
A program behavior recognition algorithm based on assembly

instruction sequence similarity

Baojiang Cui1, Chong Wang2 , GuoWei Dong3, JinXin Ma4
1 School of Computer Science, Beijing University of Posts and Telecommunications,

National Engineering Laboratory for Mobile Network Security, China

cui_bjiang@163.com

2 School of Computer Science, Beijing University of Posts and Telecommunications,

National Engineering Laboratory for Mobile Network Security, China

wangchong756@126.com

3 China Information Technology Security Evaluation Center, Beijing 100085,China

dgw2008@163.com

4 China Information Technology Security Evaluation Center, Beijing 100085,China

majinxin2003@126.com

Abstract. The analysis on assembly instruction sequence plays a vital role in the field of

measuring software similarity, malware recognition and software analysis, etc. This paper

summarizes the features of assembly instructions, builds a six-group model and puts forward an

algorithm of calculating similarity of assembly instructions. On that base a set of methods of

calculating similarity of assembly instruction sequence are summarized. The preliminary

experimental results show that it has high efficiency and good effect.

1 Introduction

In recent years, malicious software has a increasing spread, a dizzying variety and fast pace of
change, which produce a great deal of trouble and loss for users. A report[1] in Business Software
Alliance recently shows that 430 million new pieces of malware were discovered in 2015,up 36 percent
from 2014 and organizations experiences some form of malware attack every seven minutes. Thus it
can be seen, how to identify the behavior of the program has become an important research field of
information security and plays a significant role in the program similarity and malware analysis field.

The traditional program identification technology can be divided into static recognition[2,3] and

dynamic recognition[4,5]. Static recognition means using a disassembler to turn the executable
program code into assembly language and discover certain acts by matching the sequence of bytes and
extracting signatures and constant feature of the program algorithm. Static recognition has an

13© Springer International Publishing AG 2017
L. Barolli et al. (eds.), Advances on Broad-Band Wireless Computing,
Communication and Applications, Lecture Notes on Data Engineering
and Communications Technologies 2, DOI 10.1007/978-3-319-49106-6_2

advantage of low overheads, but it can�t recognize the use of multi-state, deformation, encryption,
confusion and other means of malicious programs.

Dynamic recognition is in an isolated emulation environment to run suspicious files, scanning

system calls and analyzing instruction steam and data available. Thereby it can substantially eliminate
the effects of Packers and code obfuscation. The drawback is the high overhead, low efficiency and
low accuracy.

This paper presents a program behavior recognition algorithm based on assembly instruction

sequence similarity. In this work we record the assembly instruction steam, extract and analysis the
information of instructions and generalise the model of assembly instruction sextuple. Based on this
model, we design a matching algorithm for the assembly instruction steam sequence. Ultimately, we
complete the induction which is from the assembly instructions to the abstract logic behavior of
program from bottom to top, using dynamic program behavior feature extraction technology, to achieve
the purpose of identifying the unknown program.

2 Structure of assembly instruction

Typically, the general format of assembly instructions are:
[label field:] opcode field [source operand, destination operand] [; comment]

Among them, the square brackets [] means that contents are optional, depending on the
circumstances.
(1) Label field: It is located at the beginning of the statement and represents the address of this

statement. Numeral itself consists of one to eight letters and numbers, representing the command
position in memory.

(2) Opcode field: It represents the function of the instruction and indicates that the operation to be
executed by a computer.

(3) Operand: Operand is the assembly instructions operating data or address that data is located. This
part can be divided into operand itself, the address of operand or the information related to the
operands.

(4) Comments: Comments begin with semicolon (;). It illustrates the program features to enhance
readability.

3 Abstract coding of assembly instructions

Compared to static assembly instructions, the system function call sequences and the like, dynamic
assembly instructions flow covers the entire information of the program behavior during the execution.
It is an ideal object of analysis which we research to identify the program behavior. Through the above
analysis shows that the structure of the assembly instructions, simple assembly instructions structures
do not have abstraction. The semantic information that assembly instructions implied can not be
identified and calculated by programs. Therefore, in order to extract the assembly instructions
operational semantics, we design a abstract code to describe assembly instructions and name the model
of assembly instruction sextuple In.

14 B. Cui et al.

 (3-1)
This model fully considers the abstract feature information between different instructions. After

extracting the semantic component feature of each assembly instruction, we quantify each element in
the model of assembly instruction sextuple, using quantitative value to express the information in each
part.

1) operation code
 includes the operation code itself and their type. First, the operation code can be divided into

six kinds according to their semantics, including data transfer instructions(MOV, LEA), arithmetic
instructions(ADD, SUB), bit operation instructions(AND, OR), string operation instructions (STOS,
CMPS), jump control instructions(JA, CALL), advanced control instructions(CLC, BOUND). Each
category can be divided into subcategories in accordance with the address of the operand and the

specific operating behaviors in the table below.

Category Subcategory
Data transfer General data transfer operation Stack data transfer operation Data Exchange

operation
Arithmetic Add and sub Multiplication and division Extended operations

Bit operation General bit operation Bit test operation Bit scanning operation Shift operation
String operation String transfer operation String store operation String compare operation

Jump control Function call Unconditional jump Conditional jump Loop control

Table 1 Classification of operation code

In quantifying the operation code, if two operation codes are totally same, it will return 1 in
operation coding function. If two operation codes belong in the same category, which means there are
similar places in meaning , it will return 0.5 in operation coding function. If they are not in the same
category, it will return 0.1.

2) operand coding
 contains the number of operands of the instruction and three characteristics of the operand:

 Type Operand is a field of assembly instructions. There are three types of operand can be put in
this field, which are immediate, memory and register. In addition, memory space is divided into
stack and non-stack space.

 Importance: If memory or register as an independent operand, will be marked as "important"; on
the contrary, if it is as an integral part of the operand address, were marked as "not important."
This similarity will be quantized in subsequent alignments.

 Tags: Tags here represent some information related to operands, recording associated memory or
register. For example, EAX is a 32-bit general-purpose registers, EAX will be marked as 32, and
joined the AX, AH, AL in the label. In quantifying operands, first we check each read-write mode
of operands are same or not. �Important� will be marked if two operands are totally same and the
returned value will be 0.2. If they are not same, the returned value will be 0.1.Next we check their
storage type, If they are same, the result will increase by 0.1, otherwise it does not affect the result.

3) Flag register coding
Flag registers are called the program status word. We can know your current state of the CPU by

them. For example, OF represents the overflow flag, it is used to check the result from addition or

A program behavior recognition algorithm based on assembly instruction sequence similarity 15

substraction operation is overflowed or not. is a nine-tuple structure which describes the flag
register set. It is written . It corresponds to nine flag registers,
describing the impact operation code makes. If the operation code affected one register, the returned
value increases by 1/9.

4) Read and write operations coding
 is a triad which describes read-write mode in the assembly instruction,

representing the operand of �read�, �write� and �take�. For example, the assembly instruction MOV
EBX DWORD PTR [EAX+0X4]. There are four operands in it. The read-write mode of the first one
EAX is . The read-write mode of the second one 0x4 is . Then two operands comprise the third
operand DWORD PTR [EAX+0X4], and its read-write mode is . The read-write mode of the last one
EBX is .

5) Depth of nesting function coding
 represents the function which the assembly instruction belongs to is invoked in layer.

Even for the same instructions, the meanings of different nested depths are very different. Such as
PUSH SP, the value in SP in functions of different nested depths differs greatly.

6) Timestamp coding
 indicates the exact point of execution. When , it means that it is the 10th assembly

instruction when the program executes.

4 Similarity measurement algorithm of assembly instructions
After quantifying each element in the sextuple model, we can deduce the calculating formula that

describes the smilarity between two assembly instructions.
 (4-1)

Among them, represents the semantic similarity of instruction, referring to the similarity of
. represents the behavior similarity of instruction, referring to the similarity

of . represents the structural similarity of instruction, referring to the similarity
of . represents the weights to . Since plays
an important role in the sextuple, itself is a multiplication factor. These variables need to fulfill
the below conditions:

 (4-2)
The computational method above, we take into full account the semantic information, the behavior

information and the structural information. It can be more accurate and comprehensive to display the
similar situation between two instructions.

5 Similarity measurement algorithm of assembly instruction sequence
After having calculated the similarity between two assembly instructions , we start to calculate the

similarity betweeen two assembly instruction sequences. Here we adopt the idea of the longest
common sequence(LCS) problem which is a dynamic programming.

 represents a assembly instruction sequence that consists of assembly instructions, and
it is numbered from 1. So the similarity between two assembly instruction sequences
is defined below:

 (5-1)

16 B. Cui et al.

 (5-2)

, (5-3)

Pseudo-code as follows:
Input Assembly instruction sequence InS1

Assembly instruction sequence InS2
Output: The similarity of this two sequences
function Sim(InS1,InS2)
 for i = 1 to end do
 for j = 1 to end do
 t=max(SimInS[i-1][j],SimInS[i][j-1])
 SimInS[i][j]=max(t,SimIns[i-1][j-1]+SimIn[i][j])
 end for
 end for
 return SimIns[n1][n2]
 end function

 represents the global similarity of two assembly instruction sequence and it has not
been normalized. To normalize this result, we define as the partial similarity of
two assembly instruction sequence ,

.We get the following equation:
 (5-4)

So the normalized similarity of two assembly instruction sequence are as follows:
 (5-5)

 (5-6)

 indicates the length of the instruction sequence interval. The assembler instruction
sequence similarity normalized result can be get by the partial similarity
divide the interval length.

According to the above transfer equation,we can draw a sketch map describing the algorithm.
Each grid represents the similarity between two assembly instructions. The arrows represent the

value of the source in the position. Choosing dark boxes indicate the path traversed when calculating
ParSimInS (i1, i2, j1, j3).

0

0

0

0

0

0.5

0.6

0.6

0

0.5

1.2

1.2

0

0.8

1.

2

1.9

Figure 5-1 The algorithm sketch map

A program behavior recognition algorithm based on assembly instruction sequence similarity 17

So we can get the result from the figure above:

6 Optimum of algorithm
6.1 Reduce of time complexity
The current average time complexity of the algorithm is . n is the number of instructions in

the program. In practical applications, a program contains a large number of assembly instructions, so
now the time complexity of the algorithm is high, efficiency is low. So we find a Instruction - Basic
Block mode to reduce the time complexity of the algorithm.

The basic block is a sequence of instructions executed in the program. During the running time, it
maybe execute the same basic block. First we calculate the similarity between assembly instructions for
the basic element in the static state. Then we calculate the similarity between basic blocks for the basic
element, while establishing the similarity between the two-dimensional table of basic blocks. We treat

 as key value, thus the number between two basic blocks is only once.
When we find these two basic blocks has been calculated, the query time is only O(1), eliminating
many repetitive calculations. Time complexity has been reduced. In summary, the similarity of two
basic blocks and may be expressed as:

 (6-1)
 represents that there are n basic block sequence , we

can get the equation from above.
 (6-2)

 (6-3)

 , (6-4)

The partial similarity between two basic block sequence can be expressed as:
 (6-5)

The normalized representation is:
 (6-6)

 (6-7)

6.2 Reduce of space complexity
The current space complexity of the algorithm is . n is the number of instructions in the

program. The memory which the program needs is relatively large. As can be seen in Figure 5-1,
During the calculation, when we use the dynamic programming algorithm to calculate , the
information we need is only the last layer and this layer. That means the information before has been

18 B. Cui et al.

useless, so a two-dimensional array is sufficient to achieve the purpose of the calculation of each state.
In this case,we reduce the space complexity and improve efficiency in the use of memory.

To sum up, after optimizing the time complexity and space complexity, the program can calculate

the degree of similarity between the basic blocks, and thus from the bottom to up, we can also calculate
the similarity between functions. Ultimately the similarity between any two applications can be
calculated, so we achieve the purpose of identifying the behavior of the program.

7 Experimental results and analysis
To verify the accuracy, time complex and space complex of this algorithm, we adopt the programs

form the program online judge system of Beijing University of Posts and Telecommunications. Users
can submit a variety of source code on the same topic on it. We select 2000 samples of 20 kinds.

First we gather and classify all the samples. For each type of the programs, we select the most
representative program. We don�t describe the clustering algorithm detailedly here. Then we
discriminate and classify many unknown programs. The result is correct when the original source code
belongs to the same category, otherwise the result is wrong.

Final results are as follows: (Ins represents the average number of assembly instructions in all
programs in that category, BBL represents the average number of basic blocks in all programs of this
category, ETBO represents the elapsed time before optimization, ETAO represents the elapsed time
after optimization, MBO represents the memory before optimization, MAO represents the memory
after optimization).

Program behavior Accuracy Ins BBL ETBO ETAO MBO MAO

Program behavior 100% 1567 305 10.000s 0.078s 1896kb 1888kb

Find the max 96% 108 20 0.093s 0.016s 1892kb 1888kb

Encryption 99% 555 152 1.077s 0.062s 1896kb 1888kb

Simple selection 98% 26 11 0.015s 0.001s 1888kb 1888kb

Sort the structure 94% 1953 288 14.118s 0.639s 1896kb 1888kb

Reverse a string 93% 647 89 2.792s 0.296s 1896kb 1888kb

Length of string 99% 244 64 0.390s 0.031s 1892kb 1888kb

Matrix operations 96% 858 177 4.275s 0.078s 1896kb 1888kb

�� �� �� �� �� �� �� ��

Average 98% 744 138 4.095s 0.150s 1894kb 1888kb

Table 2 Experimental results

Experimental results show that the average accuracy rate is 98%.When we use the Instruction -

Basic Block mode and scroll array, the time complexity and space complexity is reduced by several
tens of times.

8 Conclusion
This paper puts forward a program behavior recognition algorithm based on the similarity of

assembly instructions. We treat the assembly instructions as our basic size and generalise the model of
assembly instruction sextuple. Based on this model, we design a matching algorithm for the assembly

A program behavior recognition algorithm based on assembly instruction sequence similarity 19

instruction sequence to detect the program behavior. Meanwhile, the algorithms are optimized for time
complexity and space complexity, the experimental results show that this method can detect the basic
behavior of the program, with the advantage of high accuracy. Next we hope to detect instruction
semantics for further, constantly optimize the time complexity and maximize efficiency.

Acknowledgments. This work is supported by the National Natural Science Foundation
of China (No. 61272493 61502536 U1536122).

References

1.http://www.bsa.org/~/media/Files/StudiesDownload/BSA_GSS_A4.pdf

2. Gröbert F, Willems C, Holz T. Automated Identification of Cryptographic Primitives in Binary Programs[J].

Lecture Notes in Computer Science, 2011:41-60.

3.Jingwei Zhang. Research on Public Key Cryptographic Algorithm Recognition Technology [D]. The PLA

Information Engineering University, 2011.

4. LI Xiang, KANG Fei, SHU Hui. Cryptographic Algorithm Recognition Based on Dynamic Binary Analysis.

Computer Engineering, 2012, 38(17): 106-109,115.

5.Caballero J, Yin H, Liang Z, et al. Polyglot: automatic extraction of protocol message format using dynamic

binary analysis[J]. Ccs �07 Proceedings of Acm Conference on Computer & Communications Security Acm,

2007:317--329.

20 B. Cui et al.

	2
A program behavior recognition algorithm based on assembly instruction sequence similarity
	Abstract.
	1 Introduction
	2 Structure of assembly instruction
	3 Abstract coding of assembly instructions
	4 Similarity measurement algorithm of assembly instructions
	5 Similarity measurement algorithm of assembly instruction sequence
	6 Optimum of algorithm
	6.1 Reduce of time complexity
	6.2 Reduce of space complexity

	7 Experimental results and analysis
	8 Conclusion
	Acknowledgments.
	References

