the real world–ideal world paradigm. We use the simplified formulation of UC
from [8], which is similar in spirit to the simplified universal composability frame-
work [5]. See [4,8] for further details. In this work we consider security against
static adversaries.

For the rest of the paper, we assume that both players have access to an ideal
commitment scheme. This can be realized from a setup assumption such as a
common reference string. We show how to realize the zero-knowledge function-
ality in the FCOM-hybrid model. To simplify the description of our protocol, we
interpret the operation com(m) as the sender sending the commit command to
the ideal functionality. We also do the same for the open command. In Appen-
dix A, we include the ideal functionalities for commitment and zero-knowledge.

Definition 1. An interactive proof system (P, V ) for a language L is honest-
verifier zero-knowledge, if there exists a PPT algorithm S, called the simulator,
such that for any (x,w) ∈ R where R is the witness relation of L, the view
produced by the simulator on input x is indistinguishable from the view produced
by the interaction of an honest prover P given (x,w) with an honest verifier v
with input x.
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Formally, for every (x,w) ∈ R, for every e ∈ {0, 1}t, it holds that

{S(x, e)}perf≡ {〈P (x,w), V (x, e)〉}
where S(x) denotes the output of S on input (x, e) and 〈P (x,w), V (x, e)〉 denotes
the output transcript between P and V where P has input x,w, V has input x
and V ’s random tape is e.

2.2 Notation

In our protocols, the verifier never provides input. We use Φp(a; b) to denote
a protocol between a prover and a verifier with name p where a is the private
input of the prover and b is the public input to the protocol. A commitment is
considered public input. In these protocols, the notation Output (a; b) denotes
the sender having private output a and the public output as b. We use ⊥ to
denote no inputs or output. We of course use accept or reject to denote that a
verifier accepts or rejects a proof. For a simulator, the notation S

p
V (d; e) denotes

the simulator for a protocol that is called p with verifier V where d is the public
input of the protocol and e is the random tape of the verifier.

3 Commitments with Linear Proofs

In this section, we define a commitment scheme which allows a prover to prove
linear relationships between different bits of the committed string. These rela-
tionships include equality and inequality. From the (in)equality proofs, we build
a protocol for proving that a set of bits sum up to a particular value. The proofs
are complete and honest-verifier zero-knowledge. The soundness-error of this
protocol is one-half. We use the notation xom(m) to say that a prover commits
to a message m allowing him to conduct proofs of linear relationships between
individual bits in m.

The proofs are sigma protocols: Three messages are communicated, where the
verifier’s challenge consists of a single bit. Proofs within a single string can be
combined as sigma protocols can be combined. If a commitment takes part in two
tests with distinct challenges, then the committed value is revealed. This implies
that the soundness-error of these proofs cannot be reduced below one-half. We
work with strings. Therefore, we define some notation. The xor-commitment
scheme is defined after the notation.

Notation. For an �-bit string m, we denote the i-th bit of m as mi. When a
message m is xor-shared, we denote the xor-shares of m = m0 ⊕ m1 as m0 and
m1. We sometimes combine these notations and take m0

i to mean the i-th bit of
the share m0 and similarly for m1

i .

Commitment scheme supporting linear proofs. We now give the details of our
commitment scheme supporting linear proofs. Our scheme relies on the ideal
functionality for commitment schemes. We denote it as com(). In the following,
we describe how we commit to messages and open our commitments.
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Φcommit(m; ⊥)

prover verifier

r ∈R {0, 1}l

m0 = r, m1 = m ⊕ r

M = (M0, M1) = com(m0), com(m1)

Output (m0, m1; M)

Fig. 1. The sender wants to commit to a message m. The output of the prover are
two shares m0,m1 of m. The public output consists of two commitments, one for each
share. The commitments are respectively M0,M1.

To commit to a string m ∈ {0, 1}�, we first choose a string r ∈ {0, 1}�

uniformly at random and set m0 = r and m1 = m ⊕ r. Then we commit to
both strings using the commitment functionality to form xom(m) = (M0,M1) =
(com(m0), com(m1)). To open an xom(m) entirely we open both commitments
and reveal m. The commitment protocol is depicted in Fig. 1.

Partial Opening. The linear proofs require the partial opening of the xor-
commitment. This means that we only open one of the commitments associated
to xom(m). We denote the action of a prover opening the value of the standard
commitment com(mt) as Reveal(M, t). When we have a simulator, the notation
Reveal(M, c) = m′ means that a simulator sends the message (reveal,m′) for the
commitment M c (he opens M c to m′).

Properties with xom(·). We give here observations stipulating important but
straightforward facts regarding xor-shared strings. We use the observations from
this section to generate proofs for linear relationships between different positions
of the committed string m.

Observation 1. ∀m ∈ {0, 1}�, c ∈ {0, 1}, the following two distributions are
indistinguishable

{(c,mc) | m0 ∈R {0, 1}�,m1 = m0 ⊕ m}
{(c, r) | r ∈R {0, 1}�}

Observation 2. Let m = m0 ⊕ m1, if mi = mj then there exists δ such that
δ = m0

i ⊕ m0
j = m1

i ⊕ m1
j .

Observation 3. Let m = m0 ⊕ m1, if mi �= mj then there exists ε such that
ε = m0

i ⊕ m0
j = 1 ⊕ m1

i ⊕ m1
j .
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Observation 4. ∀c ∈ {0, 1},m ∈ {0, 1}�, i, j ∈ {1, . . . , �}, i �= j,mi = mj, the
following two distributions are indistinguishable.

{(c, δ,mc) | m0 ∈R {0, 1}�,m1 = m0 ⊕ m, δ = m0
i ⊕ m0

j}
{(c, δ, r) | δ ∈R {0, 1}, r ∈R {r̄ ∈ {0, 1}� | ri ⊕ rj = δ}}

Observation 5. ∀c ∈ {0, 1},m ∈ {0, 1}�, i, j ∈ {1, . . . , �}, i �= j,mi �= mj, the
following two distributions are indistinguishable

{(c, ε,mc) | m0 ∈R {0, 1}�,m1 = m0 ⊕ m, ε = m0
i ⊕ m0

j}
{(c, ε, r) | ε ∈R {0, 1}, r ∈R {r̄ ∈ {0, 1}� | ri ⊕ rj = ε ⊕ c}}

4 Zero-Knowledge with Soundness-Error One-Half

In our first result, we show how to do an honest-verifier zero-knowledge proof
of equality between two bits in the string m from xom(m). The basic idea is as
follows: we exploit Observation 2 that states that if the bits mi and mj are equal,
then there exists a δ such that m0

i ⊕ m0
j = m1

i ⊕ m1
j = δ. On the other hand, if

mi �= mj , then by Observation 3, no such δ exists. The protocol is depicted in
Fig. 2.

To show completeness, we observe that if the statement is true e.g. mi = mj

then δ = mb
i ⊕ mb

j , b ∈ {0, 1} and the verifier accepts. For soundness consider
the first step of the protocol: the prover reveals δ. This forces a cheating prover
to prepare to answer a b′ such that mb′

i ⊕ mb′
j = δ. Then the verifier selects a b

at random for which the prover can only reply correctly if b = b′. This ensures
that a cheating prover gets caught with probability one-half.

4.1 Protocol for Equality

In this section we formally prove that the protocol in Fig. 2 is an honest-verifier
zero-knowledge with soundness-error one-half. For a string m ∈ {0, 1}l, let
M = xom(m) = (com(m0), com(m1)), we show how to prove for a given i, j
that mi = mj .

Theorem 1. The protocol in Fig. 2 is an honest-verifier zero-knowledge inter-
active proof system with soundness-error one-half.

Proof. Completeness: To show completeness, we show that an honest verifier
is convinced by an honest prover. These cases are exhaustive assuming that
mi = mj . Assuming mi = mj , we consider two cases:

m0
i = m0

j : In this case, m1
i = m1

j . This implies that δ = 0 = m0
i ⊕m0

j = m1
i ⊕m1

j

and thus the check the verifier makes is true for both choices of ε and thus
he accepts.

m0
i �= m0

j : In this case, m1
i �= m1

j . This implies that δ = 1 = m0
i ⊕m0

j = m1
i ⊕m1

j

and the verifier accepts.
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ΦEq(m
0, m1; M, i, j)

prover verifier
δ := m0

i ⊕ m0
j

δ
c ∈R {0, 1}

c

Reveal(M, c)

if mc
i ⊕mc

j = δ accept
else reject

Fig. 2. Protocol for proof of equality. The prover is committed to m with shares m0,m1

which results in commitments xom(m) = (M0,M1) and wants to prove equality between
mi and mj for a public input i, j.

Soundness: To show that soundness holds with probability one-half, we consider
a cheating prover and show that the verifier accepts with probability at most
one-half. That is, let us assume that mi �= mj and consider a dishonest prover
that tries to convince the verifier that they equal. If m0

i �= m0
j then m0

i ⊕ m0
j �=

m1
i ⊕ m1

j . Therefore, by Observation 3 there exists a challenge c ∈ {0, 1} that
results in the verifier rejecting the proof. Therefore, a cheating prover is detected
with probability one-half.

Honest-Verifier Zero-knowledge: To prove zero-knowledge, we give a simu-
lator that generates the view (δ, c,Reveal(M, c) = mc) which is indistinguishable
from the view generated by an honest prover and verifier.

Simulator SEq
V (M, i, j; c)

1 Sample δ ∈R {0, 1}
2 Sample r ∈R {0, 1}� s.t. ri ⊕ rj = δ
3 Output (δ, c,Reveal(M, c) = mc)

Fig. 3. Simulator for equality.

Consider the simulator in Fig. 3. We argue that the view generated by the
simulator is indistinguishable from a real execution by noticing that the distribu-
tion of values revealed in the simulation is indistinguishable from the distribution
of values revealed in the real protocol. This follows from Observations 1 and 4.

�

4.2 Parallel Equality Proofs and Proofs of Inequality

Proofs of Inequality: The proof of inequality is very similar to the equality
proof. The main difference is that there exists an ε such that for any c ∈ {0, 1},
ε = mc

i ⊕ mc
j ⊕ c instead of δ = m0

i ⊕ m0
j as before. We put the protocol and its

proof in Appendix B.
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Parallel Equality Proofs: It is easy to extend the scheme above to allow
the prover to prove equality between different pairs of bits {(ik, jk)}k. However,
we need to keep in mind that the challenge c used in each instance has to be
the same. Otherwise, the bits mi and mj are revealed. For an xor-commitment
M = xom(m) and for a set of pairs of indices {(iv, jv)}v=1,...,t into m, we
can prove that all pairs of positions are equal with soundness-error one-half.
In AppendixC, we summarize the construction for parallel equality in Fig. 9.

4.3 Linear Zero-Knowledge Proof

In the previous sections, we have seen how to do equality and inequality proofs
of bits in a committed message. We can combine these two in a single protocol to
convince a verifier that for a set of positions, the bits associated to the set sum
up to a particular value. This covers equality and inequality as special cases.

We now describe a protocol for convincing a verifier that for a set of bit-
position, the bits sum up to a particular value. As before, the prover commits to
a message m producing commitment M = (com(m0), com(m1)) associated with
shares m0,m1. Additionally, the public input of the protocol is two things. The
first thing is a set of indices, I, and the second is the expected value b, that the
bits associated to the set mi, i ∈ I are supposed to sum up to. More precisely,
our protocol proves:

(
⊕

i∈I

mi) = b

This captures our previous protocols for (in)equality. E.g. we see that equality
is covered by putting two elements in the set and setting the expected value
to 0. If instead, we set the expected value to one, we have an inequality proof
instead. In addition, by only putting a single index in the set, it is a proof that
mi equals the expected value without revealing anything else. Essentially, we
can open a single bit position in this way. Figure 4 shown below depicts our
protocol for proving the xor-relation between different bits. We note that there
is also a parallel version of this proof system which follows the same basic idea
as the parallel equality proof. A description of the parallel version can be found
in AppendixD.

Theorem 2. The Linear zero-knowledge protocol in Fig. 4 is an honest-verifier
zero-knowledge proof system with soundness-error one-half.

Proof. Completeness: Assuming honest parties, the prover sends δ created as
stipulated. We consider four cases based on whether we are proving even (b = 0
is analogous to equality) or odd (b = 1 is analogous to inequality) parity with
challenge c ∈ {0, 1}. In more detail we consider (b = 0, c = 0), (b = 0, c = 1),
(b = 1, c = 0) and (b = 1, c = 1). We collapse the two first cases to one case
b = 0.

0 = (
⊕

i∈I

mi) =
⊕

i∈I

(m0
i ⊕ m1

i ) ⇒
⊕

i∈I

m0
i =

⊕

i∈I

m1
i = δ
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ΦLZK(m
0, m1; M, I, b)

prover verifier

δ :=
⊕

i∈I

m0
i

δ
c ∈R {0, 1}

c

Reveal(M, c)

if
⊕

i∈I

mc
i = δ⊕ (b∧c)

accept else reject

Fig. 4. Linear zero-knowledge. The prover has private input m0,m1 which are xor-
shares of m. M0,M1 denote the commitments to shares m0,m1 respectively. The public
input is M0,M1 and a set of indices I. The prover wants to prove to the verifier that
⊕

i∈I(mi) = b.

Because b = 0 our verifier checks that

δ =
⊕

i∈I

mc
i =

⊕

i∈I

m0
i =

⊕

i∈I

m1
i

Thus the verifier accepts.
b = 1: In this case, we are proving odd parity. That is for the bits mi, i ∈ I have
an odd number of bits set to one. Thus, there is no common δ between the xor
of m0

i and m1
i , i ∈ I. Similarly for inequality, we have:

1 =
⊕

i∈I

mi =
⊕

i∈I

(m0
i ⊕ m1

i ) ⇒
⊕

i∈I

m0
i = 1 ⊕

⊕

i∈I

m1
i = δ

That is whether δ = 1 ⊕ ⊕
i∈I mc

i is now dependent on c and the fact that we
are proving odd parity, b = 1. Hence the verifier checks and accepts that:

δ = (
⊕

i∈I

mc
i ) ⊕ (b ∧ c)

Soundness: Assuming the claim is false,
⊕

i∈I mi �= b, the cheating prover
attempts to convince the verifier otherwise.

Sending δ =
⊕

i∈Im
0
i ⊕ c′ to the verifier, the prover can reply correctly only

for one c′ ∈ {0, 1}, namely if

δ = (b ∧ c′) ⊕
⊕

i∈Im
c′
i .

Thus with probability one-half, the verifier sends c �= c′ in which case sending
mc (to satisfy the commitment in M) the verifier sees an inconsistency with δ



200 S. Ranellucci et al.

Simulator SLZK
V (M, I, b; c)

1 Sample δ ∈R {0, 1}.

2 Sample r ∈ {0, 1}� such that
⊕

i∈I

mc
i = δ ⊕ (c ∧ b)

3 Output (δ, c,Reveal(M, c) = r)

Fig. 5. Simulator for Linear zero-knowledge

and aborts. Thus by case analysis, we have established that the cheating prover
is caught with probability at least one-half.

Honest-Verifier Zero-Knowledge: We give here a simulator producing the
same distribution as the protocol of Fig. 4.

This simulator performs the exact steps of the honest prover except choosing
the underlying message at random. By the hiding property of the underlying
commitment scheme, the view (δ, c,Reveal(M, c) = mc) is indistinguishable from
the view generated between an honest prover and an honest verifier (Fig. 5). �

5 And-Proof with Soundness-Error Three-Quarter

In this section, we show how a prover can show that for an xom(m) to a string
m and for three indices (i, j, k) of the string, it holds that mi ∧mj = mk. This is
done by using a helper triple of values that are made explicitly for this purpose.
To construct such a proof, we exploit the following relationship:

x ∧ y = z ⇐⇒ z = Maj(x, y, 0).

The use of majority gates in zero-knowledge protocols was first used in [2]. We
add an additional three bits per and-triple. The three bits are chosen to be a
random permutation of the two input values and an additional value of zero.
The protocol for this proof is depicted in Fig. 6 and proceeds as follows: the
verifier for each and-triple, randomly asks the prover to either show that the
three committed bits are a permutation of the two inputs and an extra value of
zero, or asks the prover to show that the majority of the three additional bits is
equal to the output bit (i.e. an and-triple of the relationship above). We refer to
the first test as the permutation test and the second test as the majority test.
If the bits do not form a valid triple, then for one of the two tests, the prover
has probability one-half of failing that test. Thus overall, a cheating prover gets
caught with probability one-quarter. Thus the soundness-error is three-quarter.

Theorem 3. The protocol ΦMult| in Fig. 6 is an honest-verifier zero-knowledge
interactive proof system with soundness-error three-quarter.

Completeness: If for a given triple of indices i, j, k, mi∧mj = mk and a disjoint
triplet i′, j′, k′ has the property that there exists {d, e, f} = {i′, j′, k′} such that
md = mi,me = mj ,mf = 0 then there also exists a triple {u, v, w} = {i′, j′, k′}
such that mu = mv = mk. Since there is a permutation for both tests, the
completeness of the protocol follows from Theorem 2.
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ΦMult(m0, m1; M, i, j, k, i′, j′, k′)

prover verifier

b b ∈R {0, 1}

If b = 0:

ΦTriplet

π ∈R S3 s.t.
(e, f, g) = π(i′, j′, k′) =⇒ (me, mf , mg) = (mi, mj , 0)

π
(e, f, g) ← π(i′, j′, k′) (e, f, g) ← π(i′, j′, k′)

S ← {({i, e}, 0), ({j, f}, 0), ({g}, 0)}

ΦPLZK(m
0, m1; M, S)

If b = 1:

ΦMajority

μ ∈R S3 s.t.
(e, f, g) = μ(i′, j′, k′) =⇒ (me, mf , mg) = (z, z, ·)a

μ
(e, f, g) ← μ(i′, j′, k′) (e, f, g) ← μ(i′, j′, k′)

S ← {({k, e}, 0), ({k, f}, 0)}

ΦPLZK(m
0, m1; M, S)

a μ is assigned a permutation that takes the majority of zeros or ones z
in the triplet (mi, mj , mk′) and places that value in the first two entries
of the triplet μ(mi, mj , mk′) = (z, z, ·). The last entry can be any value
ensuring there is always a choice to be made here.

Fig. 6. Multiplication proof.

Soundness: For a cheating prover, we show that he convinces the verifier with
probability at most three-quarters. Since mi ∧ mj �= mk, there cannot exists a
disjoint set of indices {i′, j′, k′} such that the following conditions can hold.

1. ∃e, f, g : {e, f, g} = {i′, j′, k′} and md = mi,me = mj ,mf = 0
2. ∃u, v, w : {u, v, w} = {i′, j′, k′} and mk = mu = mv.

As such, for one of the two tests, the adversary has to cheat on an equality
test. Thus, since the test is randomly chosen, from Theorem 2 we can see that
the soundness-error is three-quarter.
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Zero-Knowledge. We differ to AppendixE the description of the simulator and
the proof of indistinguishability. The basic intuition though is that since we use
auxiliary bits for the and-triple, the permutation looks random, then if we can
simulate the equality proofs then we can simulate this proof. Since the equality
proofs are zero-knowledge, we can use the simulator for the equality proofs to
construct a simulator for this proof. We end up with the following theorem.

6 Honest-Verifier Zero-Knowledge Proof for Circuit
Satisfiability

In this section, we give an honest-verifier zero-knowledge proof protocol for cir-
cuit satisfiability. We assume that the public circuit is known to both the verifier
and the prover and that the prover knows a witness w. Without loss of general-
ity we also assume the circuit consists of and-gates and xor-gates. Once we have
the protocols for linear zero-knowledge (Sect. 4.3) and and-proofs (Sect. 5), it is
relatively easy to construct a protocol for satisfiability. The prover commits to
an evaluation of the circuit and uses the appropriate protocol for each gate. The
complete protocol is summarized in Fig. 7.

The protocol requires a constant number of rounds and essentially goes as
follows. We have labelled the six main steps of the protocol. First, the prover use
the witness to perform an evaluation of the circuit and notes the output value
for each gate. The following two steps are required for the prover to prepare
himself to prove the consistency of the and-gates. As explained in Sect. 5, he has
to prepare the data for the helper triples and the majority permutation. Then in
the first challenge, the verifier asks for the information to validate one of the two
tests. Now that the verifier has all the information needed for the verification,
the last challenge will verify that all of the required linear relations hold. These
relations come from the xor-gates of the circuit and from the challenge used to
verify the and-gates.

6.1 Generating the Set S

This subsection describes how the set S of linear relations in the last step of
protocol ΦCS is carried out given that the previous steps have taken place, see
Fig. 7. The set S depends only on the structure of public circuit C and the choice
of the challenge bit b. Each party generates the set S. For each gate in C indexed
by u ∈ [�], we let iu, ju, ku be the indices into the string m (and w as it is a
prefix of m) corresponding to the two input bits and output bit respectively.
Also, if the gate is an and-gate there exists an r (think the r-th and-gate) for
the helper triple such that (� + 3r, � + 3r + 1, � + 3r + 2) denote the indices in m
for the helper triple corresponding to r. Also, we do an abuse of notation and
take (er, fr, gr) = μr(m�+3r,m�+3r+1,m�+3r+2) to be the concrete bit values
(not indices) for the majority permutation. S is generated as follows based on
the type of gate it is.
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ΦCS

Initialize The prover and the verifier takes as input a circuit C of size |C| = α+β
with α and-gates and β linear gates. The circuit will have exactly one output
bit. The prover takes additionally a witness w.

prover [ evaluation ] The circuit C has an ordering of its wires such that for each
index i ∈ I, the bit mi uniquely defines a particular wire. Thus using his witness
w the prover generates a satisfying assignment for the circuit x = x0 . . . x�−1

and sets x a prefix of m. That is mi = xi for each i ∈ [�].
prover [ helper triples ] For each and-gate with index r = 0, ..., a − 1, the bits

(xir , xjr , Xkr ) are such that xir ∧ xjr = xkr . The prover selects a random per-
mutation πr ∈ S3 and creates a helper triple (m�+3r, m�+3r+1, m�+3r+2) =
πr(mir , mjr , 0). The prover sets Π as the set of permutations Π =
{πr}r=0,...,a−1.

prover [ majority permutation ] The prover finds a Majority permutation μr

such that if you set (er, fr, gr) = μr(m�+3r, m�+3r+1, m�+3r+2) then mkr
=

er and mkr
= fr. Let M denote this set of majority permutations M =

{μr}r=0,...,a−1.
prover [ commitments ] When prover has formed m of length L he selects a

string r ∈ {0, 1}L uniformly at random and create m0 = r, m1 = m0 ⊕ r.
Then he invokes the ideal functionality FCOM twice, sending an xor-commitment
(M0, M1) = (com(m0), com(m1)) to the verifier.

verifier [ first challenge ] He samples a random b ∈ {0, 1} and sends it to the
prover.

prover If b = 0 he sends Π to the verifier, if b = 1 he sends M.
prover — verifier [ second challenge ] Both run the protocol of parallel linear

relations with M, M0, M1 and a set S = {(Ir, br)}r=0,...,� described in section
(6.1).

Fig. 7. Zero-knowledge with soundness-error three-quarter.

Xor-gate: The gate at u is an xor-gate thus we add ({iu, ju, ku}, 0) to S proving
that the three bit positions xor to zero.

And-gate: The gate at u is an and-gate.

– If b = 0 : add ({iu, � + 3r}, 0), ({ju, � + 3r + 1}, 0), ({ku}, 0) to S.
– If b = 1 : add ({ku, ar}, 0), ({ku, br}, 0) to S.

7 Implementation

The protocol has been implemented in C for fine-grained control over the
Big-O constants. The implementation is available at https://github.com/
AarhusCrypto/EmpiricalZeroKnowledge.

https://github.com/AarhusCrypto/EmpiricalZeroKnowledge
https://github.com/AarhusCrypto/EmpiricalZeroKnowledge
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Our test setup is two machines acting as Prover and Verifier connected on a
GigaBit ethernet network of our department. Our machines has 8 GigaBytes of
memory and Intel(R) Core(TM) i7-3770K CPU @ 3.50GHz with 8 cores. Our pri-
mary benchmark application is that of AES. We have an optimized AES-circuit
with 6800 and-gates and 26816 linear gates taking 3 ms with soundness one-
quarter. Communication complexity is 4 bits per And-gate and 1 bit per linear
gate for soundness one quarter. A description of how to run our implementation
can be found in AppendixF.

8 Conclusion

We can take the protocols described above and use them to construct a
universally-composable zero-knowledge proof. We leave the description of the
protocol to the full version of this paper. This is accomplished by using parallel
repetition and applying transformations that take honest-verifier zero-knowledge
proofs and converts them to UC zero-knowledge proofs. We have instantiated
the UC secure protocol. We have implemented it and have shown that we can
prove knowledge of an AES-key encrypting a particular plaintext to a specific
ciphertext in less than 300 milliseconds with soundness-error 2−40.

In addition to what have been presented in this extended abstract, the fol-
lowing two theorems can be proven formally. The protocol is secure in the FCOM-
hybrid model.

Theorem 4. Our protocol is public-coin and securely realizes FZK in the FCOM-
hybrid model with soundness error 2−k using 5k calls to FCOM.

In the random oracle model we can instantiate commitments via hash func-
tions. This improves the efficiency of the protocol.

Theorem 5. Our protocol can be securely realized in the random-oracle model
with communication complexity O(5 · k · |C| + 5k2).

Since the protocol is public-coin, the Fiat-Shamir heuristic can also be applied
to make it non-interactive.

A Universal Composability Framework

The Universal Composability framework was introduced by Canetti in [4] In this
framework, protocol security is analysed by comparing an ideal world execution
and a real world execution under the supervision of an environment Z, which
is represented by a PPT machine and has access to all communication between
individual parties. In the ideal world execution, dummy parties (possibly con-
trolled by a PPT simulator) interact directly with the ideal functionality F ,
which works as a fully secure third party that computes the desired function
or primitive. In the real world execution, several PPT parties (possibly cor-
rupted by a real world adversary A) interact with each other by means of a
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protocol π that realizes the ideal functionality. The real world execution is rep-
resented by the ensemble EXECπ,A,Z , while the ideal execution is represented
by the IDEALF,S,Z . The rationale behind this framework lies in showing that
the environment Z is not able to efficiently distinguish between EXECπ,A,Z and
IDEALF,S,Z , thus implying that the real world protocol is as secure as the ideal
functionality. It is known that a setup assumption is needed for UC realizing
oblivious transfer as well as most “interesting” ideal functionalities [6].

A.1 Ideal Functionalities

Functionality FCOM

FCOM runs with two parties: the sender and the receiver.

– On input (commit, sid,m) from the sender, if the pair (sid, ·) has not
been recorded, record the pair (sid,m) and send (committed, sid) to the
receiver. Otherwise, do nothing.

– On input (open, sid,m) from the sender, if a pair (sid,m) has been
recorded, send (reveal,m) to the receiver. Otherwise, do nothing.

Functionality FZK

FZK runs with two parties: a prover P and a verifier V and is parametrized
with a relationship R.

– On input (Prove, sid, x, w) from P , if no message of the form (·, sid, ·, ·)
and if (x,w) ∈ R, send the message (proven, sid, x) to V . Otherwise,
ignore the command.

B Inequality Protocol

The inequality proof only differs with the equality proof in which tests the verifier
does. In the equality protocol, the verifier tests if mc

i ⊕mc
j = δ. In the inequality

proof, the verifier tests if mc
i ⊕ mc

j ⊕ c = δ. We can see that this protocol is
sound and complete by Observation 3. We can show that it is zero-knowledge
from Observation 5 and by applying the same reasoning used to prove the zero-
knowledge property of the equality proof (Fig. 8).
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ΦInequality(m
0, m1; M, i, j)

prover verifier
δ := m0

i ⊕ m0
j

δ

c c ∈R {0, 1}

Reveal(M, c)

if c ⊕ mc
i ⊕ mc

j = δ
accept else reject

Fig. 8. Inequality

C Parallel Equality Proofs

As before, we take M = (com(m0), com(m1)) as input to mean that an XOR
commitment already happened beforehand. For the set of pairs of indices I =
{(ir, jr)}r=1,...,t, we generate the δr and send a string Δ = δ1, ..., δt rather than
one bit, to the verifier. Also, the verifier now checks t positions, one for each bit
in Δ.

By applying the same reasoning used in the equality protocol, we can see
that our protocol for parallel equality in Fig. 9 is also an Honest-verifier Zero-
Knowledge proof system with soundness-error one-half.

Φpeq(M, {(iv, jv)}v=1,...,t)

prover verifier
δr := m0

ir ⊕ m0
jr

Δ := δ1, · · · , δt Δ
c ∈R {0, 1}

c

Reveal(M, c)

if ∀v, mc
iv ⊕mc

jv = Δv

accept else reject

Fig. 9. Parallel Equality proof
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D Parallel Linear Proof

In Fig. 10, we include a protocol for parallel linear zero-knowledge.

ΦPLZK(M, {(Iv, bv) | Iv ⊆ {1, . . . , l}, bv ∈ {0, 1}}v=1,...,t)

prover verifier

δr :=
⊕

i∈Ir

m0
i

Δ := (δ1, . . . , δt)
Δ

ε ∈R {0, 1}
ε

Reveal(M, ε)

if ∀v,⊕
i∈Iv

mε
iv = Δv ⊕ (bv ∧ ε)

accept else reject

Fig. 10. Parallel linear Zero-knowledge

E Simulation of Mult

The simulation of the and-proof is fairly simple. Basically, the simulation will
see which test the verifier would ask for based on the given random tape. The
simulator then selects a random permutation, it selects that permutation that
the prover would send. The simulator then see’s which equality test would be
run based on the choice of test. The simulator uses the random tape and the
simulator for the parallel equality to generate a view for each of the equality
tests. He then outputs the combined view for all of these things put together.
By the zero-knowledge property of the parallel equality test, we can see that the
generated view is indistinguishable from the view generated by the transcript of
an interaction between an honest prover and an honest verifier (Fig. 11).

F Reproducing Our Empirical Studies

We have implemented our protocol. The implementation can be found at http://
tinyurl.com/om6vvh6

Software Structure: The software project is written from scratch using only
few dependencies on the system like some libstdc functionality. We do this in
order to have fine grained control of the performance of our program. The struc-
ture is as follows:

http://tinyurl.com/om6vvh6
http://tinyurl.com/om6vvh6
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SPMul
V (M, i, j, k, i′, j′, k′; b, c)

prover verifier

b b ∈R {0, 1}

If b = 0:

STriplet

π ∈R S3

π
(e, f, g) ← π(i′, j′, k′) (e, f, g) ← π(i′, j′, k′)

U ← {({i, e}, 0), ({j, f}, 0), ({g}, 0)}

SPLZK(M, U)

If b = 1:

SMajority

μ ∈R S3

μ
(e, f, g) ← μ(i′, j′, k′) (e, f, g) ← μ(i′, j′, k′)

U ← {({k, e}, 0), ({k, f}, 0)}

SPLZK(M, U)

Fig. 11. Multiplication simulator

platform Inside the platform directory we have all the OS/HW dependent
code
common Inside common we have library code needed to implement the proto-
col, including network management in CArena and data-structures in project
ds.
empiricalZK holds two projects: RTZ14 which is the code for protocol
described in this paper. IKOS will later be populated with an efficient imple-
mentation of the MPC in the HEAD idea which is in its infant stage right now.
We wish to publish a comparison between IKOS and RTZ14 (this protocol)
in a follow up paper.

All projects are GNU Auto-Make/Conf projects producing a static library and
some also an executable. Each project defines a configuration item with version
control for maintenance.
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Dependencies: The code is written with in C for speed and portability.
It includes work by Nayuki Minase published at http://www.nayuki.io/page/
fast-sha2-hashes-in-x86-assembly.

The build system on FreeBSD 10, OSX and GNU Linux requires:

GNU Bash 4.3.11(2)
Automake 1.14
Autoconf 2.69

Or on Windows 8/10 a working Community version of Visual Studio Express
2013 or later is required.

Getting the Source: Install git on your system and do

git clone http://tinyurl.com/om6vvh6
(you may need to replace this by the actual url).

Building from Source Code, FreeBSD, Linux and OSX: On these systems
building the source is done by changing directory to where you have checked out
the source and locating the build.sh script.

user@host \$ ./build.sh release

Will build the prover executable in empiricalZK/rtz14/linux/src/prover.

Building from Source Code, Windows 8/10: On Windows we have a test
solution that as a bi-product of running the test programs also produces the
prover.exe in empiricalZK/rtz14/win64/rtz14/Release/prover.exe.

You can run this executable from a Command Prompt invoking it with no
argument to see your options and for running it providing arguments to do a
Zero-knowledge proof.

Reproducing Our Results: Our benchmark application is proving knowledge
of a particular AES key given a public plaintext and ciphertext. The structure of
the circuit we prove to satisfy is depicted in Fig. 12. The circuit includes public
constant assignments for the plaintext and the Prover convinces the Verifier
that he has knowledge of an Aes-Key encrypting this particular plaintext to a
ciphertext built into the circuit. That is, our binary AES is extended with the
top-triangle on Fig. 12 which is a small comparison circuit with public constants
stipulating the expected ciphertext and comparing with the output of the AES
circuit (the larger triangle below it). In the end all the Verifier learns is that
the prover has a witness w making the (public) circuit true, thus encrypting the
given plaintext to the expected ciphertext.

http://www.nayuki.io/page/fast-sha2-hashes-in-x86-assembly
http://www.nayuki.io/page/fast-sha2-hashes-in-x86-assembly
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plaintext key/witness

Comparison circuit epilog
checking for the expected
ciphertext. One bit of out-
put to be proven 1 in the
end.

AES Circuit

The one bit output
the Verifier learns

Fig. 12. A modified binary AES circuit for proving knowledge of a key encrypting a
particular plaintext to a particular ciphertext.

Our lab computers has the following specifications:

CPU: i7-3770K CPU @ 3.50GHz with 8 cores Mem: 8Gb of Ram Net:
Gigabit LAN OS: 3.13.0-59-generic #98-Ubuntu SMP Fri Jul 24
21:05:26 UTC 2015 x86_64 x86_64 x86_64 GNU/Linux

for both Verifier and Prover. On the machine intended for the Prover do

./rtz14 -circuit ../test/AES -witness 00000000000000000000000000000000

-port 2020

This will start a prover process listening for a Verifier to connect. The circuit in
../test/AES is the following and we prove in this case that we have knowledge of
a key (this witness above which is the zero key) encrypting the all zero plaintext
(that is 16 zero bytes) to the AES ciphertext under the zero key, namely:

0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 1
1 1 0 1 0 0 1 0 0 0 1 0 1 0 1 1
1 1 1 1 0 1 1 1 0 1 0 1 0 0 0 1
0 0 1 1 0 1 0 0 1 1 0 1 1 1 0 0
0 0 0 1 0 0 0 1 0 0 1 1 0 0 1 0
0 1 0 1 1 1 1 1 1 0 0 1 1 0 1 0
0 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0
1 1 0 1 0 1 0 0 0 1 1 1 0 1 0 0
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To start the Verifier you need the ip address of the Prover, assuming it is
xxx.yyy.zzz.www execute the following on the Verifier Machine:

./rtz14 -circuit ../test/AES -port 2020 -ip xxx.yyy.zzz.www

The process uses the -witness argument to distinguish whether to run as Prover
or Verifier. This proves with error probability 3/4 that the prover knows such
a witness. Because of completeness this will always succeed if the Prover inputs
the correct witness, otherwise the Verifier only accepts with a 75% probability.
In a real word application with statistical security parameter s the protocol will
be repeated 3s times to reduce the probability that a cheating Prover wins to
2−s. Our experiment above runs in 3ms on our test machines thus for security
parameter κ = 128 we expect a real world running time of 9κms ≈ 2.5 seconds.
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3. Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowledge.
J. Comput. Syst. Sci. 37, 156–189 (1988)

4. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. Cryptology ePrint Archive, Report 2000/067

5. Canetti, R., Cohen, A., Lindell, Y.: A simpler variant of universally composable
security for standard multiparty computation. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015. LNCS, vol. 9216, pp. 3–22. Springer, Heidelberg (2015). doi:10.
1007/978-3-662-48000-7 1

6. Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001). doi:10.
1007/3-540-44647-8 2

7. Cascudo, I., Damg̊ard, I., David, B., Giacomelli, I., Nielsen, J.B., Trifiletti, R.:
Additively homomorphic UC commitments with optimal amortized overhead.
In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 495–515. Springer, Heidelberg
(2015). doi:10.1007/978-3-662-46447-2 22

8. Cramer, R., Damg̊ard, I., Nielsen, J.: Secure Multiparty Computation and Secret
Sharing, 1st edn. Cambridge University Press, Cambridge (2015)
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Abstract. Data stored in cloud storage sometimes requires long-term
security due to its sensitivity (e.g., genome data), and therefore, it also
requires flexible access control for handling entities who can use the data.
Broadcast encryption can partially provide such flexibility by specifying
privileged receivers so that only they can decrypt a ciphertext. However,
once privileged receivers are specified, they can be no longer dynami-
cally added and/or removed. In this paper, we propose a new type of
broadcast encryption which provides long-term security and appropri-
ate access control, which we call unconditionally secure revocable-storage
broadcast encryption (RS-BE). In RS-BE, privileged receivers of a cipher-
text can be dynamically updated without revealing any information on
the underlying plaintext. Specifically, we define a model and security of
RS-BE, and derive tight lower bounds on sizes of secret keys required for
a one-time secure RS-BE scheme when the ciphertext size is equal to the
plaintext size. Our lower bounds can be applied to traditional broadcast
encryption. We then construct a one-time secure RS-BE scheme with a
trade-off between sizes of ciphertexts and secret keys, and our construc-
tion for the smallest ciphertext size meets all bounds with equalities.
Furthermore, to detect an improper update, we consider security against
modification attacks to a ciphertext, and present a concrete construction
secure against this type of attacks.

Keywords: Broadcast encryption · Information-theoretic security ·
Revocable storage · Unconditional security

1 Introduction

1.1 Background

In recent years, the progress of cloud technologies has been remarkable, and
cloud-based applications are becoming widespread. One area in which cloud
c© Springer International Publishing AG 2016
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technology has the potential to provide significant impact, is advanced medical
treatment, and applications of cloud technology in this area is currently being
investigated intensively [5,44]. To provide such advanced medical services, it is
required to store the data of individual patients using cloud storage. However,
this data is generally very sensitive and should be protected carefully. Especially,
when storing genome data using cloud storage, computationally secure encryp-
tion is considered to provide insufficient protection since genetic properties will
be inherited by descendants of the genome owner, and thus, significantly long-
term security is required [5,6]. For example, even if we encrypt genome data
using a 2048-bit RSA cryptosystem, which is considered sufficiently secure in
most applications, security will only be guaranteed until 2030 [7], which is not
sufficient for protecting genome privacy (which must take into account the pri-
vacy of our descendants).

A promising approach for obtaining sufficiently strong security for medical
data is to utilize information-theoretically secure encryption, e.g. the one-time
pad. However, the one-time pad is only a (standard) symmetric encryption
scheme, and thus, not suitable for effective use in a cloud environment. Namely,
in a cloud storage system, there are potentially many users who will be given
permission to access the stored data, and these privileged users are furthermore
dynamically determined. It is obvious that such a scenario cannot be easily
handled by using only (standard) symmetric encryption. Broadcast encryption
(BE) [21] which allows multiple receivers to decrypt a logically single ciphertext
seems to partially yield the required functionality. However, when the sender
encrypts a plaintext in BE, he is forced to fix the set of privileged users and can-
not dynamically add and/or remove receivers. For handling dynamic changes
to the set of privileged receivers (in the context of attribute-based encryption
[37]), Sahai, Seyalioglu, and Waters proposed revocable-storage attribute-based
encryption [36] in which a ciphertext in a cloud storage system can be period-
ically updated according to a changing set of privileged users. However, their
scheme is computationally secure and does not guarantee security against future
powerful adversaries.

Therefore, it is important to investigate suitable cryptographic primitives
which simultaneously provide a high level of security for sensitive data and suf-
ficient flexibility to implement appropriate access control.

1.2 Our Contributions

In this paper, we propose the notion of unconditionally secure revocable-storage
BE (RS-BE) which yields information-theoretic security and the above required
functionality for cloud storage. In an RS-BE scheme, similarly to BE, the sender
chooses a set of (initial) privileged users and encrypts a plaintext so that only
these users can decrypt the ciphertext. Moreover, the storage manager can
update the ciphertext to reflect changes in the set of privileged users. Here,
the update procedure is carried out without revealing the plaintext, and thus,
the storage manager cannot learn anything about the encrypted plaintext. We
furthermore show tight lower bounds on the sizes of ciphertexts and secret keys in
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the unconditionally secure setting, and present an optimal construction which
achieves these bounds as well as a robust construction which is resilient to a
maliciously behaving storage manager.

More specifically, our contributions are as follows. Firstly, in Sect. 2, we give
a formal model and security definitions of unconditionally secure RS-BE. As in
the previous BE schemes [8,11,21,46], we consider an RS-BE scheme for one-
time use for simplicity. Then, in Sect. 3, we clarify that it is possible to construct
an unconditionally secure RS-BE scheme in which the ciphertext length is the
same as the plaintext length. We note that this is an important and desired
property since ciphertexts are stored in the cloud permanently or for a long
time, and therefore, compactness of ciphertexts is one of the most important
aspects to consider in the design of an RS-BE scheme. We then investigate
lower bounds on the sizes of decryption keys, encryption keys, and the storage
manager’s keys under the condition that the ciphertext size is the same as the
plaintext size. These bounds can also be seen as a generalization of the bounds for
(traditional) BE, and furthermore imply a tight bound on the size of encryption
keys in BE which, to the best of our knowledge, has not been clarified before
our work. In Sect. 4, we show an unconditionally secure RS-BE scheme with an
efficient trade-off between the ciphertext and secret-key sizes. More precisely, for
arbitrary δ ∈ {1, 2, . . . , n} we present an unconditionally secure RS-BE scheme
with efficient secret-key sizes when the ciphertext size is at most δ times as large
as the plaintext size. In particular, our construction meets all of these bounds
with equalities when δ = 1 (i.e., a scheme where the ciphertext size is always
equal to the plaintext size). This means that these bounds are tight and the
proposed construction is optimal for δ = 1. In Sect. 5, we furthermore consider a
scenario in which a maliciously behaving storage manager can try to modify the
encrypted plaintext. This is related to non-malleability in the context of ordinary
encryption. In an RS-BE scheme, malleability may cause a serious problem since
the ciphertext is periodically updated, but an improper update carried out by a
malicious storage manager may not be immediately detectable by the users. We
define robustness, which is a security notion against such a malicious update, and
derive a lower bound on the ciphertext size for a robust RS-BE scheme. Then,
we present a concrete robust construction based on an ordinary RS-BE scheme
presented in Sect. 4 and an algebraic manipulation detection code (AMD-code
for short) [18]. We show one of instantiations of the robust scheme is almost
optimal in the sense of the ciphertext size. Therefore, the above lower bound on
the ciphertext size is almost tight.

1.3 Related Work

Berkovits [8] first considered the concept of BE, and Fiat and Naor [21] devel-
oped a formal and systematic approach to the construction of BE schemes. Since
then, BE schemes have been improved both in the computationally secure set-
ting [14,20,22,31,35] and in the unconditionally secure setting [8,11,12,16,21,
26,29,33,34,42,46], and used in various situations such as copyright protection
in the real world. In particular, lower bounds on secret keys for unconditionally
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secure BE (USBE) schemes have previously been investigated [11,12,26].
However, some problems nonetheless remain. Blundo and Cresti [11] derived
lower bounds on USBE in the context of key predistribution schemes (KPSs)
[9,30]. However, these bounds are specific to the application to KPS, and are
not true lower bounds for USBE in general. Also, Blundo et al. [12] derived
lower bounds for USBE, but these bounds are not tight. Furthermore, Kurosawa
et al. [26] showed tight lower bounds on the size of decryption keys for USBE
through equivalence between USBE and KPS, however, they did not mention
lower bounds on encryption keys in their paper. In contrast, we derive tight lower
bounds on both of the sizes of encryption keys and decryption keys for USBE
without using such equivalence, and it turns out that the tight lower bound on
the size of decryption keys in [26] is a special case of ours.

Recently, many researchers have investigated how we can securely use cloud
data storage for various purposes [1,23,25,27,28,36,39,41,47]. Sahai, Seyalioglu,
and Waters [36] first dealt with the concept of a revocable storage, and proposed
revocable-storage attribute-based encryption (RS-ABE). They assume cipher-
texts are stored in external storage, such as cloud data storage, and considered
revocable attribute-based encryption [4,13] with ciphertext updatable function-
ality (to be precise, [13] in the context of identity-based encryption). However,
RS-ABE is only computationally secure, and hence cannot guarantee long-term
security.

In the unconditionally secure setting, proactive secret sharing schemes
[15,24,32,43] and fully dynamic secret sharing schemes [10] also provide func-
tionality for updating shares. However, such updating functionality and its aim in
these schemes are different from those in our RS-BE scheme. To provide flexible
access control, key assignment schemes [2,3,38] are considered. In key assignment
schemes, a trusted entity defines several security classes, and assigns secret keys
corresponding to the security classes. We can get an encryption scheme which
supports the same access control by the one-time pad with the assigned key.
However, these classes cannot be dynamically changed after distributing the
keys.

Thus, we cannot directly apply these techniques, and we need to define and
to construct RS-BE schemes from scratch.

2 Revocable-Storage Broadcast Encryption

2.1 Model

In RS-BE, there are n+2 entities, a sender E, n users U1, . . . , Un, and a storage
manager SM . Let U := {U1, . . . , Un} be a set of all users. First, E generates an
encryption key ek, n decryption keys dk1, dk2, . . . , dkn, and a maintenance key
mk. E then distributes dk1, dk2, . . . , dkn, and mk to U1, U2, . . . , Un, and SM via
secure channels, respectively. E can specify a subset S (called a privileged set)
of U such that S �= ∅, and encrypt a plaintext by using his encryption key ek so
that only users in the privileged set can decrypt the resulting ciphertext. The
ciphertext is stored in an external storage such as cloud storage. A user Ui in the
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privileged set S takes the ciphertext from the storage himself, then he decrypts
the ciphertext by using his decryption key dki. The storage manager SM can
change any privileged set S of the ciphertext into any privileged set S ′ (even if
not S ′ ⊂ S) by using his maintenance key mk without decryption (i.e., without
revealing the underlying plaintext). At sender’s request or by some kind of rule,
the storage manager SM changes the privileged set of the ciphertext, and then
SM replaces the old one with the new one.

Formally, RS-BE is executed as follows. Let M be a set of possible plaintexts.
For any subset J := {Ui1 , . . . , Uij

} ⊂ U , let CJ be a set of all possible ciphertexts
for the privileged set J , and let C :=

⋃
J ⊂U CJ . Let EK be a set of possible

encryption keys, and let MK be a set of maintenance keys. Let DKi be a set of
possible decryption keys for Ui, and let DK :=

⋃n
i=1 DKi.

Definition 1 (RS-BE). A revocable-storage broadcast encryption (RS-BE for
short) scheme Π involves n+2 entities, E, U1, U2, . . . , Un and SM , and consists
of the following four-tuple of algorithms (Setup, Enc, Dec, Upd) with five spaces,
M, C, EK,DK, and MK, where all of the above algorithms except Setup are
deterministic and all of the above spaces are finite.

1. (ek,mk, dk1, . . . , dkn) ← Setup(): It outputs an encryption key ek ∈ EK, n
decryption keys (dk1, . . . , dkn) ∈ ∏n

i=1 DKi, and a maintenance key mk ∈
MK.

2. cS ← Enc(ek,m,S): It takes an encryption key ek, a plaintext m ∈ M, and
an initial privileged set S ⊂ U as input, and outputs a ciphertext cS .1

3. m or ⊥ ← Dec(dki, cS ,S, Ui): It takes a decryption key dki of a user Ui, the
ciphertext cS , the privileged set S, and the identity Ui as input, and outputs
m or ⊥.

4. cS′ or ⊥ ← Upd(mk, cS ,S,S ′): It takes a maintenance key mk, the ciphertext
cS , its privileged set S, and a new privileged set S ′ as input, and outputs a
ciphertext cS′ for S ′ or ⊥.

In RS-BE Π, we require the following correctness holds:

(a) For all n ∈ N, all (ek,mk, dk1, . . . , dkn) ← Setup(n), all m ∈ M, all S ⊂ U ,
and all Ui ∈ S, m ← Dec(dki,Enc(ek,m,S),S, Ui)

(b) For all n ∈ N, all (ek,mk, dk1, . . . , dkn) ← Setup(n), all m ∈ M, all S,S ′ ⊂
U , Upd(mk,Enc(ek, m,S),S ′) = Enc(ek,m,S ′)

(a) means the decryption correctness and (b) means the updating correctness.
In RS-BE, for simplicity we assume the one-time model where it is allowed

for the sender to encrypt a plaintext and store a ciphertext only once. Note that
it is unrestricted for the storage manager to execute the algorithm Upd (i.e. the
ciphertext can be updated unboundedly).

1 More precisely, a description of S is needed to decrypt and update the ciphertext.
For simplicity, we assume that all entities share the information of S since there
are various ways of sharing the information (e.g., it can be sent to users using the
broadcast channel, or stored on a publicly accessible authenticated bulletin board).
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2.2 Security Definition

We consider perfect secrecy against at most ω colluders and the storage manager.
Here, we note that in principle, it is impossible to guarantee security against
collusion of them since the storage manager can change any privileged set of a
ciphertext into any privileged set. Therefore, we consider security in the case
that at most ω colluders and the storage manager try to attack separately.2

Namely, we consider the following two kinds of security notions: (1) At most ω
colluders who are not included in the privileged set cannot get any information
on the underlying plaintext from the ciphertext (a traditional security notion
for BE). (2) The storage manager cannot get any information on the underlying
plaintext from the ciphertext. The reason why we consider the second one is that
if the storage manager can obtain the underlying plaintext or some information
on it, it is only necessary to encrypt the same plaintext with a new privileged set
and replace an old ciphertext with the new one by a sender to change privileged
sets. Hence, we require the storage manager can update the ciphertext without
decryption (without leaking any information on the underlying plaintext). For
any J := {Ui1 , . . . , Uij

} ⊂ U , let DKJ := DKi1 × · · ·×DKij
be a set of possible

secret keys of J . Let M , CS , EK, DKi (1 ≤ i ≤ n), DKJ (J ⊂ U), and
MK be random variables which takes values on M, CS , EK, DKi (1 ≤ i ≤ n),
DKJ (J ⊂ U), and MK, respectively. Formally, security of RS-BE is defined by
Shannon entropy as follows. If readers are not familiar with Shannon entropy,
see Appendix A.

Definition 2 (Security of RS-BE). Let Π be an RS-BE scheme. Π is said
to be (≤ n,≤ ω)-one-time secure if the following conditions are satisfied:

(1) For any privileged set S ⊂ U , and any set of colluders W ⊂ U such that
S ∩ W = ∅ and |W| ≤ ω, it holds that H(M | CS ,DKW) = H(M).

(2) For any privileged set S ⊂ U , it holds that H(M | CS ,MK) = H(M).

Remark 1. In the model of RS-BE (Definition 1), if SM does not exist (i.e., mk is
empty string and we do not consider the algorithm Upd), and we therefore do not
consider the condition (2) in Definition 2, then Definitions 1 and 2 are the same
as those of ((≤ n,≤ ω)-one-time secure) traditional BE schemes [11,21,26,42].
Hence, we can say our scheme is natural extension of the BE schemes.

Remark 2. The condition (1) in Definition 2 implies that the number of cipher-
texts taken by W from the storage is at most one. However, it is natural to
think that W can access the storage multiple time and take ciphertexts for vari-
ous privileged sets. Namely, for more realistic definition, we should consider the
following security condition (1’) instead of (1):

2 We also discuss an RS-BE scheme secure against collusion of at most ω colluders and
the storage manager under a restricted transformation rule of the storage manager’s
key in Appendix B.
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(1’) For any privileged sets S1, . . . ,Sk ⊂ U (1 ≤ k ≤ 2n), and any set of colluders
W ⊂ U such that

(⋃k
i=1 Si

)
∩ W = ∅ and |W| ≤ ω, it holds that H(M |

CS1 , . . . , CSk
,DKW) = H(M).

For convenience, we call Π a strongly secure RS-BE scheme if it satisfies the
conditions (1’) and (2), and just call Π a secure RS-BE scheme if it satisfies
Definition 2 (the conditions (1) and (2)). Actually, tight lower bounds on secret
keys required for such a strongly secure RS-BE scheme are the same as those
required for the secure RS-BE scheme (the bounds will appear in Theorem1).
Therefore, we can obtain the same optimal construction, in the sense that the
construction meets equality in every lower bound, which will be proposed in
Sect. 4. In addition to this, to deal with RS-BE as natural extension of traditional
BE, we consider the above weaker security definition (Definition 2).

3 Tight Lower Bounds on Sizes of Ciphertexts and Secret
Keys

In this section, we show lower bounds on the sizes of ciphertexts and secret
keys required for a (≤ n,≤ ω)-one-time secure RS-BE scheme. As mentioned
in [12,29,33,34], in traditional BE schemes, there is a trade-off between the
ciphertext size and the secret key size. RS-BE schemes also have such a trade-
off. Although our construction which will be presented in Sect. 4 covers any
ciphertext length, we here consider lower bounds on secret-key sizes required for
an (≤ n,≤ ω)-one-time secure RS-BE scheme where the ciphertext length is as
small as possible. The reason for this is when we consider applying RS-BE to
cloud storage, compactness of a ciphertext is one of the most important factors
to be taken into account, since in such a scenario, a ciphertext is stored in cloud
permanently or for a long-time.

For the above reason, we first investigate the tight lower bound on the size
of ciphertexts, and then, derive lower bounds on sizes of secret keys under the
condition that the ciphertext length is optimal. A lower bound which can be
immediately obtained is H(CS) ≥ H(M), and actually, by a simple observation,
this bound is proven to be tight. We formally state this as follows.

Proposition 1. Let Π be an (≤ n,≤ ω)-one-time secure RS-BE scheme. Then,
for any S ⊂ U , H(CS) ≥ H(M) and there exists a concrete construction which
meets this bound with equality.

Proof. For any S ⊂ U and Ui ∈ S, we have

H(CS) ≥H(CS | DKi) (1)
≥H(CS | DKi) − H(CS | DKi,M) (2)
=I(CS ;M | DKi) = H(M | DKi) − H(M | DKi, CS) = H(M),

where the last equality follows from independence of M and DKi and the decryp-
tion correctness.
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Then, we show a construction which meets this bound with equality. A secret
key of the one-time pad is assigned for every possible S ⊂ U . Namely, ek := ({kS |
S ⊂ U}), dki := (k∅, {kS | S ⊂ U ∧ Ui ∈ S}) (1 ≤ i ≤ n), and mk := {kS | S ⊂
U ∧ S �= ∅}, where each kS is chosen from a finite field uniformly at random. In
Enc, for any S, it outputs cS := m + k∅ + kS . In Dec, if Ui ∈ S, it can output
m = cS −k∅ −kS . In Upd, for any S and S ′, it outputs cS′ := cS −kS +kS′ . This
construction is (≤ n,≤ ω)-one-time secure since any W such that S ∩ W = ∅
does not have kS and SM does not have k∅. �
Next, we derive lower bounds on sizes of secret keys when the ciphertext size is
optimal (i.e. the ciphertext length is equal to the plaintext length).

Theorem 1. Let Π be an (≤ n,≤ ω)-one-time secure RS-BE scheme. Then,
the following lower bounds hold under the condition H(CS) = H(M) for any
S ⊂ U :

(i) H(EK) ≥
ω∑

j=0

(
n

j

)

H(M),

(ii) H(DKi) ≥
ω∑

j=0

(
n − 1

j

)

H(M) for any i ∈ {1, 2, . . . , n},

(iii) H(MK) ≥
⎛

⎝
ω∑

j=0

(
n

j

)

− 1

⎞

⎠ H(M).

Proof. The proof follows from the following lemmas.

Lemma 1. For any S ⊂ U and any W ⊂ U such that W ∩ S = ∅ and |W| ≤ ω,
let Yi (1 ≤ i ≤ k) be a privileged set such that Yi ∩ W �= ∅. Then, we have
H(CS | M,CY1 , . . . , CYk

,DKW) ≥ H(M) under the condition H(CS) = H(M)
for any S ⊂ U .

Proof. From Eqs. (1) and (2) in Theorem 1, and the condition H(CS) = H(M),
we have H(CS | DKi) = H(CS | DKi) − H(CS | DKi,M) for any S ⊂ U and
Ui ∈ S. Therefore, we have

H(CS | DKi,M) = 0. (3)

For H(M,CS , CY1 , . . . , CYk
| DKW), we have

H(M,CS , CY1 , . . . , CYk
| DKW)

= H(CS | DKW) + H(M | DKW , CS) + H(CY1 , . . . , CYk
| DKW , CS ,M)

= H(CS | DKW) + H(M) + H(CY1 , . . . , CYk
| DKW , CS ,M) (4)

= H(CS | DKW) + H(M), (5)

where Eq. (4) follows from the condition (1) of Definition 2, and Eq. (5) follows
from Eq. (3) (i.e. H(CYj

| DKW ,M)=0) since Yj∩W �= ∅ for any Yj (1 ≤ j ≤ k).
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On the other hand, for H(M,CS , CY1 , . . . , CYk
| DKW), we have

H(M,CS , CY1 , . . . , CYk
| DKW)

= H(M | DKW) + H(CY1 , . . . , CYk
| DKW ,M)

+ H(CS | DKW ,M,CY1 , . . . , CYk
)

= H(M) + H(CS | DKW ,M,CY1 , . . . , CYk
), (6)

where Eq. (6) follows from independence of M and DKW and the same reason
for Eq. (5).

Hence, from Eqs. (5) and (6), we have

H(CS | DKW ,M,CY1 , . . . , CYk
) = H(CS | DKW). (7)

In the following, we show H(CS | DKW) ≥ H(M).
For H(M,CS | DKS ,DKW , EK), we have

H(M,CS | DKS ,DKW , EK)
= H(CS | DKS ,DKW , EK) + H(M | DKS ,DKW , EK,CS)
= H(CS | DKS ,DKW , EK), (8)

where Eq. (8) follows from the decryption correctness (i.e. H(M | DKS , CS)=0).
On the other hand, for H(M,CS | DKS ,DKW , EK), we have

H(M,CS | DKS ,DKW , EK)
= H(M | DKS ,DKW , EK) + H(CS | DKS ,DKW , EK,M)
= H(M | DKS ,DKW , EK), (9)

where Eq. (9) follows from the algorithm Enc (i.e. H(CS | EK,M) = 0).
Hence, we have

H(CS |DKW) ≥H(CS | DKS ,DKW , EK)
=H(M | DKS ,DKW , EK) (10)
=H(M), (11)

where Eq. (10) follows from Eqs. (8) and (9), and Eq. (11) follows from indepen-
dence of M and (EK,DK1, . . . , DKn).

From Eqs. (7) and (11), we have H(CS | M,CY1 , . . . , CYk
,DKW) ≥ H(M).

�
Lemma 2. We have H(EK) ≥ ∑ω

j=0

(
n
j

)
H(M) under the condition H(CS) =

H(M) for any S ⊂ U .

Proof. Let W := {W ⊂ U | |W| ≤ ω} = {W1, . . . ,Wt} be the family of all possi-
ble sets of colluders, where t =

∑ω
j=0

(
n
j

)
. Moreover, let S (W ) := {S1, . . . ,St},
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where Si = U \ Wi such that Wi ∈ W (1 ≤ i ≤ t). Without loss of generality,
|S1| ≥ · · · ≥ |St|. Then, we have

H(EK) =H(EK | M) (12)
≥I(EK;CS1 , . . . , CSt

| M)
=H(CS1 , . . . , CSt

| M) − H(CS1 , . . . , CSt
| M,EK)

=H(CS1 , . . . , CSt
| M) (13)

=
t∑

j=1

H(CSj
| M,CS1 , . . . , CSj−1)

≥
t∑

j=1

H(CSj
| M,CS1 , . . . , CSj−1 ,DKWj

)

≥
ω∑

j=0

(
n

j

)

H(M), (14)

where Eq. (12) follows from independence of M and EK, Eq. (13) follows from
the algorithm Enc (i.e. H(CSi

| EK,M) = 0 (1 ≤ i ≤ t)), and Eq. (14) follows
from Lemma 1. �
Lemma 3. For any i ∈ {1, . . . , n}, we have H(DKi) ≥ ∑ω

j=0

(
n−1

j

)
H(M)

under the condition H(CS) = H(M) for any S ⊂ U .

Proof. Let W (i) := {W ⊂ U \ {Ui} | |W| ≤ ω} = {W1, . . . ,W�} be the family
of all possible sets of colluders except for sets of colluders containing Ui, where
� =

∑ω
j=0

(
n−1

j

)
. Moreover, let S (W (i)) := {S1, . . . ,S�}, where Si = U \Wi such

that Wi ∈ W (i) (1 ≤ i ≤ �). Without loss of generality, |S1| ≥ · · · ≥ |S�|. We
note Ui ∈ S for any S ∈ S (W (i)). Then, we have

H(DKi) =H(DKi | M) (15)
≥I(DKi;CS1 , . . . , CS�

| M)
=H(CS1 , . . . , CS�

| M) − H(CS1 , . . . , CS�
| M,DKi)

=H(CS1 , . . . , CS�
| M) (16)

=
�∑

j=1

H(CSj
| M,CS1 , . . . , CSj−1)

≥
�∑

j=1

H(CSj
| M,CS1 , . . . , CSj−1 ,DKWj

)

≥
ω∑

j=0

(
n − 1

j

)

H(M), (17)

where Eq. (15) follows from independence of M and DKi, Eq. (16) follows from
Eq. (3) in Lemma 1 (i.e. H(CSj

| DKi,M) = 0 (1 ≤ j ≤ �)), and Eq. (17) follows
from Lemma 1. �
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Lemma 4. We have H(MK) ≥
(∑ω

j=0

(
n
j

) − 1
)

H(M) under the condition
H(CS) = H(M) for any S ⊂ U .

Proof. Let W and S (W ) be the same as those in Lemma 2. Then, we have

H(MK) ≥H(MK | CS1) ≥ I(MK;CS2 , . . . , CSt
| CS1)

=H(CS2 , . . . , CSt
| CS1) − H(CS2 , . . . , CSt

| CS1 ,MK)
=H(CS2 , . . . , CSt

| CS1) (18)

=
t∑

j=2

H(CSj
| CS1 , . . . , CSj−1)

≥
t∑

j=2

H(CSj
| M,CS1 , . . . , CSj−1 ,DKWj

)

≥
⎛

⎝
ω∑

j=0

(
n

j

)

− 1

⎞

⎠ H(M), (19)

where Eq. (18) follows from the algorithm Upd (i.e. H(CSi
| CS1 ,MK) = 0 (2 ≤

i ≤ t)), and Eq. (19) follows from Lemma 1. �
Now, the proof of Theorem 1 is completed. �
As we will see in the next section, the above lower bounds are tight since our
construction will meet all the above bounds with equalities. Therefore, we define
optimality of constructions of RS-BE as follows.

Definition 3 (Optimality). A construction of an (≤ n,≤ ω)-one-time secure
RS-BE scheme is said to be optimal if it meets equality in every bound of (i)–(iii)
in Theorem1.

In a similar way, we can also derive tight lower bounds on secret keys required for
another class of RS-BE schemes, called (t,≤ ω)-one-time secure RS-BE schemes
[16,26,29,33], in which the number of privileged users is constant in all time
periods, and show an optimal construction under this condition (see the full
version of this paper [45] for details).

4 Construction

In this section, we propose a construction of an (≤ n,≤ ω)-one-time secure RS-
BE scheme with a trade-off between ciphertext sizes and secret-key sizes. Namely,
we construct an (≤ n,≤ ω)-one-time secure RS-BE scheme with efficient secret-
key sizes by allowing a ciphertext to become larger, though we considered lower
bounds on the secret-key sizes only when the ciphertext size is equal to the
plaintext size in the previous section. Specifically, we focus on an (≤ n,≤ ω)-
one-time secure RS-BE scheme where the ciphertext size is equal to integer
multiple of the plaintext size. More precisely, we assume that the maximum
ciphertext size is δ times as large as the plaintext size, and we parameterize such
δ ∈ {1, 2, . . . , n} as follows.
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Definition 4. For an (≤ n,≤ ω)-one-time secure (RS-)BE scheme Π, we define

δ :=
max
S⊂U

log |CS |
log |M| .

Then, Π is said to be (≤ n,≤ ω; δ)-one-time secure.

To the best of our knowledge, there are only two ways of efficient constructing
unconditionally secure BE schemes with such a trade-off: One is the block-design
approach for (t,≤ ω; δ)-one-time secure BE schemes, which was proposed by
Blundo et al. [12]; and the other is the multi-KPSs approach for (≤ n,≤ ω; δ)-
one-time secure BE schemes, which was recently proposed by Watanabe and
Shikata [46]. The block design approach in [12] can be applied to (t,≤ ω; δ)-
one-time secure BE schemes since the cardinality of S is always exactly t,
and therefore, it seems difficult to apply the former technique for constructing
(≤ n,≤ ω; δ)-one-time secure BE schemes. Therefore, we utilize the latter tech-
nique, but improve it by using polynomials over a finite field. Before explain-
ing their original construction, we briefly explain a key predistribution system
(KPS), which is a crucial primitive to their construction.

KPS [9,30]. Suppose that there are a trusted authority (TA) and n users U :=
{U1, U2, . . . , Un}. TA generates initial secret keys for each user, and distributes
them securely. Any subset S of U can share a session key by using their own
secret keys in a non-interactive way. A KPS is said to be an (≤ n,≤ ω)-KPS if
any at most ω users not in the subset cannot get any information on the session
key.

The idea of their construction is as follows. For (≤ n,≤ ω; δ)-one-time secure
BE schemes where the maximum ciphertext size is δ times as large as the
plaintext size, the user set U is split into δ subsets U1,U2, . . . ,Uδ such that
|U1| ≥ |U2| ≥ · · · ≥ |Uδ|. Then, we apply an (≤ |Uj |,≤ ωj)-KPS to each subset
Uj , where ωj := min{|Uj |−1, ω}. The encryption procedures are just generating
session keys for each privileged subset Sj := Uj ∩ S and computing at most δ
one-time pads of a plaintext by using each session key. They showed the optimal
condition of (|U1|, |U2|, . . . , |Uδ|) for minimizing secret-key sizes as follows:

Proposition 2 (Theorem 2 and Corollary 2 in [46]). Let a := �n/δ�, δ2 :=
n mod δ, and δ1 := δ − δ2. When we apply an optimal construction of each
underlying KPS (e.g., the Fiat–Naor KPS [21]) to the above (≤ n,≤ ω; δ)-one-
time secure BE scheme, then sizes of the secret keys are minimized when |U1| =
|U2| = · · · = |Uδ1 | = a and |Uδ1+1| = |Uδ1+2| = · · · = |Uδ| = a + 1. Namely, we
have

(i) log |EK| =

(

δ1

ω̃∑

j=0

(
a

j

)

+ δ2

ω̂∑

j=0

(
a + 1

j

))

log |M|,

(ii)
n∑

i=1

log |DKi| =

(

δ1a

ω̃∑

j=0

(
a − 1

j

)

+ δ2(a + 1)
ω̂∑

j=0

(
a

j

))

log |M|,

where ω̃ := min{a − 1, ω} and ω̂ := min{a, ω}.
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We construct an (≤ n,≤ ω; δ)-one-time secure RS-BE scheme based on the
above construction with a certain improvement, and give the idea as follows. We
here assume the case that a := n/δ ∈ N for simplicity. Each user subset can be
expressed as Uj := {U

(j)
1 , U

(j)
2 , . . . , U

(j)
a } = {U(j−1)a+1, . . . , Uja} (1 ≤ j ≤ δ),

where U
(j)
i := U(j−1)a+i, and we define a set Ũ := {V1, V2, . . . , Va}. For setup,

an (≤ a,≤ ω̃)-KPS for Ũ is invoked δ times, where ω̃ := min{a − 1, ω}, and we
write (dk

(j)
1 , dk

(j)
2 , . . . , dk

(j)
a ) as j-th output of the KPS. Namely, for each i ∈

{1, 2, . . . , a}, dk
(1)
i , dk

(2)
i , . . ., and dk

(δ)
i are secret keys for Vi but completely inde-

pendent of each other. Therefore, we correlate these keys (dk
(1)
i , dk

(2)
i , . . . , dk

(δ)
i )

with each other by using polynomials over a finite field, and each dk
(j)
i is assigned

to a secret key for U
(j)
i . This is an improved point as mentioned earlier, and this

leads to the success of reducing sizes of an encryption key (and maintenance
key).

The detailed construction of an (≤ n,≤ ω; δ)-one-time secure RS-BE scheme
Π = (Setup,Enc,Dec, Upd) is as follows.

1. (ek,mk, dk1, . . . , dkn) ← Setup(): Let q be a prime power such that q > n,
and Fq be a finite field with q elements. Let a := �n/δ�, δ2 := n mod δ, and
δ1 := δ − δ2. Without loss of generality, let Uj := {U

(j)
1 , U

(j)
2 , . . . , U

(j)
a } =

{U(j−1)a+1, . . . , Uja} for j ∈ {1, 2, . . . , δ1}, where U
(j)
i := U(j−1)a+i, and

Uj := {U
(j)
1 , U

(j)
2 , . . . , U

(j)
a+1} = {Uδ1a+(j−δ1−1)(a+1)+1, . . . , Uδ1a+(j−δ1)(a+1)}

for j ∈ {δ1 + 1, δ1 + 2, . . . , δ}, where U
(j)
i := Uδ1a+(j−δ1−1)(a+1)+i, respec-

tively.3 Consider user sets Ũ := {V1, V2, . . . , Va} and Û := Ũ ∪ {Va+1}, and
define the following families of subsets:

W̃ := {W ⊂ Ũ | |W| ≤ ω̃},

W̃ (i) := {W ⊂ Ũ | W ∈ W̃ ∧ Vi /∈ W},
W̃ (S ⊂ Ũ) := {W ∈ W̃ | |W| = min{ω̃, a − |S|}},
Ŵ := {W ⊂ Û | |W| ≤ ω̂},

Ŵ (i) := {W ⊂ Û | W ∈ Ŵ ∧ Vi /∈ W},
Ŵ (S ⊂ Û) := {W ∈ Ŵ | |W| = min{ω̂, a + 1 − |S|}},

where ω̃ := min{a − 1, ω} and ω̂ := min{a, ω}. Let k̃ := min{ω, δ − 1} and
k̂ := {ω, δ2−1}. Choose two kinds of polynomials over Fq uniformly at random
as follows:

fW(x) := r
(0)
W + r

(1)
W x + · · · + r

(k̃)
W xk̃ for every W ∈ W̃ ,

fW(x) := r
(0)
W + r

(1)
W x + · · · + r

(k̂)
W xk̂ for every W ∈ Ŵ \ W̃ .

3 For example, when n = 8 and δ = 3, then U1 := {U (1)
1 , U

(1)
2 } = {U1, U2}, U2 :=

{U (2)
1 , U

(2)
2 , U

(2)
3 } = {U3, U4, U5}, and U3 := {U (3)

1 , U
(3)
2 , U

(3)
3 } = {U6, U7, U8}.
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Furthermore, also compute f ′
∅(x) := f∅(x) − r

(0)
∅ . Set ek := {fW(x) | W ∈

Ŵ }, mk := {fW(x) | W ∈ Ŵ \ {∅}} ∪ {f ′
∅(x)}. For every Uh = U

(j)
i , set

dkh = dk
(j)
i := {fW(j) | W ∈ W̃ (i)} if 1 ≤ h ≤ δ1a, or dkh = dk

(j)
i :=

{fW(j) | W ∈ Ŵ (i)} if δ1a + 1 ≤ h ≤ n.4 Output (ek,mk, dk1, . . . , dkn).
2. cS ← Enc(ek,m,S): For a plaintext m ∈ Fq, compute as follows. For every j

such that 1 ≤ j ≤ δ1, let Sj := {Vi ∈ Ũ | U
(j)
i ∈ S ∩ Uj}. For every Sj such

that Sj �= ∅, compute

cj := m + f∅(j) +
∑

W∈W̃ (Sj)

fW(j).

Similarly, for every j such that δ1 + 1 ≤ j ≤ δ, let Sj := {Vi ∈ Û | U
(j)
i ∈

S ∩ Uj}. For every Sj such that Sj �= ∅, compute

cj := m + f∅(j) +
∑

W∈Ŵ (Sj)

fW(j).

Output cS := {cj}Sj �=∅.
3. m or ⊥ ← Dec(dkh, cS ,S, Uh): If Uh /∈ S, output ⊥. Otherwise, suppose that

Uh = U
(j)
i ∈ Uj . If j ≤ δ1, let Sj := {Vi ∈ Ũ | U

(j)
i ∈ Uj ∩ S}, and output

m = cj − f∅(j) − ∑
W∈W̃ (Sj)

fW(j). Otherwise, let Sj := {Vi ∈ Û | U
(j)
i ∈

Uj ∩ S}, and output m = cj − f∅(j) − ∑
W∈Ŵ (Sj)

fW(j).
4. cS′ or ⊥ ← Upd(mk, cS ,S,S ′): Without loss of generality, choose some cj ∈ cS

such that |Uj | = a. Compute c∅ := cj − f ′
∅(j) − ∑

W∈W̃ (Sj)
fW(j) = m + r

(0)
∅ ,

where Sj := {Vi ∈ Ũ | U
(j)
i ∈ S ∩ Uj}. Note that c∅ can be computed by

choosing cj such that |Uj | = a + 1. for every j such that 1 ≤ j ≤ δ1, let
S ′

j := {Vi ∈ Ũ | U
(j)
i ∈ S ′ ∩ Uj}. If S ′

j �= ∅, compute cj := c∅ + f ′
∅(j) +

∑
W∈W̃ (S′

j)
fW(j). For every j such that δ1 + 1 ≤ j ≤ δ, let S ′

j := {Vi ∈ Û |
U

(j)
i ∈ S ′ ∩ Uj}. If S ′

j �= ∅, compute cj := c∅ + f ′
∅(j) +

∑
W∈Ŵ (S′

j)
fW(j).

Output cS := {cj}S′
j �=∅.

We can easily see that the above construction satisfies the correctness. We
show the following theorem.

Theorem 2. The resulting RS-BE scheme Π is (≤ n,≤ ω; δ)-one-time secure.
In particular, Π is optimal when δ = 1.

Proof. First, we show the above construction meets the condition (1) in Def-
inition 2. Without loss of generality, we consider |S| = n − ω and |W| = ω.
Let Sj := Uj ∩ S and Wj := Uj \ Sj . As in the Fiat–Naor KPS [21], we
can easily prove that in each subset Uj , Wj cannot obtain any information

4 For readability, we consider 1, 2, . . . , δ denote elements of Fq.
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on m from cj since they do not have at least one randomness fW(j), where
W := {Vi ∈ Ũ | U

(j)
i ∈ Wj}, used for the ciphertext cj . Next, we prove

that Wj cannot compute such fW(j) with decryption keys of other collud-
ers (i.e., W1, . . . ,Wj−1,Wj+1, . . . ,Wδ). There are the following three cases:
(i) ω < δ2 < δ; (ii) δ2 ≤ ω < δ; and (iii) δ2 < δ ≤ ω. We here consider the
cases (i) and (iii). (i) For every W ∈ W̃ , the colluders can get at most ω values
of the polynomial fW(x). However, they cannot guess at least one coefficient of
fW(x) with probability larger than 1/q since the degree of fW(x) is ω. Further-
more, for every W ∈ Ŵ \ W̃ , the colluders can also get at most ω values of the
polynomial fW(x), and hence they cannot guess at least one coefficient of fW(x)
with probability larger than 1/q for the same reason. (iii) The colluders may get
δ values of the polynomial fW(x) for some W ∈ W̃ , and then they can guess the
polynomial. However, they cannot get any new information from this since they
already have all useful information (i.e., fW(1), fW(2), . . . , fW(δ)). If the collud-
ers can also get at most δ − 1 values of the polynomial fW(x) for some W ∈ W̃ ,
they cannot guess at least one coefficient of fW(x) with probability larger than
1/q the degree of fW(x) is δ − 1. The same holds for every W ∈ Ŵ \ W̃ . We can
prove the case (ii) in a way similar to the above cases. Hence, for any S ⊂ U ,
and any W ⊂ U such that S ∩W = ∅ and |W| ≤ ω, H(M | CS ,DKW) = H(M).

Next, we show the above construction meets the condition (2) in Definition 2.
r
(0)
∅ is always used for computing cj for any S ⊂ U and any j ∈ {1, 2, . . . , δ},

whereas SM does not have r
(0)
∅ . Hence, he can only guess m randomly as in the

one-time pad. Thus, for any S ⊂ U , H(M | CS ,MK) = H(M).
Moreover, it is straightforward to see that the above construction is optimal

when δ = 1. �
Corollary 1. The sizes of secret keys in the above construction are as follows:

(i) log |EK| =

(

(k̃ − k̂)
ω̃∑

j=0

(
a

j

)

+ (k̂ + 1)
ω̂∑

j=0

(
a + 1

j

))

log |M|,

(ii)
n∑

i=1

log |DKi| =

(

δ1a
ω̃∑

j=0

(
a − 1

j

)

+ δ2(a + 1)
ω̂∑

j=0

(
a

j

))

log |M|,

(iii) log |MK| =

(

(k̃ − k̂)
ω̃∑

j=0

(
a

j

)

+ (k̂ + 1)
ω̂∑

j=0

(
a + 1

j

)

− 1

)

log |M|.

Note that k̃ := min{ω, δ − 1}, k̂ := min{ω, δ2 − 1}, ω̃ := min{a − 1, ω}, and
ω̂ := min{a, ω}.
This corollary means that the larger the ciphertext size (i.e., δ) is, the smaller
sizes of the encryption and maintenance keys are. More precisely, our construc-
tion is more efficient than the original construction in [46] when δ > ω. On the
other hand, the decryption-key size is the same as that in [46] (i.e., a construc-
tion from δ1 (≤ a,≤ ω̃)-KPS and δ2 (≤ a + 1,≤ ω̂)-KPS). Therefore, in our
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construction we have to assume δ1ω̃ + δ2ω̂ colluders in total, though there are
actually only ω colluders at most. Therefore, δ must satisfy ω ≥ δ1ω̃ + δ2ω̂ for
a non-redundant construction in the sense of the number of colluders. Since it
holds ω ≥ δ1(a − 1) + δ2a = δa − δ1 = δ(n−(n mod δ)

δ ) − δ1 = n − δ, such a
non-redundant RS-BE scheme can be achieved when δ = 1 or δ ≥ n − ω. Hence,
in terms of the encryption and maintenance key sizes, our construction is more
efficient than a construction based on [46] if n ≥ 2ω+1 especially when δ ≥ n−ω.
Note that by setting mk to an empty string, the above construction is also the
most efficient (≤ n,≤ ω; δ)-one-time secure BE scheme ever.

Remark 3. Our construction might be inappropriate for a scenario where the
plaintext size is small but there are a huge number of users, since |M| = Fq,
where q is q > n. We can then avoid such restriction by combining the combina-
torial construction technique by Fiat and Naor [21], the multi-KPSs-construction
technique by Watanabe and Shiakta [46], and the above construction. Specifi-
cally, we instantiate each underlying KPS of the BE scheme in [46] by the KPS
construction by Fiat and Naor [21] over Fq, and then propose the Upd algo-
rithm based on the above construction. We would like to stress that although
this construction is applicable for arbitrary |M| and n, the sizes of secret keys
(in particular, encryption and maintenance keys) of this construction are larger
than those of the proposed construction in this section when δ > ω. For the
detailed construction, see AppendixC.

5 Robust Construction

We now consider a scenario in which a maliciously behaving storage manager
can try to modify the encrypted plaintext. This is related to non-malleability in
the context of ordinary encryption. In an RS-BE scheme, malleability may cause
a serious problem since the ciphertext is periodically updated, but an improper
update carried out by a malicious storage manager may not be immediately
detectable by the users. More specifically, we consider security against a storage
manager who tries to modify a ciphertext so that a user in the privileged set
obtains a modified plaintext which differs from an original plaintext encrypted
by the sender. In addition to this, since ciphertexts of RS-BE schemes are stored
in external storage such as cloud storage (in other words, the ciphertexts are
accessible at any time), we should also consider security against such a modifi-
cation attack by colluders. Formally, we consider two types of adversaries as in
Definition 2, and define the robustness of RS-BE as follows.

Definition 5 (Robust RS-BE). Let Π be an (≤ n,≤ ω)-one-time secure RS-
BE scheme. Π is said to be γ-robust if max{P1, P2} ≤ γ, where P1 and P2 are
defined as follows:

(1) For any S1, . . . ,Sk ⊂ U (1 ≤ k ≤ 2n), any Ui ∈ Sk, and any W ⊂ U such
that

(⋃k
i=1 Si

)
∩ W = ∅ and |W| ≤ ω, we define P1(S1, . . . ,Sk, Ui,W) as:
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P1(S1, . . . ,Sk, Ui,W) :=
max
c′

Sk

max
cS1 ,...,cSk

max
dkW

Pr(Dec(dki, c
′
Sk

,Sk, Ui) /∈ {m,⊥} | cS1 , . . . , cSk
, dkW),

where cSj
= Enc(ek,m,Sj) (1 ≤ j ≤ k).

Note that Enc(ek,m,Sj+1) = Upd(mk,Enc(ek,m,Sj), Sj ,Sj+1) for any
Sj ,Sj+1 (1 ≤ j ≤ k − 1) (the updating correctness). P1 is defined as
P1 := max

S1,...,Sk,Ui,W
P1(S1, . . . ,Sk, Ui,W).

(2) For any S,S ′ ⊂ U and any Ui ∈ S ′, we define P2(S,S ′, Ui) as:

P2(S,S ′, Ui) := max
c′

S′
max

cS
max
mk

Pr(Dec(dki, c
′
S′ ,S ′, Ui) /∈ {m,⊥} | cS ,mk),

where cS = Enc(ek,m,S). Then, P2 is defined as P2 := max
S,S′,Ui

P2(S,S ′, Ui).

We can derive a lower bound on the ciphertext-size as follows.

Proposition 3. Let Π be a γ-robust and (≤ n,≤ ω)-one-time secure RS-BE
scheme. Then, for any S ⊂ U it holds that |CS | ≥ |M|−1

γ2 + 1.

Proof. First, let Ci(m,S) := {cS ∈ CS | Dec(dki, cS ,S, Ui) = m for some dki ∈
DKi}. We fix arbitrary m ∈ M, Ui ∈ U , and S ⊂ U such that Ui ∈ S. Then, we
have

γ ≥ max
c′

S
max

cS
Pr(Dec(dki, c

′
S ,S, Ui) /∈ {m,⊥} | cS)

≥ max
m′

max
c′

S
max

cS
Pr(Dec(dki, c

′
S ,S, Ui) = m′ | cS) (20)

≥ max
m′

1
|Ci(m′,S)|

∑

c′
S∈Ci(m′,S)

max
cS

Pr(Dec(dki, c
′
S ,S, Ui) = m′ | cS)

≥ 1
|Ci(m′,S)| , (21)

where Eq. (20) follows from

P2(S,S, Ui)≥P1(S, Ui,W =∅) = max
c′

S
max

cS
Pr(Dec(dki, c

′
S ,S, Ui) /∈ {m,⊥} | cS),

and Eq. (21) follows from the following simple fact: For n real numbers
x1, x2, . . . , xn ∈ R, it holds that max{xi}n

i=1 ≥ 1
n

∑n
i=1 xi. Therefore, we have

|Ci(m′,S)| ≥ 1/γ.
On the other hand, we have

γ ≥ max
c′

S
max

cS
Pr(Dec(dki, c

′
S ,S, Ui) /∈ {m,⊥} | cS)

≥ |⋃m′ �=m Ci(m′,S)|
|CS | − 1

(22)
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=

∑
m′ �=m |Ci(m′,S)|

|CS | − 1
(23)

≥ |M| − 1
(|CS | − 1)γ

, (24)

where Eq. (22) follows from probability of random guessing of c′
S such that

Dec(dki, c
′
S ,S, Ui) /∈ {m,⊥}, Eq. (23) follows from the fact that the Dec algo-

rithm is deterministic, and Eq. (24) follows from |Ci(m′,S)| ≥ 1/γ. Hence, we
have |CS | ≥ (|M| − 1)/γ2 + 1. �
We can construct a robust scheme by using an algebraic manipulation detection
code (AMD-code), which is defined as follows.

Definition 6 (AMD-code [18]). Let Mamd be a set of messages such that
|Mamd| = η, and G be a commutative group of order λ. An algebraic manip-
ulation detection code (AMD-code) Φ consists of the following two-tuple algo-
rithms (Encode, Decode), where Encode is a probabilistic encoding map Encode :
Mamd → G and a deterministic decoding map Decode : G → Mamd ∪ {⊥} such
that Decode(Encode(m)) = m with probability one for every m ∈ Mamd. Φ is an
(η, λ, ε)-AMD-code if for every m ∈ Mamd and for every Δ ∈ G, the probability
that Decode(Encode(m) + Δ) /∈ {m,⊥} is at most ε.

A robust RS-BE scheme is constructed by modifying the proposed (≤ n,≤
ω; δ)-one-time secure RS-BE scheme in Sect. 4 as follows: Before encrypting a
plaintext m ∈ Fq, the Enc algorithm runs m̂ ← Encode(m); and after decrypt-
ing a ciphertext, then the Dec algorithm runs m ← Decode(m̃), where m̃ is
the decryption result. We assume outputs of Encode and Decode are properly
encoded into (a sequence of) elements of Fq. Note that most of this construction
is realized by using algebraic structure (i.e., over Fq).

Theorem 3. If Φ is an (q, qξ, ε)-AMD-code, then the resulting RS-BE scheme
Π by the above construction is (≤ n,≤ ω; ξδ)-one-time secure and ε-robust.

Proof (Sketch). It is easy to see the above construction is (≤ n,≤ ω; ξδ)-one-time
secure. Let kS be a part of a key in the ciphertext cS (i.e., cS = Encode(m) +
kS). If an adversary, SM or colluders, applies any algebraic operation F to the
ciphertext, then it holds F (cS) = F (Encode(m) + kS) = Encode(m) + Δ + kS .
Since Pr(Decode(Encode(m) + Δ) /∈ {m,⊥}) ≤ ε, it holds max{P1, P2} ≤ ε. �

Remark 4. If we want to construct an (≤ n,≤ ω; δ̂)-one-time secure and γ-robust
RS-BE scheme over Fq, we have |CS | ≥ (|M| − 1)/γ2 + 1 = (q2(q − 1))/c2 + 1 =
q3/c2 − o(q3), where we assume M = Fq and γ = c/q for some constant c. This
means that we cannot realize a robust RS-BE scheme where a ciphertext consists
of only one or two elements of Fq.

Actually, for example, one of the most efficient construction of an (q, qξ, ε)-
AMD-code, where ξ = 3 and ε = 1/q, is as follows. Encode: For m ∈ Fq, choose
r ∈ Fq and output (m, r,mr) ∈ F

3
q. Decode: For (m′, r′, π), output m′ if it holds
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m′r′ = π. Otherwise, output ⊥. If we apply the above specific (q, q3, 1/q)-AMD-
code to our robust construction based on (≤ n,≤ ω; δ)-one-time secure (but
non-robust) RS-BE scheme, then we have |M| = q, |CS | = q3δ, and γ = 1/q.
Now, it holds |CS | ≥ (|M|−1)/γ2+1 = q2(q−1)+1 = q3−o(q2). Therefore, the
proposed robust construction is almost optimal in the sense of the ciphertext size
if δ = 1 (i.e., when the underlying (≤ n,≤ ω; δ)-one-time secure RS-BE scheme
in the previous section is also optimal in the sense of the ciphertext size).

Furthermore, the above specific construction requires triple sizes of each para-
meter in the normal (i.e., non-robust) construction. Then, the proposed robust
construction seems to achieve optimal parameter sizes if the underlying RS-BE
scheme is optimal (i.e., if δ = 1).
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Appendix

A Shannon Entropy

We briefly describe Shannon entropy. For details, see [17,19] for the excellent
instruction. Let X and Y be random variables which take values in sets X and
Y, respectively.

Definition 7 (Shannon Entropy [40]). Shannon entropy H(X) is defined by

H(X) := −
∑

x∈X
Pr(X = x) log Pr(X = x).

Furthermore, the joint entropy H(X,Y ) and conditional entropy H(X|Y ) of a
pair of random variables (X,Y ) with a joint probability distribution PXY are
defined by

H(X,Y ) := −
∑

x∈X

∑

y∈Y
Pr(X = x, Y = y) log Pr(X = x, Y = y),

H(X|Y ) :=
∑

y∈Y
Pr(Y = y)H(X|Y = y),

respectively. Moreover, mutual information is also defined by

I(X;Y ) := H(X) − H(X|Y ) = H(Y ) − H(Y |X).
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The following properties of Shannon entropy are used in this paper (for details,
see [17,19]):

– For a random variable X, it holds that log |X | ≥ H(X) ≥ 0, where the first
equality holds if and only if a probability distribution of X is uniform, and
the second equality holds if and only if there exists some x ∈ X such that
Pr(X = x) = 1.

– It holds that H(X,Y ) = H(X)+H(Y |X) = H(Y )+H(X|Y ). More generally,
it holds that H(X1,X2, . . . , Xn) =

∑n
i=1 H(Xi|X1, . . . , Xi−1).

– For two random variables X and Y , it hold that H(X) ≥ H(X|Y ), where
equality holds if and only if X and Y are independent.

– It holds that I(X;Y ) ≥ 0, where the equality holds if and only if X and Y
are independent of each other.

B Collusion-Resistant RS-BE Scheme

We consider security against collusion of at most ω colluders and a storage
manager. Intuitively, if a storage manager can change any privileged set of a
ciphertext into any privileged set by using his maintenance key mk, we cannot
achieve RS-BE secure against collusion of a set of colluders and the storage
manager. Therefore, here we simply set the following transformation rule for
mk: For any S,S ′ ⊂ U , Upd(mk, cS ,S,S ′) outputs an updated ciphertext cS′

if S ′ ⊂ S holds, otherwise it outputs ⊥. Namely, we only consider dynamic
revocation of users.

We define collusion-resistant security as follows.

Definition 8 (Collusion-Resistant RS-BE). Let Π be an RS-BE scheme.
Π is said to be collusion-resistantly (≤ n,≤ ω)-one-time secure if the following
conditions are satisfied: For any privileged set S ⊂ U , and any set of colluders
W ⊂ U such that S ∩ W = ∅ and |W| ≤ ω, it holds that

H(M | CS ,DKW ,MK) = H(M).

A construction which satisfies Definition 8 is as follows.

1. (ek,mk, dk1, . . . , dkn) ← Setup(): Let q be a prime power such that q > n,
and Fq be a finite field with q elements. It chooses n polynomials f (h)(x) :=∑ω

i=0 aix
i (h = 1, . . . , n) over Fq uniformly at random, and computes n − 1

polynomials g(�)(x) := f (�)(x) − f (�−1)(x) (2 ≤ � ≤ n). Then, it out-
puts ek := f (1)(x), dki := (f (1)(i), . . . , f (n)(i)) (1 ≤ i ≤ n), and mk :=
(g(2)(x), . . . , g(n)(x)).

2. cS ← Enc(ek,m,S): Let S = {Ui1 , . . . , Uik
} (1 ≤ k ≤ n) be a privileged set.

For every Uij
, it computes c

(1)
ij

:= m + f (1)(ij), and sets a counter t := 1.

Finally, it outputs cS := (t, c(t)i1
, . . . , c

(t)
ik

).
3. m or ⊥ ← Dec(dki, cS ,S, Ui): If Ui ∈ S, it computes m = c

(t)
i − f (t)(i) and

outputs it. Otherwise, it outputs ⊥.
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4. cS′ or ⊥ ← Upd(mk, cS ,S,S ′): Let S ′ = {Ui1 , . . . , Uik
}. If S ′ ⊂ S does

not hold, it outputs ⊥. Otherwise, for every Uij
∈ S ′ ⊂ S, it computes

c
(t+1)
i := c

(t)
ij

+ g(t+1)(ij) (1 ≤ j ≤ k). Finally, it sets t := t + 1 and outputs

cS′ := (t, c(t)i1
, . . . , c

(t)
ik

).

Proposition 4. The resulting RS-BE scheme Π by the above construction is
collusion-resistantly (≤ n,≤ ω)-one-time secure.

Proof. It is not so difficult to prove this proposition. Without loss of generality,
we consider that W := {U1, . . . , Uω} is a set of colluders and S := {Uω+1 . . . , Un}
is a privileged set. Consider the case that the set of colluders W and the storage
manager will guess kS to obtain the plaintext m by the using their secret keys.
Since each degree of x of f (h)(x) (1 ≤ h ≤ n) is at most ω, at most ω colluders
cannot obtain f (h)(x) from f (h)(1), . . . , f (h)(ω) (1 ≤ h ≤ n). Hence, they cannot
obtain any information on f (h)(x) (1 ≤ h ≤ n) even if they have g(�)(x) (2 ≤ � ≤
n). Hence, for any S ⊂ U , and any W ⊂ U such that S ∩ W = ∅ and |W| ≤ ω,
H(M | CS ,DKW ,MK) = H(M). �

C Construction for Arbitrary Plaintext Sizes
and Number of Users

We show how we construct an (≤ n,≤ ω; δ)-one-time secure RS-BE scheme for
arbitrary |M| and n, even when |M| ≤ n, where n is the number of users. We
first consider an instantiation of an (≤ n,≤ ω; δ)-one-time secure BE scheme by
the Fiat–Naor KPS [21]. Since the Fiat–Naor KPS was combinatorially designed
by not using polynomials, the construction works even when q ≤ n. We can then
propose the Upd algorithm by modifying the construction. Note that the sizes of
secret keys (in particular, encryption and maintenance keys) of this construction
are larger than those of our construction in Sect. 4 when δ > ω.

The detailed construction of an (≤ n,≤ ω)-one-time secure RS-BE scheme
Π = (Setup,Enc,Dec, Upd) is as follows.

1. (ek,mk, dk1, . . . , dkn) ← Setup(): Let Fq be a finite field with q elements,
where q is a prime power. Let a := �n/δ�, δ2 := n mod δ, and δ1 := δ − δ2.
Without loss of generality, let Uj := {U

(j)
1 , . . . , U

(j)
a } = {U(j−1)a+1, . . . , Uja}

for j ∈ {1, 2, . . . , δ1} and Uj := {U
(j)
1 , . . . , U

(j)
a+1} = {Uδ1a+(j−δ1−1)(a+1)+1,

. . . , Uδ1a+(j−δ1)(a+1)} for j ∈ {δ1 +1, δ1 +2, . . . , δ}. Define the following fam-
ilies of subsets:

Wj := {W ⊂ Uj | |W| ≤ ωj},

W
(i)

j := {W ⊂ Uj | W ∈ Wj ∧ Ui /∈ W},
Wj(S ⊂ Uj) := {W ∈ Wj | |W| = min{ω̃, |Uj | − |S|}},

where ωj := min{a − 1, ω} for 1 ≤ j ≤ δ1 and ωj := min{a, ω} for δ1 + 1 ≤
j ≤ δ. Choose R ∈ Fq uniformly at random. Then, for each Uj (1 ≤ j ≤ δ),
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compute as follows. For ∅j := ∅ ∈ Wj , choose r′
∅j

∈ Fq uniformly at random,
and compute r∅j

:= R+r′
∅j

. For every W ∈ Wj\{∅}, choose rW ∈ Fq uniformly
at random. Set ek := {rW | W ∈ Wj}δ

j=1, mk := {r′
∅1

, r′
∅2

, . . . , r′
∅δ

} ∪ {rW |
W ∈ Wj \{∅}}δ

j=1. For every Uh = U
(j)
i , set dkh = dk

(j)
i := {rW | W ∈ W

(i)
j }.

Output (ek,mk, dk1, . . . , dkn).
2. cS ← Enc(ek,m,S): Let Sj := S ∪ Uj . For every Sj , compute

cj := m + r∅j
+

∑

W∈Wj(Sj)

rW ,

unless Sj = ∅. Output cS := {cj}Sj �=∅.
3. m or ⊥ ← Dec(dkh, cS ,S, Uh): If Uh /∈ S, output ⊥. Otherwise, suppose that

Uh = U
(j)
i ∈ Uj . Output m = cj − r∅j

− ∑
W∈Wj(Sj)

rW .
4. cS′ or ⊥ ← Upd(mk, cS ,S,S ′): Let Si := S∪Ui and S ′

j := S ′∪Uj . Without loss
of generality, choose some ci ∈ cS . Compute c∅ := ci − r′

∅i
−∑

W∈Wi(Si)
rW =

m + R, where ∅i := ∅ ∈ Wi. For every S ′
j , compute

c′
j := c∅ + r′

∅j
+

∑

W∈Wj(S′
j)

rW ,

unless S ′
j = ∅, , where ∅j ∈ Wj . Output cS′ := {c′

j}S′
j �=∅.

Proposition 5. The resulting RS-BE scheme Π is (≤ n,≤ ω; δ)-one-time
secure. In particular, Π is optimal when δ=1.

Proof (Sketch). We here give a sketch since it is not so difficult to prove. Without
loss of generality, we consider S := {U1, U2, . . . , Un−ω} and W := {Un−ω+1,
Un−ω+2, . . . , Un}. Let Sj := S ∩ Uj and Wj := Uj \ Sj . As in [21], it is obvious
that each Wj does not have at least one randomness rWj

. Therefore, W cannot
obtain any information on m. Furthermore, SM cannot also get any information
on m since he does not know R. �
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Abstract. Many fuzzy extractors have been presented for discrete data;
here we present a fuzzy extractor for continuous data. Our approach uses
the code-offset method extended to R

n by using lattice codes and Euclid-
ean distance. This is accomplished in the Unconstrained Power Channel,
a theoretical artifact especially developed for lattice codes used in sce-
narios other than telecommunication, in which the noise is assumed to
be white Gaussian. To prove security we give a lower bound on the
min-entropy of the common secret that an adversary necessarily faces;
we also provide an upper bound. In addition we present a construction
using Low-Density Lattice Codes. Our construction is more practical
than existing proposals since it can be used with a feature of any dimen-
sion n and with some noise distributions that are not white Gaussian
inherent to that feature.

Keywords: Fuzzy extractor · Code-offset method · Low-Density Lattice
Codes · Key reconciliation · Continuous source

1 Introduction

1.1 Information Reconciliation for Discrete Data

Correlated data shared between two parties can be used as a starting point
for establishing a secret key. A well-known example is the BB84 quantum key
distribution protocol [BB84], in which the correlation between some quantum
states as prepared by one party and measured by the other is used as a starting
point to extract a common key. An important substep in this process is key
reconciliation or information reconciliation: Alice and Bob each have a string
x and y which are similar but not identical, and they would like to compute a
shorter random string s which is identical.
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The first approach proposed in the BB84 context used error-correcting codes
[BB84,Cré97]: Alice chooses a suitable linear code, calculates the syndrome of x,
and sends it to Bob. The latter, using this syndrome together with y, can recover
Alice’s information exactly, provided that their strings are similar enough. This
method is also known as the code offset method. Later, interactive information
reconciliation protocols were proposed [BS94]. We do not consider these tech-
niques in this study.

1.2 Fuzzy Extractors for Discrete Data

More recently, information reconciliation is also being used in the context of
authentication based on biometric data. A fuzzy extractor takes some fuzzy
information x (such as a biometric reading) as input and, combined with helper
information, is able to extract a uniform random string s. Moreover, this process
is repeatable, in the sense that a new, slightly different reading y, combined with
the same helper information, will lead to the same string s. So this setting is
somewhat different from key establishment: instead of two parties comparing
correlated information, there are now two different moments in time: enroll-
ment, and authentication. The readings x and y at these two moments need to
be reconciled, i.e. it needs to be decided if they are sufficiently similar.

Biometric features are not uniformly distributed and not perfectly repro-
ducible. However, as discussed in [DRS08], it is possible to derive a secret key
almost uniformly distributed given that the legitimate parties have some cor-
related common feature, even in the presence of an adversary who eavesdrops
on the communication channel. Some results, like [JW99] and [JS02] can be
interpreted as fuzzy extractors. Observe that these papers quantize the data,
i.e. convert them to bits, and apply one of the known information reconciliation
techniques mentioned in the previous subsection.

But the features used in these reconciliation schemes (biometric, audio or
acceleration features) are inherently continuous, which causes problems. For
example, when using the syndrome decoding approach with an error-correcting
code on binary strings derived from the quantized feature, then, as discussed in
[ŠT09], the following problems often arise: (1) the errors are not uniformly ran-
dom, (2) the error probabilities depend on the value of the feature vector itself,
(3) the quantization used causes unequal error probabilities, and (4) when sev-
eral components of the feature vector are combined into a n-dimensional space,
the quantization leads to asymmetries in the bit representation of equally likely
errors. Therefore, in order to avoid these problems, it is interesting to postpone
the quantization step and, instead, apply reconciliation directly on the features
still in continuous format.

1.3 Information Reconciliation for Continuous Data

The underlying motivation for this research is the following realistic scenario: in
order to obtain correlated data, the two parties use the sensors of their smart-
phones (or similar devices). For instance they hold the two devices together and
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shake them for some seconds, or they hold them close to one another, switch on
the microphone and make an audio recording. The signal processing performed
locally by each device results in two features, X and Y vectors in R

n, which
are similar but not identical. We assume that the parties now use some wireless
communication channel (like Bluetooth) to reconcile their features to obtain a
common secret S.

Observe that, unlike the BB84 setting, the correlated data is of continuous
(or analogue) nature. The natural strategy, to quantize the data, i.e. convert
it to bits, and apply one of the known information reconciliation techniques
mentioned above, leads to problems, as explained in the previous Section. So
we take a different approach: we postpone the quantization step and, instead,
perform reconciliation directly on the continuous data (the features).

Low-Density Lattice Codes (LDLC) play an important role in this approach.
This is a novel class of codes that perform error correction not over {0, 1}n

but over R
n. So the distance notion used is not the Hamming distance, but

the Euclidean distance. In the context of telecommunication engineering, the
advantage of LDLC is that they stay closer to the physical characteristics of a
real communication channel; after all, a binary symmetric channel is merely an
abstraction of some underlying physical communication channel. For this reason,
LDLC are able to approach the channel capacity, while today’s processors are
sufficiently fast to deal with the increased complexity caused by the fact that
computations have to be performed on real numbers (or rather, their approxi-
mations, floating-point numbers) instead of bits.

So the basic novelty of this paper is to perform non-interactive information
reconciliation based on coding theory over Rn using lattice codes, instead of some
conventional code over {0, 1}n. But this is not as simple as it may sound, because
the geometry of lattices and lattice codes is quite complex. Another complication
is that the scenario in which we use lattice codes is different from the one for
which they have been originally designed. In the context of using lattice codes
for telecommunication, the power of the channel is a natural constraint on the
capacity. But we are applying lattice codes for reconciliation, and in this scenario
there exists no limit on the channel’s capacity nor a meaningful definition of
Signal-to-Noise Ratio. In order to rectify this situation, Poltyrev [Pol94] proposed
the notion of an Unconstrained Power Channel, a theoretical artifact in which
the channel capacity becomes meaningful again and for which a Generalized
Signal-to-Noise Ratio can be defined. See Sect. 2.2 for more details.

1.4 Related Work: Fuzzy Extractors for Continuous Data

All schemes for information reconciliation for continuous data that we are aware
of have been presented in the context of fuzzy extractors, and our reconcilia-
tion scheme can also be interpreted in this context, thus allowing a meaningful
comparison. In [BDHV07b], the definitions from [DRS08] are extended to con-
tinuous features and some schemes are analyzed that can be seen as continuous
source fuzzy extractors (cs-fuzzy extractor) such as [TAKSBV05,CZC04,LT03].
Another important scheme that works on continuous features is [BDHV07a],
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which can be seen as a generalization of the scheme proposed in [LT03] regard-
ing the number of quantizers. In [VTOSŠ10] some properties of the cs-fuzzy
extractors are added and is mentioned that no universal optimal fuzzy extrac-
tors exists for continuous distributions; also a new construction based on the
Euclidean distance is shown. [ZLZ06] also created a scheme based on the
Euclidean distance of the features.

A major disadvantage of these results is that most of them use explicitly
the Euclidean distance as metric; however, no efficient method is specified to
find the point (a lattice point for example) that minimizes this distance for
a certain chosen point of R

n for arbitrary dimension n. So, in practice these
schemes do not scale in the size of the feature, n. In addition, most proposals
apply error correction of a feature vector X = (x1, ..., xn) by applying correction
on the individual components x1, ..., xn. Instead, by using lattice codes we are
interpreting X as a vector in Rn and use the Euclidean distance. This measure
is much more appropriate for quantifying the distance between two features X
and Y . Since the whole vector X is used in the error correction process this leads
to improved error correction performance.

1.5 Contributions of This Paper

The main objective of this research is to develop a fuzzy extractor for continuous
data such as features, as opposed to reconciliation of discrete data (bit strings).
The contributions of this research can be summarized as follows:

– Our scheme is the first fuzzy extractor that uses lattice codes. These codes
work over a continuous space in R

n, rather than over a discrete space in
{0, 1}n. In particular, we use lattice codes in the Unconstrained Power Channel
[Pol94]. This model is necessary in order to obtain a meaningful definition of
the channel capacity.

– We obtain an upper bound on the min-entropy that a passive adversary may
obtain about the key. This bound does not depend on the particular lattice
code chosen.

– We show how to instantiate our scheme using Low-Density Lattice Codes,
an efficient subclass of lattice codes whose complexity in time and memory
requirements is linearly proportional to the feature size n.

– Our scheme can be used to work with features of any dimension n (discussed
in Sect. 6) and with any type of noise distribution inherent to that feature
(discussed in Sect. 4), provided that the noise is at least white. Alternative
proposals for continuous source fuzzy extractors do not have this property.
Therefore, with the proper adjustments, the scheme can work with any kind
of features, such as correlated acceleration data, correlated audio data etc.

2 Preliminaries

2.1 Lattice

Following [CS98], we briefly summarize the basic definitions of a lattice. A lattice
Λ is defined by its basis vectors (v1, v2, · · · , vn) with vi ∈ R

m. The generator
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matrix Mm×n (with m ≥ n) of the lattice Λ is composed by its basis vectors.
Lattice points are defined to be x = Mb where b is an n-dimensional integer
vector. Therefore, every lattice point is in Rm. The Gram matrix A of the lattice
Λ is defined to be A = MM t. The determinant of the lattice is det Λ = det A, so
if M is square, then det Λ = (det M)2. Given a set of points P = {P1, P2, · · · } ∈
R

n, a Voronoi cell V (Pi) consists of those points of Rn that are at least as close to
Pi as to any other Pj . In other words V (Pi) = {x ∈ R

n : d(x, Pi) ≤ d(x, Pj) ∀j}.
The volume of each Voronoi cell (volume of the lattice) Vol(Λ) =

√|det Λ|. So
if M is square, then Vol(Λ) = |det M |.

2.2 Lattice Codes and the Unconstrained Power Channel

In [KDL09] an introduction about lattice codes is presented, which is going to
be the guide to this Section. A lattice defines an infinite number of constellation
points, and without some restriction the definition of its capacity to decode
becomes meaningless. Therefore, a lattice code is defined as the intersection
of a finite chosen region, usually called shaping region, B and a infinite coding
lattice Λ. Information is encoded to one of M levels for each of the n dimensions.
Therefore, the number of codepoints is Mn.

More formally, an n-dimensional lattice code is defined by its n × n lattice
generator matrix G and a shaping region B. Every codeword is of the form
x = Gb, where b ∈ Z

n. Therefore, G−1x ∈ Z
n for all x. The parity check matrix

is defined to be H = G−1. Given a noisy codeword y = x + w, where w is
a noise with distribution N(0, σ2), the syndrome is defined as s = frac{Hy},
where frac{x} = x − �x�. Note that y is a lattice point iff frac{Hy} = 0. Hence
if s = frac{Hy}, then s = frac{H(x + w)} = frac{H(w)}.

If communication happens through a real channel, the energy used to trans-
mit has to be finite. In this case we can calculate the average power needed to
send a chosen word of this code.

Pav =
1

Mn

∑

x∈Λ∩B

||x||2 (1)

and the Signal-to-Noise Ratio (SNR) is Pav/σ2.
However, if lattices codes are used in scenarios other than communication

(such as ours) then this power constraint is absent. To be able to give a mean-
ingful interpretation of capacity for such cases, there exists a theoretical tool,
the unconstrained power channel (UPC), see [Pol94]. A chosen point of Λ is
transmitted by n uses of the AWGN channel with noise variance σ2 with no
power restriction; a constrained is imposed by including Vol(Λ), the density of
the lattice (or the volume of the Voronoi cell). The Generalized Signal to Noise
Ratio (GSNR) for a lattice Λ and noise power σ2 is now defined as:

GSNR =
Vol(Λ)

2
n

2πeσ2
(2)

In a UPC, error correction with a small probability of error is possible only
if GSNR ≥ 1, whereas error correction is impractical if GSNR < 1. Therefore
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the maximum noise power which still corrects errors given a lattice Λ can be
calculated setting GSNR = 1.

σ2
max =

Vol(Λ)
2
n

2πe
. (3)

2.3 Discrete and Continuous Fuzzy Extractors

A fuzzy extractor takes some fuzzy information x (such as a biometric reading)
as input and, combined with helper information Q, is able to extract a uniform
random string s of length l. Discrete fuzzy extractors are defined in [DRS08].
In [BDHV07b] this definition is extended to continuous fuzzy extractors for
biometric data. Our definitions and proofs are strongly based on [BDHV07b]
and its sequel, [VTOSŠ10], and readers who want more details than provided in
this brief summary are encouraged to consult these two papers.

The formal definition of fuzzy extractors specifies two random procedures,
“generate” and “regenerate”, together with a security and a correctness property.
Loosely speaking, the security property says that an outside (passive) observer
gains negligible information about s. The definition and proof we present in
Sect. 5 are inspired on [VTOSŠ10], definition 2.5. Our proof, which uses the
UPC, does not depend on the particular lattice codes chosen, but the security
level achieved does.

The correctness property states that if the two features are sufficiently close,
then Gen almost always succeeds. In the context of biometrics this means that
the False Rejection Rate (FRR) should be small. In our scheme the FRR depends
on the correction capacity of the code chosen and is very difficult to approximate
analytically. Practical experiments have shown a FRR of a few percent; details
are beyond the scope of this paper.

In this paper we define the statistical distance between two probability distri-
butions A and B as SD(A,B) = supv|Pr(A = v) − Pr(B = v)|. This somewhat
unusual definition simplifies the proofs. The min-entropy of a discrete random
variable X is defined as H∞(X) = − log (maxx pX(x)). Finally, l denotes the
length of the string s, and Ul the uniform distribution over {0, 1}l.

Definition 1 [BDHV07b]. A (Mg,m, l, ε) discrete fuzzy extractor is a pair of
randomized procedures Gen and Reg where:

Gen is a (necessarily randomized) generation function which, on input w ∈ M,
extracts a private string s ∈ {0, 1}l and a public string Q, such that for
all random variables W over M such that H∞[W ] ≥ m and independent
variables 〈s,Q〉 ← Gen[w] it holds that SD[〈s,Q〉, 〈Ul, Q〉] ≤ ε.

Reg is a regeneration function which, given a word w′ ∈ M and a public string
Q, outputs a string s ∈ {0, 1}l such that for any words w,w′ ∈ M satisfying
d(w,w′) ≤ t and any possible pair 〈s,Q〉 ← Gen[w], it holds that s =
Reg[w′, Q].
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We proceed to define a fuzzy extractor for continuous features
(distributions). Let Xa be the probability distribution that describes a user
(a stands for authentic), while Xg represents the distribution of the whole pop-
ulation (g means global). Also let Dg be the quantization of Xg and define
m = H∞(Dg). This quantization is necessary because we need to have a mean-
ingful value for the min-entropy of Xg. Also, at some point the algorithm will
have to do a quantization in order to output the discrete secret s. Therefore, it
is natural to analyze Xg by some quantization.

In Sect. 3.4 of [BDHV07b] it is shown that ε, the distance to the uniform
distribution, can be bounded as a function of the min-entropy m and the length l:

ε(m, l) =

⎧
⎪⎨

⎪⎩

0, if m = l

2−l, if l − 1 < m < l

2−m − 2−l, if m ≤ l − 1

Also, recall that, intuitively, Reg should only work if the two features are suf-
ficiently similar. In the next definition this condition is substituted by stipulating
that the regeneration procedure should succeed with probability Psuc = 1−FRR.

Definition 2 [BDHV07b]. An (Xg,m, l, FRR) continuous-source fuzzy extrac-
tor for the user distribution Xa is a pair of randomized procedures Gen and Reg
where:

Gen is a (necessarily randomized) generation function which, on input Xa,
extracts a private string s ∈ {0, 1}l and a public string Q, such that for
any user distribution Xa the following holds: if 〈s,Q〉 ← Gen[Xa] then
SD[〈s,Q〉, 〈Ul, Q〉] ≤ ε(m, l).

Reg is a regeneration function which, given a measurement u′ sampled from
Xa and a public string Q, outputs a string s = Reg[u′, Q] ∈ {0, 1}l where
〈s,Q〉 ← Gen[Xa], with probability equal to the detection probability 1 −
FRR.

3 A CS-Fuzzy Extractor Assuming White Gaussian Noise

We are now ready to present our continuous-source fuzzy extractor based on
lattice codes, instantiating Definition 2 by specifying the two procedures Gen
and Reg.

Definition 3 (Instantiation of Definition 2). Let Xg be the global distribution of
the feature and Xd its domain, the distribution of the feature of a user be Xa, a
lattice Λ with generator matrix G and Dg the distribution Xg quantized by Λ with
H∞(Dg) = m. This means that we quantize Xg by the decoding its realization to
the nearest lattice point. We define the functions Gen: Xd → R

n × {0, 1}l and
Reg: Xd × R

n → {0, 1}l as follows:

Gen receives as input Xa and outputs a secret information s ∈ {0, 1}l that is
equal to a random point b ∈ Bn where B = {−2

l
2n , · · · , 2

l
2n − 1} and a
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public vector Q ∈ R
n such as Q = S + Xa, where S is found by taking

S = Gb. Also SD((s,Q), (Ul, Q)) ≤ ε(m, l).
Reg receives as inputs the points Y,Q ∈ R

n, where Y is a measurement of Xa,
and outputs a string s ∈ {0, 1}l with probability 1−FRR. Using the UPC,
the string s is found after calculating the nearest lattice point of Q − Y ,
taking its index, converting to a string of a bits regenerating finally s.

Recall that the FRR, i.e. the probability that error correction fails, depends
on the choice of Λ, as shown by Eq. (3) on page 6. The difference Q − Y equals
S + Xa − Y , so in our model this implies that S is the original information with
noise Xa − Y .

Our cs-fuzzy extractor can be viewed as the code-offset method applied in
R

n. With minor modifications it can be used as a key reconciliation scheme, as
depicted in Fig. 1.

Fig. 1. Code-offset method in R
n

4 Dealing with Different Types of Noise

4.1 Gaussian Approximation Using the Central Limit Theorem

The UPC has the supported maximum noise (i.e. allowing error correction)
described by Eq. (3). However, this equation only holds if the noise has Gaussian
distribution, which in practice is not always true. So, if the correction needs
to be maximized to achieve the theoretical limit, then the features need to
be adjusted.

Analyzing the scheme, the vector S +X −Y is decoded to the nearest lattice
point. Therefore, X − Y can be seen merely as a noise e. As X and Y are two
n-dimensional vectors then the position i of the noise e is:

e[i] = X[i] − Y [i] (4)

Assuming that each position of the vectors X and Y are respectively i.i.d
(independent and identically distributed) random variables, then we can con-
clude that e is a white noise. So, the central limit theorem can be used to adjust
the noise to have a distribution closer to the Gaussian.
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This theorem (as described in [Was04, p. 77]) states that if there are n i.i.d
random variables (X1,X2, · · · ,Xn), with mean μ and variance σ2, and X =
1
n

∑n
i=1 Xi, then:

X ≈ N

(

μ,
σ2

n

)

(5)

as n → ∞. Hence, if a moving average filter without the constant for division is
used in X and Y before the difference is calculated, then the result will be:

esmooth[i] =
t1∑

t=−t2

X[t + i] − Y [t + i] t1, t2 ∈ Z
+, (6)

By Eq. (4):

esmooth[i] =
t1∑

t=−t2

e[t + i] (7)

As the size of the window increases, esmooth[i] will be closer to a Gaussian random
variable with mean (t1 + t2 + 1)μe and variance (t1 + t2 + 1)σ2

e making the
correction easier in the UPC.

The cost of this operation is that the entropy of the feature will be decreased.
For example the original distribution could be uniform, but after this process it
will be closer to a Gaussian.

Also, this will work only if the noise is already white (X and Y are white).
If it is not, then the feature extraction as to be changed or some whitening
method has to be used on the features to at least make correction possible.
However, there is an important point. X and Y need to be white processes but,
at the same time, X[i] and Y [i] need to have high correlation ∀i and, for an
adversary that tries to impersonate a legitimate part with a degraded feature,
the correlation has to be low.

In [YRB98] a Singular Value Decomposition (SVD) of the correlation matrix
between X and Y that works exactly in this desired way has been shown. There-
fore, we have a way to make to the correlation 0 between samples. This may not
make them independent, but it may be enough for the Gaussian approximation.
Only a good estimation of the correlation matrix is needed.

4.2 Variance Normalization to Stay Within the Correction Capacity

Still, the noise power can assume values larger than the theoretical limits. To
avoid this, only a simple change of the lattice needs to be performed. However,
depending on the correction scheme used, this may not possible. Because V ol(Λ)
is a constant, the maximum noise power supported is also a constant. Therefore,
the remaining option is to process the feature.

So, by Eq. (6), if X and Y are multiplied by c, then the error will be also
multiplied by this constant.

esmooth[i] = c

t1∑

t=−t2

X[t + i] − Y [t + i] (8)
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So, the noise power σ2 = var(X−Y ) is multiplied by c2. The GSNR as described
by Eq. (2) will be:

GSNR =
V ol(Λ)

2
n

2πeσ2c2

=
n
√|det G|2
2πeσ2c2

=
n

√
( 1

cn |det G|)2
2πeσ2

=
n

√
(|det G

c |)2
2πeσ2

(9)

The maximum noise is:

σ2
max =

n

√
( 1

cn |det G|)2
2πeσ2

(10)

We summarize this as follows.

Fact 1. A feature vector X normalized by some constant c is equivalent to mul-
tiplying the V ol(Λ) by the n-th power of the inverse of the same constant.

Fact 2. The supported maximum noise when the feature vector X is normalized

by some constant c is the same of the sublattice ΛS of Λ with Gs =
1
c
G and

V ol(ΛS) = 1
cn V ol(Λ).

5 Proof of Security of Our Fuzzy Extractor

We will now analyze the cs-fuzzy extractor of Definition 3. We will prove not
only the security of the cs-fuzzy extractor proposed with a lower bound but also
the maximum min-entropy of the secret with an upper bound. Both limits give
us a more precise idea of the security of the scheme.

Assuming that the adversary is passive and that he has knowledge of Q, Xg

and the lattice Λ used, he can simply estimate the region in which S can occur.
Figure 2 shows one instance of our scheme pointing out the global distribution Xg

and the region that the adversary knows. Note that, depending on the realization
of Q, the possible values of S change. The distribution Xg has been translated
and reflected in order to correctly analyze the probability distribution function
of S.

Property S3 of [VTOSŠ10] for a worst-case m̃-secure fuzzy extractor dictates
a lower bound for the min-entropy of the secret information given the helper
data. Before we prove that our fuzzy extractor has this property, we will prove
an upper bound of the min-entropy of the secret. It will give us a natural bound
and also the idea to how to prove the lower bound.
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S

X

Q = S +X

Fig. 2. Security Analysis of the Code-Offset Method

Theorem 1 (Upper Bound for the Adversary on the Min-Entropy).
For an adversary, the min-entropy of the secret information S given that he has
knowledge of the lattice Λ used, of the global distribution Xg and of the realization
q of the transmitted information Q, is less or equal than the min-entropy of the
discrete distribution defined as q − Xg decoded to the nearest lattice point.

H∞(S|Xg, Q = q, Λ) ≤ H∞(decode(q − Xg)) (11)

The proof of this theorem is in AppendixA.
The value H∞(decode(q−Xg)) depends of the lattice chosen, the realization q

of Q and the global distribution of the feature and can be calculated empirically.
Using the idea presented for the upper bound, we are ready to present the

lower bound of the min-entropy.

Theorem 2 (Lower Bound for the Adversary on the Min-Entropy).
Define the random variable Xtf = [f1(X1), f2(X2), · · · , fn(Xn)] with the function
f returning a random variable as

fi(Xi) =

{
Xi if bi − ai > ||cmax||
p(ai+bi

2 ) = 1 and 0 otherwise, otherwise.

Let ||cmax|| stand for the length of the biggest vector of the generator matrix G
of Λ and [ai, bi] stands for the interval of occurrence of Xi. Let the matrix C be
an n-dimensional diagonal matrix with non-zero elements as c1, c2, · · · , cn with
ci = bi−ai−||cmax||

bi−ai
if Xi is not a constant, otherwise ci = 1 for 1 ≤ i ≤ n.

For an adversary, the min-entropy of the secret information S given that
he has knowledge of the lattice Λ used, of the global distribution Xg =
[X1,X2, · · · ,Xn] and of the realization q of the transmitted information Q is
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greater or equal than the min-entropy of the discrete distribution defined as been
q − Xmin decoded to the nearest lattice point.

H∞(decode(q − Xmin)) ≤ H∞(S|Xg, Q = q, Λ) (12)

where Xmin = CXtf .

The complete proof and discussion of this theorem can be found on AppendixB.
With this bound, we proved that our fuzzy extractor is secure according to

property S3.
Just as with the upper bound, this lower bound can also be calculated empir-

ically using the lattice Λ, the realization q of Q and Xg.
We summarize the results of both theorems in the following corollary.

Corollary 1 (Bounds on the Min-Entropy)

H∞(decode(q − Xmin)) ≤ H∞(S|Xg, Q = q, Λ) ≤ H∞(decode(q − Xg)) (13)

One important fact is that the parameter V ol(Λ) determines the density of lattice
points and, therefore, the min-entropy. By Eq. (3), the same parameter V ol(Λ)
also determines the maximum supported noise. So, there is a trade-off between
correction capacity and security.

As discussed in Sect. 4.2, the normalization can be done to lower down the
noise power. However, given a lattice Λ, it may be used to decrease its volume
and, at the same time, increase the min-entropy. By Fact 1, the V ol(Λ) can
be changed and, consequently, the security level and correction capacity of the
fuzzy extractor can be adjusted without changing the lattice Λ. Furthermore,
the lower bound provided by Theorem2 also uses this normalization to analyze
the multiplication by C as the shrinking of Xg or the increasing of V ol(Λ).

6 Practical Construction with Low-Density Lattice Codes

Low-Density Lattice Codes (defined in [SFS08]) are capacity achieving codes
with efficient coding and decoding algorithms. They use an n-dimensional lattice
with a square non-singular generator matrix G, with G−1 = H, where H is the
parity check matrix which is always sparse and with |det H| = |det G| = 1.

The uncoded message b is an n-dimensional vector of integers. The encoded
message S is a point of the lattice with S = Gb, (S ∈ R

n). According to [SFS08]
the complexity of encoding has linear time and memory requirements if the
Jacobi method is used. For decoding, because of the sparse structure of H, it
is possible to use a belief-propagation algorithm similar to those used for Low-
Density Parity Check Codes [Gal62]. Its execution time and memory usage have
linear complexity too.

Because LDLC work in the UPC with |det G| = 1, by Eq. (3) the maximum
supported noise power (i.e. still allowing error correction) is:

σ2
max LDLC =

1
2πe

(14)
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For the generation of G and H, [SFS08] gives an efficient, non-deterministic
algorithm which creates a random parity matrix needing as inputs only the
desired dimension n and the sparsity level d of the matrix (numbers of nonzero
elements in each column or in each line).

If we use LDLC in the code-offset method of Fig. 1, then we can easily create
the generator matrix G for any size of the feature. Also we will have the advan-
tages of linear complexity in execution time and memory for the encoding and
decoding steps. Observe that the noise may not have Gaussian distribution or
power below the acceptable limit as shown by Eq. (14). However, as discussed
in Sect. 4, both problems can be solved with a modified moving average filter
and the normalization of the data, respectively. Therefore, LDLC are a practical,
suitable choice for the code-offset method in R

n.
We can add the functionalities of the LDLC to the construction of Sect. 3.

The decoder of LDLC finds the nearest lattice point and the lattices used are
randomly generated with volume equal to 1.

7 Conclusion

The question of reconciliating continuous features (as opposed to bits) is both
interesting and important. In this paper we presented a novel approach using
lattice codes. In particular, we proposed a new practical cs-fuzzy extractor using
LDLC in the UPC with the code-offset method. The advantages are its linear
complexity in execution time and memory requirements, and the generalization
to any dimension.

In Sect. 4 two more phases to the cs-fuzzy extractor were introduced in order
to make any feature suitable to be used. The first phase shows how to adjust
the feature to be close to a Gaussian and the second shows a normalization that
bounds the noise power to make correction possible.

We derived in Sect. 5 an upper bound and a lower bound for the entropy of
the key given a passive adversary, proving that the proposed fuzzy extractor is
secure. This bounds are not attached to a specific code, but with the UPC.

8 Open Questions and Possible Future Work

First, it is desirable to prove a tighter bound on H∞(S|Xg, Q = q, Λ), the min-
entropy that an adversary can obtain about the secret. Another possibility is to
substitute the Low-Density Lattice Codes with some other lattice codes, such as
LDA [PBZB12]. We suspect this leads to a better performance.

More general theoretical questions concern the possibility of using these
techniques for Continuous-Variable Quantum Key Distribution (see for instance
[LHHPZ15]). Also, it is well-known that a noisy channel can be used as a start-
ing point for Oblivious Transfer between two parties [CK88]. So one obvious
approach is to prove a lower bound on the noise between Alice and Bob and
present a practical OT protocol based on correlated features.
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The fuzzy extractor presented here has been applied to a pairing protocol
for smartphones based on audio. The signal processing performed on the audio
is quite complex, and will be discussed in another paper.

Appendix

A Proof of Theorem1

Proof In order to know which realization of the secret information was chosen,
the adversary takes the realization of the public transmitted information q and
decreases from the distribution Xg. This results in a translation of Xg. The
consequence is that this translation changes the configuration of lattice points
inside the domain of the distribution. Therefore, it is necessary to analyze the
security for each realization of Q.

Given q, the used lattice Λ and because S = Q − Xa, the adversary knows
the possible realizations of S. The probability of each realization Si of S is that
the value is inside its Voronoi cell. Therefore

P [Si] =
∫

· · ·
∫

Vq(Si)

pX(−v1 + q1, · · · ,−vn + qn)dv1 · · · dvn, Si ∈ S (15)

where Vq(Si) stands for the Voronoi cell of the point Si regarding the set with
the same domain of q − Xg and S = {S1, S2, · · · , Sm} with S ⊆ Λ.

However, the division of the space using the domain of p−Xg and the lattice
Λ can be different. Some regions that belong to some Voronoi cell of a point of
S could be closer to an outside point. The set of points M = {M1,M2, · · · ,Mk}
is defined with the following property

V ′(Mj) = S ∩ V (Mj),Mj ∈ Λ, j ∈ Z
+ (16)

with V ′(Mj) �= ∅ and V (Mj) is its Voronoi cell regarding the lattice Λ.
If S could be mapped to those points, then their probabilities are

P [Mj ] =
∫

· · ·
∫

V ′(Mj)

pX(−v1 +q1, · · · ,−vn +qn)dv1 · · · dvn, V ′(Mj) �= ∅ (17)

The maximum value possible for P [Mj ] is V ′(Mj) = min(V (Mj),max
(Vq(Si))). In other words, when V (Mj) ⊆ P. Because S ⊆ M, then

max(P [Si]) ≥ max(P [Mj ]) (18)

This implies that
H∞(S) ≤ H∞(M) (19)

The set M is exactly the decoding of the points of q − Xg without any
restriction, therefore

H∞(M) = H∞(decode(q − Xg)) (20)
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The probability of the points of S for an adversary can be seen as

P [S] = P [S|Xg, Q = q, Λ] (21)

By Eqs. (19), (20) and (21) we conclude that

H∞(S|Xg, Q = q, Λ) ≤ H∞(decode(q − Xg)) (22)

B Proof of Theorem 2

This proof will use the same idea of the proof for the upper bound. The difference
is that we will create a distribution Xmin that is just the adjustment of the
distribution Xg in a way that q − Xmin will always decode to a lattice point
covered by the domain Xd of Xg. This adjustment can be seen as the decrease
of the region determined by Xd or the increase of the volume of the lattice Λ.

Proof. In order to know which realization of the secret information was chosen,
the adversary takes the realization of the public transmitted information q and
decreases from the distribution Xg. This results in a translation of Xg. The
consequence is that this translation changes the configuration of lattice points
inside the domain of the distribution. Therefore, it is necessary to analyze the
security for each realization of Q.

Given q, the used lattice Λ and because S = Q − Xa, the adversary knows
the possible realizations of S. The probability of each realization Si of S is that
the value is inside its Voronoi cell. Therefore

P [Si] =
∫

· · ·
∫

Vq(Si)

pX(−v1 + q1, · · · ,−vn + qn)dv1 · · · dvn, Si ∈ S (23)

where Vq(Si) stands for the Voronoi cell of the point Si regarding the set with
the same domain of q − Xg and S = {S1, S2, · · · , Sm} with S ⊆ Λ.

However, the division of the space using the domain of q −Xg and the lattice
Λ can be different. Some regions that belong to some Voronoi cell of a point of S
could be closer to an outside point. Because of this, we will shrink the domain of
q − Xg in a way that the decoding will find only lattice points inside this region.

Finding the exactly configuration of lattice points is hard, but we know that
lattice points are a linear combination of vectors of the generator matrix G and
that the maximum distance between lattice point is the length ||cmax|| of the
biggest vector of G. Therefore, if we decrease ||cmax|| from a lattice point, we
will pass by another lattice point.

Now, assuming that Xg = [X1,X2, · · · ,Xn] and that the domain of each Xi

is [ai, bi] with bi − ai > ||cmax||, then we can transform each Xi in a way that
if we choose a point inside Xd then it will decoded also to a point inside Xd. If
we use the interval

[
ai + ||cmax||

2 , bi − ||cmax||
2

]
with 1 ≤ i ≤ n, all points in this

region will be decoded to a lattice point that belongs to q − Xg. However, the
fact that bi −ai ≤ ||cmax|| may occur. In this case, we will treat Xi as a constant
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with p(ai+bi
2 ) = 1 and 0 otherwise. The value ai+bi

2 is chosen in order to force
the decoding function to find a point inside q − Xg. The consequence of this
approach is that the variable Xi does not contribute to the overall min-entropy.

First we define a function f that transforms the random variables that have
a interval of occurrence less than ||cmax||:

fi(Xi) =

{
Xi if bi − ai > ||cmax||
p(ai+bi

2 ) = 1 and 0 otherwise, otherwise

With this function, we have only the random variables that we can surely map
to lattice points inside the domain of q − Xg.

It is important to notice that the decrease in the interval is just a multi-
plication of the random variable Xi by the constant ci = bi−ai−||cmax||

bi−ai
. The

resulting probability density function is pYi
(yi) = pXi

(yi

ci
) 1

ci
. We can conclude

that c < 1 and lim
bi−ai→∞

ci = 1, or in other words, if the interval is large enough

the approximation will be close.
We define Xtf = [f1(X1), · · · , fn(Xn)] and the diagonal matrix C with ele-

ments as

ci =

{
bi−ai−||cmax||

bi−ai
if bi − ai > ||cmax||

1, otherwise

Taking Xmin = CXtf will give a smaller region where all points will be
decoded to points of q − Xd. The set M = {M1, · · · ,Mk} is defined as the one
with the elements that will be the outcome of decode(q − Xmin). Assuming that
the domain of q − Xg will be a convex area, their probabilities are

P [Mj ] =
∫

· · ·
∫

V ′(Mj)

pXmin
(−v1 + q1, · · · ,−vo + qo)dv1 · · · dvo

=
n∏

i=1

1
ci

∫

· · ·
∫

V ′(Mj)

pX

(

− v1 + q1, · · · ,−vo + qo|Xo+1 =

qo+1 − ao+1 + bo+1

2
, · · · Xn = qn − an + bn

2

)

dv1 · · · dvo

(24)

with 0 ≤ o ≤ n and V ′(Mj) is the Voronoi cell regarding q − Xmin.
Because M ⊆ S , then

max(P [Mj ]) ≥ max(P [Si]) (25)

This implies that
H∞(M) ≤ H∞(S) (26)

The set M is the decoding of the points of q −Xmin without any restriction,
therefore

H∞(M) = H∞(decode(q − Xmin)) (27)
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The probability of the points of S for an adversary can be seen to be

P [S] = P [S|Xg, Q = q, Λ] (28)

By Eqs. (26), (27) and (28) we conclude that

H∞(decode(q − Xmin)) ≤ H∞(S|Xg, Q = q, Λ) (29)
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Abstract. We study the maximal mutual information about a random
variable Y (representing non-private information) displayed through an
additive Gaussian channel when guaranteeing that only ε bits of infor-
mation is leaked about a random variable X (representing private infor-
mation) that is correlated with Y . Denoting this quantity by gε(X, Y ),
we show that for perfect privacy, i.e., ε = 0, one has g0(X, Y ) = 0 for any
pair of absolutely continuous random variables (X, Y ) and then derive
a second-order approximation for gε(X, Y ) for small ε. This approxi-
mation is shown to be related to the strong data processing inequality
for mutual information under suitable conditions on the joint distribu-
tion PXY . Next, motivated by an operational interpretation of data pri-
vacy, we formulate the privacy-utility tradeoff in the same setup using
estimation-theoretic quantities and obtain explicit bounds for this trade-
off when ε is sufficiently small using the approximation formula derived
for gε(X, Y ).

Keywords: Data privacy · Rate-privacy function · Estimation noise-to-
signal ratio · MMSE · Additive Gaussian channel · Mutual information ·
Maximal correlation

1 Introduction

The ever increasing growth of social networks has brought major challenges
in terms of data privacy. This paper focuses on a privacy problem which is
relevant for users or designers of social networks: the trade-off between data
privacy and customized services performance. On the one hand, users want their
private data to remain secret, and on the other hand, they also desire to benefit
from customized services that require personal information in order to function
properly. In this context, it is reasonable to assume that the user has two kinds of
data: private data such as passport numbers, credit cards numbers, etc.; and non-
private data such as gender, age, etc. In general, private and non-private data
are correlated. Thus, it is possible that enough non-private data discloses a non-
negligible amount of private data. Therefore, it is necessary to develop techniques
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to provide/store personal data (user’s point of view/designer’s point of view) that
yield the best customized services performance without compromising privacy.
The goal of these techniques is to provide displayed data that will be used
by customized services which contains as much non-private data as possible
while revealing as little private data as possible. Also, for security reasons, the
displayed data has to be produced using only non-private data. In general, this
implies that the displayed data should be a randomized version of the non-private
data.

To formulate this problem, we need to specify a privacy function and a utility
function that respectively measure the amount of private and non-private data
leaked into the displayed data. The authors of this paper recently suggested
in [1] to use mutual information as the measure of both utility and privacy.
Let X and Y denote the private and non-private data, respectively. The rate-
privacy function gdisε (X,Y ) for discrete random variables X and Y having finite
alphabets X and Y, respectively is defined for any ε ≥ 0 as the privacy-utility
tradeoff

gdisε (X,Y ) := max
PZ|Y :X�−−Y �−−Z,

I(X;Z)≤ε

I(Y ;Z), (1)

where the auxiliary random variable Z is the privacy-constrained displayed data
and X �−− Y �−− Z denotes that X, Y , and Z form a Markov chain in
this order. The channel PZ|Y is called the privacy filter. It is shown in [2] that
gdisε (X,Y ) is in fact a corner point of an outer bound on the achievable region
of the “dependence dilution” coding problem which provides an information-
theoretic operational interpretation. It is also shown that if the channel from
Y to X displays certain symmetry properties, then gdisε (X,Y ) can be calculated
in closed form. For instance, if PX|Y is a binary symmetric channel (BSC) and
Y ∼ Bernoulli(0.5), then gdisε (X,Y ) = ε

I(X;Y ) .
As a more practical and operational notion of privacy, estimation-theoretic

formulations of privacy are introduced in [3,4]. In particular, Calmon et al. [3]
studied the case where X = Y and defined the utility by Pr(Ŷ (Z) = Y ) where
Ŷ : Z → Y is the Bayes decoding map satisfying I(Y ;Z) ≤ ε for discrete Y .
Motivated by [5], which suggested the use of maximal correlation ρ2m(X,Z) to
measure the privacy level between X and Z, the authors in [4] recently gener-
alized this model to arbitrary discrete X and Y , with the same utility function
except that Z is required to satisfy ρ2m(X,Z) ≤ ε. It was shown independently
in [1,6] that if perfect privacy is required, i.e., Z must be statistically inde-
pendent of X, then Z is also independent of Y unless the probability vectors
{PY |X(·|x) : x ∈ X} are linearly dependent (in which case Y is called weakly
independent of X, see [7, Appendix II]). Hence, if Y is not weakly indepen-
dent of X, then gdis0 (X,Y ) = 0. Other formulations for privacy have appeared
in [8–13].

The setting where (X,Y ) is a pair of absolutely continuous random variables
with X = Y = R is studied in [2] with both utility and privacy being measured
by mutual information, and in [4], where both utility and privacy are measured in
terms of the minimum mean-squared error (MMSE). In both cases, it is assumed
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that the privacy filter is an additive Gaussian channel with signal-to-noise ratio
(SNR) γ ≥ 0, i.e.,

Z = Zγ :=
√

γY + NG, (2)

where NG ∼ N (0, 1) is independent of (X,Y ). In particular, the rate-privacy
function [2] is defined as

gε(X,Y ) := max
γ≥0,

I(X;Zγ)≤ε

I(Y ;Zγ). (3)

Letting mmse(U |V ) denote the MMSE of estimating U by observing V and
letting var denote the variance, the estimation-theoretic privacy-utility tradeoff
is defined in [4] by the estimation noise-to-signal ratio (ENSR):

sENSRε(X,Y ) := min
mmse(Y |Zγ)

var(Y )
, (4)

where the minimum is taken over all γ ≥ 0 such that mmse(f(X)|Zγ) ≥
(1 − ε)var(f(X)) for any non-constant measurable function f : X → R. Unlike
gε(X,Y ), sENSRε(X,Y ) has a clear operational interpretation; it is the small-
est MMSE associated with estimating Y given Z from which no non-degenerate
function f of X can be estimated efficiently. This notion is related to semantic
security [14] in cryptography. An encryption mechanism is said to be seman-
tically secure if the adversary’s advantage for correctly guessing any function
of the private data given an observation of the mechanism’s output (i.e., the
ciphertext) is required to be negligible. As opposed to the discrete case, perfect
privacy is achieved if and only if γ = 0, which gives rise to g0(X,Y ) = 0 (or
equivalently sENSR0(X,Y ) = 1) for any absolutely continuous (X,Y ).

1.1 Contributions

In this work, we investigate the “almost” perfect privacy regime, that is, when
ε > 0 is close to zero and derive a second-order approximation for gε(X,Y )
(Corollary 2). We also obtain the first and second derivatives of the mapping
ε �→ gε(X,Y ) for ε ∈ [0, I(X;Y )) (Theorem 1). For a pair of Gaussian random
variables (X,Y ), an expression for gε(X,Y ) is derived (Example 1) and it is
shown that the optimal filter has SNR equal to 22ε−1

1−2−2(I(X;Y )−ε) for all ε < I(X;Y )
and the SNR is infinity if ε ≥ I(X;Y ). Functional properties of the map ε �→
gε(X,Y ) are obtained (Proposition 1); in particular, it is shown than although
the map ε �→ gdisε (X,Y ) is concave [2], the map ε �→ gε(X,Y ) is neither convex
nor concave, and is infinitely differentiable (Corollary 1). Using a recent result
on the strong data processing inequality by Anantharam et al. [15], a lower
bound is obtained for gε(X,Y ). Assuming PY |X is a convolution with a Gaussian
distribution, i.e., Y = aX+MG, where a 	= 0 and MG ∼ N (0, σ2

M ) is independent
of X, we obtain an inequality relating mmse(Y |Zγ ,X) to mmse(Y |Zγ) from
which a stronger version of Anantharam’s data processing inequality is derived
for our setup (Theorem 2).
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One main result of this paper is to connect gε(X,Y ) with sENSRε(X,Y )
in the almost perfect privacy regime when X is Gaussian (Theorem 4). This
connection allows us to translate the approximation obtained for gε(X,Y ) to a
lower bound for sENSRε(X,Y ).

1.2 Preliminaries

For a given pair of absolutely continuous random variables (U, V ), we inter-
changeably use PUV to denote the joint probability distribution and also the
joint probability density function (pdf). The MMSE of estimating U given V is
given by

mmse(U |V ) := E[(U − E[U |V ])2] = E[var(U |V )],

where var(U |V ) = E[(U − E[U |V ])2|V ]. Guo et al. [16] proved the following
so-called I-MMSE formula relating the input-output mutual information of the
additive Gaussian channel Zγ =

√
γY +NG, where NG ∼ N (0, 1) is independent

of X, with the MMSE of the input given the output:

d
dγ

I(Y ;Zγ) =
1
2
mmse(Y |Zγ). (5)

Since X, Y and Zγ form the Markov chain X �−− Y �−− Zγ , it follows that
I(X;Zγ) = I(Y ;Zγ) − I(Y ;Zγ |X) and hence two applications of (5) yields [16,
Theorem 10]

d
dγ

I(X;Zγ) =
1
2

[mmse(Y |Zγ) − mmse(Y |Zγ ,X)] . (6)

The second derivative of I(Y ;Zγ) and I(X;Zγ) are also known via the formula
[17]

d
dγ

mmse(Y |Zγ ,X) = −E[var2(Y |Zγ ,X)]. (7)

Rényi [18] defined the one-sided maximal correlation between U and V (see
also [13, Definition 7.4]) as

η2
V (U) := sup

g
ρ2(U, g(V )) =

var(E[U |V ])
var(U)

, (8)

where ρ(·, ·) is the (Pearson) correlation coefficient, the supremum is taken over
all measurable functions g, and the equality follows from the Cauchy-Schwarz
inequality. The law of total variance implies that

mmse(U |V ) = var(U)(1 − η2
V (U)). (9)

In an attempt of symmetrizing η2
V (U), Rényi [18] (see also [19,20]) defined the

maximal correlation as

ρ2m(U, V ) = sup
f,g

ρ2(f(U), g(V )). (10)
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Comparing (8) with (10) reveals that

ρ2(X,Y ) ≤ η2
X(Y ) ≤ ρ2m(X,Y ). (11)

Clearly, unlike maximal correlation, ηX(Y ) is asymmetric, i.e., in general
ηX(Y ) 	= ηY (X), and hence according to Rényi’s postulates [18], it is not a
“proper” measure of dependence. However, it turns out to be an appropriate
measure of separability between private and non-private information in the
almost perfect privacy regime (see Corollary 2). On the other hand, maximal
correlation satisfies all the Rényi’s postulates [18]. In particular, it is symmetric
and for jointly Gaussian random variables U and V with correlation coefficient
ρ, we have ρ2m(U, V ) = ρ2.

2 Rate-Privacy Function for Additive Privacy Filters

Consider a pair of absolutely continuous random variables (X,Y ) distributed
according to PXY . Let X and Y represent the private data and the non-private
data, respectively. We think of X as having fixed distribution PX and Y being
generated by the channel PY |X , predefined by nature. Now consider the setting
where Alice observes Y and wishes to describe it as accurately as possible to Bob
in order to get a utility from him. Due to the correlation between Y and the
private data X, Alice needs to provide Bob a noisy version Z of Y , such that Z
cannot reveal more than ε bits of information about X. In fact, we assume that Z
is obtained via the privacy filter, Z = Zγ defined in (2). The aim is to pick γ ≥ 0
such that Zγ preserves the maximum amount of the information about Y while
satisfying the privacy constraint. The rate-privacy function gε(X,Y ), defined in
(3), quantifies the tradeoff between these conflicting goals [2]. Note that since
I(Y ;Zγ) = I(Y ;Y + 1√

γ NG), we can interpret 1
γ as the noise variance. Due to the

data processing inequality, one can restrict ε to the interval [0, I(X;Y )) in the
definition of gε(X,Y ) and consequently for any ε ≥ I(X;Y ) the optimal noise
variance must be zero and hence gε(X,Y ) = ∞. The case where the displayed
data is required to carry no information at all about X, i.e., where ε = 0, is
often called perfect privacy.

The maps γ �→ I(Y ;Zγ) and γ �→ I(X;Zγ) are strictly increasing over
[0,∞) [2, Lemmas 16, 17] and hence there exists a unique γε ∈ [0,∞) such that
I(X;Zγε

) = ε and gε(X,Y ) = I(Y ;Zγε
). This observation yields the following

proposition.

Proposition 1. For absolutely continuous random variables (X,Y ), we have

1. The map ε �→ γε is strictly increasing and continuous, and it satisfies γ0 = 0
and γI(X;Y ) = ∞.

2. The map ε �→ gε(X,Y ) is non-negative, increasing and, continuous on
[0, I(X;Y )), and it satisfies g0(X,Y ) = 0 and gI(X;Y )(X,Y ) = ∞.
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3. Let D(Y ) denote the “non-Gaussianness” of Y , defined as D(Y ) := D
(PY ||PYG

) (here D(·||·) is the Kullback-Leibler divergence) with YG being a
Gaussian random variable having the same mean and variance as Y . Then
we have

1
2

log
(
1 + γε2−2D(Y )var(Y )

)
≤ gε(X,Y ) ≤ 1

2
log(1 + γεvar(Y )).

Proof. Parts 1 and 2 can be proved directly from continuity and strict monotonic-
ity of the maps γ �→ I(Y ;Zγ) and γ �→ I(X;Zγ). The upper bound in part 3 is a
direct consequence of the fact that a Gaussian input maximizes the mutual infor-
mation between input and output of an additive Gaussian channel. The lower
bound follows from the entropy power inequality [21, Theorem 17.7.3] which
states that 22h(Zγ) ≥ γ22h(Y ) + 2πe and hence

gε(X,Y ) = I(Y ;Zγε
) ≤ 1

2
log

(
γε22h(Y ) + 2πe

)
− 1

2
log(2πe),

from which and the fact that D(Y ) = h(YG)−h(Y ), the lower bound immediately
follows. ��
In light of Proposition 1, it is clear that, unless X and Y are independent, Zγ is
independent of X if and only if γ = 0, which implies g0(X,Y ) = 0. As mentioned
in the introduction, this is in contrast with the discrete rate-privacy function (1),
where gdis0 (X,Y ) may be positive (for example, when Y is an erased version of
X, see [2, Lemma 12]).

Example 1. Let (XG, YG) be a pair of Gaussian random variables with zero mean
and correlation coefficient ρ. Then Zγ is also a Gaussian random variable with
variance γvar(YG) + 1. Without loss of generality assume that YG has unit vari-
ance. Then

I(XG;Zγ) =
1
2

log
(

γ + 1
γ − γρ2 + 1

)

,

and hence for any ε ∈ [0, I(XG;YG)) the equation I(XG;Zγ) = ε has the unique
solution

γε =
1 − 2−2ε

2−2ε + ρ2 − 1
.

Thus, we obtain

gε(XG, YG) =
1
2

log(1 + γε) =
1
2

log
(

ρ2

2−2ε + ρ2 − 1

)

=
1
2

log
(

1 +
22ε − 1

1 − 2−2(I(XG;YG)−ε)

)

. (12)

The graph of gε(XG, YG) is depicted in Fig. 1 for ρ = 0.5 and ρ = 0.8. It is worth
noting that gε(XG, YG) is related to the Gaussian rate-distortion function RG(D)
[21]. In fact, gε(XG, YG) = RG(Dε) for ε ≤ I(XG;YG) where

Dε =
2−2ε − 2−2I(XG;YG)

ρ2
,
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Fig. 1. The rate-privacy function for a pair of Gaussian (XG, YG), given by (12), for
ρ = 0.5 and ρ = 0.8. The first and second-order approximations are also shown in red
and green, respectively. (Color figure online)

is the mean squared distortion incurred in reconstructing Y given the displayed
data Zγ .

The next result provides the first derivative g′
ε(X,Y ) of the function ε �→

gε(X,Y ) at any ε < I(X;Y ).

Theorem 1. For any absolutely continuous random variables (X,Y ), we have

g′
ε(X,Y ) =

mmse(Y |Zγε
)

mmse(Y |Zγε
) − mmse(Y |Zγε

,X)
.

Proof. Since gε(X,Y ) = I(Y ;Zγε
), we have

d
dε

gε(X,Y ) =
[

d
dγ

I(Y ;Zγ)
]

γ=γε

d
dε

γε

(a)
=

1
2
mmse(Y |Zγε

)
d
dε

γε, (13)

where (a) follows from (5). In order to calculate d
dεγε, notice that ε = I(X;Zγε

)
and hence taking the derivative of both sides of this equation with respect to ε
yields

1 =
[

d
dγ

I(X;Zγ)
]

γ=γε

d
dε

γε,
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and hence
d
dε

γε =
1

[
d
dγ I(X;Zγ)

]

γ=γε

(a)
=

2
mmse(Y |Zγε

) − mmse(Y |Zγε
,X)

, (14)

where (a) follows from (6). The result then follows by plugging (14) into (13). ��
As a simple illustration of Theorem1, consider jointly Gaussian XG and YG whose
rate-privacy function is computed in Example 1. In particular, (12) gives

g′
ε(XG, YG) =

2−2ε

2−2ε + ρ2 − 1
. (15)

On the other hand, since XG =
√

αYG+N1 where α = ρ2var(X), N1 ∼ N (0, σ2
N )

is independent of YG, and σ2
N = (1 − ρ2)var(X), one can conclude from [16,

Proposition 3] that

mmse(YG|Zγ ,XG) = mmse

(

YG|Zγ ,
1

σ2
N

XG

)

= mmse(YG|Zγ+a),

where a = ρ2

1−ρ2 . Recalling that mmse(YG|Zγ) = 1
1+γ , we obtain

mmse(YG|Zγ)
mmse(YG|Zγ) − mmse(YG|Zγ+a)

=
1 + (1 − ρ2)γε

ρ2

=
2−2ε

2−2ε + ρ2 − 1
,

which equals (15).
In light of Theorem 1, we can now show that the map ε �→ gε(X,Y ) is in fact

infinitely differentiable over (0, I(X;Y )).

Corollary 1. For a pair of absolutely continuous (X,Y ), the map ε �→ gε(X,Y )
is infinitely differentiable at any ε ∈ (0, I(X;Y )). Moreover, if all the moments
of Y is finite, then ε �→ gε(X,Y ) is infinitely right differentiable at ε = 0.

Proof. It is shown in [17, Proposition 7] that γ �→ mmse(Y |Zγ) is infinitely
differentiable at any γ > 0 and infinitely right differentiable at γ = 0 if all the
moments of Y are finite. Thus the corollary follows from Theorem1 noting that
since E[Y k]< ∞ for all k, we also have E[Y k|X = x]< ∞ for almost all x (except
for x in a set of zero PX -measure). It therefore follows that γ �→ mmse(Y |Zγ ,X)
is also infinitely right differentiable at γ = 0. ��
We remark that using (7) and Theorem 1, one can easily calculate the second
derivative as

g′′
ε (X, Y ) =

d2

dε2
gε(X, Y )

=
2
(

mmse(Y |Zγε , X)E[var2(Y |Zγε)] − mmse(Y |Zγε)E[var2(Y |Zγε , X)]
)

[mmse(Y |Zγε) − mmse(Y |Zγε , X)]3
.

(16)



Almost Perfect Privacy for Additive Gaussian Privacy Filters 267

The following corollary, which is an immediate consequence of Theorem1,
provides a second-order approximation for gε(X,Y ) as ε ↓ 0 and thus an approx-
imation to the the rate-privacy function in the almost perfect privacy regime.

Corollary 2. For a given pair of absolutely continuous random variables
(X,Y ), we have as ε ↓ 0,

gε(X,Y ) =
ε

η2
X(Y )

+ Δ(X,Y )ε2 + o(ε2),

where

Δ(X,Y ) =
1

η4
X(Y )

(
var2(Y ) − E[var2(Y |X)]

var2(Y )η2
X(Y )

− 1
)

, (17)

and η2
X(Y ) is the one-sided maximal correlation between X and Y defined in (8).

Proof. According to Corollary 1, we can use the second-order Taylor expansion
to approximate gε(X,Y ) around ε = 0, resulting in

gε(X,Y ) = εg′
0(X,Y ) +

ε2

2
g′′
0 (X,Y ) + o(ε2).

From Theorem 1 and (16) we have g′
0(X,Y ) = 1

η2
X(Y )

and g′′
0 (X,Y ) = 2Δ(X,Y ),

respectively, from which the corollary follows. ��
Since ρ2m(XG, YG) = ρ2 for jointly Gaussian XG and YG with correlation coeffi-
cient ρ, (11) implies that η2

XG
(YG) = ρ2 and Δ(XG, YG) = 1−ρ2

ρ4 , and therefore
Corollary 2 implies that for small ε > 0,

gε(XG, YG) =
1
ρ2

ε +
1 − ρ2

ρ4
ε2 + o(ε2).

This second-order approximation as well as the first-order approximation are
illustrated in Fig. 1 for ρ = 0.5 and ρ = 0.8.

Polyanskiy and Wu [22] have recently generalized the strong data processing
inequality of Anantharam et al. [15] for the case of continuous random variables
X and Y with joint distribution PXY . Their result states that

sup
X�−−Y �−−U,
0<I(U;Y )<∞

I(X;U)
I(Y ;U)

= S∗(Y,X), (18)

where

S∗(Y,X) := sup
QY ,

0<D(QY ||PY )<∞

D(QX ||PX)
D(QY ||PY )

,

where PX and PY are the marginals of PXY and QX(·) =
∫

PX|Y (·|y)QY (dy).
In addition, it is shown in [22] that the supremum in (18) is achieved by a binary
U . Replacing U with Zγ , we can conclude from (18) that

I(X;Zγ)
I(Y ;Zγ)

≤ S∗(Y,X),
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for any γ ≥ 0. Letting γ = γε, the above yields that

gε(X,Y ) ≥ ε

S∗(Y,X)
. (19)

Clearly, this bound may be expected to be tight only for small ε > 0 since
gε(X,Y ) → ∞ as ε → I(X;Y ), as shown in Proposition 1. Note that Theorem 1
implies limε↓0

gε(X,Y )
ε = 1

η2
X(Y )

. On the other hand, it can be easily shown that

η2
X(Y ) ≤ S∗(Y,X), with equality when X and Y are jointly Gaussian and hence

the inequality (19) becomes tight for small ε and jointly Gaussian X and Y .
The bound in (19) would be significantly improved if we could show that

gε(X,Y ) ≥ gε(XG, YG), where XG and YG are jointly Gaussian having the same
means, variances, and correlation coefficient as (X,Y ). This is because in that
case we could write

gε(X,Y ) ≥ gε(XG, YG)
(a)

≥ ε

η2
XG

(YG)
=

ε

ρ2(XG, YG)
=

ε

ρ2(X,Y )

(b)

≥ ε

η2
X(Y )

, (20)

where (a) and (b) follow from (12) and (11), respectively. However, as shown in
AppendixA, the inequality gε(X,Y ) ≥ gε(XG, YG) does not in general hold1. It
is therefore possible to have gε(X,Y ) < ε

η2
X(Y )

for some 0 < ε < I(X;Y ). To
construct an example, it suffices to construct PXY for which ε �→ gε(X,Y ) is
locally concave at zero (i.e., g′′

0 (X,Y ) < 0) and hence its graph lies below the
tangent line ε

η2
X(Y )

for some ε > 0. Let Y ∼ N (0, 1) and X = Y ·1{Y ∈[−1,1]}. Then

it can be readily shown that E[var(Y |X)] < E[var2(Y |X)], which implies that
Δ(X,Y ) < 0. Hence, since g′′

0 (X,Y ) = 2Δ(X,Y ), we have that g′′(X,Y ) < 0.
This observation is illustrated in Fig. 2.

As remarked earlier, the map ε �→ gε(X,Y ) is in general not convex and
thus one cannot conclude that g′

ε(X,Y ) ≥ g′
0(X,Y ) = 1

η2
X(Y )

. However, it can
be shown that this implication holds if PXY has more structure. In the next
theorem, we assume that Y is a noisy version of X through an additive Gaussian
channel.

Theorem 2. For a given X ∼ PX with variance σ2
X , and Y = aX + MG with

MG ∼ N (0, σ2
M ) independent of X, we have:

1. If a2σ2
X ≥ σ2

M , then ε �→ gε(X,Y ) is convex.
2. For any a > 0 and ε ∈ [0, I(X;Y )), we have

gε(X,Y ) ≥ ε

η2
X(Y )

. (21)

Furthermore, we have

inf
γ≥0

mmse(Y |Zγ ,X)
mmse(Y |Zγ)

= 1 − η2
X(Y ), (22)

1 We will see in the next section that this holds in the estimation-theoretic formulation
of privacy, i.e., the Gaussian case is the worst case when the privacy filter is an
additive Gaussian channel and the utility and privacy are measured as mmse(Y |Zγ)
and mmse(X|Zγ), respectively.
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Fig. 2. The rate-privacy function for Y ∼ N (0, 1) and X = Y · 1{Y ∈[−1,1]}. The map
ε �→ gε(X, Y ) is clearly locally concave at zero. Note that here I(X; Y ) = ∞ and hence
ε is unbounded.

and

sup
γ>0

I(X;Zγ)
I(Y ;Zγ)

= η2
X(Y ). (23)

Proof. The first part follows from a straightforward computation showing that
if a2var(X) ≥ σ2

M , then Δ(X,Y ) ≥ 0.
To prove the second part, note that for any γ ≥ 0 we have

mmse(Y |Zγ) =mmse(aX + MG|a√
γX +

√
γMG + NG)

(a)
=

1
γ
mmse (NG|a√

γX +
√

γMG + NG)

(b)

≤ a2var(X) + σ2
M

1 + γ(a2var(X) + σ2
M )

<
a2var(X) + σ2

M

1 + γσ2
M

(c)
=

1
γ

(
a2var(X) + σ2

M

σ2
M

)

mmse (NG|√γMG + NG)

(d)
=

(
a2var(X) + σ2

M

σ2
M

)

mmse(Y |Zγ ,X), (24)

where (a) follows from the fact that mmse(U |αU +V ) = 1
α2mmse(V |αU +V ) for

α 	= 0, (b) and (c) hold by [23, Theorem 12] which states that mmse(U |U +VG) ≤
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mmse(UG|UG + VG) = var(U)var(V )
var(U)+var(V ) . Finally, (d) follows from the following chain

of equalities

mmse(Y |Zγ ,X) =mmse(aX + MG|a√
γX +

√
γMG + NG,X)

=mmse(MG|√γMG + NG,X)
(e)
=mmse(MG|√γMG + NG)

=
1
γ
mmse(NG|√γMG + NG)

where (e) holds since X and MG are independent.
We can therefore write

g′
ε(X,Y ) =

mmse(Y |Zγε
)

mmse(Y |Zγε
) − mmse(Y |Zγε

,X)
(a)

≥ a2var(X) + σ2
M

a2var(X)
(b)
=

1
η2

X(Y )
= g′

0(X,Y ), (25)

where (a) is due to (24) and (b) holds since var(Y ) = a2var(X) + σ2
M and

var(E[Y |X]) = a2var(X). The identity gε(X,Y ) =
∫ ε

0
g′

t(X,Y )dt, and inequality
(25) together imply that gε(X,Y ) ≥ ε

η2
X(Y )

for ε ≤ I(X;Y ).
Furthermore, according to Theorem1, the inequality (25) yields (22). Using

the integral representation of mutual information in (5) and (6), we can write
for any γ ≥ 0

I(X;Zγ) =
1
2

∫ γ

0

[mmse(Y |Zt) − mmse(Y |Zt,X)] dt

≤ η2
X(Y )

2

∫ γ

0

mmse(Y |Zt)dt = η2
X(Y )I(Y ;Zγ), (26)

where the inequality is due to (22). The equality (23) then follows from (26). ��
It should be noted that both MMSE and mutual information satisfy the data
processing inequality, see, [15,23], that is, mmse(U |V ) ≤ mmse(U |W ), and
I(U ;W ) ≤ I(U ;V ) for U �−− V �−− W . Therefore, (22) can be thought of
as a strong version of the data processing inequality for MMSE for the trivial
Markov chain Y �−− (Zγ ,X) �−− Zγ . Also, (23) can be viewed as a strong
data processing inequality for the mutual information for the Markov chain
X �−− Y �−− Zγ which is slightly stronger than (18) in the special case of
an additive Gaussian channel as η2

X(Y ) ≤ S∗(Y,X).

3 Estimation-Theoretic Formulation

Consider the same scenario as in the previous section: Alice observes Y , which is
correlated with the private data X according to a given joint distribution PXY ,
and wishes to transmit a random variable Z to Bob to receive a utility from
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him. An operational measure of privacy is proposed in [4] where Alice generates
the displayed data Z via a privacy filter PZ|Y such that Bob cannot efficiently
estimate any non-trivial function of X given Z. As before, her goal is to maximize
the utility (or equivalently minimize the cost) between Y and the displayed data
Z. The next definition formalizes this privacy guarantee. We call a function f of
random variable X non-degenerate if f(X) is not almost everywhere constant
with respect to the probability measure PX . Also, we assume throughout this
section that X and Y have finite second moments.

Definition 1. Given a pair of jointly absolutely continuous random variables
(X,Y ) with joint distribution PXY and 0 ≤ ε ≤ 1, we say Z satisfies ε-strong
estimation privacy, if there exists a channel PZ|Y that induces a joint distribution
PX × PZ|X , via the Markov condition X �−− Y �−− Z, satisfying

mmse(f(X)|Z) ≥ (1 − ε)var(f(X)), or equivalently, η2
Z(f(X)) ≤ ε, (27)

for any non-degenerate Borel function f . Similarly, Z is said to satisfy ε-weak
estimation privacy, if (27) is satisfied only for the identity function f(x) = x.

It is shown in [4] that ε-strong estimation privacy is equivalently character-
ized by the requirement ρ2m(X,Z) ≤ ε. In other words, mmse(f(X)|Z) ≥
(1 − ε)var(f(X)) for any non-degenerate Borel function f if and only if
ρ2m(X,Z) ≤ ε. Let the utility that Alice receives from Bob be measured by

var(Y )
mmse(Y |Z) , which she aims to maximize. For mathematical convenience, we define
the cost that Alice suffers by describing Z in lieu of Y as the estimation noise-to-
signal ratio (ENSR), mmse(Y |Z)

var(Y ) , and hence Alice equivalently aims to minimize
the ENSR. Focusing on additive Gaussian privacy filter Z = Zγ , we can formalize
the privacy-utility tradeoff as

sENSRε(X,Y ) := inf
γ∈Cε(PXY )

mmse(Y |Zγ)
var(Y )

= 1 − sup
γ∈Cε(PXY )

η2
Zγ

(Y ),

where Cε(PXY ) is the set of parameters γ corresponding to ε-strong privacy, i.e.,

Cε(PXY ) := {γ ≥ 0 : ρ2m(X,Zγ) ≤ ε}.

Similarly,

wENSRε(X,Y ) := 1 − sup
γ∈∂Cε(PXY )

η2
Zγ

(Y ),

where

∂Cε(PXY ) := {γ ≥ 0 : η2
Zγ

(X) ≤ ε}.

Note that both the maximal correlation and the one-sided maximal corre-
lation satisfy the data processing inequality, that is, ρ2m(X,Zγ) ≤ ρ2m(Y,Zγ)
and η2

Zγ
(X) ≤ ηY (X). Therefore, in the definition of sENSRε(X,Y ) and

wENSRε(X,Y ), we can restrict ε as 0 ≤ ε ≤ ρ2m(X,Y ) and 0 ≤ ε ≤ η2
Y (X),

respectively.
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Example 2. Let XG and YG be jointly Gaussian with correlation coefficient ρ.
Without loss of generality assume that E[XG] = E[YG] = 0. Since ρ2m(XG, Zγ) =
ρ2(XG, Zγ), we have

ρ2m(XG, Zγ) = ρ2
γvar(YG)

1 + γvar(YG)
,

which implies that the mapping γ �→ ρ2m(XG, Zγ) is strictly increasing. Also, the
equation ρ2m(XG, Zγ) = ε for 0 ≤ ε ≤ ρ2m(XG, YG) = ρ2 has a unique solution

γε :=
ε

var(YG)(ρ2 − ε)
,

and ρ2m(X,Zγ) ≤ ε for any γ ≤ γε. On the other hand, mmse(YG|Zγ) =
var(YG)

1+γvar(YG)
, which shows that the map γ �→ mmse(YG|Zγ) is strictly decreasing.

Hence,

sENSRε(XG, YG) =
mmse(YG|Zγε

)
var(YG)

= 1 − ε

ρ2
. (28)

Clearly for jointly Gaussian XG and YG we have η2
Zγ

(XG) = ρ2m(XG, Zγ) = ε, for
any γ ≥ 0 and consequently Cε(PXGYG

) = ∂Cε(PXGYG
), that is, for 0 ≤ ε ≤ ρ2,

sENSRε(XG, YG) = wENSRε(XG, YG) = 1 − ε

ρ2
. (29)

Unlike gε(X,Y ), the quantity sENSRε(X,Y ) is maximized among all pairs
of random variables (X,Y ) with identical means, variances and correlation coef-
ficient when X and Y are jointly Gaussian. Thus, Example 2 yields a sharp
upper-bound for sENSRε(X,Y ). This is stated in the following theorem.

Theorem 3 [4]. For any given jointly absolutely continuous (X,Y ), we have for
0 ≤ ε ≤ ρ2m(X,Y ),

wENSRε(X,Y ) ≤ sENSRε(X,Y ) ≤ sENSRε(XG, YG) = 1 − ε

ρ2m(X,Y )
,

where (XG, YG) is a pair of Gaussian random variables with the same means,
variances, and correlation coefficient as (X,Y ).

Next, we turn our attention to the approximation of sENSRε(X,Y ) in the
almost perfect privacy regime. Unfortunately, there is no known approximation
for ρ2m(X,Zγ) and mmse(X|Zγ) around γ = 0. Nevertheless, we can use the first-
order approximation of gε(X,Y ) to derive an approximation for sENSRε(X,Y )
around ε = 0. The next theorem shows this approximation for the special case
where PY |X is an additive noise channel.

Theorem 4. If X ∼ N (b, σ2
X) and Y = aX + M , where a, b ∈ R

+, and M is a
noise random variable having a density, then for sufficiently small ε

sENSRε(XG, Y ) ≥ 2−D(Y )2−2gε+o(ε)(XG,Y ). (30)
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Proof. We start by deriving an inequality relating mmse(Y |Zγ) and I(Y ;Zγ)
which originates from the Shannon lower bound for the rate-distortion function.
Since the Gaussian distribution maximizes the differential entropy [21, Theorem
8.6.5], we have h(Y |Z = z) ≤ 1

2 log(2πevar(Y |Z = z)) for any random variable
Z. It immediately follows from Jensen’s inequality that

h(Y |Zγ) ≤ 1
2

log(2πemmse(Y |Zγ)),

and hence

mmse(Y |Zγ) ≥ 1
2πe

22h(Y |Zγ) = var(Y )22(h(Y )−h(YG))2−2I(Y ;Zγ), (31)

from which we obtain

inf
γ≥0,

I(X;Zγ)≤ε

mmse(Y |Zγ)
var(Y )

≥ 2−D(Y )2−2gε(X,Y ), (32)

where D(Y ) is the non-Gaussianness of Y defined in Proposition 1. We note
that a similar inequality is proved in [2, Lemma 13] for arbitrary noise distrib-
ution provided that Y is Gaussian. Although, inequality (32) provides an oper-
ational interpretation of gε(X,Y ), it does not relate gε(X,Y ) to sENSRε(X,Y ).
Such a relationship would follow if ρ2m(X,Zγ) ≤ ε implied I(X;Zγ) ≤ ε
for a given (X,Y ), because then according to (32), one could conclude that
sENSRε ≥ 2−D(Y )2−2gε(X,Y ). However, this implication does not hold in
general. Nevertheless, we show in the sequel that this implication holds for
Gaussian X in the almost perfect privacy regime when PY |X is an addi-
tive noise channel. First we notice that for jointly Gaussian XG and YG,
we have I(XG;

√
γYG + NG) = − 1

2 log(1 − ρ2(XG,
√

γYG + NG)). Hence, since
ρ2m(XG,

√
γYG +NG) = ρ2(XG,

√
γYG +NG), the above implication clearly holds,

i.e., ρ2m(XG,
√

γYG + NG) ≤ ε implies I(XG;
√

γYG + NG) ≤ ε. On the other
hand, specializing the decomposition (37) proved in AppendixA for U = XG

and V = Zγ , we can write

I(XG;Zγ) = I(XG;
√

γYG + NG) + D(Zγ |XG) − D(Zγ), (33)

where D(V |U) for a pair of absolutely continuous random variables (U, V ) is
defined as

D(V |U) := D(PV |U ||PVG|UG
|PU ) = EUV

[

log
PV |U
PVG|UG

]

, (34)

where (UG, VG) is a pair of Gaussian random variables having the same means,
variances and correlation coefficient as (U, V ), and PVG|UG

(·|u) and PV |U (·|u) are
the conditional densities of VG and V given UG = u and U = u, respectively.

As shown in [16, Appendix II] if var(Y )< ∞, then as γ → 0

D(Zγ) = o(γ). (35)
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Lemma 1 in AppendixB shows that D(Zγ |XG) also behaves like o(γ) if
mmse(Y |XG) = mmse(YG|XG). In light of this lemma, (33) and (35), we can
conclude that

I(XG;Zγ) ≤ I(XG;
√

γYG + NG) +
γ

2
[mmse(YG|XG) − mmse(Y |XG)] + o(γ).

Thus if PXY satisfies mmse(Y |XG) = mmse(YG|XG), or equivalently
E[var(Y |XG)] = 1 − ρ2(X,Y ), we have

I(XG;Zγ) ≤ I(XG;
√

γYG + NG) + o(γ). (36)

Since ρ2m(XG, Zγ) ≥ ρ2m(XG,
√

γYG + NG), we can conclude from (36) that,
ρ2m(XG, Zγ) ≤ ε implies I(XG;Zγ) ≤ ε + o(γ) for sufficiently small γ (or equiv-
alently ε). Note that it is straightforward to show that ρ2m(XG, Zγ) ≤ ε implies
γ ≤ ε

ρ2(XG,Y )−ε (see Example 2). Hence, in the almost perfect privacy regime,
ρ2m(XG, Zγ) ≤ ε is satisfied with γ which is at most linear in ε. Therefore, (36)
allows us to conclude that ρ2m(XG, Zγ) ≤ ε implies that I(XG;Zγ) ≤ ε + o(ε).

The condition E[var(Y |XG)] = 1 − ρ2(X,Y ) is satisfied if the channel from
XG to Y is additive, that is, Y = aXG + M , where a ∈ R

+ and M is a noise
random variable with a density having variance 1 − ρ2(XG, Y ). However, since
E[var(Y |XG)] = E[var(Y |rXG)] for any r 	= 0, the variance condition can be
removed. ��
The lower-bound (30) can be further simplified by invoking Corollary 2, which
results in

sENSRε(XG, Y ) ≥ 2−D(Y )

(

1 − 2ε

η2
XG

(Y )

)

+ o(ε).

One the other hand, as proved in [4], when Y is Gaussian, YG, then

1 − ε

ρ2(X,YG)
≤ sENSRε(X,YG) ≤ 1 − ε

ρ2m(X,YG)
,

for any ε ≤ ρ2m(X,Y ). We have therefore tight lower bounds for sENSRε(X,Y )
when either X or Y is Gaussian.

4 Conclusion

In this paper, we studied the problem of approximating the maximal amount
of information one can transmit about a random variable Y over an additive
Gaussian channel without revealing more than a certain (small) amount of infor-
mation about another random variable X that represents sensitive or private
data. Specifically, letting gε(X,Y ) denote the maximum of I(Y ;Zγ) over γ ≥ 0,
where Zγ :=

√
γY + NG and NG ∼ N (0, 1) is independent of (X,Y ), subject

to I(X;Zγ) ≤ ε, we showed that gε(X,Y ) = ε
η2

X(Y )
+ Δ(X,Y )ε2 + o(ε) where
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η2
X(Y ) and Δ(X,Y ) are two asymmetric measures of correlation between X and

Y . For the special case of jointly Gaussian X and Y , the approximation was
compared with the exact value of gε(X,Y ). As a side result, we also showed
that this approximation leads to a slightly improved version of the strong data
processing inequality under some suitable conditions on PY |X .

We also studied an estimation-theoretic formulation of the privacy-utility
tradeoff for the same setup. Let sENSRε(X,Y ) be the smallest achievable MMSE
in estimating Y given Zγ such that MMSE in estimating any function f of X
given Zγ is lower bound by (1 − ε)var(f(X)). We then showed that when X is
Gaussian and Y is the output of an additive noise channel then sENSRε(X,Y ) ≥
2−D(Y )2−2gε(X,Y ) for sufficiently small ε, where D(Y ) is the non-Gaussianness
of Y . The significance of this bound is that it gives an operational interpretation
for gε(X,Y ) in terms of MMSE. Using the approximation obtained for gε(X,Y ),
we derived a lower bound for sENSRε(X,Y ) for small ε which is linear in ε.

A Connection Between Mutual Information
and Non-Gaussianness

For any pair of random variables (U, V ) with I(U ;V )< ∞, let PV |U (·|u) be the
conditional density of V given U = u. Then, we have

I(U ; V ) = EUV

[

log
PV |U (V |U)

PV (V )

]

= EUV

[

log
PV |U (V |U)

PVG|UG
(V |U)

]

+ EUV

[

log
PVG|UG

(V |U)

PVG
(V )

]

− EUV

[

log
PV (V )

PVG
(V )

]

= I(UG; VG) + D(V |U) − D(V ), (37)

where (UG, VG) is a pair of Gaussian random variable having the same means,
variances and correlation coefficient as (U, V ), and PVG|UG

(·|u) is the conditional
density of VG given UG = u, and the quantity D(V |U) is defined in (34). Replac-
ing U and V with X and Zγ , respectively, the decomposition (37) allows us to
conclude that

I(X;Zγ) = I(XG;
√

γYG + NG) + D(Zγ |X) − D(Zγ),

and therefore, if Y = YG is Gaussian, we have

I(X;Zγ) = I(XG;Zγ) + D(Zγ |X) ≥ I(XG;Zγ),

from which we conclude that when Y is Gaussian then I(X;Zγ) ≤ ε implies
that I(XG;Zγ) ≤ ε and hence gε(X,YG) ≤ gε(XG, YG).

B Completion of the Proof of Theorem4

Lemma 1. For Gaussian XG and absolutely continuous Y with unit variance,
we have

D(Zγ |XG) ≤ γ

2
[mmse(YG|XG) − mmse(Y |XG)] + o(γ).
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Proof. Let E be an auxiliary random variable defined as

E =

{
1, |Y | ≤ L

0, otherwise,

for some real number M > 0. Note that

D(Zγ |XG = x) = h(
√

γYG + NG|XG = x) − h(Zγ |XG = x)

≤ h(
√

γYG + NG|XG = x) − h(Zγ |XG = x, E)

=
1

2
log(2πe(1 + γvar(YG|XG = x)))

− Pr(E = 1)h(Zγ |XG = x, E = 1) − Pr(E = 0)h(Zγ |XG = x, E = 0)

(a)
≤ 1

2
log(2πe(1 + γvar(YG|XG = x)) − Pr(E = 0)h(NG)

− Pr(E = 1)h(Zγ |XG = x, E = 1) (38)

where (a) follows from the fact that h(Zγ |XG = x,E = 0) ≥ h(NG).
Prelov [24] showed that for any random variable Y such that

E[|Y |2+α] ≤ K< ∞, (39)

for some α > 0, then

h(
√

γY + NG) =
1
2

log(2πe) +
var(Y )

2
(γ + o(γ)), (40)

where o(γ) term depends only on K. Since Y |{E = 1} satisfies (39), we can use
(40) to evaluate h(Zγ |XG = x,E = 1) in (38) which yields

D(Zγ |XG = x) ≤ 1
2

log(2πe(1 + γvar(YG|XG = x)) − Pr(E = 0)
1
2

log(2πe)

−Pr(E = 1)
[
1
2

log(2πe) +
var(Y |XG = x,E = 1)

2
(γ + o(γ))

]

=
1
2

log(1 + γvar(YG|XG = x))

−var(Y |XG = x,E = 1)
2

(γ + o(γ)) Pr(E = 1). (41)

Note that since var(Y )< ∞ and XG has a positive density, var(Y |XG = x)< ∞
for almost all x (except for x in a set of zero Lebesgue measure). Hence, we can
choose L sufficiently large such that for any given δ > 0,

Pr(E = 1) ≥ 1 − δ,

and

var(Y |XG = x,E = 1) ≥ var(Y |XG = x) − δ.

Therefore, invoking the inequality log(1 + u) ≤ u for u > 0, we can write

D(Zγ |XG = x) ≤ γ

2
[var(YG|XG = x) − (var(Y |XG = x) − δ)(1 − δ)] + o(γ),

from which and the fact the δ is arbitrarily small the result follows. ��
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A Better Chain Rule for HILL Pseudoentropy -
Beyond Bounded Leakage
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Abstract. Chain rules are inequalities used to estimate by how much
entropy decreases when conditioning on some extra knowledge. Their
popular application is to argue about security, by proving that the
entropy of a secret remains sufficiently high even in the presence of leak-
age. We provide a chain rule for HILL/Metric conditional pseudoentropy
(applicable for leakage-resilient cryptography), with the following new
features:
(a) Better quality loss - when conditioning on already conditioned dis-

tribution, the loss due to the “internal” conditional part is additive,
not multiplicative as conjectured in folklore,

(b) Better quantity loss - the leakage length is replaced by the effective
leakage length which equals the “pseudoentropy gap” of the leakage
conditioned on the secret,

(c) Flexible quality loss - the loss can be continuously traded between
both computational resources: time and advantage.

The relevance of these results is as follows: (a) is a result complementary
to recent negative results (TCC’13) on the chain rule for HILL pseudoen-
tropy - it explains that an efficient chain rule for HILL pseudoentropy
is possible under certain conditions. With (b) we can extend some leak-
age resilient constructions, beyond the bounded leakage model, to cap-
ture noisy leakages (studied extensively in recent EUROCRYPT papers);
interestingly, we show that the new chain rule can handle specific noisy
leakages better than the noisy-leakage framework. Finally using (c) we
can unify all previous results and techniques about pseudoentropy chain
rules.

1 Introduction

1.1 Entropy Notions and Chain Rules

In information theory the most fundamental quantity is Shannon entropy, which
measures the uncompressibility of a distribution. In cryptography one exten-
sively uses a more conservative measure called min-entropy, which bounds the
unpredictability of a random variable (very important for randomness extrac-
tion [22] or key derivation [4]). In both cases, the most important tools used to
argue about entropy are chain rules, which bounds the amount of entropy in a

c© Springer International Publishing AG 2016
A.C.A. Nascimento and P. Barreto (Eds.): ICITS 2016, LNCS 10015, pp. 279–299, 2016.
DOI: 10.1007/978-3-319-49175-2 14
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random variable conditioned on another distribution (leakage in cryptographic
applications). For Shannon entropy H(·) the simple chain rule is

H(X|Z1, Z2) = H(X|Z1) − H(Z2)

which states that the information loss equals the entropy of extra knowledge.
For the notion of min-entropy H̃∞ (), which is defined precisely in Sect. 2, we
have the following analogue

Theorem 1 (Chain rule for min-entropy [3]). For any random variables
X,Z1, Z2 we have

H̃∞(X|Z1, Z2) � H̃∞ (X|Z1) − H0(Z2)

where H0(Z2) is the negative binary logarithm of the support sze of Z2 (defined
in Sect. 2).

This result captures the following intuition: with � bits of extra information,
one can increase the chances of guessing the secret by at most a factor of 2�.
Putting in other words: security, measured in the logarithmic unpredictability
scale, goes down by at most the length of leakage string. Let us now state a
concrete question which shows how chain rules are important for cryptographic
applications

Suppose that a pseudorandom generator PRG : {0, 1}64 → {0, 1}256 leaks
10 bits of information about its seed. Can we still exploit remaining 246 =
256 − 10 bits in the output?

Note that leakage of only 1 bit of the seed can make PRG completely insecure1.
However, we can intuitively expect that remaining security bits are still “some-
where inside”, thought not necessarily directly accessible. To answer questions
of this sort, the concept of min-entropy was extended to computational set-
tings, where we require the given random variable not to have certain entropy
itself, but rather to be close to a distribution with high min-entropy (perhaps
conditioned on some auxiliary/leakage information). This leads to the popular
notion of HILL Entropy H̃HILL

s,ε (), which extends the notion of pseudorandom-
ness, and its weaker technical variant Metric Entropy HMetric

s,ε () defined precisely
in Sect. 2.2. Note that these notions are parametrized by the pair (s, ε) which
stands for the size (time)/advantage pair, that is for computational resources.
This captures the fact that, in the computational world, the amount of entropy
observed in a random variable depends on attacker’s resources. The following
result gives a chain rule for pseudoentropy.

1 Theoretically, this could be also a bit of the output and then it can be distinguished
from random with advantage close to 1

2
.
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Theorem, informal 1 (Chain Rule for pseudoentropy). For any random vari-
ables X,Z we have

H̃HILL
s′,ε′ (X|Z) � HHILL

s,ε (X) − H0(Z2)

where s′/ε′ degrades with respect to s/ε at most exponentially in m = H0(Z2)
and polynomially in ε−1.

It is important to keep in mind that not only the entropy amount goes down
(referred to as the quantity loss), but also the security level measured in (s, ε)
decreases (refereed to as quality loss). This is different than the information-
theoretic case, when computational resources doesn’t matter.

Pseudoentropy chain rules appeared for the first time as a tool giving a solu-
tion for the question about pseudorandom generators stated above and found fur-
ther applications in leakage resilient cryptography [2,9–11,15,18]. Interestingly,
they were discovered independently as dense model theorems in computational
complexity [21].

For cryptographic applications we want the ratio s/ε to be as high as possible;
this ratio is a simple and useful measure of security, called2 time-advantage ratio
[17]. Exponential degradation in m still allows for meaningful applications, if
we assume logarithmically bounded leakage. Even then, there are some inherent
limitations that will be discussed in more detail in the next subsection.

1.2 Motivation: Limitations of Pseudoentropy Chain Rules

The aim of this work is to improve pseudoentropy chain rules, with the focus on
the following issues

(a) Known bounds apply only to bounded leakage (more generally: leakage which
consumes only few bits of security - but we don’t know a good characteriza-
tion of this class)

(b) Pseudoentropy chain rules do not generalize easily to the conditional case (a
counterexample found in [16])

(c) Known bounds lose mostly in advantage (except bounds for unconditional
chain rules in [15,19] or sometimes in size [19] - there is no flexibility which
is desired for some applications (see [15,19])

1.3 Our Results

We revisit the chain rule problem for the conditional case, and prove a new
optimized variant trying to address the issues mentioned above. Our chain rule
has the following form:

HMetric (X|Z1, Z2) � HMetric (X|Z1) − Δ

2 Our setting is non-uniform so here we think of circuit size as “time”.
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where

Δ = H0 (Z2) − HMetric (Z2|X,Z1) ,

is the improved amount loss (the quantity refereed to as unpredictability defi-
ciency), and the loss in quality that can be continuously moved from time to
advantage and improves previous bounds (only additive exponential loss in the
length of Z1 and a multiplicative exponential loss in Δ). While we will not
give here explicit parameters for the sake of clarity, referring to Theorems 3 and
4 for precise statements and proofs, we discuss advantages of our result over
prior works below. We state our result in terms of metric entropy because it is
more convenient to work with, but it can be converted to HILL entropy (consid-
ered a standard pseudorandomness measure) using general transformations (see
Sect. 2.2). In subsequent subsections we informally discuss our work and related
results.

1.3.1 Quality Bounds Much Better Than Folklore
Since the counterexample given in [16] it has been folklore that chain rules
lose an exponential factor in the leakage already captured, modeled as Z1. This
essentially means that captured leakages leak again and looks counterintuitive,
but the explanation is that the definition of conditional pseudoentropy averages
different advantage contributions so that one may cancel another; a naive way is
to assume that HMetric (X|Z) � k implies something about HMetric (X|Z = z)
for individual values of z, but this is not the case. More precisely, this feature
is called decomposable entropy [12] and can be shown at the price of a (heavy)
complexity loss (by a factor exponential in |Z|, see [23]).

In general, for Z1 ∈ {0, 1}m1 , Z2 ∈ {0, 1}m2 we can prove

HMetric
s′,ε′ (X|Z1, Z2) � HMetric

s,ε (X|Z1) − m2

with the loss in the time-success ratio depending on the leakage already captured

s′

ε′ = Ω(1) · 2−m1−m2 · s

ε

The issue with this loss in quality appears for example in memory delegation
[2], where the authors impose other restrictions to eliminate the dependency on
already captured leakage to make the conditional chain rule efficient.

In Remark 6 we show that the loss due to Z1 is actually additive not multi-
plicative. This difference is important. In particular, we can prove that as long
as circuits are at least exponential in the conditional part length, we lose only
a factor due to new leakage - as expected! This observation is complementary
to the negative result of [16], as we prove that under certain conditions (namely
for s > 2m1)

s′

ε′ = Ω(1) · 2−m2 · s

ε
.

We summarize this discussion in Table 1.
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Table 1. Different results for conditional chain rule

Reference Loss Condition

[16] s′
ε′ = superpoly(m1 + m2) · s

ε
Upper bounds, only for specific distributions

[2] s′
ε′ = Ω(1) · 2−m2 · s

ε
Samplability assumptions

[12] s′
ε′ = Ω(1) · 2−m2 · s

ε
Decomposability assumptions

This paper s′
ε′ = Ω(1) · 2−m2 · s

ε
s exponential in m1

Remark 1 (Our bounds vs counterexample [16]). The bounds we get do not
contradict the negative result in [16], as the counterexample is a different para-
meter regime, namely s being polynomial in m1. Then s � 2m1 and our bounds
don’t apply.

1.3.2 Flexibility - Distributing Loss Between Size and Advantage
Our chain rule allows moving the loss from advantage to circuit size continuously.
At first glance may be not obvious why to do so, as it is tempting to think of
security as interchanging multiplicative losses between s and ε, so that the ratio
s/ε remains constant. However, while may be the case of weak pseudorandom-
functions (where k-bit keys are believed to offer security given by any time-
advantage pair (s, ε) such that s/ε = 2k), this is not true for example for the
RSA encryption (where the advantage dramatically goes down after achieving a
certain amount of time, enough to apply factoring by number theoretic sieves).
Also, certain results from key derivation [5] yield relatively big losses in advan-
tage and in some parameter regimes are beaten by alternative techniques based
on chain rules, as discussed in [19]. We believe that such a continuous trans-
formation may be of interest also because it establishes an elegant connection
between two “extreme” cases for which chain rules were known before (proved
using different techniques).

More concretely, special cases of our bounds match [11,19], best chain rules
so far in terms of quality loss, as shown in [19]. Thus we retrieve all known results
from a single, comprehensive formula. For more details see Sect. 5.1.

1.3.3 Relaxing Bounded Leakage
In the bounded leakage model we assume that the adversary can learn a function
f of a secret state S such that the output of f is at most λ-bit long (where λ is
logarithmically small in security parameters s, ε). Recently, there has been a lot
of interests in the so called noisy-leakage model [6,8,20]. This approach measures
the “noise” in a secret S given a leakage function f by comparing the distance of
distributions f(S) and f(S′) given S, where S′ is a fresh copy of S. This model in
particular can handle unbounded leakages and is considered a good alternative
for bounded leakages, also practically motivated. On the other hand, it is known
[18] that for leakage-resilient constructions the bounded leakage assumption can
be relaxed to the following condition imposed on leakage functions f (which is
trivially satisfied by bounded leakages, when the output of f is λ-bit long)
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Given f(S), the pseudoentropy of a secret state S goes down at most by
λ bits.

The only thing is that it’s hard to give a characterization of this class. In this
paper we present a partial progress. Namely, our chain rule in Theorem4 and
Corollary 4 show that this is possible, whenever

H0(f(S)) − HMetric (f(S)|S) � λ,

or under a weaker but more intuitive condition (studied also [12]).

H0(f(S)) − H∞ (f(S)|S) � λ,

the quantity being referred to as unpredictability deficiency or unpredictability
gap. These conditions essentially mean that f(S) has almost full possible entropy
(up to λ bits with respect to its length), and can be intuitively explained by two
reasons: either f(S) is simply short, or it is unpredictable because of “noise”.
The gap can be considered the effective leakage length, as we essentially substract
the randomness from the full string. While a similar result for information-
theoretic entropy is trivial (see Lemma 1), proving it in our psuedoentropy setting
it requires some work and tools.

See Theorem 4 and Corollary 4 for the precise statements and Sect. 5.2 for
an illustrative application - we show that in some situations our chain rule han-
dles noisy leakages better than the original noisy leakage framework! While this
relaxation of the bounded leakage model and the noisy leakage model are incom-
parable in general, this points out that the bounded leakage tools can be adapted
and applied much beyond their original scope (Tables 2 and 3).

Table 2. A comparison of different leakage models

Reference Model Condition

[9,18] Bounded leakage H0(f(S)) � λ

[12] Bounded unpredictability gap
(information-theoretic)

H0(f(S)) − H∞ (f(S)|S) � λ

This paper Bounded unpredictability gap
(computational)

H0(f(S)) − HMetricf(S)|S � λ

[20] Noisy leakage f(S)|S ≈ε f(S)|S′

Table 3. Best known chain rules for unconditional HILL pseudoentropy

Author Loss in s′ ε′ Comments

[11] s 2λε

[19] 2−λs ε

This paper �−1s �−12λε 1 � � � 2λ
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Remark 2 (Our noisy chain rule vs [12]). Our result is stronger than [12] in
two ways

(a) We calculate the unpredictability gap in terms of computational entropy.
This way we capture also computational noise, while the condition in [12]
is information-theoretic

(b) Our result holds also in a conditional setup, where f(S) is already conditioned
on something else. For simplicity we don’t present this improvement here,
and refer to Theorem4 for more details.

1.4 Our Techniques

Our proof is based on techniques from convex optimization, successfully used
in recent works on chain rules [19]. Roughly speaking, we use KKT optimality
conditions to characterize the structure of this adversarial function, which gives
the best possible advantage. Based on this we apply a threshold cut (typical
for chain rule/dense model theorems proofs) which transform the distinguisher
we start with into a very regular function, which makes the remaining technical
calculations easy.

1.5 Paper Organization

In Sect. 2 we explain basic concepts and notions. Auxiliary lemmas are provided
in Sects. 3, and 4 we present our main results. Some applications are discussed
in detail in Sect. 5.

2 Preliminaries

2.1 Basic Definitions

Definition 1 (Support). The support of a discrete random variable X, denoted
by supp(X), is the set of its outcomes which appear with non-zero probability.

Definition 2 (Computational and statistical distances). For any random vari-
ables X1,X2 taking values in a finite set X , and a real function D on X we
define the advantage of D as

δD(X1,X2) = |ED(X1) − ED(X2)|.
If D is a class of real functions then we define

δD(X1,X2) = max
D∈D

|ED(X1) − ED(X2)|

and call this quantity the computational distance of X1 and X2 against the
class D (in computational settings D typically consists of functions computable
by small circuits). Letting D run over all [0, 1]-valued functions we recover the
notion of the statistical distance

SD(X1,X2) = max
D

|ED(X1) − ED(X2)| =
1
2

∑

x

|Pr[X1 = x] − Pr[X = x2]| .
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Definition 3 (Hartley Entropy). The Hartley entropy of a random variable X
equals

H0(X) = − log |supp(X)|
Definition 4 (Min-Entropy). The min-entropy of a random variable X is
defined as

H∞(X) = min
x

log(1/Pr[X = x]).

Definition 5 (Average conditional min-Entropy [3]). For a pair (X,Z) of ran-
dom variables, the average min-entropy of X conditioned on Z is

H̃∞ (X|Z) = − logEz←Z [max
x

Pr[X = x|Z = z]] = − logEz←Z [2−H∞(X|Z=z)].

2.2 Pseudoentropy

Definition 6 (HILL pseudoentropy [13,14]). A variable X has HILL entropy

H̃HILL
s,ε (X|Z) � k ⇐⇒ ∃Y H∞ (Y ) = k ∀D of size s : δD(X,Y ) � ε

For a joint distribution (X,Z), we say that X has k bits conditional Hill entropy
(conditioned on Z) if

H̃HILL
s,ε (X|Z) � k

⇐⇒ ∃(Y,Z), H̃∞ (Y |Z) = k ∀D of size s : δD((X,Z), (Y,Z)) � ε

Remark 3 (Probabilistic vs deterministic distinguishers). In the definition
above it doesn’t matter whether distinguishers are deterministic or probabilis-
tic (the reduction goes by fixing coins [11]). Metric Entropy defined below is,
however, different.

Definition 7 (Metric pseudoentropy [1]). A variable X has Metric entropy at
least k if

HMetric
s,ε (X|Z) � k ⇐⇒ ∀D [0,1]-valued of size s ∃YD, H∞ (YD) = k : δD(X, YD) � ε

For a joint distribution (X,Z), we say that X has k bits conditional metric
entropy (conditioned on Z) if

˜HHILL
s,ε (X|Z) � k

⇐⇒ ∀D [0,1]-valued of size s ∃(Y, Z), ˜H∞ (Y |Z) = k : δD((X, Z), (Y, Z)) � ε

Metric entropy is weaker than HILL by definition (the subtle difference is in
the order of quantifiers), however more convenient to work with. Fortunately,
it’s possible to do a conversion with some loss in circuit size.

Theorem 2 (Metric-HILL transformation [1]). If HMetric
s,ε (X|Z) � k then

H̃HILL
s′,ε′ (X|Z) � k where ε′ = O(ε) and s′ = Ω

(
sε2/(H0(X) + H0(Z))

)
.
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3 Auxiliary Facts

It may be instructive to extend the chain rule for min-entropy beyond bounded
leakages, as it motivates the similar question for pseudoentropy. Below we give
a short proof.

Lemma 1. For any random variables X ∈ {0, 1}n, Z ∈ {0, 1}m we have

H̃∞(X|Z) � H∞(X) − (H0(Z) − H∞(Z|X))

Proof. Suppose X ∈ {0, 1}n, Z ∈ {0, 1}m, H∞(X) � k and H∞(Z|X) � m−Δ.
Then

∑

z

PZ(z)max
x

PX|Z=z(x) =
∑

z

max
x

(
PX(x)PZ|X=x(z)

)

�
∑

z

2−k · 2−m+Δ = 2−(k−Δ). (1)

	

The remaining lemmas are technical facts used to manipulate distinguishers,

obtained by convex optimization techniques. Due to space constraints we don’t
explain these techniques in detail. However, we elaborate more on intuitions in
the remarks below and refer to papers [24,25] where these tools are discussed
in more detail. In short, these lemmas study the shape of the distribution max-
imizing the advantage under entropy constraints.

Lemma 2 (Maximimal expectation given min-entropy constraints). Let D :
{0, 1}n × {0, 1}m → R be an arbitrary function, and 0 < k < n be a fixed
number. Then the optimal solution Y ∗ to the program

maximize
Y

ED(Y,Z) (2)

s.t. H̃∞ (Y |Z) � k (3)

where Y runs over all random variables jointly distributed with Z, can be char-
acterized as follows: there exists non-negative numbers t(0) and t(z), z ∈ {0, 1}m

such that the following two conditions are satisfied

(i) For every z, the sum
∑

x max(D(x, z) − t(z), 0) = t0
(ii) For every z, the distribution PY ∗|Z=z() puts its biggest weight uniformly on

the set {x : D(x, z) > t(z)} and zero on the set {x : D(x, z) < t(z)}
Remark 4 (Motivation and Intuition). Below we highlight two key points

(a) Maximizing the distinguisher expectation over constrained distributions
arise naturally when we use Metric pseudoentropy. To see this, note that
when HMetric(X) < k then there is a disnguisher D for X and all Y of
min-entropy k. The advantage can be written as ED(x) − ED(Y ) and is
minimized, precisely when ED(Y ) is maximized. We can ask what is the
worst possible choice of Y . It turns out, that we conclude from this more
about the shape of the distinguisher.
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(b) Threshold transformations arises naturally as KKT multipliers, when we
study the shape of the worst possible distinguisher. They come up quite often
in proofs, for example [11,21,26], though authors do not give them a rigorous
treatment. In short, we use these transformations to make the distinguisher
fit the distribution support which is more convenient for technical reasons.
Note that (i) means precisely that the total “mass” of D above the threshold is
the same for every z and (ii) means that the distinguisher above the threshold
fits the support of PY ∗|Z=z().

The following corollary is an easy consequence of Lemma 2.

Corollary 1 (Cutting distinguishers supports). Let function D, distribution Y ∗

and numbers t0, t(z) be as in Lemma 2. Then in particular, for every x and z

(D(x, z) − t(z)) · PY ∗,Z(x, z) � 0. (4)

Moreover, Lemma 2 also holds for D replaced by D′(x, z) = (D(x, z) − t(z))+,
the same optimal distribution Y ∗. and numbers t(z) replaced by 0.

Corollary 2 (Regular distinguisher). Suppose that D separates X and all dis-
tributions Y of min-entropy k given Z, that is

ED(X,Z) � ED(Y,Z) + ε, for every Y s.t. H̃∞ (Y |Z) � k. (5)

Then, D′ defined as in Lemma 2 satisfies

ED′(X,Z) � ED′(Y,Z) + ε, for every Y s.t. H̃∞ (Y |Z) � k, (6)

moreover, D′ is regular in the following sense: for some fixed number t0
∑

x

D′(x, z) = t0 for every z. (7)

Remark 5 (How we use regular distinguishers). Note that D as above satisfies
ED(Y,Z) � 2−kt0 for every Y of min-entropy k given Z. The threshold trans-
formation is extremely useful in proofs, because it reduces the dependency of the
advantage on the shape of distinguishers and distributions.

Hence, we conclude that D′ is a new “universal” distinguisher between X and
all distributions Y with entropy k, given Z. The proof of Corollary 2 appears in
AppendixA.

4 Results

4.1 Flexible Chain Rule for Conditional Pseudoentropy

Theorem 3. For any finitely supported random variables X ∈ {0, 1}n, Z1 ∈
{0, 1}m1 , Z2 ∈ {0, 1}m2 and every s, ε we have

HMetric
s′,ε′ (X|Z1, Z2) � HMetric

s,ε (X|Z1) − H0(Z2) (8)
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where the degradation in security parameters is given by

s′ = s/� − 2m1 − 2 (9)
ε′ = 2m2ε/� (10)

and � is an arbitrary integer between 1 and |supp(Z2)|.
Remark 6 (The loss due to already conditioned part is additive). Interestingly,
the loss due to Z1 is additive - this is different than in folklore where the loss of
the form s′ = s/2m1 and ε′ = 2m2ε, so that the ratio s′/ε′ loses, with respect to
s/ε, a factor exponential in m1 + m2.

Corollary 3 (No loss from already captured leakages for big circuits). Suppose
that s > 2 · 2m1 . Then the chain rule holds true with s′ > s and ε′ = 2m2ε, that
is there is no loss due to Z1.

The proof of Theorem 3 appears in AppendixB.

4.2 A Conditional Chain Rule for Noisy Leakage

Theorem 4. For any finitely supported random variables X,Z1, Z2 and every
s, ε we have

HMetric
s′,ε′ (X|Z1, Z2) � HMetric

s,ε (X|Z1) − Δ (11)

where

s′ = s/� − 2m1 − 2 (12)

Δ = H0(Z2) − HMetric
s′,ε′′ (Z2|X,Z1) (13)

ε′ = 2Δε +
2m2ε′′

�

′
(14)

and the choice of ε′′ is free.

In particular, for ε′′ = 0 and empty Z1 we obtain
Corollary 4 (A condition for capturing noisy leakage). Suppose that f is an
arbitrary leakage function, then for any S we have

HMetric
s,2λε (S|f(S)) � HMetric

s,ε (S) − λ

where

λ = H0(f(S)) − H̃∞ (f(S)|S)

Remark 7. Note that this result is a very easy exercise for min-entropy - but
it seems to be much harder for pseudoentropy, similarly to the case of the stan-
dard chain rule. Interestingly, the condition is very similar to the noisy leakage
condition. Here we require entropies of f(S′)|S and f(S)|S to be close (note
that H0(f(S′)|S) = H0(f(S′)) = H0(f(S)), whereas for the latter case we want
distributions f(S)|S and f(S′)|S to be close.

Remark 8. Note that if output of f is long, then it cannot be deterministic -
in fact, needs to be “noisy”.

The proof of Theorem 4 appears in Appendix C.
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5 Applications

5.1 Known Chain Rules for Unconditional Pseudoentropy

Our chain rule Theorem3 is flexible in the sense that we can trade the quality
loss between s and ε. In particular, setting Z1 to be a point mass we derive an
unconditional chain rule of the following form

HMetric
s′,ε′ (X|Z) � HMetric

s,ε (X) − λ

where λ = H0(Z). We cover two extreme cases: the chain rule which loses only
in ε [11] and the chain rule which loses only in s [19]. A brief summary is given
in the table below. Chain rules with worse parameters are omitted (a survey is
given in [19]).

5.2 Stream Ciphers Resilient Against Noisy Leakages

5.2.1 Stream Ciphers Basics
We start with the definition of weak pseudorandom functions, which are com-
putationally indistinguishable from random functions, when queried on random
inputs and fed with uniform secret key.

Definition 8 (Weak pseudorandom functions). A function F : {0, 1}k ×
{0, 1}n → {0, 1}m is an (ε, s, q)-secure weak PRF if its outputs on q random
inputs are indistinguishable from random by any distinguisher of size s, that is

|Pr [D ((Xi)
q
i=1 ,F((K,Xi)

q
i=1) = 1] − Pr [D ((Xi)

q
i=1 , (Ri)

q
i=1) = 1]| � ε

where the probability is over the choice of the random Xi ← {0, 1}n, the choice
of a random key K ← {0, 1}k and Ri ← {0, 1}m conditioned on Ri = Rj if
Xi = Xj for some j < i.

Stream ciphers generate keystreams in a recursive manner. The security requires
the output stream should be indistinguishable from uniform3.

Definition 9 (Stream ciphers). A stream-cipher SC : {0, 1}k → {0, 1}k×{0, 1}n

is a function that need to be initialized with a secret state S0 ∈ {0, 1}k and
produces a sequence of output blocks X1,X2, . . . computed as

(Si,Xi) := SC(Si−1).

A stream cipher SC is (ε, s, q)-secure if for all 1 � i � q, the random variable
Xi is (s, ε)-pseudorandom given X1, . . . , Xi−1 (the probability is also over the
choice of the initial random key S0).

3 We note that in a more standard notion the entire stream X1, . . . , Xq is indistin-
guishable from random. This is implied by the notion above by a standard hybrid
argument, with a loss of a multiplicative factor of q in the distinguishing advantage.
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Now we define the security of leakage resilient stream ciphers, which follows the
“only computation leaks” assumption.

Definition 10 (Leakage-resilient stream ciphers [15]). A leakage-resilient
stream-cipher is (ε, s, q, λ)-secure if it is (ε, s, q)-secure as defined above, but
where the distinguisher in the j-th round gets λ bits of arbitrary adaptively
chosen leakage about the secret state accessed during this round. More pre-
cisely, before (Sj ,Xj) := SC(Sj−1) is computed, the distinguisher can choose
any leakage function fj with range {0, 1}λ, and then not only get Xj , but also
Λj := fj(Ŝj−1), where Ŝj−1 denotes the part of the secret state that was modified
(i.e., read and/or overwritten) in the computation SC(Sj−1).

5.2.2 Constructions and Provable Security
The first construction of a leakage-resilient stream cipher was proposed by
Dziembowski and Pietrzak in [9]. On Fig. 1 below we present a simplified con-
struction of this cipher [18], based on a weak pseudorandom function (wPRF),
which follows the description in Sect. 5.2.1. The security of leakage-resilient
stream ciphers is defined in Sect. 5.2.1. The key technical difficulty is to prove
that a wPRF remains secure when seeded with a high-entropy key (instead uni-
form). This is where one applies chain rules. Below we state the security for this
construction, and refer to [15,18] for more details.

Theorem 5 (Proving Security of Stream Ciphers [15,18]). If F is a (εF , sF , 2)-
secure weak PRF then SCF (defined in Sect. 5.2.1) is a (ε′, s′, q, λ)-secure leakage
resilient stream cipher where

ε′ = q · (εF 2λ
)Ω(1)

, s′ = sF · (
εF 2λ

)O(1)

K0

x0

K1

F

F

F

F

x1

K3

x2

K2

x3

K4

K5

x5

L0 L2

L1 L3

Fig. 1. The EUROCRYPT’09 stream cipher (adaptive leakage). F denotes a weak
pseudorandom function. By Ki and xi we denote, respectively, values of the secret
state and keystream bits. Leakages are denoted in gray with Li
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Here we skip the exact constants for the sake of clarity, as they there are more
similar results [10,27] and the provable security is anyway not very impressive for
practical settings of parameters. Incorporating our chain rule into the existing
proof, we can extend the class of admissible leakage functions as follows

Definition 11 (Leakages with unpredictability deficiency). For any λ we say
that a leakage function f has unpredictability deficiency λ on a secret S if

H0(f(S)) − H̃∞ (f(S)|S) � λ

(can be also formulated for HILL entropy)

To summarize, from Theorem 4 we obtain the following result

Corollary 5 (Capturing noisy leakages). Theorem5 holds true with bounded
leakages replaced by Definition 11.

Remark 9 (Sketch of proof). This follows by replacing the assumption of
bounded leakage in one of the proof using chain rules [9,18] by our assump-
tion on the (pseudo)entropy gap. The security after this step is captured by the
chain rule, therefore the remaining parts of the proofs remain unchanged.

5.3 Better Handling (some) Noisy Leakages

5.4 Noisy Leakage Basics

Definition 12 ([20], generalized). Leakge Z of a secret X is called ε-noisy w.r.t
X if

SD((X,Z), (X,Z ′)) � ε

where Z ′ is an independent copy of Z.

Remark 10 (Confusing convention). Note that this definition (following the
original paper) is a bit confusing, as ε = 1 means no security whereas ε = 0
means full noise. Indeed, the distance in the definition is 0 if and only if the
leakage is independent on the secret.

5.4.1 Example When Chain Rule Beats Noisy Leakage
Note that, given the current state of the art, we cannot handle noisy leakages
with parameters ε > 1

2 because

(a) amplification results [8], usefull for additive masking, are proven to work (in
general) only below the threshold ε = 1

2
(b) chaining noisy leakages [7] works only below the threshold ε = 1

2 (the para-
meters sum up).
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Below we provide a more concrete example, when meaningful bounds are possible
due to our pseudoentropy chain rule, but nothing is guaranteed by the noisy
leakage model.

There exists a secret X ∈ {0, 1}256 and two independent leakages Z1, Z2 ∈
{0, 1}256 such that for X given Z1, Z2

(a) The noisy leakage model provides no security for X given Z1, Z2

(b) The chain rule in Theorem 4 provides 188 pseudoentropy bits of quality
(s, ε) = (∞, 2−63)

Proof. Let X be a uniform 256-bit secret and Z1, Z2 be arbitrary independent
256-bit leakages such that H̃∞ (Zi|X) � 254 for i = 1, 2. It is easy to see that
these leakages are 3

4 -noisy, in the sense of Definition 12. We would like to know
how much security remains in X, given Z1 and Z2. Note first, that general rules
for noisy leakage [7] give a meaningless noise level ε = 3

4 + 3
4 > 1, which doesn’t

guarantee security. Consider now security measured by HILL entropy. Clearly
we have H∞ (Z1, Z2|X = x) � H∞ (Z1|X = x) + H∞ (Z2|X = x) for every x.
By the Markov inequality, we conclude that

H∞ (Z1, Z2|X = x) � 254 + 254 − 64

with probability 1−2−64 over x ← X. If X is statistically indistinguishable (with
ε = 2−64) uniform then by Theorem 4, where Z2 is empty and Z1 is replaced by
our tuple (Z1, Z2)), we see that

H̃HILL
s,ε (X|Z1, Z2) � 188 where s = ∞, ε = 2−63

that is, X given Z1, Z2 is statistically indistinguishable from having 188 bits of
entropy (the quantity loss is therefore 68 bits). This is enough to reuse X for
unpredictability applications (which tolerate relatively small entropy deficien-
cies) or to extract 60 bits of almost uniform (within distance ε = 2−64) bits by
randomness extractors. 	


6 Open Problems

Strengthening the result about relaxing bounded leakage model in Corollary 4,
for example by replacing information-theoretic unpredictability gap with com-
putational entropy gap, may be an interesting problem - we leave it for future
research.

A Proof of Corollary 2

Proof. Let Y ∗ be the distribution maximizing the expectation of D as in Eq. (2)
D′ be defined as in Lemma 2. Since D′

ED′(X,Z) = E(x,z)∼(X,Z) max(D(x, z) − t(z), 0)
� E(x,z)∼(X,Z) D(x, z) − E(x,z)∼(X,Z) t(z) (15)
= ED(X,Z) − E t(Z) (16)
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Denote H∞ (Y ∗|Z = z) = k(z). We have Ez∼Z 2−k(z) = 2−k. In the other hand,
from Eq. (4) we have

ED′(Y ∗, Z) =
∑

x,z

max (D(x, z) − t(z), 0) · PY ∗,Z(x, z)

=
∑

x,z

(D(x, z) − t(z)) · PY ∗,Z(x, z)

= ED(Y ∗, Z) − E t(Z) (17)

Given Eqs. (16) and (17) we have

ED′(X,Z) � ED′(Y ∗, Z) + ε

but in view of Corollary 1 this proves much more, namely

ED′(X,Z) � ED′(Y,Z) + ε for every Y such that H̃∞ (Y |Z) � k. (18)

	


B Proof of Theorem 3

Proof. Threshold transformation Assuming contrarily, for the sake of a contra-
diction, we have

ED(X,Z1, Z2) � ED(Y,Z1, Z2) + ε′ (19)

Then, according to Eq. (6) we have

ED′(X,Z1, Z2) − ED′(Y,Z1, Z2) � ε′ (20)

for every Y such that H̃∞ (Y |Z1, Z2) � k and some D of size s′. and moreover,
by Eq. (7), that for some t0

∀z1, z2 :
∑

x,z1,z2

D′(x, z1, z2) = t0. (21)

Distinguisher for conditional part removed Let Y = Y ∗ be the distribution max-
imizing ED′(Y,Z1, Z2) over the constraint H̃∞ (Y |Z1, Z2) � k′. For the maxi-
mizing distribution we can assume H̃∞ (Y ∗|Z1, Z2) = k′. According to Eqs. (20)
and (21) we have

Ez∼Z2

[
E D′((X,Z1)|Z2=z2

, z2)
]

= ED′(X,Z1, Z2)

� ED′(Y ∗, Z1, Z2) + ε′.

= 2−k′
t0 + ε′



A Better Chain Rule for HILL Pseudoentropy 295

Thus, for every � there exists a subset S of |S| = � elements z2 (more precisely:
the set of values z corresponding to the biggest values of E D′((X,Z1)|Z2=z2

, z2)
such that

∑

z2∈S

PZ2(z2)ED′( (X,Z1)|Z2=z2
, z2) � �

2m2

(
2−k′

t0 + ε′
)

(22)

Note that

E(x,z)∼(X,Z1) max
z2∈S

D′(x, z, z2) �
∑

x,z1

PX,Z1(x, z1)
∑

z2∈S

PZ2|X=x,Z1=z1
(z)D′(x, z1, z2)

=
∑

z2∈S

PZ2(z2)ED′( (X, Z1)|Z2=z2
, z2) (23)

In turn, for every fixed value z1 by Eq. (21) we obtain

�

2m2
· 2−k′

t0 = 2−k′−m2 ·
∑

x

∑

z2∈S

D′(x, z1, z2)

� 2−k′−m2 ·
∑

x

max
z2∈S

D′(x, z1, z2) (24)

Define

D′′(x, z1) = max
z2∈S

D′(x, z1, z2). (25)

Combining Eqs. (22) to (24) we obtain

∀z1 : E(x,z)∼(X,Z1) D
′′(x, z) � 2−k′−m2 ·

∑

x

D′′(x, z1) +
�ε′

2m2
(26)

(note that only the right-hand side depends on z1). Let Y be any distribution
such that H̃∞ (Y |Z1) � k = k′ + m2, and let H∞

(
Y |Z1=z

)
= k(z). Note that

we have

max
z1

(

2−k′−m2 ·
∑

x

D′′(x, z1)

)

= 2−k · max
z1

(
∑

x

D′′(x, z1)

)

�
∑

z1

PZ1(z1)
∑

x

D′′(x, z1) · 2−k(z1)

�
∑

z1

PZ1(z1)
∑

x

D′′(x, z1) · PY |Z1=z1
(z1)

= E(x,z)∼(Y,Z1) D
′′(Y,Z1) (27)

Since Eq. (26) holds for every z1, Eq. (27) implies

E(x,z)∼(X,Z1) D
′′(x, z) � E(x,z)∼(Y,Z1) D

′′(Y,Z1) +
�ε′

2m2
, (28)

for every Y such that H̃∞ (Y |Z) � k.
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Complexity To complete the proof it remains to observe that D′′ can be com-
puted by a cicuit of size s = �s′ + 2m1� + �. Indeed, computing D′(x, z1, z2) =
max(D(x, z1, z2) − t(z1, z2), 0) for all possible values z2 ∈ S requires size
�s′ + 2m1� + �, and then computing D′′ = maxz2∈S D′(x, z1, z2) from D′ requires
an additive overhead � (maximum over � outputs). 	


C Proof of Theorem 4

Proof. The proof is based on the proof of Theorem3 and starts exactly in the
same way as the proof of Theorem 3, repating its first step. The difference is in
the second step, where we define the distinguisher. Similarly, we start with the
inequality

Ez∼Z2

[
E D′((X,Z1)|Z2=z2

, z2)
]

= ED′(X,Z1, Z2)

� ED′(Y ∗, Z1, Z2) + ε′.

= 2−k′
t0 + ε′.

Similarly to Eq. (22), for any � there is a set S of cardinality � (whose elements
correspond to � biggest values being averaged on the left-hand side) such that

∑

z2∈S

PZ2(z2)ED′( (X,Z1)|Z2=z2
, z2) � �

2m2

(
2−k′

t0 + ε′
)

(29)

The left-hand side can be alternatively written as

ED′′(X,Z1, Z2) =
∑

z2∈S

PZ2(z2)ED′( (X,Z1)|Z2=z2
, z2)

where D′′(x, z1, z2) = D′(x, z1, z2) ·1S(z2), (here 1S is the characteristic function
of S). Suppose that HMetric

s′′,ε′′ (Z2|Z1,X) � m2 − Δ where s′′ is bigger than the
complexity of D′′. Then there is Z ′

2 such that H̃∞ (Z ′
2|Z1,X) = m2 − Δ and

ED′′(X,Z1, Z2) � ED′′(X,Z1, Z
′
2) + ε′′. Therefore, we have

ED′′(X,Z1, Z2) − ε′′ � ED′′(X,Z1, Z
′
2)

=
∑

x,z1

PX,Z1(x, z1)
∑

z2

PZ′
2|Z1=z1,X=x(z2)D′′(x, z1, z2)

=
∑

x,z1

PX,Z1(x, z1)
∑

z2∈S

PZ′
2|Z1=z1,X=x(z2)D′(x, z1, z2)

� 2Δ−m2t0,

where in the last line we used Eq. (21) and H̃∞ (Z ′
2|Z1,X) = m2 − Δ. This can

be rewritten as

ε′′ +
∑

x,z1

PX,Z1(x, z1)

∑
z2∈S D′(x, z1, z2)

2m2−Δ
�

∑

z2∈S

PZ2(z2)ED′( (X,Z1)|Z2=z2
, z2)

(30)
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From Eqs. (29) and (30) we conclude that

ε′′ + 2Δ
E(x,z)∼(X,Z1)

[∑
z2∈S D′(x, z, z2)

2m2

]

� �

2m2

(
2−k′

t0 + ε′
)

or equivalently

2m2ε′′

�
+ 2Δ

E(x,z)∼(X,Z1)

[∑
z2∈S D′(x, z, z2)

�

]

�
(
2−k′

t0 + ε′
)

(31)

In turn, for every fixed value z1 by Eq. (21) we obtain

2−k′
t0 = 2−k′

�−1 ·
∑

x

∑

z2∈S

D′(x, z1, z2)

= 2−k′ ·
∑

x

∑
z2∈S D′(x, z1, z2)

�
(32)

Defining a new distinguisher D′′ as the average over S from D′ (note that it
outputs numbers between 0 and 1)

D′′(x, z1) =

∑
z2∈S D′(x, z1, z2)

�
(33)

we can combine Eqs. (31) and (32) with Eq. (21) as

∀z1 :
2mε′′

2Δ�
+ E(x,z)∼(X,Z1) D

′′(x, z) � 2−k′−Δ ·
∑

x

D′′(x, z1) +
ε′

2Δ
(34)

Let Y be any distribution such that H̃∞ (Y |Z1) � k = k′ + Δ, and let
H∞

(
Y |Z1=z

)
= k(z). Note that we have

max
z1

(

2−k′−Δ ·
∑

x

D′′(x, z1)

)

= 2−k · max
z1

(
∑

x

D′′(x, z1)

)

�
∑

z1

PZ1(z1)
∑

x

D′′(x, z1) · 2−k(z1)

�
∑

z1

PZ1(z1)
∑

x

D′′(x, z1) · PY |Z1=z1
(z1)

= E(x,z)∼(Y,Z1) D
′′(Y,Z1) (35)

Since Eq. (35) holds for every z1, Eq. (34) implies

E(x,z)∼(X,Z1) D
′′(x, z) � E(x,z)∼(Y,Z1) D

′′(Y,Z1) +
ε′ − 2m�−1ε′′

2Δ
, (36)

for every Y such that H̃∞ (Y |Z) � k.
Step 3: Complexity To complete the proof it remains to observe that D′′ can be
computed by a cicuit of size s = �s′ +2m1�+�. Indeed, computing D′(x, z1, z2) =
max(D(x, z1, z2) − t(z1, z2), 0) for all possible values z2 ∈ S requires size �s′ +
2m1� + �, and then computing D′′ = �−1

∑
z2
D′(x, z1, z2) from D′ requires an

additive overhead � (average over � outputs). 	
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