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Abstract. Location-based Social Network (LBSN) services, such as
People Nearby in WeChat, enable users to discover users within the geo-
graphic proximity. Though contemporary LBSN services have adopted
various obfuscation techniques to blur the location information, recent
research has shown that based on the number theory, one can still accu-
rately pinpoint user locations by strategically placing multiple virtual
probes. In this paper, we conducted a comprehensive simulation study
to examine the impact of location errors on localization attacks to track
target users based on the number theory by using the LBSN services pro-
vided by WeChat. Our simulation experiments include four location error
models including the exponential model, the Gaussian model, the uni-
form model, and the Rayleigh model. We improve the one-dimensional
and two-dimensional localization algorithms where the location errors
exit. Our simulation results demonstrate that the number theory based
localization attacks remain effective and efficient in that target users can
still be pinpointed with high accuracy.

Keywords: Privacy leakage · Localization attack · Error analysis ·
Location-based social network · WeChat

1 Introduction

The proliferation of smart phones has spawned the development of many popular
pervasive location-based services (LBSs). In recent years, Location-Based Social
Network (LBSN) services, enable users to discover their geographic neighbors
and then communicate. For these services to function properly, the location of
users have to be provided by the system; nevertheless, the integrity of user loca-
tion privacy must be preserved. Otherwise, potential location privacy leakage
may arise and users’ location information may be misused by malicious attack-
ers [1–4]. Some research has been conducted to study this new type of local-
ization attacks and the defense schemes for mobile users against localization
attacks [5,6].
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Among all the well-known LBSN applications, we focus our study on WeChat.
With over 600 million registered users, WeChat has become the largest user
group that provides an instant messaging service for intelligent terminals.
WeChat also provides LBSN services by sharing instant data such as “Peo-
ple Nearby,” “Shake,” “Circle of Friends,” and “Drift Bottles” [7,8]. In [5], Xue
et al. first conducted a theoretical study on the privacy leakage problem of online
social applications and then proposed an effective approach to track target users
in a simple one-dimensional case based on the number theory. In [9], Xue et al.
extended a localization attack to a more general two-dimensional case. The the-
oretical analysis shows its effectiveness without considering the location errors.
Peng et al. [10] developed a new two-dimensional algorithm in spite of location
errors. In this paper, we first validate that the fundamental algorithm in [10]
can work correctly; then we introduce four error models considering real-world
location errors and improve the one-dimensional (1-D) algorithm and the two-
dimensional (2-D) algorithm under the four error models.

The rest of the paper is organized as follows. In Sect. 2, we introduce the
“People Nearby” service in Wechat and discuss the privacy-leakage problem due
to this LBSN service. We also present the basic 1-D algorithm and the 2-D
algorithm to determine the locations of users in practice. We then introduce
four types of the error models in Sect. 3. Furthermore, we propose an improved
1-D algorithm in Sect. 4 and an improved 2-D algorithm in Sect. 5. Finally, we
conclude the paper in Sect. 6.

2 Problem Statement

With the popularity of location-based services, improper use of user location
information may bring privacy breaches. To defend against the trilateration-
based localization attacks, contemporary LBSN applications have applied var-
ious obfuscation techniques to blur the location information. In the “People
Nearby” service provided by WeChat, one obtains a list of user names and rel-
ative distances of people nearby when using “People Nearby.” However, these
relative distances are not so accurate; instead, WeChat only reports the relative
distance in bands of 100 m or 1000 m. For example, two users, Alice and Bob,
are using the “People Nearby” service. When WeChat shows to Bob that Alice
is 800 m away from him, it means that Alice is located in a band centered at
Bob’s location with the radius ranging from 700 m to 800 m. Such a band-based
approach to report a rough relative distance of nearby users, so that users are
not able to obtain the accurate coordinates of target users directly. However,
using the number theory, Xue et al. proved that one can pinpoint the location
of a target user within a circle of radius no greater than 1 m theoretically [5].
We first examine two basic location attacks as follows.

2.1 1-D Algorithm

We first consider a special linear case. Assume that an attacker places multiple
virtual probes on the line of a target user, while the probes can obtain the relative
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distances of the target using the “People Nearby” service. We summarize the
notation introduced throughout this section in Table 1.

Table 1. Summary of notations for the 1-D algorithm

Symbol Meaning

K The length of band

x The distance between one probe and any adjacent probe

r The reported error generated by WeChat

di The actual distance between the probe Pi and the target point

Wpi The reported distance between the probe Pi and the target point

Dp1 The estimated distance between the probe P1 and the target point

OneDim One-dimensional function

Z The set of integers

gcd(·, ·) The greatest common divisor

In Fig. 1, assuming that T is the target, a number of isometric probes are
placed on the line. We can obtain the return values of the probes Wpi

. The rela-
tion between the reported relative distance Wpi

and the actual relative distance
di can be determined following the basic 1-D algorithm in [10].

Wpi
=

(⌊
di

K

⌋
+ 1

)
× K, (1)

where

K =
{

100, 0 ≤ d < 1000,
1000, d ≥ 1000.

(2)

Fig. 1. Basic idea of the 1-D algorithm

In order to verify the correctness of the basic 1-D algorithm, we conducted
simulation experiments using Matlab. Assume that the location error is 0, and
the distances between probes are 11 m. Some representative simulation results
of the 1-D algorithm are shown in Table 2.

By inspecting Table 2, we find that some errors are more than 1 m, which
is unexpected. A deep examination shows for the point whose original location
is already large enough since the coordinate of some probes will be exceeding
1,000 m. Based on the relationship between the actual distance and the reported
distance by “People Nearby,” the reported distance will be 2,000 m (the band
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Table 2. Some representative results of the 1-D algorithm

Actual distance (m) Predicted distance (m) Error (m)

322.43 322.50 0.07

555.16 555.50 0.34

804.52 833.50 8.97

24.41 24.50 0.09

371.51 371.50 0.01

491.87 491.50 0.37

466.05 466.50 0.45

41.71 41.50 0.21

617.00 622.50 5.50

578.03 578.50 0.47

will be 1,000 m). When the coordinate is too large, the 1-D algorithm is not
able to work correctly. In Sect. 4, we will discuss how to reduce the errors by
changing the location of the first probe. Although one is not able to locate the
target within a circle of radius no greater than 1 m, over 90% of the errors are
less than 10 m. Therefore, the 1-D algorithm is sufficiently accurate for practice.

2.2 2-D Algorithm

Xue et al. developed a 2-D algorithm which can locate the target user very
precisely for a triangle area [9]. Assume that the target user is in a triangle
whose side length is X, as shown in Fig. 2.

Fig. 2. Two-dimensional Lattice

The bar area is divided into several equilateral triangle whose side length is
X. Xue et al. proved that one can pinpoint the target user with error no more
than 1 m using the 2-D localization algorithm on all the sides of the triangle, as
shown in Fig. 3.

The notation in the 2-D algorithm are shown in Table 3. We then introduce
the basic principle of the 2-D algorithm. Take

−→
X direction in Fig. 3 as an example,
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Fig. 3. An Illustration of the overlapping area

we place probe P1 and Q1 on the vertices of the equilateral triangle, and place
pi and qi on the extension cord so that we can obtain the reported distance wpi

and wqi , as shown in Fig. 4.

Table 3. Summary of notations for the 2-D algorithm

Symbol Meaning

O′ The target point (the location of the user)

O1 The first projection of the target point to a line of virtual probes

dpi = |O1Pi| The actual distance from O1 to the probe Pi

dqi = |O1Qi| The actual distance from O1 to the probe Qi

Dpi The estimated distance from O′ to the probe Pi

Dqi The estimated distance from O′ to the probe Qi

wpi The reported distance from O′ to the probe Pi

wqi The reported distance from O′ to the probe Qi

For the reported distance wpi
and wqi , we run the 2-D algorithm to obtain

the output Dp1 and Dq1 . The step N = (� x
K � + 1) × K + T · s (mod K) + 1

should be carefully selected; hence, we need more probes to ensure the precision
if X is larger.

We conducted simulation experiments to evaluate the 2-D algorithm. If the
algorithm works well in the given direction

−→
X , the 2-D algorithm can pinpoint

the target precisely. We place a few probes on the extension line of the triangle
side in Fig. 4 and then we obtain the coordinates of the probes wpi

and wqi . The
parameter X is set as 99; hence, both the triangle side length and the interval of
probes are 99. What we expect is that the target can be located quite precisely
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Fig. 4. Basic idea of the 2-D algorithm

in the equilateral triangle. We generate 1, 000 random targets for the tracking
experiments, and the average tracking error of these 1, 000 targets is 25.15 m.
Some representative simulation results are shown in Table 4.

Table 4. Some representative results of the 2-D algorithm

Actual distance (m) Predicted distance (m) Error (m)

42.37 49.50 7.13

84.43 49.50 34.92

22.40 49.50 27.10

63.22 49.50 13.72

9.00 49.50 40.50

77.59 49.50 28.10

69.25 49.50 19.75

66.66 49.50 17.16

46.15 49.50 3.34

27.14 49.50 22.36

These results show that most errors are much larger than what we expected.
In the 2-D algorithm, if X = 99, we need 200 probes. As a result, most reported
distances of the probes are more than 1,000 m, so that K is 1,000 m instead of
100 m which does not meet the assumptions of the 2-D algorithm. However, if
we set X smaller, then the location range is too small that our algorithm is
not practical. Therefore, we conclude that the basic 2-D algorithm should be
improved. After we examine the 4 error models, we propose an improved 2-D
algorithm in Sect. 5.

3 Error Models

In the previous section, we assume that the relationship between reported dis-
tance and the actual distance is determined based on Eq. (1). Nevertheless, the
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actual distance and the location distance reported by WeChat may not be the
same. Note that the localization methods may incur errors during the position-
ing process. Besides, WeChat may intentionally introduce errors to the location
distance in order to protect user’s privacy. These location errors may differ sig-
nificantly. There have been no reported studies on the system localization errors
in WeChat. In this section, we assume some commonly-used error models to sim-
ulate the gap between the positioning distance and the actual distance. Based
on the analysis of these error models, we aim to better understand the impact
of localization errors on localization attacks in LBSN services.

3.1 Error Measurement

In order to understand the relationship between the actual relative distance and
the distance reported by WeChat, we measured the total 42 sets of data points in
the field. In the measurement process, we found that even at the same location,
the measured distances at different time instants are not the same. Based on the
analysis of these data, we conjecture that the errors follow two empirical rules:

1. The location error is relatively small comparing with the actual distance;
2. The location errors are roughly proportional to the actual distance.

3.2 Model Settings

We studied 4 commonly-used error models including the exponential distribution
model, the Gauss distribution model, the uniform distribution model, and the
Rayleigh distribution model. The parameters of these four models are configured
following the observed empirical rules. We conducted simulate experiments with
these 4 error models to evaluate the 1-D algorithm. Then, we further improve
the 1-D and 2-D algorithms in spite of the location errors. To make the fair
comparison, we ensure the same mean of each error model.

Exponential Error Model. Assume the exponential distribution model with
the following parameter settings, in which the exprnd is an exponential distrib-
ution function, and the parameter is the mean value.

r =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, d ≤ 100,
exprnd(5), 100 < d ≤ 200,
exprnd(10), 200 < d ≤ 400,
exprnd(50), 400 < d ≤ 800,
exprnd(100), 800 < d ≤ 1200,
exprnd(150), otherwise.

Gaussian Error Model. Assume the Gaussian distribution model with the
following parameter settings, where normrnd is the Gauss distribution function,
the first parameter is the mean, and the second parameter is the variance. Since
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the probability of points in range (μ − 3σ, μ + 3σ) is 99.7%, we set σ = μ/3 to
ensure that the error is positive to match other error models.

r =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, d ≤ 100,
normrnd(5,5/3), 100 < d ≤ 200,
normrnd(10,10/3), 200 < d ≤ 400,
normrnd(50,50/3), 400 < d ≤ 800,
normrnd(100,100/3), 800 < d ≤ 1200,
normrnd(150,150/3), otherwise.

Uniform Error Model. Assume the uniform distribution model is configured
with the following parameter settings, where unifrnd is the uniform distribution
function, the first parameter error is the maximum, and the second parameter
is the minimum error.

r =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, d ≤ 100,
unifrnd(0,10), 100 < d ≤ 200,
unifrnd(0,20), 200 < d ≤ 400,
unifrnd(0,100), 400 < d ≤ 800,
unifrnd(0,200), 800 < d ≤ 1200,
unifrnd(0,300), otherwise.

Rayleigh Error Model. Note that the Rayleigh distribution meets the con-
dition that μ(X) = σ

√
π
2 ≈ 1.253σ. The parameter of the raylrnd function in

Matlab is the variance. In order to keep in line with the previous error models,
the parameters are divided by the coefficient of 1.253.

r =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, d ≤ 100,
raylrnd(5/1.253), 100 < d ≤ 200,
raylrnd(10/1.253), 200 < d ≤ 400,
raylrnd(50/1.253), 400 < d ≤ 800,
raylrnd(100/1.253), 800 < d ≤ 1200,
raylrnd(150/1.253), otherwise.

3.3 Simulation Results

With the introduced location errors in the experiments, the simulation results
show the degraded performance. Nevertheless, the accuracy of the location
attacks still remain high as shown in Fig. 5. The performance trends with these
four error model are similar, though. We will further improve the 1-D and 2-D
algorithms in the next two sections.

4 Improving 1-D Algorithm

In this section, we propose to further reduce the errors by fine-tuning the position
of the first probe.
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Fig. 5. Performance comparison by different error models

4.1 Basic Ideas

In Sect. 3, we assume that positioning error is proportional to the relative dis-
tance between two points. Therefore, we make preliminary positioning for the
initialization of the 1-D algorithm. In the basic 1-D algorithm, probes are placed
following Fig. 6. After determining the scope of 1,000 m, the first probe is placed
on the origin point in the algorithm, and the rest probes are placed on the left
side of the origin point in order. Eventually, the distance between the first probe
and the target is used as the coordinate of the target. If the target point is far
away from the origin point, the reported distance of all probes will also be very
large. Hence, the error will be larger if the relative distance is large; besides, the
error will increase greatly if the relative is even larger than 1,000 m.

Fig. 6. Probe positioning in the 1-D algorithm

Since the distance band reported by “People Nearby” in WeChat is 100 m if
the relative distance is less than 1,000 m, we can place 10 probes every 100 m to
roughly determine the interval of the target point. Specifically, the preliminary
positioning is as shown in Fig. 7.
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Fig. 7. Preliminary probe positioning in the 1-D algorithm

Fig. 8. Probe positioning in the improved 1-D algorithm

First of all, we place probes every 100 m within the determined 1,000 m, and
we place 10 probes in total. Then, we can obtain the reported distances of the
10 probes wpi

,(1 ≤ i ≤ 10). At last we can obtain the i value corresponding to
the minimum wpi

. We may obtain two of i which replace the closest probes to
the target point. In Fig. 6, i is 6 or 7. We want to choose the smaller one so that
we set i = 6.

We place the first probe at coordinate (i − 1) × 100, the following probes
will be placed on the left side of the first probe with an equal interval as shown
in Fig. 8. In this manner, the distance between all probes and the target will
be smaller so that the error will decrease. The output of the 1-D algorithm is
the distance between target and the first probe, so that the coordinate of the
target is the output dpi

added by (i − 1) × 100. In summary, this improved 1-D
algorithm is more accurate by reducing the distances between all the probes and
the target. However, the time cost increases because the new 1-D algorithm is
more complicated.

4.2 Simulation Results

We evaluate the new 1-D algorithm with the parameter X = 11 with the 4 error
models. In Fig. 9, OneDim v1 is the original 1-D algorithm and OneDim v2 is
the newly proposed 1-D algorithm. In Fig. 9, the results in four figures are very
similar; the errors in OneDim v2 are much smaller than that in OneDim v1.
Almost all the errors are less than 40 m in our new 1-D algorithm.

4.3 Summary

In this section, we evaluate the 1-D algorithm with 4 error models. The optimized
1-D algorithm makes tracking more accurate by preliminary positioning with
these 4 error models. It shows that even under the different error models, the
target can be located quite accurately using the new version, which indicates the
location of users can still be tracked with high accuracy. Though the errors can
be reduced, the complexity of this new 1-D algorithm increases.

5 Improving 2-D Algorithm

We have discussed that the tracking area should bounded in an equilateral tri-
angle whose side length is upper-bounded. The 2-D algorithm cannot pinpoint
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Fig. 9. Improving the 1-D algorithm to reduce errors

the target accurately if K is not 100 or extra errors exist. However, positioning
errors are difficult to be neglected in practice. The tracking performance of the
original 2-D algorithm is degraded with the inherent localization errors of the
system. Another 2-D algorithm that can work well when extra error is added is
proposed in [10]. The target user can be located precisely in an square area of
1, 000 × 1, 000. 1-D algorithm is carried out on both X axis and Y axis so that
the coordinates of the target can be determined. In this section, we improve the
2-D algorithm in [10] and report our simulation results.

5.1 Basic Ideas

In Sect. 4, we notice that if the relative distances between the target and the
probes are too large, the tracking results will be of less accurate. Thus, we
follow the preliminary positioning idea to estimate a better initial location of
the target before we use the 1-D algorithm to obtain more accurate coordinates.

First of all, we make preliminary positioning on both abscissa and ordinate
as shown in Fig. 10. There is a target point in a square area of 1, 000 × 1, 000. We
take the lower left corner of the square as the origin point, and place probes along
the X axis and the Y axis every d m, then we obtain the reported distance wpx

and wpy
. Px and Py are the corresponding coordinates of the probe corresponding
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Fig. 10. Preliminary probe positioning in the 2-D algorithm

with the minimum of wpx
and wpy

. Afterwards, we have two lines: x = roughX
and y = roughY as shown in Fig. 10. In the next positioning step, we use the 1-D
algorithm on y = roughY and x = roughX to obtain the accurate coordinates
of x and y. Then, the probes will be placed on the two lines as shown in Fig. 10.

We conduct some extra steps before by applying the 1-D algorithm. The
analysis in Sects. 3 and 4 shows that larger relative distances between the probes
cause larger tracking errors. As a result, if the target locates at the top right part
of the square area far from the origin point, the positioning error may increase
dramatically. The abnormal error may have a strong impact on the performance
of the localization algorithm.

In order to reduce these above-mentioned abnormal errors, we attempt to
partition the target area according to the distribution of localization errors as
shown in Fig. 11. For the points on the right side of x = M , we still use the
1-D algorithm on x = roughX and y = roughY , but the first probe should be
placed on the crossing point at x = 500 and y = roughY if we want to obtain
the coordinate x. Similarly, for the points on the top side if y = N , the first
probe should be put on the crossing of y = 500 and x = roughX if we want to
obtain the coordinate y. Figure 11 shows the detailed steps.

5.2 Simulation Results

At first we determine the values of M and N . Since the area is a square, M
and N are considered to be the same. We expect that the error can be reduced
to the minimum after M and N are carefully selected. The measurement of the
performance is the number of points whose positioning error is more than 100 m,
smaller n indicates better performance. For the 4 error models in Sect. 3, we start
iterations from 501 to 1, 000 to find the best M and N for each error model.
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(a) 2-D probe positioning in white area
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(b) 2-D probe positioning in blue area

Fig. 11. Localization steps in the 2-D algorithm (Color figure online)

The best M (or N) of the exponential model, the Gaussian model, the uniform
model, and the Rayleigh Model are 512, 549, 503, and 520.

5.3 Summary

In this section, we examine the 2-D algorithm proposed in [10] with 4 error
models. We can first determine the approximate location of the target user by
preliminary positioning, then obtain the accurate coordinates by applying the
1-D algorithm on both X axis and Y axis. The simulation results show that the
improved 2-D algorithm can still locate a target user quite accurately. Since the
2-D algorithm is more complicated, more time is needed for the tracking process.
We emphasize again that the tradeoff between the accuracy and the overhead
should be considered for effective attacks.
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6 Conclusion

Contemporary LBSN applications have adopted the band-based approach to
report distances of nearby users. In this paper, we show how the location-based
feature of WeChat can be exploited to determine the user’s location with great
accuracy in any city from any location in the world. We examined the location
algorithms developed in our previous work with 4 location error models to better
evaluate the performance of the real-world attacks. Simulation results show that
the improved 1-D algorithm and the 2-D algorithm still achieve good perfor-
mance even under 4 error models. Our research may bring this serious privacy
pertinent issue into the spotlight based on comprehensive experiment results and
hopefully motivate better privacy-preserving LBSN designs.
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