
Sharing Linked Open Data over Peer-to-Peer
Distributed File Systems: The Case of IPFS

Miguel-Angel Sicilia(B), Salvador Sánchez-Alonso,
and Elena Garćıa-Barriocanal

Computer Science Department, University of Alcalá, Polytechnic Building, Ctra.
Barcelona Km. 33.6, 28871 Alcalá de Henares, Madrid, Spain

{msicilia,salvador.sanchez,elena.garciab}@uah.es

Abstract. Linked Open Data (LOD) is a method of publishing
machine-readable open data so that it can be interlinked and become
more useful through semantic querying. The decentralized nature of the
current LOD cloud relies on location-specific services, which is known to
result in problems of availability and broken links. Current approaches
to peer-to-peer (P2P) decentralized file systems could be used to support
better availability and performance and provide permanent data, while
preserving LOD principles. Applications would also benefit from mech-
anisms that ensure that LOD entities are permanent and immutable,
independently of their original publishers. This paper outlines a first
prototype design of LOD over the Interplanetary File System (IPFS),
a P2P system based on Merkel DAGs and a content-addressed block
storage model. The fundamental ideas on that implementation are dis-
cussed and an example implementation on the early version of IPFS is
described, showing the feasibility of such approach and its main differ-
entiating features.

Keywords: IPFS · Linked Open Data · P2P file systems

1 Introduction

Linked Open Data (LOD) is a method of publishing machine-readable structured
open data so that it can be interlinked and become more useful and actionable
through semantic querying. The current implementation of LOD has resulted in
a growing cloud of interlinked datasets or “Web of Data”, that diverse kind of
providers (from governments to individuals) expose and give support to, typically
using RDF [3]. These providers organize open data exposure around a number of
good practices that become progressively adopted at least to a certain extent [18].

LOD is considered by many as an approach to implement open data. In
2010, the Sunlight Foundation collected in ten principles the desirable proper-
ties of open (government) data1, which included accessibility, non-discrimination
and permanence. These and other requirements for the public require a robust
infrastructure that guarantees sustainability, and it has proven difficult to
1 http://sunlightfoundation.com/policy/documents/ten-open-data-principles/.

c© Springer International Publishing AG 2016
E. Garoufallou et al. (Eds.): MTSR 2016, CCIS 672, pp. 3–14, 2016.
DOI: 10.1007/978-3-319-49157-8 1

http://sunlightfoundation.com/policy/documents/ten-open-data-principles/


4 M.-A. Sicilia et al.

achieve it in the current Web of Data, since the LOD cloud is a fully decen-
tralized system that does not feature any built-in redundancy. While open data
is in some cases sustained by government policies and programs [21], there is a
diversity of providers of diverse size and nature, and availability is not guaran-
teed for every case.

The current implementation of LOD on top of common Web technology is
known to be subject to inherent problems of lack of reliable availability [17,20],
which obviously hamper accessibility. This is a natural consequence of the decen-
tralized but location-based approach to publishing in the Web. Many datasets
become abandoned or their support discontinued due to a variety of reasons. This
is also problematic as machine-readable data is often access via autonomous soft-
ware programs and not humans, and applications on top of LOD require high
availability to avoid those programs to cease function or to be forced to main-
tain their own proprietary and expensive systems of data caching. Further, many
LOD datasets are maintained by organizations that do not have the capacity to
sustain the effort of providing the service beyond some project funding. Even
worse, many of the datasets are easy targets for different attacks as denial of
service [19], as in many cases they do not provide the mechanisms to protect
their data against them. Further, the reliance on servers at particular locations
may in the future compromise non-discrimination and permanence [10] if some
organization decides to revert their open police and restrict access in some way,
for example, via throttling. This is also controversial since open data policies
[11] are subject to some issues, some of them revolving around the property of
the service and its deployment on a particular hosting service.

The above described known issues represent a threat to the success of LOD
as an approach for sharing machine-readable data. This situation calls for more
robust approaches to data sharing that do not trade the decentralized nature
of the LOD cloud. According to its proponents, the InterPlanetary File Sys-
tem (IPFS) is a peer-to-peer distributed file system that seeks to connect all
computing devices with the same system of files [2]2. IPFS and other similar
frameworks bring a disruptive approach to the archival of digital resources that
is based essentially on independence of location and decentralized storage by
networks of untrusted peers (swarms). These technologies feature important
implications from the technical perspective (as built-in de-duplication), but also
from the view of the governance of open data and the current reliance on trusted
data providers.

In this paper, we report a first design rationale of deployment mechanisms of
LOD graphs on IPFS. We consider the problems of interlinking using content-
based storage, versioning and the techniques for bootstraping that kind of alter-
native LOD version. We also sketch the main envisaged implications of a IPFS
based LOD backbone.

The rest of this paper is structured as follows. Section 2 provides some brief
background on the technologies involved and the practice of LOD and P2P file
systems. Then, Sect. 3 discusses the approach devised to deploy a LOD cloud on

2 Note this is a reference for the first draft, now superseded by more complete versions.



Sharing Linked Open Data over Peer-to-Peer Distributed File Systems 5

top of IPFS. Section 4 gives details on how that could be realized with the current
state of the tools. Finally, conclusions and outlook are provided in Sect. 5.

2 Background

2.1 Linked Open Data

Linked Open Data (LOD) is a set of conventions to expose open data on the
Web, based on adapting the idea of Web links to structured, machine-readable
formats as RDF(S) or JSON-LD [14]. A number of tools have been developed
to aid in the conversion and exposure of LOD [12] and this has resulted in a
diversity of technologies supporting Linked Data.

A number of perceived technical barriers have been identified for the adoption
of open data, ranging from the unavailability of a supporting infrastructure to
the lack of standards, fragmentation and legacy [9]. These are not different from
the problems on reliance on central actors in the Web in general, and they are
exacerbated in the case of centralization of providers [4].

Particularly, the fragmentation and heterogeneity of providers results in
unavailability of entire datasets [17], non-announced changes in formats or inter-
faces or simply services being abandoned. This together with lack of performance,
scalability or robustness represents a serious risk to application developers and
more in general to the accessibility of data. These problems are not inherent to
the idea of LOD, but to its current technical and organizational deployment,
so that alternatives in the infrastructure layer may bring the required level of
robustness both from the perspective of service deployment and of data cura-
tion and custody. The read-only and self-mangement nature of P2P networks
was identified as a future potential for managing LOD data by Hausenblas and
Karnstedt [8], with an understanding that the use case would be different from
that of centralized repositories or live look-up systems.

2.2 Peer to Peer Decentralized File Systems

The main concept of P2P technologies is that users contribute part of their
computing resources and receive content-centric services in return. Most of the
time, P2P services are free of charge, distributed, and there is no concept of
operator or central manager. For example, in BitTorrent, each peer contributes
parts of the files it locally stores, and is granted download bandwidth by other
peers based on how much upload bandwidth it is contributing. Optimizations
based on content can also be devised on top of P2P file systems, e.g. by grouping
or clustering nodes [15].

The fact that P2P sharing systems rely on a decentralized network of
machines with no barriers to entry or exit have resulted in different approaches
to incentivizing users while preserving a degree of accessibility.

The InterPlanetary File System (IPFS) is a content-addressable, globally dis-
tributed protocol for sharing content that aims to provide a permanent Web.



6 M.-A. Sicilia et al.

It combines elements of file-sharing applications such as BitTorrent and version
control systems like Git, IPFS can be described as a P2P version controlled file
system. It allows for mounting on POSIX file systems also, supporting a seamless
interface to applications. The use of P2P technologies for sharing data has already
been proposed, as in the case of Biotorrent [13], but more generic frameworks as
IPFS would bring better universal management capabilities for it.

3 Proposed Approach

3.1 Publishing Datasets

In the LOD cloud, the common approach to organize data is that of publishing
datasets. What one considers as a dataset is a matter of convention, but the
VoID vocabulary3 provides a useful account if that concept as “a set of RDF
triples that are published, maintained or aggregated by a single provider.”. The
use of RDF is actually an implementation detail, as other formats as JSON-LD
are nowadays also commonly used and accepted.

There are two obvious approaches to publish LOD datasets from an archival
perspective:

– Publishing entire graphs (whole datasets with many records) as a single object.
For example, a georeferenced set of bus stops could be published as a single
unit.

– Publishing documents of each independent dereferenceable entity as a IPFS
object. For example, in a drug database, the information on each different
drug is usually an independently addressable entity in LOD.

The graph as an object has the benefit of easing the publishing process for
datasets that are immutable (e.g. the data from a project that is completely
frozen and will never change) or for the cases in which the dataset curation
cycle involves the publishing of snapshots at regular intervals of time that are
intended to be identifiable as different “versions”. However, if the dataset is
subject to small changes that are wanted to go exposed as they come, a unit
of lower granularity is desirable. In that second case, the most straightforward
decision is that of using the minimum “retrieval and addressing” unit, i.e. those
resources that have a unique, dereferenceable unit.

A convention for publishing datasets in IPFS would be requiring a VoID
object [1] resolved from a human-readable IPNS address. At the time of this
writing, you can only publish a single entry per IPFS node (nodeId) using IPNS,
but this is likely to change in the future. In any case, the node of the publisher
should provide a way to access the VoID file in a mutable way via IPNS. A
convention may be that of publishing it associated to the “root” folder, under
the subfolder /.well-known/void, imitating the IANA registered well-known

3 https://www.w3.org/TR/void/.

https://www.w3.org/TR/void/


Sharing Linked Open Data over Peer-to-Peer Distributed File Systems 7

URI convention4. It should be noted that VoID descriptions can also link to
provenance information following the WC3 PROV proposed specification [16].

Once the VoID description is available, the two approaches mentioned above
have some differences and the next section discusses the details.

A related approach to differentiating types of dataset publishing is described
in [5], concretely two main approaches to temporal annotation for Linked Data
are discussed: document-centric and sentence-centric. The former refers to anno-
tating “whole RDF documents” which may be interpreted as a whole dataset or
the RDF graph of a dereferenceable element. The latter is for a more fine-grained
temporal annotation. Here we follow an archival model that encompasses version-
ing instead of temporal annotation, and takes as units the usual data curation
units: entire datasets or entities that have are intended for as independent units
of information (which is decided by the publisher implicitly by publishing it with
a separate URI).

3.2 Documents and Entry Points

In the graph as an object approach, the VoID file can be simply published
together with a compressed version of the dataset in the same folder. This
way, the snapshot archived is self-described. The VoID description allows for
timestamping the snapshot using dcterms:modified. Other Dublin Core terms
as dcterms:relation can be used to point to the previous version, i.e. linking
to the IPFS address of the previous snapshot.

In the case of finer granularity, as mentioned above, a common organization
for LOD is that of using dereferenceable URIs for each entity of interest in the
dataset. For example, http://dbpedia.org/page/Berlin provides the description
of the city of Berlin using triples. Content negotiation can be used to get the
information in different formats (e.g. different RDF mappings, XML, JSON).

In this case, each of the documents that has a URI could be added to IPFS
independently. This would make them permanent and uniquely identifiable inde-
pendently from the others. It should be noted that the directory and block struc-
ture of IPFS is inherently deduplicating files or fragments that are identical, as
they are addressed by hashes of the contents.

However, in this case two important conditions must be met in order to
guarantee an appropriate accessibility inside the addressing system of IPFS (we
will call it IPFS linking):

1. All elements should be reachable from entry points available in the descrip-
tion of the full dataset, e.g. as made available in the VoID file with
void:rootResource. This imposes the requirement of knowing some roots
of trees or DAGs (i.e. publishing the roots of a forest structure).

2. Links as IPFS addresses (not the original, “normal” links) should be included
whenever IPFS files available.

4 http://www.iana.org/assignments/well-known-uris/well-known-uris.xhtml.

http://dbpedia.org/page/Berlin
http://www.iana.org/assignments/well-known-uris/well-known-uris.xhtml


8 M.-A. Sicilia et al.

The recent5 IPLD specification6 formalizes the concept of content-addressed
links. The specification in its current form assumes graphs are DAGs, so the
discussion about links presented here is applicable.

It should be noted that IPFS can still be used without converting the RDF
links to the corresponding IPFS addresses. Such a simpler model is discussed as
an example in Sect. 4.2.

The second condition establishes that if an independent IPFS address for
the resource exists, it must be used. But this may not be the case in many
situations, notably when the links are to other datasets, that may have not (yet)
been moved to IPFS. For intra-dataset links, this requires a bootstrapping step
in which all the links are changed to the IPFS counterparts. The problem with
this is that it entails two issues:

– If the RDF graph is a directed acyclic graph (DAG), the process of adding
the documents to IPFS should start from the leaves of the graph and move
up to nodes pointing to them. This may require mechanisms for dealing with
the graphs out of core for large datasets.

– The approach does not work for non-DAG cases, as the IPFS address (the
hash) of the document changes with even the smallest change in it.

The latter restriction calls for maintaining the links in a separate index sys-
tem. While this at first sight conflicts with the usual idea of having links embed-
ded in the documents, it is a model used in the early hypermedia models, and it
is also used as a representation in scalable parallel graph architectures as Apache
Spark [6].

3.3 Graph Evolution

The approach described so far that involves IPFS linking assumes a static graph,
which fits well with the IPFS property of immutable objects. However, many
datasets evolve naturally, being DBPedia a prominent example. This is some-
times known as dynamic datasets [5].

A practical approach for this kind of evolution is summarized in the following
principles:

1. Deletions are simply impossible due to the permanent nature of IPFS. This
fits well with the IPFS approach, and avoids “broken links”.

2. New versions of a document entail submitting a new version and having thus
a new IPFS address.

The problem with this update is that maintaining a record of the latest
changes requires some mechanisms for applications to be aware of them. Several
options are available. A possibility is that of using backlinks to previous versions,

5 Note that this paper was writing before that specification was published in Github,
so some of the ideas on this paper may need re-working to be fully IPLD compatible.

6 https://github.com/ipld/specs/tree/master/ipld.

https://github.com/ipld/specs/tree/master/ipld


Sharing Linked Open Data over Peer-to-Peer Distributed File Systems 9

in the style of owl:DeprecatedClass that allows to point to a substitute as
owl:equivalentClass. The problem is that this needs to be implemented from
the new to the previous version (since the previous one is immutable), and
has problems of accessibility (how applications could find out the most recent
version) and of evolution (the links to the older version should be changed).

These problems point out again to the need to adopt a separation of IPFS
links and resources. A simple mechanism could be that of implementing releases
or snapshots as index files. This can be done by maintaining an index for each
version of the dataset with all the IPFS addresses of the resources for the dataset
and the given timestamp, and a separate file with all the links (arcs in the
graph). Having complete transformation of the links could be done by specifying
links as triples <ipfs-addr-src, ipfs-addr-dest, URI> with the source and
destination addresses in IPFS, and the normal URI of the link, so that the
triple(s) with the original URIs can be re-interpreted by applications by simple
substitution. The IPLD format can be adapted to fit under this structure, since
in its current form links are embedded in the source document, and there would
be a need to adapt to non-embedded links.

A deletion can be achieved by simply making the document inaccessible
from entry points. Changes could be marked as substitutions, i.e. pairs of IPFS
addresses <ipfs-addr-old, ipfs-addr-new>, or simply substituting the old by
the new (this complicates versioning back). The IPFS links could be maintained
in the same or in a separate but linked file, so that retrieving the full graph entail
retrieving the link file and the master index, but the retrieval of the documents
with the descriptions can be done separately, delayed or lazily, depending on the
needs of the application.

4 Example Implementation

A proof of concept design prototype was built using IPFS version 0.4.3. We have
selected two representative cases to illustrate how the above presented approach
can be deployed.

4.1 Example Snapshot Dataset

The Ordnance Survey of the UK government makes available their 1:50 000 Scale
Gazetteer in the form of LOD7. This dataset contains at the time of this writing
258,404 different named places (including farms, antiquities and hills among
other types) that are described with only 9 predicates in a total of 2,362,412
triples. Gazetteers are complements to maps that historians use to locate the
places, mainly for places that no longer exist and names that are no longer used
or whose spelling has significantly altered. Due to the nature of gazetteers, the
frequency of update is expected to be low.

7 http://data.ordnancesurvey.co.uk/datasets/50k-gazetteer.

http://data.ordnancesurvey.co.uk/datasets/50k-gazetteer


10 M.-A. Sicilia et al.

It should be noted that the Linked Data Cloud diagram8 does not consider
this particular dataset as independent but integrated into the “Ordnance Survey
Linked Data”9 dataset, even though the dataset is independently described by
their publishers also, in a VoID description available in the URI pointed to the
foaf:homepage of the dataset description in the master file.

The VoID description of the dataset is available10 for all the datasets, but also
the fragment related only to the gazetteer. The approach thus to detect changes
in the dataset can be that of looking at the dct:modified predicate that contains
the latest modification date. It is also possible to monitor other elements in the
VoID description that entail changes as void:triples but modification time
seems the most sensible alternative.

The approach to publish and update the dataset should then be that of:

– Monitoring changes in the VoID description as described above.
– When a change is detected, download the new snapshot pointed to by the
void:dataDump predicate.

– Include the VoID file within the folder of the dataset.
– Add the resulting structure in path to IPFS with ipfs add -r path.
– The resulting IPFS URI generated from the content of the data and its dataset

metadata is retained in a file for enabling location, browsing (e.g. ipfs ls)
and broader indexing capabilities (as commented below).

This simple approach is sufficient for low-frequency updates of LOD datasets,
and it could be used to move that part of the LOD cloud into IPFS provided that
the datasets conform to the minimal conventions on using VoID that are used for
the detection of changes. Of course, this creates full copies of the graphs, which
only makes sense in some cases. Also, this simple approach does not convert
RDF links to IPFS links.

We have tested that approach using a simple script using rdflib in Python,
that could be applied to any dataset following similar conventions. Once the
data is downloaded, a SPARQL engine can be setup using the same libraries by
importing all the .nt files downloaded. It should be noted that this approach
does not store copies of ontology or vocabulary versions, which should be done
separately if the full semantics are to be made permanent with the copy of the
data.

In the domain of open data, a problem of P2P systems is that they do not
provide built-in capabilities for discovery of datasets, which require building an
index of static URIs on top of IPFS itself. At the time of this writing this is still
a debated topic, but some prototypes as Noetic11 already exist. In any case, a
master file of the snapshots of the dataset indexed using IPNS could be a viable
alternative to implement search tools by following common URI standards.

8 http://lod-cloud.net/.
9 https://datahub.io/dataset/ordnance-survey-linked-data.

10 http://data.ordnancesurvey.co.uk/.well-known/void.
11 https://github.com/doesntgolf/ipfs-search.

http://lod-cloud.net/
https://datahub.io/dataset/ordnance-survey-linked-data
http://data.ordnancesurvey.co.uk/.well-known/void
https://github.com/doesntgolf/ipfs-search


Sharing Linked Open Data over Peer-to-Peer Distributed File Systems 11

4.2 Example URI-Based Dataset

As a second example, we have chosen Europeana, the European digital library
that provides an access point to millions of cultural objects (paintings, books,
etc.) that have been digitized throughout Europe, gathered from hundreds of
individual cultural institutions. This represents an aggregation, that is typically
maintained by using the standardized OAI-PMH protocol. The Europeana LOD
pilot [7] currently implements a SPARQL endpoint to a regularly updated copy
of the Europeana database.

In this case, replicating the entire dataset for a single change would be ineffi-
cient, and maintaining snapshots do not appear to be a good candidate, as record
updates are determined by the providers, which are independent institutions as
museums or archives. The most sensible approach here is that of following the
OAI-PMH approach, that works with temporal deltas of the datasets, so that in
each harvesting cycle, only the changed or deleted records are collected.

Also, as the collection is diverse and large, it is unlikely that users retrieve it in
full but only some particular section of the records using some content criteria.
This matches well the idea in P2P networks of a possible content-clustering
of data copies. Figure 1 shows the structure of a record, including the entity
referring to the real physical object and the description of the view of the provider
(ore:Proxy) about it. That structure is the logical unit of transfer, so it makes
sense to be the unit to be added to IPFS as independent objects.

The prototype implementation used the Sickle Python library12 was used to
write a simple OAI-PMH client. The initial harvesting produced the first version
of the dataset in this case by iterating the records returned by the ListRecords
verb request and submitting them to IPFS via ipfs add. This generates a list of
initial IPFS files which URIs are listed in the initial index file for the dataset with
the corresponding OAI-PMH identifiers. The timestamp used in the harvesting

Fig. 1. Example structure of a Europeana CHO

12 https://pypi.python.org/pypi/Sickle.

https://pypi.python.org/pypi/Sickle


12 M.-A. Sicilia et al.

request is also included in the index file. The VoID file for the dataset is currently
not available, but its URI could also be included in the index file.

Subsequent harvesting cycles create a new version of the index file and of the
modified records, so that the IPFS addresses of the modified records are changed
to the newly created files. A deletion involves simply removing the address of
the record from the file. A back link to the previous index is also provided that
allows for a retrieval of the history of revisions.

This approach maintains permanent storage of records and the modifica-
tion granularity is that of a record, which appears a reasonable approach, since
this is likely the unit of change at the provider’s systems. However, it does not
implement IPFS linking, as the URIs used internally are still the original ones.

Regarding linking, the original RDF links are maintained, but when adding
or updating the records, they are inspected for the presence of intra-dataset
links, i.e. those following the URI design pattern:

http://data.europeana.eu/item/collectionID/itemID

These are then used to generate a separate link file. Both the index and the
files are added to IPFS in the same folder. Concretely, the current Web page
of Europeana Linked Data states that “When applicable, the Europeana URIs
for these [ProvidedCHO] objects also link, via owl:sameAs statements, to other
linked data resources about the same object”. This is a typical case for having
a separate structure of links for the integration of different provider’s metadata
views on the same cultural objects.

Such approach could be expanded in the future for between-dataset links,
e.g. once other datasets as DBPedia are eventually in IPFS.

5 Conclusions and Outlook

Decentralized P2P file systems as IPFS have the potential to remove technical
barriers to the exposure of Linked Open Data (LOD) by providing a infrastruc-
ture for the publishing of data that detaches datasets from their institutions
when considering sustainability. However, they do not provide explicit support
for interoperability and good practices, which remain a concern that can only
be solved via agreement and community curation.

In this paper, we have sketched a potential implementation pattern for com-
mon cases of sharing LOD datasets that require a limited deployment effort.

There are a number of additional important non-technical implications that
should be stressed in adopting IPFS-like technology:

– Datasets become a property of the commons, as there is no way to revoke the
publishing of datasets. This is a benefit from the perspective of openness but
it would require careful consideration in licensing.

– Availability and performance become a feature of the P2P network, in which
nodes decide to host some of the datasets, increasing global and local avail-
ability.

http://data.europeana.eu/item/collectionID/itemID


Sharing Linked Open Data over Peer-to-Peer Distributed File Systems 13

– Consequently, there is no upfront cost or investment to publish the dataset,
but there is also a lack of control of the quality of service for a particular
dataset. In any case, institutions may choose to IPFS-“pin” their datasets (or
other’s dataset that are considered of interest) to ensure local copies.

– P2P systems feature mechanisms to incentivize sharing, and this may result
in a lack of neutrality in access that need to be addressed.

– Permanent storage requires versioning and linking among versions, which
requires some sort of indexing layer to make dataset versions and derivatives
easily findable, and eventually the separation of links and content.

– Semantics and interoperability remain a matter of consensus and adoption of
good practices, as demonstrated in the transfer of LOD practices and ideas
into the IPFS deployment.

It is still too early to value if the adoption of file systems as IPFS will become
widespread and how they would tackle with the problem of distributing the stor-
age responsibilities with some form of incentives to sharing. But in any case, they
represent a new playground for experimenting with new ideas and approaches
to open data that make it more transparent and independent from their original
curators.

References

1. Alexander, K., Hausenblas, M.: Describing linked datasets-on the design and usage
of VoID, the vocabulary of interlinked datasets. In: Linked Data on the Web Work-
shop (LDOW 2009), in Conjunction with 18th International World Wide Web
Conference (WWW 2009) (2009)

2. Benet, J.: IPFS-Content Addressed, Versioned, P2P File System. arXiv preprint
arXiv:1407.3561 (2014)

3. Bizer, C., Heath, T., Berners-Lee, T.: Linked data-the story so far. In: Emerging
Concepts, Semantic Services, Interoperability and Web Applications, pp. 205–227
(2009)

4. Cabello, F., Franco, M.G., Haché, A.: The social web beyond ‘Walled Gardens’:
interoperability, federation and the case of Lorea/n-1. PsychNology J. 11(1), 43–65
(2013)

5. Fernández, J. D., Polleres, A., Umbrich, J.: Towards efficient archiving of dynamic
linked open data. In: Proceedings of DIACHRON, pp. 34–49 (2015)

6. Gonzalez, J.E., Xin, R.S., Dave, A., Crankshaw, D., Franklin, M.J., Stoica, I.:
Graph processing in a distributed dataflow framework. In: 11th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI 2014), pp. 599–613
(2014)

7. Haslhofer, B., Isaac, A.: Data.europeana.eu: The Europeana Linked Open Data
pilot. In International Conference on Dublin Core and Metadata Applications, pp.
94–104 (2011)

8. Hausenblas, M., Karnstedt, M.: Understanding linked open data as a web-scale
database. In: 2010 Second International Conference on Advances in Databases
Knowledge and Data Applications (DBKDA), pp. 56–61. IEEE (2010)

9. Janssen, M., Charalabidis, Y., Zuiderwijk, A.: Benefits, adoption barriers and
myths of open data and open government. Inf. Syst. Manag. 29(4), 258–268 (2012)

http://arxiv.org/abs/1407.3561


14 M.-A. Sicilia et al.

10. Johnson, J.A.: From open data to information justice. Ethics Inf. Technol. 16(4),
263–274 (2014)

11. Khayyat, M., Bannister, F.: Open data licensing: more than meets the eye. Inf.
Polity 20(4), 231–252 (2015)

12. Konstantinou, N., Spanos, D.E.: Methodologies and software tools. In: Materi-
alizing the Web of Linked Data, pp. 51–71. Springer International Publishing,
Switzerland (2015)

13. Langille, M.G., Eisen, J.A.: BioTorrents: a file sharing service for scientific data.
PLoS One 5(4), e10071 (2010)

14. Lanthaler, M., Gtl, C.: On using JSON-LD to create evolvable RESTful services.
In: Proceedings of the Third International Workshop on RESTful Design, pp. 25–
32. ACM (2012)

15. Liu, G., Shen, H., Ward, L.: An efficient and trustworthy P2P and social network
integrated file sharing system. IEEE Trans. Comput. 64(1), 54–70 (2015)

16. Missier, P., Belhajjame, K., Cheney, J.: The W3C PROV family of specifications
for modelling provenance metadata. In: Proceedings of the 16th International Con-
ference on Extending Database Technology, pp. 773–776. ACM (2013)

17. Rajabi, E., SanchezAlonso, S., Sicilia, M.A.: Analyzing broken links on the web of
data: an experiment with DBpedia. J. Assoc. Inf. Sci. Technol. 65(8), 1721–1727
(2014)

18. Schmachtenberg, M., Bizer, C., Paulheim, H.: Adoption of the linked data best
practices in different topical domains. In: Mika, P., Tudorache, T., Bernstein, A.,
Welty, C., Knoblock, C., Vrandečić, D., Groth, P., Noy, N., Janowicz, K., Goble,
C. (eds.) ISWC 2014. LNCS, vol. 8796, pp. 245–260. Springer, Heidelberg (2014).
doi:10.1007/978-3-319-11964-9 16

19. Wong, A., Liu, V., Caelli, W., Sahama, T.: An architecture for trustworthy
open data services. In: Jensen, C.D., Marsh, S., Dimitrakos, T., Murayama, Y.
(eds.) Trust Management IX. IFIP, pp. 149–162. Springer International Publish-
ing, Switzerland (2015)

20. Zaveri, A., Rula, A., Maurino, A., Pietrobon, R., Lehmann, J., Auer, S.: Quality
assessment for linked data: a survey. Semant. Web 7(1), 63–93 (2015)

21. Zuiderwijk, A., Janssen, M.: Open data policies, their implementation and impact:
a framework for comparison. Govern. Inf. Q. 31(1), 17–29 (2014)

http://dx.doi.org/10.1007/978-3-319-11964-9_16

	Sharing Linked Open Data over Peer-to-Peer Distributed File Systems: The Case of IPFS
	1 Introduction
	2 Background
	2.1 Linked Open Data
	2.2 Peer to Peer Decentralized File Systems

	3 Proposed Approach
	3.1 Publishing Datasets
	3.2 Documents and Entry Points
	3.3 Graph Evolution

	4 Example Implementation
	4.1 Example Snapshot Dataset
	4.2 Example URI-Based Dataset

	5 Conclusions and Outlook
	References


