A new approach to building a disguised server
using the honey port against general scanning
attacks

Hyun Soo Park, Young Bae Jeon, Ji Won Yoon

Abstract The port scan is a well-known technique which malicious people often
use before attacking a server. The attackers obtain the fingerprint of the target server
by scanning ports and then make an attack scenario. Several approaches including
the ‘port knocking’ and ‘Single Packet Authorization’ (SPA) have been developed
to defense port scanning attack and allow only authenticated users to access ports.
However, the approaches have a disadvantage that the attacker can obtain the infor-
mation about the ports by applying inference techniques given observed patterns.
If a router, connecting the server to the outside, is cracked by the attacker, he or
she could infer particular ports which authenticated users consistently use to com-
municate with the server. In this paper, we propose a new defense method, Hon-
eyport, which can prevent the attackers from obtaining the information about ports
and make them demotivated by disguising the server as peripherals. Furthermore,
by adopting packet encryption as in IPSec, the attacker cannot obtain the critical
information via packet sniffing in our proposed model.

1 Introduction

Port scanning is one of the major and crucial functions to identify and connect
devices for adequate communication in a network. However, this function can be
abused by the malicious people, unlike the original purpose. Attackers obtain the
fingerprint of a victim server by scanning the server’s ports to find the vulnerability
and weakness of the victim server. With the scanned fingerprint, the attacker can
just check which ports are opened and which services are provided. Afterward, the
attacker explores the adequate attack scenario to give a damage the target server or
to compromise the victim server.

Hyun Soo Park, Young Bae Jeon, and Ji Won Yoon
Center for Information Security Technologies(CIST), Korea University, Republic of Korea,
Corresponding author is J. W. Yoon e-mail: jiwon_yoon@korea.ac.kr

© Springer International Publishing AG 2017 453
L. Barolli et al. (eds.), Advances on Broad-Band Wireless Computing,

Communication and Applications, Lecture Notes on Data Engineering

and Communications Technologies 2, DOI 10.1007/978-3-319-49106-6_44

454 H.S. Park et al.

That is, since the attacker can find the proper attack types using the port scan, we
need to develop a protection system which removes or avoids such unwanted port
scanning attack. Several defense approaches including the port knocking[3] and the
Single Packet Authorization(SPA)[4, 5] have been developed to hide the informa-
tion about the server’s ports. They are designed to hide the using port about when
the server transmits and receives packets over the communication by the authen-
tication. IPSec is an alternative approach which encrypts and encapsulates packets
given an IPSec protocol to communicate. Although packets are sniffed from outside,
the server can prevent the packet’s information from being exposed by the IPSec be-
cause it is encrypted. Also, a new scheme called honeypot has been introduced to
hide the server’s identity. This technique installs a trap server and leads the hacker
to attack the trap server, not a real server. The trap server collects and analyzes
attackers’ logs.

However, there are few techniques which fundamentally prevent hackers’ attack
trials. While ports are mainly focused in port knocking and the SPA, IPSec considers
not the port but data itself using encryption. And the honeypot’s point of view is the
defense about the only cheating attacker. In this paper, we propose a new technique
to integrate all of these conventional approaches and lead the attackers not to intrude
the server fundamentally.

This paper is organized as follows. In Section 2, we describe background knowl-
edge about the port scanning, the port knocking, and the SPA. We propose the algo-
rithm about honey port in Section 3 and show the results of the experiment related
to honeyport in Section 4. Finally, we evaluate our approach and conclude with an
overall summary of our approach.

2 Background

2.1 Port Scanning

It is known that the port scan is used to scan a target system in order for exploring
its potentially exploitable service. There are mainly two different ways in the port
scanning: User Datagram Protocol (UDP) scanning[1, 2] and Transmission Control
Protocol (TCP) scanning.

Fig. 1-(a) shows how UDP scanning works. In UDP protocal, "ICMP Port Un-
reachable” message is generated by the server to inform the client that the destina-
tion is unreachable if the destination port is said to be closed. Otherwise, if the client
does not recieve any message from the server after sending the the UDP packet with
a destination port, we may infer that the destination port of the server is opened.

A new approach to building a disguised server using the honey port ... 455

However, while the client certaintly knows the closeness of the port but cannot ex-
actly know the openness of the server’s port since the response packet has been lost
in UDP protocol.

UDP packet+Port UDP packet+Port
ju | jm gy | ju |
Client | icMP Port Server Client Server
Unreachable
Port is closed Port is open
(a) UDP Scanning
SYN packet+Port SYN packet+Port
Client erver Client erver
RST+ACK Packet . RST Packet
Port is open Port is closed
(b) TCP Scanning

Fig. 1: UDP Scanning and TCP Scanning

TCP is the other port scanning protocol to find the opened ports [1, 2]. Figure 1-
(b) shows how TCP Scanning works. When sending a SYN packet to a destination
port over TCP Communication, the client receives a SYN + ACK packet if the port
is opened. Otherwise, the client receives a RST + ACK packet. Thus, the attacker
obtains information about which ports are opened.

2.2 Port Knocking

To date, several approaches have been developed to prevent an attacker from the
unwanted port-scan.

One of the most well-known approaches is the port knocking[3] which opens
ports on a firewall by generating a connection attempt on a set of pre-specified closed
ports. When a sequence of connection attempt is correctly received, a server autho-
rizes a user as shown in Fig. 2-(a). Attackers can approach to the server through the

456 H.S. Park et al.

firewall but they will fail to connect the server since they do not know the correct
sequence of the connection attempt. However, there is vulnerability in this protocol.
If the router which connects the server to the outside is compromised by an attacker,
the ports are exposed to the attacker.

u [}
[| S]
Iz, B SsH
g u 4/2 B Connection
. = N — |
packe

Server B Client Server l PA P Client
.
[|
[|

(a) Port Knocking (b) Single Packet Authorization

Fig. 2: Two approaches to hide opened ports against port scanning attacks: (a) ‘Port
Knocking’ and (b) ‘Single Packet Authorization’ (SPA)

2.3 Single Packet Authorization

Single Packet Authorization(SPA)[4, 5] is a similar way to port knocking in that it
requires only a single ‘knock’ for the communication. SPA combines packet filter
via drop and packet sniffer. SPA uses packet’s payload to prove the ownership of
the information, not the packet’s header in Fig. 2-(b). Clients send only one packet
about own identity to the SPA server. This is possible because MTU’s size is hun-
dreds bytes unit in the common network. However, this approach has the same vul-
nerability with the port knocking.

3 Proposal Algorithm

The background section shows two main approaches to preventing port scan from
the attacker: ‘port knocking’ and ‘single packet authorization” (SPA). However, their
effectiveness is rather limited, and the attacker can bypass the approaches using their
vulnerabilities. For instance, when ssh is not used in the approaches, the attacker

A new approach to building a disguised server using the honey port ... 457

can infer which ports are used because they consistently use the identical ports. In
addition, if the routers linking to the victim server are compromised by the hackers,
the attacker can monitor the pattern and sequence of the ‘knock’s.

From this point of view, we propose an algorithm which fixes these vulnerabil-
ities in the conventional approaches. Therefore, in order to remove the vulnerabil-
ities, we propose a scheme to disguise the victim system using fake ports. In this
paper, we are disguising the target server as a trivial terminal which looks ignorable
while an actual dummy terminal is also disguised as a significant server by honey-
port. In the proposed method, the server falsifies the response which is requested
from the port scanning by the attacker and sends it to the attacker. In Figure 3, we
can see that the attacker confuses the important server with the printer.

. . Nat important server
Not important Server Not important Server Not important Server wimp:meypot

Port scanning
= = e Etemey
5 ImporlmtSorver e Ml";‘ﬂsu::;-;;:‘wr L_
g_ /4“’"“"9 " \g ~Port scanning i,!!,
23 z) — = »

This is |mpor|ant This is a printer
=" Y = = W

Not important Server Not impnnx; Server Not Importer; Server Not Import;rl Server
(a) Without the honeyport and the honeypot (b) With the honeyport and the honeypot

Fig. 3: Administrators can hide their property by opening fake ports and we call this
by honeyport. The important server can be disguised as an insignificant sever using
honeyport. we can see that the attacker regards the important server as the printer in
this figure.

Sniff Sniff

W Listenerj tener}<i o
Send Sender

by

)
Program or Packet A Program or
service Disguised service
server server
Encapsulate and Encapsulate and
Server Side Send Packet Send Packet Client Side

Fig. 4: Flowchart about the disguised server: The server and client communicate
each other by the disguised server through Listener and Sender.

458 H.S. Park et al.

For this, a system administrator can make the disguised server as plotted in Fig-
ure 4. The disguised server’s function consists of four parts : (a) listener, (b) sender,
(c) spoofer and (d) sniffing packets.

1. Listener catches packets from outside to inside and from inside to outside;
2. Sender forwards packets from outside to inside and sends packets from inside to

outside;
3. Spoofer provides fake information to attacker during port scanning. However, be-

cause used ports are closed and hidden by the firewall, programs actually cannot
catch packets from outside; and

4. Sniffing packets, which is operated in the disguised server, collects all packets
blocked by the firewall blocks because the port is closed. The disguised server
brings all packets filtered by the firewall and delivers them to the listener.

3.1 Listener

Listener catches two kinds of packets, which move from inside to outside and from
outside to inside.

3.1.1 Packets going from inside to outside

Listener sniffs packets going from inside to outside and sends the packets to Sender
after the series of following processes:

1. Listener firstly attaches a source IP address, a source port, a destination port, and
a timestamp to packet’s payload.

2. Listener encrypts it using Advanced Encryption Standard (AES) with a shared
key.

3. Listener attaches a hash value returned by a hash function, HMAC, which has a
parameter of packet’s encrypted payload.

4. Listener attaches ”Sniffer” to the payload to recognize when packets arrive.

After these processes, the structure of a packet’s payload is shown in Figure 5.
We can see the tag written as ”’Sniffer” in the payload’s head and MAC value behind
it. Lastly, we can find out the encrypted information of IP address, Port, Timestamp
and Original payload in the tail of the packet’s payload. Listener sends these packets
to outside by Sender.

The reason for putting additional information into the existing payload is to pre-
pare defense against various attacks. By adding IP address, port, and timestamp into
the payload, we prevent replay attack and ARP Spoofing. Besides, by adding MAC
into the payload, we prevent that the attacker falsifies packets.

A new approach to building a disguised server using the honey port ... 459

Tag — Sniffer
MAC Value
;é AES Encryptionq-—shared Key

Fig. 5: Payload encapsulation of packet

3.1.2 Packets going from outside to inside

Packets going from outside to inside is processed with the inverse order of processes
for packets going from inside to outside. This process is called decapsulation. Be-
cause the port which should be used is closed, packets are passed only through the
disguised server. In the disguised server, there is much overhead to check every
packet. Therefore, we sniff only packets which are labeled as ”Sniffer” in front of
packet’s payload. This has the following steps:

1. Listener detaches ”Sniffer” in packet’s payload.

2. Listener compares MAC in packet’s payload and the value returned by a hash
function, HMAC, which has a parameter of the ciphertext in payload.

3. Listener decrypts the ciphertext in payload and compare source IP address and
own IP address in decrypted text.

4. Listener verifies timestamp.

5. Listener removes the additional information in the payload except for original
payload.

After these processes, the packets are forwarded to inside. Services or programs
which have received it from the disguised server can operate without changing the
existing protocol since packet recover by decapsulation. The details of the Listener
is demonstrated in Algorithm 1.

Firstly, the first if statement means that if destination IP address and server IP
address are equal, and payload includes “Sniffer”, the packets are entered to inside
from outside. After making sure the ciphertext forgery by comparing MAC, we de-
crypt the payload’s ciphertext with a shared key. In this process, if the ciphertext

460 H.S. Park et al.

Algorithm 1 Pseudocode for Listener

1: procedure LISTENER(pkt)
2 if pkt[IP].dst = my_ip and pkt[Raw].load include " Sniffer” then
3 if pkt[Raw].load. MAC = HMAC (pkt[Raw].load.data) then
4: Try :
5: PlainText < AES Decrypt(pkt[Raw].load.data, key)
6: Except :
7 Print "Wrong key”
8: return false
9: if PlainText.ip = pkt[IP].src and PlainText.timestamp is validate then
10: Forward_pkt < pkt
11: Forward_pkt[Raw].load < PlainText.payload
12: Forward_pkt[Raw].dport < PlainText.dport
13: Forward_pkt[Raw].sport < PlainText.sport
14: Calculate Checksum of Forward_pkt
15: Sender(Forward_pkt)
16: else if pkt[IP].src = my_ip then
17: pkt[Raw].load < pkt[Raw].load|my_ip|pkt[TCP].dport|pkt[TCP].sport|timestamp
18: CipherText < AES _encrypt(pkt[Raw].load, key)
19: pkt[Raw].load < Snif fer’| HMAC(CipherText, key)|CipherText
20: Sender(pkt)

is decrypted with wrong key, print "Wrong key”. After decryption, we verify the
real sender by comparing IP addresses and validate the timestamp. If every pro-
cess is verified, the payload is decapsulated to original payload and port is changed
correctly. The packet is sent by Sender to inside after recalculating the checksum.
When the packet’s source IP address and server IP address are equal, the packets are
going to outside from inside. Therefore, we encapsulate packet’s payload and attach
ciphertext and MAC, and send the packet to outside by Sender.

3.2 Sender

Sender takes packets from Listener and send them to outside or inside. Follow-
ing subsections represent how to process the outgoing or incoming the packets in
Sender.

3.2.1 Packets going from inside to outside

After the series of processes of a packet from Listener, Sender sends the packet
to outside with a random port. Besides, while destination IP address is fixed, the
destination port and the source port are set randomly. Through this process, even if
the packet has been sniffed from midway, the attacker cannot infer the source port
and destination port.

A new approach to building a disguised server using the honey port ... 461
3.2.2 Packets going from outside to inside

Sender does not have to process the packet from outside to inside. It is because
Listener changes the port of the packet in payload to original port. Furthermore,
although the packet’s source IP address is same as a public IP address, the packet is
not blocked by the firewall because they are sent from an internal program, disguised
server. Moreover, the service and program can use original protocol since IP address
has not been changed and payload is original. For these reasons, we can simply send
the packet which is sent from Listener to Sender.

We can see the pseudocode for Sender in Algorithm 2. As the almost every task
has been performed in Listener, Sender simply changes the packet’s port to a ran-
dom port. If the destination IP address is same as the server IP, Sender sends it
to loopback or internal network from inside of the firewall as Listener has already
handled the whole work. In the other case, if the source IP address is same as the
server IP address then the packet is going from inside to outside. As the packet will
be delivered to outside, we should change the ports to random ports to conceal the
information about the port.

Algorithm 2 Pseudocode for Sender

: procedure SENDER(pkt)

if pkt[IP].dst = my_ip then
Send(pkt)

if pkt[IP].src = my_ip then
pkt[TCP)].dport + Random(0,65535)
pkt[TCP).sport < Random(0,65535)
Send(pkt)

A A R ol h

Sniff

Ligtener

Sgpoofer

Disguised serve
515 Port{Printer) ACK Packet

Fig. 6: Port Scanning by an attacker in our approach: If the attacker sends Nmap
command to the server for obtaining the information of the server, the server re-
sponds to the attacker with ACK packet which makes the attacker regard this as the
printer by Spoofer.

462 H.S. Park et al.

3.3 Spoofer

Spoofer is a fundamental module of this proposal. If the attackers perform the port
scanning to the server and discover that all ports are closed, they will think that the
server uses a security program, and then make the scenario to crack the security
program. However, as we can see in Fig 6., if the attacker performs port scanning
through Spoofer, we response with ACK packet for SYN request in 515 port which
is usually used in printer. Through this way, the attacker could be led to confuse this
server with the printer. As a result, the attacker do not feel the need to attack the
scanned sever. In this paper, we will call the port, which response with the falsified
information such as 515 port, as the honey port.

We can see the pseudo-code for Spoofer in Algorithm 3. The general way to find
the open ports in port scanning is to make the TCP 3-way handshake. By using this
fact, Spoofer performs the 3-way handshake to delude the attacker into believing
that the port is open when the attacker probes whether 515 port is opened or closed
by using command such as Nmap. By this method, we make the attacker assume that
the server is the printer. To do this, if the packet is received through 515 port, the
disguised server creates a new packet, and then set a property of the packet. First,
we set ACK value to SEQ value plus one. Second, we set the flag to SYN/ACK.

Algorithm 3 Pseudo-code for Spoofer

1: procedure SPOOFER(pkt)

2 if pkt[TCP].dport = 515 then

3 ACK _pkt < pkt

4: Swap(ACK _pkt[TCP).sport,ACK _pkt|TCP)].dport)
3 Swap(ACK _pkt[IP].src, ACK _pkt[IP].dst)

6: ACK _pkt[TCP).ack < pkt[TCP].seq+ 1

7 ACK _pkt[TCP]. flags < SYN/ACK

8 Calculate Checksum of ACK_pkt

9 Send(ACK _pkt)

Lastly, we recalculate the checksum and send it to the opponent who performed
port scanning with the port used the opponent.

We proceed the experiment with Server(S), Authenticated Client(AC), Attacker(A)
to build and test our proposed algorithm. We first implement the disguised server,
and execute the web server in 80 port with Python, Simple HTTPServer in Server.
For convenience sake, we will call S’s IP address to 1.2.3.4. In a normal condition,

A new approach to building a disguised server using the honey port ...

4 Result

Table 1: Procedure of an experiment

Server> ./Disguised_server
Server> python -m SimpleHTTPServer 80

Authenticated Client>./Disguised_server
Authenticated Client>curl 1.2.3.4
<html>

<body>

Disguised Server Test

</body>

</html>

Attacker>curl 1.2.3.4

curl: (7) Failed to connect to 1.2.3.4 connection refused
Attacker>nmap 1.2.3.4 -Pn

Starting Nmap 7.01 (https://nmap.org) at

Nmap scan report for

Host is up (0.0062s latency).

PORT STATE SERVICE

515/tcp open printer

463

when we use Nmap command to the server which does not have the firewall and the
disguised server, the result shows that 80 port is open. Then, AC also executes the
disguised server and use the ‘curl’ command to access the web server in S. Since A

does not have any right key for the disguised server, A executes the disguised server
with the wrong key or execute the ‘curl’ command without the disguised server.

Nonetheless, A uses Nmap command to scan ports and find out the fingerprint. If S,
AC and A perform each command, the result is like Table 1.

Table 2: Nmap result of the actual printer

$>nmap 2.3.4.5 -Pn

Starting Nmap 7.01 (https://nmap.org) at
Nmap scan report for

Host is up (0.0062s latency).
PORT,STATE SERVICE

515/tcp open printer

631/tcp open ipp

9100/tcp open jetdirect

As we can see from the result, AC uses the right key to the disguised server and
accesses to the web page without any problem, while A cannot. And also, even if
A performs Nmap for port scanning to S, the result shows that only the SYN/ACK
packet is received from 515 port which is usually used in the printer. Moreover, we

464 H.S. Park et al.

can see that the port scan result is similar to the results which is obtained when
the actual printer is scanned as shown in Table 2. For convenience sake, we set the
printer IP address to 2.3.4.5. In order to show not only 515 port but also other ports
such as 9100 port, we just need to modify the source code of Spoofer a little.

Table 3: Calculation of the packet size

Case Calculation Bytes |Note
Sniffer Tag 1 byte * 7 7 bytes |7 letters ”Sniffer”

. . Using HMAC 160 bits.
MAC (160bits/4bits) bytes 40 bytes Reprisent one letter instead of hexadecimal
Using AES 256 bits.
Dividng by 6 because of encoding Base64
Split Character|1 byte * 2 2 bytes |Split letters for Sniffer, MAC, CipherText
Sum 93 bytes

CipherText [256bits/6] + 1 byte |44 bytes

Through this, Attacker cannot recognize the real web server so the attacker is
highly likely to change the target. However, the proposed method in this paper es-
sentially has overhead in encryption and decryption. In this experiment, while an
average time is 0.017 seconds in the case without the disguised server, an average
time is 0.0690 seconds in the case with the disguised server. The other matter is
packet size. The packet which passed the channel of the disguised server contains
”Sniffer”, MAC, encrypted values and split characters so that the size is bigger than
the origin. The amount of increased size is proportional to payload size, and the en-
capsulated packet is 93 bytes bigger than the general one without the payload. The
reason why 93Bytes has been increased is in Table 3.

5 Conclusion

In this paper, we propsed a new approach to disgusing hosts using honyport and
encryption against port-scanning attacks. In this proposed approach, the server uses
the fake ports against the unwanted port scan attack. The attacker who scanned ports
port scanning recognizes the device as a printer using honeyport. Furthermore, the
packet encryption is also embeded in the approach. Therefore, the user who does
not have the right key cannot get any information of the packet and is not permitted
to access.

There are issues which have to be improved in this paper. Not only simply send-
ing ACK packets of the printer’s port, but also the specification of the printer is
required so that the attacker can be perfectly confused of the target device with a

A new approach to building a disguised server using the honey port ... 465

required so that the attacker can be perfectly confused of the target device with a
printer. Also, we should confirm that program can protect the packet, and any of
information is not leaked by the program. If the router is cracked by the attacker,
in theory, our proposed algorithm is secure. Nevertheless, we should simulate that
our proposed algorithm is secure in the condition where the router has been com-
promized.

References

1. De Vivo, Marco, et al. ”A review of port scanning techniques.” ACM SIGCOMM Computer
Communication Review 29.2 (1999): 41-48.

2. Lyon, Gordon Fyodor. Nmap network scanning: The official Nmap project guide to network
discovery and security scanning. Insecure, 2009.

3. Ali, Fakariah Hani Mohd, Rozita Yunos, and Mohd Azuan Mohamad Alias. ’Simple port
knocking method: Against TCP replay attack and port scanning.”Cyber Security, Cyber War-
fare and Digital Forensic (CyberSec), 2012 International Conference on. IEEE, 2012.

4. Rash, Michael. ”Single packet authorization with fwknop.” login: The USENIX Magazine
31.1 (2006): 63-69.

5. Michael Rash (March, 2014) Single Packet Authorization with Fwknop Cipherdyn. Retrieved
from http://www.cipherdyne.org/fwknop/docs/SPA.html

6. Doraswamy, Naganand, and Dan Harkins. IPSec: the new security standard for the Internet,
intranets, and virtual private networks. Prentice Hall Professional, 2003.

7. Davis, Carlton R. IPSec: Securing VPNs. McGraw-Hill Professional, 2001. Ferguson, Niels,
and Bruce Schneier. ”A cryptographic evaluation of IPsec.”Counterpane Internet Security, Inc
3031 (2000).

8. Provos, Niels. ”A Virtual Honeypot Framework.” USENIX Security Symposium. Vol. 173.
2004.

9. Krawetz, Neal. ”Anti-honeypot technology.” Security & Privacy, IEEE 2.1 (2004): 76-79.

	44
A new approach to building a disguised server using the honey port against general scanning attacks
	Abstract
	1 Introduction
	2 Background
	2.1 Port Scanning
	2.2 Port Knocking
	2.3 Single Packet Authorization

	3 Proposal Algorithm
	3.1 Listener
	3.1.1 Packets going from inside to outside
	3.1.2 Packets going from outside to inside

	3.2 Sender
	3.2.1 Packets going from inside to outside
	3.2.2 Packets going from outside to inside

	3.3 Spoofer

	4 Result
	5 Conclusion
	References

