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Abstract. Polymorphic worms can change their patterns dynamically,
that makes the generation of worm signatures a challenging task. In
noisy environments the task is more difficult. In this paper, we propose
a novel approach CGNRS to generate worm neighborhood-relation sig-
natures (NRS) from suspicious flow pool with noisy sequences. CGNRS
divides n sequences into m groups and each group contains 20 sequences.
CGNRS identifies worm sequences for each group by adopting color cod-
ing and computing NRS. Then all identified worm sequences are used to
generate NRS. We have carried out extensive experiments to evaluate the
quality of signatures generated by CGNRS. In comparison with signa-
tures generated by existing approaches, the experiment results show that
NRS generated by our approaches can be used to detect effectively poly-
morphic worm when the suspicious flow pool contains noise sequences.

Keywords: Signature generation · Polymorphic worm detection ·
Neighborhood relation · Color coding · Intrusion detection

1 Introduction

Worms are self-replicating malicious programs and represent a major security
threat for the Internet. They can infect and damage a large number of vul-
nerable hosts at timescales where human responses are unlikely to be effective
[1]. According to an empirical study, a typical zero-day attack may last for 312
days on average [2]. Polymorphic worms are characterized by their ability to
change their byte sequence when they replicate and propagate, and they can
change their appearances with every instance. They have caused great damage
to Internet in recent years.

In order to evade detection system, polymorphic worms use some tech-
niques to remove any static signature which may be obtained from the payload.
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A polymorphic worm can be implemented by some methods such as instruc-
tions rearrangement, garbage-code insertion, register-reassignment, instruction-
substitution and encryption [3–5]. No matter what method is used the worms
produced can always be classified into two classes. The first class of worm sig-
natures exhibits constant subsequences and we call these polymorphic worm
PWCS (polymorphic worm with constant subsequences). The second class can
not be identified based on constant subsequences but can be identified based
on other kinds of regularities in the worm sequences, e.g. worm byte frequency
distribution and the difference between adjacent bytes of the worm sequences.
We call the second class of polymorphic worm PWVS (polymorphic worm with
variant subsequences).

Polymorphic worm detection are mainly based on signature because of their
simplicity and ability to operate online in real time [6]. However, most deployed
worm signature based detection systems are ineffective to detect PWVS [7].
Generating high quality and accurate signatures based on the characteristic of
polymorphic worm remains largely an open problem [8,9].

Additionally, suspicious flow pool, from which worm signatures are gener-
ated, often includes noise flows. Noise flows often are normal flow sequences or
crafted worm-like flow sequences. These noise sequences can lead to existing sig-
nature generation methods to generate useless signature. For example, Fogla [10]
introduced polymorphic blending attacks, which evade signature-based intru-
sion detection systems by blending lots of normal flow sequences with worm
sequences. Perdisci [11] proposed an attack against worm signature generation
systems. This attack uses deliberate noise injection and misleads these systems
to generate useless signatures.

Because of the polymorphism of worm and noise problem in suspicious flow
pool, existing work for defending against polymorphic worms and generating
their signatures have inadequateness because they either can not handle noise
well in the process of generating worm signature or can not generate worm signa-
ture to detect PWVS successfully. In this paper, for avoiding the situation that
signature of polymorphic worms can not be generated when any static signature
or invariant substring are removed from worms, we propose a neighborhood-
relation signatures (NRS) to detect polymorphic worm. NRS is a collection of
distance frequency distributions between neighbor byte. Moreover, for solving
noise problem during generating worm signature, we propose CGNRS algorithm
by combining color coding methods to generate NRS from suspicious flow pool
with noise sequences. CGNRS divides n sequences into m groups and each group
contains 20 sequences, and then identifies worm sequences for each group by
adopting color coding. Finally, all identified worm sequences are clustered to
generate NRS. The rest of the paper is organized as follows. Related works are
introduced in Sect. 2. CGNRS algorithm is proposed in Sect. 3. Experimental
results are illustrated in Sect. 4. Section 5 draws the conclusions.



A Novel Signature Generation Approach in Noisy Environments 111

2 Related Work

Anomaly-based detection is one of defending worm techniques. For example, a
novel machine learning based framework is presented in [12] to detect known
and newly emerging malware at a high precision using layer 3 and layer 4 net-
work traffic features. This framework can detect Conficker worm successfully.
Another technique for defending worm is signature-based detection. Signature-
based detection techniques look for specific byte sequences (called attack signa-
tures) that are known to appear in the attack traffic. Their efficiency of defending
against worms depends on the quality of worm signatures that can be generated.

Recently, there have been many research efforts on generating signature for
worms. Some of them only can detect single worms. For example, G. Portokalidis
et al. [13] implemented SweetBait system, which automatically generates worm
signatures. S. Ranjan et al. [14] presented DoWicher, which extracts the worm
content signature via a LCS algorithm applied over the flow payload content of
isolated flows. M. Cai et al. developed a collaborative worm signature generation
system (WormShield) [15] that employs distributed fingerprint filtering. In these
systems, a worm is assumed to have a long invariant substring used as a signature
to detect the worm. However, many polymorphic worms do not contain a long
enough common substring. Systems mentioned above are not applicable to detect
polymorphic worms.

Some methods to generate worm signatures are more complicated than that
based on LCS algorithm. For example, J. Newsome et al. [16] presented Poly-
graph, a signature generation system. Polygraph extracted multiple invariant
substrings in all worm variants as worm signature. Z. Li et al. [17] developed
the Hamsa, an improved system over Polygraph in terms of both speed and
attack resilience. Hamsa takes the number of occurrences of a substring token
into a part of signature. Lorenzo Cavallaro et al. [18] proposed LISABETH,
an improved version of Hamsa, an automated content-based signature genera-
tion system for polymorphic worms that uses invariant bytes analysis of net-
work traffic content. Burak Bayogle et al. [19] proposed Token-Pair Conjunction
and Token-Pair Subsequence signature for detecting polymorphic worm threats.
Y. Tang et al. [6] proposed Simplified Regular Expression (SRE) signature, and
used multiple sequence alignment techniques to generate exploit-based signa-
tures. A graph based classification framework of content based polymorphic
worm signatures is presented in [20]. Based on the defined framework, a new poly-
morphic worm signature scheme, Conjunction of Combinational Motifs (CCM),
is proposed. CCM utilizes common substrings of polymorphic worm copies and
also the relation between those substrings through dependency analysis. Above
these methods assumed that multiple invariant substrings must be present in
all instances of polymorphic worm. They can not produce signature for PWVS
because there is no same byte sequences exists in different copies of PWVS. In
this paper, we propose the CGNRS algorithm to solve the noise problem by
using color coding.
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3 CGNRS Algorithm

3.1 Worm Signature

In this paper, we use NRS [21] as worm signature. S = {S1, S2, ..., Sn} is a set
of worm sequences, where Si = c1c2...cm. There is at least a significant region
in worms, which infects victim. Suppose a1, a2, ..., an are the starting positions
of significant region in n sequences, and the width of significant region is w.
The number of worm sequences, in which neighbor distance of position p in the
significant regions is d, is denoted as count(p, d). Neighbor distance distribution
fp(d) is as follows.

fp(d) =
count1(p, d)

n
(1)

where
∑

d∈[0...255] fp(d) = 1, and p = 1, 2, ..., w−1. NRS signature of n sequences
is defined as (f1, f2, ..., fw−1). The process of computing NRS (GNRS) was
described in [21].

3.2 Process of Identifying Worm Sequences from 20 Sequences by
Applying Color Coding

Consider an n-size suspicious flow pool with k worm sequences, CGNRS is
designed to generate worm signature from the pool. The suspicious flow pool
comprises of worm sequences and noise sequences. Worm sequences are PWCS,
PWVS or both of them. Noise sequences contain normal flow sequences from
real network and sequences generated by using special methods discussed in [11].
Since the position of worm sequence is unknown, we have to extract signature
from each k -combinations of n sequences. In other words, procedure of extract-
ing signature will be run Ck

n times. However, when the number of sequences in
suspicious flow pool is very large, for example, when n=2000, Ck

n is too large to
run for extracting signature. In this paper, we use divide-and-conquer method.
n sequences are divided into m g-sequences, and g = � n

m�. Then we identify
worm sequences by running identification procedure for each u-combinations
sequences of g-sequences. Here the identification procedure is run mCu

g times.
If g is too large, so is Cu

g , and if g is too small, it is difficult to distinguish
worm sequences. From above analysis we can see that the larger the value of g
is, the easier distinguishing worm sequences will be, and the greater complexity
of computation is. Assuming g = 20, C15

20 = 15504, C14
20 = 38760, C13

20 = 77520,
C12

20 = 15504, and C11
20 = 167960. From these data, it can be seen that compu-

tation complexity is still large when g = 20. Therefore, we adopt color coding
to reduce the number of times Cu

g of running identification procedure when
g = 20. The detailed introduction about color coding was described in [8]. In
this paper, Coloring(20, u)(u = 11, 12, · · · , 19) is used. Table 1 shows the com-
parison between the size of Coloring(20, u) and the number of u-combinations
of 20.

When the number of noise sequences in suspicious flow pool is larger than the
number of worm sequences, it is hard to identify worm sequences. Therefore we
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Table 1. Comparison between the size of Coloring(20, u) and the number of
u-combinations of 20

Coloring(20,u) u-combinations of 20

u=19 10 20

u=18 50 190

u=17 170 1140

u=16 403 4845

u=15 862 15504

u=14 1220 38760

u=13 2036 77520

u=12 2085 125970

u=11 3250 167960

only consider how to identify worm sequences when g-size suspicious flow pool
includes u(u > g

2 ) worm sequences. The procedure of building Coloring(g, u) is
denoted as Build coloring(g,u). Assuming f is the number of (g, u)-colorings in
the set Coloring(g, u). For each (g, u)-coloring, sequences with the same color
are merged. So g sequences are converted to u sequences. Then algorithm GNRS
generates NRSi signature for the u sequences. After NRSi is generated, it is
evaluated in one filter flow pool, which contains n normal sequences. We compute
the matching score Θj of the jth sequence in the filter flow pool with NRSi

based on Eq. (1). If Θj > 0(1 ≤ j ≤ n), pi adds 1. If pi/n < ε, the u sequences
used to generate NRSi is considered as u worm sequences in the suspicious flow
pool, where ε is a small predefined percentage. If all NRSi(1 ≤ i ≤ f) are not
satisfied, u worm sequences are not identified. The process is described as GeWS
algorithm, which is illustrated in Fig. 1.

In Fig. 1, g = 20 and 11 ≤ u ≤ 20. Results returned by GeWS are u sequences.
According to the method of color coding, the set Coloring(g, u) can cover all
u-combinations of g sequences. Therefore signatures generated from u sequences
are the same as signatures extracted from each u-combinations of g sequences.

3.3 Description of Algorithm CGNRS

Given a suspicious flow pool with n sequences. Firstly, n sequences are divided
into many groups, each of which includes 20 sequences. If the number of
sequences in the last group is less than 20, copies of other sequences are put
into the last group. Assuming that n sequences are divided into m = � n

20�
groups G1, G2, ..., Gm. Algorithm GeWS is applied to generate NRS signatures
for each group, and returns u worm sequences or returns “can not identify worm
sequences” for each group.

For group Gi, the parameter u of GeWS algorithm is 20. Assuming that
NRSi is signature generated by GeWS algorithm, and S′

i is u worm sequences
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Fig. 1. Algorithm GeWS

returned by the algorithm. If NRSi is not generated, CGNRS calls algorithm
GeWS with u = u − 1 again until NRSi is generated or u < 11. After dealing
with all groups, CGNRS can obtain a set sequences S′ by merging all not-null S′

i.
Then CGNRS employs GNRS algorithm to generate NRS for S′. The CGNRS
algorithm is illustrated in Fig. 2.

As shown in Fig. 2, the parameter a is set to be 20 and b is set to be 11
in CGNRS. GeWS algorithm aims to generate signatures when the number of
worm sequences is larger than that of noise sequences in each group. If there
is at least one group which generates signature and obtains the set of worm
sequences, CGNRS can generate worm signature with probability 1.

4 Experiments and Results

Four kinds of worm are used in the experiments. They are MS Blaster worm, SQL
Slammer worm, Apache-Knacker worm and Conficker worm. The MS Blaster
worm exploits a vulnerability in Microsoft’s DCOM RPC interface. Upon suc-
cessful execution, the MS Blaster worm retrieves a copy of the file msblast.exe
from a previously infected host [22]. SQL Slammer worm exploits a buffer over-
flow vulnerability in Microsoft’s SQL Server. Apache-Knacker worm are based
on the real world Apache-Knacker exploit. Conficker exploits a stack corrup-
tion vulnerability, the MS08-067 server service vulnerability, to introduce and
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Fig. 2. Algorithm CGNRS

execute shellcode on affected Windows system [23]. In our experiments, we apply
polymorphism techniques to generate PWCS and PWVS for above 4 type worms.

4.1 Comparison of NRS and Other Signature Generated from
Suspicious Flow Pool Without Noise Sequences

In the following experiments, NRS generated by algorithm CGNRS is compared
with three worm signatures, PADS signature [24], token subsequence signature
from Polygraph [16] and signature generated by using multiple sequence align-
ment algorithm (MSA) [6]. We use 200 MS Blaster worm variants and 200 SQL
Slammer worm variants for generating signatures. Then we use 10000 corre-
spondent worm sequences and 10000 normal flow sequences from real network
as test variants. The false positive ratio and the false negative ratio are get
respectively. The false positive ratio is defined as the number of normal flow
sequences misclassified as worm variants divided by the total number of normal
flow sequences. The false negative ratio is defined as the number of worm test
variants misclassified as normal traffic divided by the total number of worm test
variants. Experiments are run in the following two scenarios:

(1) Worm samples and worm test variants contain only PWCS. Since PWCS
exhibits some constant subsequences, four kinds of worm signatures can all
be generated. Because NRS with shorter signature length has better quality
and so does PADS [24], the length of NRS and PADS is 10. The experi-
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Table 2. The false positive ratio and the false negative ratio of different worm signa-
tures when worm samples and test variants include PWVS variants

Worm name The false positive ratio The false negative ratio

NRS Blaster 0 0.0002

Slammer 0 0

Conficker 0 0

PADS Blaster 0 0.2839

Slammer 0 0.1346

Conficker 0 0.0347

Polygraph Blaster None None

Slammer None None

Conficker None None

MSA Blaster None None

Slammer None None

Conficker None None

ment results show that these worm signatures are no false negative and false
positive.

(2) Worm samples and worm test variants all contain PWVS. The experiment
results are illustrated in Table 2.

It is easy to see from Table 2 that NRS and PADS can be generated when
worm samples include PWVS. Since PWVS can not be identified by finding
constant subsequences, Polygraph [16] and MSA [6] can not generate signature
for PWVS. In Table 2, the false positive ratio of NRS and PADS is 0. NRS and
PADS can distinguish the normal flow sequences well. The false negative ratio
of NRS is lower than that of PADS. The reason is that PADS is based on bytes
themselves. If polymorphic techniques, such as Encryption techniques, are used
in worm variants, PADS will suffer from difficulties to detect such worms. NRS
is based on neighbor relationship, and it is more flexibility.

4.2 Comparison of NRS and Other Signature Generated from
Suspicious Flow Pool with Noise Sequences

In the experiments, the suspicious flow pool includes 200 worm samples. When
the number of noise sequences is l, we randomly replace l worm sequences with
l noise sequences in the suspicious flow pool. Here worm sequences belong to
PWCS. Noise sequences are generated by method discussed in [11]. Every noise
sequence has some common substrings with one worm sequence of the suspicious
pool. There also have some common substrings among noise sequences and these
common substrings come from normal flow sequences. But noise sequence does
not contain the true invariant parts of the worm. NRS with different length
are generated by CGNRS from the suspicious flow pool. Other kinds of worm
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(a) Blaster

(b) SQL Slammer

(c) Apache-Knacker

(d) ATPhttpd

(e) Conficker

Fig. 3. The false positive ratio of CCNRS, PADS, Polygraph and MSA
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signatures, including PADS, signatures of Polygraph and signatures of MSA,
also are generated.

We use 10,000 worm variants and 10,000 normal flow sequences as test vari-
ants to measure NRS, where worm variants belong to PWCS. NRS is compared
with other kinds of worm signatures. Comparison results of NRS and other kinds
of signatures are illustrated in Figs. 3 and 4. In the experiments, the length of
NRS and PADS is set to be 10.

From Fig. 3, it can be seen that when there are no noise sequences in sus-
picious flow pool, the false positive ratio of these worm signatures is 0. How-
ever, with the number of noise increasing gradually, the false positive ratio of
PADS grows. PADS is collection of position-aware byte frequency distributions.
If there are noise sequences in the suspicious flow pool, PADS will be gener-
ated by computing position-aware byte frequency of worm variants and noise
sequences. Therefore, when the PADS is used to detect worms, PADS will clas-
sify some noise sequences into worm variants. When the number of noise adds to
50, signature generated by Polygraph and MSA also obtain higher false positive
ratio. Because of the disturbance of craft noise, common substrings among noise
sequences are extracted for composing worm signatures. If these signatures are
used to detect noise sequences, noise sequences are considered as worm variants.
Since CGNRS adopts color coding, NRS generated by CGNRS obtained lower
false positive ratio.

Moreover, for signatures generated by Polygraph and MSA are common sub-
strings of noise sequences, these signatures can not detect worm variants. So,
the false negative ratio is 0 when they detect above 5 kind of worm variants.
Since NRS and PADS are more flexible, they can detect correctly all worm vari-
ants. Therefore, we use one figure, Fig. 4, to show the false negative ratio of
above 4 worm signatures in detecting different kind of worm variants. From the

Fig. 4. The false positive ratio of CCNRS, PADS, Polygraph and MSA
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Figs. 3 and 4, it can be seen that, compared with PADS, Polygraph and MSA,
CGNRS is better in generating worm signature with high quality.

5 Conclusion

In this paper, we propose NRS signatures based on neighborhood relation for
polymorphic worms. NRS are generated by GNRS algorithm based on distances
between neighbor bytes. We perform extensive experiments to demonstrate the
effectiveness of NRS. In order to deal with noise problem, we proposed a novel
algorithm CGNRS by introducing color coding into our approaches. CGNRS
is able to generate NRS signature automatically for polymorphic worms in the
environments with noises. CGNRS are tested and compared with PADS, Poly-
graph and MSA. According to the results of comparison, we draw the following
conclusions:

(1) If there are only PWCS in the suspicious flow pool without noise sequences,
NRS, PADS, and signatures generated by Polygraph and MSA can be used
to detect effectively polymorphic worm.

(2) When the suspicious flow pool without noise sequences contains PWVS, NRS
can obtain lower the false negative ratio compared with PADS. Polygraph
and MSA can not generate worm signature.

(3) When suspicious flow pool include noise sequences and PWCS, compared
with PADS and signature generated by Polygraph and MSA, NRS by
CGNRS can obtain lower false positive ratio and lower false negative ratio.
Therefore, CGNRS is a better approach to generate signature for polymor-
phic worm.
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