Semantically Enhanced Virtual Learning
Environments Using Sunflower

Daniel Elenius, Grit Denker™), and Minyoung Kim

SRI International, 333 Ravenswood Ave, Menlo Park, CA 94025, USA
grit.denker@sri.com
http://www.sri.com

Abstract. Teaching procedural skills is relevant for a broad range of
applications, from IT administration to automotive repair to medical
diagnostics. Virtual learning environments reduce the cost, time, and
risk, and increase the availability of such training. We introduce ontolo-
gies and rules to characterize the objects in the learning environment, and
the actions that the user can perform on them. These semantic models
are used as the basis for automated reasoning about a student’s actions
and their effects, and guide automated assessment and feedback to the
student. We describe our system and models in the context of weapon
skills such as disassembling and assembling a rifle.

1 Introduction

Teaching procedural skills is relevant for a broad range of applications, from
IT administration to automotive repair to medical diagnostics. While “learning
by doing” approaches are highly effective because learners gain knowledge as
they solve problems in the relevant environment, cost, time or risk often make
it infeasible to provide learning systems in those environments.

Virtual environments (VEs) are a feasible solution that overcome these limi-
tations while still providing “learning-by-doing”-type of user experiences. They
also provide the added benefit of flexible delivery platforms that allow users to
learn where and when they want.

To provide learning systems based on VEs, various capabilities and auto-
mated tools need to be implemented as part of the VE and provide functionality
such as context-aware feedback, personalization to adapt learning content to
a student’s capabilities, or assessment. Such automated tools promise to make
learning systems more effective for the individual student and they would both
reduce the cost of using VEs for training and open the door to self-directed
learning systems, in which users can acquire procedural skills at their own pace.

Traditional approaches to learning require direct observation by an instruc-
tor to provide functionality such as assessment, context-aware feedback or adap-
tation of learning content. Our approach uses semantic technologies to enable
the automation of such functionalities. We have developed a framework called
Semantically Enabled Automated Assessment in Virtual Environments (SAVE)

© Springer International Publishing AG 2016
E. Garoufallou et al. (Eds.): MTSR 2016, CCIS 672, pp. 81-93, 2016.
DOI: 10.1007/978-3-319-49157-8_7

82 D. Elenius et al.

which can observe learners operating within an instrumented VE, assess their
performance, and provide helpful feedback to improve their skills.

At the core of SAVE is the capability to meaningfully understand what a
student is doing in the VE, and the effects of those actions on the environ-
ment. Consider a VE for teaching a military student how to disassemble, clean
and assemble a weapon. Knowledge that the student clicked on a given screen
coordinate has very limited use for assessment. Instead, an understanding of
the higher-level semantics of performing that mouse click, e.g., “the student
released the charging handle while keeping the bolt catch pressed,” is essential.
This understanding extends beyond knowledge of what was done, and requires
insight into important relationships (e.g., spatial, causal, functional) among the
objects in the VE. With this level of characterization, the merits of a partic-
ular action can be understood: whether it is at all possible given the current
state of the weapon, whether the action has the intended effect (e.g., removing
an ammunition cartridge from the chamber), whether the student’s actions sat-
isfy the security protocol, and whether the action demonstrates specific domain
knowledge.

Furthermore, the system should support exploration, where the student is free
to choose among a wide range of actions. Emergent, rather than pre-programmed
behavior, is key. We need to be able to base the assessment of students’ perfor-
mance on not only the ability to following exact procedures, but also on whether
they achieve a given outcome — possibly in an unanticipated way. Furthermore,
describing the behavior of objects in the environment (for example, an M4 rifle)
is a task that requires domain expertise — not something that should be left to
programmers.

1. Point weapon in safe direction.

2. Attempt to place the selector lever on SAFE. Note: If weapon is not cocked,
lever can’t be pointed toward safe.

3. Remove the magazine from the weapon, if present.

4. Lock the bolt open.

(a) Pull the charging handle rearward.

(b) Press the bottom of the bolt catch.

(¢c) Move the bolt forward until it engages the bolt catch.

(d) Return the charging handle to the forward position.

(e) Ensure the receiver and chamber are free of ammo.

Place the selector lever on safe.

Press the upper portion of the bolt catch to allow the bolt to go forward.

Place the selector lever from SAFE to SEMI.

Squeeze trigger.

Pull the charging handle fully rearward and release it, allowing the bolt to

return to the full forward position.

10. Place the selector lever on SAFE.

© XN

Fig. 1. A procedural task: clearing a rifle.

Semantically Enhanced Virtual Learning Environments Using Sunflower 83

These considerations motivate an approach using declarative specifications
that can be created, modified, re-used, and understood by domain experts — a
semantic approach. In SAVE, we use ontologies and rules to provide semantic
characterizations of objects and actions in the domain.

Though SAVE is applicable to any procedural skills, for the purpose of this
paper, we discuss the semantic models and the reasoning for a military domain
use case: disassembling, cleaning and reassembling a weapon. This task was of
interest to our client and exhibited sufficient real-world complexity to challenge
our system. Figure 1 shows the procedure, from [1], for clearing a weapon, which
is part of a larger set of skills in this context. Note that, while this is a rela-
tively straightforward procedure, in general, procedural skills can have different
variants, optional parts, and so forth.

2 SAVE Overview

SAVE employs various components that generate or make use of semantic mod-
els. (1) The Semantic 3D Annotation Editor (S3D Editor) allows a 3D content
author to associate objects in a 3D model with ontological concepts. The onto-
logical concepts are part of a semantic model that is described in detail in Sect. 4.
(2) The Content Assembly Tool allows a user to build the training-specific 3D
scene. A 3D scene consists of various 3D assets, some with annotations (e.g., the
objects with which the student will interact in their learning exercise) and oth-
ers without annotations (e.g., background objects). (3) The Ezercise UI serves
two purposes. It is used by instructors to record a sequence of actions that will
serve as a basis for solutions against which the student will be assessed. Because
the VE objects were annotated with semantic classes using the S3D Editor,
and the scene was assembled using semantically annotated 3D models, the VE
can request actions for VE objects (and their components) from the underlying
semantic reasoner and visualize them in the Exercise UIL. Once the semantically
enhanced virtual training environment has been set up, students use the Exercise
Ul to attempt to perform the intended tasks. The student sees the 3D objects
(e.g., the M4 rifle and its components), and is able to apply generic actions (push,
pull, etc.) to them. When the student does so, the action and its parameters (i.e.,
which components were selected) are communicated to the Flora reasoner, which
has the M4 ontology loaded. The reasoner determines the effects of the given
action, if any, and updates its KB (knowledge base) accordingly. It then commu-
nicates back to the Exercise Ul the changes in the state of the environment. The
UT uses this information to redraw the 3D components in their updated state.
(4) The exercise solution editor shows the action traces to the instructors and
allows them to add annotations to capture permissible generalizations to the
solution. The generalized solution is the basis for SRI’s assessment capability,
which is designed to accommodate more open-ended procedural skills for which
there can be a range of solutions with significant variations among them. (5) As
the student interacts with the VE for a learning task, her actions are recorded as
a semantically annotated action trace. The Automated Assessment component

84 D. Elenius et al.

within SAVE analyzes semantic traces of learner actions against the generalized
solution trace and provides contextually relevant feedback.

Details about the automated assessment and user studies for this use case
are reported in [3], and the solution editor is described in [6]. This paper focuses
on the semantic models used by the system, and the reasoning that happens in
the VE at run-time, i.e., while the student is using the system for training.

3 Sunflower Overview

Existing languages like OWL, SWRL, and RIF, and associated editing and rea-
soning systems, do not support many of the features required for modeling vir-
tual training environments. For example, SWRL does not support n-ary predi-
cates, aggregation or higher order expressions, structured output (such as CSV
or XML), or tracing or debugging of reasoning with rules. The Sunflower! suite
is intended to fill this gap. Sunflower is a set of libraries and tools based on the
Flora-2 language?, which in turn is implemented as a layer on top of XSB?.

Flora-2 is a highly expressive knowledge representation language and associ-
ated reasoning engine developed and maintained primarily by Michael Kifer at
Coherent Knowledge Systems. While Flora-2 has its origins in the logic program-
ming research community, OWL has its root in description logics. Flora supports,
among other things, n-ary formulas, negation-as-failure, aggregation, higher-
order predicates, functions, frame syntax for classes and instances, infix math-
ematical expressions, prioritized or default rules, and knowledge base update
operators. Flora-2 integrates ontologies and rules in a powerful way.

On top of Flora-2, Sunflower Foundation is a library, implemented mostly in
Java and partially in C/C++ and Flora itself, which provides many features that
are essential to building applications based on Flora rules and ontologies. These
features include a Flora parser that generates a detailed syntactic representation
of Flora content in Java, syntactic manipulation of that representation, a higher-
level ontology model, importers and exporters for other languages (RDF, OWL,
SWRL, CSV, SQL, etc.), an interface to the Flora reasoner, a live RDF triple
store connector, an explanation module that produces structured explanations
of reasoning results to the user, and a natural language module that produces
English paraphrases of reasoning results and explanations. The other main com-
ponents of the Sunflower suite are Sunflower Studio — an Eclipse-based IDE for
working with Flora-2 content, and Sunflower Server — a Web server that exposes
much of the Sunflower Foundation functionalities over HT'TP using REST APIs.
More details on the Sunflower suite can be found in [2]. This paper describes
how we use it in the SAVE system to represent and reason about actions in
semantic VEs.

! http://sunflower.csl.sri.com.
2 http://flora.sourceforge.net /.
3 http://xsb.sourceforge.net /.

http://sunflower.csl.sri.com
http://flora.sourceforge.net/
http://xsb.sourceforge.net/

Semantically Enhanced Virtual Learning Environments Using Sunflower 85

The Flora-2 Language. The authoritative documentation for Flora-2 is its
user manual*. Here, we give a brief overview of only the features that we use
elsewhere in this paper, without precisely defining syntax and semantics.

Terms. Flora identifiers can (optionally) use namespaces and namespace pre-
fixes, as in RDF and OWL. We omit these for readability and space reasons
here. There are the usual primitive data values like integers, strings, etc. Data
values can be typed, e.g., "Hello World"~~\string. The boolean values are writ-
ten \true and \false. Lists are written as [1,2,3], optionally with a “tail” part,
[alb]. Functional terms are written £(t1,...,tn), where the ti arguments are
themselves terms.

Frames. A : B means A is an instance of B. A :: B means A is a sub-class of
B. A [p -> V] means that A has value V for property p (i.e., this is a sub-
ject, property, object triple, in RDF terms). We call [..] an instance frame.
A [l p{m..n} => R |] means that A has range R for property p, with min-
cardinality m and max-cardinality n (the cardinality part is optional; m and n
are non-negative integers, or * for “any”). We call [1..1] a class frame.

Formulas. Conjunctions of expressions are separated by comma (,). Several
expressions can be grouped together into one statement, and frame expressions
can be nested. For example,a : A :: B [p >V, q -> W [r -> Z]1] [lp => RI]
is equivalent toa : A, a :: B, alp->V], alq->Wl, W[r->zZ1, allp => RI].

Conjunction can also be written \and. Similarly, disjunction uses semi-colon
(;) or \or. There are additional logical operators such as \if..\then..\else.
There are several types of negation, including Prolog-style negation-as-failure, \+
and Flora’s well-founded negation \naf. Parentheses can be used to disambiguate
operator precedence.

Statements. Flora statements are delimited by a period (.). Rules have the
form head :- body, where head and body are flora expressions which may contain
variables. Variables start with a question mark, e.g., 7x, and may be typed using
the "~ notation. Rules may be preceded by a rule id descriptor, @' {R}, where R
is a unique name for the rule.

An object-oriented-style dot notation can be used as a shortcut for property
chains. For example, a.b.c refers to the value of 7x in a[b->?7y[c->?x]].

Comments use the Java/C++ style: // for single-line comments, and
/* ... %/ for multi-line comments.

Flora also has Prolog-style predicates, p(t1,t2,t3). Predicates that have side
effects are marked as transactional by prepending the name with a percent sign,
e.g., hp.

Examples of operators that cause side effects are the knowledge base update
operators, including insert{p} and delete{p}, for inserting and deleting the fact
p to/from the knowledge base, respectively. The writeln predicate can be used
to print to the console.

4 http://flora.sourceforge.net /docs /floraManual.pdf.

http://flora.sourceforge.net/docs/floraManual.pdf

86 D. Elenius et al.

4 Semantic Models

The main components of the semantic models for SAVE are: an ontology of
components (physical objects) that the student can interact with, rules for cre-
ating components (and their sub-components), an ontology of actions that the
student can perform, and rules for performing actions on components. We now
describe each of these in turn, followed by examples of querying these models.
These models and queries were tested by an in-house subject matter expert.

4.1 Component Ontology

In the SAVE scenario, we focused on procedural tasks around the M4 rifle.
Thus, we needed to model the components of this rifle, and their parts struc-
ture. Figure 2 shows an exploded component view of the lower half of the rifle.
We modeled the components to the level of detail necessary for the tasks we
were interested in (clearing the rifle, disassembly, cleaning, and assembly). For
other tasks, such as detailed gunsmithing work, a higher level of detail would be
required.

We created a simple ontology to capture the meronomy (parts hierarchy)
of physical objects, with properties like hasDirectPart and hasRegion. We also
introduced rules to introduce hasPart as the transitive closure of hasDirectPart,
so that we can reason about nested components.

Next, we introduced the specific classes for the M4’s components. There
are about 80 of these classes in our ontology. Each class has sub-properties of
hasDirectPart and hasDirectRegion to support indication of the correct types

CAR. BUFFER SPRING R . BUFFER RETAINER,
: surrenneranen \
PriN

) (
_—6POSITION A SPRING 8
i CARBINE RECEIVER .
i EXTENSION g
TS {BUFFER ASSEMBLY” <=9

), —— HAMMER WITH J PIN
e —
AN _BOLT CATCH

BOLT GATCH
OLL PIN

MAGAZINE
FOLLOWER

P, BUTTSTOCK 7 LS > Pen
SUDELOGK™ i 2y BOLT CATCH
i RECEIVER TAKEDOWN PIN SPRING g s
EXTENSION y &> SPRING
LOGKPIN SPRING TAKEDOWN PIN DETENT.
~ N wacazie
GATCH

COLLAR, TAKEDOWN P\N/ ﬁ

SAFETY DETENT SPAING-

S

L <@
PIVOT PIN

o)
& 4 ! X PIVOT PIN
PVOT B | — "~ —DISCONNECTOR SPRING

oo

ook
S 4 Ns p——DISCONNECTOR
wormmmr— B Z-rorem Lock wasren—— Qi wcszne
X0

CATCH
PISTOL GRIP SCREW- SPRING (HCOER TRIGGER MAGAZINE SPRING

§ ASSEMBLY
HANER AND.

TRIGGER PINS

MAGAZINE
RELEASE
Bl

)
— TRIGGER SPRING
AGAZINE
@ FLOOR PLATE

Fig. 2. M4 rifle parts diagram (lower half)

Semantically Enhanced Virtual Learning Environments Using Sunflower 87

and cardinalities of its sub-components®. As an example, the definition of the
“lower half” component is:

LowerHalf :: PhysicalObject [|
selector {1..1} => Selector,
magazine {0..1} => Magazine,
magazineReleaseButton {1..1} => MagazineReleaseButton,
hammer {1..1} => Hammer,
trigger {1..1} => Trigger,
pivotPin {1..1} => PivotPin,
takedownPin {1..1} => TakedownPin,
boltCatch {1..1} => BoltCatch,
buttStock {1..1} => ButtStock,
lowerReceiverExtension {1..1} => LowerReceiverExtension,
bufferRetainer {1..1} => BufferRetainer
1.

Note that some of the components may have slightly different names in Fig. 2
due to differences in terminology. The figure shows many more components than
the properties of our LowerHalf class have. This is primarily because, in our
ontology, those components are found under nested sub-components.

The properties selector, magazine, and so on are all sub-properties of
hasDirectPart. These all relate to further sub-components, like the Selector:

Selector :: Switch [| switchPosition {1..1} => SelectorMode |].

This component has no further sub-components. Instead, it illustrates another
feature of our component classes: the ability to capture the current state of
the component. The property switchPosition indicates the current position of
the selector switch. The range class SelectorMode is essentially an enumeration of
three possible values: Safe, Semi, and Burst. As we shall see, these state properties
have essential importance when it comes to modeling the actions that one can
perform on the components.

4.2 Component Creation Rules

In our SAVE framework, the student interacts with instances of the rifle and
its components. Thus, we need to be able to create an instance hierarchy that
corresponds to the class-level component hierarchy. Furthermore, we may need
several copies of certain components, each with unique identifiers. Doing this
manually (or in programming code) is tedious and error-prone. Instead, we define
rules which allow us to create component instances, along with all their sub-
components. These rules are made possible by Flora’s support for knowledge
base update primitives, which allow us to modify the KB at runtime. We call
these rules constructor rules, since they are analogous to constructors in object-
oriented programming languages. The constructor rule for the LowerHalf class is

5 In OWL, one might instead use qualified cardinality restrictions. Other ways of
modeling also exist in Flora.

88 D. Elenius et al.

@!{CreateLowerHalfRule}
Yicreate (LowerHalf,?lower) :-
J%create(Selector,?selector), %create(Hammer,?hammer),
%create(Trigger, 7trigger), create(PivotPin,?pivotPin),
Y%create(TakedownPin, ?7takedownPin), Jcreate(BoltCatch,?boltCatch),
%create(Magazine, 7magazine),
hcreate(MagazineReleaseButton, 7magreleasebutton),
Y%create (ButtStock, ?buttstock), %create(LowerReceiverExtension,?lre),
Y%create (BufferRetainer,?bufferRetainer), Jcreate_name(LowerHalf,?lower),
insert{ ?lower : LowerHalf [
selector -> 7selector, hammer -> 7hammer,
trigger -> 7trigger, pivotPin -> ?7pivotPin,
takedownPin -> 7takedownPin, boltCatch -> 7boltCatch,
magazine -> 7magazine, magazineReleaseButton -> 7magreleasebutton,
buttStock -> 7buttstock, lowerReceiverExtension -> 7lre,
bufferRetainer -> 7bufferRetainer] }.

All the constructor rules use a common %create predicate, which takes two
arguments: a component class, and a (resulting) instance object. The rule body
has essentially three parts. First, we create all the child components. This step
depends on the constructor rules for the sub-components. Secondly, we create
a new name for our new component (using the %create name predicate, which
we define elsewhere). Finally, we insert into the KB facts which connect the
sub-components to the new top-level component, and assert the type and initial
state of the component. Now, we can issue a query, %create(LowerHalf,?x). This
query will cause Flora to create a number of new instances, each connected
in the appropriate way. The variable 7x will be tied to the top-level instance
representing the lower half component itself. Normally, we create the whole rifle
in one go, using the top-level M4 component as the first argument to %create.

4.3 Action Ontology

We built a high-level action ontology by adapting the taxonomy in [9] for our
needs. The generic actions in our ontology are: Attach, Close, Detach, Extract,
Insert, Inspect, Lift, Open, Point, Press, Pull, Push, and Release. Each of these
is defined as a class, which is a subclass of the Action class. A specific action that
occurs in space and time is considered to be an instance of the corresponding
action class. Each action has a fixed set of parameters. These are defined on the
action class. For example, the Insert class (here slightly simplified) is defined as:

Insert :: Action [
description ->
"Insert an object into another object"~~\string,
101
thingInserted {1..1} => PhysicalEntity,
insertedInto {1..1} => PhysicalEntity
1.

Semantically Enhanced Virtual Learning Environments Using Sunflower 89

The action takes two parameters, both of which are physical entities: the thing
inserted, and the thing inserted into.

Modeling actions as instances presents us with a problem: We need to create
a new instance, and related property assertions, for each individual action that
the user takes. This is somewhat cumbersome, especially for testing purposes.
Fortunately, Flora has some nice features that provide a solution to this problem.
We can define a functional term pattern

insert(?_TI,?_II) : Insert [
thingInserted -> 7?_TI, insertedInto -> 7_II

1.

This allows us to treat functional terms of the form insert(?x,?y) as terms, with
property value ?x for thingInserted and ?y for insertedInto. We can use such
terms directly in queries and rules, without having to explicitly declare a new
instance first.

Next, we found that these generic actions were not quite sufficient to model
all the intended tasks. At the same time, we did not want to pollute our generic
task ontology with very specific tasks. Hence, we introduced a new ontology of
“mechanics” actions: PullAndHold, PushAndHold, TightenScrew, LoosenScrew, and
SelectSwitchPosition.

4.4 Action Rules

The final component of our semantic models is the set of action rules. These
rules describe the preconditions and effects of the different actions, as applied
to components of the M4 rifle. This is by far the largest part of our semantic
models. As a simple example, we the rule for inserting a magazine is:

@!{InsertMagazineRule}
%do(?action”"Insert,?del,?add) :-
// Action Parameters
7action [
thingInserted -> ?mag”"Magazine,
insertedInto -> 7lower” "LowerHalf
1,
// Preconditions
?lower [magazine -> 7mag [attached -> \falsel],
// Effects
7del = [${?mag [attached -> \falsel} 1,
?add = [${?mag [attached -> \truel}],
%#kb_update(?7del,7add) .

Each action rule uses the predicate %do, which takes three arguments: the
action instance, and two result arguments which we call the delete-list and the
add-list. We will return to these lists shortly. The action variable is typed to the
correct type of action (Insert in this case). The first part of the rule (Action
Parameters) retrieves the parameters from the action instance, and checks the

90 D. Elenius et al.

types of those arguments. In this case, the value of the thingInserted property
must have type Magazine, and the insertedInto must be a LowerHalf (this is the
part of the rifle that the magazine is inserted into). The second part of the rule
is the Preconditions part. Here, we can check the state properties on the relevant
components, to make sure the action is possible. In this case, we check that the
magazine is not already inserted in the rifle. If the preconditions fail, the entire
rule fails, and there is no change in the KB. Finally, in the Effects part of the
rule, we perform the KB updates that represent the change in the world that the
action performs. Typically, the KB update modifies the state properties of the
components that are involved in the action. The KB updates are performed by
a convenience predicate that we introduced (definition not shown here), called
%kb_update. This predicate takes two arguments: a delete-list and an add-list.
These lists contain the Flora formulas to delete from, and add to, the KB. In
the current rule, we simply change the value of the attached property on the
magazine. These two lists are also returned as result arguments of the entire %do
predicate, in case the caller needs to know the rule’s effects.

For each action rule, we also create a helper predicate that simplifies testing
the rule. For example, for the action above:

@!{InsertMagazineHelperRule}
insert_magazine(?M4) :- %do(insert(?M4.lower.magazine,?M4.lower),?,7).

The action rules are very detailed and some of them get rather complex.
Sometimes, the effects of an action are conditional, even after the preconditions
have been satisfied. For example, to pull the trigger, the hammer must be cocked,
and the selector must not be in the SAFE position. The effects of pulling the trigger
depend on whether there is: (a) a round in the chamber, (b) a magazine in the
magazine well, and (c) additional rounds in the magazine. Because these rules,
like the component creation rules, utilize Flora’s KB update operations, they are
not expressible in less powerful languages such as OWL and SWRL.

4.5 Queries

As mentioned earlier, the action helper predicates can be useful in order to test
our action rules. We can also create new predicates that represent sequences of
actions, such as the “clearing a rifle” task in Fig. 1:

@!{ClearWeaponRule}

%clear_weapon(?M4) :-
%point_weapon_at_target (?M4,ShootingBerm),
\+Y%select_safe(?M4),
%push_magazine_release_button(7M4),
%pull_and_hold_charging_handle(7M4),
%push_and_hold_bolt_catch_bottom(?M4),
%release_charging_handle(7M4),
J%release_bolt_catch_bottom(?M4),
%push_charging_handle(7M4),

Semantically Enhanced Virtual Learning Environments Using Sunflower 91

%inspect_chamber (7M4),
Y%select_safe(?M4),
%push_bolt_catch_top(7M4),
Yselect_semi(?M4),
%pull_and_hold_trigger(7M4),
%pull_and_hold_charging_handle(7M4),
%release_charging_handle(?M4),
Yselect_safe(?M4) .

Now, the query Y%create(M4,?md), %clear_weapon(?m4) will succeed, and results
in changes to the KB corresponding to the actions taken (i.e., the rifle is cleared
and in a safe state).

We can also test an individual action rule and examine the add- and delete-
lists that are returned. For example, we can execute a query to create a rifle,
then load and fire it:

%hcreate(M4,7m4), /insert_magazine(7m4),
%pull_and_hold_charging handle(7m4),
hrelease_charging_handle(7m4),
%do(pull_and_hold(?M4.lower.trigger),?del,?7add)

Note that pull_and hold is a functional term defined using the technique
described in Sect. 4.3, to avoid having to instantiate the action. The query results
in the following value for 7del (recall that both the delete- and add-lists are lists
of reified formulas):

[${Magazine_1 [rounds -> [Round_2, ..., Round_301]1},
${Round_2 [location -> Magazine_1]},

${Round_1 : Round}, ${Round_1 [location -> Chamber_1l},
${Round_1 [casing -> Casing_1]},

${Trigger_1 [pulled -> \falsel}]

and 7add:

[${Magazine_1 [rounds -> [Round_3, ..., Round_301]},
${Round_2 [location -> Chamber_1]},

${Casing_1 [location -> Outsidel},

${Trigger_1 [pulled -> \truel}]

(We have abbreviated the long list of rounds in the magazine here). In other
words: the round in the chamber; Round_1 is gone, its casing is in the Outside
location (i.e., it is ejected from the rifle); the top round in the magazine, Round_2
is removed from the magazine and now located in the chamber; and the trigger
is in the pulled state.

5 Related Work

In [5], the authors develop a “semantic-enabled assessment module” for a 3D
environment, and [4] introduces a semantic approach to games, in order to enable

92 D. Elenius et al.

more reusability and emergent gameplay. These projects each relate to different
parts of the SAVE framework, but it is not clear what kind of semantic repre-
sentations they use.

The approach of describing actions with preconditions and effects has a long
history, dating back to the early days of Al planning systems [7]. These planning
representations are typically focused on reasoning about achieving a certain goal
state by chaining together a sequence of actions. Our present work, in contrast,
erecutes actions selected by a user. More importantly, planning representations
are typically specialized for a given domain, and are based on a less expressive
logic. The action descriptions in our work have access to a full-featured ontology
language.

In [8], we created ontological descriptions of virtual environments. However,
the project focused on support for reasoning about simulation fidelity as it relates
to large-scale training exercises and simulations. In the current work, we are
instead focused on modeling actions and objects on a detailed, individual level.

6 Conclusions and Future Work

We have developed the semantic models necessary for a semantically enhanced
virtual learning environment. In a sense, these models constitute a simulation of
the M4 rifle. A 3D environment is used to interact with this semantic simulation
in order to perform a given procedural task. The steps taken by the student are
automatically assessed and compared to the “gold standard” solution. There are
several possible directions for future work.

Currently, the Exercise Ul allows the user to try any action on any objects.
With little to no modifications to our modeling, we could use the semantic models
to show a user only the actions that are physically possible in a given situation, or
the ones that are allowed, required, etc. This could help users better understand
the environment as well as the task they are supposed to learn. In some contexts
it may prove too helpful, by telling the student exactly what to do. For actions
that are not possible or allowed, we could show explanations of why that is the
case. This feature could be implemented using Sunflower’s tracing and natural
language capabilities, described in [2]. It would also be interesting to examine
the use of semantics for discovering relevant ontologies or classes during the
annotation phase. Finally, modeling a second domain would demonstrate the
generalizability of our work.

Acknowledgements. This material is based upon work supported by the United
States Government under Contract No. W911QY-14-C-0023. Any opinions, findings
and conclusions or recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of the Government. Development of the Sun-
flower IDE was funded in part by the U.S. Office of the Assistant Secretary of Defense
for Readiness under the Open Netcentric Interoperability for Training and Testing
(ONISTT) project, and by TRMC (Test Resource Management Center) T&E/S&T
(Test and Evaluation/Science and Technology) Program under the NST Test Technol-
ogy Area. We are also indebted to the research community for developing and maintain-
ing the open source language and software components on which Sunflower depends,
especially Flora-2 (a.k.a. Ergo Lite), XSB Prolog, and InterProlog.

Semantically Enhanced Virtual Learning Environments Using Sunflower 93

References

1. Soldier’s manual of common tasks - warrior skills level 1. Technical report, Head-
quarters Department of the Army, September 2012

2. Ford, R., Denker, G., Elenius, D., Moore, W., Abi-Lahoud, E.: Automating finan-
cial regulatory compliance using ontology-+rules and Sunflower. In: Proceedings of
SEMANTICS (2016). (to appear)

3. Greuel, C., Myers, K.: Assessment and content authoring in semantically enabled
virtual environments. In: Proceedings of Interservice/Industry Training, Simulation
and Education Conference (2016). (submitted)

4. Kessing, J., Tutenel, T., Bidarra, R.: Designing semantic game worlds. In: Proceed-
ings of the The Third Workshop on Procedural Content Generation in Games, PCG
2012, ACM, New York, NY, USA (2012). http://doi.acm.org/10.1145/2538528.
2538530

5. Maderer, J., Giitl, C., AL-Smadi, M.: Formative assessment in immersive environ-
ments: a semantic approach to automated evaluation of user behavior in open won-
derland. In: Proceedings of Immersive Education (iED) Summit, June 2013

6. Myers, K., Gervasio, M.: Solution authoring via demonstration and annotation: an
empirical study. In: Proceedings of International Conference on Advanced Learning
Technologies (2016). (submitted)

7. Nau, D., Ghallab, M., Traverso, P.: Automated Planning: Theory & Practice. Mor-
gan Kaufmann Publishers Inc., San Francisco (2004)

8. Riehemann, S., Elenius, D.: Ontological analysis of terrain data. In: Liao, L. (ed.)
ACM International Conference Proceeding Series on COM.Geo, p. 10. ACM (2011)

9. Vujosevic, R., Tanni, J.: A taxonomy of motion models for simulation and analysis
of maintenance tasks. Technical report, United States Air Force Armstrong Labo-
ratory, January 1997

http://doi.acm.org/10.1145/2538528.2538530
http://doi.acm.org/10.1145/2538528.2538530

	Semantically Enhanced Virtual Learning Environments Using Sunflower
	1 Introduction
	2 SAVE Overview
	3 Sunflower Overview
	4 Semantic Models
	4.1 Component Ontology
	4.2 Component Creation Rules
	4.3 Action Ontology
	4.4 Action Rules
	4.5 Queries

	5 Related Work
	6 Conclusions and Future Work
	References

