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Abstract. With the developing of the Smart Grid, false data injection attacks
(FDIAs) as a typical data integrity attack successfully bypass the traditional bad
data detection and identification, has a serious influence on the power system safe
and reliable operation. State estimation, which is an important process in smart
grid, is used in system monitoring to get optimally estimate the power grid state
through analysis of the monitoring data. However, FDIAs compromising data
integrity will lead to wrong decision makings in power dispatch or electric power
market transactions. In this paper, focusing on the power property, we introduce
an index to quantitatively measure the node voltage stability and reflect the influ‐
ence of FDIAs on the power system. Then, we use an improved clustering algo‐
rithm to identify the node vulnerability level, which helps operators take measures
and detect the false data injection attacks timely. Besides, one effective state
forecasting detection method is proposed, which is meaningful for real-time
detection of false data injection attacks. Finally, the simulation result verifies the
effectiveness and performance of the proposed method.
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1 Introduction

In recent years, the industrial control system and the power system automation, intelli‐
gent level continuous improvement make the power system rapidly develop. It also
makes the grid security defense face more severe challenges at the same time [1–3]. By
tampering the estimated value of power system state estimation, the false data injection
attacks (FDIAs) would mislead control center to make wrong decisions and conse‐
quently impact severely on the grid’s stability and reliability. Unconsciously, the FDIAs
become one of the focuses of current researchers [4–8]. For this serious vulnerability,
how to detect and identify the FDIAs has attracted a lot of attention among researchers.
Although there are lots of articles about the FDIAs, most of the existing FDIAs detection
methods rarely consider the impact of false data injection attacks on the power system.
They ignore the connection of the FDIAs and the power system physical properties.
However, for the system operators, it is an effective way that analysis the physical prop‐
erties of power system to improve the detection and protection ability for FDIAs.
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For a given initial operating condition, the voltage stability reflect the ability of power
system that regaining state operating equilibrium after being subjected to a physical
disturbance [9]. It is very convenient that system operators use fast, simple and correct
methods to monitor the proximity of voltage collapse of a power system. Moreover, the
node voltage stability can quantitatively measure the stability and reflect the impact of
false data injection attacks on the power grid. So, we study and analyze this physical
property of power system. We also construct the relationship between the false data
injection attack and the node voltage stability to identify the vulnerability level of each
node in the complex system, which can help power operators to targeted detection and
take the corresponding protective measures timely.

In this paper, we present an efficient detection method against FDIAs. And the main
contributions of this paper can be summarized as the following:

We study and analyze the physical property of power system and introduce an index
to quantitatively measure the impact of false data injection attacks on the power system.
We also construct the relationship between the false data injection attacks and the node
voltage stability to identify the vulnerability of each node in the complex system;

According to the value of the node voltage stability, we use the improved clustering
method to cluster the nodes into three different clusters. As the result of clustering, the
nodes with similar vulnerability level get together for a cluster;

We use the effective state forecasting method to obtain state prediction and detect
the false data injection attacks. Besides, we simulate the tests on the IEEE 30-bus
systems to verify the effectiveness and performance of the proposed method.

2 Related Work

False data injection attacks (FDIAs), a new typical data integrity attack which is one of
the most threatening cyber-attacks in smart grids, is presented firstly in [10]. For this
serious vulnerability, many smart algorithms are applied to detect the FDIAs [11], such
as geometrically designed residual filter, the generalized likelihood ratio test [4]. And
the cumulative sum (CUSUM) test-based detection mechanism introduced in [12–14]
is also designed for these stealth attacks. The researchers of [15] use the machine learning
method to deal with the stealth false data. Moreover, how to economically deploy PMUs
to facilitate the state estimator and detect the FDIAs has become an interesting problem
[16, 17]. In [18], a detection method based on the PMU is proposed, the authors assume
that the measuring of a portion in the system is absolute secure under the protection of
the secure physical parts, and the attackers couldn’t tamper the protected meters, other‐
wise it will be detected as an attack and carry on a limit to the attackers’ behavior. Later,
with the power systems increasingly interconnected in the smart grid, distributed state
estimate (DSE) becomes an important alternative to centralized and hierarchical solu‐
tions [19, 20]. In [21], two new methods of distributed state estimation are proposed,
one is using the incremental mode of cooperation, and the other is based on diffusive
interaction pattern. The authors of [22, 23] apply the distributed state estimation (DSE)
into the fully distributed power system for attack detection. In [24], a bad data detection
method based on an extended distributed state estimation (EDSE) is presented. A power
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system is decomposed into several subsystems using graph partition algorithms. For
each subsystem, buses are classified into three groups: internal bus, boundary bus and
adjacent bus. Simulation results demonstrate that the detection accuracy of the EDSE-
based method is much higher than the traditional method on average, and its computation
complexity is significantly lowered.

Nowadays, various methods have been proposed to address the problems of false
data injection attacks in Smart Grid. However, the study of the physical property and
analyzing networks data to detect the false data injection attacks is very meager. So, we
study the corresponding work in this paper.

The rest of this paper is organized as follows. In Sect. 3, the system model and
background are discussed. The proposed node vulnerability level identification is shown
in Sect. 4. The state forecasting method is discussed in Sect. 5. We simulate the test and
the effectiveness and performance of the proposed model and detection method are
evaluated in Sect. 6. Finally, the paper is concluded in Sect. 7.

3 System Model and Background

In this section, we briefly discuss the state estimation in power system and the node
voltage stability index.

3.1 Notations

In order to check the convenience, some important notations used in our paper are listed
in the Table 1.

3.2 Problem Formulation

In our work, we present a common formulation of the state estimation problem when
using a DC power flow. The measurements vector z is an m × 1 vector in a power system
such as power flows at transmission lines, and power injections and loads at buses. The
power flow measurements can be taken at one or both ends of a transmission line. In the
progress of state estimation, we are interested in using the collected set of measurements
to estimate an n × 1 vector x of unknown state variables, where m ≥ n. The unknown
state variables are the voltage angles or voltage magnitudes at different nodes. H denotes
the m × n measurements Jacobian matrix.

z = Hx + e (1)

Where, the e is the measurement noise. And the noise is normally Gaussian distrib‐
uted with zero mean, then the estimated state variables can be express as:

x̂ = (HTWH)−1HTWz (2)

Where the W is a diagonal matrix whose diagonal elements are given by Wii = 𝛿
−2
i

,
and 𝛿2

i
 is the variance of ei, for i = 1, 2,… , n.
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Table 1. Some important notations

Notation Description
z The m × 1 vector of measurements
x The n × 1 vector of state variables
H The m × n Jacobian matrix denoting the power system topology
e Random errors of measurements
m The number of measurements
n The number of state variables
x̂ The estimated value of state variables
W The diagonal matrix
zf The m × 1 measurements vector with false data
a The m × 1 attacked vector
c The n × 1 vector of estimated errors
x̂f The estimated value of state variables with false data
𝜏 The threshold
r The measurement residuals
NVSI(Ni) T the voltage stability index at the node i
Uj The voltage magnitude of node j
R The resistance of branch
X The reactance of branch
Pi The real power of node i
Qi The reactive power of node i
s The population size of the CFPSO
K The number of the centroids
Fsum_dis The total sum of the distance of each particle to the centroid
Gt−1 The state transition matrix at time sample t − 1
Qt−1 The nonzero diagonal matrix at time sample t − 1
 

tz
The forecasting measurements at sample t

In the FDIAs, an adversary try his/her best to hack the readings of sensors such that
the vector of measurement z is replaced by a compromised vector zf = z + a, where the
a is a m × 1 attack vector. The attacker constructs the attacked vector a to be a linear
combination of the rows in matrix H, i.e., a = Hc for some arbitrary n × 1 vector c, then
the traditional detection methods based on residue test will not be able to detect the
attack since the injected false data will no longer affect the residue:

∥ r ∥ =∥ zf − Hx̂f ∥

=∥ z + a − H(x̂ + c) ∥

= ∥ (z − Hx̂) + (a − Hc) ∥

= ∥ z − Hx̂ ∥< 𝜏

(3)

and
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x̂f = x̂ + (HTWH)−1HTWHc

= x̂ + c
(4)

By using the knowledge of the line admittances and the power topology, the adver‐
sary can successfully implement false data injection attacks which not be detected by
the traditional detection methods. But the attacked vectors to the measurements cause
the deviation of the state estimation, and this will lead to the grid power collapse or
paralysis.

3.3 Node Voltage Stability Description

As we all know, many methods and techniques have been reported for voltage stability
analysis and voltage collapse prediction. A number of static voltage stability index have
been widely used for evaluating and predicting the proximity of the system to voltage
stability. In our paper, we introduce the node voltage stability index (NVSI) presented
by the authors in [25], as follows,

NVSI(Ni) = 4U−4
j
(RQi − XPi)

2 − 4U−2
j
(XQi + RPj) (5)

where the NVSI(Ni) is the voltage stability index at the node i, Uj is the voltage magnitude
of node j. R and X are the resistance and reactance of branch respectively, which can be
obtained from the power network electric topological database. Besides, Pi, Qi are the
summation of the real power and reactive power. After a successful power flow solution
of system, all parameters of Eq. (5) are known, and the NVSI(Ni) index of each node can
be calculated. This index can provide important information about the proximity of the
system stability, which enables us to set an index threshold to monitor and predict system
stability on-line so that a proper action can be taken to prevent the system from collapse
timely and detect the false data in smart grid.

4 Node Vulnerability Level Identification

For real-time or extended real-time operation, the electricity operator collects power
data from the SCADA. If an attacker has access to any or all of the measurements, he
will manipulate the power data by injecting false data. When the measurements under
FDIAs, the corrupted real and reactive power measurements, Pi, Qi and Uj will be
changed. Any higher value of the NVSI indicates that the system is highly likely to
voltage collapse. So, the system operators should become concerned about keeping the
system with instability margin.

In the light of the NVSI values of all monitored nodes, we can identify the weakest
nodes of the system. The NVSI at the weakest node will be very large when the system
approaches its voltage collapse point. Therefore, a threshold of NVSI can be easily set
up to trigger an emergency remedial action scheme to remind the operator to detect the
FDIAs and take appropriate measures protecting the system from voltage collapse.
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Clustering algorithms are often used to measure the similarity between different data
sources and to classify the data sources into different clusters. K-means++ algorithm is
an efficient and well know unsupervised clustering algorithm which has a wide range
of applications. However, a major problem of K-means++ is that it may trap in one of
the local minima algorithm. In our work, we use the CFPSO algorithm to optimize that
imperfection. At the beginning, we set the K-means++ algorithm is replicated s∕2 times,
where s is the population size of the CFPSO. We obtain the cluster centroids from the
replicated K-means++ algorithm and use them as half of the initial population of the
swarm. Besides, the remaining half swarm population are initialized randomly based on
the solution space. In this way, the remaining half input vectors of the swarm still be
capable to produce enough diversity in the velocities of the particles to reach to a better
solution. In order to identify the nodes vulnerability level, we set K = 3. So the nodes
will be clustered into 3 clusters, which indicates three vulnerability levels, the most
vulnerable level, the vulnerable level and the stable level separately. In our analysis, we
formulate the total sum of the distance of each particle to the centroids considered as a
objection function Fsum_dis.

At the beginning of identifying the nodes vulnerability level, it is a key problem that
how to get the best quality clustering centroid. The step-by-step procedure of the
proposed solution is described briefly in Fig. 1.

Then the following steps describe the vulnerability identification procedure:

Read the system data and calculate of each node;
Obtain the best quality clustering centroid from above progress, and cluster the nodes
into three swarm according the value;
Identify the nodes vulnerability level of three swarms. The most vulnerability level,
the vulnerability level and the stable level separately.

We simulate experiment at the IEEE 30-bus at one moment, and the result of node
vulnerability level in Table 2.

Table 2. The node vulnerability level of IEEE 30-bus system

The number of swarm Vulnerability level The number of node
Swarm 1 The most vulnerability

level
7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 26, 27, 28,
29, 30

Swarm 2 The vulnerability level 4, 5, 6, 23, 24, 25
Swarm 3 The stable level 2, 3, 19, 20, 21, 22
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5 State Forecasting Method

The main advantages of identifying the nodes vulnerability level are convenient in
modeling and calculations, and ease in real time or on-line applications. The clustering
results show that the nodes vulnerability level can reflect the weakest nodes causing
system instability, but also help the operators detect the FDIAs. Combining this feature,
we propose a new detection method considering two consecutive time frames from to
forecast the state of power system and detect the FDIAs.

Fig. 1. The procedure of obtaining the centroids
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In the quasi steady state operation of the power system, we can obtain the prediction
model by using the historical data and the state estimation. And the forecasting model
is

xt = Gt−1xt−1 + Qt−1 (6)

Where Gt−1 is state transition matrix, xt−1 is state estimated value at time sample t − 1
and the Qt−1 is nonzero diagonal matrix. Sampling time is at t − 1 and t separately. Hence,
we can calculate the forecasting measurements as:

t tz Hx= (7)

The measurement residuals at is

t tr Hx z z z= − = − (8)

where z is estimated value at t, the 
tz  is the forecasting measurements using the data at

t. In order to simplify the complexity of the formula, we will omit time scale t in the
following work.

6 Simulation

In this paper, the proposed method is tested on IEEE 30-bus. The experiment model is
constructed in the MATPOWER [26], and the test data is obtained from it. We use the
J(x) detector and LNR detector with our power system physical property for detecting
the FDIAs to prove the performance. We construct the attacked vectors using the similar
way in [12, 13].

We compare the J(x) detector and the LNR detector with our method to see the
effectiveness at different false alarm. In the Fig. 2, the ROC shows the trade-off between
the probability of attack detection at different probability of false alarms. In our method,
if the historical state data is available, the state forecasting is performed.

From the Fig. 2, we can find that the detection rate is gradually increased with the
change of false alarm. The J(x)1 indicates the detection rate of traditional detect method,
and the J(x)2 shows the detection rate of our method. Similarly, LNR1 and LNR2 denote
the traditional and our method respectively. On the other hand, we can see that the
detection rate of the LNR detector is higher than the J(x) detector.

In a word, according to the node voltage stability index, we can identify the node
vulnerability level. After that, we focus on the most vulnerability level firstly, and it help
operators take efficient measures timely. State forecasting make operators determine
whether exist any false data at time sample t. Finally, the simulation result verifies that
the proposed mechanism can effectively detect FDIAs in the smart grid.
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7 Conclusion

To deal with the problem of data integrity in smart grid, which may lead to wrong
decision makings in power dispatch or electric power market operations, we propose an
efficient FDIAs detection scheme based on power system physical property. Firstly, we
analysis the power system and introduce the node voltage stability index to identify the
vulnerability level of nodes in power system. As the result, we define three levels to
cluster the system nodes into three swarms. In the progress of clustering, we use the
improved cluster algorithm and realize the nodes clustering. This step help us to find the
suspected false data injection points easily. Then we use the state forecasting method to
obtain the states of power system. In addition, the and test methods are used to find the
sensitive measurement vectors. In the simulation, we built different types of attack
vectors, which makes an abundant experimental results. Finally, the simulation result
verifies that the proposed mechanism can effectively detect FDIAs in the smart grid.
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