
SR-KNN: An Real-time Approach of Processing

k-NN Queries over Moving Objects

Ziqiang Yu, Yuehui Chen, Kun Ma∗

Abstract Central to many location-based service applications is the task of pro-
cessing k-nearest neighbor (k-NN) queries over moving objects. Many existing ap-
proaches adapt different index structures and design various search algorithms to
deal with this problem. In these works, tree-based indexes and grid index are mainly
utilized to maintain a large volume of moving objects and improve the performance
of search algorithms. In fact, tree-based indexes and grid index have their own flaws
for supporting processing k-NN queries over an ocean of moving objects. A tree-
based index (such as R-tree) needs to constantly maintain the relationship between
nodes with objects continuously moving, which usually causes a high maintenance
cost. Grid index is although widely used to support k-NN queries over moving ob-
jects, but the approaches based on grid index almost require an uncertain number
of iterative calculations, which makes the performance of these approaches be not
predictable.
To address this problem, we present a dynamic Strip-Rectangle Index (SRI), which
can reach a good balance of the maintenance cost and the performance of supporting
k-NN queries over moving objects. SRI supplies two different index granularities
that makes it better adapt to handle different data distributions than existing index
structures. Based on SRI, we propose a search algorithm called SR-KNN that can
rapidly calculate a final region space with a filter-and-refine strategy to enhance the
efficiency of process k-NN queries, rather than iteratively enlarging the search space
like the approaches based on grid index. Finally, we conduct experiments to fully
evaluate the performance of our proposal.

Ziqiang Yu
The university of Ji’nan, Shandong province, China, 250022, e-mail: ise yuzq@ujn.edu.cn

Yuehui Chen
The university of Ji’nan, Shandong province, China, 250022, e-mail: yhchen@ujn.edu.cn

Kui Ma
The university of Ji’nan, Shandong province, China, 250022, e-mail: ise mak@ujn.edu.cn

∗ Corresponding author

© Springer International Publishing AG 2017
F. Xhafa et al. (eds.), Advances on P2P, Parallel, Grid, Cloud
and Internet Computing, Lecture Notes on Data Engineering
and Communications Technologies 1, DOI 10.1007/978-3-319-49109-7_1

185

8

1 Introduction

Processing k nearest neighbor (k-NN) queries over moving objects is a fundamen-
tal operation in many location-based service applications. For example, a location-
based social networking service may help a user find k other users that are closest to
him/her. Some taxi-hailing applications such as UBER need monitoring the nearby
taxies and users for a user or a taxi with submitting requests to applications re-
spectively. In location-based advertising, a store may want to broadcast promotion
messages only to the potential customers that are currently closest to the store. Such
needs can be formulated as k-NN queries, where each user, taxi, or customer can be
regarded as a moving object.

Consider a set of Np moving objects in a two dimensional region of interest. An
object o can be represented by a quadruple {ido, t, (ox,oy), (o′x,o′y)}, where ido is
the identifier of the object, and t is the current time; (ox, oy) and (o′x, o′y) represent
the current and previous positions of o respectively. The old location (o′x, o′y) can
help us remove the obsolete positions of moving objects. In this study, we adopt the
snapshot semantics because we make no assumption on the motion of objects, which
conforms to the situation of moving objects in reality. The snapshot semantics refer
to the answer of query q at time t is only valid for the past snapshot of the objects
and q at time t −Δ t, where Δ t is the delay due to query processing. Since this study
aims to processing k-NN queries over moving objects in real-time, we thus need to
reduce the value of Δ t as small as possible. In order to achieve this purpose, we
focus on main-memory-based solutions.

The problem of k-NN query processing over moving objects has attracted con-
siderable attentions in recent years. The existing works about this problem can be
broadly classified into tree-based approaches and grid-based approaches. Tree-based
approaches refer to the works [1] that adopt tree index structures (such as R-tree, B+-
tree) to process the k-NN queries on spatial-temporal data. Here, the R-tree [2] is a
data structure used for indexing multi-dimensional information such as geograph-
ical coordinates, rectangles or polygons and it has been adopted to answer k-NN
queries in some works. The general idea of these works is first searching the nearest
neighbor for a given query, and then determining k nearest neighbors of this query.
R-tree, as a spatial data index, well adapts to index the static spatial data, but it is
not suitable for the maintenance of continuous moving objects. This is because the
nodes of R-tree has to be split or merged frequently with objects constantly moving,
and even the R-tree requires to be organized repeatedly. Therefore, indexing a large
scale of moving objects with the R-tree will cause a large maintenance cost .

Grid index is a typical spatial index that partitions the whole search region (2-D
surface in this study) of interest into equal-sized cells, and indexes objects and/or
queries (in the case of continuous query answering) in each cell respectively. Ex-
tensive existing works propose various search algorithms based on the grid index
to handle k-NN queries over moving objects. Most existing grid-based approaches
to k-NN search [3, 4, 5] iteratively enlarge the search region to identify the k-NNs.
For example, given a new query q, the YPK-CNN algorithm [3] initially locates a
rectangle R0 centered at the cell covering q; it then iteratively enlarges R0 until it

186 Z. Yu et al.

encloses at least k objects. Let p′ be the farthest object to query q in R0. The cir-
cle Cr centered at q with radius ‖ q− p′ ‖ is guaranteed to contain the k-NNs of q,
where ‖ · ‖ is the Euclidean norm. The algorithms then computes the k-NNs using
the objects in the cells intersected with Cr. The other existing grid-based approaches
are based on similar ideas. These approaches have a common defect that they need
to iteratively search k objects and the number of iterations is unpredictable. In some
cases, these approaches probably cause extensive search iterations especially on the
data in non-uniformly distribution, which will degrade their performance.

To address this challenge, we propose a dynamic Strip-Rectangle index called
SRI to support the processing of k-NN queries over moving objects. SRI is a two
level index structure . The first level index of SRI is the strips that partition the whole
region of interest. All strips can cover the whole search region and no overlap exists
between any two different ones. Further, each strip is divided into smaller rectangles
that form the second level index. SRI can dynamically adjust the sizes of strips
and rectangles based on the distribution of moving objects to make each strip and
rectangle guarantee covering at least ξ objects. This characteristic makes SRI better
adapt to support the processing of k-NN queries and handle various distributions of
spatial data. Based on SRI, we design an algorithm called SR-KNN to handle k-NN
queries over moving objects without iterations occurred in grid-based approaches.
For a given query q, SR-KNN adopts a filter-and-refine strategy to rapidly calculate
a small search region that covers k neighbors of q, and then obtain k-NNs from this
search region. Our contributions can be summarized as follows.

• We propose SRI, a strip and rectangle combined index structure that can well
support the processing of k-NN queries over a large scale of moving objects in
different distributions.

• Based on SRI, we design the SR-KNN algorithm that can improve the efficiency
of processing spatial k-NN queries by avoiding the unpredictable iterative calcu-
lations, which solves the major flaw of existing grid-based algorithms.

• Extensive experiments are conducted to sufficiently evaluate the performance of
our proposal.

2 Related work

The problem of k-NN query processing over moving objects has attracted consid-
erable attentions in recent years. In this section, we present a brief overview of the
literature.

The R-tree has been adopted extensively (e.g., [1, 6, 7, 8]) to answer nearest
neighbor queries. Ni et al. [9], Roussopoulos et al. [10], and Chaudhuri et al. [11]
use the TPR-tree to index moving objects and propose filter-and-refine algorithms to
find the k-NNs. Gedik et al. [12] describe a motion-adaptive indexing scheme based
on the R-tree index to decrease the cost of update in processing k-NN queries. Yu et
al. [13] first partition the spatial data and define a reference point in each partition,

SR-KNN: An Real-time Approach of Processing … 187

and then index the distance of each object to the reference point employing the B+-
tree structure to support k-NN queries.

Grid index is widely used to process spatial queries [3, 14, 15, 16, 17, 18, 19].
Zheng et al. propose a grid-partition index for NN search in a wireless broadcast
environment [14]. The Broadcast Grid Index (BGI) method proposed by [15] is
suitable for both snapshot and continuous queries in a wireless broadcast environ-
ment. Šidlauskas et al. [18] propose PGrid, a main-memory index consisting of a
grid index and a hash table to concurrently deal with updates and range queries.
Wang et al. [19] present a dual-index, which utilizes an on-disk R-tree to store the
network connectivities and an in-memory grid structure to maintain moving object
position updates.

3 The SRI structure

In building SRI, the region of interest R in an Euclidean space (normalized to the
[0,1) square) is first partitioned into non-overlapping strips. In this study, we make
the partition be done along the x axe, thus the whole region is divided into multiple
vertical strips. For each strip, SRI further divides it into smaller rectangles without
overlap and this partition is done along the y axe. An example of SRI structure is
shown in Fig. 1.

A strip Si (1 ≤ i ≤ Nv, where Nv is the number of strips) in SRI takes the form of
{idi, lbi, ubi, pi, Λi}, where idi is the unique identifier of Si, lbi and ubi are the lower
and upper boundaries of the strip respectively, pi is the number of moving objects in
this strip, and Λi is a list of identifiers of rectangles contained in this strip. Similarly,
a rectangle R j covered by Si can be represented as {rid j, b j, u j, Γj}, where rid j
is the identifier of the rectangle, bi and ui are the lower and upper boundaries of
R j respectively, and Γj is a list of objects in R j. Since the strips and rectangles are
both non-overlapping and every object must fall in one strip and one rectangle, we
can deduce ∑n

i=1 pi = N p and no object belongs to two different strips, where Np
is the total number of moving objects. For any strip Sk with m rectangles, we can
infer ∑m

j=1 |Γj| = pk, and � ∃ot ∈ Γs ∩Γt (s �= t). Fig. 1 describes attributes of index
elements in SRI.

ub3lb3

x

y
S1 S2 ...

o5

o2

o8
o10

o9
o6

o7

O11

S3 S4

q
o3

R1

R2

3 = { R1,R2 }

o1

o4

u2 R1

R2

R3b2

2 =
{ o2,o3 }

Fig. 1 The structure of SRI

split-line

split

S1 Si Sn S1 Sn

Si2Si1yy

x x

R1

R2

R1

R2

R1

R2

Fig. 2 The split of Si

188 Z. Yu et al.

In SRI, we require every strip to contain at least ξ and at most θ objects, i.e.,
ξ ≤ pi ≤ θ for all strips Si. The strips are split or merged as needed to ensure this
condition is met when object locations are updated. We call ξ and θ the minimum
occupancy and maximum capacity of a strip respectively. Typically ξ << θ . Be
similar with the strip, every rectangle R j is also required to contain at least ξ and at
most β objects (ξ < Γj < β), where ξ and β are the minimum occupancy and max-
imum capacity of a single rectangle. Each rectangle also needs to be spit or merged
with its adjacent rectangle within the same strip to ensure the volume of its moving
objects belongs to [ξ ,β]. In this study, a strip will be divided into multiple rectan-
gles to form the index with a smaller granularity, thus the value of β is specified
smaller than that of θ .

So far, the structure of SRI is more clear. Strips form the first level index and they
are sorted in ascending order according to their boundaries. The rectangles of each
strip construct the second level index and they are also maintained in order based
on their boundaries within every strip. SRI has two level indexes, but it only needs
to store one piece of all moving objects. This is because every strip does not store
the locations of its moving objects but just record their quantity, which not only
reduces the memory and maintenance costs but also is critical for designing k-NN
algorithms. The benefits of SRI will be discussed later.

3.1 Insertion

When an object oi sends the message {ido, t, (ox,oy),(o′x,o′y)} to the server, we need
to insert the new position (ox,oy) of oi and delete its old location (o′x,o′y).

Object oi is inserted into SRI with two steps: (1) determining the strip Si that oi
falls into its boundaries (lbi ≤ ox < ubi) and modifying the value of pi ; (2) searching
the rectangle R j that satisfies b j ≤ oy < u j from strip Si and then inserting oi into
the rectangle R j. The insertion is done by appending its ido into the object list Γj.
Initially, there is only one strip covering the whole region of interest and the strip
itself is a rectangle.

When an object oi is inserted into a rectangle R j in the strip Si, which probably
causes two types of splits: rectangle spit and strip split. After oi being inserted into
rectangle R j, it will be split if the volume of objects in it exceeds the maximum
capacity, i.e., |Γj|> β . A split method that can adapt to the data distribution is to split
R j and generate two new ones that hold approximately the same number of objects.
In this method, we first find an object o such that oy is the median of the y coordinates
of all objects in rectangle R j, which implies that there are approximately |Γi|/2
objects whose y coordinates are less than or equal to oy. This can be accomplished
in O(|Γi|) time using the binning algorithm. Next, we set the line y = oy as the split-
line, according to which R j can be split into two new strips Ri1 and Ri2. Once R j is
split, the attributes of new strips can be determined as follows. The lower boundary
of Ri1 is the same as that of Si, and its upper boundary is the split-line. For Ri2, it
uses the split-line as the lower boundary, and the upper boundary of Ri as its upper
boundary. The id of Ri is inherited by Si1, and a new id is assigned to Ri2.

SR-KNN: An Real-time Approach of Processing … 189

As to strip Si, it will also be split if the number of moving objects covered by
itself is greater than θ as an object o being inserted. The split method about strip is
similar with that about the rectangle and Fig. 2 gives an example of strip split. When
Si is split into Si1 and Si2, the attributes of new strips also can be easily deduced just
like determining the attributes of new rectangles above. Meanwhile, every rectangle
Rk in Si also need to be split into Rk1 and Rk2 by the split-line. Then the objects in
Rk will be assigned into Rk1 and Rk2 based on the split-line. That is, Γk1 ∪Γk2 = Γk
and Γk1 ∩Γk2 = /0. Since Rk1 and Rk2 belong to two different strips, so both of them
can use the identifier and the lower and upper boundaries of Rk.

3.2 Deletion

If object o disappears or moves out of a rectangle, it has to be deleted from the
rectangle that currently holds it. To delete an object o, we need to determine which
rectangle current holds it, which can be done using its previous position (o′x,o′y).
After deleting an object, if the rectangle R j in strip Si has less than ξ objects (i.e.,
R j has an underflow), it will be merged with an adjacent rectangle in Si. Let this
adjacent strip be Rh. R j will be deleted from Strip Si, and the merged strip will inherit
the id of the Rh, and its lower and upper boundaries are set to be the lower and upper
boundaries of R j and Rh, respectively. The object lists Γj and Γh are merged.

When object o moves from strip Si to another strip or disappears, the number
of moving objects in strip Si needs to minus 1, i.e., pi = pi − 1. At this time, if pi
is smaller than the minimum occupancy ξ , then Si also needs to be merged with
the adjacent strip S j with fewer moving objects. Since pi < ξ , Si contains only one
rectangle. In this case, we assign the objects in Si into the corresponding rectangles
in strip S j, and then update the boundaries of S j to make it cover the space of Si.
The boundaries of every rectangle in the new strip S j remain the same.

4 The SR-KNN algorithm

The SR-KNN algorithm follows a filter-and-refine paradigm. For a given k-NN
query q, the algorithm first prunes the search space by identifying candidate strips
that are guaranteed to contain at least k neighbors of q. From candidate strips, it then
identifies candidate rectangles that also covers at least k neighbors of q, which can
further narrow down the search region. Next, it examines the objects contained in
these candidate rectangles and identify the k-th nearest neighbor found so far. Using
the position of this neighbor as a reference point, it calculates the final region that
guarantees covering k-NNs of q and obtain the final result from it. We present the
pseudocode of SR-KNN in Algorithm ??. Now we present its details.

190 Z. Yu et al.

4.1 Calculating candidate strips

For a given query q, SR-KNN can directly identify the set of strips that are guaran-
teed to contain k neighbors of q, which we call the candidate strips.

Step 1: Calculating the number of candidate strips. Assume that the number
of candidate strips is c. The idea is that from each strip we select χ (1 ≤ χ ≤ ξ)
objects that have the shortest Euclidean distances to q, such that χ ∗ c ≥ k, where
χ can be specified by users. This way, we have found at least k neighbors for q.
Of course, these objects may not be the final k-NNs, but they can help us prune the
search space and serve as the starting points for computing the final k-NNs. Hence,
the number of candidate strips c is set to be �k/χ.

Step 2: Identifying the set of candidate strips. In this step, we identify the
strips that are considered to be “closest” to q based on their boundaries. We use
dl

i and du
i to denote the distances from q to the lower and upper boundaries of Si

respectively. For the example shown in Fig. 3, the line li is perpendicular to lb2 of
S2 and the distance from q to lb2 is dl

2. The distance between Si and q is defined to
be dist(Si,q) = max{dl

i ,d
u
i }.

If query q is located in Si, then Si is automatically a candidate strip and inserted
into C V . Next, we decide whether its neighboring strips are candidate strips. Starting
from the immediately adjacent strips, we expand the scope of search, adding to
C V the strip j that has the next least dist(S j,q). This procedure terminates when
|C V | = c or all strips have been processed. Fig. 3 gives an example, in which S3 is
determined to be a candidate strip first. Then by comparing dl

2 with du
4 , we decide

S4 to be the next candidate strip. Next, we find S2 also a candidate strip.

4.2 Calculating candidate rectangles

For a query q (xq, yq), candidate rectangles refer to the rectangles that are “closest”
to q and at least cover k neighbors of q. We set the candidate rectangles to q must
be covered by its candidate strips.

Step 1: Determining the number of candidate rectangles. In this step, we also
suppose χ (1< χ < ξ) objects are chosen from each rectangle, then the number of
candidate rectangles is �k/χ.

Step 2: Identifying the set of candidate rectangles. In SRI, there exists a center
in every rectangle that has equal distance to the lower and upper boundaries. We
adopt the distance between the center of a rectangle to q as the metric to identify the
rectangles that are “closest” to q. Since the centers of all rectangles in a strip have
the same x coordinate, for any two rectangles in the same strip, we can immediately
infer which rectangle is closer to q only based on their y coordinates. Hence, we
can rapidly identify the closest rectangle to q within every strip without computing
distances between their centers and q, which will reduce extensive calculation costs.

To identify candidate rectangles, we use two setsRc and Rt to separately store
candidate rectangles and intermediate results. First, we find the closest rectangle
to q in each candidate strip and put these rectangles into Rt . Next, we choose the

SR-KNN: An Real-time Approach of Processing … 191

closest rectangle R f to q from Rt and add R f into Rc. Third, we put a rectangle Rs
into Rt , where Rs and R f belong to the same strip Si and Rs is closer to q than other
rectangles in Si except for R f . We execute the second and third steps repeatedly until
Rc contains �k/χ rectangles or Rt is empty. Finally, �k/χ candidate rectangles
can be contained by Rc. Fig. 3 shows an instance of identifying candidate rectangles
and blue points are centers of rectangles.

x

y
S1

(3-NN)

S2 S3 S5

lb2 ub4

d2 d4

ljli q

l u

S4
R1

R2

R3

R1

R2 R2

R1

Fig. 3 Identifying candidate
strips and rectangles

x

y
S1

(3-NN)
q

S2 S3 S4

o4

rq
o3

o1

o2

o5
Cq

o6

o7

o8

o9

R1

R2

R3

Fig. 4 Procedure of process-
ing query q

4.3 Determining the final search region

After candidate rectangles being determined, we form the set of supporting objects
ϒ by selecting from each candidate rectangle χ objects that are closest to q. We then
identify the supporting object o ∈ ϒ that is the k-th closest to q. Let the distance
between o and q be rq. The circle with (qx,qy) as the center and rq as the radius is
thus guaranteed to cover k-NNs of q. Next, we identify the set of rectangles F that
intersect with this circle, and search for the final k-NNs within the objects in F .

Fig. 4 shows an example, where the query q is a 3-NN query and χ = 1. We
first identify the candidate strips {S2,S3,S4} as well as the candidate rectangles
{R1,R2,R3}, and then find three closest supporting objects (o3, o2, o4) from candi-
date rectangles. Next, we set the radius rq to be the distance between q and o3 and
the circle Cq is guaranteed to contain the 3-NNs of q. After scanning all objects that
are located within Cq (by examining all rectangles intersecting Cq), we find that the
3-NNs are o1,o2, and o4.

4.3.1 Advantages of SR-KNN

• Powerful pruning strategy: According to SRI index, SR-KNN can quickly nar-
row down the search space that covers the final results of queries by two pruning
steps. It first identifies candidate strips to locate a much smaller search region that
covers k neighbors of the query and further prunes the search region by calculat-
ing candidate rectangles, which significantly enhance the search performance.

192 Z. Yu et al.

• Low costs of calculating candidate rectangles: In one strip, SR-KNN can
rapidly infer which rectangle is closest to q without computing the distances
from the center of each rectangle to q, which effectively reduces expenses of
calculating candidate rectangles and improves the whole efficiency of SR-KNN
algorithm.

• Avoiding multiple iterations: Be different with grid-based algorithms, SR-KNN
utilizes a cascading pruning strategy to narrow down the search space instead of
iteratively enlarging the search space. Regardless of uniform or non-uniform data
distribution, SR-KNN always can rapidly locate a small final search region with
only three steps, which makes it be superior to grid-based algorithms.

5 Experiments

The experiments are conducted on a server with a 2.4GHz Intel processor and 8GB
of RAM. We use the German road network to simulate three different datasets for
our experiments. In these datasets, all objects appear on the roads only. In the first
dataset (UD), the objects follow a uniform distribution. In the second dataset (GD1),
70% of the objects follow the Gaussian distribution, and the other objects are uni-
formly distributed. The third dataset (GD2) also has 70% of the objects following the
Gaussian distribution, but they are more concentrated. In all four datasets, the whole
area is normalized to a unit square, and the objects move along the road network,
with the velocity uniformly distributed in [0, 0.002] unless otherwise specified.

5.1 Performance of index construction and maintenance

0.001

0.01

0.1

1

10

100

20 200 2000 20000

Ti
m

e
 (s

ec
)

Number of objects (in thousands)

=2, =1000

UD
GD1
GD2

Fig. 5 Computation time for
building SRI

0.001

0.01

0.1

1

10

100

20 200 2000 20000

Ti
m

e
 (s

ec
)

Number of objects (in thousands)

=2, =1000 grid-index

VHSI

Fig. 6 Comparison of SRI
and grid-index w.r.t building
time

400

500

600

700

800

900

0.001 0.002 0.003 0.004 0.005

Ti
m

e
(m

s)

Velocity

Np=1M, =250

UD GD1 GD2

Fig. 7 Maintenance cost w.r.t
velocity

Time of building SRI. We first test the time of building SRI from scratch to
index different numbers of objects. Fig. 5 shows the time of building SRI as we
vary the number of objects. In our study, the size of each object is approximately
50B, so we at most handle 1GB of data in this experiment. The time it takes to build
the index increases almost linearly with the increasing number of objects.

SR-KNN: An Real-time Approach of Processing … 193

400
450
500
550
600
650
700
750

150 175 200 225 250N
um

be
r o

f s
tri

p
sp

lit
s

Np=100k, velocity=0.002

UD GD1 GD2

Fig. 8 Number of strip splits
w.r.t. θ

0

5

10

15

20

25

30

20 25 30 35 40N
um

be
r o

f r
ec

ta
ng

le
 sp

lit
s

Np=100k, velocity=0.002, =250

UD GD1 GD2

Fig. 9 Number of rectangle
splits w.r.t. θ

0

10

20

30

40

50

2 4 6 8 10

N
um

be
r o

f s
tri

p
m

er
ge

 o
pe

ra
tio

ns

Np=100k, velocity=0.002

UD GD1 GD2

Fig. 10 Number of strip
merge operations w.r.t. ξ

0

50

100

150

200

2 4 6 8 10N
um

be
r o

f r
ec

ta
ng

le
 m

er
ge

op

er
at

io
ns

Np=100k, velocity=0.002

UD GD1 GD2

Fig. 11 Number of rectangle
merge operations w.r.t. ξ

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16
0.18
0.2

10 20 30 40 50

Ti
m

e
 (s

ec
)

Number of queries (Nq)

Np=20M, k=5, =5, =250

UD
GD1
GD2

Fig. 12 Performance of RS-
KNN w.r.t. number of queries

0
20
40
60
80

100
120
140
160
180
200

100 200 300 400 500

Ti
m

e
 (m

s)

Number of queries (Nq)

Np=20M, k=5, =5, =250, GD1

RS-KNN
G-search

Fig. 13 Comparison of RS-
KNN and G-search based on
GD1

0

50

100

150

200

250

300

100 200 300 400 500

Ti
m

e
 (m

s)

Number of queries (Nq)

Np=20M, k=5, =5, =250, GD2

RS-KNN
G-search

Fig. 14 Comparison of RS-
KNN and G-search based on
GD2

0
1
2
3
4
5
6
7
8
9

10

1 2 3 4 5

A
ve

ra
ge

 ti
m

e
of

 o
ne

 q
ue

ry
 (

m
s)

Np=20M, Nq=100, =10

k=3
k=5
k=10

Fig. 15 Performance of RS-
KNN w.r.t. ξ

0

5

10

15

20

25

3 6 9 12 15

A
ve

ra
ge

 ti
m

e
of

 o
ne

 q
ue

ry
 (m

s)

k

Np=20M, Nq=100, =5, =250

RS-KNN G-search

Fig. 16 Query evaluation
time w.r.t. k

Comparison of building times. We then t test the time of building SRI and
grid-index to index different numbers of objects based on the GD2 dataset. Fig. 6
demonstrates that SRI and grid-index need almost equal building time to handle
the moving objects, which certifies the good performance of SRI with respect to
indexing objects.

Effect of the velocity of objects. Fig. 7 demonstrates the effect of the velocity
of objects on the computation time for maintaining SRI based on three datasets. In
this set of experiments, we first build the SRI for 1M objects, and then 100K object
are chosen to move continuously with varying velocities. As expected, the faster the
objects move, the more split and merge operations happen, leading to an increase in
maintenance time.

Effect of θ on SRI. Fig. 8 shows the effect of the maximum capacity of strip,
θ , on the frequency of strip split. The number of moving objects indexed is 100K.
As can be observed from Fig. 8, the strip split frequency is approximately reversely

194 Z. Yu et al.

proportional to the value of θ ; a greater θ value would result in a reduction in the
number of splits. Of course, θ cannot be overly large, because that will increase the
time for processing queries.

Effect of β on SRI. Fig. 9 demonstrates the effect of the maximum capacity of
rectangle on the frequency of rectangle split. This group of experiments also index
100k moving objects and test the average number of rectangle splits in every strip.
The results show that the rectangle split frequency is also approximately reversely
proportional to the value of θ ; a greater β value would reduce the number of splits.
Similarly, the large value of β will increase the time of processing queries, so β
cannot be set overly large.

Effect of ξ on RSI. Fig. 10 and Fig. 11 show the influence of the minimum
occupancy, ξ , on the frequency of strip and rectangle merge operations. A larger
value of ξ means that underflow will occur more often and thus cause more strip and
rectangle merge operations. Additionally, the number of rectangle merge operations
is greater than that of strip merge operations.

5.2 Performance of query processing

We now perform experiments to evaluate the performance of SR-KNN, and make a
comparison of SR-KNN and G-search algorithms.

Processing time. We feed a batch of queries into our system in one shot, and
measure the time between the first query entering the system and the k-NN results
of all queries having been obtained. As can be observed from Fig. 12, SR-KNN
achieves similar performance for different distributions. This is because every strip
and rectangle in SRI separately contains at most θ and β objects and typically each
query only involves a few strips and rectangles. Therefore, the data distribution only
has a slight impact on the query processing time.

In Fig. 13 and Fig. 14 , we make SR-KNN and G-search algorithms process
the same batch of queries and measure their processing times with varying number
of queries based on the GD1 and GD2 datasets. The results show that SR-KNN
outperforms G-search on both datasets but more significantly on GD2, the reason
is that G-search needs more iterative calculations to process k-NN queries on the
non-uniformly dataset.

Effect of χ on SR-KNN. In SR-KNN, we select χ objects from each candidate
strip to form the set of supporting objects. Fig. 15 shows the influence of χ on the
cost of processing queries. In this set of experiments, we feed 100 queries into the
system and record the average processing time of a query. The results show that χ
has little effect on the processing time when k takes smaller values (3 and 5). But k
increases, the influence becomes more obvious.

Effect of k. Finally, we study the influence of k on the two algorithms. As shown
in Fig. 16, the processing time of SR-KNN almost remains unchanged as k increases,
the reason being that we can adjust the value of χ accordingly to accommodate the
increase in processing time. When k increases, G-search needs more iterations to
compute the results, thus its processing time increases more rapidly than RS-KNN.

SR-KNN: An Real-time Approach of Processing … 195

6 Conclusion

The problem of processing k-NN queries over moving objects is fundamental in
many applications. In this study, we propose SRI, a novel index can better support
the processing of spatial k-NN queries than other indexes. Based on SRI, we design
the SR-KNN algorithm that answers k-NN queries over moving objects without
numerous iterative calculations occurred in grid-based approaches and achieves a
good performance.

References

1. K. L. Cheung and A. W.-C. Fu, “Enhanced nearest neighbour search on the r-tree,” ACM
SIGMOD Record, vol. 27, no. 3, pp. 16–21, 1998.

2. A. Guttman, “R-trees: a dynamic index structure for spatial searching,” in SIGMOD, 1984, pp.
47–57.

3. X. Yu, K. Pu, and N. Koudas, “Monitoring k-nearest neighbor queries over moving objects,”
in ICDE, 2005, pp. 631–642.

4. K. Mouratidis, D. Papadias, and M. Hadjieleftheriou, “Conceptual partitioning: An efficient
method for continuous nearest neighbor monitoring,” in SIGMOD, 2005, pp. 634–645.

5. M. Cheema, “CircularTrip and arctrip: Effective grid access methods for continuous spatial
queries,” in DASFAA, 2007, pp. 863–869.

6. Y. Tao, D. Papadias, and Q. Shen, “Continuous nearest neighbor search,” in VLDB, 2002, pp.
287–298.

7. K. Mouratidis and D. Papadias, “Continuous nearest neighbor queries over sliding windows,”
IEEE Transactions on Knowledge and Data Engineering, vol. 19, no. 6, pp. 789–803, 2007.

8. M. S. H. A.-K. Sultan Alamri, David Taniar, “Tracking moving objects using topographical
indexing,” Concurrency and Computation: Practice and Experience, 27(8): 1951-1965, 2015.

9. K. Raptopoulou, A. Papadopoulos, and Y. Manolopoulos, “Fast nearest-neighbor query pro-
cessing in moving-object databases,” GeoInformatica, vol. 7, no. 2, pp. 113–137, 2003.

10. T. Seidl and H. Kriegel, “Optimal multi-step k-nearest neighbor search,” in SIGMOD, 1998,
pp. 154–165.

11. S. Chaudhuri and L. Gravano, “Evaluating top-k selection queries,” in VLDB, 1999, pp. 399–
410.

12. B. Gedik, K. Wu, P. Yu, and L. Liu, “Processing moving queries over moving objects using
motion-adaptive indexes,” Knowledge and Data Engineering, vol. 18, no. 5, pp. 651–668,
2006.

13. C. Yu, B. Ooi, K. Tan, and H. Jagadish, “Indexing the distance: An efficient method to knn
processing,” in VLDB, 2001, pp. 421–430.

14. B. Zheng, J. Xu, W.-C. Lee, and L. Lee, “Grid-partition index: a hybrid method for nearest-
neighbor queries in wireless location-based services,” The VLDB Journal, vol. 15, no. 1, pp.
21–39, 2006.

15. K. Mouratidis, S. Bakiras, and D. Papadias, “Continuous monitoring of spatial queries in
wireless broadcast environments,” IEEE Transactions on Mobile Computing, vol. 8, no. 10,
pp. 1297–1311, 2009.

16. M. F. Mokbel, X. Xiong, and W. G. Aref, “SINA: scalable incremental processing of continu-
ous queries in spatio-temporal databases,” in SIGMOD, 2004, pp. 623–634.

17. X. Xiong, M. F. Mokbel, and W. G. Aref, “SEA-CNN: Scalable processing of continuous
k-nearest neighbor queries in spatio-temporal databases,” in ICDE, 2005, pp. 643–654.

18. D. Šidlauskas, S. Šaltenis, and C. S. Jensen, “Parallel main-memory indexing for moving-
object query and update workloads,” in SIGMOD, 2012, pp. 37–48.

19. H. Wang and R. Zimmermann, “Snapshot location-based query processing on moving objects
in road networks,” in SIGSPATIAL GIS, 2008, pp. 50:1–50:4.

196 Z. Yu et al.

	18SR-KNN: An Real-time Approach of Processingk-NN Queries over Moving Objects
	Abstract
	1 Introduction
	2 Related work
	3 The SRI structure
	3.1 Insertion
	3.2 Deletion

	4 The SR-KNN algorithm
	4.1 Calculating candidate strips
	4.2 Calculating candidate rectangles
	4.3 Determining the final search region
	4.3.1 Advantages of SR-KNN

	5 Experiments
	5.1 Performance of index construction and maintenance
	5.2 Performance of query processing

	6 Conclusion
	References

