
GaiusT 2.0: Evolution of a Framework for Annotating
Legal Documents

Nicola Zeni1, Luisa Mich2(✉), and John Mylopoulos3

1 Department of Information Engineering and Computer Science,
University of Trento, Trento, Italy
nicola.zeni@unitn.it

2 Department of Industrial Engineering, University of Trento, Trento, Italy
luisa.mich@unitn.it

3 School of Electrical Engineering and Computer Science, University of Ottawa,
Ottawa, CA, Canada

jmylopou@eecs.uottawa.ca

Abstract. Semantic annotation technologies support the extraction of legal
concepts, for example rights and obligations, from legal documents. For software
engineers, the final goal is to identify compliance requirements a software system
has to fulfill in order to comply with a law or regulation. That implies analyzing
and annotating legal documents in prescriptive natural language, still an open
problem for research in the field. In this paper we describe GaiusT 2.0, a system
for extracting requirements from legal documents. GaiusT 2.0 is the result of the
evolution of GaiusT, and has been designed and implemented as a web-based
system intended to semi-automate the extraction process. Results of the applica‐
tion of GaiusT 2.0 show that the new version improves performance of the extrac‐
tion process and also makes the tool more usable.

Keywords: Semantic annotation · Legal documents · Legal requirements ·
Natural language processing · Linguistic resources · User needs

1 Introduction

Recent trends in technologies, as well as social, economic and political issues, have
greatly increased the importance of ensuring compliance of software systems with
regulations, laws, policies and other types of legal documents. Autonomous vehi‐
cles, the Internet of Things, cloud services, augmented reality, videogames, online
auctions, e-commerce and e- related sectors, and social networking platforms are
only some of the many technologies [1] challenging the elicitation of legal require‐
ments [2] from a variety of legal documents. That in turn has driven researchers to
design and develop tools and systems to support requirements analysts in eliciting
compliance requirements from regulatory documents [3, 4]. Existing systems range
from editors for manually annotating (markup) legal documents to frameworks inte‐
grating linguistic tools and natural language processing (NLP) features. NLP systems
constitute essential components, as they fully or partially automate requirements

© Springer International Publishing AG 2016
E. Garoufallou et al. (Eds.): MTSR 2016, CCIS 672, pp. 43–54, 2016.
DOI: 10.1007/978-3-319-49157-8_4



extraction, demanding an in-depth semantic and pragmatic analysis, an objective that
is far from being reached [5]. In this context, the first version of GaiusT represented
a multi-phase framework to support the different tasks in which legal requirements
extraction can be decomposed [6]. The framework was implemented as a modular
system with a semantic annotation system core [7] coded in TXL, a structural trans‐
formation system [8].

The applications and experiments with GaiusT exposed a number of issues that
required a deep reengineering of the system. The reengineering project started in 2013
and the first steps included (a) an analysis of existing tools and linguistic resources that
could be adopted to address the high level requirement for an improved version of
GaiusT, but still preserving its nature of a lightweight system [9]; (b) an investigation
of usability issues for a tool supporting the extraction of requirements from legal docu‐
ments [10].

In this paper we describe the architecture of the new version of GaiusT, called GaiusT
2.0. The evolution project moved from the output of those steps. In addition to the above,
the project aimed to address new challenges that are: (a) how to deal with legal docu‐
ments in different domains and cultures; (b) how to support user intervention in all the
steps of the requirements extraction process. GaiusT 2.0 is a completely revised system
supporting requirements extraction (SSRE) where all the modules have been re-imple‐
mented and new ones have been added. To evaluate the new system, preliminary results
obtained with GaiusT 2.0 are reported and compared with those obtained with GaiusT
for the HIPAA (Health Insurance Portability and Accountability Act) [6, 11].

This paper is structured as follows. Section 2 describes the problems to be addressed
by a system supporting requirements elicitation annotating legal documents and the
requirements for such systems. Section 3 illustrates the architecture of GaiusT 2.0
comparing it with that of GaiusT. Section 4 presents the main results of the evaluation
of GaiusT 2.0. Section 5 illustrates the related work and finally, the conclusions are
drawn in Sect. 6.

2 Extracting Legal Requirements from Textual Documents

2.1 Supporting Requirements Elicitation for Regulatory Compliance

The core task a SSRE for regulatory compliance has to support is the identification of
deontic concepts described in legal documents, from compound concepts such as rights
and obligations to requirements concepts, such as goal, actor, action, resource. A detailed
description of the characteristics of an SSRE is given in [6]. Here we review the issues
most relevant to the evolution of our system described in the next section. First of all,
automatic annotation and processing of legal documents is particularly difficult because
they are written in “legalese”, a specialized prescriptive language. Moreover, from a
linguistic point of view an SSRE from legal documents has to deal with knowledge in
different domains, or rather the specialized language and knowledge of laws for specific
domains. A SSRE has also to take into account the structure of legal documents which
generally respect a multi-level hierarchical structure. Such structure constitutes the basis
for internal and external references [12]; for example, describing a right, the involved

44 N. Zeni et al.



actors may be found defined in another document or section; exceptions can refer to
actions defined in another subsection, etc. As a result, at least two models are required
for annotating a given regulation: (a) a conceptual model, including the deontic concepts
that represent prescribed behaviors – rights and obligations (descriptive metadata) – and
(b) a structural model of the text of the regulation (structural metadata). The second
model is particularly important to delimit the scope of concepts identified in the text
according to the conceptual model. Still, a comprehensive SSRE had to support many
other activities including the very first steps in which (a) the conceptual model for a law
is designed, or adapted from an existing one, for a given regulation and (b) indicators
corresponding to the concepts are defined in an annotation schema. The variety of tasks
and elements involved also requires the creation and management of a large knowledge
base; multi-language annotation is also in place in some projects. Existing systems
usually focus only on one of the tasks described in this section that is the annotation of
deontic concepts, or the definition of a conceptual model for a given law [13], or of a
structural model. The goal of the new version of GaiusT is to deal with all these tasks,
integrating and consolidating the results of previous researches but also adding new
modules.

As regards the implementation of a SSRE, a variety of programming languages and
technical frameworks could be used and it is quite common that some of the linguistic
activities (e.g. parsing, word frequency analysis) or editing features (both on texts and
on the graphical diagrams for the conceptual models) are developed by customizing
open source programs or looking for existing libraries. These modules have then to be
integrated into the framework taking into account transportability and inter-operability
issues. All these issues were critical to the success of the reengineering project for
GaiusT 2.0; the complexity of the system implied a high risk of worsen its performances
relative to the less automatic process supported by GaiusT.

2.2 Requirements for a System Supporting Requirements Extraction from Legal
Documents

There are a number of users involved in an SSRE - requirements analysts, business
analysts, lawyers, experts on standards, experts on linguistics, developers, domain
experts (e.g. health experts for laws like HIPAA) to name but a few. Users of the SSRE
can be classified into three main categories: researchers, developers and end users. Each
of these classes have specific needs and requirements that an SSRE from legal documents
has to satisfy and are described in the following adding to those given in [10].

Researchers. SSRE from legal documents are often developed by researchers working
on large-scale international research projects (e.g. European projects involve research
groups in different countries) which often last years. This is indeed the case with GaiusT
2.0. The system evolved from a research project to design and implement semantic
annotation tools where the final framework, called Cerno, was a large-scale semantic
annotation system [7]. The Cerno project started about ten years ago [14]; from its
inception the researchers were scattered in different organizations and countries. The
application of Cerno to legal documents required a re-design of some of its modules and

GaiusT 2.0: Evolution of a Framework 45



the development of new ones and resulted in the first version of GaiusT [6]. These
evolutions revealed further high-level requirements to be satisfied by a new version of
GaiusT:

• to deal with conceptual models other than the ones used in GaiusT, describing laws
at a different abstraction level [10], for example the model used in the Nómos project
[15] (for another model see [16]);

• to allow researchers in different fields - compliance with legal documents implies a
multi-disciplinary approach - to use the modules of the system;

• additional features for choosing the concepts to be annotated in legal documents for
a given research project;

• management of multi-accesses, spaces and tools for different projects;
• support while testing the impact of changes in the annotation schema on the output

of the annotation steps;
• storing all the artifacts of a project for traceability;
• interfaces to the core modules to support the definition of annotation rules for new

conceptual models;
• modules for the analysis and comparison of output produced in all the steps of the

requirements extraction process.

Developers. Developers of an SSRE have not only to implement solutions for a variety
of tasks but they also have to choose from a large number of platforms, technologies,
libraries, programming languages and standards. The most critical decisions made for
the GaiusT 2.0 project are related to the need to integrate modules, libraries and new
software and, whenever possible, to use open source resources. Mashing them up is often
more challenging than expected. For example, available off-the-shelf modules
frequently turn out to be incompatible, or have low performance levels, or do not imple‐
ment all the needed features. An analysis of the available tools and resources (and of
their adaption needs) is given in [9]. The main developers’ requirements identified for
GaiusT 2.0 are the following:

• to address the limitations of TXL, which had resulted less scalable than expected to
process long documents, and to support an evolutionary approach to the implemen‐
tation of prototypes for the modules of GaiusT 2.0;

• to adopt the most suitable technologies to implement GaiusT 2.0 as a full-fledged
web-based system, a high level requirement shared by all the user classes;

• to port available open source linguistic tools and resources that often are in Java [17–
19] in C#, the language adopted for the Gaius project.

End users. Prospective users of GaiusT 2.0 are requirements engineers or analysts, and
lawyers. A particular class of users of SSRE are the participants in experiments, often
students whose role and needs are similar to those of (junior) requirements analysts. For
these users, needs are also related to the support of the manual analysis and annotation
of legal texts (necessary to create a gold reference for comparison with the GaiusT 2.0
results). For end users, requirements are mainly related to:

46 N. Zeni et al.



• ease of use and learnability, which are hampered by the trade-off between the need
of the developers to implement new solutions in an effective and efficient process,
often with throwaway prototypes, and the need of the researchers to test their analysis
and annotation approaches without the help of a developer;

• usability of the annotation schema and engine modules (Table 1), that turned out to
be critical also to allow researchers and developers to gather users’ feedback and data
to compare different solutions to a specific problem;

Table 1. GaiusT component comparison matrix.

Component/Module GaiusT GaiusT Version 2.0
Annotation schema generator
Conceptual model parser – Parses XMI models
Word frequency list (WFL)
generator

Generates WFLs + Generates n-grams

Lexical database manager Uses WordNet to validate
WFL entries

+ Uses Google n-grams to
validate n-grams

Part of Speech (PoS) manager External (TreeTagger) Embedded (porting Java libra‐
ries in C#)

Template Library – Generates templates for
different types of laws
(domains) and projects

Annotation engine
Text extractor Extracts text from different file

formats
+ Parallel processing and web
downloader

Normalizer Clear texts and puts 1 sentence
per line

+ Parallel processing

Document structure analyzer TXL rules Regular expressions
Annotation rules generator External (TXL rules) Embedded (regular expres‐

sions)
Annotation generator Annotates concepts Annotates concepts and rela‐

tionships
Repository
Relational database Annotated items Structured artifacts
Evaluation module Provides data for basic

statistics
Provides HTML statistical
reports, graphical traceability,
document browsing

Graphical model generator
Graph generator – Generates graphical models of

annotations
Graphical User Interface
Interface Client application Web application (responsive,

multi-user)

GaiusT 2.0: Evolution of a Framework 47



• support to group work as requirements analysts and lawyers are sometime working
in different places and have to cooperate on interdisciplinary projects;

• to annotate legal documents at different granularity levels, that is associating texts of
different size - ranging from single words to the entire document - to a given concept;

• a specific requirement for lawyers is that of having legal citations for external refer‐
ences according to the Bluebook [12].

3 The Framework

3.1 GaiusT

The explanation of GaiusT given here is abbreviated to what is necessary to understand
this paper. A full description can be found in [6]. GaiusT was designed as a multi-phase
framework to semi-automatically identify deontic concepts in legal documents. It has
been successfully applied to the annotation of documents both in English and in Italian.
Starting from a meta-model of legal concepts - a conceptual model - GaiusT identifies
instances of complex deontic concepts, such as rights and obligations. From the meta-
model one can derive an annotation schema which specifies the rules for identifying the
instances of legal concepts in a document. For each concept, the annotation schema
specifies its identifiers with their syntactic roles, and patterns are used to represent
complex concepts. Indicators can be single words, phrases, or references to previously
parsed basic entities while patterns are collection of concepts related by regular expres‐
sions. For each legal document, the output of GaiusT is an XML file that lists all the
annotations generated by the system.

The first version of GaiusT was about 50 k lines of code and more than 130 MB in
size.

3.2 GaiusT 2.0

Based on the requirements gathered for the different classes of users described in
Sect. 2.2 and the limitations identified from the experiments and applications of GaiusT,
the SSRE evolved into GaiusT 2.0, a web-based system with new and improved
modules. Most of the requirements are related to the need to deal with different domains
(privacy for health data, accessibility and ICT, etc.) and with different legal systems
where general principles determine different conceptual models (descriptive metadata)
and different document structure (structural metadata). The architecture of GaiusT 2.0
includes a number of components and is represented in Table 1, where each of them is
compared to the corresponding module of GaiusT.

The Annotation schema generator supports the process to semi-automatically create
annotation schemas i.e. to associate each concept in a conceptual model to a list of
indicators to be used to identify the concepts in a legal document. For this component,
two of the modules – the WFL generator and the Lexical database manager – have been
fully reengineered. In particular, the statistical analyses of the input documents provided
by the WFL generator module have been integrated with the calculation of TF/IDF (term
frequency/inverse document frequency). The Lexical Database Manager has been

48 N. Zeni et al.



extended by adding Google n-grams [20] (consisting of 1-grams to 5-grams; the last
available version contains more than 346 million bigrams and more than 2,616 million
trigrams) and the WordNet ontology [21]. The part of speech (PoS) module has been
replaced by porting in C# sharpNLP (in Java [22]), and expanding it, as it only covers
part of the English language and does not deal with Italian. A new Template library
module has been added to support the creation of annotation templates and the reusability
of items (concepts, indicators, patterns, structural items). This module helps the users
in the definition of annotation schemas according to the legal documents to be analysed.
For example, a user can define a template for the semantic annotation of American laws,
including structural patterns, legal concepts and patterns to annotate any American legal
document; as a result compliance requirements extraction from a specific American law
does not have to start from scratch as items defined in the template can be reused.
Besides, to support different users groups and annotation works, a project template was
added.

The Annotation engine supports a number of steps in order to: (1) extract text from
different file formats (Text extractor), (2) normalize the input document by removing
leading and unprintable characters and trailing spaces to produce a text document where
each line represents a phrase (Normalizer); (3) annotate text units with tags for structure
and cross references identification (Document structure analyzer); (4) generate rules for
annotating concepts; (5) identify concepts, applying the annotation schema i.e. indica‐
tors and patterns defined for the conceptual model; find relationships between identified
concepts by using the heuristic patterns (Annotation generator). In GaiusT, the Anno‐
tation rules generator was in TXL [8]; to overcome its limitations, GaiusT 2.0 uses
regular expressions. These expressions allow to effectively capture grammar and
syntactic rules for the chosen languages. The design and implementation of this compo‐
nent has been the most demanding in the entire project.

The redesign of the system included the expansion of the Database component, a
relational database that increased from 10 to 71 tables. A new module deals with
unstructured documents and artifacts of the annotation process.

A new component, the Graphical model generator, has been added to create graphical
models with the instances of the deontic concepts extracted from the annotated texts (a
specialized module for the conceptual model used for Nómos is described in [23]).

The GUI component is the result of the migration of GaiusT to a web-based system.
An explorative web prototype was developed using NodeJs [24]. Later, for maintenance
and integrability reasons, it was migrated to ASP.NET MVC [25]. Mobile and multi-
users accesses are also supported.

The actual version of GaiusT 2.0 is about 120 k lines of code, a more than two-fold
increase, and 415 MB in size of libraries.

4 Evaluation

GaiusT 2.0 satisfies most of the requirements described in 2.2. It is a full-fledged web-
based system and it is used by researchers working in groups and on different projects.
The system deals with multi-accesses, storing artefacts for projects which adopt different

GaiusT 2.0: Evolution of a Framework 49



annotation models and schemas. Researchers and end users utilize it for new experiments
and applications. Besides HIPAA, the results of which are reported in the next sub-
section, a new project is now applying GaiusT 2.0 to the English version of German [26]
and Italian privacy law [27] i.e. laws whose documents have a different structure and
are in a different domain. For the developers, technologies deployed for implementing
GaiusT 2.0 offer better support to extend and adapt the system. Although quantitative
results are not yet available, the experiences gained so far confirm that GaiusT 2.0
usability has largely improved thanks to the web interface that has reduced the time
needed to start using the system. Requirements not yet implemented regard the future
work outlined in the conclusion.

To evaluate the new version of GaiusT we applied it to the HIPAA (with the same
assessment methodology described in [11]) in particular to Sect. 164.524 and
Sect. 164.526, thus allowing us to compare the results obtained from GaiusT 2.0 with
those reported in [6]. We adopted experts’ manual annotation as gold standard as an
upper bound of what automatic annotation can do. Moreover, the performance of the
tool was calibrated with the degree of disagreement among experts in the experiment
(an average of 23 %). We used standard information retrieval metrics1 - precision, recall,
fallout, accuracy, error and F-measure – to compare the performance of the tool to that
of humans. The results of the experiment are presented in Table 2.

Table 2. Evaluation rates of experts and the two versions of GaiusT annotating HIPAA.

Human GaiusT GaiusT 2.0
Precision 0.83 0.84 0.86
Recall 0.92 0.87 0.90
Fallout 0.49 0.42 0.73
Accuracy 0.78 0.78 0.74
Error 0.22 0.22 0.28
F-measure 0.86 0.85 0.87

1 • Recall is a measure of how well the tool performs in finding relevant items TP/(TP + FN);
• Precision is a measure of how well the tool performs in not returning irrelevant items TP/

(TP + FP);
• Fallout is a measure of how quickly precision drops as recall is increased FP/(FP + TN);
• Accuracy is a measure of how well the tool identifies relevant items and rejects irrelevant

ones (TP + TN)/N;
• Error is a measure of how much the tool is prone to accept irrelevant items and rejects

relevant ones (FP + FN)/N;
• F-measure is a harmonic mean of recall and precision 2 × Recall × Precision/

(Recall + Precision)

where TP is the number of items correctly assigned to the category; FP is the number of items
incorrectly assigned to the category; FN is the number of items incorrectly rejected from the
category; TN is the number of items correctly rejected from the category; and N is the total
number of items N = TP + FP + FN + TN.

50 N. Zeni et al.



The new system has improved recall without diminishing precision. It should be
noted that, taking into account the disagreement among experts, GaiusT 2.0 does a little
bit better with respect to precision and F-measure than human annotators.

GaiusT 2.0 has also improved the process of structure identification and the identi‐
fication of structure elements is performed with a recall of 100 %. The tool is able to
correctly identify all cross-references but, for example, the cross reference “… in para‐
graphs (b)(1) (ii)(A) or (B)” is partially matched as “paragraphs (b)(1)” because in the
input text there is an extra-space between “(b)(1)” and “(ii)(A)” so that the regular
expression fails to catch the entire occurrence.

Further experiments need to be carried out to evaluate the productivity of the new
system. To this end the effort to adapt it to the analysis of new laws had to be taken into
account: by providing a larger support to the activities in the annotation process, GaiusT
2.0 should help to reduce the time needed for the annotation. Real time support (or nearly
real time) would be useful to analyze online documents; for example, for moderating
posts according to given social networking rules.

5 Related Work

The extraction of requirements from legal documents is a challenging task and several
approaches have been presented to tackle the problem, ranging from manual analysis to
the use of NLP techniques to semi-automate the process.

Heuristic rules for extracting rights and obligations from regulations are given in
[28]; in this field Breaux proposed a framework to acquire legal requirements using a
systematic frame-based requirements analysis methodology. The framework uses an
upper ontology (which describes general concepts that are the same across all knowledge
domains) to classify regulatory statements, for context-free mark-up and to handle the
structural organization of regulatory documents. Recently a Hit (Human Intelligence
Tasks) was called for on Amazon Mturk [29] to have people apply their approach to the
annotation of legal documents.

To automatically support the most critical steps of the semantic annotation process
some researchers propose the application of NLP tools and machine learning approaches
to achieve full, domain-independent analysis of legal documents. The purpose of these
approaches includes activities like the extraction of a particular kind of concept and the
identification of text fragments relevant for a given goal or for document classification.
In [30] authors propose a name entity recognition methodology for the automatic iden‐
tification of actors relevant for the analysis of a regulation or a law. Lesmo et al. [31]
present TULSI, a system for the extraction of semantic annotations from legal docu‐
ments, a core task of the GaiusT 2.0 architecture. GATE (General Architecture for Text
engineering) [32] provides a rule-based language to build annotation patterns with an
approach similar to that used by GaiusT 2.0, however GATE is not web–based and none
of its modules could be integrated into it.

As regards the analysis of the structure of legal documents and the management of
cross references - seemingly easy tasks but a complete, affordable, robust system is still
lacking - it is worth citing two recent papers [33, 34]. Both propose a systematic approach

GaiusT 2.0: Evolution of a Framework 51



based on regular expressions and linguistic techniques to identify cross references in
legal text: a necessary step, but unfortunately insufficient to fully address this task.
GaiusT 2.0 uses regular expressions to capture formal partitions (the document structure)
and cross-references, achieving good performances as an evolution of the approach
described in [35].

Other authors have focused on the problem of managing knowledge in legal docu‐
ments, to support lawyers in searching for legal cases and sentences related to their
professional activities. Among the tools used to manage legal knowledge, EuNomos
[36] supports the identification and classification of legal documents through an
ontology-based process. Documents are analyzed and annotated in XML format,
according to the Akoma Ntoso standard [37], using a combination of linguistic and
machine learning techniques (text classification, text similarity and pattern matching)
to extract concepts and structure from the legal texts. GaiusT 2.0 also uses conceptual
and structural models - small ontologies intended to capture domain semantics - to
identify main concepts and relevant clues in the structure of the texts. Another knowl‐
edge management tool for lawyers is SALEM [38], which uses linguistics technologies
and machine learning (a technique similar to SMV, support vector machine) to extract
provisions from legal documents. An interesting result is reported in [39] where authors
compare machine learning classification of legal sentences versus pattern based classi‐
fication and highlight how a pattern based classifier resulted more robust in the catego‐
rization of legal documents than a SVM classifier. Gaius T 2.0 is not directly comparable
with any of the existing tools, even though the techniques used for semantic annotation
are shared by many of the existing approaches. GaiusT 2.0 differs from all them as it is
a comprehensive large scale system which includes modules to deal with most of the
tasks related to requirements extraction from legal documents. It uses a semi-automatic
pattern-based approach to analyze legal documents dealing with the needs related to the
application of the system to different domains and legal systems. Worth citing are the
(complementary) approaches addressing the problem the other way around, that is
starting from software requirements and checking if they comply with a given law; see
for example [40]. A methodology for reasoning and modeling of obligations is described
in Hashmi [41]. Reasoning would be useful to check if a given event breaks a law (rule)
and is one of the goals of Nómos [15].

6 Conclusions and Future Work

Regulatory compliance for software systems is a complex problem. In this paper we
described GaiusT 2.0, a large-scale system supporting the extraction of legal require‐
ments from textual documents. The design of the system started in 2013 and evolved
from GaiusT by improving and including new modules. The design of the modules was
based on the users’ needs gathered in different projects and on the analysis of available
linguistic resources and development technologies. GaiusT 2.0 addresses most of the
requirements described in Sect. 2.2. However there are a number of issues that have to
be further investigated and features to be added. The following are prospective points
for future study: (1) add reasoning mechanism to improve the annotation step; (2) adopt

52 N. Zeni et al.



one of the standard mark-up languages for legal documents for example, LegalRuleML
[42]; (3) add a layer to transform legal concepts into legal requirements, a step that none
of the existing systems support yet.

Acknowledgements. Nicola Zeni’s work was supported in part by the ERC advanced grant
267856 ‘Lucretius: Foundations for Software Evolution’. Our thanks go to the experts and users
who made themselves available to test GaiusT 2.0.

References

1. IEEE: IEEE Computer society predicts Top 9 technology trends (2016). http://
www.computer.org/web/pressroom/Technology-Trends-2016

2. Systems Engineering Body of Knowledge (SEBoK) v.1.5.1. (2015). http://sebokwiki.org/
wiki/Guide_to_the_Systems_Engineering_Body_of_Knowledge_(SEBoK)

3. RELAW workshops. http://gaius.isri.cmu.edu/relaw
4. Jurix conferences. http://jurix.nl/proceedings
5. Davis, E.: The singularity and the state of the art in artificial intelligence: the technological

singularity. In: Ubiquity symposium (Ubiquity 2014), 12 pages (2014)
6. Zeni, N., Kiyavitskaya, N., Cordy, J.R., Mich, L., Mylopoulos, J.: GaiusT: supporting the

extraction of rights and obligations for regulatory compliance. Req. Eng. 20(1), 1–22 (2015).
(online 2013)

7. Kiyavitskaya, N., Zeni, N., Cordy, J.R., Mich, L., Mylopoulos, J.: Cerno: light-weight tool
support for semantic annotation of textual documents. Data Knowl. Eng. 68(12), 1470–1492
(2009)

8. Cordy, J.R.: The TXL source transformation language. Sci. Comput. Program. 61(3), 190–
210 (2006)

9. Zeni, N., Mich, L., Mylopoulos, J., Cordy, J.R.: Applying GaiusT for extracting requirements
from legal documents. In: 6th International Workshop on Requirements Engineering and Law
(RELAW 2013), pp. 65–68. IEEE (2013)

10. Zeni, N., Mich, L.: Usability issues for systems supporting requirements extraction from legal
documents. In: 7th International Workshop on Requirements Engineering and Law (RELAW
2014), pp. 35–38. IEEE (2014)

11. Health Insurance Portability and Accountability Act – HIPAA. http://www.hhs.gov/ocr/
privacy/hipaa/understanding

12. Bluebook. https://www.legalbluebook.com
13. Souza, V., Zeni, N., Kiyavitskaya, N., A, P., Mich, L., Mylopoulos, J.: Automating the

generation of semantic annotation tools using a clustering technique. In: Kapetanios, E.,
Sugumaran, V., Spiliopoulou, M. (eds.) NLDB 2008. LNCS, vol. 5039, pp. 91–96. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-69858-6_10

14. Kiyavitskaya, N., Zeni, N., Cordy, J.R., Mich, L., Mylopoulos, J.: Applying software analysis
technology to lightweight semantic markup of document text. In: Singh, S., Singh, M., Apte,
C., Perner, P. (eds.) ICAPR 2005. LNCS, vol. 3686, pp. 590–600. Springer, Heidelberg
(2005). doi:10.1007/11551188_65

15. Siena, A., Jureta, I., Ingolfo, S., Susi, A., Perini, A., Mylopoulos, J.: Capturing variability of
law with Nómos 2. In: Atzeni, P., Cheung, D., Ram, S. (eds.) ER 2012. LNCS, vol. 7532, pp.
383–396. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34002-4_30

16. Winkels, R., Hoekstra, R.: Automatic extraction of legal concepts and definitions, pp. 157–
166. IOS (2012)

GaiusT 2.0: Evolution of a Framework 53

http://www.computer.org/web/pressroom/Technology-Trends-2016
http://www.computer.org/web/pressroom/Technology-Trends-2016
http://sebokwiki.org/wiki/Guide_to_the_Systems_Engineering_Body_of_Knowledge_(SEBoK)
http://sebokwiki.org/wiki/Guide_to_the_Systems_Engineering_Body_of_Knowledge_(SEBoK)
http://gaius.isri.cmu.edu/relaw
http://jurix.nl/proceedings
http://www.hhs.gov/ocr/privacy/hipaa/understanding
http://www.hhs.gov/ocr/privacy/hipaa/understanding
https://www.legalbluebook.com
http://dx.doi.org/10.1007/978-3-540-69858-6_10
http://dx.doi.org/10.1007/11551188_65
http://dx.doi.org/10.1007/978-3-642-34002-4_30


17. OpenNLP. https://opennlp.apache.org
18. Stanford CoreNLP. http://nlp.stanford.edu/software
19. NLP toolkit. http://www.nltk.org
20. Google n-grams. http://storage.googleapis.com/books/ngrams/books/datasetsv2.html
21. WordNet. https://wordnet.princeton.edu
22. SharpNLP. https://sharpnlp.codeplex.com
23. Zeni, N., Seid, E.A., Engiel, P., Ingolfo, S., Mylopoulos, J.: Building large models of laws

with NómosT. In: 35th International Conference on Conceptual Modeling (ER 2016).
Springer (2016, to appear)

24. NodeJs. http://nodejs.org
25. ASP.NET MVC. www.asp.net/mvc
26. Germany’s Federal Data Protection Act - Bundesdatenschutzgesetz – BDSG. https://

www.loc.gov/law/help/online-privacy-law/germany.php
27. Data Protection Code - Legislative Decree no. 196/2003. http://194.242.234.211/documents/

10160/2012405/DataProtectionCode-2003.pdf
28. Breaux, T.D., Antón, A.I.: Analyzing regulatory rules for privacy and security requirements.

IEEE Trans. on SW. Eng. 34(1), 5–20 (2008)
29. Amazon Mechanical Turk. https://www.mturk.com
30. Dozier, C., Kondadadi, R., Light, M., Vachher, A., Veeramachaneni, S., Wudali, R.: Named

entity recognition and resolution in legal text. In: Francesconi, E., Montemagni, S., Peters,
W., Tiscornia, D. (eds.). LNCS (LNAI), vol. 6036, pp. 27–43Springer, Heidelberg (2010).
doi:10.1007/978-3-642-12837-0_2

31. Lesmo, L., Mazzei, A., Palmirani, M., Radicioni, D.P.: TULSI: an NLP system for extracting
legal modificatory provisions. Art. Intell. Law 21(2), 139–172 (2013)

32. GATE. https://gat.ac.uk
33. Sannier, N., Adedjouma, M., Sabetzadeh, M., Briand, L.: An automated framework for

detection and resolution of cross references in legal texts. Req. Eng., 1–23 (2015). http://
link.springer.com/journal/766/onlineFirst/page/1

34. Oanh Thi, T., Bach Xuan, N., Le Minh, N., Akira, S.: Automated reference resolution in legal
texts. Artif. Intell. Law 22(1), 29–60 (2014)

35. Zeni, N., Kiyavitskaya, N., Mich, L., Mylopoulos, J., Cordy, J.R.: A lightweight approach to
semantic annotation of research papers. In: Kedad, Z., Lammari, N., Métais, E., Meziane, F.,
Rezgui, Y. (eds.) NLDB 2007. LNCS, vol. 4592, pp. 61–72. Springer, Heidelberg (2007). doi:
10.1007/978-3-540-73351-5_6

36. Boella, G., di Caro, L., Humphreys, L., Robaldo, L., van der Torre, L.: NLP challenges for
EuNomos a tool to build and manage legal knowledge. In: 8th International Conference on
Language Resources and Evaluation (LREC 2012). European Language Resources Ass.,
Istanbul (2012)

37. Akoma Ntoso standard. http://www.akomantoso.org
38. Soria, C., Bartolini, R., Lenci, A., Montemagni, S., Pirrelli, V.: Automatic extraction of

semantics in law documents. In: 5th Legislative XML Workshop (2007)
39. de Maat, E., Krabben, K., Winkels, R.: Machine learning versus knowledge based

classification of legal texts. In: 23rd Conference on Legal KW and IS (JURIX 2010), pp. 87–
96. IOS Press (2010)

40. Massey, K.: Legal requirements metrics for compliance analysis. Ph.D. dissertation, North
Carolina State University (2012)

41. Ingolfo, S., Siena, A., Mylopoulos, J., Susi, A., Perini, A.: Arguing regulatory compliance of
software requirements. Data Knowl. Eng. 87, 279–296 (2013)

42. LegalRuleML. https://www.oasis-open.org/committees/legalruleml

54 N. Zeni et al.

https://opennlp.apache.org
http://nlp.stanford.edu/software
http://www.nltk.org
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html
https://wordnet.princeton.edu
https://sharpnlp.codeplex.com
http://nodejs.org
http://www.asp.net/mvc
https://www.loc.gov/law/help/online-privacy-law/germany.php
https://www.loc.gov/law/help/online-privacy-law/germany.php
http://194.242.234.211/documents/10160/2012405/DataProtectionCode-2003.pdf
http://194.242.234.211/documents/10160/2012405/DataProtectionCode-2003.pdf
https://www.mturk.com
http://dx.doi.org/10.1007/978-3-642-12837-0_2
https://gat.ac.uk
http://springerlink.bibliotecabuap.elogim.com/journal/766/onlineFirst/page/1
http://springerlink.bibliotecabuap.elogim.com/journal/766/onlineFirst/page/1
http://dx.doi.org/10.1007/978-3-540-73351-5_6
http://www.akomantoso.org
https://www.oasis-open.org/committees/legalruleml

	GaiusT 2.0: Evolution of a Framework for Annotating Legal Documents
	Abstract
	1 Introduction
	2 Extracting Legal Requirements from Textual Documents
	2.1 Supporting Requirements Elicitation for Regulatory Compliance
	2.2 Requirements for a System Supporting Requirements Extraction from Legal Documents

	3 The Framework
	3.1 GaiusT
	3.2 GaiusT 2.0

	4 Evaluation
	5 Related Work
	6 Conclusions and Future Work
	Acknowledgements
	References


