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Abstract. In a previous work, Villani et al. introduced a method to
identify candidate emergent dynamical structures in complex systems.
Such a method detects subsets (clusters) of the system elements which
behave in a coherent and coordinated way while loosely interacting with
the remainder of the system. Such clusters are assessed in terms of an
index that can be associated to each subset, called Dynamical Cluster
Index (DCI). When large systems are analyzed, the “curse of dimension-
ality” makes it impossible to compute the DCI for every possible cluster,
even using massively parallel hardware such as GPUs.

In this paper, we propose an efficient metaheuristic for searching rel-
evant dynamical structures, which hybridizes an evolutionary algorithm
with local search and obtains results comparable to an exhaustive search
in a much shorter time. The effectiveness of the method we propose has
been evaluated on a set of Boolean models of real-world systems.

Keywords: Complex systems · Hybrid metaheuristics · Local search

1 Introduction

The study of complex systems is related to the analysis of collective behaviors
and emerging properties of systems whose components are usually well-known.
Measuring the complexity of a composite system is a challenging task; dozens of
measures of complexity have been proposed, several of which are based on infor-
mation theory [1]. Detecting clusters of elements that interact strongly with one
another is even more challenging, especially when the only information available
is the evolution of their states in time.

The problem of finding groups of system elements that have a tighter dynam-
ical interaction among themselves than with the rest of the system is a typical
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issue in data analysis; notable examples are the identification of functional neu-
ronal regions in the brain and the detection of specific groups of genes ruling the
dynamics of a genetic network.

The method proposed by Villani et al. [2] identifies emergent dynamical struc-
tures in complex systems, also referred to as relevant sets (RSs) in the following.
To do so, it assesses the relevance of each possible subset of the system variables,
computing a quantitative index, denoted as Dynamical Cluster Index (DCI).
Therefore, to fully describe a dynamical system based on the DCI it would be
necessary to compute such an index for all possible subsets of the system vari-
ables. Unfortunately, their number increases exponentially with the number of
variables, soon reaching unrealistic requirements for computation resources. As
a consequence, to extract relevant DCI information about a system by observing
its status over time, it is absolutely necessary to design efficient strategies, which
can limit the extension of the search by quickly identifying the most promising
subsets.

In this paper, we propose HyReSS (Hybrid Relevant Set Search), a hybrid
metaheuristic for searching relevant sets within dynamical systems, based on the
hybridization of an evolutionary algorithm with local search strategies. In the
tests we have made on data describing both real and synthetic systems, HyReSS
has been shown to be very efficient and to produce results comparable to an
exhaustive search in a much shorter time.

The paper is organized as follows. In Sect. 2, we discuss previous related
work. In Sect. 3, we describe the DCI-based approach. In Sect. 4, we present
the evolutionary metaheuristic. In Sect. 5, we report some experimental results.
Finally, in the last section, we conclude the paper summarizing our achievements
and discussing future research directions.

2 Related Work

Several measures of complexity are based on information theory [1], which is
convenient since any dynamically changing phenomenon can be characterized
in terms of the information it carries. Hence, these measures can be applied
to the analysis of any dynamical system. A widely-known information-theoretic
framework by Gershenson and Fernandez [3] allows one to characterize systems
in terms of emergence, self-organization, complexity and homeostasis. Such a
framework has been applied, for example, to characterize adpative peer-to-peer
systems [4], communications systems [5] and agroecosystems [6].

The DCI method [7,8] is an extension of the Functional Cluster Index (CI)
introduced by Edelman and Tononi in 1994 and 1998 [9,10] to detect functional
groups of brain regions. In our previous work, we extended the CI domain to
non-stationary dynamical regimes, in order to apply the method to a broad range
of systems, including abstract models of gene regulatory networks and simulated
social [11], chemical [2], and biological [8] systems.

Genetic Algorithms (GAs) are popular search and optimization techniques,
particularly effective when little knowledge is available about the function
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to optimize. However, some studies [12,13] show that they are not well-suited
to fine-tune searches in complex spaces and that their hybridization with local
search methods, often referred to as memetic algorithms (MAs) [12], can greatly
improve their performance and efficiency. Nevertheless, basic GAs and MAs are
designed to find absolute optima and therefore are not capable of maintaining
the diversity of solutions during evolution, which is essential when multimodal
functions are analyzed, and the goal is to find as many local optima as possible.

To compensate for this shortcoming, various techniques, commonly known as
niching methods, have been described in the literature, that maintain population
diversity during the search process and allow the search to explore many peaks
in parallel. Most niching methods, however, often require that problem-specific
parameters, strictly related to the features of the search space, be set a pri-
ori to perform well. This is documented, for example, in [14–16], that describe
applications to mechatronics, image processing, and multimodal optimization,
respectively.

Among the most renowned niching algorithms we can recall Fitness Shar-
ing [17], Sequential Niching [18], Deterministic Crowding [19], and restricted
tournament selection [20]. In this work we have used a modified version of deter-
ministic crowding, because that method does not require a priori setting of
problem-related parameters, such as the similarity radius, and its complexity is
low, since it scales as O(n) with the number of dimensions of the search space.
This is probably the main reason why the usage of deterministic crowding is still
often reported in the recent literature [21–23].

3 Approach

Many complex systems, both natural and artificial, can be represented by net-
works of interacting nodes. Nevertheless, it is often difficult to find neat corre-
spondences between the dynamics expressed by these systems and their network
description. In addition, network descriptions may be adequate only in case of
binary relationships. In the case of systems characterized by non-linear interac-
tions among their parts, the dynamic relationships among variables might not
be entirely described by the topology alone, which does not represent the actual
dynamical interactions among the elements. In contrast, many of these systems
can be described effectively in terms of coordinated dynamical behavior of groups
of elements; relevant examples are Boolean networks [24], chemical or biological
reaction systems [2] and functional connectivity graphs in neuroscience [25,26].
Furthermore, in several cases, the interactions among the system elements are
not known; it is therefore necessary to deduce some hints about the system
organization by observing the behavior of its dynamically relevant parts.

The goal of the work described in this paper is to identify groups of vari-
ables that are good candidates for being relevant subsets, in order to describe
the organization of a dynamical system. We suppose that (i) the system vari-
ables express some dynamical behavior (i.e., there exists at least a subset
of the observed states of the system within which they change their value),
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(ii) there exist one or more subsets where these variables are acting (at least
partially) in a coordinated way, and (iii) the variables of each subset have weaker
interactions with the other variables or RSs than among themselves. The out-
come of the analysis is essentially a list of possibly overlapping subsets, ranked
according to some criteria, which provide clues for understanding the system
organization.

The approach we use (Dynamical Cluster Index, or DCI, method) has been
previously presented by some of the authors of this paper. Here we briefly sum-
marize the method, pointing to the relevant literature for further details [7,8].
The DCI method relies on information theoretical measures, related with the
Shannon Entropy [27]. Given the observational nature of our data, the prob-
abilities are estimated by the relative frequencies of their values. Let us now
consider a system U composed of K variables (e.g., agents, chemicals, genes,
artificial entities) and suppose that Sk is a subset composed of k elements, with
k < K. The DCI(Sk) value is defined as the ratio between the integration I of
Sk and the mutual information M between Sk and the rest of the system:

DCI(Sk) =
I(Sk)

M(Sk;U \ Sk)
(1)

where I(Sk) measures the statistical independence of the k elements in Sk (the
lower I(Sk), the more independent the elements) while M(Sk;U \ Sk) measures
the mutual dependence between the subset Sk and the rest of the system U \Sk.
In formulas:

I(Sk) =
∑

s∈Sk

H(s) − H(Sk) (2)

M(Sk;U \ Sk) = H(Sk) + H(U \ Sk) − H(Sk, U \ Sk) (3)

where H(X) is the entropy or the joint entropy, depending on X being a single
random variable or a set of random variables.

Any subset of the system variables (Candidate Relevant Set - CRS - in the
following) having M = 0 does not communicate with the rest of the system: it
constitutes a separate system and its variables can be excluded from the analysis.
The DCI scales with the size of the CRS, as already pointed out in [9], so it needs
to be normalized by dividing each member of the quotient in Eq. 1 by its average
value in a reference system where no dynamical structures are present. Following
our previous works [7,8,28] our reference is a homogeneous system composed of
the same number of variables and described by the same number of observations
as the system under analysis. The values of the observations for the homogeneous
system are generated randomly, according to the uni-variate distributions of each
variable that could be estimated from the real observations if all variables were
independent. Formally:

C ′(S) =
I(S)
〈Ih〉 /

M(S;U \ S)
〈Mh〉 (4)
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Finally, in order to assess the significance of the normalized DCI values, a
statistical index Tc can be computed [9]:

Tc(S) =
C ′(S) − 〈C ′

h〉
σ(C ′

h)
=

C(S) − 〈Ch〉
σ(Ch)

(5)

where 〈Ch〉, σ(Ch), 〈C ′
h〉 and σ(C ′

h) are, respectively, the average and the stan-
dard deviation of the DCI indices and of the normalized cluster indices from a
homogeneous system with the same size as Sk.

The CRSs can be ranked according to their Tc: in both cases the analysis
returns a huge set of candidates, most of which are a subset (or superset) of other
CRSs. In order to identify the most relevant information, in [7] a post-processing
sieving algorithm has been proposed, able to reduce the list of CRSs to the most
representative ones. The algorithm is based on the consideration that if CRS
A is a proper subset of CRS B and ranks higher than CRS B, then CRS A
should be considered more relevant than CRS B. Therefore, the algorithm keeps
only those CRSs that are not included in or do not include any other CRS with
higher Tc. This “sieving” action stops when no more eliminations are possible:
the remaining groups of variables are the proper RSs. This procedure can also
be extended to the identification of hierarchical relations among RSs: this topic
is the subject of ongoing work.

In this paper, we focus onto a particularly critical issue, i.e., how to efficiently
detect the highest-ranked CRSs according to their Tc. Indeed, the number of
CRSs increases exponentially with the system’s dimension, the number of CRSs
of size k in a system of size K being

(
K
k

)
. However, to characterize a dynamical

system of interest, one does not need to know the Tc index of all possible CRSs,
but only to detect the CRSs for which the Tc is highest. To do so, we developed
HyReSS, a hybrid metaheuristic described in the following section, postponing to
future investigations the use of its results to detect the RSs and their hierarchy.

4 HyReSS: A Hybrid Metaheuristic for RS Detection

HyReSS hybridizes a basic genetic algorithm with local search strategies that
are driven by statistics, computed at runtime, on the results that the algorithm
is obtaining.

A genetic algorithm is first run to draw the search towards the basins of
attraction of the main local maxima in the search space. Then, the results are
improved by performing a series of local searches to explore those regions more
finely and extensively.

The method can be subdivided into five main cascaded steps:

1. Genetic algorithm;
2. CRS relevance-based local search;
3. CRS frequency-based local search;
4. Group cardinality-based local search;
5. Merging.
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4.1 Genetic Algorithm

The first evolutionary phase is a genetic algorithm based on the Deterministic
Crowding (DC) algorithm, one of the most efficient and commonly used niching
techniques. As specified above, HyReSS does not search a single CRS, but the
set B of the Nbest highest-Tc CRSs.

Each individual corresponds to one CRS and is a binary string of size N ,
where each bit set to 1 denotes the inclusion in the CRS of the corresponding
variable, out of the N that describe the system. A list (termed “best-CRS mem-
ory” in the following) is created to store the best individuals that have been
found along with their fitness values. At the end of the run, it should contain all
CRSs in B.

The initial population, of size p, is obtained by generating random individuals
according to a pre-set distribution of cardinality (pairs, triplets, etc.). This kind
of generation aims to create a sample that is as diversified as possible (avoiding
repetitions) as well as representative of the whole search space.

The fitness function to be maximized corresponds directly to the Tc and is
implemented through a CUDA1 kernel that can compute in parallel the fitness
values of large blocks of individuals.

Evolution proceeds by selecting p/2 random pairs of individuals and creat-
ing p children by means of a single-point crossover. After crossover, each child
possibly replaces the most similar parent of lower fitness. To safeguard genetic
diversity, a parent is only replaced if the child is not already present in the
population.

This evolutionary process is iterated until the population is no more able to
evolve, i.e., the new generation remains equal to the previous one. When that
happens, new random parents are generated.

Mutation (implemented as bit flips) is applied with a low probability (Pmut)
after each mating.

The termination condition for this evolutionary phase is reached when the
number of evaluations of the fitness function exceeds a threshold αf or new
parents have been generated for αp times.

The implemented algorithm is elitist, since a child is inserted in the new
population only if its fitness is better than the fitness of the parent it substitutes.
Therefore, the overall fitness of the population increases monotonically with the
algorithm iterations. After the end of the evolutionary algorithm, the NgBest

fittest individuals are selected to seed the subsequent phases.

4.2 Variable Relevance-Based Search

While running the genetic algorithm, a relevance coefficient RCi is computed
for each variable i of the system under examination. RCi is higher if variable i
is frequently included in high-fitness CRSs.

1 https://developer.nvidia.com.

https://developer.nvidia.com
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At the end of each generation t of the GA, a fitness threshold is set, separating
high-fitness CRSs from low-fitness ones, and corresponding to a certain percentile
β of the whole fitness range.

τ(t) = minFitness + (maxFitness − minFitness) ∗ β (6)

A presence coefficient (PCi) and an absence coefficient (ACi) are defined,
for variable i, as the sum of the fitness values of the CRSs having fitness greater
than τ , in which the variable has been present or absent, respectively, cumulated
over the generations and normalized with respect to the number of generations
in which the corresponding CRSs have been included.

Based on these two coefficients, the ratio Rap,i = ACi/PCi is computed.
The variable is classified as relevant if PCi is greater than a threshold (the γth
percentile of the full range of PCi values) and Rap,i is lower than a certain
threshold δ.

The corresponding local search procedure performs a recombination of the
most relevant variables with other, randomly chosen, ones. As a first step, all pos-
sible subsets (simple combinations) of the most relevant variables are computed,
excluding the subsets of cardinality 0 and 1. Then, for each subset dimension, the
individual with the highest fitness is selected. Such individuals are the basis for
generating new CRSs, by forcing the presence or absence of relevant/irrelevant
variables and by randomly adding other variables into the RCSs. Every newly
generated individual is evaluated and, should its fitness be higher, replaces the
lowest-fitness individual in the best-CRS memory.

At the end of this phase a local search is performed in the neighborhood
of the best individual of the best-CRS memory, which is updated in case new
individuals with appropriate fitness are obtained.

4.3 Variable Frequency-Based Search

In this phase, the same procedure used to generate new individuals and to explore
the neighborhood of the best one is repeated, based on a different criterion.

We consider the frequency with which each variable has been included in the
CRSs evaluated in the previous phases and use this value to identify two classes
of variables, which are assigned higher probability of being included in the newly
generated CRSs:

– variables with frequency much lower than the average;
– variables with frequency much greater than the average.

In fact, variables of the former kind may have been previously “neglected”,
thus it may be worth verifying whether they are able to generate good indi-
viduals, while variables of the latter kind are likely to have been selected very
frequently in the evolutionary process because they actually have a significant
relevance.
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4.4 Group Cardinality-Based Search

During the previous phases, HyReSS records the frequency with which groups
of each possible cardinality (2, . . . , N−1) have occurred. These indices are then
normalized according to the a priori probability of occurrence of such groups,
given by the corresponding binomial coefficient

(
N
c

)
where N is the total number

of variables and c the cardinality of the group.
New CRSs are then generated using a procedure driven by such indices, such

that cardinalities having lower values have higher probability of occurring and
are possibly stored into the best-CRS memory according to their fitness.

4.5 Merging

In this phase a limited pool of variables is selected by considering all variables
that are included in the highest-fitness CRSs in the best-CRS memory. In prac-
tice, a size θ for the pool is set; then, the best individuals are progressively OR-
ed bitwise, in decreasing order of fitness starting from the best two CRSs, until
the result of the bitwise OR contains θ bits set to 1 or all the CRSs have been
processed. A final exhaustive search over all the possible CRSs that comprise the
selected variables, is made, and the best-CRS memory is updated accordingly.

5 Experimental Results

In this section we illustrate three examples of dynamical systems we have used as
benchmarks for HyReSS. The first one is a deterministic simulation of a chemi-
cal system called Catalytic Reaction System (CatRS), described by 26 variables.
The second one is a stochastic artificial system reproducing a Leaders & Follow-
ers (LF) behavior, featuring 28 variables. These examples have been analyzed
using both exhaustive search and HyReSS. The third example, denoted as Green
Community Network (GCN), features 137 variables, a size for which an exhaus-
tive search is not feasible on a standard computer. Thus, it was analyzed only
by HyReSS. However, we could compare its results with those provided by field
experts.

In all our test, we have performed 10 independent runs of HyReSS, to take the
stochastic nature of the tool properly into account. We evaluated the results of
HyReSS, when possible, by comparing the list of highest-Tc subsets it produced
with the results of an exhaustive search. To let results be comparable, we relied
on the same homogeneous system to compute normalized DCI values in both
approaches. Tests were run on a Linux server equipped with a 1.6 GHz Intel I7
CPU, 6 GB of RAM and a GeForce GTX 680 GPU by NVIDIA. The parameters
regulating the behavior of HyReSS were set as reported in Table 1.

Results are summarized in Table 2 and are discussed in the following
subsections.
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Table 1. HyReSS parameter settings. The parameters are defined in Sect. 4.

System Pmut p αf αp β γ δ θ

CatRS .1 16384 163840 3 .75 .75 .3 15

LF .1 16384 163840 3 .75 .75 .3 15

GCN (56 vars.) .1 25600 256000 3 .75 .75 .3 15

GCN (137 vars.) .1 50176 501760 3 .75 .75 .3 15

Table 2. Summary of HyReSS performances and comparison with an exhaustive search
(ES), when possible.

System N. Variables N. Samples Time (ES) [s] Time (HyReSS) [s] Speedup

CatRS 26 751 180 24 7.5

LF 28 150 300 19 15.8

GCN 56 124 n.a 71 n.a.

GCN 137 124 n.a 258 n.a

5.1 Catalytic Reaction System

The set of observations comes from the simulation of an open well-stirred chemo-
stat (CSTR) with a constant incoming flux of feed molecules (empty ellipses in
Fig. 1) and a continuous outgoing flux of all molecular species proportionally to
their concentration. Six catalyzed reactions produce six new chemical species
(pattern-filled ellipses in Fig. 1) and are divided in two dynamical arrangements,
a linear chain and a circle. The system asymptotic behavior is a fixed point: we
perturbed each single produced chemical species, in order to allow the variables
to change their concentrations over time and thus highlight their dynamic rela-
tionships (for details, see [2]). In this work, we encoded each species’ trajectory
as a binary variable, the 0 and 1 symbols meaning “concentration is changing”
and “concentration is not changing” respectively.

As the system has “only” 26 variables, it has been possible to perform an
exhaustive search to be used as reference, which took about 180 s. Producing
almost identical results (the resulting error rate is less than 0.022), the average
running time of HyReSS was 24 s.

5.2 Leaders and Followers

The model is an abstract representation of a basic leader-followers (LF) model:
it consists of an array of n binary variables X = [x1, x2, . . . , xn], which could

2 In one of the 10 runs, HyReSS failed to detect 1 of the first 50 RSs detected by the
exhaustive search.



44 L. Sani et al.

Fig. 1. The simulated CatRS. Circular nodes represent chemical species, while the
white ones represent the species injected in the CSTR and the pattern filled ones those
produced by the reactions. The diamond shapes represent reactions, where incoming
arrows go from substrates to reactions and outgoing arrows go from reactions to prod-
ucts. Dashed lines indicate the catalytic activities.

represent, for example, the opinion of n people in favor or against a given pro-
posal. The model generates independent observations on the basis of the follow-
ing rules:

– the variables are divided into four groups:
• G1 = {A0, A1, A2, A3}
• G2 = {A7, A8, A9}
• G3 = {A12, A13, A14, A15, A16, A17, A18, A19, A20}
• G4 = {A22, A23, A24, A25, A26, A27}

– the remaining variables A4, A5, A6, A10, A11 and A21 assume the value 0 or
1 with identical probability;

– variables A0, A7, A12, A22 and A23 are the leaders of their respective groups;
at each step they randomly assume value 0 respectively with probability 0.4,
0.3, 0.3, 0.3 and 0.6, 1 otherwise;

– the other variables (i.e., the followers) copy or negate the values of their lead-
ers, with the exception of the followers belonging to group G4 computing the
OR or AND function of their two leaders.

Given these rules, the system comprises only well-defined and non-interacting
groups, dynamically separate with respect to the other independent random
variables. However, its stochasticity could occasionally support the emergence of
spurious relationships, which make the automatic detection of groups non-trivial.
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The LF case we have considered features 28 variables. An exhaustive search
takes about 300 s. HyReSS completes its run in 19 s, on average, always providing
the same results as the exhaustive search, considering the 50 highest-Tc subsets
as a reference.

5.3 Green Community Network

In this case, the data come from a real situation and show the participation
(i.e., the presence or absence) of 137 people in a series of 124 meetings, held
during a project (the so-called Green Community project [29]) which involved
four mountain communities and focused on studies addressing energy efficiency
and renewable energy production. The full original data set was multimodal, by
far broader and more complex: some of us however (during the “MD” project,
within which the DCI methodology was first proposed) extracted this simplified
data set to verify whether the DCI analysis would be able to evidence the forma-
tion of specific dynamics among subsets of participants, despite the apparently
simplicity of the information carried by the observations.

We have considered two versions of the GCN. The first one includes all 137
variables, whereas the second one has only 56 variables, representing people who
attended more than one meeting. Both cases have too many variables to perform
an exhaustive search.

The real situation is complex, with a part of the sociologically significant
groups composed by smaller but very active (and sometimes partially overlap-
ping) subgroups, having very often Tc values higher than the values computed
for larger groups which include them: as a consequence the complete analysis
would require the application of the sieving algorithm, as already mentioned
in Sect. 3. In this work, however, we are focusing on the search of the highest-
ranked CRSs, a step fundamental for the correct detection of the sociologically
significant groups. In this regard, HyReSS is quite effective, (i) finding almost
all the expected highest-ranked CRSs, (ii) identifying unknown groups a poste-
riori certified by the human experts and (iii) highlighting the presence of groups
judged “interesting and requiring further investigations” by the human experts.
HyReSS achieved these results in a very efficient way, with average running time
of 71 s for 56 variables and 258 s for 137 variables.

6 Conclusion

In this paper we have presented HyReSS, an ad-hoc hybrid metaheuristic, tai-
lored to the problem of finding the candidate Relevant Subsets of variables that
describe a dynamical system. In developing our search algorithm, we have com-
bined GAs’ capacity of providing a good tradeoff between convergence speed
and exploration, with local searches which refine and extend results, when cor-
rectly seeded. Using the deterministic crowding algorithm as a basis for the GA
we guarantee that a large number of local maxima are taken into consideration
in the early stages of HyReSS. The subsequent local search stages extend the
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results of the GA (stochastic) search more systematically to those CRSs that
are most likely to have high fitness values, according to a few rules essentially
derived from common sense.

In the benchmarks we took into consideration, HyReSS was very fast on
an absolute scale, thanks to the GPU implementation of the fitness function.
Even more importantly, at least for the smaller-size systems for which the com-
parison was possible, it could provide the same results as an exhaustive search
based on the same parallel code, performing much fewer fitness evaluations and,
consequently, in a significantly shorter time. The results obtained on the larger
problems, on which the speedup with respect to an exhaustive search is virtually
incommensurable and for which a ground truth is therefore not available, were
qualitatively aligned with the expectations of a domain expert who analyzed the
data.

The availability of an efficient algorithm will allow us to extend our research
on the detection of candidate RSs to dynamical systems of much larger sizes than
previously possible. At the same time, it will allow for devising more complex
analyses, by which we aim to detect also hierarchical relationships among RSs.

From an algorithmic viewpoint, we expect to be able to further optimize
HyReSS by fully parallelizing the search, whose GPU implementation is cur-
rently limited to the evaluation of the fitness function, which, as usually happens,
is the most computation-intensive module within the algorithm. The modular
structure of HyReSS will allow us to perform a detailed analysis of the algo-
rithm in order to highlight which stage is most responsible for the algorithm
performance and possibly design some optimized variants accordingly. Finally,
we will also study the dependence of the algorithm on its parameters, to further
improve its effectiveness and, possibly, to devise some self-adapting mechanisms
to automatically fit their values to the system under investigation.
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