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Preface

The Third International Conference on Research in Security Standardization was held
at the National Institute for Standards and Technology (NIST), in Gaithersburg, MD,
USA, during December 5–6, 2016. This event was the third in what is now an
established series of conferences focusing on the theory, technology, and applications
of security standards.

SSR 2016 built on the successful SSR 2014 and SSR 2015 conferences, held near
London, UK, in December 2014 and in Tokyo, Japan, during December 2015. The
proceedings of the 2014 and 2015 conferences were published in volumes 8893 and
9497 of the Lecture Notes in Computer Science.

The conference program consisted of two invited talks, 12 contributed papers, and a
panel session. We would like to express our special thanks to the distinguished keynote
speakers, John Kelsey (NIST, USA) and William Whyte (Security Innovation, USA),
who gave very enjoyable and enlightening talks. Special thanks are also due to Sal-
vatore Francomacaro (NIST, USA) who organized the panel session on “Can Security
Standards Be Ahead of the Game?,” and to the panel members, who included: Liqun
Chen, Eric Hibbard, Russ Housley, and David McGrew.

Out of 18 submissions with authors from nine countries, 12 papers were selected,
presented at the conference, and included in these proceedings. The accepted papers
cover a range of topics in the field of security standardization research, including
hash-based signatures, algorithm agility, secure protocols, access control, secure APIs,
payment security, and key distribution.

The success of this event depended critically on the help and hard work of many
people, whose help we gratefully acknowledge. First, we heartily thank the Program
Committee and the additional reviewers, listed on the following pages, for their careful
and thorough reviews. Each paper was reviewed by at least three people, and on
average by almost four. A significant time was spent discussing the papers. Thanks
must also go to an (anonymous) hard-working shepherd for guidance and helpful
advice on improving one of the papers. We also thank the general chair for her
excellent organization of the conference, as well as Sara Kerman from NIST for her
expert and dedicated assistance in ensuring the success of the conference.

We must also sincerely thank the authors of all submitted papers. We further thank
all the authors of papers in this volume for revising their papers in accordance with the
various referee suggestions and for returning the source files in good time. The revised
versions were not checked by the Program Committee, and so authors bear final
responsibility for their contents.

Thanks are due to the staff at Springer for their help with producing the proceedings.
We must further thank the developers and maintainers of the EasyChair software,
which greatly helped simplify the submission and review processes, as well as the
production of these proceedings.

December 2016 David McGrew
Chris Mitchell
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Abstract. QUIC is a secure transport protocol developed by Google.
Lychev et al. proposed a security model (QACCE model) to capture the
security of QUIC. However, the QACCE model is very complicated, and
it is not clear if security requirements for QUIC are appropriately defined.
In this paper, we show the first formal analysis result of QUIC using auto-
mated security verification tool ProVerif. Our symbolic model formalizes
the QACCE model and the specification of QUIC. As the result of the
verification, we find three attacks against QUIC in the QACCE model. It
means that the Lychev et al.’s security proofs are not correct. We discuss
why such attacks occur, and clarify there are unnecessarily strong points
in the QACCE model. Finally, we give a way to improve the QACCE
model to exactly address the appropriate security requirements.

Keywords: QUIC · QACCE model · Automated verification · ProVerif

1 Introduction

1.1 Backgrounds

As mobile Internet devices (smartphones, tablet computers, wearable computers,
etc.) are growing explosively, various web applications are used in our daily life.
Devices and servers of applications frequently execute transport protocols to
communicate via the Internet. Hence, to reduce latency of transport protocols
is an important issue.

TLS (Transport Layer Security) [1] is the most widely used secure trans-
port protocol. However, latency of TLS on establishing a connection between a
device and a server is not low, and it may be a bottleneck of web applications
c© Springer International Publishing AG 2016
L. Chen et al. (Eds.): SSR 2016, LNCS 10074, pp. 1–31, 2016.
DOI: 10.1007/978-3-319-49100-4 1
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in restricted bandwidth networks. Thus, several transport protocols [2–5] have
been studied to achieve both low latency and sufficient security. QUIC (Quick
UDP Internet Connection) [5] is one of the most promising candidates of such
protocols.

QUIC was developed by Google and implemented as a secure transport pro-
tocol of Google Chrome in 2013. TLS is the protocol on TCP (Transmission
Control Protocol), and relies on the packet retransmission mechanism of TCP.
On the other hand, QUIC is the protocol on UDP (User Datagram Protocol),
and has a specific packet retransmission mechanism to reduce latency. Also,
the number of rounds for key exchange is smaller than that of TLS. QUIC is
widely implemented in Google’s servers, and Google Chrome is now the most
popular browser (it takes 60.5 % of worldwide desktop browser usage in April
16, 2016) [6]. Therefore, to clarify the security of QUIC is very important in
practice. However, no formal security discussion is given in Google’s documents.

There are some previous studies to formally define the security requirements
for QUIC and to prove the security under appropriate assumptions of build-
ing blocks. Fischlin and Günther [7] proposed a security model for multi-stage
key exchange protocols based on the Bellare-Rogaway model [8], and prove the
key exchange part of QUIC satisfies their security definition. Their work is
only for the key exchange part, and it still not clear if the entire protocol of
QUIC is secure. Lychev et al. [9] proposed a new security model for Quick Con-
nections (QC) protocols, called Quick Authenticated and Confidential Channel
Establishment (QACCE) model. QC protocols represent an abstraction of trans-
port protocols including QUIC and TLS1.3 [10]. The QACCE model captures
the security of the entire transport protocol as well as the key exchange part.
In the QACCE model, three security requirements are formulated: the server
impersonation resistance, the channel corruption resistance, and the IP spoofing
resistance. The server impersonation resistance guarantees that any adversary
cannot impersonates an honest server. The channel corruption resistance guar-
antees that any adversary cannot reveal information about groups of messages
exchanged between a client and a server without corrupting the server before
or during the session. The IP spoofing resistance guarantees that any adversary
cannot make the server accept a connection request on behalf of a client who
did not request the connection to the server. These security requirements seem
reasonable for QC protocols. They further proved the security of QUIC in the
QACCE model. However, actually, the QACCE model is very complicated; and
thus, it is hard to understand if the model captures requirements just enough.

1.2 Our Contribution

We show the first automated security verification of QUIC based on the QACCE
model. We use verification tool ProVerif [11–14] because ProVerif can generically
deal with subtle security definitions like the QACCE model.

First, we formalize a symbolic model for QUIC and the QACCE model.
Though the specification of QUIC contains updates of state and time synchro-
nizations, ProVerif cannot directly support state and time. Hence, we reformulate
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the protocol of QUIC to avoid the direct management of state and time. Three
security requirements of the QACCE model are exactly formalized as verification
queries of ProVerif.

Next, we verify QUIC based on our symbolic formalization. If Lychev et al.’s
security proofs were correct, ProVerif would be also expected to decide “secure”.
However, ProVerif finds concrete attacks against all three security requirements.
These attacks break the matching between a client and a server by modifying
protocol flows. It causes that the client and the server believe distinct sessions
as the matching session. Therefore, Lychev et al.’s security proofs are actually
not correct.

Finally, we discuss the reasons why attacks occur. We conclude that there is
no practical impact to the security of QUIC. The reason of attacks is that the
QACCE model contains unnecessary strong definitions against desirable security
requirements. Actually, by appropriately weakening the model, these attacks are
easily prevented. We show how to weaken the QACCE model to capture the
security of QUIC just enough.

2 Definition of QC Protocol

In this section we quote the definition of a Quick Connections (QC) protocol in
[9], which is a communication protocol between a client and a server (the latter
holds a public key and the corresponding secret key). The parties first agree on
an initial session key, which can be used to exchange data until the final key is
set. After the final key is set, it is used for further data exchange.

The protocol is associated with the security parameter λ, a server key genera-
tion protocol Kg that on input λ returns public and secret keys, an authenticated
encryption with associated data scheme AEAD = (E ,D) with key space {0, 1}λ,
header space {0, 1}∗, message space {0, 1}∗, an IV-extraction function get iv that
takes a key and a header and outputs an IV ∈ {0, 1}n for each message to be
encrypted or decrypted via the associated AEAD, and a scfg gen function that
the server can use to update part of its global state scfg. The server can maintain
global state other than its scfg. All global state is initially set to ε. A protocol’s
execution is associated with the universal notion of time, which is divided into
discrete periods τ1, τ2, . . .. The keys are generated via (pk, sk) ←R Kg(λ). The
input of each party (representing what parties know at the beginning) consists
of the public key of the server pk and the list of messages Msend = M1, . . . ,Mm

for some m ∈ N and where each Mi ∈ {0, 1}∗, that a party needs to send securely
(Msend can also be ε). The server has an additional input: the secret key. All
parties can keep global state. We suppose that the client and server are given
vectors of messages as input.

A QC protocol consists of four phases. Each message exchanged by the parties
must belong to some unique stage, but the second and third stages may overlap:

Stage 1: Initial Key Agreement. At the end of this stage, each party sets
the initial key variable ik = (ikc, iks, iaux), where iaux ∈ {0, 1}∗ (initially set
to ε) is any additional information used for encryption and decryption.
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Stage 2: Initial Data Exchange. In this stage, messages from the input data
list can be transmitted using the associated AEAD scheme and the key ik.
The server uses ikc to encrypt and iks to decrypt, whereas the client uses iks to
encrypt and ikc to decrypt. At the end of this stage, each party outputs the list
of messages Miget = M1, . . . ,Mm′ for some m′ ∈ N and where each Mi ∈ {0, 1}∗,
(Miget can also be ε), representing the messages the party received in the initial
data exchange phase.

Stage 3: Key Agreement. At the end of this stage, each party sets the session
key variable k = (kc, ks, aux), where aux ∈ {0, 1}∗ (initially set to ε) is any
additional information used for encryption and decryption.

Stage 4: Data Exchange. In this stage, messages from the input data list can
be sent using the associated AEAD scheme and the key k. The server uses
kc to encrypt and ks to decrypt, whereas the client uses ks to encrypt and kc
to decrypt. At the end of this stage, each party outputs the list of messages
Mget = M1, . . . ,Mm′′ for some m′′ ∈ N and where each Mi ∈ {0, 1}∗, (Mget can
also be ε), representing the messages the party received in the final stage.

We say that a party rejects a packet if it outputs ⊥, and accepts it otherwise.
When a client (or server) party sets ik in Stage 1 corresponding to a particular

QC protocol execution instance, we say that client (or server) party sets that
ik with a particular server (or client) party if every sent and received packet by
that client (or server) party in Stage 1 of that QC protocol execution instance
belongs to that client (or server) party’s connection with that server (or client)
party. We can define an analogous notion for setting k with respect to Stage 3.
We will refer to parties that set ik’s in Stage 1 with each other as each other’s
peers. The correctness of the protocol requires that the input data of one party’s
Msend be equal to outputs of the other party’s Miget,Mget. In other words, the
protocol is correct if it allows the parties to exchange the data that they intended
to exchange with their corresponding communication partners in the protocol,
while preserving the order of the messages.

3 QACCE Model, Revisited

In this section, we quote the QACCE model. However, the QACCE model in
[9] has several errors regardless of our verification result. We show a corrected
version of the QACCE model.

Security Experiment. Fix the security parameter λ and a QC protocol Π with
associated server key generation protocol Kg, scfg gen, an authenticated encryp-
tion with associated data scheme AEAD = (E ,D) with key space {0, 1}λ and
additional authenticated data (which we will denote by H) space {0, 1}∗.

The experiment ExpQACCE
Π (A) associated with the adversary A is defined as

follows: We consider two sets of parties, clients and servers, C = {C1, . . . ,C�}
and S = {S 1, . . . , S �}, for parameter � ∈ N denoting the maximum possible
number of servers or clients. The experiment first generates server key pairs
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(pki, ski) ←R Kg(λ), kstk ←R {0, 1}128, and scfgti ←R scfg gen(ski, τt, λ), for all
time periods, for all i ∈ [�].

To capture several sequential and parallel executions of the protocol we follow
the standard approach and associate each party Pi ∈ C ∪ S with a set of stateful
oracles π1p,i, . . . , π

d
p,i, for parameter d ∈ N and p ∈ {c, s}, where each oracle πr∈[d]

p,i
represents a process that executes one single instance of the protocol at party Pi

and p indicates whether the party in question is a client or server. Intuitively,
each oracle πqp,i of some party Pi ∈ C ∪ S models that party’s IP address and a
unique port number. The experiment flips a bit bqp,i ←R {0, 1} for each oracle πqp,i.

Each server oracle gets the corresponding scfgti at the beginning of each time
period. We assume that at each point of the protocol’s execution each party
(adversary included) can tell what time period it is. We also assume that every
server oracle is aware what protocol stage it is in for every client oracle that it
is and/or has been exchanging messages with. With this assumption we are not
required to keep track of the stages in the simulations. Even though the server
keeps local state and knows which stage it is in, it may have inaccurate view
of the stage of the protocol because it is not guaranteed to know the correct
identity of the party it is talking with. We refer to oracles that set ik with each
other as peers.

The adversary A is given the public keys of all servers pk1, . . . , pk� and can
interact with all oracles of all parties by issuing queries. The values in parentheses
are supplied by A. If the parameter in parentheses is an oracle, e.g. πqp,i, this means
that A needs to supply the indices p, i, q specifying the oracle.

– connect(πqc,i, π
r
s, j), for i, j ∈ [�], q, r ∈ [d].

As a result, πqc,i outputs the initial connection request packet (first connec-
tion for that client party for that particular time period) that it would send
specifically to oracle πrs, j according to the protocol. The output of this query is
not delivered to the recipient oracle, but is just given to A. This query allows
the adversary to ask a client oracle to start communicating with a particu-
lar server party for the first time between those parties for a particular time
period.

– resume(πqc,i, π
r
s, j), for i, j ∈ [�], q, r ∈ [d].

This query returns ⊥ if ik corresponding to oracle πqc,i is not set. Otherwise, πqc,i
outputs the 0-RTT connection request packet that it would send to an oracle
πrs, j according to the protocol. The output is given to A, who can deliver it to
the destination oracle, modify it, or drop it. This query allows the adversary to
ask a particular client oracle to request a 0-RTT connection with a particular
server party, if the client party corresponding to that oracle has communicated
before with that server in a particular time period. Recall that every server
party is aware of its communication status with respect to every client oracle
that may contact it.

– send(πrp, j,m), for p ∈ {c, s}, j ∈ [�], r ∈ [d] and m ∈ {0, 1}∗.
As a result, m is sent to πrp, j, which will respond with ⊥ if the oracle is in data
exchange phase. Otherwise, A gets the response, which is defined according to
the protocol. This query allows the adversary to send a specified packet m to
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a specified destination oracle. Note that the attacker must provide a header
for the packet that specifies the source and destination IP addresses and port
numbers as well as packet sequence numbers of its choice. The destination
oracle can check this information. The adversary gets control of the resulting
packet and can choose to modify, drop, or deliver it to an oracle.

– revealik(πqp,i), for p ∈ {c, s}, i ∈ [�], q ∈ [d].
As a result, A receives the contents of variable ik for oracle πqp,i. This query
allows the adversary to learn the initial key set by the oracle of its choice.

– revealk(πqp,i), for p ∈ {c, s}, i ∈ [�], q ∈ [d].
As a result, A receives the contents of variable k for oracle πqp,i. This query
allows the adversary to learn the final key set by the oracle of its choice.

– corrupt(S i), for i ∈ [�].
A gets back ski and the current scfgti and any other state of S i. This query
allows the adversary to corrupt the server of its choice and learn its long-term
secrets including scfgti for the current time period.

– encrypt(πrp, j,m0,m1,H, init), for p ∈ {c, s}, j ∈ [�], r ∈ [d], m0,m1,H ∈ {0, 1}∗,
and init ∈ {0, 1}:

It returns ⊥ if |m0| �= |m1|. When init = 1, it returns ⊥ if πrp, j is not
in the initial data exchange stage, or IV ← get iv(ik,H) was used; other-
wise, it returns (H, E(ikp′ , IV,H,mbrp, j)). When init = 0, it returns ⊥ if πrp, j is
not in the data exchange stage, or IV ← get iv(k,H) was used; otherwise,
it returns (H, E(kp′ , IV,H,mbrp, j)). This query, unlike the previous ones, deals
with the initial and final data exchange phases1 (flag init specifies which),
while the previous ones concerned the initial and final key exchange phases.
It is designed to follow the standard approach of capturing message privacy
under chosen message attack. It allows the adversary to obtain a randomly
chosen ciphertext out of the two messages provided by the adversary. Just like
in the security definition for AEAD, the attacker can select the header H. For
QUIC it means that the adversary can specify the source and destination IP
addresses and port numbers as well as packet sequence numbers of its choice.
Unlike the AEAD security model, however, we do not let the adversary select
the IV because in QUIC the IV depends on the secrets of a party and is not
under the attacker’s control. get iv is the function that we require to produce
initialization vectors used for encryption and appropriate headers. The ini-
tialization vector is not given to the adversary. The adversary is restricted to
providing H whose destination IP address and port number correspond to πrp, j
and whose source IP address and port number correspond to an oracle πqp′,i in
the experiment, for p′ ∈ {c, s}\{p}.

– decrypt(πrp, j, C,H, init), for p ∈ {c, s}, j ∈ [�], r ∈ [d], C,H ∈ {0, 1}∗, and
init ∈ {0, 1}:

1 In the original model, this query returns the encryption of mbqp, j
. However, since p in

mbqp, j
is equal to p in πrp, j, mbqp, j

must be changed to mbrp, j
.
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It returns ⊥ if (H, C) was output before by encrypt(πqp′,i, ∗, ∗, ∗, init).2
When init = 1, it returns ⊥ if πrp,i is not in the initial data exchange

phase, or D(ikp, IV,H, C) = ⊥, where IV ← get iv(ik,H); otherwise it returns
brp, j. When init = 0, it returns ⊥ if πrp,i is not in the data exchange phase, or
D(kp, IV,H, C) = ⊥, where IV ← get iv(k,H); otherwise it returns brp, j. This
query also concerns the initial and final data exchange phases. It follows the
standard approach to capture authenticity for AEAD schemes. The adver-
sary’s goal is to create a “new” valid ciphertext. If it succeeds, it is given the
challenge bit and thus can win.

– connprivate(πqc,i, π
r
s, j), for i, j ∈ [�], q, r ∈ [d].

As a result, the initial connection request is sent to πrs, j. The response, which
is defined according to the protocol, is sent to πqc,i and not shown to A. Any
following response of πqc,i is not shown to A. It models IP spoofing attacks.

After the adversary is done with queries it may output a tuple (p, i, q, b), for
p ∈ {c, s}.

Matching Conversation. For p ∈ {c, s}, p′ ∈ {c, s}\{p}, i, j ∈ [�], q, r ∈ [d], we
denote with Rq

p,i the sequence of all messages used for establishing keys (during
stages 1 and 3) sent and received by πqp,i in chronological order, and we call Rq

p,i

the message record at πqp,i. With respect to two message records Rq
p,i and Rr

p′, j,
we say that Rq

p,i is a prefix of Rr
p′, j, if Rq

p,i contains at least one message, and the
messages in Rq

p,i are identical to and in the same order as the first |Rq
p,i| messages

of Rr
p′, j. We say that πqp,i has a matching conversation with πrp′, j, if either Rr

p′, j is
a prefix of Rq

p,i and πqp,i has sent the last message(s), or Rq
p,i is a prefix of Rr

p′, j and
πrp′, j has sent the last message(s).

Note that the notion of a matching conversation is not sufficient to define
peers because, unlike in TLS, communicating parties in QUIC may set initial
keys without having a matching conversation. This is why throughout our analy-
sis the notion of peers is instead equivalent to the notion of one party setting a
key with another party.

Security Requirements.

– The server impersonation advantage of A Advs−imp
Π (A) is the probability that

there exists an oracle πqc,i such that k of this oracle is set and there is no
oracle πrs, j corresponding to a server party S j such that πqc,i has a matching
conversation to πrs, j, no revealik contained ik possibly set in the optional initial
key agreement stage between πqc,i and πrs, j, and S j was not corrupted.

The above captures the attack when the adversary impersonates an honest server
and makes a client think it sets a key shared with the server, but the adversary
may have the shared key instead.
2 In the original model, encrypt query for πrp, j is prohibited. However,
encrypt(πrp, j, ∗, ∗, ∗, init) returns the ciphertext generated by p, and it is not reason-
able. In this definition, the ciphertext of generated by p′ should be prohibited. Thus,
πrp, j must be changed to πqp′ ,i.
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– The channel-corruption advantage of A Advch−corr
Π (A) is 2Pr[b = bqp,i] − 1,

where if p = s, then it must be the case that πqs,i has a matching conversation
with some client oracle πrp′, j = πrc, j satisfying the conditions below, and if p = c,
then the peer server oracle πrp′, j of πqc,i must satisfy the same conditions. Let S
be the server in this session.

1. no encrypt(πqp,i, ∗, ∗, ∗, 1) and encrypt(πrp′, j, ∗, ∗, ∗, 1) queries were made for
any ∗ after or during the same time period τt that S was corrupted,

2. no encrypt(πqp,i, ∗, ∗, ∗, ∗) and encrypt(πrp′, j, ∗, ∗, ∗, ∗) queries were made for
any ∗ after S was corrupted, and

3. no revealik(πqp,i) and revealik(πrp′, j) or revealk(πqp,i) and revealk(πrp′, j)
queries returned the key used to answer any encrypt(πqp,i, ∗, ∗, ∗, ∗) and
encrypt(πrp′, j,∗, ∗, ∗, ∗) queries for any ∗ respectively.

The above captures the attacks in which information about groups of mes-
sages exchanged between the client and the server is leaked without the adver-
sary corrupting the server party (1) before or (2) during the same time period
as attempting the breach as well as without (3) revealing the initial and session
keys ik and k. Thus, we capture a slightly weaker notion of forward secrecy by
restricting the adversary to corrupt the appropriate server only after the time
period when the adversary attempts the breach.

– The IP spoofing of A Advips
Π (A) is the probability that there exist oracles

π
q
c,i and πrs, j such that at some time period τt A makes a send(πrs, j,m

′) query,
πrs, j does not reject this query, S j was not corrupted, m′ is not an output
resulting from any previous connection request query (done via connect or
resume queries), and the only other query A is allowed to make concerning πqc,i
during τt is the connprivate(πqc,i, π

r
s, j) query.

This goal captures attacks in which the adversary wins if it succeeds in having
the server accept a connection request on behalf of a client who either did not
request connection to that server or previously requested only an initial connec-
tion but did not request any further connections in the same time period. The
adversary issues a connection query hoping it gets accepted by the server, pos-
sibly preceded by the only other allowed query in that time period: connection
request (connprivate) whose output it cannot see.

Security Definition. We say that a QC protocol Π is QACCE-secure if its advan-
tage AdvQACCE

Π (A), defined as Advs−imp
Π (A)+Advips

Π (A)+Advch−corr
Π (A), is neg-

ligible (in λ) for any polynomial-time adversary A.

4 Specifications of QUIC

We recall the specification of QUIC. Due to the page limitation, we cannot give
the entire specification here. Please see [9] for the details. QUIC has the 1-RTT
and 0-RTT protocols. Let SS = (Kgs,Sign,Ver) be a digital signature scheme.
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We assume that each server has generated a key pair (pkS , skS ) ←R Kgs(λ) and
distributed the verification key pkS using PKI. The 1-RTT protocol proceeds as
follows (more detailed protocol flow is shown in Table 1 in Appendix A).

Stage 1: Initial Key Agreement. The client and the server run Diffie-
Hellman (DH) key exchange as follows. The client sends a message m1, which
we call the initial connection request message of this session, containing a
randomly generated connection id cid. The server responds with a message
m2 containing a part scfgtpub of the server’s global state scfgt and the source-
address token stk of the client. The part scfgtpub contains the server’s static
DH public value signed with skS . The token stk contains the client’s IP
address encrypted using AEAD with the key kstk generated by the server.
Then, the client sends a message m3 containing the stk and the client’s DH
public value. The server rejects this if stk is expired or does not contain
the client’s IP address. Finally, they compute the key ik by DH and a key
derivation function xtrct xpnd.

Stage 2: Initial Data Exchange. The client and the server sends messages
m4 and m5 (and more, if any) encrypted by AEAD with the key and nonces
extracted from ik.

Stage 3: Key Agreement. The server sends a message m6 containing an
ephemeral DH public value encrypted by AEAD with the key and nonces
extracted from ik. The client and the server computes the key k using the
server’s new public value.

Stage 4: Data Exchange. The client and the server sends messages m7 and
m8 (and more, if any) encrypted by AEAD with the key and nonces extracted
from k.

The 0-RTT protocol omits the messages m1 and m2 above, assuming that the
client have received scfgtpub and stk in a 1-RTT session. In a 0-RTT session, the
message m3 is called the 0-RTT connection request message of this session. The
server’s global state scfgt and the token stk are eventually expired, in which
case the 1-RTT protocol is used.

5 Protocol Languages and Informal Semantics

We use the ProVerif tool [11–14] for our analysis. ProVerif is a tool for automat-
ically analyze various security properties of security protocols. ProVerif adopts
a dialect of the applied pi calculus as a protocol language, which we can extend
with functions symbols and equational rules. ProVerif can efficiently analyze
protocols for an unbounded number of sessions by using abstraction based of
Horn clauses.

We introduce ProVerif’s languages for specifying protocols and security prop-
erties. Due to space limitation, we present only fragments of the languages and
their informal semantics that are used in our analysis. We further omit types
of terms in the presentations below for brevity. Please refer to [11] for more
complete explanation and details.
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Variables, Terms, and Equations. We assume that there is an infinite number of
variables x, y, z, n, . . .. A term is constructed from variables by applying a number
of function symbols, which are declared by users. Function symbols that take no
argument are called constants. Along with function symbols, equations involving
them are also defined. Terms are rewritten by using the equations as axioms.
Some function symbols are declared as destructors. When a destructor is used
in a protocol execution, it must be immediately rewritten by an equation; other-
wise the execution halts. Function symbols and the equations for cryptographic
primitives in QUIC are shown in Appendix B.

Processes. A protocol is described as a process, which typically consists of some
subprocesses. The syntax for processes are given as follows.

P,Q :: = 0 | !P | P||Q | in(c, x); P | out(c, t); P | new x; P |
if cond then P | let x=t in P | event ev(t1,...,tn); P |
insert tab(t); P | get tab(=t); P |

The process 0 is an inactive process and is usually omitted when it is a subprocess
of other process. !P is an unbounded number of copies of a process P running in
parallel. P||Q is a parallel execution of processes P and Q. Processes running in
parallel may communicate each other over channels using commands in(c, x)
and out(c, t), which stores the received term in a variable x and sends a term t
through the channel c, respectively. A fresh random data such as keys and nonces
are generated and stored on a variable x by new x. A condition cond is checked
by if cond then, where cond is an equation t=t′ or an inequation t<>t′; if cond is
not true, the process halts. A term t is assigned on a variable x by let x=t in.
An event is issued by event ev(t1,...,tn), where ev is a function symbol for
events. Events do not affect the protocol execution but are referred to in the
security definitions. A table tab is extended with an entry t by insert tab(t),
and the existence of an entry t is checked by get tab(=t); if t is not on tab, the
process halts.

We actually use a little larger fragment of this language that has pattern-
matching. For example, a process let (x, =s)=t in P deconstructs t as a pair
(t1, t2) = t, assigns t1 on the variable x, and checks if s = t2 as in if s=t2 then P.

Security Properties. Among various security properties that ProVerif can ana-
lyze, we use correspondence assertions and observational equivalence. A corre-
spondence assertion is described as follows:

query x1,..., xn;
event(ev(x1, . . . , xn)) ==> event(ev1(x̃(1))) ||· · · || event(evk(x̃(k)))

where x̃( j) ⊆ {x1, . . . , xn}, i.e., x̃( j) = x
i( j)1
, . . . x

i( j)l
for some indices i( j)1 , . . . , i

( j)
l .

This assertion means that, for all values of variables x1, . . . , xn, if the event
ev(x1, . . . , xn) occurs in an execution of a process, then at least one of the events
ev1(x̃(1)), · · · , evk(x̃(k)) must occur in this execution.
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An observational equivalence property is specified by using a special function
symbol choice in the protocol. Intuitively, if a term choice[msg0,msg1] is used
in a process, either msg0 or msg1 is chosen as the value of the term, and ProVerif
checks if the adversary may know which one is chosen.

6 Formalization of the QUIC Protocol

While a protocol is modeled as a collection of stateful oracles in the QACCE
model, ProVerif has a limited support for dealing with state and time. We
therefore reformulate QUIC without using explicit updates of local states (vari-
ables) and assume that server configurations and source-address tokens are never
expired. The latter allows us to capture more attacks than [9], which assumes
no two server configurations of a server are valid at the same time period. On
the other hand, this also may allow false attacks that are impossible in reality.

We model QUIC as processes for servers and clients defined in Figs. 1 and 2,
respectively. The whole ProVerif script for our analysis is given in Appendix D.
They are invoked unbounded number of times from the main process (shown in
Appendix C) and are given some parameters such as IP addresses and keys for
digital signatures. They receive messages from the public channel and send the
responses to the channel following the protocol definition. The adversary may
also send messages to the processes and receive the responses. This models send
queries in the QUIC protocol model.

A client process starts with arguments such as IP addresses and port numbers
of the client and the peer server, which are received from the adversary in the
main process. After receiving m2, it executes the subsequent part of the protocol
unbounded number of times, which is indicated by “!.” The first and the other
executions correspond to a 1-RTT session and 0-RTT sessions, respectively. In
this way the adversary controls timings and parameters of client processes as it
does with connect and resume queries in the QUIC protocol model. Similarly,
server processes also repeat the execution after sending m2 unbounded number
of times.

After the initial and final key agreement phase, each process invokes two
subprocesses Oenc and Odec, which models encrypt and decrypt queries, that
encrypts and decrypts messages received from the adversary. Oenc is defined to
receive a plaintext from the adversary. We later consider a variation of Oenc,
which receives two plaintexts. Each server and client process also invokes other
subprocesses Ocorrupt and Oreveal, which models corrupt and reveal queries,
that leaks the server’s long-term secrets and the session keys, respectively,
when queried by the adversary. Queries to these subprocesses are recorded as
events, which is referred to in the security definitions. The definitions of these
subprocesses are shown in Appendix C.

For modeling matching conversations, messages that have sent and received
at each step of the initial and final key agreement phases are recorded on a
table called conversations. A conversation that should be matched is given
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Fig. 1. Descripton of the server process
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Fig. 2. Descripton of the client process
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as arguments when subprocesses Oenc and Odec are invoked, and these sub-
processes check if the conversation is on the table, i.e., there is a peer that has
the conversation.

7 Formalization of the QACCE Security

The QACCE security is formalized as follows, as security properties against the
server impersonation, channel corruption, and IP spoofing attacks.

Server Impersonation. The security against the server-impersonation attack is
formalized by the following query:

query conv: bitstring, cid: bitstring, S: bitstring;

event(client_k_set(conv, cid, S)) ==>

event(server_k_set(conv, cid))

|| event(revealed(cid, phase_initial_data_exchange, role_server))

|| event(corrupted(S)).

Intuitively, this query means that if a client sets a key during a conversation
conv with a session identified by cid with a server S, one of the following cases
must be true:

– There is a server that sets a key during this (matching) conversation in this
session, indicated by the server k set event.

– The key (ikc) for encrypting messages to the client in the initial data exchange
and the key agreement phases of this session is revealed, indicated by the
revealed event.

– The server is corrupted, indicated by the corrupted event.

Channel Corruption. The channel-corruption attack succeeds if a decrypt query
succeeds, returning the secret bit brp, j, or the adversary successfully guesses the
bit. We separately formalize these two cases as a correspondence assertion and
as observational equivalence. We call the security properties for these cases as
authenticity and secrecy.

Similarly to the case of server-impersonation, authenticity is formalized as
follows:

query S: bitstring, cid: bitstring, ph: bitstring,
sender_role: bitstring, C: bitstring, H: bitstring;

event(decrypt(S, cid, ph, sender_role, C, H)) ==>
event(encrypt(cid, ph, sender_role, C, H))
|| event(revealed(cid, ph, sender_role))
|| event(corrupted(S)).

This means that if a decryption query with a ciphertext C with a header H
succeeds, the ciphertext must have been made an encryption query within this
session, unless the server is corrupted or the session secret has been revealed.
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While the original security definition allows corruption of the server S of this
session as long as encrypt query is not issued after that, our formalization does
not allow to corrupt the server because ProVerif does not precisely model time
as in “after that.”

Secrecy is formalized as observational equivalence between two variations of
the protocol. In these variations, Oenc is modified to receive a pair of plaintexts
msg0 and msg1 and encrypt choice[msg0, msg1], which is msg0 and msg1 in
the first and the second variations, respectively. This is defined as Oenc2 in
Appendix C. Since ProVerif does not allow us to use events and observational
equivalence at the same time, we disable Ocorrupt and Oreveal in the analysis
of secrecy.

IP Spoofing. We assume that initial connection requests (m1) to servers are
sent only by connprivate queries because otherwise the IP spoofing attack triv-
ially succeeds. Equivalently, instead of prohibiting initial connection requests
and implementing connprivate queries, we define the success condition of the IP
spoofing attack so that the attack succeeds only if the response to the initial
connection request is not received. We also let the IP spoofing attack succeed
only if m3 is accepted by a server. The security against the IP spoofing attack
is formalized by the following query:

query S: bitstring, m2: bitstring, m3: bitstring;
event(server_accept_m3(S, m2, m3)) ==>
event(client_send_m3(m3)) || event(capture_m2(m2))
|| event(corrupted(S)).

Intuitively, this query means that if a server S who has sent m2 accepts m3, a client
has sent m3, unless m2 is has been captured or the server S has been corrupted.

8 Results of the Analysis

ProVerif reports attacks shown below, on all the properties formalized in previous
section. These attacks exploit the following facts:

(I) Server accepts a valid source-address token (stk) even though it is distinct
from the one generated in the current session.

(II) The same keys are used in the initial data exchange and the final key agree-
ment phases of a session, and in the QACCE model headers, which contain
sequence numbers, in encrypt and decrypt queries are arbitrarily chosen by
the adversary and are not checked by the oracles.

Server Impersonation. The first attack exploits the above fact I. A man-in-the-
middle-adversary has a source-address token stk′ that is issued in the previous
session and is not yet expired. It replaces the new source-address token stk sent
from the server with stk′. Since this causes parties to have distinct conversations,
in which the tokens are distinct, although the same key is set, this attack meets
the definition of the (successful) server impersonation attack.



16 H. Sakurada et al.

This attack is excluded from the server impersonation attacks if we modify
the definition of matching conversations so that it remarks only m3 and m6. i.e.,
the argument conv of the events client k set and server k set may contain
those messages. However, another attack that exploits the fact II is reported in
this case: in the key agreement phase of a session, a man-in-the-middle adversary
forges m6 using an encrypt query in which the plaintext is (scfgtpub, ˜pub′

s, stk)
with an arbitrary ˜pub′

s, and the sequence number in the header is the one for
m6. It then replaces the m6 from the server with the forged version. This causes
the parties to fail to have matching conversations.

Channel Corruption. Attacks similar to the above second attack are reported
for authenticity and secrecy.

In the attack on authenticity, a man-in-the-middle adversary captures m6 sent
from the server and sends it as a message in the initial data exchange phase, i.e.,
issues a query decrypt(πrc, j,m6,H, init) to the client πrc, j where H = (cid, sqn) is
a pair of the connection id and the sequence number. Since the client is still in
the initial data exchange phase and has a matching conversation of the server,
and the messages is not output of an encryption query, this attack meets the
definition of the channel-corruption attack.

In the attack on secrecy, a man-in-the-middle attacker issues a query
encrypt(πrs, j,m, m′, H, init) in the data exchange phase so that it succeeds to
obtain the ciphertext e′ of m6 with probability 1/2; m is a random plain-
text and m′ is the triplet (scfgtpub, ˜pub′

s, stk) with an arbitrary ˜pub′
s, and

the sequence number in H is the one for m6. The adversary then sends the
(IPs, IPc, ports, portc,H, e

′) to the client in the key agreement phase. If brs, j = 1,
the client proceeds to the data exchange phase; otherwise, the client halts because
the message is not a valid m6.

IP Spoofing. This attack exploits the fact I. A man-in-the-middle attacker cap-
tures a valid source-address token sent in the previous session. In the current
session started using a connprivate query, it makes a c hello message using the
token and sends it by a send query to the server. This message is accepted by
the server, and thus this IP spoofing attack succeeds.

9 Fixing the QACCE Security

In this section, we suggest some fixes for the security definitions. ProVerif reports
that QUIC is secure for the fixed definitions suggested below.

In our first server-impersonation attack, the source-address tokens are not
agreed by the server and the client, although the tokens have the same IP address.
This is not harmful if we assume that tokens are only for avoiding IP-spoofing
attacks. It is therefore reasonable to exclude this attack from the definition of the
server-impersonation attacks, modifying the definition of matching conversations
so that it takes care of only m3 and m6 messages.
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Our second server-impersonation attack and channel-corruption attacks relies
on the fact that in the QACCE model the headers in encrypt and decrypt queries
are arbitraryly chosen by the adversary and are not checked by the oracles. How-
ever, in reality, headers are not arbitrary: at least sequence numbers contained
in the headers must be incremented in each encryption and checked by the recip-
ient. We therefore suggest to fix the QACCE model so that headers in encrypt
and decrypt queries are defined and checked according to the (QUIC) protocol,
respectively.

In the IP-spoofing security, the adversary cannot see messages containing the
source-address token (stk) issued in the current sessions. However, our attacks
use a stk in the previous session that is still valid. We therefore suggest to fix
the definition of the IP-spoofing security to assume that the adversary does not
see any valid stk that can be used in the current session.

10 Conclusion

In this paper, we have automatically analyzed the QUIC protocol based on
the QACCE model, using the ProVerif protocol analyzer. The main technical
contribution is that we have given symbolic formalization of QUIC and the
QACCE security for automatic analysis. Since the QACCE model is a general
model for QC protocols, our formalization can be used for analyzing other QC
protocols such as TLS. Our analysis have found some attacks, which show that
the definition of QACCE security is unnecessarily strong and that analysis in
[9] is not correct, alghouth these attacks have no practical impact on QUIC. We
have further suggested fixes for the QACCE security and analyzed QUIC with
the fixed security definitions.

Our results can be seen as a case study on how formal automatic analysis
complements cryptoraphic analysis by hands of experts on cryptorgaphy. Since
security analysis plays an important role in recent development of security pro-
tocols, believing an incorrect analysis result may lead the development to a
wrong direction. It is therefore important to refine existing analysis results by
automatic analysis.

A Protocol Flow of QUIC

The 1-RTT protocol of QUIC is shown in Table 1. The 0-RTT protocol simply
omits m1 and m2 from the 1-RTT protocol and renumber the sequence number,
which starts from 1.

The client has following information.

– pkS : a verification key of a server which is obtained from PKI
– τt: current time period
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Table 1. The 1-RTT connection establishment

The server has following information.

– pkS : a verification key
– skS : a signing key corresponding with pkS
– kstk: a server secret key where kstk ←R {0, 1}128
– Y ′ = gy

′
where y′ ←R #〈g〉 (ServerConfiguration for 0-RTT)

– τt: current time period
– scfgt: a part of global state of server in the time period τt
– stk: source-address token stk
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– xtrct xpnd: key derivation function for QUIC
– strike: set of used nonce
– strikerng: arrowed time period
– pak: packet generate function for QUIC
– process packets: packet process function for QUIC

We assume that the server’s scfg is refreshed every time period τt using the
scfg gen function as follows.
sc f g gen(sk, τt, λ):

q ←R {primes of size λ}, g ←R {generators of Zq}, xs ←R Zq−1, ys ← gxs ,
pubs ← (g, q, ys), secs ← xs, expy ← τt+1, scid ← H(pubs, expy), str ←
“QUIC server config signature”, prof ← Sign(sk, (str, 0x00, scid, pubs, expy)),
scfgtpub ← (scid, pubs, expy, prof), scfg ← (scfgtpub, secs).

B Formalization of Cryptographic Primitives

The cryptographic primitives used in QUIC are authenticated encryption with
associated data (AEAD), Diffie-Hellman key agreement, digital signatures, the
hash function (H), and the key derivation function (xtrct xpnd). Diffie-Hellman
key agreement and digital signatures are formalized in the same way as in [11].
The hash function and the key derivation function are formalized merely as func-
tion symbols Hash and xtrct xpnd that have no equation, respectively. Addi-
tionally, we use some function symbols for representing extraction of keys such
as ks and kc from k output by the key derivation function.

AEAD is formalized by first introducing a function symbol E for encryption. A
term E(k, iv, m, h) represents encryption of the plaintext m with additional
authenticated data h encrypted with key k and nonce iv. We also introduce
destructor function symbol D, extract nonce, extract AD and equations

D(k, iv, h, E(k, iv, m, h)) = m

extract nonce(E(k, iv, m, h)) = nonce

extrac AD(E(k, iv, m, h)) = h.

The first equation means that a ciphertexts is decrypted and verified by using
the valid key and the nonce. Note that since D is a destructor, if decryption fails
in a process, e.g., due to incorrect nonce or key, the process halts. The other
equations enables the adversary to obtain the nonce and the associated data
from a ciphertext.

C Definitions of Some Processes

The “main” processes that invokes clients and servers is shown in Fig. 3. It
receives some parameters from the adversary through the public channel c.
Figure 4 shows the processes that replies to encrypt, decrypt, reveal, and corrupt
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Fig. 3. Descripton of the main process

queries and the process tap m2 that serves as a secret channel that securely
transmits m2 from the server to the client when a connprivate query is issued.

In the formalization of secrecy, Oenc2 instead of Oenc is used. We must
prohibit the adversary to send a plaintext twice in the encrypt query, e.g.,
(msg0, msg1) and (msg0, msg1’), because otherwise the adversary trivially knows
the secret bit by comparing the two ciphertexts. However, this restriction cannot
be directly modeled in ProVerif. We therefore use another function symbol Ef
instead of E in Oenc2 for producing distinct ciphertext on each query, even if the
adversary sends a plaintext more than once. This makes it useless to compare
ciphertexts received by Oenc2.

D ProVerif Script

#ifdef SELFUN
set selFun = SELFUN.
#elif SECRECY
set selFun = Nounifset.
#endif

(* types *)
type nonce_t.
type G. (* DH *)
type exponent. (* DH *)
type nat.



Analyzing and Fixing the QACCE Security of QUIC 21

Fig. 4. Descripton of other processes that reply to queries from the adversary
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(* constants *)
const bot: bitstring.
const n0: bitstring. (* 0x00 *)
const n1: bitstring. (* 1 *)
const str_qscfg: bitstring. (*"QUIC server config signature" *)
const null: bitstring. (* the null bitstring *)

const q_reveal: bitstring.
const q_corrupt: bitstring.

const phase_initial_data_exchange: bitstring.
const phase_initial_key_agreement: bitstring.
const phase_data_exchange: bitstring.
const phase_key_agreement: bitstring.
const role_server: bitstring.
const role_client: bitstring.

(* packet numbers *)
fun seqno(bitstring): bitstring.

(* time *)
fun s(bitstring): bitstring. (* successor (+1) function *)

(* AEAD *)
fun E(bitstring, bitstring, bitstring, bitstring): bitstring.
fun Ef(bitstring, bitstring, bitstring, bitstring, bitstring):
bitstring.
reduc
forall k: bitstring, iv: bitstring, h: bitstring, m: bitstring;
D(k, iv, h, E(k, iv, m, h)) = m;
forall k: bitstring, iv: bitstring, h: bitstring, m: bitstring,
r: bitstring;
D(k, iv, h, Ef(k, iv, m, h, r)) = m.
reduc
forall m: bitstring, nonce: bitstring, k: bitstring, h: bitstring;
extract_nonce(E(k, nonce, m, h)) = nonce;
forall m: bitstring, nonce: bitstring, k: bitstring, h: bitstring,
r: bitstring;
extract_nonce(Ef(k, nonce, m, h, r)) = nonce.
reduc
forall m: bitstring, nonce: bitstring, k: bitstring, h: bitstring;
extract_AD(E(k, nonce, m, h)) = h;
forall m: bitstring, nonce: bitstring, k: bitstring, h: bitstring,
r: bitstring;
extract_AD(Ef(k, nonce, m, h, r)) = h.
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(* Signature *)
fun pk(bitstring): bitstring.
fun sk(bitstring): bitstring.
fun Sign(bitstring, bitstring, nonce_t): bitstring.
fun Ver(bitstring, bitstring, bitstring): bool
reduc
forall rg: bitstring, m: bitstring, rs: nonce_t;
Ver(pk(rg), m, Sign(sk(rg), m, rs)) = true.

(* Diffie-Hellman *)
const q: nat. (* used just as a spaceholder *)
const g: G.
fun exp(G, exponent): G.
nounif x: exponent; attacker(exp(g, x)). (* for speedup *)
#ifdef NO_DH_COMM /* define NO_DH_COMM if you want speedup */
reduc
forall x: exponent, y: exponent;
expS(exp(g, y), x) = exp(exp(g, x), y).
#else
equation forall x: exponent, y: exponent;
exp(exp(g, x), y) = exp(exp(g, y), x).
#define expS exp
#endif

(* Hash *)
fun Hash(bitstring): bitstring.

(* Generaiton of server’s secret (for every time period) *)
fun x_s(bitstring, bitstring): exponent [private].

(* xtrct_xpnd *)
fun xtrct_xpnd(G, bitstring, bitstring, bitstring, bitstring):
bitstring.
fun k_c_of(bitstring): bitstring.
fun k_s_of(bitstring): bitstring.
fun iv_c_of(bitstring): bitstring.
fun iv_s_of(bitstring): bitstring.

free c: channel.

#ifdef IP_SPOOFING

free cp: channel [private]. (* for security against IP spoofing*)

#else

#define cp c

#endif

free secret: bitstring [private]. (* for sanity check *)
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(* table *)

table conversations(bitstring).

table clientIKAtable(bitstring).

table serverIKAtable(bitstring).

(* events and queries *)

event revealed(bitstring, bitstring, bitstring).

event corrupted(bitstring).

event encrypt(bitstring, bitstring, bitstring, bitstring, bitstring).

event decrypt(bitstring, bitstring, bitstring, bitstring, bitstring,

bitstring).

event client_k_set(bitstring, bitstring, bitstring).

event server_k_set(bitstring, bitstring).

event serverKeyAgreementFinished(bitstring, bitstring, bitstring,

bitstring, bitstring, bitstring, bitstring, G).

event capture_m2(bitstring).

event client_send_m3(bitstring).

event server_accept_m3(bitstring, bitstring, bitstring).

(*

query attacker(secret).

out(c, secret);

*)

#if SERVER_IMPERSONATION

(* Security against the server impersonation attack *)

query conv: bitstring, sess: bitstring, S: bitstring;

event(client_k_set(conv, sess, S)) ==>

event(server_k_set(conv, sess))

|| event(revealed(sess, phase_initial_data_exchange, role_server))

|| event(corrupted(S)).

#elif AUTHENTICITY

(* Message authenticity of security

against the channel-corruption attack *)

query S: bitstring, sess: bitstring, ph: bitstring, sender_role:

bitstring,

C: bitstring, H: bitstring;

event(decrypt(S, sess, ph, sender_role, C, H)) ==>

event(encrypt(sess, ph, sender_role, C, H))

|| event(revealed(sess, ph, sender_role))

|| event(corrupted(S)).

#elif IP_SPOOFING

(* Security against IP spoofing attack *)

#ifdef FIXED

query S: bitstring, tk: bitstring, m3: bitstring;

event(server_accept_m3(S, tk, m3)) ==>

event(client_send_m3(tk))
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|| event(capture_m2(tk))

|| event(corrupted(S)).

#else

query S: bitstring, m2: bitstring, m3: bitstring;

event(server_accept_m3(S, m2, m3)) ==>

event(client_send_m3(m3))

|| event(capture_m2(m2))

|| event(corrupted(S)).

#endif /* FIXED */

#elif SECRECY

#define DISABLE_REVEAL 1

#define DISABLE_CORRUPT 1

#else

#error "You must define one of the options SERVER_IMPERSONATION,

AUTHENTICITY, SECRECY, and IP_SPOOFING!"

#endif

(* PROCESSES *)

(* Encryption / Decription oracle *)

let Oenc(matching_conversation: bitstring,

key: bitstring, iv: bitstring,

sess: bitstring, ph: bitstring, sender_role: bitstring) =

#ifdef SECRECY

in(c, (msg0: bitstring, msg1: bitstring, H: bitstring));

let msg = choice[msg0, msg1] in

let (cid: bitstring, sqn: bitstring) = H in

new r: bitstring;

let C = Ef(key, (iv, sqn), msg, H, r) in

get conversations(=matching_conversation) in

#else /* SECRECY */

in(c, (msg: bitstring, H: bitstring));

let (cid: bitstring, sqn: bitstring) = H in

let C = E(key, (iv, sqn), msg, H) in

event encrypt(sess, ph, sender_role, C, H);

#endif /* SECRECY */

#if FIXED && (SECRECY || SERVER_IMPERSONATION)

if sqn = seqno(ph) then

#endif /* FIXED && (SECRECY || SERVER_IMPERSONATION) */

out(c, (H, C)).

let Odec(matching_conversation: bitstring, S: bitstring,

key: bitstring, iv: bitstring,

sess: bitstring, ph: bitstring, sender_role: bitstring) =

#ifdef SECRECY

0.

#else /* SECRECY */

in(c, (C: bitstring, H: bitstring));

let (cid’: bitstring, sqn: bitstring) = H in

let nonce = (iv, sqn) in
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let msg = D(key, nonce, H, C) in

#if FIXED && AUTHENTICITY

if sqn = seqno(ph) then

#endif /* FIXED && AUTHENTICITY */

get conversations(=matching_conversation) in

event decrypt(S, sess, ph, sender_role, C, H).

#endif /* SECRECY */

(* Responding reveal queries *)

let Oreveal(sess: bitstring, ph: bitstring, sender_role: bitstring,

k: bitstring) =

#ifdef DISABLE_REVEAL

0.

#else

(in(c, =q_reveal); event revealed(sess, ph, sender_role); out(c, k)).

#endif /* DISABLE_REVEAL */

(* corruption *)

let Ocorrupt(S: bitstring, s: bitstring) =

#ifdef DISABLE_CORRUPT

0.

#else

in(c, =q_corrupt);

event corrupted(S);

out(c, s).

#endif /* DISABLE_CORRUPT */

(* Client process *)

let client(pk_s: bitstring, IP_c: bitstring, IP_s: bitstring,

port_c: bitstring, port_s: bitstring) =

(* Initial Key Agreement *)

(* m1 := c_i_hello(pk_s) *)

new cid: bitstring;

let m1 = (IP_c, IP_s, port_c, port_s, cid,

seqno(phase_initial_key_agreement)) in

out(c, m1);

(* m2 *)

in(cp, m2: bitstring);

insert conversations((role_client, m1, m2));

(* m3 := c_hello(m2) *)

let (=IP_s, =IP_c, =port_s, =port_c, =cid,

=seqno(phase_initial_key_agreement),

scfg_t_pub: bitstring, stk: bitstring) = m2 in

! in(c, (current_time_c: bitstring, cid’: bitstring));

(* m3 := c_hello(m2) *)

let (scid: bitstring, pub_s: bitstring, expy: bitstring, prof: bitstring)

= scfg_t_pub in

if Ver(pk_s, (str_qscfg, n0, scid, pub_s, expy), prof) = true then

new r: bitstring;

let nonc = (current_time_c, r) in
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new x_c: exponent;

let y_c = exp(g, x_c) in

let pub_c = (g, q, y_c) in

let pkt_info = (IP_c, IP_s, port_c, port_s) in

let (iv_stk: bitstring, tk: bitstring) = stk in

let m3 = (pkt_info, cid’, seqno(phase_initial_key_agreement), stk, scid,

nonc, pub_c) in

#if FIXED && IP_SPOOFING

event client_send_m3(tk);

#else

event client_send_m3(m3);

#endif /* FIXED && IP_SPOOFING */

out(c, m3);

insert conversations((role_client, m1, m2, m3));

(* ik := get_i_key_c(m3) *)

let (=g, =q, y_s: G) = pub_s in

let ipms = exp(y_s, x_c) in

let ik = xtrct_xpnd(ipms, nonc, cid’, m3, n1) in

((* reveal *)

Oreveal(cid’, phase_initial_data_exchange, role_client, k_s_of(ik)) |

Oreveal(cid’, phase_initial_data_exchange, role_server, k_c_of(ik)) |

(* Initial Data Exchange *)

(! Oenc((role_server, m1, m2, m3),

k_s_of(ik), iv_s_of(ik), cid’, phase_initial_data_exchange, role_client))|

(! Odec((role_server, m1, m2, m3), pk_s,

k_c_of(ik), iv_c_of(ik), cid’, phase_initial_data_exchange, role_server))|

(* Key Agreement *)

(* m6 *)

in(c, m6: bitstring);

(* k := get_key_c(m6, sqn_s) *)

let sqn = seqno(phase_key_agreement) in

let (=IP_s, =IP_c, =port_s, =port_c, ((=cid’, =sqn), e: bitstring)) = m6

in

let (=scfg_t_pub, pub_s’: bitstring, =stk) = D(k_c_of(ik), (iv_c_of(ik),

sqn),

(cid’, sqn), e) in

let (=g, =q, y_s’: G) = pub_s’ in

let pms = exp(y_s’, x_c) in

let k = xtrct_xpnd(pms, nonc, cid’, m6, n0) in

#if FIXED && SERVER_IMPERSONATION

event client_k_set((role_server, m3, m6), cid’, pk_s);

#else

event client_k_set((role_server, m1, m2, m3, m6), cid’, pk_s);

#endif /* FIXED && SERVER_IMPERSONATION */

((* reveal queries *)

Oreveal(cid’, phase_data_exchange, role_client, k_s_of(k)) |

Oreveal(cid’, phase_data_exchange, role_server, k_c_of(k)) |

(* Data Exchange *)

(! Oenc((role_server, m1, m2, m3, m6),

k_s_of(k), iv_s_of(k), cid’, phase_data_exchange, role_client)) |
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(! Odec((role_server, m1, m2, m3, m6), pk_s,

k_c_of(k), iv_c_of(k), cid’, phase_data_exchange, role_server)))).

(* Server *)

let server(pk_s: bitstring, sk_s: bitstring, k_stk: bitstring,

current_time_s: bitstring,

scfg_t_pub: bitstring, sec_s: exponent,

IP_s: bitstring, port_s: bitstring) =

let (scid: bitstring, pub_s: bitstring, expy: bitstring, prof: bitstring)

= scfg_t_pub in

(* corruption *) Ocorrupt(pk_s, (sk_s, k_stk, sec_s)) |

(* Initial Key Agreement *)

(* m1 *)

in(c, m1: bitstring);

(* m2 = s_reject(m1) *)

let (IP_c: bitstring, =IP_s, port_c: bitstring, =port_s, cid: bitstring,

=seqno(phase_initial_key_agreement)) = m1 in

new iv_stk: bitstring;

let stk = (iv_stk, E(k_stk, iv_stk, (IP_c, current_time_s), null)) in

let m2 = (IP_s, IP_c, port_s, port_c, cid,

seqno(phase_initial_key_agreement), scfg_t_pub, stk) in

out(cp, m2);

insert conversations((role_server, m1, m2));

(* corruption *) Ocorrupt(pk_s, (sk_s, k_stk, sec_s, iv_stk)) |

(* m3 *)

! in(c, m3: bitstring);

insert conversations((role_server, m1, m2, m3));

(* ik := get_i_key_s(m3) *)

let (pkt_info: bitstring, =cid, =seqno(phase_initial_key_agreement),

stk’: bitstring, =scid, nonc: bitstring, pub_c: bitstring) = m3 in

let (=IP_c, =IP_s, =port_c, =port_s) = pkt_info in

let (iv_stk’: bitstring, tk: bitstring) = stk’ in

let (=IP_c, current_time_s’: bitstring) = D(k_stk, iv_stk’, null, tk) in

#if FIXED && IP_SPOOFING

event server_accept_m3(pk_s, tk, m3);

#else

event server_accept_m3(pk_s, tk, m3);

#endif /* FIXED && IP_SPOOFING */

let (=g, =q, y_c: G) = pub_c in

let (ipms: G) = expS(y_c, sec_s) in

let ik = xtrct_xpnd(ipms, nonc, cid, m3, n1) in

((* reveal *)

Oreveal(cid, phase_initial_data_exchange, role_client, k_s_of(ik)) |

Oreveal(cid, phase_initial_data_exchange, role_server, k_c_of(ik)) |

(* Initial Data Exchange *)

(! Oenc((role_client, m1, m2, m3),

k_c_of(ik), iv_c_of(ik), cid, phase_initial_data_exchange, role_server))|

(! Odec((role_client, m1, m2, m3), pk_s,

k_s_of(ik), iv_s_of(ik), cid, phase_initial_data_exchange, role_client))|

(* Key Agreement *)
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(* m6 := s_hello(m3, ik, sqn_s) *)

new x_s’: exponent;

(* corruption *) Ocorrupt(pk_s, (sk_s, k_stk, sec_s, iv_stk, x_s’)) |

let y_s’ = exp(g, x_s’) in

let pub_s’ = (g, q, y_s’) in

let sqn = seqno(phase_key_agreement) in

let e = E(k_c_of(ik), (iv_c_of(ik), sqn), (scfg_t_pub, pub_s’, stk’),

(cid, sqn)) in

let m6 = (IP_s, IP_c, port_s, port_c, ((cid, sqn), e)) in

let pms = expS(y_c, x_s’) in

#if FIXED && SERVER_IMPERSONATION

event server_k_set((role_server, m3, m6), cid);

#else

event server_k_set((role_server, m1, m2, m3, m6), cid);

#endif /* FIXED && SERVER_IMPERSONATION */

out(c, m6);

insert conversations((role_server, m1, m2, m3, m6));

(* k := get_key_s(m6) *)

let k = xtrct_xpnd(pms, nonc, cid, m6, n0) in

((* reveal *)

Oreveal(cid, phase_data_exchange, role_client, k_s_of(k)) |

Oreveal(cid, phase_data_exchange, role_server, k_c_of(k)) |

(* Data Exchange *)

(! Oenc((role_client, m1, m2, m3, m6),

k_c_of(k), iv_c_of(k), cid, phase_data_exchange, role_server)) |

(! Odec((role_client, m1, m2, m3, m6), pk_s,

k_s_of(k), iv_s_of(k), cid, phase_data_exchange, role_client)))).

(* tap m2 and m3 *)

let tap_m2 =

((! in(cp, m2: bitstring); (* capture m2 *)

let (IP_s: bitstring, IP_c: bitstring, port_s: bitstring,

port_c: bitstring, cid: bitstring, n: bitstring,

scfg_t_pub: bitstring, stk: bitstring) = m2 in

let (iv_stk: bitstring, tk: bitstring) = stk in

#if FIXED && IP_SPOOFING

event capture_m2(tk);

#else

event capture_m2(m2);

#endif /* FIXED && IP_SPOOFING */

out(cp, m2))

|(! in(c, m2: bitstring); out(cp, m2))). (* inject m2 *)

(* *)

process

(! new rg: bitstring;

(! new k_stk: bitstring;

out(c, pk(rg));

(**)

! in(c, IP_s: bitstring);
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in(c, port_s: bitstring);

(* The following line allows the attacker to make a server use

scfg_t_pub many times. *)

! in(c, current_time_s: bitstring);

(* scfg_gen *)

let y_s = exp(g, x_s(rg, current_time_s)) in

let sec_s = x_s(rg, current_time_s) in

let pub_s = (g, q, y_s) in

let str = str_qscfg in

let expy: bitstring = s(current_time_s) in

let scid = Hash((pub_s, expy)) in

new r: nonce_t;

let prof = Sign(sk(rg), (str_qscfg, n0, scid, pub_s, expy), r) in

let scfg_t_pub = (scid, pub_s, expy, prof) in

server(pk(rg), sk(rg), k_stk, current_time_s, scfg_t_pub, sec_s,

IP_s, port_s))

| (! in(c, IP_c: bitstring);

in(c, IP_s: bitstring);

in(c, port_c: bitstring);

in(c, port_s: bitstring);

client(pk(rg), IP_c, IP_s, port_c, port_s))

| tap_m2)
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Abstract. Formal protocol analysis tools provide objective evidence
that a protocol under standardization meets security goals, as well as
counterexamples to goals it does not meet (“attacks”). Different tools are
however based on different execution semantics and adversary models. If
different tools are applied to alternative protocols under standardization,
can formal evidence offer a yardstick to compare the results?

We propose a family of languages within first order predicate logic
to formalize protocol safety goals (rather than indistinguishability).
Although they were originally designed for the strand space formalism
that supports the tool cpsa, we show how to translate them to goals for
the applied π calculus that supports the tool ProVerif. We give a criterion
for protocols expressed in the two formalisms to correspond, and prove
that if a protocol in the strand space formalism satisfies a goal, then
a corresponding applied π process satisfies the translation of that goal.
We show that the converse also holds for a class of goal formulas, and
conjecture a broader equivalence. We also describe a compiler that, from
any protocol in the strand space formalism, constructs a corresponding
applied π process and the relevant goal translation.

1 Introduction

Automated tools for analyzing cryptographic protocols have proven quite effec-
tive at finding flaws and verifying that proposed mitigations satisfy desirable
properties. Recent efforts to apply these tools to protocols approved by standards
bodies has led Basin et al. [5] to stress the importance of publishing the underly-
ing threat models and desired security goals as part of the standard. This advice
is in line with the ISO standard, ISO/IEC 29128 “Verification of Cryptographic
Protocols,” [23] which codifies a framework for certifying the design of cryp-
tographic protocols. There are three key aspects to this framework (described
in [26]). It calls for explicit (semi-)formal descriptions of the protocol, adversary
model, and security properties to be achieved. One final aspect is the produc-
tion of self-assessment evidence that the protocol achieves the stated goals with
respect to the stated adversary model. This fourth aspect is critical. It increases
transparency by allowing practitioners the ability to independently inspect and
verify the evidence. So, for example, if the evidence is the input/output of some
analysis tool, the results could be replicated by re-running the tool.
c© Springer International Publishing AG 2016
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DOI: 10.1007/978-3-319-49100-4 2
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Sometimes, however, two different tools are used to evaluate the same proto-
col. For example, in 1999, Meadows [28] found weaknesses in the Internet Key
Exchange (IKE) protocol using the NRL Protocol Analyzer [27], while in 2011
Cremers [17] found additional flaws using Scyther [16]. In such situations it can
be quite difficult to determine exactly what the cause of the difference is. Small
differences in any of the first three aspects of the framework could result in
important differences in the conclusions drawn. This has the potential to under-
mine some of the transparency gained by including the self-assessment evidence
to begin with.

Ideally the first three aspects of the assessment framework (i.e. protocol
description, adversary model, and protocol goals) could be described rigorously
in a manner that is independent of the tool or underlying formalism used to
verify them. For example, many tools assume a so-called Dolev-Yao adversary
model. Although some details vary depending on which cryptographic primi-
tives are being considered, there is generally a common understanding of what
is involved in this adversary model. However, this is typically not the case for
the other aspects. The particular syntax for describing a protocol is closely tied
to the underlying semantics which is entirely tool-dependent. Similarly, security
goals are frequently expressed in a stylized manner that is tightly coupled to
the tool or underlying formalism. We focus on this last point in this paper, by
providing a consistent interpretation of a particular language of security goals
in two chosen tools, CPSA and ProVerif [7,32].

We adopt a security goal language GL for safety properties. It was first intro-
duced in the strand space context [22]. GL contains both protocol-specific and
-independent vocabulary, so each protocol P determines the protocol-specific
language GL(P) with its protocol-specific vocabulary. Security goals take the
so-called “geometric” form:

∀x . Φ =⇒ Ψ

where Φ, Ψ are built from atomic formulas using conjunction, disjunction, and
existential quantification. GL(P) was designed with limited expressivity in order
to capture security goals that are preserved by a class of protocol transforma-
tions. The limited expressivity is advantageous for the current work because GL
talks only about events, message parameters and the relevant relations among
them. While some tools may represent more types of events than others, there
is a common core set of events such as message transmission and reception that
every tool must reason about. As a consequence, all statements of security goals
related to this core set of events and parameters are independent from the par-
ticular formalism that might be used to verify them. Indeed, this core set suffices
to express the security properties that protocols aim to achieve.

In this paper we aim to demonstrate how to cross-validate results between the
two tools cpsa [32] and ProVerif [7]. We will interpret goal formulas consistently
relative to the underlying formalisms used by both tools, in this case strand
spaces and the applied π calculus respectively. Figure 1 diagrammatically depicts
the consistency we demonstrate for such cross-tool semantics.
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Fig. 1. Consistency of cross-tool semantics

We draw the reader’s attention to several aspects of this diagram. First, the
two triangles represent standalone logical semantics for the goal language GL
with respect to each of the execution semantics of the two tools. In Sect. 3 we
describe the left triangle: the strand space semantics for cpsa of GL(P) relative
to a notion of executions we call “strand runs.” We cover the right triangle in
Sect. 4 by giving the semantics of GL�(P ) relative to a trace execution semantics
of the applied π calculus for ProVerif.

Figure 1 includes two different logical languages GL(P) and GL�(P ), because
applied π processes P can represent strictly more events than strand spaces. In
particular, P may represent internal events required to parse received messages.
Thus we will offer an embedding f : GL(P) → GL�(P ) on the goal language. We
can therefore only hope to get consistent answers from CPSA and ProVerif on
goals expressible in GL(P), or equivalently, its f -image, f(GL(P)) ⊆ GL�(P ).

Of course, if the corresponding predicates of GL(P) and GL�(P ) refer to
essentially different things, we cannot expect consistent results. In Sect. 5,
Definition 4, we present a relation—P represents P under f—that character-
izes when a protocol P and process term P “can only do the same things.”
The idea is to ensure that the corresponding formulations of each of the roles
are locally bisimilar. The represents relation thus expresses a correctness cri-
terion for translating protocols from one formalism to the other. Since again
the applied π calculus is more expressive than strand spaces, we focus on an
embedding from strands into applied π. We describe a compiler that transforms
a strand space protocol P into a bisimilar process term P ; the represents relation
defines compiler correctness for it.

Finally, in Sect. 6 we demonstrate how represents relation on protocols lifts
to a global bisimulation Bf on the configurations in the operational semantics
of the two sides. We then show that this bisimulation respects security goals in
the sense that any goal satisfied on the left by a strand run is also satisfied on
the right by a corresponding trace. The converse cannot be true for all goals
because applied π traces are totally ordered whereas strand runs may be only
partially ordered. However, we conjecture that for any goal that is insensitive to
the inessential orderings of a trace, if a trace satisfies the goal then so does a
corresponding strand run.
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Related Work. We have described above how this paper connects to the pro-
tocol verification framework described by Matsuo et al. [26] and standardized in
the ISO in [23]. Although the use of formal logics to express protocol security
goals is not new [10,18], our focus on using such a logic to connect distinct veri-
fication formalisms seems to be new. There was a lot of work in the early 2000s
detailing the connections between the various protocol analysis formalisms being
developed at the time [6,11,15,31]. This work tended to focus on connecting the
underlying execution semantics of the various formalisms without explicit ref-
erence to formal security goals. Thus, in reference to Fig. 1, only the outside
edges were described. By filling in the details of the internal connections, explic-
itly relating the execution semantics to a security goal language, it is easier for
a practitioner to understand how the two sides relate. More recently Kremer
and Künnemann [24] provided a similar translation between a stateful applied π
calculus and that of the tamarin tool’s [29] multiset rewriting formalism. They
show their translation correct with respect to a first-order logic of security goals
very similar to our own. However, rather than relating the results of different
tools performing analysis in different formalisms, they rely on this translation
to justify the use of tamarin as a back-end utility for the stateful applied π
front-end.

There have been several related projects that unite a variety of protocol
validation tools into a single tool suite. Most notably, the AVISPA [3] and
AVANTSSAR [4] projects provide a unified interface to several back-end tools.
The available toolset seems to be limited to bounded verification, whereas in
this paper we connect two formalisms capable of unbounded verification. Their
protocol description language, ASLan++, however does serve as a formalism-
independent protocol description format for the available analysis tools. Simi-
larly, Almousa et al. [2] define translations from Alice-and-Bob protocol descrip-
tions into various formal models and implementations. They prove the correct-
ness of these translations with respect to a simple yet general (local) semantics.
Such correctness seems to be related to our semantic correctness criterion dis-
cussed in Sect. 5. Perhaps it would be possible to prove that any pair of trans-
lations from their high-level description language into both strand spaces and
the applied π calculus that respect their semantics would satisfy our correctness
criterion.

Many tools have also embarked on establishing indistinguishability properties
of protocols, also sometimes called privacy-type properties. In this area, logical
languages to express goals are less developed. However, we consider this an
important area to pursue the present cross-tool logical program also.

2 A Simple Example

In this section we introduce an example protocol, and mention the goals that it
achieves. We then show how to formalize the goals it achieves in a first order
language introduced for the strand space formalism [22,33].



36 J.D. Guttman et al.

A Simple Example Protocol. As a minimal example, consider the Simple
Example Protocol (sep) used by Blanchet [8] and many others [14]. In this
protocol, an initiator A chooses a session key s, which it signs and then encrypts
using the public encryption key of an intended peer B. It then waits to receive
in exchange a sensitive payload d, delivered encrypted with s.

A → B : {|[[ s ]]sk(A)|}pk(B)

B → A : {|d|}s

One is traditionally interested in whether confidentiality is assured for d, and
whether A authenticates B as the origin of d or B authenticates A as the origin
of s. Actually, sep already indicates why this way of expressing the goals is too
crude. In Fig. 2(a), we show the assumptions needed for a conclusion, from A’s
point of view, and the conclusion that B behaved according to expectations.
That is, the protocol is successful from A’s point of view. However, the story
is different from B’s point of view, as shown in Fig. 2(b). Although B certainly
can’t know whether A receives the final message, the fact that A’s intended peer
is some C who may differ from B is troublesome. If C’s private decryption key is
compromised, then the adversary can recover s and A’s signature, repackaging
them for B, and using s to recover the intended secret d.

If A has a run of the protocol apparently with
B;

and B’s private decryption key pk(B)−1 is
uncompromised;

and the session key s is freshly chosen,

then B transmitted d with matching parame-
ters,

and d remains confidential.

(a)

If B has a run of the protocol apparently with
A;

and B’s private decryption key pk(B)−1 and
A’s signature key sk(A) are both uncom-
promised;

and the session key s and payload d are
freshly chosen,

then A took the first step of an initiator ses-
sion, originating the key s, with some in-
tended peer C.

(b)

Fig. 2. Main goal achieved by sep from the points of view of each role

The Goal Language. We wish to express protocol security goals, such as those
in Fig. 2, in a language that is independent of the underlying formalism used to
verify the goals. We adopt a first order goal language developed in the context of
the strand space formalism. It was originally designed by Guttman [22] to limit
expressiveness in order to ensure goals in the language are preserved under a
certain class of protocol transformations. The limited expressivity was leveraged
by Rowe et al. [33] to measure and compare the strength of “related” protocols.
We believe the limited expressivity makes it possible for the formal statement of
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security goals to be independent of any underlying verification methodology or
formalism. Although the goal language was originally developed for the strand
space formalism and incorporated into cpsa, the main purpose of this paper is to
provide a semantics of the language for the applied π calculus that is consistent
with the strand space semantics so that it might be used also by ProVerif.

As suggested by the informal goal statements of Fig. 2, the language needs
predicates to express how far a principal progressed in a role, the value of para-
meters used in messages, the freshness of values, and the non-compromise of
keys. We explain each of these in turn.

The progress made in a role is expressed with role position predicates. For
example, predicates of the form InitDone(n) or RespStart(m) say that an ini-
tiator has completed its last step, or that a responder has completed its first
step. Each role position predicate is a one-place predicate that says what kind
of event its argument n,m refers to.

At each point in a role, the agent will have bound some of its local parame-
ters to concrete values. The parameter predicates are two place predicates that
express this binding. For example, if n refers to an initiator’s event, we would
use Self(n, a) to express that the initiator’s local value for their own identity
is a. Similarly, SessKey(m, s) would say that the value bound to the local session
key parameter is referred to by s.

The role position predicates and the parameters predicates are protocol-
dependent in that the length of roles and the parameter bindings at various
points depend on the details of the protocol.

The goal language also contains protocol-independent predicates that apply
to any protocol. These predicates appear in Table 1. They help to express the
structural properties of protocol executions. Preceq(m,n) asserts that either m
and n represent the same event, or else m occurs before n; Coll(m,n) says that
they are both events of the same local session. m = n is satisfied when m and n
are equal.

The remaining predicates are used to express that values are fresh or uncom-
promised. This way of expressing freshness and non-compromise comes from the
strand space formalism, but it is possible to make sense of them in any formal-
ism. The idea is to characterize the effects of local choices as they manifest in
executions. Randomly chosen values cannot be guessed by the adversary or other
participants, so they may only “originate” from the local session in which it is
chosen, if at all. We will make the meaning of “origination” more precise for each
of the formalisms, but the intuition is that Unq(v) says that v is a randomly cho-
sen value, UnqAt(n, v) specifies the node at which it originates, and Non(v) says
that v is never learned by the adversary. Within this language we can formally
express the two goals of Fig. 2 as we have done in Fig. 3 for the second goal.

A formal semantics for this language has already been given with respect to
the execution model of strand spaces [22]. Our main contribution is to provide
a consistent semantics for this language with respect to the execution model of
the applied π calculus. To simplify this task we assume that messages have the
same representation in both formalisms. We now provide the necessary details
of the underlying term algebra for modeling messages.
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Table 1. Protocol-independent vocabulary of languages GL(Π)

Functions: pk(a) sk(a) inv(k)
ltk(a, b)

Relations: Preceq(m, n) Coll(m, n) =
Unq(v) UnqAt(n, v) Non(v)

Term Algebra. We will use an order-sorted term algebra to represent the values
exchanged in protocols. There is a partial order of sorts S ordered by <. We
assume the existence of a top sort � that is above all other sorts. We build
terms from sorted names and variables. We call <-minimal sorts basic sorts and
terms of those sorts are called basic values. The set of names is the disjoint union
of names for each basic sort: N = �s∈SNs, where Ns = N 0

s � N ν
s is the disjoint

union of two sets. We also consider two disjoint sets of variables X = �s∈SXs

and W = �s∈SWs. Variables in X will be bound to parts of messages received
by protocol participants, while variables in W will be used by the intruder.

We write T (Σ,A) to denote the set of terms built from set A using signature
Σ in the usual way. A term is ground if it contains no variables. An environment
is a map from N ∪X ∪W that maps names to names and variables to terms. The
result of applying an environment σ to a term u is denoted σ(u). We only consider
sort-respecting environments in that for every term u : s, σ(u) : s′ with s′ ≤ s.
Environments also respect the difference between N 0

s and N ν
s . Environments

can be updated so that, for example, σ[x 
→ v] is the environment that maps x
to v and otherwise acts like σ. We identify a subset of terms called messages by
partitioning Σ into constructor symbols and destructor symbols, Σc � Σd, and
letting MSG = T (Σc,N ∪X ). These are the terms that are sent and received by
protocols. For concreteness assume Σc = {{| · |}s· , {| · |}a· , [[ · ]]·, ·ˆ ·, pk, sk, ltk, (·)−1},
and that Σd = {decs, deca, ver, fst, snd}.

We say that t0 is an ingredient of t, written t0 � t, iff either (i) t0 = t; or (ii)
t = t1ˆt2 and t0 � t1 or t0 � t2; or (iii) t = {|t1|}∗

t2 for ∗ ∈ {s, a} and t0 � t1;
or (iv) t = [[ t1 ]]t2 and t0 � t1. The key of a cryptographic operation does not
contribute to the ingredients of the result; only the plaintext does.

The adversary’s ability to derive messages is represented in two ways. In the
first method, we partition Σ into Σpub � Σpriv and consider a convergent rewrite
system with rules g(t1, . . . , tn) → t for g ∈ Σd. Since the system is convergent,
every term t has a normal form denoted t↓. The set of messages derivable from

∀n, b, a, s, d . RespDone(n) ∧ Self(n, b)∧ ∃m, c . InitStart(m) ∧ Self(m, a)∧
Peer(n, a) ∧ SessKey(n, s) ∧ Datum(n, d)∧ ⇒ Peer(m, c) ∧ SessKey(m, s)∧
Non(sk(b)) ∧ Non(sk(a)) ∧ Unq(s) UnqAt(m, s) ∧ Preceq(m, n)

Fig. 3. Formalized goal achieved by sep from the responder point of view
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some set X is thus nf (T (Σpub,X)) ∩ MSG, where nf (T ) produces the set of
normal forms of the set of terms T . In the second method, the adversary uses
derivability rules of the form {t1, . . . , tn} � t. The set of messages derivable from
some set X is the smallest set containing X and closed under �. When each
rewrite rule g(t1, . . . , tn) → t corresponds to a derivation rule {t1, . . . , tn} � t and
vice versa, the two notions of derivability coincide on a large class of protocols.
The two notions of derivability are equivalent when standard best practices are
used that prevent principals from inadvertently applying a constructor to a term
in Σd whose normal form is not in MSG [25,30].

3 Strand Spaces

In this section we present the syntax and execution semantics of strand spaces
and we discuss how the executions furnish semantic models for the formulas of
the goal language GL(P).

Strands. A strand is a sequence of transmission and reception events, each of
which we will call a node. We use strands to represent the behavior of a single
principal in a single local protocol session. By convention, we draw strands with
double-arrows connecting the successive nodes • ⇒ •. We use single arrows
• → • to denote the type of node (transmission vs. reception).

We write +t for a node transmitting the term t and −t for a node receiving
t, and we write msg(n) for t if n is a node ±t. We write dmsg(n) for the pair
±msg(n), i.e. the message together with its direction, + or −.

If s is a strand, we write |s| for its length, i.e. the number of nodes on s. We
use 1-based indexing for strands, writing s@i for its ith node. Thus, the sequence
of nodes along s is 〈s@1, . . . , s@|s|〉. A message t originates at a node n = s@j
iff (i) n is a transmission node; (ii) t � msg(n); and (iii) t is not an ingredient of
any earlier msg(m) where m = s@k and k < j.

Protocols. A protocol P is a finite sequence of strands, called the roles of P,
together with possibly some auxiliary assumptions (detailed below) about fresh
values. Regarding P as a sequence instead of a set will be convenient in Sect. 5.

The messages sent and received on these strands contain parameters, which
are the names, nonces, keys, and other data occurring in the messages. The
parameters account for the variability between different instances of the roles.
More formally, a P-instance is a triple consisting of a role ρ ∈ P, a natural number
h ≤ |ρ|, and an environment σ that assigns messages to precisely those variables
and names in ρ that occur in its first h nodes. If ι = (ρ, h, σ) is an instance, then
the nodes of ι are nodes(ι) = {(ι, j) : 1 ≤ j ≤ h}. The transmission and reception

Fig. 4. The sep protocol.
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nodes of ι are denoted nodes+(ι) and nodes−(ι) respectively. The message of a
node is msg((ρ, h, σ), j) = σ(msg(ρ@j)). The idea is that the nodes are the part
that has already happened. When h = 0, then nodes(ι) = ∅.

Each P-instance ι = (ρ, h, σ) corresponds to a regular strand s of P by apply-
ing σ to ρ up to height h. That is dmsg(s@i) = σ(dmsg(ρ@i)) for each i ≤ h and
|s| = h. An interesting subtlety arises when two roles have a common instance.
That is (ρ, h, σ) and (ρ′, h, σ′) may satisfy σ(dmsg(ρ@i)) = σ′(dmsg(ρ′@i)) for
each 1 ≤ i ≤ h. This can represent a branching role that has a fixed trunk and
alternate continuations. In the present paper we restrict our attention to non-
branching protocols in the sense that no two roles share a common instance.
This eases our connection to the applied π semantics later. We leave for future
work the consideration of how to relate results for branching protocols.

P may make role origination assumptions rlunique, stipulating that certain
expressions involving the parameters originate at most once. These assumptions
apply to all instances of the role. Formally, rlunique is a function of the roles of
P and a height, returning a finite set of expressions: rlunique : P×N → P(MSG).
The set rlunique(ρ, i) gives ρ its unique origination assumptions for height i. We
require that the image of rlunique consist only of terms in N ν

s for the appropriate
sort s, and that all other names in roles are chosen from the sets N 0

s .
We will assume that each protocol P contains the listener role, which consists

of a single reception node x→•. Each instance witnesses for the fact that the
message instantiating x has been observed unprotected on the network. Thus,
we use the listener role to express confidentiality failures. We also include a kind
of dual to the listener role called a blab role that discloses a basic term to the
adversary for it to use in deriving messages for reception. A blab strand witnesses
for the fact that the adversary has managed to guess a value.

The two roles in Fig. 4 make up a strand-style definition of the sep protocol
(in which the listener and blab roles have been omitted). In the right-hand role
ρ2 we assume d to be uniquely originating, i.e. rlunique(ρ2, 2) = {d}. We make
no such assumption about the value s in the left-hand role. This is a subtle point
that is discussed at the end of Sect. 4.

Candidate Strand Runs. For the purposes of this paper, we slightly alter
the notion of execution used for strand spaces. We argue below that this new
notion preserves the semantics of GL(P). The notion of execution we consider,
called a candidate strand run, or frequently, just a candidate, is a pair I = (I,�)
where I = 〈ι1, . . . , ιk〉 is a finite sequence of P-instances, and � is a partial order
extending the strand succession orderings of nodes(ιi). We further require that
I respect the rlunique assumptions of the roles. More formally, if ιi = (ρ, h, σ)
and i ≤ h, then if a ∈ rlunique(ρ, i), then σ(a) originates at most once in I. The
nodes of I are nodes(I) = {(i, n) : 1 ≤ i ≤ k ∧ n ∈ nodes(ιi)}.

A reception node of I is realized if the adversary is in fact able to deliver
msg(n) in time for each reception node n. This means that msg(n) should be
derivable from previously transmitted messages. More formally, if I = (I,�) is
a candidate and n ∈ nodes−(I), then n is realized in I iff
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{msg(m) ∈ nodes+(I) : m ≺ n} � msg(n).

A candidate I = (I,�) is a strand run, or just a run, iff, for every n ∈ nodes−(I),
n is realized in I. We write Runs(P) for the set of strand runs of P.

Operational Semantics. The operational semantics of strand runs is obtained
by defining an immediate successor relation on candidates and restricting it to
runs. We first rely, however, on a localized notion of successor for instances.

If ι = (ρ, h, σ) and ι′ = (ρ′, h′, σ′) are instances, then ι′ is an immediate
successor of ι iff (i) ρ = ρ′; (ii) h+1 = h′; and (iii) σ′ restricted to the domain of
σ agrees with σ. If ι′ is an immediate successor of ι, then it extends σ to choose
values for any new parameters that occur in msg(ρ@h + 1), but not in nodes(ι).
This local successor relation lifts to a global successor relation on candidates.

One candidate I ′ = (I ′,�′) is an immediate successor of another candidate
I = (I,�) when there is one new node n in I ′, and the only change to the
order is that some old nodes may precede n. More formally, I ′ = (I ′,�′) is an
immediate successor of I = (I,�) iff, letting I = 〈ι1, . . . , ιk〉,
1. nodes(I ′) = nodes(I) ∪ {n}, for a single n �∈ nodes(I), i.e. either

(a) dom(I ′) = dom(I) and there is a j ∈ dom(I) s.t. I ′(j) is an immediate
successor of ιj , and for all k ∈ dom(I), if k �= j then I ′(k) = ιk; or else

(b) I ′ = 〈ι1, . . . , ιk, ι′k+1〉, and ι′k+1 has height h = 1; and
2. There is a set of nodes M ⊆ nodes(I) such that �′ =� ∪{(m,n) : m ∈ M}.

The empty candidate NullRun = (〈〉, ∅) is a strand run, since it has no unre-
alized nodes. We regard it as the initial state in a transition relation, which is
simply the “immediate successor” relation restricted to realized strand runs. We
will write SP for the immediate successor relation restricted to strand runs of P,
i.e. SP(I, I ′) iff I, I ′ are runs of P and I ′ is an immediate successor of I.

Definition 1. Let P be a protocol. The operational semantics of P is the state
machine MP = (Runs(P),NullRun, SP) where the set of states is Runs(P), the
initial state is NullRun, and the transition relation is SP.

A sequence of runs 〈R1, . . . , Ri〉 is an MP-history iff R1 = NullRun and, for
every j such that 1 ≤ j < i, SP(Rj , Rj+1).

A run R is P-accessible iff for some MP-history 〈R1, . . . , Ri〉, R = Ri. ///

By induction on the well-founded partial orders �R, we have:

Lemma 1. Every P run is P-accessible. ///

Syntax and Semantics of GL(P). GL(P)’s protocol-dependent vocabulary
contains one role position predicate P ρ

i (·) for each role node ρ@i of P, and
a collection of role parameter predicates P ρ

p (·, ·), one for each parameter p in
role ρ.

Candidates furnish models for the language GL(P) for security goals
[22,33]. Candidates that are actually runs are the most important: They deter-
mine whether a protocol P achieves a formula Γ ∈ GL(P). In particular,
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P achieves Γ iff, for every realized run R and assignment η of objects in R
to free variables in Γ , R satisfies Γ under η, typically written R, η |= Γ . The
details of the semantics, using a slightly different notion of execution than the
one used here, are in [22]. We now show that the semantics for runs is equivalent.

Equivalence of Two Strand Space Semantics. The new operational seman-
tics presented above is only inessentially different from the usual strand space
semantics in terms of realized skeletons. In order to demonstrate this, we now
present the usual notion of execution for strand spaces, and demonstrate the
equivalence of the two semantics.

A skeleton A for P is a structure that provides partial information about a
set of executions of P. It consists of (i) a finite sequence of regular strands (or
equivalently, instances) of P; (ii) a partial ordering �A on the nodes of A extend-
ing the strand succession orderings; and (iii) two sets of terms unique

A
and nonA

representing terms that may originate on at most one node and terms that must
not originate respectively. We assume that A inherits the origination assump-
tions from the roles of the protocol in that the set unique

A
⊇ σ(rlunique(ρ, i)) for

every instance ι = (ρ, h, σ) of A and every i ≤ h.
A skeleton A is realized iff, for every reception node n ∈ nodes−(A), msg(n)

is derivable from previously transmitted messages and guessable values. More
formally, T ∪(B \X) � msg(n) where T = {msg(m) | m ∈ nodes+(A)∧m ≺A n},
B is the set of basic values, and X = unique

A
∪nonA is the set of all non-guessable

basic values.
We can correlate the realized skeletons of any protocol P (that excluded blab

roles) with the P′-accessible runs, where P
′ = P∪{blabs}. The idea is to add blab

nodes for all the basic values the adversary is allowed to guess. More formally,
let

BA = {b | ∃n ∈ nodes(A) . b is a subterm of msg(n) ∧ b is a basic value}
and let B′ be a set of blab nodes, one for each element of BA\(unique

A
∪nonA). We

say that a realized skeleton A and a run R are related iff nodes(R) = nodes(A)∪
B′, and �A=�R ∩(nodes(A) × nodes(A)).

Lemma 2. Let P
′ = P ∪ {blabs}. Every realized P-skeleton A has a related P

′

run R. Every P
′ run R has a related realized P-skeleton A. ///

Lemma 3. Let P
′ = P ∪ {blabs}, and let A be a realized P-skeleton, and R a

related P
′ run. Then for any atomic formula φ and any variable assignment η

of variables to nodes and terms in A, A, η |= φ iff R, η |= φ. ///

Lemma 3 in fact lifts to goal formulas Γ as a natural corollary. The set of
goals achieved by P

′ is essentially the same as that achieved by P. In particular,
any goal Γ true of a skeleton A is also true of some related run R. Similarly,
as long as the Γ does not express anything explicitly about the blab nodes, if
the formula is true of R it is also true of A. It is therefore no danger to use the
operational semantics of runs instead of the skeleton semantics when forming a
connection to the applied π semantics.
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4 The Labeled Applied π Calculus

In this section we describe the triangle on the right side of Fig. 1. We introduce a
version of the applied π calculus [1]; we define a trace-based execution semantics;
and we show how to extract GL�(P ) from a protocol P , giving it a semantics
with respect to the traces. Our process calculus is adapted from the one used by
ProVerif [9]. It differs in several inconsequential ways by adopting a few changes
inspired by Cortier et al. [13]. It also includes a couple new features designed to
aid the connection with strand spaces.

Applied π Calculus Syntax. Protocols are modeled as processes built on an
infinite set of channel names Ch, using the following grammar.

P,Q = 0 | in(c, x) . P | out�(c, u) . P | let x : s = v in P else Q

| (P | Q) | new n : s . P | sum n′ : s . P | !new tid . out(c, tid) . P

| � . P

Here c, tid ∈ Ch, x ∈ X , n ∈ N ν
s , and n′ ∈ N 0

s . We assume u ∈ MSG is a
constructor term; v ∈ T (Σ,N ∪ X ) can be any term.

The free variables, free names, and free channels of P are denoted fv(P ),
fn(P ), and fc(P ) respectively. P is a basic process iff P contains no parallel or
replication operators, and all else branches in P are 0.

We now discuss the main differences from the standard calculus used in
ProVerif. Readers familiar with that calculus will notice we have omitted an
if-then-else construction. As discussed in [13], this is without loss of expressivity
as long as the rewrite theory contains a reduction of the form eq(x, x) → ok
in which eq ∈ Σd. The if-then-else process can then be replaced by let x =
eq(u, v) in P else Q, and the operational semantics will ensure P cannot proceed
if eq(u, v)↓ is not in MSG, that is, if u �= v.

This grammar also ties replication to channel restriction new tid . Since the
new channel is always immediately made public, the adversary has no restrictions
on its use. That is, any message that could be sent or received over the public
channel c could also be sent or received over the new channel tid .

Labels � appear in two ways. As standalone prefixes, they implement the
begin-end events in ProVerif and many other approaches, e.g. [20,34]. They sig-
nal the occurrence of steps mentioned in security goals such as authentication
properties. In ProVerif these begin-end events come equipped with explicit argu-
ments representing some subset of values seen so far. This is then used to express
protocol goals in a tool-dependent manner. Since we will be able to infer the full
set of values seen so far, we omit the explicit arguments to these labels. The
labels also decorate transmissions out�(c, u). The operational semantics reduces
the label and the transmission simultaneously. As we will see below, this is
designed to ensure the goal language semantics of origination is sensible on the
applied π side.

Finally, the most notable difference is in our inclusion of the operator sumn′ : s.
This is essentially an infinite, non-deterministic choice operator (see e.g. [21]).
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Whereas P + Q represents a (non-deterministic) choice between processes P
and Q, sum n′ : s . P acts by choosing a binding [n′ 
→ ni] for any ni ∈ N 0

s and
continuing as P using this binding. This choice does not preclude another process
from choosing the same value at another time. Such choices arise frequently in
protocols. For example, a role that may be run by any agent might start by
choosing the name of the agent that is inhabiting the role in the current local
session. It might also be used to represent non-random data that two peers of a
protocol must agree on such as the name or price of a product in an e-commerce
protocol, or when we do not want to assume every agent has access to a good
source of randomness.

The inclusion of this operator is important for our purposes. In later sections
when we describe a bisimulation between strands and processes, we need to
ensure that for any P-instance that can occur there is also some corresponding
local trace of a process that can occur. Without the sum operator the π calculus
has no way of accessing the infinitude of the carrier sets for the various sorts.
In practice, this can be approximated by pre-pending the protocol with some
finite number of new-bound names, sending them to the adversary if they are
not meant to remain secret. This is the typical style of modeling protocols in
ProVerif. Indeed, since any counterexample to a security goal only uses finitely
many values, then given a particular attack there is some number of values
that one could create at the beginning of the protocol that will suffice to find
the attack. Even more promising is the existence of results such as Comon and
Cortier’s [12] which establishes an a priori finite bound on the number of agents
necessary to discover an attack if there is one. Thus, although ProVerif’s input
language does not contain a sum operator, we will continue to use it in this paper
with the understanding that there may be principled ways of using ProVerif to
verify finite approximations to our translations.

Modeling Protocols. The roles of protocols are formalized as replicated
processes !new tid . out(c, tid) . P where P is a basic process. It is no restric-
tion to assume that every role uses the same channel tid since each replicated
session will instantiate tid with a distinct fresh channel. Any parameters p : s
assumed to be freshly chosen during every local session of a role will be bound
new p : s in P . Other parameters of the local session will be bound sum p : s in P .

A := sum a : agt . sum b : agt . sum s : skey . outInitStart(tid , {|[[ s ]]sk(a)|}a
pk(b)) .

in(tid , z) . let d : data = decs(z, s) in InitDone . 0

B := sum a : agt . sum b : agt . in(tid , z) . let x : � = deca(z, sk(b)) in

let s : skey = ver(x, pk(a)) in RespStart . new d : data .

outRespDone(tid , {|d|}s
s) . 0

P := !new tid . out(c, tid) . A |!new tid . out(c, tid) . B |
!new tid . out(c, tid) . sum v : s . outBlabs(tid , v) . 0 | . . .

Fig. 5. Applied π representation of sep.
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The effects of this choice between new and sum bindings is discussed in more
detail at the end of this section.

Each protocol includes blab roles, namely replicated processes
!new tid . sum v : s . outBlabs(tid , v). We must also include versions that send
f(v) for each f ∈ Σpriv. The representation of sep is shown in Fig. 5, where the
remaining blab processes are elided.

Operational Semantics. Our operational semantics includes traces, namely
sequences of events, i.e. triples (�, a, E) consisting of the label � being reduced,
the network action a (i.e. in(c, x) or out(c, u)) being reduced, and the environ-
ment E that results from the reduction. Not every prefix in the grammar above
contributes to the trace when it is reduced. Only labels and message trans-
missions/receptions do. We denote the absence of a label or network action by
the symbol ⊥ in the appropriate position. The trace joins together the begin-
end events that the ProVerif semantics use with the message events in other
semantics such as Cortier et al.’s [13]. The labels help to provide semantics for
role position predicates and parameter predicates, much as ProVerif etc. express
authentication properties. Transmission and reception events reconstruct the
semantics of origination.

The operational semantics acts on configurations C, which are triples:

S is a trace, namely a sequence of triples of a label, a network action, and an
environment. It records the successive prefixes that have undergone reduction,
and the environment in force when each reduction had occurred.

PE is a multiset of pairs (P, E) of a process and an environment. Each process
is a subexpression of the original process expression, and represents possible
future behavior. The environment records the bindings in force for its names
and variables. We use it to remember the association of these values with the
names and variables occurring in the original expression.
The multiset operator is essentially the parallel operator, which obeys the
usual associative-commutative structural rules, with unit 0.

φ is a frame. It associates variables w ∈ W to transmitted messages. It indicates
which messages from the regular participants the adversary is acting on.

The operational semantics (see Fig. 6) is a transition relation −→ on configu-
rations. In the IN rule, we do not substitute the new binding into the process
expression, but simply accumulate it in the environment. An analogous environ-
ment update occurs in the rules for SESS, NEW, SUM, and LET. In the OUT
rule, the environment is consulted, producing the same effect the substitution
would have had. Notice also that while NEW ensures the environment is updated
with a fresh value, the SUM rule has no such restriction. To avoid the SUM rule
binding to a previously chosen random number, we choose the values from dif-
ferent sets (N ν

s vs. N 0
s ). As usual, we assume that !P is structurally equivalent

to P | !P .
The rules IN,OUT, and LB also append (�, a, E) to the end of the trace. By

recording the environment E we retain the particular value to which a variable
or name is bound when each prefix is reduced. The role parameter predicates
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IN : S; (in(c, x : �).P, E) � PE ; φ −→ S.(⊥, in(c, x : �), E ′);
(P, E ′) � PE ; φ

OUT : S; (out�(c, u).P, E) � PE ; φ −→ S.(�, out(c, u), E);
(P, E) � PE ; φ[w E→
 (u)]

LB : S; (�.P, E) � PE ; φ −→ S.(�, ⊥, E); (P, E) � PE ; φ
SESS : S; (!new tid .out(c, tid).P, E) � PE ; φ −→ S; (P, E ′) � PE ; φ
NEW : S; (new n : s.P, E) � PE ; φ −→ S; (P, E ′) � PE ; φ
SUM : S; (sum n : s.P, E) � PE ; φ −→ S; (P, E ′) � PE ; φ
LET : S; (let x : s = v in P else Q, E) � PE ; φ −→ S; (P, E ′) � PE ; φ
LET-FAIL : S; (let x : s = v in P else Q, E) � PE ; φ −→ S; (Q, E) � PE ; φ
NULL : S; (0, E) � PE ; φ −→ S; PE ; φ
PAR : S; (P | Q, E) � PE ; φ −→ S; (P, E) � (Q, E) � PE ; φ

where, in IN: E ′ = E [x 
→ φ(R)↓] for some R ∈ T (Σpub, W);
OUT: w ∈ W is fresh;
SESS: E ′ = E [tid 
→ ch] where ch ∈ Ch is fresh
NEW: E ′ = E [n 
→ n′] where n′ ∈ N ν

s is fresh
SUM: E ′ = E [n 
→ n′] with n′ ∈ N 0

s

LET: E ′ = E [x 
→ v↓] with v↓: s ∈ MΣ

LET-FAIL: v M∈↓ Σ or ¬v↓: s

Fig. 6. Reduction rules

get their semantics from the bindings in E , and the role position predicates get
theirs from the label �. The origination predicates get their semantics from the
information contained in the network actions a.

Goal Language Syntax. The goal language GL�(P ) for a process P contains
the same protocol-independent vocabulary as shown in Table 1. Its protocol-
dependent vocabulary consists of event predicates, which are like role-position
predicates of GL(P), and environment predicates, which are akin to parameter
predicates.

Event predicates are one-place predicates. For each non-⊥ label � occurring
in P , �(·) will be a (one-place) event predicate; it holds true of index i in trace S
if the event S(i) = e is of the form (�, a, E) for some a and E . The value a may be
⊥ here; we will write (�, •, E) where • indicates that the existentially quantified
value may be ⊥ as well as a normal value.

The environment predicates are two-place predicates. For each name or vari-
able u occurring in P , u(·, ·) will be a (two-place) environment predicate. It will
be true of pairs i, v when e is an event (�, a, E) at index i in the trace, v is a
message in normal form, and E(u) = t maps the name or variable u to t. When
u is not bound in E , u(·, ·) is false for i and every t.

Goal Language Semantics. Suppose that 〈〉;P ; ∅ −→∗ S;Q;φ, so that S is
a trace of P . The semantics of the atomic predicates of GL�(P ) is presented
in Fig. 7. The clauses are particularly simple, because we arranged for S to
hold just the information needed to express them. In particular, retaining the
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S, η |= �(m) iff S(η(m)) = (�, •, E)

S, η |= u(m, v) iff S(η(m)) = (•, •, E) and E(u) = η(v)

S, η |= v = v′ iff η(v) = η(v′)

S, η |= Preceq(m, n) iff η(m) ≤ η(n)

S, η |= Coll(m, n) iff S(η(m)) = (•, •, Em), S(η(n)) = (•, •, En) and

Em(tid) = En(tid)

S, η |= Unq(v) iff η(v) uniquely originates in S
S, η |= UnqAt(m, v) iff η(v) uniquely originates at S(η(m))

S, η |= Non(v) iff η(v) does not originate in S

Fig. 7. Formal semantics of GL�(P ), when 〈〉; P ; ∅ −→∗ S; Q; φ. In the first clause,
label � = ⊥.

environments E in S makes the semantics of the environment predicates very
easy.

The predicate Coll(·, ·) says that two events belong to the same instance
(“session”) of a role. By tying process replication to channel restriction, we
ensure that E(tid) identifies the session that an event belongs to.

The final three predicates Unq(·), UnqAt(·, ·), and Non(·) rely on origination,
which thus must be determined by S. This is why we include network actions a
as elements of events in our traces.

Message t originates at S(i) = (�, a, E) if a = out(tid , u), t � E(u) and for
all j < i, if S(j) = (�′, a′, E ′) with E ′(tid) = E(tid) and a′ = out(tid , u′) or
a′ = in(tid , u′) then t �� E ′(u′). A message t uniquely originates at S(i) if t
originates at S(i) and for all j �= i, t does not originate at S(j). Similarly, we
say t originates uniquely in S if it originates at S(i) for some unique i.

Name Restriction vs. Unique Origination. Before proceeding we briefly
discuss a subtle point about how freshness is modeled in the two formalisms.
The typical way of modeling a random choice in the applied π calculus is to use
a new binding to create a fresh random name. When this occurs in a replicated
role then the result is that every instance of that role will generate a fresh random
number at that point. This guarantees that when the value is later transmitted
by outevt(tid , u), then it will be uniquely originating in the trace at the event
resulting from reducing that transmission. That is, the protocol will satisfy the
following formula:

evt(m) ∧ Nonce(m, v) ⇒ UnqAt(m, v)

The same effect can be achieved in strand spaces by equipping the role with a
rlunique unique origination assumption for the value.

Interestingly, most protocols do not rely on every instance of a role making
random choices. The sep protocol provides a nice example. From the initia-
tor’s perspective, the secrecy of d relies on the initiator choosing a fresh random
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key, but it does not rely on other initiators (who are not involved in this session)
choosing fresh random keys. Omitting the rlunique assumption does not preclude
us from assuming that the relevant value is uniquely originating for a particu-
lar, chosen session. The unaltered applied π calculus does not have this same
flexibility. Our introduction of the sum operator together with the semantics of
origination for traces equips the applied π calculus with the flexibility necessary
to ensure goals are faithfully preserved when we translate from strand spaces to
applied π.

5 Compiling Strand Protocols to the Applied π Calculus

The previous two sections described the left and right triangles of Fig. 1. Each
triangle makes sense in isolation: given a security goal and a protocol description,
we can choose to use either formalism to validate that the protocol achieves the
goal. However, we want goals verified in one formalism to hold in the other also.
We thus expect to receive the same answer when evaluating the same protocol
in either formalism. This of course requires a useful notion of sameness for
descriptions of protocols in the two formalisms. However, a syntactic criterion
for this would be difficult.

Instead, in this section we will briefly summarize a compiler (written in Pro-
log) that translates strand protocols P = 〈ρ1, . . . , ρk〉 to processes P in the
applied π calculus. Details of the compiler can be found in AppendixA. We
designed it to correlate the goal languages GL(P) and GL�(P ) smoothly, when
P is an output from input P.

!new tid . out(c, tid).

out(2,1)(tid , {|[[ s ]]sk(a)|}a
pk(b)).

in(tid , x1). letx2 : � = decs(x1, s) in let d : D = x2 in (2, 2). 0

Fig. 8. Translation of sep initiator

We implement labels � by pairs of natural numbers (i, j), and also use each
label � as a one place role position predicate �(x) in GL�(P ). The compiler asso-
ciates each label used in the output with a node by constructing an injective
function Λ : Labs(P ) → nodes(P) where Λ(i, j) = ρi@j. The action of the func-
tion f : GL(P) → GL�(P ) on role position predicates (see Fig. 1) is inverse to Λ.
More precisely,

Λ(f(τr(ρi@j))) = ρi@j, (1)

for all roles ρi and nodes ρi@j on it. We have written τr here for the map
from role nodes to role position predicates, which partly determines the function
P → GL(P). Thus, Λ is essentially inverse to f ◦ τr.
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The compiler also translates each parameter u of ρi, which may be either
a name or a variable, to the same name or variable u in its target output. We
use u as a two-place parameter predicate in GL�(P ), where in this case f must
satisfy:

f(τp(ρi, u)) = u, (2)

where we write τp for the map from roles ρi and parameters u to parameter pred-
icates in GL(P). The function f is the identity function on protocol-independent
vocabulary, so Eqs. 1–2 characterize the translation f . There will also be other
names and variables used in the process output by the compiler, which is why
the map f : GL(P) → GL�(P ) is an embedding in this direction.

For simplicity, our compiler makes an assumption: It is designed to compile
protocols whose roles are disjoint, in the sense that there are no strands that are
common instances of distinct roles. Roles with overlapping instances are used
to represent branching protocols, in which choices are made by principals or
determined by the messages they receive. We have not refined our compiler to
emit corresponding if-then-else expressions in the target π calculus. Throughout
the remainder of this paper, we will assume that each strand-based protocol P
has disjoint roles.

Compiler Sketch. If the compiler translates the tail nj+1 ⇒ . . . ⇒ nk of role
ρi to a process P , then it prepends some code to P to translate nj ⇒ nj+1 ⇒
. . . ⇒ nk. In particular, if dmsg(nj) = +t, then it emits a labeled output as:

out(i,j)(c, t) . P.

If t has a parameter that is not previously bound by a reception, the compiler
should wrap this parameter in a new-binding if the role declares it as uniquely
originating. Otherwise it should be wrapped in a sum-binding. The current imple-
mentation of the compiler does not yet add these bindings.

If dmsg(nj) = −t, then the situation is more complicated. It must emit
an input in (c, x) with a fresh variable x followed by a sequence of let bind-
ings that destructure the received message. We insert the label (i, j) after this
destructuring sequence. This is because its presence in a trace should imply that
the expected message structure was present in the message bound to x. It also
explains why message receptions do not carry their own label while message
transmissions do. Message components that must equal known values will be
checked, and previously unknown message components will be bound to fresh
variables. When one of these components is represented by a parameter d in −t,
the compiler re-uses d. Thus, parameters in ρi will also appear in its translation.

Having translated the content of a role ρ to a process P0, the compiler wraps
this and emits !newtid . out(c, tid) . P0. The compiler does not rebind tid inside
P0, although it is convenient to use it as the public channel for input and output.
As an example, the initiator role of sep (left side of Fig. 4) yields the process
expression shown in Fig. 8. The first line shows the wrapping; the second line,
the label and output for the first node of the role (omitting the new and sum
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bindings since the compiler does not yet compute these); the third line, the
input, destructuring, and label for the second node, and the null termination.
The tricky part of the compiler is computing the sequence of destructurings
and checks. For this we use a simple flow analysis to determine choices for the
participant’s initial knowledge, followed by a backtracking analysis to explore
the feasible combinations of destructuring input components vs. building known
terms and checking equality with input components. This backtracking made
the compiler convenient to implement in Prolog.

In the output case, the code emitted by the compiler adds one entry to the
trace when it is reduced. In the input case, the code emitted adds two entries
to the trace for each single reception node of the source role ρ. Thus, we will
correlate a single transmission node of ρ to a labeled output in the target process
P , and we will correlate a single reception node of ρ to an input followed by a
label (confirming that destructuring has succeeded) in the target process P .

We codify this in a transition relation on configurations C. We say that a
configuration C2 = (S2;PE2;φ2) is an immediate successor of a configuration
C1 = (S1;PE1;φ1) iff C1 −→+ C2 and for some values of the remaining variables,
either

S2 = S1.(�, out (c, u), E) or else S2 = S1.(⊥, in (c, x), E).(�,⊥, E ′).

Semantic Correctness Criterion. Intuitively, a role ρ and a (replicated)
process term P represent the “same” activity if they can produce corresponding
sequences of observable events. This suggests a kind of local bisimulation between
role instances ι and basic processes P . However, we will correlate nodes on the
strand side with pairs on the process side, whether a label-out pair or a in-label
pair. We use the map Λ from labels back to nodes to define the correspondence.

Now, because basic processes retain only their future events, whereas
instances contain both their past and their potential future, we actually cor-
relate ι with a basic process and its environment, together with the trace S
which retains information about the past.

We begin by defining an auxiliary predicate BΛ
0 , parameterized by the func-

tion Λ above, which captures the notion that the instance and the process have
the same past. This predicate uses only the labeled entries in the trace, and
ignores the inputs and outputs that it also contains.

Definition 2. 1. If S = 〈(�1, a1, E1), . . . , (�k, ak, Ek)〉, then let S|̀tid t be the sub-
sequence of S which contains (�i, ai, Ei) iff �i �= ⊥ and Ei(tid) = t.

2. Let ι be an instance, and let S be a trace and E an environment. BΛ
0 (ι;S, E)

holds iff, letting ι = (ρ, h, σ) and T = S|̀tidE(tid),
(a) E restricts to σ, i.e. dom(σ) ⊆ dom(E), and E(x) = σ(x) for all x ∈

dom(σ); and
(b) for all j such that 1 ≤ j ≤ h, letting T (j) = (�j , aj , Ej),

dmsg(ι, j) = Ej(dmsg(Λ(�j))). ///
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Condition (a) of Item 3 ensures that the parameters common to both formaliza-
tions have been bound in the same way by the two environments. Condition (b)
ensures that if we apply Λ to the label of the jth event and then apply the
environment in effect at that event, we get the same directed message as the jth

node of the instance ι. Thus the successive messages sent and received in S that
are attributable to tid match the messages that ι has sent and received so far.

Thus, given Λ, the input and output events in the trace are effectively redun-
dant. We include them so that the GL� semantics of Sect. 4 may be defined using
only the intrinsic content of P and its reduction sequences. We would not want
the semantics to be well-defined only for processes in the range of the compiler.

Lemma 4. Let BΛ
0 (ι;S, E), T = S|̀tidE(tid), and θ be an order-preserving bijec-

tion between nodes(ι) and events of T . Then for any atomic formula φ with a
role position predicate, or parameter predicate, ι, η |= φ iff S, θ ◦ η |= φ. ///

We next need to describe what it means for an instance and a process to
have the same possible futures. We thus define BΛ

1 to be the largest bisimulation
that respects BΛ

0 . We use the immediate successor relation on configurations by
injecting P, E to the singleton multiset PE = {P, E}.

Definition 3. Let BΛ
1 be the most inclusive relation such that BΛ

1 (ι;S, P, E)
implies BΛ

0 (ι;S, E), and moreover:

1. for all ι′ such that ι′ is an immediate successor of ι with new node n, there
exist S ′, P ′, E ′, φ, φ′ such that S ′; {P ′, E ′};φ′ is an immediate successor of
S; {P, E};φ, and BΛ

1 (ι′;S ′, P ′, E ′).
2. for all S ′, P ′, E ′, φ, φ′, if S ′; {P ′, E ′};φ′ is an immediate successor of S; {P, E};

φ, then there is an immediate successor ι′ of ι and BΛ
1 (ι′;S ′, P ′, E ′). ///

We can also lift the BΛ
1 relation from an individual instance and basic process

to a relation between a protocol P and a fully replicated process expression. In
particular, we will assume that the roles in P are ordered, so that we can correlate
them with parts of a process expression.

Definition 4. Let σ0 be the empty environment; let [tid 
→ v] be the environment
with domain {tid} and range v; and let S0 = 〈〉 be the empty trace.

Suppose that P = 〈ρ1, . . . , ρk〉, and let P be of the form:

|j∈{1,...,k}!newtid . out(c, tid) . Pj .

Then P represents P via Λ iff, for each j such that 1 ≤ j ≤ k, BΛ
1 (ιj , S0, Pj , Ej),

where ιj = (ρj , 0, σ0), and Ej is of the form [tid 
→ v] for some v. ///

The above definition serves as a semantic correctness criterion for a compiler
that takes a strand space protocol P and produces an applied π process P . We
have not proved that our compiler meets this condition, although we believe
that it does for role-disjoint P. The hard part of writing the compiler is handling
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message receptions, which must be destructured by explicit operations in applied
π to match the pattern matching in the source protocol P. We then emit a label
that corresponds to the role position predicate governing the source reception
in P. This suggests a proof strategy: We would argue by induction on source
protocols. We say that one protocol P1 precedes P2, P1 ≤ P2 if, for every role
ρ1 ∈ P1, there exists a role ρ2 ∈ P2 such that either:

– ρ1 is an initial segment of ρ2; or
– ρ1 and ρ2 are identical up until their last node, which is a reception in both

cases, and the pattern matching in ρ2 refines the pattern matching in ρ1.

In the latter case, the compiler emits code for ρ2 that extends the code for ρ1. If
the code for ρ1 is correct, then, by checking only that the additional destructuring
code for ρ2 will behave correctly, one can be sure that the latter will again be
correct. The relation P1 ≤ P2 is well-founded, so correctness would follow by
induction.

The next section shows why Definition 4’s represents is the right relation by
lifting the local bisimulations to a global bisimulation and demonstrating that
goal satisfaction is preserved when Definition 4 is met.

6 Bisimulation and Preserving Goals

Correctness: The Idea. Λ, as generated by the compiler, and f : GL(P) →
GL�(P ) are closely related, as shown in Sect. 5 (Eqs. 1–2). Hence, the behavioral
match between compiler input P and output P carries over to ensure that the
goal formulas of GL(P) are preserved in GL�(P ). We will not in fact prove that
the compiler is correct—in the semantic sense of Def. 4—that its output P
represents its input P via Λ, although we believe it. What we do prove is that if
P represents P, and the runs of P all achieve a security goal Γ , then the traces
generated by P achieve f(Γ ).

The Bisimulation. To do so, we demonstrate a weak bisimulation between the
strand space operational semantics and the applied π reduction semantics. The
bisimulation is between run-protocol pairs (R,P) on the one hand and trace-
configuration pairs (S,PE) on the other.

The initial configuration of |1≤j≤k Pj is 〈〉, {(P1, E0), . . . , (Pk, E0)}, ∅, and it
evolves only to configurations S,PE , φ where PE splits into two parts:

{(P1, E0), . . . , (Pk, E0)} � {(BP1, E1), . . . , (BP j , Ej)};

The latter is a multiset of pairs where each BP i is a basic process. That is,
the initially given replicated processes always remain unchanged, and all the
additional processes can correspond to individual strand instances ι. We now
formalize this correspondence via a bijection θ between labeled events and the
nodes of these instances.
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Definition 5. BΛ
θ (R,P;S,PE) iff θ is an bijection between nodes(R) and labeled

events (�, a, E) of S (i.e. where � �= ⊥) that preserves the orderings of R such
that the following both hold:

1. θ induces a bijection between P-instances ι of R and basic processes P, E of
PE such that BΛ

1 (ι;S, P, E).
2. There is a bijection ζ between roles ρ of P and replicated members of PE such

that, for some fresh channel v, letting ι = (ρ, 0, σ0), BΛ
1 (ι; S0, ζ(ρ), [tid 
→ v]).

We write BΛ(R,P;S,PE) iff, for some θ, BΛ
θ (R,P;S,PE). ///

Lemma 5. SupposeBΛ(R,P;S,PE), and letRout = {msg(m) : m ∈ nodes+(R)}
and Sout = {E(u) : S(i) = (�, out(tid , u), E) for some i.}. Then Rout � t iff
Sout � t.

Proof (Sketch). Being in the BΛ relation ensures that Rout = Sout. ��
Lemma 6. BΛ(R,P;S,PE) is a bisimulation.

Proof. We begin by showing that S,PE simulates R,P. By assumption, there is
some θ that matches the instances ι of R to the unreplicated process environ-
ment pairs P, E of PE so that BΛ

1 (ι;S, P, E). Let φ = φ(S) be the environment
associated with trace S. The run R can advance in one of two ways, (a) some
current instance is extended to a successor instance, or (b) some new instance is
created from a role of P. In the first case, since BΛ

1 (ι;S, P, E), the configuration
S;PE ;φ can evolve similarly if either the new node in the extended instance is
a transmission, or, in case it is a reception −m, if Sout � m. But since the run R
could only have advanced with a reception if Rout � m, Lemma 5 ensures that
Sout � m, as required.

In the second case, we note that we can first silently create a new unreplicated
basic process BPj+1 with environment Ej+1 = [tid 
→ v] for some fresh channel
v by performing a SESS reduction. Condition 2 of Definition 5 ensures that
BΛ

1 (ι′;S, BPj+1, Ej+1) where ι′ is the 0-height prefix of the new instance ι. We
can thus proceed to argue as in the first case above. The proof of the reverse
simulation is similar. ��
Theorem 1. Suppose that |1≤j≤k Pj represents P via Λ, and let θ be the bijec-
tion with empty domain. Then BΛ

θ (∅,P; 〈〉, {(P1, E0), . . . , (Pk, E0)}).

Proof. Condition 1 of Definition 5 is vacuously satisfied. Since |1≤j≤k Pj repre-
sents P via Λ, Definition 4 applies which ensures Condition 2 holds. ��
Lemma 7. Suppose that BΛ

θ (R,P;S,PE), where θ : nodes(R) → Labs(S). Let θ̂
extend θ to MSG also by acting as the identity. Let φ be an atomic formula of
GL(P).

1. If R, η |= φ, then S, θ̂ ◦ η |= f(φ).
2. If φ does not contain Preceq, then S, θ̂ ◦ η |= f(φ) implies R, η |= φ.
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Proof (Sketch). Lemma 4 takes care of the cases for role position predicates
and parameter predicates. The bisimulation relation ensures that origination,
message equality, and local session orderings are preserved. Since θ only preserves
orders from R to S, we must exclude Preceq for Condition 2. ��
Theorem 2. If P represents P via Λ and P achieves ∀x̄ . Φ =⇒ Ψ , where only
∨,∧,∃ appear in Φ and Ψ , then P achieves f(∀x̄ . Φ =⇒ Ψ). ///

The converse is false, since the execution model of P is linear, while the runs of
P are partially ordered. In particular, the formula ∀n,m . n � m ∨ m � n holds
of P , but need not hold of P. However, we conjecture that P achieves a security
goal ∀x̄ . Φ =⇒ Ψ , where Φ, Ψ use only ∨,∧,∃, if P satisfies f(∀x̄ . Φ =⇒ Ψ) and
either

1. � does not appear in Ψ ; or else
2. ∨ does not appear in Ψ .

In the first case, we transport satisfying instances from traces of P back to
corresponding runs of P, as in Clause 2. The second appears to be true because
if Ψ is ∨-free, its Preceq-containing atomic formulas are satisfied in all traces
of P . Thus, they hold in all interleavings, whence they must be true in the
corresponding partially ordered P run.

7 Conclusion

In this paper, we studied a particular case of the cross-tool security goal problem
for protocol standardization. We showed how to correlate statements in a goal lan-
guage for a strand space tool with statements in a related language for applied π.
We proved that if a strand-based protocol achieves a security goal, then related
protocols in applied π achieve the corresponding goal. We conjecture that the con-
verse is true for a large set of security goals also. We provided a compiler to produce
a related applied π protocol.

These technical contributions support the protocol verification framework
codified in ISO/IEC 29128. A goal language that does not depend on the under-
lying verification tool allows for greater transparency for published standards:
it allows practitioners to independently verify the same results using the tool of
their choice.

We view this paper as a start on a program to which many hands may con-
tribute, adapting the semantics of different tools to this or a comparable security
goal language. Although the languages GL(P) express only safety properties,
rather than indistinguishability properties also, it seems likely that a similar
program could equally apply to indistinguishability properties.

Acknowledgments. We are grateful to Kelley Burgin, Dan Dougherty, and Moses
Liskov. We also benefited from the comments of the anonymous referees.
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A Compilation

In this section we describe our translation of a strand space role into a labeled
applied π-calculus process term.

At a high level, the translation takes a transmission event +m to out(tid ,m),
and it takes a reception event −m to in(tid , z).P where P is a sequence of let
bindings that attempt to parse the received term according to the structure of
the expected term. The complexity of the latter translation is due to the use of
pattern matching for receptions in strand spaces that is absent in processes. If
we are to preserve the semantics of the goal language under this translation to
the process calculus, we must ensure that receptions based on pattern matching
succeed on a given message m if and only if the corresponding sequence of let
bindings succeeds on the same message. This requires some care.

One issue is that there may be several sequences that can be used to verify
the structure of a message. Since the parsing process binds some values and
requires others already to be bound, some sequences are sensible with respect to
some initial input and others are not.

We start with a strand space trace (a sequence of events) constructed from
message terms derived from the order-sort signature in Fig. 9. We compute the
relation between a strand space trace and a process calculus term two steps.

1. Perform a flow analysis to find a set of input basic values (See Fig. 10).
2. Translate the trace into a process calculus expression relative to a given set

of inputs (See Fig. 13).

The algorithm has been simplified by ignoring role unique origination assump-
tions, but their processing is sketched near the end of this section. Most of the
algorithm described here has been implemented in Prolog. The Prolog implemen-
tation operates on a many-sorted algebra isomorphic to the order-sorted algebra
as described in [19, Sect. 4]. We leave that translation implicit in this document.

The signature in Fig. 9 is a simplification of the one used by cpsa. The Simple
Example Protocol initiator role using this signature is:

init(a, b : N, s : S, d : D) = [+{|{|s|}pk(a)−1 |}pk(b),−{|d|}s]. (3)

Sorts: �, D, S, A, N
Subsorts: D < �, S < �, A < �, N < �
Operations: (·, ·) : � × � → � Pairing

{| · |}(·) : � × S → � Symmetric encryption
{| · |}(·) : � × A → � Asymmetric encryption
(·)−1 : A → A Asymmetric key inverse
pk : N → A Public key for name

Equation: (x−1)−1 = x for x : A

Fig. 9. Simple crypto algebra signature



56 J.D. Guttman et al.

A.1 Flow Analysis

The aim of the flow analysis C � I (see Fig. 11) is to find a set of basic values
that allow a procedural interpretation of a trace, in particular, a procedural
interpretation of the implied pattern matching that is part of a strand space
reception event.

There are two ways to interpret the reception of a pair, either the left part
is matched first or the right part. A decryption key might or might not become
available based on this choice.

There are two ways to interpret the reception of an encryption. If its decryp-
tion key in known at the point of the match, the contents of the encryption can
be extracted. Alternatively, if the encryption has been seen previously or can be
constructed, then an equality check implements the match.

Figure 12 explores the various possibilities. The flow analysis for the initiator
trace is:

I = {{pk(b), pk(a)−1, s}, {d, pk(b), pk(a)−1, s}}, (4)

where b, a : N, s : S, and d : D. Notice the second solution makes little sense. It
assumes that the initiator’s initial knowledge includes d, the data it is seeking from
a responder. We rely on human intervention to choose sensible sets of input terms.

∅, ∅, C � I, A

C � I

I, A, [ ] � I, A

I1, A1, M �+ I2, A2 I2, A2, C � I3, A3

I1, A1, +M :: C � I3, A3

I1, A1, M �− I2, A2 I2, A2, C � I3, A3

I1, A1, −M :: C � I3, A3

Fig. 10. Flow analysis

M ∈ A

I, A, M �+ I, A

I1, A1, M �+ I2, A2 I2, A2, N �+ I3, A3

I1, A1, 〈M, N〉 �+ I3, A3

I1, A1, M �+ I2, A2 I2, A2, N �+ I3, A3

I1, A1, {|M |}N �+ I3, A3
[N : S or N : A]

M is a basic value and not in A

I, A, M �+ {M} ∪ I, {M} ∪ A

Fig. 11. Send flow analysis
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I1, A1, M �− I2, A2 I2, A2, N �− I3, A3

I1, A1, 〈M, N〉 �− I3, A3

I1, A1, N �− I2, A2 I2, A2, M �− I3, A3

I1, A1, 〈M, N〉 �− I3, A3

I1, {{|M |}N} ∪ A1, N �+ I2, A2 I2, A2, M �− I3, A3

I1, A1, {|M |}N �− I3, A3
[N : S or N : A]

I1, A1, {|M |}N �+ I2, A2

I1, A1, {|M |}N �− I2, A2

M is a basic value
I, A, M �− I, {M} ∪ A

Fig. 12. Receive flow analysis

A.2 Code Generation

Code generation has the form C,E1, N, � � P,E2, where C is a strand space
trace, E1 and E2 are maps from strand space terms to process calculus terms,
and we are translating the �th send or receive in the trace of the N th role of the
protocol.

An analysis begins with an environment E0 mapping each input term com-
puted by the flow analysis to itself. To compute the process calculus term P for
a given strand space trace C and role number N , find P such that C,E0, N, 1 �
P,E2 (See Figs. 13, 14, 15 and 16).

[ ], E1, N, � � 0, E2

T1, E1 �+ T2 C, E1, N, �′ � P, E2

+T1 :: C, E1, N1, � � out(N,�)(c, T2).P, E2
[�′ := � + 1]

x, T, (N, �).P1, E1 �− P2, E2 C, E2, N, �′ � P1, E3

−T :: C, E1, N, � � in(c, x).P2, E3
[x : � fresh, �′ := � + 1]

Fig. 13. Code generation

(T, x) ∈ E

T, E �+ x

T1, E �+ x1 T2, E �+ x2

〈T1, T2〉, E �+ 〈x1, x2〉
T1, E �+ x1 T2, E �+ x2

{|T1|}T2 , E �+ {|x1|}x2

[T2 : S or T2 : A]

Fig. 14. Send code generation
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To handle role unique origination assumptions, the send code generator in
Fig. 14 must prefix the code with a new form for each name that uniquely origi-
nates in the transmitted message.

A.3 Translation Relation

The relation comp(N,C, P ) relates a role number and the role’s strand space
trace with a process calculus term if

1. C � I,
2. E0 is an environment generated from I, and
3. C,E0, N, 1 � P,E2.

Note that a translation is interesting only if I induces a sensible interpretation
of C.

Blanchet Lnitiator Example. Assume the initiator is the second role in
the protocol. The initiator trace C is defined in Eq. 3. The initial environment
generated from the first input set in Eq. 4 is:

E0 = {(pk(b), pk(b)), (pk(a)−1, pk(a)−1), (s, s)},

(T, y) ∈ E

x, T, P, E �− let ok = eq(x, y) inP, E

y, T1, P1, E1 �− P2, E2 z, T2, P2, E2 �− P3, E3

x, 〈T1, T2〉, P1, E1 � let〈y, z〉 = x inP3, E3
[y, z : � fresh]

z, T2, P1, E1 �− P2, E2 y, T1, P2, E2 �− P3, E3

x, 〈T1, T2〉, P1, E1 � let〈y, z〉 = x inP3, E3
[y, z : � fresh]

(T2, y) ∈ E1 z, T1, P1, {({|T1|}T2 , x)} ∪ E1 � P2, E1

x, {|T1|}T2 , P1, E1 � let z = dec(x, y) inP2, E2
[z : � fresh, T2 : S]

E � {|T1|}T2

x, {|T1|}T2 , P, E � let ok = eq(x, {|T1|}T2) inP, {({|T1|}T2 , x)} ∪ E

Analogous cases for asymmetric encryption omitted.

T : s is a variable
x, T, P, E � let T : s = x inP, {(T, T )} ∪ E

Fig. 15. Receive code generation

(T, x) ∈ E

E � T

E � T1 E � T2

E � 〈T1, T2〉
E � T1 E � T2

E � {|T1|}T2

Fig. 16. Term synthesis
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where b, a : N and s : S.
The process term P that satisfies C,E0, 2, 1 � P,E2, is:

out(2,1)(c, {|{|s|}pk(a)−1 |}pk(b)).
in(c, x1).
letx2 : � = dec(x1, s)in
letd : D = x2in (2, 2). 0

Blanchet Responder Example. Assume the responder is the first role in the
protocol. The responder trace is the one in Eq. 3 after interchanging sends and
receives. A sensible set of input basic values is {d, pk(a), pk(b)−1}. After inserting
the new form by hand, the process term is:

in(c, x1).
letx2 : � = dec(x1, pk(b)−1)in
letx3 : � = dec(x2, pk(a))in
lets : S = x3in (1, 1).
newd : D.
out(1,2)(c, {|d|}s). 0
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Abstract. GlobalPlatform (GP) card specifications are the de facto
standards for the industry of smart cards. Being highly sensitive, GP
specifications were defined regarding stringent security requirements. In
this paper, we analyze the cryptographic core of these requirements;
i.e. the family of Secure Channel Protocols (SCP). Our main results are
twofold. First, we demonstrate a theoretical attack against SCP02, which
is the most popular protocol in the SCP family. We discuss the scope of
our attack by presenting an actual scenario in which a malicious entity
can exploit it in order to recover encrypted messages. Second, we inves-
tigate the security of SCP03 that was introduced as an amendment in
2009. We find that it provably satisfies strong notions of security. Of par-
ticular interest, we prove that SCP03 withstands algorithm substitution
attacks (ASAs) defined by Bellare et al. that may lead to secret mass
surveillance. Our findings highlight the great value of the paradigm of
provable security for standards and certification, since unlike extensive
evaluation, it formally guarantees the absence of security flaws.

Keywords: GlobalPlatform · Secure Channel Protocol · Provable
security · Plaintext recovery · Stateful encryption

1 Introduction

Nowadays, smart cards are already playing an important role in the area of infor-
mation technology. Considered to be tamper resistant, they are increasingly used
to provide security services [38]. Smart cards do not only owe their tamper resis-
tance for their success; programmability is a key issue for the wide adoption of
this technology. Indeed, programmability made it possible to load new appli-
cations or remotely personalize existing ones during the cards life cycle [33].
However, this dynamicity did not come without price, as it has brought up secu-
rity concerns about the novel system of content management. The absence of
standards has motivated the creation of GlobalPlatform.

GlobalPlatform (GP) [21] is a cross-industry consortium that publishes spec-
ifications on how post-issuance management shall be carried out for smart cards.
This includes the functionality to remotely manage cards content in a secure way.
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The cryptographic heart of these mechanisms is the family of Secure Channel
Protocols (SCPs) which protect the exchanged messages. Optimized for cards,
the used encryption schemes in these protocols do not follow any standardized
or provably secure construction.

Since its first publication, the GP card specifications have been the subject of
diverse verifications. For instance, authors in [3] examine some aspects of these
specifications and prove their soundness via the B method. Nevertheless, to the
best of our knowledge, no rigorous analysis of the SCP encryption schemes has
been provided before. Our goal is thus to study them through provable security,
and hence to validate (or invalidate) the security guaranteed by GP.

1.1 Our Contribution

In this paper, we apply the methods of provable security on GP specifications.
We start by analyzing the most popular GP SCP (i.e. SCP02). Much to our
surprise, we find that SCP02 is vulnerable to a well-known security flaw caused
by encrypting data using CBC mode with no random initialization vector (IV).

We illustrate this theoretical flaw by presenting a plaintext recovery attack
where the adversary succeeds in getting some information about encrypted mes-
sages. To this end, we define an attack scenario in which several entities (e.g.
service providers) communicate with the smart card via a trusted third party.
Our attack allows a malicious entity to recover some encrypted messages belong-
ing to another entity. In particular, messages including data with limited values
and thus of low entropy, such as PINs, are the most exposed.

Then, we shift our analysis to the youngest member of the SCP family
(i.e. SCP03). SCP03 encrypts messages using the “Encrypt-then-MAC” (EtM)
method that is proved secure in [8]. In this paper, we provide a stronger result:
SCP03 satisfies the security model defined by Bellare et al. in [6] which bet-
ter models the particularity of SCP03. Indeed, SCP03 maintains a counter (i.e.
state) for its decryption. One main advantage of this model is that, in addi-
tion to satisfying the existing notions of confidentiality [4] and integrity [7], it
protects against replay and out-of-delivery attacks. More importantly, we prove
that SCP03 defends against the recent threat of mass surveillance by algorithm-
substitution attacks (ASAs) [9]. Typically closed-source, the industry of smart
cards is concerned about ASAs, since no code scrutiny is possible to assert the
absence of backdoors in the implemented protocols. This could damage the con-
fidence in smart cards. Our proof guarantees that SCP03 cannot undetectably
contain hidden backdoors allowing mass surveillance as it is outlined in [9].

Our work brings to light an interesting fact: security in well-established stan-
dards still does not withstand a simple cryptanalysis. We show, once again,
that security by extensive verification or eminent authority is highly misleading.
Indeed, being involved in sensitive services (e.g. payment), GP specifications
have undergone rigorous verification and validation. This is why they are used in
several systems achieving high assurance level in common criteria (CC) [36]. We
emphasize that the presented vulnerability of SCP02 is well-known in the domain
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of cryptography [30]. Thus, our result raises serious concerns about CC certi-
fication. We encourage therefore further integration of provable security inside
the enterprise of certification to improve the security of the certified protocols.

1.2 Related Work

Blockwise-Adaptive Attack. Formalized by Fouque et al. in [20], blockwise
security has been firstly introduced in [29]. Its idea is simple: messages are not
processed atomically in practice, so an adversary is able to get the ciphertext of a
part of the message. Authors motivate this notion by attacking three encryption
schemes proved to be secure against chosen plaintext attacks. We will focus solely
on the case of CBC mode. The security proof of CBC in [4] holds only if all the
calls to the underlying block cipher are independent from each other. This means
that the (i−1)th block of ciphertext must not be known before choosing the ith
block of plaintext, otherwise independence is lost and the proof fails. We note
that using a predictable IV could be seen as a special case, since the first block
of ciphertext, which is the IV, is known in advance before choosing the message.

Despite its popularity, Mitchell in [34] (and more recently Rogaway in [40])
concludes that the CBC mode involves so many security constraints that it would
be better to abandon it for future designs. Indeed, a great number research
effort has been dedicated to extend the weakness of CBC beyond theory. Some
have adapted the vulnerability mentioned above in order to undermine the secu-
rity of SSL3.0/TLS1.0 [2,14]. Both attacks were motivated by the fact that the
SSL3.0/TLS1.0 standard mandates the use of CBC encryption with chained
(IVs); i.e. subsequent IVs are the last block of the previous ciphertexts. The
attack of [14], called BEAST, is so efficient that migration to TLS1.1 has been
recommended by IETF. Independently from blockwise security, authors in [6],
inspired from [12], outline a vulnerability in the secure shell protocol (SSH)
caused by the same reason: CBC encryption with chained IVs. It is worth not-
ing that all the attacks of [2,6,12,14] follow the same principle: some kind of
plaintext recovery is possible when the attacker can both predict the next IV
and control the first block of the message.

The presented attack against SCP02 follows a similar principle because con-
stant IVs are always predictable. Despite similarity, we argue that the vulner-
ability presented in this paper is caused by the design of SCP02 that is quite
delicate to secure. Indeed, it instructs the use of CBC encryption together with
CBC-MAC for computing integrity tag. Such combination creates two contradic-
tory requirements for security. Indeed, it is proved that a random IV is necessary
for CBC encryption [4], while CBC-MAC must use constant IV [5].

Authenticated Encryption. Authenticated encryption (AE) is a symmetric
encryption scheme that protects both data confidentiality and integrity (authen-
ticity). The security notions of AE were formalized in the early 2000 s in [7,31].
Generic composition [8] is the most popular approach for numerous security
protocols, such as SSH, TLS and IPsec. This approach is about combining
confidentiality-providing encryption together with a message authentication code
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(MAC). Generally, three composition methods are considered: Encrypt-and-
MAC, MAC-then-Encrypt and Encrypt-then-MAC.

The family of SCP protocols follows the paradigm of generic composition.
On the one hand, SCP02 relies on the “Encrypt-and-MAC” (EaM) method.
As pointed out in [8], this composition method is not generically secure, but
we do not consider this result in our analysis for two reasons. First, chosen
ciphertext attacks are not included in our threat model, since they are hardly
applicable. Indeed, the decryption operation in SCP02 is only performed by
smart cards that are unlikely to misbehave (due to their tamper-resistance and
their controlled content management). Smart cards keep the decrypted messages
and never output them outside, otherwise of course encryption would be of no
use. Thus, attackers cannot obtain the result of the decryption operation. Second,
the used cryptographic schemes for both encryption and authentication are not
secure, hence simpler attacks exist. We provide further details in Sect. 3.

On the other hand, SCP03 utilizes the “Encrypt-then-MAC” (EtM) method
which is proved to satisfy standard security notions: confidentiality (IND-CPA)
and integrity of messages. We note that EtM is ill-suited to formalize all the
power of SCP03. In this paper, we prove that SCP03 protects against a wider
range of attacks, thanks to its stateful decryption. Of particular value, we prove
that it withstands replay attacks and that any secret subversion of SCP03 for
malicious goals can be detected. The latter is an important feature, since the
absence of source code might cast doubts on the trustworthiness of smart cards.

1.3 Paper Outline

The rest of the paper is structured as follows: Sect. 2 gives background infor-
mation on GlobalPlatform and reviews some classical definitions. In Sect. 3, we
introduce the attack against SCP02 and demonstrate how it could be exploited
in practice. Sections 4 and 5 presents our provable security results of SCP03.
We end this paper by providing some discussion and specific recommendations
related to the identified vulnerability.

2 Preliminaries

2.1 GlobalPlatform

GP card specification [23] refers to a number of technical standards that aim
to develop flexible framework for smart cards. Within the GP architecture, the
security domain (SD) controls applications on smart cards by supporting vari-
ous cryptographic functions. For the purpose of this paper, we will be uniquely
interested in secure communication, and we will be using the notion of SD as the
component containing its private key that it uses to establish secure sessions.

Secure Channel Protocol. The GP card specification defines secure channel
protocols (SCPs) to provide secure communication. Mainly designed for content
management, they are also used by applications for their sensitive operations.
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Whenever a secure session is needed, the SCP executes three steps: (1) ini-
tialization that includes entities authentication and derivation of session keys;
(2) operation in which exchanged data are protected; and (3) termination ending
the session. Our target in this paper is the encryption schemes employed dur-
ing the second step. In follows, we provide more details about the operation of
SCP02 and SCP03. SCP01 is not discussed because of its deprecation. It is worth
mentioning that all given details on SCPs come from the GP card specification
version 2.3, which is the latest version at the time of writing this paper.

2.2 Definitions

Notation. A message is a string. A string is an element of {0, 1}∗. The concatena-
tion of strings X and Y is denoted X||Y or simply XY . For a string X, its length
is represented by |X|. For an integer N ∈ N, N++ denotes the C-like ++ opera-
tor that returns the value N and then increases its value by 1. A block cipher is
a function E : Key × {0, 1}n −→ {0, 1}n, where Key is a finite nonempty set and
Ek(.) = E(k, .) is a permutation, hence invertible, on {0, 1}n. The number n is
called the block length. A tweakable block cipher (TBC) [32] extends the notion of
block ciphers. A TBC ˜E : Key×Tweak×{0, 1}n −→ {0, 1}n is a family of permu-
tations parameterized by a pair (K,T), where K is a secret key and T is a public
tweak. We define five finite nonempty sets of strings: Key, TWEAK, NONCE, MSG and
CTXT. Let K be a key, T be a tweak, N be a nonce, M be a message and C be a
ciphertext. Henceforth, unless stated otherwise, for all K, T , N , M and C, we have
K ∈ Key, T ∈ TWEAK, N ∈ NONCE, M ∈ MSG and C ∈ CTXT. We use the notation
AO to denote the fact that the algorithm A can make queries to the function O.
Hereafter, we say that the adversary A has access to the oracle O. If f is a proba-
bilistic (resp., deterministic) algorithm, then y

R← f(x) (resp., y ← f(x)) denotes
the process of running f on input x and assigning the result to y. The notation
A ⇒ x means that the adversary A outputs the value x.

Symmetric Encryption Schemes. A symmetric encryption scheme SE is
defined by three algorithms (K, E ,D), where (1) the key generation algorithm,
K, takes a security parameter k ∈ N and returns a key K. We write K

R←− K(k);
(2) the encryption algorithm, E , takes a key K and a plaintext M to produce a
ciphertext C. We write C ←− Ek(M); and (3) the decryption algorithm, D, takes
a key K and a ciphertext C to return either the corresponding plaintext M or
a special symbol ⊥ to indicate that the ciphertext is invalid. We require that
Dk(Ek(M)) = M for all M and K.

The Cipher Block Chaining (CBC) Mode. Both SCP02 and SCP03 use
symmetric encryption with the CBC mode. In CBC, each block of the plain-
text is XORed with the previous ciphertext block before being encrypted. The
first block of the plaintext is XORed with an initial value (IV). Here, we
only consider the variant where the IV is explicitly given as input. We write
C ←− Ek-CBC(iv,M) and M ←− Dk-CBC(iv, C).
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Nonce-based Symmetric Encryption. As defined by Rogaway in [39], a
nonce-based encryption nSE = (nK, nE , nD) is a symmetric scheme where both
the encryption and the decryption algorithms are deterministic and stateless.
They take an extra input called the nonce N , which is a variable that takes a new
value with every encryption. We write C ←− nEk(N,M) and M ←− nDk(N,C).

Message Authentication Schemes. Conventionally, a message authentica-
tion scheme (MAC) MA = (K, T ,V) consists of three algorithms. K is the
probabilistic algorithm for key generation. The tagging algorithm, Tk, takes a
key K and a message M to return a tag τ . The verification algorithm, Vk, takes
a key K, a message M and a candidate tag τ ′ to return a bit. We require that
Vk(M, Tk(M)) = 1 for all M and K.

Tweakable Functions. A tweakable function ˜F (., .) is a function where a
‘tweak’ is required for its computation. We write y ←− ˜F (T,M).

Standard Security Notions. We associate to any adversary a number called
its “advantage” that measures her success in breaking a given scheme. A scheme
is said secure with respect to a given security notion if all related polynomial-
time adversaries have a negligible advantage. We write AdvSN

SC (A), where A is
an adversary attacking the scheme SC regarding the security notion SN .

Definition 1 (Indistinguishability of a Symmetric Encryption Scheme (IND)).
Given a symmetric encryption SE = (K, E ,D) and a ciphertext of one of two
plaintexts, no adversary can distinguish which one was encrypted. IND can
be expressed as an experiment [4]. Let Ek(LR(., ., b)) be a left-or-right oracle
where b ∈ {0, 1}: the oracle takes two messages as input, m0 and m1, where
|m0| = |m1|, and returns C ← Ek(mb). The adversary submits queries of the
form (m0,m1) to the oracle, and must guess the bit b, i.e. which message was
encrypted. This security notion is often called IND-CPA, where CPA repre-
sents chosen-plaintext attacks. For an adversary AE , the advantage is defined as
Advind-cpa

SE (A) =
∣

∣Pr[AE ⇒ 1 | b = 1] − Pr[AE ⇒ 1 | b = 0]
∣

∣. There is a stronger
security notion associated to IND that is called IND-CCA (CCA stands for
chosen-ciphertext attacks). In the IND-CCA experiment, besides the encryption
oracle, the adversary has access to a decryption oracle Dk(.), so that she can
choose any ciphertext and obtain its plaintext. There is one restriction for using
Dk(.): the adversary cannot ask to decrypt ciphertexts that were previously gen-
erated by the encryption oracle, otherwise a trivial attack is possible.

Definition 2 (Strong Unforgeability (SUF-CMA)). This notion was adapted by
Bellare et al. [5] from the definition of security of digital signatures. Given a mes-
sage authentication scheme MA = (K, T ,V), we consider a game in which the
adversary makes arbitrary queries to a tagging oracle Tk as well as a verification
oracle Vk. The adversary AT ,V wins (outputs 1) if she can find a pair (M, τ) such
that Vk(M, τ) = 1, but τ was never returned by Tk as tag of M . The advantage
of A is defined as Advsuf-cma

MA (A) = Pr[AT ,V ⇒ 1].
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Definition 3 (Integrity of Ciphertext (INT-CTXT)). Defined in [8], this notion
requires that no adversary be able to produce a valid ciphertext which the
encryption oracle had never produced before. Given an encryption scheme
SE = (K, E ,D), we consider a game in which the adversary has access to an
encryption oracle Ek(.) and to a decryption one Dk(.). The adversary AE,D wins
(outputs 1) if she can find a ciphertext C, such that (1) it was not produced
by Ek(.) and (2) it does not decrypt to ⊥. The advantage of A is defined as
Advint-ctxt

SE (A) = Pr[AE,D ⇒ 1].

Definition 4 (Stateful Pseudorandom Function (sPRF)). Let F = {Fk : K ∈
K(k)} where Fk is a deterministic stateful function mapping l-bit strings to l′-bit
strings for each K ∈ K(k). Let RS be a stateful random-bit oracle. This means
that the output of RS depends on its state. Indeed, given a message M ∈ {0, 1}l,
RS(M) returns two different l′-bit random strings for two subsequent calls. The
goal is that no adversary A can distinguish whether she is interacting with a
random instance of F or with its oracle RS . A’s advantage is Advsprf

F (A) =
∣

∣Pr[AF ⇒ 1] − Pr[ARS ⇒ 1]
∣

∣.

Definition 5 (Indistinguishability from Tweakable Random Bits under CPA
( ĨND-CPA)). Here, we present a variant of the distinguishing concept defined
for tweakable functions and presented in [10]. We define ˜IND-CPA as follows. Let
˜F be a tweakable function mapping pairs of (t, l)-bit strings for each K ∈ K(k).
Let ˜R be a tweakable random-bit oracle from {0, 1}t × {0, 1}l to {0, 1}l′ . The
goal is that no adversary A can distinguish whether she is interacting with a
random instance of ˜F or with its oracle ˜R. The advantage of A is defined as
Adv

˜ind-cpa
˜F

(A) =
∣

∣

∣Pr[A ˜F ⇒ 1] − Pr[A ˜R ⇒ 1]
∣

∣

∣.

3 Secure Channel Protocol ‘2’

3.1 Description

SCP02 is the recommended protocol in the GP specifications. It is built upon
symmetric encryption based on block ciphers, hence the need of secret keys and
padding data. Informally, it uses “Encrypt-and-MAC” construction, wherein the
message is both encrypted and integrity protected (by using a MAC algorithm).
The MAC value is appended to the encrypted message to produce the ciphertext.

In more detail, padding is first added to the message and a MAC tag is
computed over the resulted data. Then, the payload is encrypted after stripping
off the MAC padding to replace it by a payload one. Padding is done with binary
zeroes started by 0x80. Figure 1 schematically shows the ciphertext format.

Concerning the schemes in use, SCP02 mandates to encrypt data using
triple DES in CBC mode [26] with no IV, namely IV of binary zeroes (refer to
Sect. E.4.6 in [23]). As for MAC computing, it uses a chained version of ISO9797-
1 MAC algorithm 3, which includes a CBC-MAC processing with a simple DES
and a Triple DES computation for the last block of the message. As a security
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Fig. 1. Ciphertext Generation by SCP02. Grey boxes, i.e. ‘MAC padding’, are not
included in the ‘encrypt’ operation.

enhancement, the last valid MAC tag is DES-encrypted before being applied to
the calculation of the next MAC.

We note that both schemes are vulnerable. Indeed, authors in [19] perform
a side-channel attack to defeat the ISO9797-1 MAC algorithm 3. Their attack
allows one to recover the secret key used for the MAC computation. The con-
sequences of such attack are limited for the reason that SCP02, like any SCP,
generates the MAC tag using a temporary session key. Therefore, we do not
consider this attack in the rest of the paper. In the sequel, we describe how an
attacker might exploit the absence of random IVs to recover encrypted messages.

3.2 Try-and-Guess Attack

It is easy to see that for a fixed iv the CBC encryption Ek-CBC(iv, .) is a stateless
deterministic function of the key K. Indeed, it always yields the same ciphertext
when encrypting the same message multiple times (using the same key). This
has both theoretical and practical consequences.

Theoretically, it violates the security goal IND-CPA. An adversary can tell
which message was encrypted after only two queries: the first query contains the
same plaintext M twice, while the second one includes M together with another
plaintext. The adversary succeeds with a probability 1, since if M was encrypted,
the encryption oracle would output the same result as for the first query. We
note that the adversary succeeds due to the fact that the IND-CPA experiment
does not constrain the adversary from submitting queries of the form (M,M) to
the encryption oracle Ek(LR(., ., b)).

In practice, an eavesdropper observing the stream of ciphertexts is able to
determine whether two ciphertexts come from the same message. Better yet,
the eavesdropper can detect whether two messages share the same prefix. This
could be useful to study the structure of the encrypted stream by recognizing
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the presence of the same data multiple times. Now, we turn the above scenario
into a more serious attack.

Consider an adversary A who can mount a chosen-plaintext attack. A starts
by observing a ciphertext C (=Ek-SCP02(M)). Recall that the goal of A is to
find M . A achieves her goal by repeatedly trying all possible values for M until
the correct one is identified. For instance, if the adversary knows that M is one
of N possible values, then she can determine the actual value of M after N/2
(on average) guesses. We describe the algorithm of A as follows.

Algorithm. AEk-SCP02(.)

1: Get C from eavesdropping
2: found ←− false

3: repeat
4: M ′ ←− guess(C)
5: C′ ←− Ek-SCP02(M ′)
6: if C = C’ then
7: found ←− true

8: end if
9: until found = true

10: return M ′

where guess is a function that takes a ciphertext C as input and returns
one possible decryption of C for each call. We notice that the adversary keeps
on making guesses until finding the message that encrypts to the eavesdropped
ciphertext. Therefore, this theoretical attack is efficient against data with limited
values and thus of low entropy, but it is worthless in case the exchanged data
takes random values or their format is not known in advance.

We acknowledge that Try-and-Guess attack (TaGa) as outlined above has
been previously suggested in other contexts (see [2,12,14]). Nevertheless, we
believe that there is value in reiterating the discussion about this security flaw.
The fact that the de facto standard of the sensitive industry of smart cards is still
vulnerable to such attacks is of great interest. It indicates how the security com-
munity is divided between those designing theoretical cryptosystems and those
implementing them in the real-world. We hope that our work would constitute
a step towards bridging this gap.

In view of the ongoing popularity of SCP02, we believe that this vulnerability
has not been identified yet. To the best of our knowledge, our work is the first
one to apply TaGa in the context of GP specification for smart cards.

3.3 Plaintext Recovery Against Smart Cards

Here, we illustrate the fallout of TaGa by a theoretical, yet real-world, attack
scenario. Our attack applies to smart cards following the GP model for content
management.
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Actors. We define four actors to describe the plot of the attack: (1) a trusted
service manager (TSM) who owns a security domain on a smart card; (2) a
victim who uses the said smart card to execute some critical services; (3) an
honest service provider offering a sensitive service to the victim (e.g. payment);
and (4) a malicious service provider that offers some service to the victim, but
mainly aims to compromise the other services.

Threat Model. The intent of the attacker is to recover some sensitive data
related to applications installed on smart cards.

For this purpose, we assume that the adversary is capable of installing an
application on the targeted smart card. Any service provider does have this abil-
ity via a TSM. In addition, the application which the adversary is supposed to
install includes no harmful behaviors. In particular, it does not attempt to attack
the card system. Moreover, we assume that the adversary partially controls all
communications with the card: she can drop and eavesdrop any exchanged mes-
sage. Finally, we suppose that the adversary is targeting a well-protected card,
and thus no direct attack is possible. This implies several assumptions. First, the
card system shall contain no logical security flaw. Second, the card shall imple-
ment the appropriate countermeasures to withstand hardware attacks. Third,
its security domains shall have been created and personalized with random keys.
We emphasize that these assumptions are highly plausible for the smart card
industry where products undergo extensive verification tests [36].

To sum up, in order to succeed her attack, the adversary should succeed in
recovering the data while being transferred between the card and the TSM. This
implies to break the encryption scheme implemented by the security domain.
Being remote and software-only, our model represents a new kind of threat,
since most related work involve some sophisticated hardware attacks [1,25]. Our
model provides several advantages over those defined in the literature, since it
concerns a large number of smart cards regardless of their manufacturers. Indeed,
our attack solely involves details defined in the GP card specifications which are
common to all GP compliant cards.

Attack Workflow. We suppose that the attacker has already convinced the
TSM to install her application. The attack is structured into two phases.

During the first phase, the honest service provider needs to personalize her
application with some secret data. She sends her query to the TSM that is
responsible to carry out the secure communication to the smart card. The mali-
cious provider detects this event and reacts accordingly. She starts by asking the
TSM to send some dummy query to the smart card. Thus, the TSM shares the
established secure session with the two service providers. Afterward, the attacker
intercepts the encrypted messages, grabs that of the honest service provider, and
drops hers (easily recognizable by, for instance, its header).

As for the second phase, the attacker makes some guess, asks the TSM to
encrypt it, and then intercepts the produced ciphertext which she discards when-
ever the guess was wrong. The attacker repeats this until she succeeds.
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One technical issue might rise by this scenario: SCP02 instructs to double-
encrypt sensitive data by the TSM. Data are firstly encrypted by ECB (Elec-
tronic Code Book) mode before applying the encryption of the secure channel.
We argue that this has no impact on our attack, since the overall encryption
remains stateless and deterministic. Indeed, ECB is deterministic, and the com-
position of two deterministic functions is clearly deterministic.

3.4 Discussion About Theoretical Feasibility

Several conditions must be met before the attacker can successfully recover some
sensitive data. Below, we present these conditions and discuss their relevance.

Using One Common Session. First and foremost, the attacker must encrypt
her test cases with the same key that encrypts the data to be recovered. This sup-
poses that the TSM shares a secure session between different service providers.
Some might argue that this is not a trivial requirement, and therefore our attack
scenario cannot be mounted in practice. However, we argue that session sharing
is not uncommon for three reasons. First, there is no mention in the specifica-
tions that could be understood as it is bad practice to share sessions or even SD.
Second, SCP02 generates its session keys by encrypting some constants concate-
nating to a 2-byte counter. Thus, the TSM must change its master key after only
216 sessions, which makes the TSM very eager to optimize the opening of secure
sessions. Third, being expensive, the TSM is also eager to reduce the number of
its leased SDs. Thus, it might install several applications into the same SD for
the service providers that are not willing to pay the cost of having their own SD.

Synchronization. The TSM accepts to continue sending the attacker queries
without receiving any acknowledgment. As a matter of fact, this mode of asyn-
chronous communication is often employed for optimization. Indeed, the trans-
mission rate of smart cards is slow [38]. Therefore, the TSM usually pushes all
the commands to the terminal. The terminal forwards them to the associated
card, and then collects all the returned values to send them back to the TSM.
Such method of communication helps improve not only the communication time,
bu also the undetectability of the attack, since the attacker application needs
not to secretly include a special mode to manage all the sent commands during
a session of TaGa. The attacker just intercepts and drops them.

Low-Entropy Data. This requirement is essential to succeed the Try-and-
Guess attack. Low-entropy data are not rare in the context of smart cards.
First, applications on smart cards often process enumerated variables with lim-
ited choices. This includes variables representing numerical values (e.g. amount
of money), since integers are generally coded by two bytes in smart cards (JavaC-
ard v2 [11] only supports signed short as numerical type). In practice, 4-byte
PIN codes (≤10, 000 choices) are also considered as low-entropy data. Second,
despite the length of plaintext, the format used for numerous card applications
is quite predictable. Data, like those of GP commands [23] and the EMV stan-
dard [17], are often structured with ASN.1 BER-TLV [27]. Such a format contains
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at least two public bytes: the tag value and the data length which the adversary
already knows. In addition, the padding in SCP02 is constant and public. We
illustrate by an example. The attacker wants to know how much money the user
has provisioned her payment application. If the payment application is GP com-
pliant, the provisioning command will be the GP command Store Data. Thus,
the plaintext to be recovered is of the form:

Tag(1 byte) || Length(1 byte) || Value(2 bytes) || Padding(4 bytes)

Within these eight bytes, the only bytes to be guessed are those of the Value.
Therefore, there are no more than 215 = 32, 768 choices, due to the fact
that money should always remain positive. In practice, much fewer queries
are required, since specific amounts of money are often suggested for account
recharge.

4 Secure Channel Protocol ‘3’

4.1 Description

SCP03, published as an amendment to card specification 2.2 [22], defines a new
set of cryptographic methods based on AES. Similar to SCP02, it requires secret
keys and padding, since it relies on block ciphers. SCP03 uses the “Encrypt-
then-MAC” (EtM) method in which the ciphertext is produced by encrypting
the message and then appending the result of applying the MAC scheme to the
encrypted message. Refer to Construction 1 for more details about SCP03.

Construction 1 (SCP03 Algorithms for Encryption and Decryption). Let Ek

be an l-block-cipher and let CBC[Ek] = (K-CBC, E-CBC,D-CBC) be a CBC
encryption scheme that explicitly takes the iv vector as input. Let MA =
(K′, T ,V) be a message authentication scheme. Let padding be a stateless deter-
ministic encoding scheme and let Len be a function returning the length of its
input. For the sake of clarity, we do not include padding in the described algo-
rithms. For M ∈ {0, 1}ln with the variables counter and chained properly
initialized, the scheme SCP03-EtM = (K, E ,D) is defined as follows:

Encryption Ek(M)

1: iv ←− Ek1(counter++)
2: C ←− Ek1-CBC(iv,M)
3: C ′ ←− Len(C) ||C
4: τ1||τ2 ←− Tk2(chained ||C ′)
5: chained ←− τ1||τ2
6: return C ′ || τ1

Decryption Dk(C)

1: Parse C as Len(C ′) ||C ′ || τ
2: if cannot parse then return ⊥
3: C ′′ ←− chained || Len(C ′) ||C ′

4: τ1||τ2 ←− Tk2(C ′′)
5: if τ1 �= τ then
6: return ⊥ and halt
7: end if
8: chained ←− τ1||τ2
9: iv ←− Ek1(counter++)

10: return Dk1-CBC(iv, C ′)
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We highlight four points in the construction above. First, SCP03 ensures that all
the message inputs to Tk and Vk are encoded. The encoding consists of appending
the length of the input (i.e. C). Such encoding makes the set of inputs ‘prefix-
free’, which means that no input can be the prefix of another one. This is an
important requirement, since many MAC schemes, like CBC-MAC [5], are secure
only for prefix-free set of inputs. Second, we notice that SCP03 ends the opened
secure session when a decryption fails. This approach of “halting state” makes
SCP03 vulnerable to denial-of-service attacks. However, it is effective against
chosen-ciphertext attacks, since all the ensuing ciphertexts will not be decrypted,
and therefore a new session with new keys has to be re-negotiated. This makes
such attacks more detectable and less likely to succeed. Third, we do not include
the padding method of SCP03 (recommended in ISO/IEC 10116:2006 [26]), since
Paterson et al. prove that padding has no negative impact on security when it
is used in encryption schemes following the EtM construction (like SCP03) [37].
Fourth, the MAC construction is quite peculiar: only half of the MAC (i.e.
8 bytes) is included with the ciphertext, and the remainder is reconstructed
during MAC verification. The other half is somehow used as a ‘state’ between
the sender and the receiver. To the best of our knowledge, GlobalPlatform has
never provided the rationale behind this unusual construction that complicates
the analysis of SCP03. However, we can plausibly assume that this choice was
made to reduce the communication overhead incurred by SCP03. Indeed, the
transmission rate with the card is low and it greatly increases with respect to
the number of the communicated packets (as a matter of fact, the packet length
is limited to 255 bytes) [38]. Therefore, despite being so small in other contexts,
the overhead of transferring some extra 8 bytes might not be negligible in the
case of smart cards.

4.2 Security Models

At first glance, SCP03 seems to fall into the EtM paradigm. Naturally, this raises
no question regarding its security, since its generic security is proved in [8]. Here,
we prove that SCP03 offers more than the standard security notions.

The construction of SCP03 described in Sect. 4.1 brings out three points
that should be underlined. First, both the encryption and decryption algorithms
involve the use of two variables that maintain their values and get updated after
each call. These two variables must be ‘in-sync’ between the sender and the
receiver, otherwise Dk(.) returns ⊥. Second, the encryption of messages could
be seen as a stateful nonce-based CBC encryption scheme. Third, the chained
variable serves much the same purpose that a tweak does. Taking into considera-
tion these three notes, we can turn the EtM construction of SCP03 into another
composite. We start by introducing the two underlying blocks that will compose
our new equivalent construction of SCP03.

Analyzing SCP03 via a New Construction.
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Definition 6 (Stateful Nonce-based Symmetric Scheme (Sf-nSE)). Let nSE =
(nK, nE , nD) be a nonce-based encryption scheme. Let counter be a static vari-
able initialized by 0 and which maintains its value between calls. For a message
M , we define the associated stateful scheme Sf-nSE = (nK-Sf, nE-Sf, nD-Sf) as
follows: nEk-Sf(M) = nEk(counter++,M) and nDk-Sf(C) = nDk(counter++, C).

Definition 7 (Tweak Chaining MAC (T C- ˜MA)). Let ˜Fk : TWEAK × MSG −→
TWEAK be a tweakable MAC function for all key K ∈ Key. Then, we define the
associated chaining scheme T C- ˜MA = (˜K, ˜T , ˜V):

Tagging ˜Tk(M)

1: τ1||τ2 ←− ˜Fk(chained,M)
2: chained ←− τ1||τ2
3: return τ1

Verification ˜Vk(M, τ)

1: τ1||τ2 ←− ˜Fk(chained,M)
2: b ←− [τ1 = τ ]
3: chained ←− τ1 || τ2
4: return b

Construction 2 (Stateful Nonce-based Encrypt-then-Tweak (Sf-nEtTw)). Let
Sf-nSE = (nK-Sf, nE-Sf, nD-Sf) be a stateful nonce-based symmetric scheme.
Let (Enc,Dec) be a prefix-free encoding scheme. Let T C- ˜MA = (˜K, ˜T , ˜V) be
a tweak chaining MAC. Given a message M , we define the composite stateful
nonce-based Encrypt-then-Tweak scheme Sf-nEtTw = (˜K-Sf, ˜E-Sf, ˜D-Sf):

Encryption ˜Ek-Sf(M)

1: C ←− nEk1-Sf(M)
2: C ′ ←− Enc(C)
3: τ ←− ˜Tk2(C ′)
4: return C ′ || τ

Decryption ˜Dk-Sf(C)

1: Parse C as C ′ || τ
2: C ′′ ←− Dec(C ′) or return ⊥
3: if ˜Vk2(C ′, τ) �= 1 then
4: return ⊥ and halt
5: end if
6: return nDk1-Sf(C ′′)

Now, let’s see if the Construction 1 actually implies the definition of
Construction 2. We start by examining whether the SCP03 operation
Tk(chained ||C) is indeed a secure tweakable MAC function. We notice that the
MAC computation in SCP03 is based on CMAC as specified in [16]. As men-
tioned by the author, CMAC is equivalent to OMAC that is defined in [28]. We
rely on the result of [10] in which authors prove that OMAC(T ||M) is an ˜IND-
CPA tweakable extension of OMAC. Hence, Tk(chained ||C) = ˜Fk(chained, C),
where ˜Fk is a tweakable function. Then, we investigate the security of the SCP03
encryption scheme that could be seen as a stateful variant of CBC1 recommended
by the NIST in [15] and broken in [39]. CBC1 is a nonce-based scheme that
encrypts the nonce to use it as IV. Unlike the insecure CBC1, the stateful CBC1
is IND-CPA secure. The intuition behind this is that attacks against CBC1
generally involve a craftily chosen nonce, and therefore they are not applicable
against the stateful CBC1 where nonces are taken as a counter. A full proof is
given in Theorem 17 in [4].
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Security Notions. A new concrete security treatment is required in order to
capture the power of Sf-nEtTw. Here, we outline the security concepts that we
will use to study SCP03 and that are formalized by Bellare et al. in [6,9].

Definition 8 (Indistinguishability Under Stateful CCA (IND-SFCCA)). Con-
ventionally, we consider an experiment in which the adversary A has access to
a left-or-right encryption oracle Ek(LR(., ., b)) and a decryption oracle Dk(.). Dk

returns the result of the decryption when A makes an out-of-sync query. A query
is out-of-sync if it satisfies one of these conditions: (1) there are more queries to
the decryption oracle than to the encryption one; (2) the ciphertext inside the
decryption query is different from the last one computed by Ek(LR(., ., b)). As
long as A does not make out-of-sync queries, Dk updates its internal state, but
returns nothing.

Definition 9 (Integrity of Stateful Ciphertext (INT-SFCTXT)). Here, we con-
sider an experiment in which the adversary A has access to an encryption oracle
Ek(.) as well as a decryption oracle Dk(.). The scheme is INT-SFCTXT secure
if for all polynomial-time adversaries, it is hard to find an out-of-sync C, such
that Dk(C) �= ⊥ and C was not produced by Ek. Similarly to IND-SFCCA, Dk

updates its internal state and returns nothing if no out-of-sync query is sent.

Definition 10 (Algorithm-Substitution Attacks (ASA)). Motivated by the
potential threat of subverting implementations of cryptographic algorithms,
Bellare et al. in [9] have recently defined ASA security by identifying two adver-
sarial goals – conducting surveillance and avoid detection. In the ASA experi-
ment, given user’s key K and a subversion key ˜K, the adversary B (also called
big brother) wants to subvert the encryption algorithm Ek by another one ˜E

˜k.B requires that the subversion be both successful and undetectable. Here, we
focus solely on the surveillance goal (SURV). SURV means that from observing
ciphertexts, B can compromise confidentiality. Stated formally, SURV is defined
as a classical distinguishing experiment when given oracle access to one of these
two algorithms (i.e. Ek and ˜E

˜k). Indeed, B, who has access to K but not to ˜K,
is required to distinguish Ek from ˜E

˜k. We say that an encryption scheme is ASA
secure if no adversary B can succeed the SURV distinguishing game.

Definition 11 (Unique Ciphertexts (UQ-CTXT)). Following their work to
defeat ASA, Bellare et al. define the notion of ‘Unique Ciphertexts’ as follows.
Let SE = (K, E ,D) be a symmetric encryption scheme. Given a secret key K, a
message M , and a state τ , let CSE(K,M, τ) be the set of all ciphertexts such that
Dτ

k (C) (also denoted Dk(Cτ )) returns M . We say that SE has unique ciphertexts
(i.e. UQ-CTXT secure) if the set CSE(K,M, τ) has size at most one for all K,
M , τ . Stated differently, for any given key, message and state, there exists at
most one ciphertext that decrypts to the message in question.

Result 4.1 [Unique Ciphertexts =⇒ ASA Resilience [9]]. In other words, let
SE = (K, E ,D) be a unique ciphertext symmetric encryption scheme, and let
B be a SURV adversary. Then, B cannot succeed the SURV experiment; which
means that SE is resilient to ASA.
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5 SCP03 Security Results

We now state our security results regarding SCP03. We provably show that
SCP03 protects the integrity and the confidentiality of messages against chosen-
plaintext and chosen-ciphertext attacks. In addition, it resists replay, out-of-
delivery and algorithm-substitution attacks (ASAs). Indeed, authors of [6,9]
prove that cryptographic schemes satisfying IND-SFCCA, INT-SFCTXT and
Unique Ciphertexts meet all the security notions mentioned above.

5.1 Sf-nEtTw Security Analysis

In order to prove that SCP03 is IND-SFCCA and INT-SFCTXT secure, we
start by analyzing the composite encryption scheme Sf-nEtTw. The following
proposition concerns the security properties of T C- ˜MA.

Proposition 1 (Upper Bound of Advsuf-cma

T C-˜MA(A)). Let ˜Fk : {0, 1}n × MSG −→
{0, 1}n be a tweakable function and let T C- ˜MA be its associated chaining
scheme. Let A be an SUF-CMA adversary against T C- ˜MA who queries q mes-
sages. Then, we can construct a distinguisher D against ˜F such that

Advsuf-cma

T C-˜MA(A) ≤ Adv
˜ind-cpa
˜F

(D) +
q2

2n
+

1
2n/2

+ Pr[Colq]

Proof. The proof is given in AppendixA.

We now show how schemes following the construction of Sf-nEtTw protect
their stateful integrity of ciphertext (i.e. INT-SFCTXT).

Theorem 1. (Upper Bound of Advint-sfctxt
Sf-nEtTw(A)). Let Sf-nEtTw be a scheme

of stateful nonce-based encryption Sf-nSE = (K-Sf, nE-Sf, nD-Sf) associated to
a tweak chaining MAC T C- ˜MA = (˜K, ˜T , ˜V) and a prefix-free encoding scheme
(Enc,Dec) as described in Construction 2. Let ˜Fk : {0, 1}n × MSG −→ {0, 1}n be
the tweakable MAC function related to T C- ˜MA. Consider any INT-SFCTXT
adversary A against Sf-nEtTw who asks to encrypt q messages, we can construct
an SUF-CMA adversary B against T C- ˜MA such that:

Advint-sfctxt
Sf-nEtTw(A) ≤ Advsuf-cma

T C-˜MA(B) + Pr[q-Col]

where, given a message M and a list S containing q outputs of ˜Fk, Pr[q-Col] is
the probability that ˜Fk(M) ∈ S.

Proof. The proof is given in AppendixB.

5.2 SCP03 Security Analysis

Now, we give our concrete security results for the particular case of SCP03. This
requires to compute the different collision probabilities when ÕMACk(T,M) =
OMACk(T ||M) is used as the tweakable function ˜Fk(., .) for all tweak T and
message M . Two results about OMAC collisions are stated in AppendixC.1.
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SCP03 Is both INT-SFCTXT and IND-SFCCA. We show here that
SCP03 protects its stateful confidentiality and integrity against powerful adver-
saries who can perform chosen-ciphertext attacks (CCA).

Theorem 2 (SCP03 is INT-SFCTXT Secure). Let Ek be a block cipher of
size n and let OMAC[Ek](.) be its associated OMAC scheme. Let ÕMACk(., .)
be a tweakable function defined as ÕMACk(T,M) = OMAC[Ek](T ||M) for all
tweak T and message M . Given a prefix-free encoding scheme (Enc,Dec), a state-
ful nonce-based encryption Sf-nSE = (K-Sf, nE-Sf, nD-Sf) and a tweak chaining
MAC T C- ˜MA = (˜K, ˜T , ˜V) whose tweakable MAC function is ÕMACk, we define
SCP03 to be the composite scheme formed by following the Construction 2. Con-
sider any INT-SFCTXT adversary A attacking SCP03 and asking to encrypt q

messages, we can construct a distinguisher D against ÕMAC and a negligible
function negl such that:

Advint-sfctxt
scp03 (A) ≤ Adv

˜ind-cpa

˜OMAC
(D) + negl

Proof. Since SCP03 is a composite scheme formed by following the Sf-nEtTw
construction, it satisfies the relations given in Sect. 5.1. By using Proposition 1
and Theorem 1, we can obtain that

Advint-sfctxt
scp03 (A) ≤ Adv

˜ind-cpa

˜OMAC
(D) +

q2

2n
+

1
2n/2

+ Pr[Colq] + Pr[q-Col]

where Pr[Colq] is the collision probability of the tweakable function ÕMACk after
q messages and Pr[q-Col], given a message M and a list S containing q outputs
of ÕMACk, is the probability that ÕMACk(M) ∈ S.

Now, we use the following lemma to conclude our proof.

Lemma 5.1. Given n ∈ N, there is a negligible function negl such that:

q2

2n
+

1
2n/2

+ Pr[Colq] + Pr[q-Col] ≤ negl

where Pr[Colq] and Pr[q-Col] are as defined above.

Proof. The proof is given in AppendixC.2.

Theorem 3 (SCP03 is IND-SFCCA Secure). Let Ek be a block cipher of
size n and let OMAC[Ek](.) be its associated OMAC scheme. Let ÕMACk(., .)
be a tweakable function defined as ÕMACk(T,M) = OMAC[Ek](T ||M) for all
tweak T and message M . Given a prefix-free encoding scheme (Enc,Dec), a state-
ful nonce-based encryption Sf-nSE = (K-Sf, nE-Sf, nD-Sf) and a tweak chaining
MAC T C- ˜MA = (˜K, ˜T , ˜V) whose tweakable MAC function is ÕMACk, we define
SCP03 to be the composite scheme formed by following the Construction 2. Con-
sider any IND-SFCCA adversaryA against SCP03, we can construct an IND-CPA
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adversary B against Sf-nSE and an INT-SFCTXT adversary F against T C- ˜MA
such that:

Advind-sfcca
scp03 (A) ≤ Advind-cpa

Sf-nSE (B) + Advint-sfctxt

T C-˜MA (F )

Proof. This theorem follows directly from the implication proved by Bellare
et al. [6]: IND-CPA ∧ INT-SFCTXT =⇒ IND-SFCCA. This means that if an
encryption scheme is both IND-CPA and INT-SFCTXT secure, then it is also
IND-SFCCA secure. Regarding the INT-SFCTXT security of SCP03, we have
just proved it in Theorem2. Now, let us consider the IND-CPA security property
of SCP03. Notice that SCP03 is a variant of Encrypt-then-MAC. Therefore, it
inherits the IND-CPA property of its encryption scheme [8]. Stated otherwise,
if the underlying encryption scheme Sf-nSE is IND-CPA secure, then SCP03 is
also IND-CPA secure, which concludes our proof.

SCP03 is ASA Resilient. Finally, we prove that SCP03 defends against ASA,
hence also against mass surveillance.

Theorem 4 (SCP03 has Unique Ciphertexts). Let ÕMACk be a tweakable
function as defined previously. Given a stateful nonce-based encryption Sf-nSE =
(K-Sf, nE-Sf, nD-Sf) and a tweak chaining MAC T C- ˜MA = (˜K, ˜T , ˜V) whose
tweakable MAC function is ÕMACk, we define SCP03 to be the scheme formed
by following the Construction 2. Then, SCP03 is UQ-CTXT secure.

Proof. Let Ci denote the ciphertext produced by encrypting the message M on
the state i. Considering the SCP03 design (see Construction 2), we have

Ci = σi || τi = nEk1-Sf(M) || ˜Tk2(σi)

where K1 and K2 are two independent keys. Now, we study the probability of
finding a triplet (K = K1||K2,M, i) so that |Cscp03(K,M, i)| > 1. By definition,
this is equal to the probability of finding a ciphertext C ′

i such that: (1)C ′
i �= Ci

and (2)Dk-SCP03(C ′
i) = M ′, where M ′ = M . We distinguish two cases.

Case 1 (σ′
i �= σi). Here, we prove that this case and the event of finding C ′ are

contradictory, thereby proving that Pr[case 1] = 0. Indeed, recall that nSE =
(K, nE , nD) encrypts messages using a deterministic algorithm. Therefore, as a
matter of fact, for a fixed nonce N , nEk1(N,M1) �= nEk1(N,M2) implies that
M1 �= M2. Also, we notice that the definition of the set Cscp03 involves that the
associated encryption scheme Sf-nSE = (nK-Sf, nE-Sf, nD-Sf) has called nSE
algorithms with the same nonce for each state i. Then, the event σ′

i �= σi entails
σ′

i = nEk1-Sf(M ′) �= nEk1-Sf(M) = σi, which implies M ′ �= M . This concludes
our proof, since the definition of Cscp03 includes that M ′ = M .

Case 2 (σ′
i = σi). Since C ′

i �= Ci, this case implies that τ ′
i �= τi. Fol-

lowing the same argument of case 1, we prove that this case and the event
of finding C ′ are contradictory, thereby proving that Pr[case 2] = 0. Indeed,
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recall that the tweakable MAC function ÕMACk2 generates its tag using a
deterministic algorithm. Therefore, as a matter of fact, for a fixed tweak T ,
ÕMACk2(T, σ1) �= ÕMACk2(T, σ2) implies that σ1 �= σ2. Similarly, the definition
of Cscp03 involves that the associated chaining MAC scheme T C- ˜MA = (˜K, ˜T , ˜V)
has called ÕMACk2 with same tweak for each state i. Then, the event τ ′

i �= τi

entails τ ′
i = ˜Tk2(σ′

i) �= ˜Tk2(σi) = τi, which implies σ′
i �= σi. This concludes our

proof, since the definition of case 2 includes that σ′
i = σi.

6 Discussion

An important aspect of any cryptanalysis is what it implies in practice. Our study
reveals interesting facts about the family of SCP. In particular, two protocols
are concerned: SCP02 and SCP03. Here, we discuss our findings.

While discussing our results, we are aware that provable security is not a silver
bullet for security, as authors of [13] notice that several cryptographic schemes
have been proved secure and then broken some years later. We argue that this
fact does not nullify the interest of such a powerful security tool. Indeed, despite
being imperfect, provable security has greatly helped ruling out a large class of
attacks in security protocols. In addition, although its findings should not be
taken as absolute, they constitute a general direction that aims at designing
better cryptographic schemes.

The vulnerable, yet popular, SCP02. In Sect. 3, we see that, unlike exten-
sive evaluation, provable security for certified products provides a strong guar-
antee of security without promoting complexity. Indeed, we demonstrated a the-
oretical attack against the protocol SCP02. In addition, we showed how some
technical details about SCP02 make the attacker likely to succeed in the con-
text of smart cards. Surprisingly, the presented attack arises from a fundamental
design flaw in SCP02, which is the use of CBC mode with no IV.

It is not clear that why the SCP02 designers made such a choice. However,
we might suspect that the reasons behind this are twofold. First, when the
first variant of SCP02 was published in 2000, cryptographic results about using
CBC mode with stateful nonce-based IVs were not well-established yet. Second,
designers chose not to use random IVs in order to reduce the overhead of SCP02.
Indeed, a random IV must be appended to the sent ciphertext, thereby increasing
the communication overhead with the smart card. In addition, the implemen-
tations of CBC mode in smart cards have been optimized to pre-generate some
objects during the initialization of the cipher object. The problem is that choos-
ing the IV is uniquely done together with the choice of the encryption key during
the initialization phase. Therefore, constantly modifying the IV implies constant
initialization of the cipher object that can no longer performs its optimization in
advance. Thus, we argue that the real challenge of SCP02 was to achieve good
performance in a limited environment, like a smart card, and still ensuring secu-
rity. In the complex GP card specifications, the tiny detail of ‘just keep using



Cryptanalysis of GlobalPlatform Secure Channel Protocols 81

the same IV’ might have passed unnoticed, especially that to the best of our
knowledge, no formal analysis of SCP02 has been performed before.

Furthermore, identifying such a well-known vulnerability tells us something:
smart cards industry has difficulty in catching up with the advances on cryp-
tography. Finalized in 2003, SCP02 keeps existing, while other protocols have
continuously been updated. Ironically, the stringent requirements of smart cards
about security are both its strongest and weakest point: they do not make this
technology only secure and trustworthy, but also so slow to improve. We illustrate
by three examples. First, EMV [17], which is the actual standard of payment,
still mandates the use of Triple DES with two independent keys instead of using
AES (see Sect. 5.7 in the EMV Card Personalization Specification [18]). Second,
numerous card manufacturers continue relying on SCP02, although SCP03 was
published in 2009. For instance, NXP instructs the support of SCP02 and makes
it optional for SCP03 for all its JCOP products that are certified EAL5+ [35].
Third, the SCP family (i.e. SCP02 and SCP03) still requires encrypting data
using the CBC mode. As a matter of fact, Mitchell in [34] (and more recently
Rogaway in [40]) promotes abandoning CBC for future designs.

The powerful SCP03. Introduced as an amendment in 2009, we have ana-
lyzed SCP03 in Sects. 4 and 5 and have found that it provably satisfies strong
security notions. Of a particular interest, we proved that SCP03 resists against
the algorithm substitution attacks (ASAs) that could lead to secret mass surveil-
lance [9]. This result is significant, as it increases the trust in the closed industry
of smart cards. The advantages offered by SCP03 are clear: it is provably secure
and it is being gradually implemented by card manufacturers. It is true that
the added security comes with additional cost: maintaining a 2-byte counter
(i.e. state) per session as well as one more block cipher invocation per message
(recall that the counter is encrypted in order to be used as an IV). However,
modern smart cards include a dedicated cryptographic co-processor, hence the
incurred overhead is very small.

Standards are particularly susceptible to significant modification. Therefore,
we feel that the recently created GP ‘Crypto Sub-Task Force’ [24] may have a
hard time justifying to wholly reconsider the design of the SCP family. Therefore,
we advocate the deprecation of SCP02 as soon as possible and the switch over
to SCP03 that should be included in the main specification instead of being an
amendment. Our goal is to provide enough information to the GP community
so that the Crypto Sub-Task Force can take an informed decision when deciding
how to fix the current problems with SCP02. At this point, a quote from [6]
seems appropriate: “in the modern era of strong cryptography, it would seem
counterintuitive to voluntarily use a protocol with low security when it is possible
to fix the security (...) at low cost”.

A Proof of Proposition 1

We start by providing three definitions that we will use throughout our proof.
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MAC Function. Here, we just recall how a MAC scheme is related to its
MAC function. Let MA[F ] = (K, T ,V) be a MAC scheme based on the MAC
function F . F takes as input a key K and a message M to output a tag τ . The
tagging algorithm Tk and the verification algorithm Vk are defined as follows:

Tagging Tk(M)

1: τ ←− Fk(M)
2: return τ

Verification Vk(M, τ)

1: if Fk(M) = τ then
2: return 1
3: else
4: return 0
5: end if

Truncated MAC. Let T : {0, 1}n −→ {0, 1}nT be a transformation function.
Let MA[F ] = (K, T ,V) be a MAC scheme based on the MAC function F . We
define the transformed MAC scheme ToMA = (K, T oT , T oV) that uses ToF as
its MAC function, where o denotes the composition operator. A truncated MAC
is a transformed MAC in which T (.) is the MSBl(.) function that takes a message
as input and returns the l most significant (i.e. left-most) bits.

Tweak Chaining MAC2 (T C- ˜MA2). Let ˜Fk : {0, 1}n × MSG −→ {0, 1}n be a
tweakable function and let T C- ˜MA be its associated chaining scheme. We define
T C- ˜MA2 as T C- ˜MA except that T C- ˜MA2 operates on the entire tag returned
by ˜F (., .) and not only on its half as in T C- ˜MA. Stated differently, T C- ˜MA2 is
a MAC scheme in which the MAC function F2 is defined as follows:

MAC Function F2k(M)

τ ←− ˜Fk(chained,M)
chained ←− τ
return τ

where chained is a static variable (i.e. maintains its value between calls)
that was initialized with 0n.

Having thus presented the above definitions, we are now on a position to make
our proof. Let ˜Fk : {0, 1}n × MSG −→ {0, 1}n be a tweakable function and let
T C- ˜MA2[F2] be its associated tweak chaining MAC2 scheme. We notice that
the T C- ˜MA = (˜K, ˜T , ˜V) scheme presented in Definition 7 can be seen as the
truncated MAC of T C- ˜MA2[F2], where T (.) = MSBn/2(.). Thus, we denote the
MAC function of T C- ˜MA as ToF2.

Consider any polynomial-time SUF-CMA adversary A against T C- ˜MA.
Recall that A can make two types of queries: tagging queries and verification
queries. We suppose that A makes q tagging queries. We associate two adver-
saries to A: an sPRF adversary B against the MAC function F2 (or equivalently
against T C- ˜MA2[F2]), and an ˜IND-CPA distinguisher D against the tweak-
able function ˜Fk. Now, we state the following lemmas in which we define how
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the adversaries A, B and D interact between each other and from which the
Proposition 1 follows directly.

Lemma A.1. Advsuf-cma

T C-˜MA(A) = Advsprf
F2 (B) + 1/2n/2

Lemma A.2. Advsprf
F2 (B) ≤ Adv

˜ind-cpa
˜F

(D) + Pr[Col] + Pr[Colq]

Lemma A.3. Pr[Col] ≤ q2/2n

Proof of LemmaA.1: Recall that B has access to the oracle O and her goal is to
distinguish whether O is the MAC function F2 or the stateful random oracle RS .
Recall also that the MAC function of T C- ˜MA is ToF2. The algorithm B is
described below:

Algorithm. BO

1: repeat
2: if A queries (M) then
3: τ ←− ToO(M)
4: output τ to A
5: end if
6: if A queries (M, τ) then
7: b ←− [τ = ToO(M)]
8: output b to A
9: end if

10: until A ends
11: if A forges then
12: return 1
13: else
14: return 0
15: end if

We can see that B perfectly simulates the answers to A. In addition, B returns
1 (i.e. guesses that the oracle O is the MAC function F2) when A succeeds in
forging a tag. Therefore, the following relation holds:

Pr[AToO forges] = Pr[BO ⇒ 1] (1)

where we use the equivalent notation in which we note that the adversary A has
access to the MAC function as oracle instead of the tagging/verification oracles.

By definition of strong unforgeability of the MAC scheme T C- ˜MA (see
Definition 2), the advantage of A is defined by the probability of her success
when she has access to the oracle ToF2. Therefore, we have:
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Advsuf-cma

T C-˜MA(A) = Pr[AToF2 forges]

= Pr[AToF2 forges] +
(

Pr[AToRS forges] − Pr[AToRS forges]
)

=
(

Pr[AToF2 forges] − Pr[AToRS forges]
)

+ Pr[AToRS forges]

=
(

Pr[BF2 ⇒ 1] − Pr[BRS ⇒ 1]
)

+ Pr[AToRS forges] (from 1)

= Advsprf
F2 (B) + Pr[AToRS forges]

Now, we examine Pr[AToRS forges], which is equal to the probability that
A forges against a MAC scheme that has ToRS as its MAC function. Recall
that RS is a random oracle. Let us suppose that (M, τ) is the forging query
that A uses to break the scheme. Therefore, the following relations holds: τ =
T (RS(M)). Thus, we conclude our proof by showing that we have:

Pr[AToRS forges] = Pr[x R←− {0, 1}n, T (x) = τ ]

=
1

2n/2

(

since T (.) = MSBn/2(.)
)

Proof of LemmaA.2: Here, we consider any sPRF adversary B against F2 and
we associate it to a particular ˜IND-CPA distinguisher D against the tweakable
function ˜Fk : {0, 1}n × MSG −→ {0, 1}n. Recall that D has access to the oracle
O(., .) and her goal is to distinguish whether O is ˜Fk(., .) or ˜R(., .), where ˜R(., .)
is a function that, on input (T,M), returns n-bit random strings. Recall also
that D is a tweak-respecting adversary (i.e. does not repeat tweak). We define
the algorithm of D as follows:

Algorithm. DO

1: t ←− 0n

2: S ←− {t}
3: repeat
4: if B queries (M) then
5: t ←− O(t, M)
6: S ←− S ∪ {t}
7: output t to B
8: if S contains duplicate values then
9: return 1

10: end if
11: end if
12: until B outputs b′

13: return b′

where S is a multiset in which values can repeat. We argue that when S
does not contain the same value twice, D is perfectly simulating B’s execu-
tion environment. This is true because ˜F (., .) is no distinguishable from the
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random oracle ˜R(., .) only against tweak-respecting adversaries. We illustrate
the importance of such a condition by an example. In our example, we take
ÕMAC(T,M) (= OMAC(T ||M)) as the tweakable function ˜F (., .). Now, we
show that B can easily see under the simulation environment that she is not
interacting with a random oracle. B knows that the initial tweak (i.e. state) is
0n and queries M1 = 0n to receive τ1 from her oracle. Then, let T be a tweak
that repeats twice. For the first occurrence of T , B queries M2 = 0n to receive
τ2 and for its second occurrence she queries M2 = 0n || τ2 ||0n to receive τ3. It
is easy to see that τ1 = τ3 when O = ˜Fk(., .) (�= ˜R(., .)). Indeed, we have

τ1 = Ek (Ek(0n))
τ2 = Ek (Ek(T ))

τ3 = Ek

(

Ek

(

�����
Ek (Ek(T )) ⊕ ��τ2

) ⊕ 0n
)

Thus, from D’s algorithm, we can see that

Pr[D˜F ⇒ 1] = Pr[BF2 ⇒ 1] + Pr[S| ˜F ]

Pr[D ˜R ⇒ 1] = Pr[BRS ⇒ 1] + Pr[S| ˜R]

where Pr[S] is the probability that the multiset S contains duplicate values.

By using the two above relations, we get

Advsprf
F2 (B) = Adv

˜ind-cpa
˜F

(D) +

Pr[Col]
︷ ︸︸ ︷

Pr[S|R] −
Pr[Colq]
︷ ︸︸ ︷

Pr[S| ˜F ]

≤ Adv
˜ind-cpa
˜F

(D) + Pr[Col] + Pr[Colq]

where Pr[Colq] is the collision probability of the tweakable function ˜F after q
messages. Thus, our proof ends.

Proof of LemmaA.3: Informally speaking, the lemma means that the set {x :
x0 = 0n, xi = R(x0, .)} has asymptotically negligible probability to include
duplicate values. Recall that q is the number of B’s queries. We start our proof
by making induction on q. For all q ≥ 1, we prove that

Pr[Col] =
q(q + 1)

2n+1
(2)

Then, we conclude our proof by noticing that q(q + 1)/2n+1 ≤ q2/2n.

Base case. When q = 1, the right side of (2) is 1/2n. Now, let’s look at the
left side. After only one call, there are two elements in S: {0n, y}, where y ←−
R(0n, .). Thus, Pr[Col] = Pr[x R← {0, 1}n, x = 0n], which is equal to 1/2n.
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Induction step. Suppose that the Eq. 2 is true for q = m − 1. Here, xi denotes
the ith element of the multiset S. After q = m calls, we have

Pr[Col] =

induction hypothesis
︷ ︸︸ ︷

Pr[Col after m − 1 calls] +Pr[xm ∈ S]

=
m(m − 1)

2n+1
+

m

2n

=
m(m + 1)

2n+1

Hence, the Eq. 2 holds for q = m, and the induction step is complete.

B Proof of Theorem1

Recall that A can make two types of queries: encryption queries and decryption
queries. We denote A’s i-th encryption query as Mi and the returned ciphertext
as Ci = σi||τi. We denote A’s i-th decryption query as C ′

i = σ′
i||τ ′

i and the
returned message as mi. We associate to A an SUF-CMA forger F against T C-
˜MA. This association is similar to the one given in the Case 1 of Theorem 4: F
generates a key K1 ∈ Key that she uses for the encryption/decryption algorithms
of Sf-nSE . We recall that the forger F has access to two oracles: a tagging oracle
˜Tk2 and a verification oracle ˜Vk2, where the key K2 is independent from K1.
Below, we describe our trivial association.

1. When A makes an encryption query M , F outputs σ ←− Enc (nEk1-Sf(M)).
Then, she queries σ to her tagging oracle ˜Tk2 and receives τ in response.
Finally, she outputs C = σ || τ to A.

2. When A makes a decryption query C = σ || τ , the forger F queries τ to her
verification oracle ˜Vk2 and receives a binary value b. If b is false, then F halts
after outputting ⊥. Otherwise, F computes nDk1-Sf (Dec(σ)) and outputs the
result to A.

3. When A wins in her INT-SFCTXT experiment, namely providing a new
valid out-of-sync decryption query C = σ || τ , then F stops and attempts to
evaluate the pair (σ, τ) in order to see whether she succeeds in her forgery.
The different cases are presented below in the proof of Lemma B.1.

Now, suppose A has made q encryption queries and d decryption ones. Let
j be the index of A’s first out-of-sync decryption query. We only consider the
first out-of-sync query because if it fails, the decryption algorithm will return ⊥
and halt for all ensuing queries (see our discussion about the approach of halting
state in Sect. 4.1). We define two events in case the A’s j-th decryption query
succeeds: (1) Col: ∃i ≤ q such that τ ′

j = τi and i �= j; (2) Bad: q ≥ j, τ ′
j = τj and

mj = Mj . We state the following lemmas from which Theorem 1 follows directly
(using Proposition 1).

Lemma B.1. Advint-sfctxt
Sf-nEtTw(A) ≤ Advsuf-cma

T C-˜MA(F ) + Pr[q-Col] + Pr[Bad]
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Lemma B.2. Pr[Bad] = 0

Proof of LemmaB.1: As said previously, A made q encryption queries before
her first out-of-sync query (Q) which is the j-th decryption query (C ′

j = σ′
j || τ ′

j).
We define the following events.

E : Q correctly verifies
E1 : E occurs and τ ′

j /∈ {τ1, ..., τq}
E2 : E occurs and τ ′

j ∈ {τ1, ..., τq}
E2,1 : E2 occurs and either q < j or τ ′

j �= τj

E2,2 : E2 occurs and q ≥ j and τ ′
j = τj

E2,2,1: E2,2 occurs and mj = Mj

E2,2,2: E2,2 occurs and mj �= Mj

If Q fails, then A cannot win any more, since the decryption algorithm will return
⊥ for any subsequent query. Therefore, Advint-sfctxt

Sf-nEtTw(A) = Pr[E]. Considering
the different events, we have Pr[E] = Pr[E1 ∨ E2,2,2] + Pr[E2,1] + Pr[E2,2,1].

Now, we study the probabilities of these events. We can see that E2,1 cor-
responds to the event Col, since it implies that τ ′

j has already been produced
before and that was not during the j-th encryption query (this includes the fact
that A might not have made j encryption queries yet). Concerning E2,2,1, it is
easy to see that it satisfies the definition of the Bad event. Consequently, we have

Advint-sfctxt
Sf-nEtTw(A) = Pr[E1 ∨ E2,2,2] + Pr[Col] + Pr[Bad]

We conclude the proof by examining Pr[E1 ∨ E2,2,2] and Pr[Col].

Pr[E1 ∨ E2,2,2]Pr[E1 ∨ E2,2,2]Pr[E1 ∨ E2,2,2]. We notice that when the event E1 ∨ E2,2,2 occurs, (i.e. the j-th
decryption oracle C ′

j = σ′
j || τ ′

j does not return ⊥), then the forger F succeeds in
finding an SUF-CMA forgery against T C- ˜MA, since the two events ensure that
the pair (mj , τ

′
j) was never produced before by the oracle ˜Tk2.

Indeed, the event E1 implies that τ ′
j has never been queried to ˜Tk2, while

the event E2,2,2 implies that the tag τ ′
j has never been obtained from querying

the oracle ˜Tk2 with σ′
j as input. This is because for any state i, the following

implication is asymptotically true (i.e. nEk-Sf(.) is injective):

Mi �= M ′
i =⇒ nEk1-Sf(Mi) �= nEk1-Sf(M ′

i)

Therefore, τ ′
j (= τj) was computed for σj = nEk1-Sf(Mj) which is different from

σ′
j (i.e. σj �= σ′

j), since σ′
j = nEk1-Sf(mj) and Mj �= mj .

Thus, we have

Pr[E1 ∨ E2,2,2] = Pr[Fforges] = Advsuf-cma

T C-˜MA(F )

Pr[Col]Pr[Col]Pr[Col]. As previously pointed out, Pr[Col] = Pr[∃i �= j such that τ ′
j = τi]. This

means that for two different states the following equality holds:

˜Tk2(Enc(nEk1-Sf(mj))) = ˜Tk2(Enc(nEk1-Sf(Mi)))
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The above relation supposes that the adversary should find a collision against
T C- ˜MA after q invocations to the ˜Tk2(.) oracle, which corresponds to find a
state i(�= j) such that the related MAC tag is equal to the one computed for
the state j. By looking at the construction of T C- ˜MA in Definition 7, we find
that Pr[Col] is equivalent to the probability of encountering a collision against
the underlying tweakable function ˜Fk2(., .). Stated differently, we have

Pr[Col] = Pr[q-Col]

where, we recall that, given a message M and a list S containing q outputs of
˜Fk2, Pr[q-Col] is the probability that ˜Fk2(M) ∈ S.

Proof of LemmaB.2: The event E2,2,1 includes all the following events: (1)
q ≥ j; (2) the decryption query C ′

j = σ′
j ||τ ′

j is out-of-sync, hence Cj �= C ′
j ; (3)

σ′
j �= σj , since τ ′

j = τj ; and (4) mj = Mj . We notice that the events 3 and 4 are
contradictory, and therefore Pr[Bad] = 0. Indeed, recall that nSE = (K, nE , nD)
encrypts messages using a deterministic algorithm. Therefore, for a fixed nonce
N , nEk1(N,M1) �= nEk1(N,M2) implies that M1 �= M2. Also, we notice that the
encryption and the decryption states were in-sync prior to the j-th decryption
query. This means that the associated Sf-nSE = (K-Sf, nE-Sf, nD-Sf) has called
nSE algorithms with the same nonce for each state. Thus, the event 3 entails
σ′

j = nEk1-Sf(mj) �= nEk1-Sf(Mj) = σj , which implies mj �= Mj . This concludes
our proof, since the event 4 is mj = Mj .

C Collision Probabilities

C.1 OMAC Collision Probabilities

Here, we state two Results proved in [28] about collisions in OMAC.

Result C.1 [Pr[Col]2]. Let Ek be a block cipher of size l and let OMAC[Ek]
be its associated OMAC scheme. For the sake of simplicity, we only consider
messages M whose length is a multiple of l (i.e. |M |/l is an integer). Given
a message M , we denote by μ the number of its blocks, namely μ = |M |/l.
Consider two messages M and M ′, then the following relation characterizes the
probability of the OMAC collision:

Pr[Col2] = Pr[Col(M,M ′)] ≤ (μ + μ′)2

2l

Result C.2 [Pr[Col]q]. Let Ek be a block cipher of size l and let OMAC[Ek]
be its associated OMAC scheme. For the sake of simplicity, we only consider
messages M whose length is a multiple of l (i.e. |M |/l is an integer). Given a
message M , we denote by μ the number of its blocks, namely μ = |M |/l. Given
a list Q of q messages, the following relation characterizes the probability of the
OMAC collision on Q:

Pr[Colq] = Pr[Col(Q)] ≤ (
∑q

i=1 μi)
2

2l
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C.2 Proof of Lemma5.1

We need to compute both Pr[Colq] and Pr[q-Col]. The case of Pr[Colq] is easy and
it can be immediately obtained from ResultC.2. Concerning the case Pr[q-Col],
it can be calculated from Result C.1. Indeed, given a message M and a list
S, Pr[Colq] can be expressed as the sum of the collision probabilities Pr[Coli2]
between M and a message Mi for all Mi ∈ S. Here, Mmax denotes any message
of maximum length and μmax denotes its number of blocks. Therefore, we have

Pr[q-Col] ≤
q

∑

i=1

Pr[Col(mmax,mi)] ≤
q

∑

i=1

(μmax + μi)2

2n

From all the relations above, we have

ε =
q2

2n
+

1
2n/2

+ Pr[Colq] + Pr[q-Col]

≤ 1
2n/2

+
q2

2n
+

(
∑q

i=1 μi)
2

2n
+

∑q
i=1(μmax + μi)2

2n

≤ 1
2n/2

+
q2

2n
+

(
∑q

i=1 μi)
2

2n
+

3qμ2
max +

∑q
i=1 μ2

i

2n

≤ 1
2n/2

+
q
(

q + (2μmax)2
)

+ (
∑q

i=1 μi)
2 +

∑q
i=1 μ2

i

2n

which is asymptotically negligible.
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Abstract. In a contactless transaction, when more than one card is
presented to the payment terminal’s field, the terminal does not know
which card to choose to proceed with the transaction. This situation is
called card collision. EMV (which is the primary standard for smart card
payments) specifies that the reader should not proceed when it detects a
card collision and that instead it should notify the payer. In comparison,
the ISO/IEC 14443 standard specifies that the reader should choose one
card based on comparing the UIDs of the cards detected in the field.
However, our observations show that the implementation of contactless
readers in practice does not follow EMV’s card collision algorithm, nor
does it match the card collision procedure specified in ISO.

Due to this inconsistency between the implementation and the stan-
dards, we show an attack that may compromise the user’s privacy by
collecting the user’s payment details. We design and implement a mali-
cious app simulating an NFC card which the user needs to install on
her phone. When she aims to pay contactlessly while placing her card
close to her phone, this app engages with the terminal before the card
does. The experiments show that even when the terminal detects a card
collision (the app essentially acts like a card), it proceeds with the EMV
protocol. We show the app can retrieve from the terminal the transaction
data, which include information about the payment such as the amount
and date. The experimental results show that our app can effectively spy
on contactless payment transactions, winning the race condition caused
by card collisions around 66% when testing with different cards. By sug-
gesting these attacks we raise awareness of privacy and security issues
in the specifications, standardisation and implementations of contactless
cards and readers.

Keywords: NFC payment · NFC phone · Contactless payment ·
Privacy attack · EMV · Card collision

1 Introduction

Near Field Communication (NFC) payment is already very popular. The statis-
tics show that as of February 2016, £1,318.3 m was spent in the UK in the month
c© Springer International Publishing AG 2016
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using a contactless card. This is an increase of 19.1 % on the previous month and
an increase of 306.8 % over the year1. Apart from contactless cards, other types
of technologies for contactless payment are suggested to the users. Examples
include mobiles, tablets, watches, bPay bands, and bPay Stickers (bpay.co.uk).
In fact, there are more than 350 different types of NFC-enabled devices on the
market now2.

NFC technology is based on Radio Frequency Identification (RFID) technol-
ogy. Security and privacy issues of RFID communication, and in particular NFC,
have been studied intensively in the literature. Contactless cards are always on
and a malicious reader in the proximity of such a device is able to trigger a
response from the card, without the user’s awareness. A number of security and
privacy violations have been reported in the literature exploiting such unautho-
rised readings [17]. More security attacks include different types of relay attacks
such as Man-in-The-Middle and Mafia attacks [18,21,30,35].

On the other hand, there are many works showing how malicious apps com-
promise user’s security/privacy by listening to different mobile sensor data via a
background process. Examples include accelerometer and gyroscope [13,15,22–
24,28,36], camera and microphone [31], light [32], and Geolocation [14]. Most of
these attacks work by accessing sensor data through a background process acti-
vated by a mobile app, which requires installation and user permission. Users
normally install many different apps without even reviewing the app permis-
sions. Thus, even if there is a permission request from the users, they normally
ignore it [14]. This behaviour leaves the doors open for the attackers to obtain
access to sensors. In this paper, we also rely on such a behaviour; we develop an
app using the phone’s NFC functionality which the user needs to install.

Contributions. In this paper, for the first time, we show that the NFC func-
tionality on the victim’s mobile phone can be used to compromise her contactless
payment activities. This happens due to a particular situation in contactless pay-
ment which is called card collision or card clash. Card collision is the situation
when more than a contactless card (or NFC-enabled device) is available in the
reader’s field at the same time. Card collision has been explained and addressed
by EMV [10] and ISO 14443 [4]3, as the two main contactless payment references
for developers to implement the contactless systems. We study these standards
and propose attacks based on our findings. In particular, the contributions are:

– We explain the race condition caused by card collision and study the
approaches suggested by EMV and ISO on this. We perform experiments to
discover the behaviour of contactless terminals when a card collision occurs.
The results show that the implementation on contactless terminals match nei-
ther EMV nor ISO.

1 theukcardsassociation.org.uk/contactless contactless statistics/.
2 nfcworld.com/nfc-phones-list/.
3 For the rest of this paper, unless noted otherwise, by ISO standard we mean ISO/IEC

14443, and by EMV standard, we mean EMV Contactless Specifications.

https://www.bpay.co.uk/
http://www.theukcardsassociation.org.uk/contactless_contactless_statistics/
http://www.nfcworld.com/nfc-phones-list/
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Fig. 1. Different card holder cases: flip wallet, back cover/stand, Opanable back cover,
sticker cover, transparent cover.

– We show that due to this inconsistency, it is possible to track the user’s con-
tactless payment activities, for instance through a malicious app. The mali-
cious app would have a chance to intercept payment messages and data if the
phone is closely located to the contactless payment card (Fig. 1). We propose
an attack vector following EMV contactless specifications by requesting the
Processing Options Data Object List (PDOL) from the terminal when the
malicious app wins the race and connects with the terminal first.

– We develop an Android app and perform experiments to support our claim.
The results show that our attack can effectively break users’ privacy and
discover the pattern of their contactless payment activities.

This research highlights vulnerabilities in the standards and implementa-
tions of contactless cards and readers when a collision occurs in a contactless
transaction.

2 Card Collision

In this section, first we present a real-world example of card collision which is
called Card Clash by Transport for London (TfL) [34]. Next, we explain the
approaches suggested by EMV and ISO to handle card collision.

2.1 Oystercard and Bank Card Clash

Card clash is a well-known phenomenon for a metro traveller. For example in
the London metro, a traveller can either use an Oystercard or a contactless bank
card4 to pay for her journey. While swiping a wallet containing Oystercard and
bank cards, the reader gets confused and does not know which card to take
payment from. This causes discomfort for the users as follows [33,34]:

– The commuter might inadvertently pay for her travel with a card she did not
intend to use.

– The reader might refuse to work under this situation and the gate won’t open.

4 In the rest of this paper unless noted otherwise, by bank card we mean contactless
payment card.
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– The passenger could be charged two maximum fares for the same journey. This
happens when the reader charges one card when she touches in and another
card when she touches out.

– Even if the reader selects the contactless bank card over Oystercards for both
start and end of journey, the passenger might end up being charged two times
since she has already paid for a weekly travelcard on the Oystercard.

The only way to find out if any card clash happened is to sign into the user
online accounts and check records of payment. If the user has been charged a
maximum fare on two separate cards for the same journey, she can apply for a
refund provided by TfL [34]. In fact, when TfL introduced card payments as an
additional payment method to paper tickets and Oystercards in September of
2014, a huge number of double payments occurred in just a few weeks. Many
of those were automatically refunded within 3–5 working days. TfL has auto-
matically handed back about £300,000 to about 50,000 customers, with refunds
averaging £5.93. Although the Card Clash issue was publicised very well, sur-
prisingly, TFL estimates that around 1,500 instances of it are occurring every
day [25]. Accordingly, different solutions have been suggested to passengers to
avoid card clash [16,20,25,33] which include:

– To choose the card that you want to pay with and take it out from the wallet.
– To register the Oystercard online, so that you can regularly check the online

account for auditing.
– To check your bank statements regularly to find out if you have been charged

on the wrong card.
– In the case of a double payment, to claim the refund by applying to the TfL

website.
– To use protective cases for your contactless cards that you do not aim to

pay with. Actually, Metro Bank gives free card protectors out to all of its
customers.

– To switch to contactless payments. TfL has fixed the problem of weekly trav-
elcards by applying them automatically both on Oystercards and contactless
bank cards. Hence, the cost would not differ that much if a passenger switches
to a contactless bank card. There are reports which show that it is even cheaper
if costumers move to contactless bank cards [29].

– To use a Barclaycard contactless bPay wristband (bpay.co.uk) and pay with
a wave of your hand. Any UK Visa or MasterCard debit or credit card can be
linked to the bPay wristband.

Among the above solutions, those which suggest to replace the Oystercard by
contactless cards or bands seem more user friendly. However, not all passengers
are happy with paying for a bPay and wearing it all the time. On the other
hand, people normally carry multiple bank cards. Hence even in the absence of
the Oystercard, other contactless cards are still subject to card clash. Therefore,
we believe that a fundamental approach is needed to overcome this real-world
problem.

https://www.bpay.co.uk/
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2.2 EMV Contactless Specifications

EMV is the primary protocol standard for smart card payments. The EMV
standards are managed by EMVCo (emvco.com), a consortium of multinational
companies such as Visa, MasterCard, and American Express. EMV has specif-
ically defined specifications for contactless payment in books A, B, C and D
[6–10]. ISO/IEC 14443 on the other hand, is an international standard that
defines proximity cards used for identification, and the transmission protocols
used for communication between the card and host. Generally, there are two
ISO/IEC 14443 communication signal interfaces: Type A and Type B. They use
different Radio Frequency Field (RF) modulation methods for the Proximity
Coupling Device (PCD, Reader) to Proximity Integrated Circuit Card (PICC,
Card) and the PICC to PCD communication. In this paper, the focus is Type
A, which is the mainstream technology [26]. Android supports it, and all of our
tested bank cards are Type A.

EMV Contactless Book D [10] defines Collision as follows: “Transmission by
two or more PICCs in the same PCD energizing field and during the same time
period, such that the PCD [reader] is unable to distinguish from which PICC
[card] the data originated”. Based on this definition, in different parts of EMV
documents, the aim is to describe how EMV anti-collision mechanism handles
the situation when there is more than a card in the field. Here we generally
review the whole process for a contactless transaction from the reader’s point of
view.

According to EMV contactless Book D [10], the terminal is constantly run-
ning a main loop as illustrated in Fig. 2. In the polling phase, the reader ensures
that there only exists one type of technology (Type A or B) in the field by using
Wake UP command e.g., WUPA for type A. Then it checks if there is only one
card from the same technology in the field. If so, it activates the card. Remem-
ber that contactless bank cards are passive, and the reader creates an energising
RF (the operating field) that enables the card to power up. Next, the terminal
application performs the transaction.

On the other hand, if there exists more than a card in the field, a colli-
sion is detected. Accordingly, the terminal will not initiate a transaction in this
situation. The collision detection procedure is applicable either on different tech-
nologies (Type A, B, and others), or on multiple cards from the same technology.
If more than one technology is in the field, the reader must report a collision,
reset the operating field, and return to the polling phase. For Type A collision
detection, the terminal performs a specific procedure as follows (illustrated in
Fig. 5; see Appendix B). Type A cards respond to Wake UP command synchro-
nously using Manchester coding. This allows the terminal to detect the collision
in the bit level. After the terminal waits for an interval tp, it sends WUPA com-
mand. In all parts of this algorithm, if the terminal detects a transmission error
in response to the WUPA and Anti-Collision (AC) commands, it reports a colli-
sion, resets, and returns to the polling procedure. Otherwise, the reader sends an
AC command which is used to obtain the complete UID of a Type A card, and to
detect whether more than one Type A card is in the field. Depending on the UID

https://www.emvco.com/
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Fig. 2. Terminal Main Loop, taken from EMV contactless Book D.

size of the card, the response to the AC is different. In summary, regardless of
the card collision procedure, according to EMV, once a collision is detected,
the terminal should not proceed any more; instead it should reset the
field and go back to the polling procedure.

2.3 ISO/IEC 14443

Payment cards (contact and contactless) are based on ISO/IEC 7816 [12] and
ISO/IEC 14443 [2–5]. Mobile NFC payment technologies, such as Android Host-
based Card Emulation (HCE) [1], are also based on ISO/IEC 14443, which is
an international standard in four parts, defining the technology-specific require-
ments for proximity cards [2–5]. The third part of this standard [4], namely,
Part 3: Initialization and anticollision, presents the same definition for collision
as EMV. However, handling collision is different as we explain (presented in
Fig. 6, see Appendix B).

In this standard, anticollisions are detected based on conflict in the bits of
the UIDs (started from uid0 as the most significant byte). The least significant
bit (LSB) of each byte is transmitted first. As an example, consider two cards as
follows. Card 1: UID size = 4 bytes (single), value of uid0 = ‘10’, and Card 2: UID
size = 7 bytes (double). After both cards respond to the reader’s command, the
terminal performs the first cascade level for the anticollision loop. As response
the first card sends back the four UID bytes (uid0 uid1 uid2 uid3) plus some
extra data. However since the second card’s UID is double, it sends back the
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cascade tag (CT) and the first three bytes (‘88’ uid0 uid1 uid2), plus some
extra data. Hence the bits received in the terminal side are: (00001000)b and
(00010001)b, respectively. If the implementation pads (1)b (which is what a
typical implementation does [4]) to the previous similar bits, the terminal chooses
the second card over the first one and continues with it.

As it can be seen unlike EMV, ISO specifies no termination in the case
of a collision. Instead, a race condition is created in which depending
on the implementation of the terminal, and the UIDs of the cards
available in the field one card would be selected. This inconsistency
between EMV and ISO perhaps would cause confusion when it comes to practi-
cal implementations of these systems. We believe this is an important issue and
should be addressed by the community.

3 Experiments on Contacless Readers in Practice

In this section, we examine the anticollision procedure on the contactless termi-
nals implemented in practice. We already know that in the case of a card clash
in the London metro system, the card reader may either not proceed or pick one
card over others without any particular pattern [34]. It is also reported that the
cards that are picked up at the start and the end of a journey may be different
(in this case the passenger can apply for a refund). This explanation by TfL
suggests that the implementation in practice is not consistent with either EMV
or ISO. To investigate this issue further, we performed an experiment to observe
how payment terminals handled card collision in practice.

Before running the experiment, we tested the NFC chipsets on the cards and
the phones that we used in our experiments by writing a reader app using the
getId() function5. Our Nexus 5 mobiles returned random 4-byte UIDs which
always start with ‘08’. The first byte represents the brand of the technology [27].
All our tested bank cards including TSB visa debit, Barclays visa debit, and
barclaycard visa have fixed 4-byte UIDs, as presented in Table 1.

Table 1. Cards’ information, LSB: Least Significant Bit

Card Technology UID size UID0 Hex UID0 Binary (LSB) ISO winner

TSB visa debit- Card 1 A 4 0× 35 (10101100)b ✓

TSB visa debit- Card 2 A 4 0× 65 (10100110)b ✗

Barclays visa debit- Card 1 A 4 0×E7 (11100111)b ✓

Barclays visa debit- Card 2 A 4 0× 87 (11100001)b ✗

barclaycard Platinum visa- Card 1 A 4 0× 67 (11100110)b ✗

barclaycard Platinum visa- Card 2 A 4 0×DF (11111011)b ✓

Nexus 5 A 4 x08 (00010000)b ✗

5 developer.android.com/reference/android/nfc/Tag.html#getId.

https://developer.android.com/reference/android/nfc/Tag.html
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In this experiment, we examined three pairs of contactless cards as presented
in Table 1. Each pair has been requested and issued from the same banks and
roughly at the same time. (The two TSB visa debit, and the two Barclays visa
debit, were requested at the exact same time, and the two barclaycard Platinum
visa, were requested and received within a month. The TSB card 1 had been in
use more than card 2, and the barclaycard card 2 had been in use much more
than card 1.) We presented each pair to different contactless terminals several
times in order to put them in race conditions. We made sure that both cards were

Table 2. The results of putting card pairs in the race condition. MS stands for Metro
Station. In the case of No operation, the cards were presented 3 times to the POS for
the same transaction. msg1: “Only present one card”, msg2: “Card read failed”.

No. POS Issuing bank Facing card to reader Result Note

1 MS 1, POS 1 TSB Card 1 No operation

2 MS 1, POS 1 TSB Card 2 No operation

3 MS 2, POS 1 TSB Card 1 No operation

4 MS 2, POS 1 TSB Card 2 No operation

5 MS 1, POS 2 TSB Card 1 No operation

6 MS 1, POS 2 TSB Card 2 Card 1 won msg1

7 MS 1, POS 2 TSB Card 1 Card 2 won on 2nd try msg1

8 MS 2, POS 2 TSB Card 2 Card 1 won

9 MS 2, POS 2 TSB Card 1 No operation

10 MS 2, POS 2 TSB Card 1 No operation

11 MS 1, POS 2 Barclays Card 2 Card 1 won

12 MS 1, POS 2 Barclays Card 1 Card 2 won

13 MS 1, POS 2 Barclays Card 2 Card 1 won msg1

14 MS 1, POS 2 Barclays Card 1 Card 2 won

15 MS 2, POS 1 Barclays Card 2 Card 1 won

16 MS 2, POS 1 Barclays Card 1 Card 2 won msg1

17 MS 2, POS 1 Barclays Card 2 Card 1 won msg1

18 MS 1, POS 3 barclaycard Card 2 Card 1 won

19 MS 1, POS 3 barclaycard Card 1 Card 1 won

20 MS 1, POS 3 barclaycard Card 2 Card 1 won

21 MS 1, POS 3 barclaycard Card 1 Card 1 won

22 MS 2, POS 2 barclaycard Card 2 Card 1 won

23 MS 2, POS 2 barclaycard Card 1 Card 1 won

24 MS 1, POS 1 barclaycard Card 2 Card 1 won on 2nd try msg2

25 MS 1, POS 1 barclaycard Card 1 Card 1 won

26 MS 2, POS 3 barclaycard Card 2 Card 1 won

27 MS 2, POS 3 barclaycard Card 1 Card 1 won
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attached to each other from the same side -contactless chipsets on each other.
More specifically, when tapping the cards together to the reader, we put one of
the cards on top of the other one for half of the experiments, and exchanged
them for the rest of the tests.

The results are presented in Table 2. As it can be seen, these results do not
match the anticollision algorithms suggested by either EMV or ISO. Generally,
we can not find any specific pattern in the behaviour of these terminals when
facing more than a card. Interestingly, in a few cases, the terminal shows this
message: “only present one card”, yet it proceeds with the payment. Based on
this observation, in the next sections, we demonstrate an attack which can com-
promise user’s privacy.

4 Attack Design

In this section, first we present the context of the attack. Then, we explain the
feasibility of our attack by designing it based on the existing contactless payment
specifications.

4.1 Threat Model and Attack Scenario

The context of this attack is when a user aims to pay for something by her
contactless card where her card and phone are close to each other and both
are presented to the reader’s field. If the phone manages to hijack a few initial
NFC signals that the card is meant to receive from the terminal, the attack is
successful. In this situation, the phone is able to learn a lot about this contactless
payment by requesting PDOL data (details in Sect. 4.2). The data can then be
sent to a remote server controlled by the attacker. However, the malicious app
would not continue further communication with the reader at some point (since
it does not simulate the entire payment) and the user would realise that the
payment is not being processed. In order to not disappoint the user on her
second effort to pay, the NFC service on the mobile should be turned off for
a few minutes once it hears from the reader. In this way, the user is able to
complete the payment on the second try.

There are different ways in which the user might keep her card very close to
her phone. For example, different models of card holder mobile cases are available
in the market now. These cases are capable of containing a few cards as shown
in Fig. 1. These types of wallets are already very popular with users since they
offer an easy way to travel light and keep wallet essentials close to hand. When
it comes to contactless payment, these accessories are even more popular since
the users do not even need to take the card out of the case. Users can slide their
contactless card that is kept inside the mobile case and easily tap it against the
reader for daily purchases. After the increase of the cap limit from £20 to £30 in
2015, more retailer shops started to accept contactless payments for small item
purchases6.
6 theukcardsassociation.org.uk/Contactless (our views)/index.asp.

http://www.theukcardsassociation.org.uk/
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Third parties are very interested in this sort of information, e.g., for adver-
tising purposes. The collected information could be used in several ways. Third
parties normally stimulate the users to purchase items by providing them cus-
tomized ads based on this information. In addition, they can perform data mining
programs to extract the patterns of people’s shopping behaviours. An advanced
attack might even pretend to be the user’s bank by presenting this shopping
information to her and tricking her to reveal her credentials via social engi-
neering techniques. This attack in this paper can be even more impactful if the
malicious app turns into the reader mode and extracts the card’s information as
suggested by Emms et al. [17]. Once the information is extracted, the app goes
to the card mode for the rest of the attack. In this way, the attacker can easily
pretend to be the user’s bank by having her card information and her shopping
records. We believe that these sorts of information are private to the users and
should not be collected and shared without their permission.

4.2 Designing the Attack Based on NFC Payment Protocols

In this section, we cover a few key points in relation to contactless payment pro-
tocols in which we are going to refer in our implementation. EMV Contactless
Book B [7] covers the Entry Point Specification. This specification defines the
reader requirements necessary to enable the discovery and selection of a con-
tactless application, and activation of the appropriate kernel for processing the
transaction. Different kernels are used for different Application Definition File
(ADF) names. (e.g., for a MasterCard ADF name, Kernel 2 will be used, and for
a Visa ADF name, Kernel 3 will be used.) Based on the chosen Kernel, different
procedures will run to complete a payment. However, the entry point protocols
are the same for all card schemes.

Entry Point is designed around the use of a Proximity Payment System Envi-
ronment (PPSE) as the selection mechanism. For multi-brand acceptance, this
allows a reader to quickly obtain all the available brands and applications with a
single command and to make an immediate choice based on priority and kernel
availability. The Entry Point command and response Application Protocol Data
Units (APDUs) are presented in Fig. 3. The File Control Information (FCI) as
the response to the PPSE command from the card side includes the Directory
Definition File (DDF) covering a product supported by the card, the Kernel
Identifier of the kernel required for the specific application underpinning the
product (conditional), and the priority of the Combination (conditional). The
product is indicated by its ADF name in the card. Hence, it is the card which
decides what kernel to choose and talk to. Entry Point finds Combinations by
matching pairs of data elements (ADF Name) and Kernel Identifier in the card
with pairs of data elements in the reader (AID and Kernel ID). Once all sup-
ported Combinations have been found and the highest priority Combination has
been identified, Entry Point selects the associated card application by sending
a SELECT (AID) command with the ADF Name of the selected Combination.
Depending on the selected AID and the kernel in the selected Combinations, a
specific kernel is called to take care of the rest of the payment.
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Fig. 3. The sequence diagram of the communication between our app and the reader.

As a part of the response to SELECT AID command, the card requests
Processing Options Data Object List (PDOL). Generally, a Get Processing
Option (GPO) command is returned in response to this FCI command (SELECT
AID) which includes the Terminal Transaction Qualifiers (TTQ), Unpredictable
Number, Amount, Authorised, Transaction Currency Code, and other tags [11].

As shown Fig. 3 and we explain in the next section, our attack app is going
to take the proper action in response to each command from the terminal in
order to retrieve as much information as possible about each transaction.

5 Implementation

In this section we present the technical implementation of our attack.

5.1 Android HCE

Android supports emulating cards that are based on the NFC-Forum ISO-DEP
specification (based on ISO/IEC 14443-1 to 4) and processes Application Pro-
tocol Data Units (APDUs) as defined in the ISO/IEC 7816-4 specification. In
compliance with ISO/IEC 7816-4, each HCE application has an Application ID
(AID). This ID enables the reader app to select the correct service.
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In our implementation, we declared an AID group including an AID fil-
ter of a Visa card (0xA0000000031010) in an XML resource to be pointed by
a SERVICE META DATA tag in the manifest declaration. On the other hand,
Android does not interpret the PPSE selection command and, consequently, it
does not generate or send a list of available payment applications. Hence we have
to handle the PPSE command in the app. Typically, an HCE payment applica-
tion based on EMV standards would register for both: the payment application
AID and the PPSE ADF name. Note that from a protocol perspective there is
no difference between an ADF name and an AID, so we can register for it in our
service XML file with an AID filter for the ADF name (“2PAY.SYS.DDF01”)
in its ASCII hexadecimal representation of 0x325041592E5359532E4444463031.
In the same file, we set the android:requireDeviceUnlock attribute to
false in order to avoid the user being asked for unlocking her device.

The HostApduService class is extended for implementing an HCE service
with two abstract methods: processCommandApdu and onDeactivated.
The former is called whenever the card receives an APDU from an NFC reader
and enables half-duplex communication with the reader. The latter is called when
either the NFC link is broken or the reader wishes to talk to another service.
According to EMV, the first two APDUs (SELECT PPSE and SELECT AID)
are for service selection. That is where we request PDOL, as shown in Fig. 3.
After a successful service selection, the card and reader can exchange any type
of data. When the app receives the first GPO command including the requested
data, it logs the data in a file, and the attack terminates. Accordingly, our app
turns the NFC off by going to the flight mode to allow the user to complete the
purchase on the second try.

5.2 Android Flight Mode

Android does not offer any API for turning the NFC controller on/off program-
matically. Therefore, developers usually set the NFC settings in a way that
prompts the user to turn it on/off manually. In our attack, once our app hears
from the terminal, it needs to turn off the NFC, so that the user can success-
fully pay on her second try. One possible way to control the NFC adapter is
to change the phone’s airplane mode setting. However, only those apps with
the superuser permissions can change the Airplane mode setting which requires
WRITE SETTINGS and WRITE SECURE SETTINGS to be declared in the mani-
fest file. Starting from Android 4.2, turning on/off airplane mode is not supported
by android APIs any more. Hence, this part of our attack only works on a rooted
device.

On the other hand, this attack needs to keep the phone’s screen on since, at
the moment, NFC does not work when the phone is off [1]. An advanced attack
would turn the screen on only when the user wants to pay by using accelerometer
and gyroscope sensor measurements in order to recognise such a gesture. Li
et al. in [19] show that it is effectively possible to use the tap gesture to unlock the
phone for NFC applications based on accelerometer data. By augmenting such
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a gesture recognition feature to our code, we will have a complete application
that is able to compromise users privacy in contactless payments.

6 Experiments and Results

We performed an experiment by installing the app on Android phones (Nexus
5). We attached the card to the back of the phone in two different positions,
as shown in Fig. 4. The position that the card was attached to the phone was
important in our experiments since it effected the results, as we explain later.
In all experiments, the back of the phone was faced to the terminal (hence, the
card was in a closer distance to the terminal than the phone).

Fig. 4. Contactless card attached to the phone in two different positions for the exper-
iments; A (left): the NFC chipset was down, B (right): the NFC chipset was up.

6.1 Expected Results

According to the EMV specifications, regardless of the UID of the card and the
phone, the terminal should not proceed in the case of a card collision. ISO stan-
dards, however, suggest to opt one of the UIDs (typically with higher values) in
the race condition. The first UID byte (UID0) of mobile phones that we tested
is always ‘08’ (LSB: 00010000), and it is a single UID. As presented in Table 1,
all of our cards should always win over the phone if it is a typical ISO imple-
mentation. In the following experiments, we show that the expected behaviour
does not happen in practice, and the phone wins with a high probability.

6.2 Experiment A: Card and Phone Collision

In this experiment, we tested a few different contactless cards by presenting
each card with the phone to a few terminals (contactless metro ticket machines).
We tested multiple cards including two TSB visa debit, and two Barclays visa
debit on different machines. During this experiment, we asked a few users to
pay for metro tickets with different contactless cards that we provided to them.
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These cards were attached to mobile phones (Nexus 5). These participants were
informed of the purpose of the experiment, but were not asked to follow any
particular procedure. We asked them to naturally pay contactlessly. We observed
the behaviour of the terminals as summarized in Table 4 (see Appendix A).

The results show that when the card is attached to the phone in position
A (the card’s NFC chipset is down), the phone can hear the reader’s signal
first with a very high probability. On the other hand, when the card’s NFC
chipset is positioned to the top of the phone (position B), the chance of the
card winning is slightly more than the phone. Nevertheless, an average user
might put the card in any of these two positions close to the phone. Based
on our experiment, generally our app is able to recognise about 66 % of the
user’s contactless payment activities. Over time, this success rate would allow
the attacker to accumulate information about the user’s contactless payment
patterns.

Our observations show that contactless terminals present different messages
on the display based on the situation. When select to pay, it displays: “Insert,
swipe or tap for GBP 0.80” as the first message. If it can not choose either the
card or the phone it displays: “Card read failed”, and it goes back to the first
message. The fail message happened when our users tapped the card and the
phone very quickly, hence none of them were presented to the field for a suffi-
cient time. Similar to our experiments in Sect. 3, the terminal may show another
message: “Only present one card”, but it still proceeds with the transaction.

Table 3. Exchanged APDUs of experiment B

Sender APDU Command

Terminal 00A404000E325041592E5359532E444446303100 SELECT PPSE

Phone 6F3C840E325041592E5359532E4444463031A52A
BF0C2761254F07A0000000031010870101501042
4152434C4159434152442056495341BF6304DF20
01809000

FCI

Reader 00A4040007A000000003101000 SELECT AID

Phone 6F4B8407A0000000031010A5405010424152434C
41594341524420564953418701019F38189F6604
9F02069F03069F1A0295055F2A029A039C019F37
045F2D02656EBF0C089F5A0531082608269000

FCI including
PDOL request

Terminal 80A8000023832130000000000000000080000000
0000000826000000000008261605230016126739
00

GPO including
PDOL data

6.3 Experiment B: PDOL Data

In order to show the impact of the attack more visibly, we performed another
experiment. While purchasing a ticket, we presented our final app to a payment
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terminal in a metro station. Our app logged the PDOL data of the transaction
and then went to the Airplane mode. We built our card app in a way that it
responded to the two SELECT commands – PPSE and AID – before asking for
PDOL data (see Fig. 3).

The exchanged command and response APDUs are shown in Table 3. As it
can be seen, when the card sends the second FCI, by sending PDOL tag (‘9F38’),
it requests different sort of information about the transaction such as the amount
(tag=‘9F02’, Amount, Authorised (Numeric)) and transaction date (tag=‘9A’).
Accordingly, the terminal responds with the first GPO command including the
requested items for PDOL (‘83’) i.e. amount (‘000000000080’ = 0.80 pence) and
date (‘160523’ = 2016 May 23) [11].

As it can be seen, the attacker can easily build such a table for all transactions
and discover the user’s payment patterns.

7 Conclusion

In this paper, we discussed a real world problem concerning the card collision
when making contactless payments. We studied the EMV and ISO standards
on card collision, and by performing experiments we discovered that the imple-
mentation in practice matches neither of them. Based on this inconsistency, we
described and implemented an attack on the privacy of contactless payments. In
this attack, we simulated a card within an app and tracked the user’s contactless
payment transactions by requesting PDOL data from the terminal. When the
phone and the card are both presented to a contactless terminal, our app could
successfully win the race condition over the card in the majority of test cases.

Our findings suggest vulnerabilities in the current infrastructure which needs
to be addressed. More specifically, the results of our experiments show that when
tapping the terminal with more than a card, in most cases (Tables 2 and 4), the
terminal does not even identify the card collision. Nevertheless, even if the termi-
nal identifies the presence of more than a card in the field (by showing a message),
it still proceeds with the transactions. The selection of the card appears random.
A countermeasure to this identified privacy attack is updating the implementa-
tion of the payment terminals according to EMV’s card collision algorithm: i.e.,
the process should not proceed when more that one card is detected in the field.
Updating some parts of EMV’s protocol and protecting the PDOL data would
also mitigate the introduced attack. Finally, the EMV and ISO standards would
need to be updated to have a consistent algorithm to handle card collision.
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A Experiment Results

In this section, we provide the detailed results of our Card and Phone Collision
experiment. These results are presented in Table 4.

B EMV and ISO Flowcharts

The collision detection procedure of EMV specification and Anticollision loop
flowchart of ISO are presented in Figs. 5 and 6, respectively.

Fig. 5. Type A collision detection, taken from EMV contactless Book D.
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Table 4. Results of experiment A

No. Card Terminal Position Winner Msg

1 TSB 1 MS 1, POS 2 A Phone

2 TSB 1 MS 2, POS 2 A Phone

3 TSB 1 MS 2, POS 2 A Card

4 TSB 1 MS 2, POS 2 A Phone

5 TSB 1 MS 1, POS 1 B Card

6 TSB 1 MS 1, POS 1 B Card

7 TSB 1 MS 1, POS 1 B Phone

8 TSB 1 MS 1, POS 1 B Phone

9 TSB 1 MS 2, POS 2 B Card

10 TSB 1 MS 2, POS 2 B Card

11 TSB 2 MS 1, POS 2 A Phone

12 TSB 2 MS 1, POS 2 A Phone

13 TSB 2 MS 1, POS 2 A Phone

14 TSB 2 MS 1, POS 2 A Phone

15 TSB 2 MS 1, POS 2 A Phone

16 TSB 2 MS 3, POS 1 A Phone

17 TSB 2 MS 3, POS 2 B Card

18 TSB 2 MS 3, POS 2 B Phone

19 TSB 2 MS 3, POS 2 B Phone, 2nd try “Card read failed”

20 TSB 2 MS 3, POS 2 B Card, 2nd try “Card read failed”

21 TSB 2 MS 3, POS 2 B Phone

22 Barclays 1 MS 1, POS 1 A Phone

23 Barclays 1 MS 1, POS 1 A Phone

24 Barclays 1 MS 1, POS 1 A Phone, 2nd try “Card read failed”

25 Barclays 1 MS 1, POS 1 A Phone

26 Barclays 1 MS 1, POS 1 A Phone

27 Barclays 1 MS 1, POS 1 A Phone

28 Barclays 1 MS 1, POS 1 B Card

29 Barclays 1 MS 1, POS 1 B Phone

30 Barclays 1 MS 1, POS 2 B Card, 2nd try “Card read failed”

31 Barclays 1 MS 1, POS 2 B Phone

32 Barclays 1 MS 1, POS 2 B Card

33 Barclays 1 MS 1, POS 2 B Phone

34 Barclays 2 MS 1, POS 2 A Phone

35 Barclays 2 MS 1, POS 2 A Phone

36 Barclays 2 MS 1, POS 2 A Phone

37 Barclays 2 MS 1, POS 2 A Phone

38 Barclays 2 MS 1, POS 2 A Card “Only present one card”

39 Barclays 2 MS 1, POS 2 B Card “Only present one card”

40 Barclays 2 MS 1, POS 2 B Card, 2nd try “Card read failed”

41 Barclays 2 MS 1, POS 2 B Phone

42 Barclays 2 MS 1, POS 1 B Card

43 Barclays 2 MS 1, POS 1 B Card

44 Barclays 2 MS 1, POS 1 B Phone, 2nd try “Card read failed”
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Fig. 6. Anticollision loop, flowchart for PCD, taken from ISO/IEC 14443-3.
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Abstract. Due to the success of formal modeling of protocols such as
TLS, there is a revival of interest in applying formal modeling to stan-
dardized APIs. We argue that formal modeling should happen as the
standard is being developed (not afterwards) as it can detect complex or
even simple attacks that the standardization group may not otherwise
detect. As a case example of this, we discuss in detail the W3C Web
Cryptography API. We demonstrate how a formal analysis of the API
using the modeling language AVISPA with a SAT solver demonstrates
that while the API has no errors in basic API operations and maintains
its security properties for the most part, there are nonetheless attacks
on secret key material due to how key wrapping and usages are imple-
mented. Furthermore, there were a number of basic problems in terms
of algorithm selection and a weakness that led to a padding attack. The
results of this study led to the removal of algorithms before its completed
standardization and the removal of the padding attack via normalization
of error codes, although the key wrapping attack is still open. We expect
this sort of formal methodology to be applied to new standardization
efforts at the W3C such as the W3C Web Authentication API.

1 Introduction

The World Wide Web Consortium (W3C) has commenced work on the Web
Cryptography API [3], which defines cryptographic primitives to be deployed
across browsers and native Javascript environments. This process has begun in
the W3C Web Cryptography Working Group, driven by all major browsers and
also open to the wider community.1 Started in 2012, the W3C Web Cryptography
Working Group is finalizing the standard for completion by the end of 2015, with
the design being led by Ryan Sleevi of Google with Mark Watson of Netflix as co-
editor. The API is already implemented across Chrome 37 and above (including
Android), Mozilla version 36 and above, Opera 27 and above, Safari 8 and above,

1 http://www.w3.org/2012/webcrypto/.
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and Internet Explorer 11 and Microsoft Edge. Thus, the W3C Web Cryptography
API is the primary Web-facing cryptography API for the foreseeable future.

Like any API, the Web Cryptography API (informally called the “WebCrypto
API”) needs an impartial and thorough analysis to determine its security prop-
erties. Cryptographic APIs, and even cryptographic libraries such as OpenSSL,
that have not received such an analysis until after widespread deployment have
resulted in dangerous security incidents in validating TLS certificates [20]. Given
that the W3C’s mission including security reviews, the W3C explicitly worked
with the larger community discover possible security vulnerabilities and for-
mally prove the guarantees that the Web Cryptography API could provide. Due
to an unfortunate tendency of Web developers to bring incorrect expectations
(brought from other environments) to Javascript and to (incorrectly) believe
that the Web Cryptography API ‘magically’ makes the Javascript browser envi-
ronment a suitable platform for secure Web applications, it is important to be
able to state precisely the security properties of the Web Cryptography API
and what attacks are inherent in the API design as well as its operation in the
Javascript browser environment. In the future, these kinds of attacks need to
be mitigated so that the use of the Web Cryptography API matches intuitive
developer expectations around the use of security APIs.

Section 2 explains in detail the role of formal modeling. Section 3 overviews
existing background on Javascript cryptography, followed by relevant literature
describing the formal analysis of APIs and Web applications. In Sect. 4, we
describe the formal modeling of the Web Cryptography API using the AVISPA
language, and describe the experiments we used to verify various security proper-
ties in a number of scenarios, including a successful attack on key-wrapping that
can be generalized to attacks on key exchange. The behavior of key wrapping
and key usages in the API would seem to violate the expectations of most devel-
opers who want to use the API. In Sect. 5 we discuss algorithm selection in the
WebCrypto API, pointing out well-known errors in their algorithm selection and
error codes, and these problems were accepted and our proposed fixes became
part of the current WebCrypto API. In Sect. 6 we summarize what properties
future standards need to improve the security properties of the Web Cryptog-
raphy API in particular and the future application of formal API modeling to
new standardized APIs and protocols at the W3C.

2 The Role of Formal Modeling in Standardization

In the process of standardization, there is a desire to offer as much functionality
to developers as possible, while simultaneously preventing them from making
mistakes. In terms of cryptographic APIs like the WebCrypto API, this can lead
to handing the application developers a “kitchen sink” of cryptographic prim-
itives, which inadvertently may give a developer “enough rope to hang them-
selves.” Unlike protocols, APIs typically do not have precisely stated threat
models and security properties. This is a mistake, as security flaws at the API
level are automatically inherited by application that deploy the API and the
primitives provided by the API.
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Although there is a reasonable argument to give developers only “high level”
APIs that may include suitable defaults, these APIs by nature must build on
“low level” APIs that provide access to a large range of cryptographic primitives
even if the “low level” API is not accessible or hidden from the developer. In
the Web Cryptography API, it was chosen to release the “low level” WebCrypto
API and not explicitly work on a “high level” cryptographic API or provide
defaults. While it seems that users will generally use the highest-level of abstrac-
tion available to them, the Working Group has decided that given that the field
of cryptography is in flux around issues such as elliptic curves and attacks on
RSA, it would be unwise to provide any defaults that may become outdated
in the standard. Instead, a ‘high-level’ API with appropriate defaults can be
created that would build from the primitives in the Web Cryptography API.

The process of standardization in the field of security needs to incorporate
formal methodology in order to state the security properties and discover attacks
before a standard is released. As security standardization is difficult due to the
complexity of maintaining security properties throughout the lifetime of a stan-
dardization process, there is a clear use-case for formal modeling.

The general insight behind formal modeling is that the traditional method
of discovering new attacks on security APIs (and security protocols in general),
by being based on human insight, may miss important attacks. While a sin-
gle human may be able to discover by sheer insight an important attack, the
state-space of possible combinations of items such as keys, messages, crypto-
graphic primitives, and various desired properties may simply be difficult to
discern without the assistance of automated or semi-automated tools. Similar to
the automated discovery of proofs, the ideal automatic security checker would
essentially be a “machine attacker” that would try out an large number of attacks
using all possible combinations of cryptographic primitives and their parameters
over messages in all possible states. The general technique is the reduction of
maintaining security properties to a boolean satisfiability problem (SAT), where
a model-checker is used to see if the security properties hold via automatically
checking the property exhaustively (rather than theorem-proving) [18]. Although
the problem is well-known to be undecidable, efficient SAT solvers exist for large
classes of problem. Once a problem is detected via formal modeling, it may
be fixed in the standard before deployment. If the standard has already been
implemented, the flaw is usually then tested against real-world implementations,
hopefully to be fixed once the flaw is shown to be valid.

This approach of formal modeling has shown itself to be successful against
many already deployed protocols, in particular against TLS 1.2 [10]. Sometimes
attacks on standards incorporate errors in the choice of cryptographic primitives,
which are usually widespread in standardization as the time it takes to update.
While usually the choice of a vulnerable cryptographic primitives is easily dis-
covered, attacks on the protocol itself can be discovered years after the release
of the protocol [9] due to fundamental problems in the protocol such as the lack
of a well-defined state machine.
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One area where formal modeling is just beginning to be applied to in stan-
dardization is in security API design. A security API consists of a set of functions
that are offered to some other program that uphold some security properties,
regardless of the program making the function calls and what functions are
called [13]. For example, one would hope that an API like PKCS#11 that pro-
vides access to key material in hardware tokens would prevent any private key
material from being tampered with, regardless of the application [17]. These
kinds of security properties are particularly critical in many applications, and
classically security APIs have been studied in the realm of hardware security
modules [13].

Early work did not use generalizable formal techniques, but customized each
technique for the API at hand [13]. Only more recently has fully automated
analysis in terms of model-checking and theorem-proving been deployed, usually
based on the Dolev-Yao (DY) abstract model where cryptographic primitives are
given as functions on bitstrings in an abstract algebra [19]. This methodology has
shown to be successful by its ability to compromise from non-standardized solu-
tions such as an authentication server and steal private keys from the Yubikey
USB hardware token [27]. Formal modeling has then be used to successfully
reveal a number of API-based attacks on standards, including the commercially
available tamper-resistant hardware security tokens PKCS#11 [17]. Currently, a
large number of security APIs are under process of standardization at the IETF
and W3C. Although formal modeling is not part of the current required security
review of protocols in the IETF and the optional security review of protocols in
the W3C, we believe it should be encouraged in the future as a mandatory part
of the security review before and after implementation.

3 Background

In Sect. 3.1 we give relevant background on Javascript Web Cryptography.
Section 3.2 reviews the existing academic literature on formal modeling that
serves as the basis of our work on the Web Cryptography API, as well as men-
tioning previous usages of formal modeling for security properties on the Web.
Section 3.3 summarizes the W3C Web Cryptography API (abbreviated as the
“Web Cryptography API”).

3.1 Javascript Cryptography

As an increasing number of applications transition to the Web, the need of
ordinary users to have more secure Web applications has increased and Web
developers are attempting to match those expectations. Although there was
initial hostility to the idea of cryptography in Javascript as exemplified by
“Javascript Cryptography Considered Harmful,”2 there has nonetheless been
widespread interest in creating secure Web applications [21]. Yet without the

2 http://matasano.com/articles/javascript-cryptography/.

http://matasano.com/articles/javascript-cryptography/
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proper cryptographic primitives working cross-browser, Javascript cryptography
would indeed be dangerous. For example, the initial version of the ‘Crypto.cat’
encrypted chat application initially not only recreated their own cryptographic
routines in Javascript but also deployed these Javascript libraries insecurely.3

In a remarkable turn-around, Crypto.cat has since become the first formally
verified Javascript-based cryptographic application. Although a number of well-
designed Javascript cryptographic libraries exist such as the Stanford Javascript
Crypto Library [38], there are certain properties even the most well-designed
Javascript cryptography library presents, such as the problem of accessing the
library itself securely. Although well-designed libraries can prevent this, common
libraries OpenPGP.js4 are vulnerable to side-channel attacks and critically use
built-in weak number generation given by default by Math.random.5 Further-
more, even well-designed libraries that feature native Javascript password-based
key derivation using algorithms such as PBKDF2 are still simply too slow for
widespread high security deployment (i.e. if a sufficient number of iterations are
used). After a public workshop in 2012,6 the W3C decided to create a cross-
browser Web Cryptography API that would offer a number of standardized,
constant-time primitives to be accessed by Web developers. This API does not
address larger concerns with the Web Security Model, such as cross-origin code
injection (as currently addressed by the Web Application Security Group7) and
completely trusted servers (i.e. Javascript as remote code execution), as well as
problems inherent in Javascript itself such as prototype inheritance and the lack
of availability of efficient big integer operations.

3.2 Formal Modeling Literature Review

There is still no single dominant formal modeling language for modeling secu-
rity. Alloy [22], a language based on the Z specification language that uses SAT
solving, has been popular and used against APIs such as the Trusted Platform
Module 1.2 API [40]. It has recently been used for discovering security vulnerabil-
ities in Web applications, although it was not used to investigate the properties
of the Web Cryptography API [30]. Alloy is a well-developed framework that
allows infinite models. Scyther can work with an unbounded number of sessions
but does not allow the modeling of control flows [16]. ProVerif is a cryptographic
protocol verifier that works as a sequence of Horn clause and allows unbounded
verification on smaller protocols [11]. Tamarin also provides unbounded session
support with the required mutable global state [36].

AVISPA provides automatic validation and verification of security protocols
based on the DY formalism given by re-writing rules, where the knowledge of
3 https://crypto.cat/.
4 http://openpgpjs.org/.
5 See the results of the 2014 penetration testing report by Cure53.de available here:

https://cure53.de/pentest-report openpgpjs.pdf.
6 The workshop was called ‘Identity in the Browser,’ archived at http://www.w3.org/

2011/identity-ws/.
7 https://www.w3.org/2011/webappsec/.

https://crypto.cat/
http://openpgpjs.org/
https://cure53.de/pentest-report_openpgpjs.pdf
http://www.w3.org/2011/identity-ws/
http://www.w3.org/2011/identity-ws/
https://www.w3.org/2011/webappsec/
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the attacker can also be modeled using standard re-write rules rather than an
entirely different set of rules based on, for example, belief logic. AVISPA sup-
ports multiple model-checkers over bounded sessions, and features both high
and low-level formats for specifying protocols. Although unbounded sessions are
of interest for some scenarios, given that in our scenarios the Web application
operates over bounded sessions given the ephemeral nature of Javascript sessions
(with the exception of ‘cookies’). We chose AVISPA for our analysis since it takes
into account mutable global state shared between sessions, i.e. in particular keys
in a key store that have attributes that change over time and that affect the
execution semantics of protocols for operations such as signing and encryption
in an API.

Earlier work in formal analysis of the Web did conceptual work such as
dividing the attacker spaces of web attackers, who attack Javascript run-time
environments in the browser via cross-site scripting (XSS) attacks, from network
attackers who would attack the underlying TCP/IP connections between sites
and attack the certificate authority infrastructure [2]. More recent work has used
Proverif to model the properties of so-called “safe” cloud storage providers via
the Web [4], verifying subsets of Javascript [39], and interactive proofs of security
properties of Web applications [30]. However, none of these previous works were
aimed at the Web Cryptography API. This paper presents the first security
analysis and formal modeling of the Web Cryptography API.

3.3 W3C Web Cryptography API

The Web Cryptography API is a low-level API that exposes cryptographic func-
tionality via a number of components specified as a WebIDL. A WebIDL is a way
of specifying Javascript functions, although it may also in principle be bound to
programming languages outside Javascript.8 The main features of the Web Cryp-
tography API are as follows, with much more detail given in the specification
itself [3]:

1. RandomSource: Pseudorandom number generation.
2. CryptoKey : JSON object for key material.
3. CryptoOperation: Functions such as encryption and wrapping, along with

error codes.

RandomSource. The RandomSource interface represents an interface to a
cryptographically strong pseudo-random number generator (PRNG). Implemen-
tations should generate cryptographically random values using well-established
cryptographic pseudo-random number generators seeded with high-quality
entropy. Currently it provides no lower-bound on the information theoretic
entropy present in cryptographically random values, but implementations should
make a best effort to provide as much entropy as practicable and may provide
platform or application specific entropy-related error messages.

8 http://www.w3.org/TR/WebIDL/.

http://www.w3.org/TR/WebIDL/
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CryptoKey. The CryptoKey object represents an opaque reference to keying
material that is managed by the user agent. There are three types of keys: secret
keys (for symmetric encryption), public keys, and private keys (for asymmetric
encryption). Most importantly, the API does not expose key material itself, but
instead only pass handlers to the key material itself in Javascript and so access
to secret key material is forbidden. The only exception is when a key is explicitly
given a boolean extractable set to true and then exported (even then, it would
have the same-origin and structured clone properties). Keys that are not marked
explicitly as private, secret, or as non-extractable (i.e. extractable set to false)
will be accessible to the server with same-origin policy if key export is done. A
simplified (types not being given for all values) Javascript WebIDL interface for
CryptoKeys is given in Fig. 1.

KeyType { public, private, secret };

KeyUsage { encrypt, decrypt, sign, verify,

deriveKey, deriveBits, wrapKey, unwrapKey };

CryptoKey { KeyType type; boolean extractable;

object algorithm; object usages; };

Fig. 1. CryptoKey WebIDL

In the Web Cryptography API, we use the structured clone algorithm to
store keys.9 This algorithm is an abstraction on top of existing Web storage
mechanisms such as IndexedDB10 that has the same lifetime guarantees as the
rest of Web storage. This would allow a user to clear their key material at the
same time they ‘wipe’ cookies from their browser storage. So keys are restricted
to the same origin policy in storage and are essentially ephemeral as they can
be removed when session state is cleared.

CryptoOperation. The CryptoOperation is the heart of every cryptographic
primitive. Given a algorithm and a set of parameters (usually including a handler
to a key), the CryptoOperation will attempt to commit some operation. Every
CryptoOperation can be thought of as a named finite state machine with an
internal state, an associated algorithm, an internal count of available bytes, and
a list of pending data. Every member of the list of pending data represents data
that should undergo the associated cryptographic transformation if the operation
as a whole is successful. The order of items when added to the list is preserved
in processing, so that the first data that is added being the data processed.
If the cryptographic operation fails (such as when the key type is wrong or
when the algorithm is not supported), the CryptoOperation then terminates and
9 See https://developer.mozilla.org/en-US/docs/DOM.

10 See http://www.w3.org/TR/IndexedDB/.

https://developer.mozilla.org/en-US/docs/DOM
http://www.w3.org/TR/IndexedDB/
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encrypt(algorithm, key, data);

decrypt(algorithm, key, data);

sign(algorithm, key, data);

verify(algorithm, key, signature, data);

digest(algorithm, data);

generateKey(algorithm, extractable, keyUsages );

deriveKey(algorithm, baseKey, derivedKeyType,

extractable, keyUsages );

deriveBits(algorithm, baseKey, length);

importKey(format, keyData, algorithm,

extractable, keyUsages );

exportKey(format, key);

wrapKey(format, key,wrappingKey, wrapAlgorithm);

unwrapKey(format, wrappedKey, unwrappingKey,

unwrapAlgorithm, unwrappedKeyAlgorithm,

extractable, keyUsages);

Fig. 2. CryptoOperation WebIDL

Table 1. CryptoOperations per Algorithm

Algorithm encrypt decrypt sign verify digest generateKey deriveKey deriveBits importKey exportKey wrapKey unwrapKey

RSAES-PKCS1-v1 5 • • • • • • •
ECDSA • • • • •

RSASSA-PKCS-v1 5 • • • • •
RSA-PSS • • • • •

RSA-OAEP • • • • • • •
ECDSA • • • • •
ECDH • • • • •

AES-CTR • • • • • • •
AES-CBC • • • • • • •
AES-CMAC • • • • •
AES-GCM • • • • • • •
AES-CFB • • • • • • •
AES-KW • • • • •
HMAC • • • • •
DH • • • • •

SHA-1 •
SHA-256 •
SHA-384 •
SHA-512 •
CONCAT • • •

HKDF-CTR • • •
PBKDF2 • • • •

produces an error code. A simplified (no types) Javascript WebIDL interface for
CryptoOperations is given in Fig. 2. Each algorithm then gives support for a
number of operations as given in Table 1.

Examples may clarify the usage of the API. An example generate a sign-
ing key pair and sign some data is given in Fig. 3. More examples, including
symmetric key encryption, are given in the specification [3].

Supported Algorithms. Each algorithm type is given by the CryptoOperation
and the key generation. Keys generated with particular algorithms thus can have
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var algorithmKeyGen = {

name: "RSA-PSS",

modulusLength: 2048,

publicExponent: new Uint8Array([0x01, 0x00, 0x01]),

};

var algorithmSign = {

name: "RSA-PSS",

saltLength: 32,

hash: {

name: "SHA-256"

}

};

window.crypto.subtle.generateKey(algorithmKeyGen, false, ["sign","verify"]).then(

function(key) {

var dataPart1 = convertPlainTextToArrayBufferView("hello,");

var dataPart2 = convertPlainTextToArrayBufferView(" world!");

return window.crypto.subtle.sign(algorithmSign, key.privateKey)

.process(dataPart1)

.process(dataPart2)

.finish();

},

console.error.bind(console, "Unable to generate a key")

).then(

console.log.bind(console, "The signature is: "),

console.error.bind(console, "Unable to sign")

);

Fig. 3. Public Key signature example

their usages restricted to only those CryptoOperations permitted by the algo-
rithm. We expect the Web Cryptography Working Group to be maintained over
the long-term by the W3C, any requests for new algorithms can be sent to the
Working Group for consideration and discussion with implementers. As the API
is meant to be extensible in order to keep up with future developments within
cryptography and to provide flexibility, there are no strictly required algorithms.
However, in order to promote interoperability for developers, there are a number
of algorithms that the API supports by default: RSA-PSS, RSA-OAEP, ECDSA,
AES-CTR, AES-CMAC, AES-CFB, AES-KW, AES-CBC, HMAC, PKCS-v3
Diffie-Hellman (DH), the SHA family, CONCAT, HKDF-CTR, and PBKDF2.
RSAES-PKCS1-v1 5 was supported but removed due to attacks described in this
paper, see Sect. 5. These will be tested in the test-suite of the Web Cryptography
API so developers will be able to easily ascertain with certainty if they can use
these operations across browsers.
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4 Formal Analysis

4.1 Threat Model

The threat model needs to be realistic in terms of actual attacks on the Web,
and not too powerful. If we assume the origin is completely untrusted or com-
promised by an attacker, then the attacker can easily steal the application’s
secrets directly before they are encrypted. Thus, we assume the origin is trusted
when the WebCrypto API is initialized and secrets are successfully encrypted
and stored on the client.

Our threat model is then a temporary compromise of the Javascript envi-
ronment being used by the server or client after secrets have been encrypted
by WebCrypto and stored on the client. This accurately models most cross-site
scripting (XSS) attacks on the Web, including DOM-based attacks on the client
and temporary compromises of Javascript delivered by the server.

The security property that we want to maintain is that access to the raw key
material that is private, secret, or explicitly typed as non-extractable should not
be accessible to Javascript. These keys should only be accessible to a server with
same-origin policy if key export is explicitly done to extractable key material.

The goal of the attacker is to retrieve previously encrypted secrets. This
threat model’s assumptions are built into our formalization, as seen from the
rule definitions in Fig. 4. The inputs and outputs to each rule are either known
by the attacker or stored on the client device.

4.2 Model

The models we used were constructed using the AVISPA toolset,11 which was
built to enable easy translation from protocol to model. The AVISPA toolset
forms a hierarchical set of languages which take in a high-level protocol descrip-
tion and translate it through a series of steps to a low level description that func-
tions as input to a model checking engine. Since AVISPA’s high level language is
tailored towards protocols and not API’s, we designed our models in AVISPA’s
intermediate format (IF). AVISPA’s IF format describes protocols modeled as
an infinite state machine whose semantics is given via set re-writing.12 Proto-
cols are described unambiguously by sets of typed predicates which define states
and rules which define state transitions. For example a predicate might take the
following form:

keystore(K) : key → fact

Which represents a fact-type predicate relating to a variable K of type key.
States are defined by a list of applicable predicates. Transition rules take the
form of having a list of predicates on the left hand side which must be true
for the transition to occur. The right hand side lists predicates which are true
11 http://www.avispa-project.org/.
12 The formal semantics of AVISPA’s higher-level HLPSL that subsumes IF are out of

scope but are given here: http://www.avispa-project.org/delivs/2.1/d2-1.pdf.

http://www.avispa-project.org/
http://www.avispa-project.org/delivs/2.1/d2-1.pdf
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generateKey(key K, type T ) :

→ keystore(K,T ) ∧ usages(K,T ) ∧ extractable(K,T )

importKey(key K, type T ) :

iknows(K)

→ keystore(K,T ) ∧ usages(K,T ) ∧ extract(K,T )

extractkey(key K, type T ) :

keystore(K,T ) ∧ extract(K,T )

→ iknows(K,T )

encrypt(key K, type T,message M) :

keystore(K,T ) ∧ encryptUsage(K) ∧ pub(T )

→ iknows(crypt(K,M))

sencrypt(key K, type T,message M) :

keystore(K,T ) ∧ encryptUsage(K) ∧ sym(T )

→ iknows(scrypt(K,M))

decrypt(key K, type T,message M) :

keystore(K,T ) ∧ decryptUsage(K) ∧ iknows(crypt(K,M)) ∧ priv(T )

→ iknows(M)

sdecrypt(key K, type T,message M) :

keystore(K,T ) ∧ decryptUsage(K) ∧ iknows(scrypt(K,M)) ∧ sym(T )

→ iknows(M)

sign(key K, type T,message M) :

keystore(K,T ) ∧ signUsage(K) ∧ priv(T )

→ iknows(crypt(K,M))

verify(key K, type T,message M) :

keystore(K,T ) ∧ verifyUsage(K) ∧ iknows(crypt(K,M)) ∧ pub(T )

→ iknows(M)

wrap(key K, type T, key WK) :

keystore(K,T ) ∧ wrapUsage(K) ∧ pub(T ) ∧ keystore(WK) ∧ extract(WK)

→ iknows(crypt(K,WK))

swrap(key K, type T, key WK) :

keystore(K,T ) ∧ wrapUsage(K) ∧ sym(T ) ∧ keystore(WK) ∧ extract(WK)

→ iknows(scrypt(K,WK))

unwrap(key K, type T, key WK, type WT ) :

keystore(K,T ) ∧ unwrapUsage(K) ∧ iknows(crypt(K,WK)) ∧ priv(T )

→ keystore(WK,WT ) ∧ extract(WK) ∧ usages(WK)

sunwrap(key K, type T, key WK, type WT ) :

keystore(K,T ) ∧ unwrapUsage(K) ∧ iknows(scrypt(K,WK)) ∧ sym(T )

→ keystore(WK,WT ) ∧ extract(WK) ∧ usages(WK)

Fig. 4. Model for each API call. Note that all usages are allowed for created and
imported keys, simplifying the model and giving the advantage to the attacker.
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following the transition. The following shows an example rule which models
encryption:13

do encrypt(M,K) :=
private data(M) ∧ keystore(K)
⇒ private data(scrypt(K,M))

Initial states are described by declaring initial terms and predicates on them.
Lowercase letters are used to represent instantiated terms. Uppercase letters
denote free terms that may be bound to instance of the same type.

k,K : key
m,M : message

Initial predicates use instantiated terms:

private data(m)
keystore(k)

This example would initialize a state machine with the predicates keystore(k) and
private data(m). The do encrypt rule is applicable when M = m and K = k.

AVISPA assumes an attacker following the standard DY model (where the
attacker is called the “intruder”) and is represented functionally by an iknows
predicate which dictates information known to the attacker. Further, the attacker
has basic cryptographic capabilities. For example, the following rules would be
applicable to the attacker independently of the modeled protocol:

i encrypt(M,K) :=
iknows(M) ∧ iknows(K)
⇒ iknows(scrypt(K,M))

i decrypt(M,K) :=
iknows(scrypt(K,M)) ∧ iknows(K)
⇒ iknows(M)

Consistent with the DY model, information communicated over the channel
between actors is predicated with iknows. Thus, inputs to rules may be attacker
created values and outputs are assumed to be learned to the by the attacker. This
paradigm allows us to model compromised Javascript, where inputs may come
from any source and outputs may be sent anywhere. The only state accessible
to the API is the keys stored on the host, which we modeled with a keystore
predicate. The attacker in this model uses keys stored on the host. Our API
rules use iknows or keystore to predicate inputs:

api encrypt(M,K) :=
iknows(M) ∧ keystore(K)
⇒ iknows(scrypt(K,M))

The attacker goal states specify the conditions of a successful attack. For exam-
ple, an attacker goal when testing confidentiality would be defined as a state in
13 Throughout this paper we omit many AVISPA-specific constructs in order to focus

on the underlying model. This includes statements that are necessary for modeling
protocols but not APIs, but will nonetheless cause errors if omitted. The complete
rules are available here: http://www.w3.org/2012/webcrypto/webcrypto if files.tgz.

http://www.w3.org/2012/webcrypto/webcrypto_if_files.tgz
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which both the iknows predicate applies to a variable already declared secret
by the secret predicate, for example:

Goal : secrecy(M) := iknows(M) ∧ secret(M)

4.3 API Model

To test properties of the API, we built a general API model which we then varied
slightly to perform different tests. Creation of the general model includes custom
predicates, transition rules representing API calls, and handling of key objects.
The API call transition rules are built from both AVISPA’s default predicates
(crypt, scrypt, iknows, etc.) and custom predicates. The modeling for each rule
is described in Fig. 4.

In addition to AVISPA’s default predicates, several custom predicates
were necessary to handle the modeling of key objects. The actual Cryp-
toKey objects associates raw key data and the following set of attributes:
Type Public, private or secret (symmetric)
Extractable A boolean specifying whether the

key material may be exported to
Javascript

Algorithm The algorithm used to create the key
Usages attributes which specify the key’s

allowed operations
Our modeled CryptoKey objects only represent the parts of the actual Cryp-

toKey object. For efficiency reasons, our model expresses keys as (type, value)
pairs. A key’s attributes (extractable, usages) are represented by inclusion of that
key in a set representing the particular attribute. For example, all keys with the
encrypt usages are contained in a set named Javascript encrypt. We ignore the
algorithm attribute in our model.

Each entity is associated with a store of keys known to that entity. Each
WebCrypto operation requires that the keys it will use be present in its associated
entity’s key store. Some operations (generate, import, unwrap) will add a key to
the key store.

WebCrypto calls were translated directly into transition rules for our model.
The predicates used are a combination of AVISPA defined (crypt, scrypt, iknows,
etc.) and some that were specifically defined for this model. The predicates we
defined are:

keystore(K,T ): key is stored in local storage
extract(K): in extractable set
usages(K): all usages apply to key
xUsage(K): usage x applies to key
sym(T ): key type is symmetric
pub(T ): key type is public
priv(T ): key type is private
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Modeling Specific Scenarios. Each individual scenario was created by cus-
tomizing the models initial state and attack goal. After this step is done, the
discovery of attacks is then fully automated by AVISPA. Some scenarios also
included additional transition rules which allow more control over the behav-
ior of the model. The additional rules serve as “unit operations” for each sce-
nario. These operations model the equivalent of a sequence of individual API
operations. Building unit operations for each test had two advantages. First,
it optimizes the number of steps needed by the model checker in order to find
attack sequences that include this sequence of steps. Second, constraints can be
added to the model which require any found attack sequences to contain these
operations. This allows modeling a scenario with the requirement that either
the server or client fulfilled their role properly. A large number of scenarios were
formalized, building up from simple to more complex in terms of properties by
the use of these unit operations.

As an example, we look at the model used to check confidentiality of wrapped
key exchange messages sent from client to server. This model is initialized with
three key objects. The intent is to model two keys that belong to the client: one
(swkey) for wrapping and the other (skey) to be exchanged securely. The third
(ikey) key is known to the attacker and can be used in whatever way aids the
attacker:

Instance Variables : skey, swkey, ikey : key
st, iwt, it : type

Initial State : sym(st) ∧ secret(skey) ∧ secret(swkey)
∧ keystore(skey, st) ∧ keystore(swkey, swt)
∧ keystore(ikey) ∧ usages(ikey)
∧ iknows(ikey) ∧ extract(skey)
∧ wrapUsage(swkey) ∧ unwrapUsage(skey)

The predicates in the initial state describe the properties of the keys using
the predicates as described earlier. The goal state for this case was described by:

Goal : secrecy(K) : secret(K) ∧ iknows(K)

This goal specifies that for some variable key K, K has been defined to be
both secret and known by the attacker. This goal was trivially achieved because
extract(skey) lets a secret key be marked as extractable which allows the
attacker to export skey and learn its value.

To force the model to find attack sequences that show how export attacks can
effect operations such as key exchange with the key being explicitly extractable
(as would be the case with secret key material by default), we modified our
model slightly. First, we remove extract(skey) from the initial state. Next we
added a c send() unit operation which wraps and sends a key without requiring
either keys to be extractable:

c send(key K, type T, key WK, type WT ) :
keystore(K,T ) ∧ wrapUsage(K) ∧ keystore(WK,WT )
⇒ iknows({WK}K) ∧ has sent(K) ∧ has sent(WK)
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The has sent fact is used to force this rule to be used. This is accomplished by
modifying the goal state to be require that has sent(K) be true, which can only
happen after the c send rule is used:

Goal : secrecy(K) : secret(K) ∧ iknows(K) ∧ has sent(K)

The attack found by the model checker for this set of modification is discussed
in Sect. 4.4.

4.4 Tests and Results

We tested security properties by systematically modeling different use cases and
assessing the resulting attacks. The attacks we found existed due to potentially
unintuitive traits of the API, which would have negative security implications if
misunderstood by a large audience. The interesting attacks fell into two types:

– Export Attack: Exporting extractable key data and changing usages.
– API Attacks: Using client API calls to recover clear text of encrypted com-

munication via an attack on key wrapping.

To summarize, our analysis found that keys managed by the API, if wrapped
and then unwrapped, then lose their usage properties. In particular this can
be used to subvert operations such as key exchange and so reveal private key
material.

Export Attack. While unextractable keys are appear safe, our attack shows
there are no safeguards in place to preserve the usage attributes on extractable
keys. Furthermore, any wrapped key can be unwrapped and then given arbitrary
usage attributes. Thus, there is no guarantee that a key transmitted by wrapping
will be used with the intended usages.

The test that revealed this property was modeled with a client initialized with
two symmetric keys. One was an unextractable key with the wrap and unwrap
usage enabled. The other key was extractable but had no usages enabled. The
initial state and goal state are given below, where skey is the secret key and
ikey is the key being under possession of the attacker (note that i is used as the
“attacker” is called “the intruder” in AVISPA):

Ins tance Var iab l e s : key, ikey : key
st : type

I n i t i a l State : sym(skey) ∧ sym(ikey)
∧ keystore(skey, st) ∧ keystore(ikey, st)
∧ extract(skey) ∧ usages(ikey)

Goal : addUsage() : encryptUsage(skey)
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Not only the encrypt usage, but all usages could be added simply by wrapping
and unwrapping the extractable key: wrap(skey, ikey), unwrap(skey, ikey). This
simple single-host attack extends to wrapped keys transmitted between multiple
hosts, and demonstrates the lack of control over usages: Once a key has been
wrapped, the original usages with which it was created are lost, and new usages,
as well as the choice to designate a key extractable, can be added during the
unwrap operation.

Key Exchange API Attacks. The test case in Sect. 4.4 revealed the lack
of key attribute preservation, and an attacker can be successful in deploying
this strategy to reveal secret key material in key exchange and message passing
protocols that use the WebCrypto API. A set of experiments, also done with
the AVISPA model, involved keys sent between a client and server using various
combinations of authentication and key wrapping.

Enumerating these cases also gives us insight into the security of general
message exchanges based on WebCrypto: As key wrapping is a composition
of export and encrypt, if an attack existed on a wrapped key, then the same
attack would apply to an encrypted message. The combinations of encryption
and authentication our model discovered compromises in are:

Symmetric encryption – The sender wraps the key using a symmetric key
shared with the receiver who unwraps the key

Asymmetric encryption – The sender wraps the key using public key for the
receiver who unwraps with the corresponding private key

Symmetric encryption with asymmetric signing – The symmetric encryp-
tion case augmented by signing with the sender’s private key

Asymmetric encryption with asymmetric signing – The asymmetric en-
cryption case augmented by signing with the sender’s private key

Each test was initialized with enough keys to allow the client and server’s task
to be modeled as well as the attacker. We modeled multiple versions of each sce-
nario: one matching the current API specification and a second restricted version
designed to show changes that could reduce attacks. The attacks are described
in a number of tables. Operations in the attack sequences are prepended with
an identifier specifying the entity that performed the operation: ijs- malicious
Javascript controlled by the attacker, i- the attacker, c- the client Javascript
running honestly, and s- the honest server.

Table 2 shows attacks found by testing confidentiality of keys sent from client
to server. A successful attack involves the attacker learning a key that was also
defined as secret. In the cases using symmetric encryption, the basic model used a
symmetric wrapping key that had both wrap and unwrap usages enabled. These
cases allowed API attacks where the secret key was unwrapped and given export
privileges and then extracted. The restricted cases were modeled by removing
the unwrap usage from the client’s wrapping key, which removed this attack
as well as the export attack on the key. The asymmetric case did allow export
attacks but not API attacks.
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Table 2. Client → Server confidentiality attacks

Scenario Export API

Symmetric Encryption

Single key for wrap and unwrap Yes c-send, ijs-unwrap, ijs-extractKey

Different key for each direction Yes None

Asymmetric Encryption

No Restrictions Yes None

No key extraction None None

Symmetric Encryption with Asymmetric Authentication

No Restrictions Yes c-send, i-verify, ijs-unwrap, ijs-extractKey

Client wrapping key cannot unwrap None None

Asymmetric Encryption with Asymmetric Authentication

No Restrictions Yes None

No key extraction None None

Table 3. Server → Client confidentiality attacks

Scenario API

Symmetric Encryption

No Restrictions s-send, ijs-unwrap, ijs-extractKey

Different keys for wrap and unwrap s-send, s-unwrap, s-extractKey

Asymmetric Encryption

No Restrictions s-send, ijs-unwrap, ijs-extractKey

Different keys for wrap and unwrap s-send, s-unwrap, s-extractKey

Symmetric Encryption with Asymmetric Authentication

No Restrictions s-send, i-verify, ijs-unwrap, ijs-extractKey

Asymmetric Encryption with Asymmetric Authentication

No Restrictions s-send, i-verify, ijs-unwrap, ijs-extractKey

Table 3 covers confidentiality attacks but this time for keys sent from server
to client. In these scenarios all base cases were susceptible to an API attack
which caused the key received from the server to be imported as extractable and
then immediately exported. No modifications were found which prevented this
attack.

Table 4 shows integrity attacks on the same set of scenarios as Table 2. The
successful attack was modeled as a key, originally known only to the attacker,
being stored in the server’s key store. For most cases, both symmetric and asym-
metric, API attacks allowed an attacker to send a key to the server by importing
that key into the client and using API calls to wrap and possibly sign the key.
The only modification we found preventing this attack was to disallow use of
one of the keys, but this may not be practical in real world use cases.
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Table 4. Client → Server integrity attacks

Scenario API

Symmetric Encryption

Single key for wrap and unwrap ijs-importKey, ijs-wrap, s-receive

Different key for each direction ijs-importKey, ijs-wrap, s-receive

Asymmetric Encryption

No Restrictions ijs-encrypt, s-receive

Signing key removed before malicious code runs None

Symmetric Encryption with Asymmetric Authentication

No Restrictions ijs-importKey, ijs-wrap, ijs-sign, s-receive

Client wrapping key cannot unwrap None

Asymmetric Encryption with Asymmetric Authentication

No Restrictions ijs-importKey, ijs-wrap, ijs-sign, s-receive

Signing key removed before malicious code runs None

Table 5. Server → Client integrity attacks.

Scenario API

Symmetric Encryption

Same key for wrap and unwrap ijs-importKey, ijs-wrap, c-receive

Different keys for wrap and unwrap None

Asymmetric Encryption

No Restrictions i-wrap, c-receive

Symmetric Encryption with Asymmetric Authentication

No Restrictions None

Asymmetric Encryption with Asymmetric Authentication

No Restrictions None

The integrity attacks shown in Table 5 on keys sent from server to client yield
fewer API attacks. API attacks exist for the cases where the attacker has access
to the wrapping key. This is the symmetric case where the client’s key has wrap
and unwrap usages as well as the asymmetric case where the encryption key is
public by default. With authentication required, no API attacks were found.

These results lead to a few general observations. Export attacks are often
available because keys that can be wrapped are also then extractable; any key
that can be exported from the client can be retrieved in the clear by an attacker
even though the wrapping is intended to keep the key secret. The found API
attacks have a common element of using a key stored on the client to perform
cryptographic operations. Some of these attacks are caused by the fact that
the extractable attribute and usages array are not preserved for wrapped keys,
and unwrapped keys can be given any new combination of attributes, including
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extractable. Other attacks could be mitigated by limiting the usability of stored
keys. For example in the symmetric encryption case, if one key is used for both
directions, the attacker can use the client’s keys to both encrypt and decrypt
the communication. However, using distinct keys for each direction of communi-
cation and reinforcing this behavior with usages attributes prevents this type of
attack assuming the usages are not changed. Thus, the successful API attacks
could be prevented if usages were bound to key material in general and not
allowed to be altered while the key is being stored. Lastly, authenticating via
asymmetric keys where extractability of key material is not allowed prevents the
attacks on confidentiality and integrity of keys from the server to the client.

5 Algorithm-Level Analysis

In our formal analysis, we treated algorithms as “black boxes” in the analysis of
cryptographic primitives. This is because some of the attacks on security APIs
are beyond the scope of the DY model employed by AVISPA. For example, formal
models do not in general deal with attacks like oracle attacks that observe the
error messages that are returned by the API. Furthermore, some algorithms have
well-known weaknesses.

In this review, we limit ourselves to peer-reviewed results on the algorithms
which have been included in the first Candidate Recommendation version of
the WebCrypto API, although the precise algorithms are still in flux due to
interoperability testing. Table 6 summarizes the results. Although none of these
results or attacks are new in terms of cryptanalysis, the fact that they were
present in the WebCrypto API should be explicitly noted. After this analysis,
RSAES-PKCS1-v1 5 was removed from the specification and the problems with
padding error return codes were corrected.

There is at least one annual publication, the ENISA “Algorithms, Key Size
and Parameters Report,” whose aim is to track ongoing developments, which
discusses a much larger set of algorithms in much greater depth. Our results are
in general the same except for algorithms ENISA does not cover like PBKDF2
and AES-KW [37].14 We note that HKDF has security proofs [26] but needs
more study. Security models for password-based key derivation functions are
still in a state of flux [42]. PBKDF2 has known weaknesses [43], and many
implementations do not use enough iterations.

In detail, the main problematic algorithm originally included in WebCrypto
was RSAES-PKCS1-v1 5, which has been known to be vulnerable to a chosen
ciphertext attack (CCA) since 1998 [12]. The attack has recently been improved
to require a median of less than 15 000 chosen ciphertexts on the standard oracle
[5]. Instances of the attack in widely-deployed real-world systems continue to be
found [23]. Finally, note also that as of version 1.3, RSAES-PKCS1-v1 5 will
be dropped from the TLS standard.15 In terms of alternatives, there are no
publicly known attacks on RSASSA-PKCS1-v1 5 but no security proofs and
14 Note as of September 2016, the 2014 report is currently under revision.
15 http://www.ietf.org/mail-archive/web/tls/current/msg12362.html.

http://www.ietf.org/mail-archive/web/tls/current/msg12362.html
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Table 6. Algorithm summary

Algorithm/Mode Ok legacy Ok future Note

RSAES-PKCS1-v1 5 × ×
RSA-OAEP � �
RSASSA-PKCS1-v1 5 � × No security proof

RSA-PSS � �
ECDSA � × Weak provable security results

ECDH � �
AES-CBC � � NB not CCA secure

AES-CFB � � NB not CCA secure

AES-CTR � � NB not CCA secure

AES-GCM � �
AES-CMAC � �
AES-KW � × No public security proof

HMAC � �
DH � �
SHA-1 × × See text

SHA-256 � �
SHA-384 � �
SHA-512 � �
CONCAT � �
HKDF-CTR � �
PBKDF2 � × Known weaknesses (see text)

no advantages compared to other RSA-based schemes, while RSA-PSS has a
security proof due to Bellare and Rogaway [8] in the random oracle model.

There are also some inevitable issues with elliptic curve cryptography, which
is in an ongoing state of flux in both WebCrypto and wider internet standards. In
particular, ECDSA has some provable security results but only in weak models
[42]. There is debate on elliptic curves.16 ECDH has provable security results [14],
but like other plain DH modes it offers no authenticity, so this must be handled
separately. A proposal exists to include Curve25519 [32] after the browsers are
finished implementing the CFRG recommendations. In general, we recommend
using only named curves with wide public review.

In terms of AES, there are well-known issues with AES-CBC mode that are
not currently believed to pose a practical threat [25], and it is not CCA secure.
Both AES-CBC and AES-CFB are secure against chosen plaintext attacks
(CPA-secure) if the IV is random, but not if the IV is a nonce [35]. In par-
ticular AES-CFB does not tolerate a padding oracle [41] - indeed, in practice,

16 http://safecurves.cr.yp.to/.

http://safecurves.cr.yp.to/
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padding oracle attacks are common [29,31,33]. The padding mode [24] is exactly
that which gives rise to most of these attacks. AES-KW has received various
criticisms, for example being inconsistent in its notions of security (requiring
IND-CCA from a deterministic mode), but though it has no public security
proof, it has no known attacks either [34]. AES-CTR is probably the best mode
of the traditional AES modes, although the mode is easy to mis-use and thus
in general AES-GCM should be preferred (ideally with an explicit safeguard
to prevent re-usage of the IV). Since WebCrypto does not contain guidance on
composing AES modes with a MAC and does not prevent the re-usage of an IV,
care needs to be taken by developers.

Due to the inclusion of AES-CBC and the consideration of RSAES-PKCS1-
v1.5, padding attacks against these protocols would be a threat to both encrypted

Table 7. Explanation of padding attacks

Attacking Encrypted Text Attacking Wrapped Keys

PKCS1-v1.5 Potential Attack – PKCS1-v1.5
padding is susceptible to known
oracle attacks when an attacker
can discern that decryption failed
due to incorrect padding. The API
specifies that failure to decrypt
should result in a OperationError.
Causes of this failure are incorrect
padding (either incorrect leading
bytes or not enough padding) and
a cipher text that is out of range of
the RSA modulus. (The latter can
be prevented in the attack.) These
are the only possible causes of the
OperationError from PKCS1-v1.5
decryption, leading to the
possibility that a decryption oracle
is exposed to the attacker

Potential Attack – Similarly
to the attack against
encryption, the error given when
unwrapping an incorrectly
padded key is an
OperationError. However, the
error that results from a
correctly padded but incorrectly
formatted key (which would be
used in the attack) is a
DataError. If the difference in
errors in not concealed from
attackers, an attack would be
able to recover wrapped keys

AES-CBC Potential Attack – AES-CBC is
known to be susceptible to padding
oracle attacks when an attacker
can discern that a particular cipher
text cannot be decrypted due to a
padding error. The API specifies
that this error is a DataError. The
only other source of this error
during the decrypt operation is an
incorrect initialization vector
length, which the attacker could
check given access to the IV

No Obvious Attack – A
successful attack requires the
ability to differentiate between
keys that cannot be unwrapped
due to 1) incorrect padding and
2) incorrect key length or
structure that cannot be parsed.
In both cases, the error specified
by the API is the same and no
other test is apparent to
distinguish between the two
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messages and wrapped keys in WebCrypto. Table 7 explains how these vulner-
abilities manifest themselves in the Webcrypto API. After these attacks were
discussed with the W3C Web Cryptography Working Group due to the analysis
presented in this paper, RSAES-PKCS1-v1 5 had its support removed from the
W3C Web Cryptography specification. Also, errors that could lead to attacks
on AES-CBC wrapped keys, such as DataError, were removed from the spec
where necessary and replaced with OperationError that could not distinguish
between a key and padding operation. This should be considered a good exam-
ple of a standards-based Working Group working well with knowledge from the
cryptographic community.

5.1 AES-CBC Wrapped Keys

It is worth noting that despite the API’s resistance to padding attacks against
AES-CBC wrapped keys, this vulnerability could easily emerge through imple-
mentation errors or misuse of the API. To guard against implementation errors,
we recommend the following checks:

– All errors caused by improper padding or incorrect key length/formatting are
indistinguishable. (Padding errors will be returned from a different subroutine
than the other errors and be discovered first, so any information about the
source of the error is potentially a distinguishing factor.)

– Lengths of unwrapped keys are verified to match one of the predefined key
lengths.

– All bytes of padding are checked for conformance.

Of these three recommendations, the first was accepted in to the specification.
Additionally, the specific key lengths reduce the search space of a brute force
attack against 192 and 256 bit keys. Unwrapping a 256 bit key as if it was 192
bits requires guessing only the 64 bits that need to be (wrongly) interpreted as
padding for unwrapping to be successful. Thus the problem is reduced to finding
a 192 bit key. These, in turn, require guessing another 64 bits in order to be
unwrapped as if they were 128 bit keys. From there, the problem is equivalent
finding a 128 bit key. Thus, brute forcing 192 and 256 bit keys takes at most
2128 + 264 and 2128 + 265 guesses respectively, which is less than the traditional
brute force attack. Lastly, it should be mentioned that if the attacker is given an
oracle that uses the decrypt operation instead of the unwrap operation with the
same key used for wrapping, a standard padding attack may be able to recover
wrapped keys.

5.2 High-Level API Recommendations

Although the API does not provide “safe” defaults, the IRTF CFRG (CryptoFo-
rum Research Group) created a document to track known security flaws, attacks,
and the status of formal security proofs for each algorithm in the API.17 From
17 https://www.w3.org/2012/webcrypto/draft-irtf-cfrg-webcrypto-algorithms-01.

html.

https://www.w3.org/2012/webcrypto/draft-irtf-cfrg-webcrypto-algorithms-01.html
https://www.w3.org/2012/webcrypto/draft-irtf-cfrg-webcrypto-algorithms-01.html
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our analysis, it is quite clear what the recommend modes should be in general
for a developer-friendly “high-level” API that also automatically took care of IV
vector initialization and other parameters. For RSA-based algorithms, RSA-PSS
should be used for signing and verification while RSA-OAEP should be used for
encryption and decryption. It is likely that Curve 25519 support should be added.
Standardised by NIST, AES-GCM is gaining traction in standards such as IPsec,
MACSec, P1619.1, and TLS [35]. Regarding DH, more protocols are now favor-
ing ECDH as attacks against “weak” standard Diffie-Hellman groups are not
as powerful against elliptic curves due to a loss of a clear precomputation-based
advantage [1]. HMAC has well-studied security proofs, even if the underlying
hash function is not (weak) collision resistant [7]. In terms of hashing functions,
of course SHA-2 is to be preferred due to the amount of increased feasibility of
practical methods of obtaining collisions for SHA-1.18 As regard key size, in-line
with NIST and ENISA [37], larger key sizes should be preferred such as RSA
keys of at least 2048 bits and 256 bits for symmetric keys and elliptic curve
cryptography.

6 Conclusions

6.1 Fixing the Web Cryptography API

In summary, the Web Cryptography API had three attacks, of which only one
still stands. The attack that is still present is that the usages of keys are not
preserved upon export that can be exploited in numerous ways to reveal not
only wrapped secret key material sent from between the client and server but
also disrupt authenticated key exchange. A number of simple mitigations would
prevent this attack. The most general solution would be to prevent usages from
being changed, but this binds key usages to a key throughout its lifespan. A
more limited mitigation that would address only the unique case of wrapping
would be to have key wrapping require that the properties of a wrapped and
then unwrapped key be preserved, and not require the export of the wrapped
key before wrapping. Wrapping could be done outside the general Javascript
environment and only the wrapped key material exposed. One way to implement
this option would be to inherit the property of being unextractable from the
wrapping key to the wrapped key by default. Another more restrictive option
would be to prevent wrapping and unwrapping. Earlier errors involving padding
attacks being made possible due to error types were corrected, and the RSAES−
PKCS1 − v1 5 algorithm was correctly removed from the specification due to
the analysis presented in this paper. However, the API does not suffer from the
fatal errors in its key management that can be detected via formal modeling,
such as PKCS#11 [17] or the Yubikey [27].

In detail, the handling of key attributes in the API does not create a clear
intuition about their actual effect as the usages may not always be supported,
and so will confuse developers about key management across the boundary

18 https://sites.google.com/site/itstheshappening/.

https://sites.google.com/site/itstheshappening/
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between client and server. For any key transported between either client and
server or server and client, the usages array may be changed arbitrarily. In
other words, the originating host has no control over the usages a key has
once imported onto another host. Another limitation is that keys are either
extractable or not, and must be extractable in order to be wrapped. As demon-
strated, extractable keys are easily attacked and can be retrieved (including
maliciously) from a client with a single API call. Although seemingly harmless
insofar as we would assume a correctly designed Web application would only
allow keys to be extractable on purpose, this produces counter-intuitive results
when mixed with wrapping, as restricting keys to be wrapped to be extractable
forces the aforementioned vulnerabilities. This wrapping attack was verified in
all conformant Web Crypto implementations, including Chrome, Edge, and Fire-
Fox. Furthermore, it prevents WebCrypto for being used for use-cases such as
those proposed by Netflix to ensure secure delivery of key material to clients.
This attack also prevents users from sharing long-term private keys that are
unknown to the server between sessions by virtue of wrapping and sending to
the server and then downloading the wrapped keys into private local storage
when a successful authentication is completed. This is a widely requested fea-
ture for those wanting some ability to authenticate without the server being able
to easily impersonate a user by having access to all the user’s secrets.

The lack of a long-term key storage model combined with a lack of persis-
tent key usages may be detrimental to the usage of Web Cryptography. Without
guidance, developers may make poor choices that do not meet expectations when
storing key material, as the lifetime of these keys is tied to the execution environ-
ment. While this provides many positive security and privacy benefits, to retain
a key for use in later sessions developers will need to make use of a persistent
key storage service on the server using the previously described problematic
key exporting and wrapping routines. As it would be expected then that key
wrapping in order to send keys from the client to the server (and back again
upon revisiting the page) will be used to preserve long-term keys, the key wrap-
ping attacks mentioned earlier are particularly dangerous. One suggestion is that
future versions of the specification should likely tie private keys and wrapping
operations with special processing outside of the normal Javascript environment,
or even more ambitiously try to use a trusted environment to secure keys and
cryptographic operations. This may require some kind of tie between hardware
tokens for keys and their operations. Recently, the W3C has been exploring
adding hardware token access to the Web Cryptography API in their “Web
Cryptography v.Next” workshop, and so the next version of the API may sup-
port both secure multi-session key storage and cryptographic operations on those
keys via some form of a trusted execution environment19 as well as access via

19 Such as ARM TrustZone.
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next-generation authentication APIs such as FIDO20 to origin-bound platform-
held keys via call-response requests that do not reveal the secret key material.21

Standards to assure the end user of the integrity of Javascript code would
prevent many of these attacks. Only recently has the W3C begun to develop
standards to secure Javascript code, and these tend to be quite simple such
as the Sub-resource Integrity W3C standard that allows the hash of Javascript
to be checked before running [15] or Content Security Policy [6] that restricts
the domain of Javascript being run. In detail, Sub-resource Integrity requires
Javascript linked or imported as a script to match a particular hash before
execution and so could prevent some of these cross-scripting attacks or where
a third-party library has been exploited in order to gain access to the origin.
There does not yet exist for Javascript a way to securely install code, such as
has been done via signed code in Linux-based operating systems, much less the
more comprehensive necessary precautions taken into account by The Update
Framework.22 While signed Javascript may seem difficult, many other systems
such as native applications have moved to such a model and so it should not be
surprising if the Web itself may need to adopt signed code. In fact, the hashes
of popular Javascript code could even be imagined to be stored in a Merkle-tree
based append-only log such as those being designed in Certificate Transparency
[28]. Also, there does not exist a standard way to defend the entry in cleartext
of data in locally-running Javascript from the server.

These kinds of attacks could also be countered by creating higher-level
libraries that make it easier to use the Web Cryptography API and avoid having
developers make decisions of key usages and key exporting. This design could be
validated if there was a large-scale study of the usage of the Web Cryptography
API amongst web developers attempting to solve common tasks with the API,
with an eye towards common errors and mistakes with defaults and for attacks
such as those detailed in this paper.

6.2 Next Steps for Standards Research

More formal research is needed on the larger framework of the Web Cryptogra-
phy API and the Web security model, with a focus on the possible interactions
between Web Cryptography and other APIs that are part of HTML5. Ideally,
the entire Web Security Model needs to be formalized and modeled, and it only
makes sense formalizing the security analysis of the Web Cryptography as part
of this larger analysis as most applications will use multiple APIs with possi-
bly contradictory security policies. It would make sense to engage in a thorough
study to be able to determine important security properties such as safe key stor-
age in both the specification and implementations thereof when the WebCrypto

20 http://www.fidoalliance.org.
21 For details of the W3C Web Cryptography v.Next workshop that dealt with hard-

ware tokens, FIDO, and trusted execution environments, see http://www.w3.org/
2012/webcrypto/webcrypto-next-workshop/.

22 http://theupdateframework.com/.

http://www.fidoalliance.org
http://www.w3.org/2012/webcrypto/webcrypto-next-workshop/
http://www.w3.org/2012/webcrypto/webcrypto-next-workshop/
http://theupdateframework.com/
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API is used in combination with other APIs that allow low-level access to a
browser’s localstorage.

The process of formal modeling would be helpful if integrated into the stan-
dardization process to understand the security properties of APIs and their com-
plex interactions with other APIs. One approach would be to include it at the
early stages of the design of the standard. If it were, it could both correct early
flaws, but would require considerable investment in updating the model. Another
option would be do the formal model as part of the security review, although
such a security review is currently optional at the W3C. Another option would
be to include the formal modeling as part of the test-suite necessary to reach
standardiation, where the test-suite must demonstrate security properties. One
possible incentive structure is that just as currently W3C specifications require
conformance testing via a test-suite to be done manually, the automatic gener-
ation of a test-suite using formal methods would both save the developers time
and lead to a more thorough test-suite. The formally-generated test-suite could
then be tested against real-world implementations in order to prove interop-
erability and conformance. The use of formal methods for testing is currently
under development for the new Web Authentication API (formerly the “FIDO
2.0” API) that attempts to supplement passwords with one-factor cryptographic
authentication.23 In general, we hope that formal analysis of Web APIs will lead
to a more secure Web that is better understood and easier to use for developers.
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Abstract. The TPM 2.0 specification has been designed to support a
number of Elliptic Curve Cryptographic (ECC) primitives, such as key
exchange, digital signatures and Direct Anonymous Attestation (DAA).
In order to meet the requirement that different TPM users may favor
different cryptographic algorithms, each primitive can be implemented
from multiple algorithms. This feature is called Algorithm Agility. For
the purpose of performance efficiency, multiple algorithms share a small
set of TPM commands. In this paper, we review all the TPM 2.0 ECC
functionalities, and discuss on whether the existing TPM commands can
be used to implement new cryptographic algorithms which have not yet
been addressed in the specification. We demonstrate that four asymmet-
ric encryption schemes specified in ISO/IEC 18033-2 can be implemented
using a TPM 2.0 chip, and we also show on some ECDSA variants that
the coverage of algorithm agility from TPM 2.0 is limited. Security analy-
sis of algorithm agility is a challenge, which is not responded in this
paper. However, we believe that this paper will help future researchers
analyze TPM 2.0 in more comprehensive methods than it has been done
so far.

Keywords: Algorithm Agility · Elliptic Curve Cryptography · Trusted
Platform Module

1 Introduction

Trusted Platform Module (TPM) is an international standard for a tamper-
resistant crypto processor. TPM’s technical specification is developed by a com-
puter industry standard body called Trusted Computing Group (TCG). The first
broadly used TPM specification is TPM version 1.2 [29], which was released in
2003. International Organization for Standardization (ISO) and International
Electrotechnical Commission (IEC) standardized this specification as ISO/IEC
11889 in 2009 [1].

The TPM 1.2 specification only supported a small number of cryptographic
algorithms: RSA encryption and digital signatures, SHA-1 hash function, HMAC
c© Springer International Publishing AG 2016
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message authentication code and Direct Anonymous Attestation (DAA) based
on the RSA problem. This fixed algorithm coverage was not satisfactory to world-
wide TPM users. Besides an obvious reason that SHA-1 is no longer suitable for
digital signatures based on the attack in [31], people from different countries and
regions may favor different cryptographic algorithms, especially elliptic curve
cryptography. This required the TCG to revise the TPM specification.

As a reaction, the TCG now continuously revises the TPM specification, and
the biggest step was to move from TPM 1.2 to TPM 2.0. The latest TPM 2.0
release is Trusted Platform Module Library Specification Revision 01.16 released
in October 2014 [30]. ISO/IEC standardized this specification as ISO/IEC 11889
in December 2015 [2] and meanwhile the previous 2009 edition [1] was withdrawn.

Among many important modifications from TPM 1.2, the most attractive
change from the authors of this paper’s view point is that the TPM 2.0 supports
Algorithm Agility, which means that each cryptographic primitive can be
used by multiple cryptographic algorithms. This is managed by using the TCG
Algorithm Registry [28].

Although algorithm agility is a well received property, the performance effi-
ciency is still one of the most important requirements in the development of the
TPM 2.0 family. In order to achieve a balance between algorithm agility and
high performance, the TPM 2.0 specification allows a set of TPM commands to
be shared by multiple algorithms.

The new cryptographic functionalities from TPM 1.2 include a number of
Elliptic Curve Cryptographic (ECC) primitives, such as Elliptic Curve (EC)
based digital signatures, key exchange and DAA. This paper is focused on dis-
cussing the algorithm agility for TPM 2.0 ECC functionalities. We aim to make
the following contributions:

1. Find whether the existing TPM 2.0 commands can be used to implement
new cryptographic algorithms which have not yet addressed in the current
specification [2,30]. We demonstrate that four asymmetric encryption schemes
specified in ISO/IEC 18033-2 [4] can be implemented using a TPM 2.0 chip.
We also show that the coverage of algorithm agility from TPM 2.0 is limited.

2. Show some obstacles one faces when implementing an algorithm in such way
that it will be usable from many different standards.

3. Provide a concise description of the ECC functionalities in TPM 2.0, which
is easier to follow by cryptographic researchers than the specification [2,30].

In the literature, there are many papers aimed to analyze security features
of a TPM. They all focus on individual cryptographic algorithms or functions;
for example, analyzing privacy-CA solution [15,19] and DAA [10,13,33]. To the
best of our knowledge, a comprehensive security analysis of multiple TPM func-
tionalities, such as algorithm agility, does not exist. This is a big challenge. We
notice that one reason why this has not happened yet is because the TPM spec-
ification is not reader friendly for cryptographic researchers, with the evidence
that the specification [2,30] is over 1500 pages long. Although this paper does
not aim to provide a complete response to this challenge, we believe that the
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content of this paper will help the future cryptographic researcher analyst TPM
2.0 in more comprehensive methods than it has been done so far.

The remaining part of this paper is arranged as follows. In the next section,
we will review the existing TPM 2.0 ECC functionalities, which include a short
overview of the TPM’s key handling method and commands, and the TPM ECC
related commands. In Sect. 3 we list the EC-based cryptographic algorithms and
protocols which were already addressed in the TPM 2.0 specification. In Sect. 4,
we will discuss a number of asymmetric encryption algorithms, which can be
implemented by using the existing TPM 2.0 ECC functionalities, although they
have not been mentioned in the specification yet. In this section we also show the
limitation of TPM algorithm agility by variants of ECDSA signature algorithms.
In Sect. 5, taking an example of the EC-based Schnorr digital signature scheme,
we will further discuss on some issues in compatibility. Section 6 will share our
considerations about TPM performance. We will conclude the paper in Sect. 7
with an open question on how to define and prove security notions for the TPM
2.0 algorithm agility property.

2 Overview of the TPM 2.0 ECC Functionalities

In this section we give an overview of the Elliptic Curve Cryptographic (ECC)
functionalities which are specified in the TPM 2.0 specification [2,30]. Because
the TCG TPM 2.0 specification [30] is still under development, the information
used in this section is based on a version of the TPM library published by
ISO/IEC in 2015 [2]. We introduce a set of major TPM 2.0 commands that are
used to implemented the TPM 2.0 ECC functions. After that we list all the
EC-based cryptographic algorithms that are mentioned in the specification.

2.1 Introduction to TPM Keys

To describe ECC keys in the TPM 2.0 environment, we use the notation shown
in Table 1.

TPM Key Structures. In the TPM 2.0 environment, TPM keys are arranged
with key hierarchies. For the reason of limiting TPM resources, keys are normally
stored outside. Each key except a root key is associated with a parent key,
parentK, and the top parent key is a root key.

Let an ECC key be denoted by tk with a private potion tsk and a public
potion tpk. Some system parameters about an ECC key, known by a TPM,
include coefficients of the curve, a field modulus of the curve, an order of group
elements on the curve and a generator of the group. For simplicity, we use tpk
to cover all of these parameters. Each key tk is associated a key name denoted
by tk.name, key blob denoted by tk.blob and key handle denoted by tk.handle,
which have the following meanings.
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Table 1. Notation used in this paper

Notation Descriptions

tk ECC key created by TPM

tpk/tsk public/private portion of tk

parentK a key used to introduce another key

k.name name of key k used for identifying the key externally

k.blob key blob of key k wrapped by its parentK

k.handle handle of key k used for identifying the key internally by a TPM

kdf (s) key derivation function using s as seed

mac k(m) message authentication code of m computed using key k

(m)k encryption of m under symmetric key k

x‖y concatenation of x and y

Gp an elliptic curve group of prime order p

G a generator of Gp

– Key name: tk.name is a message digest of tpk and the key’s attributes. It is
usually used for verifying the integrity of the key.

– Key blob: Each TPM key stored outside of the TPM is in a format of a key blob;
tk.blob includes the following information: tsk encrypted under its parentK,
tpk, and an integrity tag. The tag allows the TPM to verify integrity and
authenticity of the key and is achieved by using a message authentication
code (mac). Both the encryption key sk and MAC key mk are derived from
parentK by using a key derivation function (kdf). The following is a brief
description of tk.blob:

(sk,mk) := kdf(parentK),
tk.blob := (tsk)sk‖tpk‖macmk((tsk)sk‖tpk.name).

– Key handle: If tk is associated with multiple commands, the connection
between these commands is presented as tk.handle that uniquely identifies
the key. tk.handle is assigned by the TPM when tk is loaded into the TPM.
Such a key handle is a 4 byte (word) value. The first byte designates the han-
dle type and the remaining three bytes are uniquely referring the key. After
the loading command, when tk is subsequently used in another command (or
multiple commands), the handle is taken as input for each command. If more
than one key are involved in a command, all handles of these keys are taken
as input for the command.

The usage of each ECC key are classified by three key base attributes as
restricted, sign and decrypt. Table 2 shows valid combinations.

The sign attribute is used to allow the key to perform signing operations,
e.g. this key can be used for the TPM2 Sign() command.
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Table 2. Key base attributes

Sign Decrypt Restricted Description

0 0 0 no key, user defined data blob

0 0 1 not allowed

0 1 0 a decryption key but may not be a parentK

0 1 1 may be a parentK

1 0 0 a key for signing external date

1 0 1 a key for signing TPM generated data only

1 1 0 a general-purpose key

1 1 1 not supported

The decrypt attribute is used to allow the key to perform decryption opera-
tions, e.g. this key can be used for the TPM2 ECDH ZGen() command.

The restricted attribute needs a bit more explanation. Let’s first explain
restricted sign keys. The TPM can be used to sign externally given messages
or to sign internally generated data. For instance, the TPM2 Quote() command
signs the values of some platform configuration registers and the TPM2 Certify()
command signs a TPM generated key. A verifier must be assured that the signa-
tures actually have been performed by those commands on internal TPM data.
To do this, the TPM puts a special tag word called TPM GENERATED VALUE
in the message header of the signature. This tag proves to the verifier that the
signature belongs to TPM created data. If the signing key has the restricted
attribute, the TPM will only sign an externally given message by TPM2 Sign(),
if the message does not start with the TPM GENERATED VALUE tag. This pro-
tects that the TPM2 Sign() command cannot be misused to fake a platform
attestation.

The restricted decryption attribute is mainly used for the parent key to pro-
tect a key blob. Here it must be targeted that only the TPM can decrypt the
key blob. The restricted attribute protects this key from being used for general
purpose decryption commands (e.g. TPM2 ECDH ZGen()). If the key would not
be restricted an attacker could simply use the TPM2 ECDH ZGen() command to
decrypt the key blob.

In addition to the base attributes there are other key attributes. We will not
go into detail here but only mention the most important ones.

– userWithAuth and adminWithPolicy: they control authorization of the key.
– fixedTPM and fixedParent: they control if the key can be duplicated under

another parent key of the same TPM or another one.

2.2 TPM 2.0 Key Handling Commands

All TPM functions are served by using a set of TPM commands. Most of the
TPM commands have multiple options, regarding to different types of keys and
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applications. For simplicity, we only explain these options which are related to
the implementation of the TPM ECC functions that will be discussed in the
later part of the paper. For the same reason, we may also omit some input and
output information if they are not relevant to our purposes.

Generate a Key: TPM2 Create(). An ECC key tk can be generated by using
this command. The command takes a handle of a parent key (say parentK)
that has already been loaded into the TPM and public parameters about the
curve, algorithm identifier and so on as input, creates a fresh ECC key pair
tk = (tpk, tsk), and outputs a wrapped key blob, tk.blob as described before.

In the context of the ECC functions, to respond to this command, the TPM
performs the following steps:

1. TPM picks a random x ← Zp and computes Y = [x]G, where the values p
and G are a part of the public parameters dependent on the ECC algorithms
that will be discussed in the next subsection.

2. TPM sets tpk := Y , tsk := x, and tk := (tpk, tsk).
3. TPM wraps tk with the parent key and outputs a key blob tk.blob.

A variation of this command is TPM2 CreatePrimary(), in which the private
key tsk is derived from a primary seed of the TPM using a key derivation
function (kdf). A primary seed is a secret key stored inside of the TPM. As a
result, the key tk is a root key of the key hierarchy. The same primary seed can
be used to create multiple root keys. In order to make each created key unique,
some index value(s) shall be used. Primary keys will be used internally as root
keys which protect a key hierarchy of ordinary keys. They will normally not be
used for cryptographic services and we therefore ignore them in the remaining
of this paper.

Load a Key into TPM: TPM2 Load(). When tk is created in TPM2 Create(),
it is not stored inside of the TPM. In order to use tk, the key has to be loaded
into the TPM using the command TPM2 Load(). This command takes as input
a parent key handle and a key blob tk.blob. The TPM verifies integrity of the
key by checking the validation of the blob under the parent key, optionally also
verifies the user authorization and the attributes consistence. If all the verifica-
tion succeeds, the TPM outputs a handle tk.handle and the name tk.name for
the key. After TPM2 Load() has been called, tk is now stored inside the TPM
and can be used for future operations.

Load an External Key to TPM: TPM2 LoadExternal(). An external key
that is not part of a TPM key hierarchy can also be loaded into the TPM. This
will normally be a public key only. For example, if a signature verification is the
purpose, then the public verification key will be loaded into the TPM with this
command.
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2.3 TPM 2.0 ECC Commands

Commit an Ephemeral Secret for Signing: TPM2 Commit(). Several EC-
based signature schemes are implemented using two phases: committing and sign-
ing. The committing process is achieved using the command TPM2 Commit(). It
takes as input a key handle of a signing key tk, a point P1 in Gp, a string ŝ, and an
integer ŷ, where ŝ and ŷ are used to construct another point P2 inGp, see below for
details. The TPM outputs three points R1, R2, K2, and a counter ctr to the host,
where ctr is used for identifying the random value r created by this command. To
respond this command the TPM performs the following steps:

1. TPM computes x̂ := H(ŝ) where H is a collision-resistant hash function, and
sets P2 := (x̂, ŷ).

2. TPM verifies P1 and P2 are elements in Gp.
3. TPM chooses a random integer r ← Zp.
4. TPM computes R1 := [r]P1, R2 := [r]P2, and K2 := [tsk]P2.
5. TPM outputs R1, R2,K2 and ctr while keeping r internally.

Note that some input to this command can be empty. If ŝ and ŷ are empty,
then R2 and K2 are not computed. If all the three elements P1, ŝ and ŷ are
empty, then R1 = [r]G, where G is a long-term base in the curve parameters
and was used in creating tk.

Sign: TPM2 Sign(). This command can be used as a one-phase signing oper-
ation or the second phase of the two-phase signing protocols. It takes as input
a handle of the signing key tk, a message digest ch, and optionally a counter
value ctr , and outputs a signature σ on the message. The counter value ctr is
only needed when the sign command is called after executing a commit com-
mand TPM2 Commit(). Standard digital signature algorithms can be used, such
as RSA, ECDSA, or ECSchnorr signatures. If a conventional signature scheme
is used, then there is no need to call the commit command. In the context of a
two-phase signing protocol, the TPM responds to this command by performing
the following steps:

1. TPM retrieves r from the commit command based on the ctr value.
2. TPM computes s := r + c · tsk mod p and deletes r.
3. TPM outputs s.

Note: Recently Xi et al. [33] and Camenisch et al. [13] reported an issue in
the security proof of [16], that requires to a modification of the scheme in [2] by
adding the nonce nt. Note also that the nonce nt is in another version of EC-DAA
schemes specified in ISO/IEC 20008-2 [6], so this issue does not require such a
modification to ISO/IEC 20008-2. This modification has of course implications
also to other protocols which rely on the ECDAA functionality. Here is the
modified sign algorithms.
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1. TPM created a nonce nt → Zp.
2. TPM computes c := H(ch, nt).
3. TPM retrieves r from the commit command based on the ctr value.
4. TPM computes s := r + c · tsk mod p and deletes r.
5. TPM outputs σ = (nt, s).

The TPM 2.0 specification also contains commands which perform a signa-
ture over TPM internally stored date. For instance, TPM2 Quote() is used to
sign platform configuration registers and TPM2 Certify() will sign another TPM
stored key. We will not go into detail of those commands.

Compute an Ephemeral Key: TPM2 ECDH KeyGen(). This command
takes as input the public portion of a loaded key including an EC point P
in the curve, chooses an element d uniformly at random from the space of the
ECC private key, computes Q := [d]P and outputs P and Q. The TPM does not
record or output the value d. Since the operation can be performed by software,
no authorization is required to use the loaded key and the key may be either
sign or encrypt.

Compute a Static DH Key: TPM2 ECDH ZGen(). This command takes
as input a loaded key with the private portion d along with the corresponding
public parameters, and an elliptic curve point P . The TPM first verifies whether
P matches with the public parameters. If the verification passes, the TPM com-
putes Z := [d]P and outputs Z. Since this operation uses the private portion of
an ECC key, authorization of the key is required. The attributes of the key is
the restricted attribute CLEAR and the decrypt attribute SET.

CommitanEphemeralSecret forKeyExchange: TPM2 EC Ephemeral().
This command takes as input the public parameters for an ECC key with the ellip-
tic curve point G, generates an ephemeral private portion of an ECC key r by
using a counter technique as used in TPM2 Commit(), and computes a public key
P := [r]G. The value of P is returned to the caller along with the counter value
associated with r.

Compute a DH Key: TPM2 ZGen 2Phase(). This command takes as input
a scheme selector and the counter value returned by TPM2 EC Ephemeral() along
with the corresponding public parameters, recreates r and regenerates the asso-
ciated public key. After that the TPM will “retire” the r value so that it will
not be used again. This command can be used to achieve multiple key exchange
protocols, which may have different operations. The scheme selector is used to
tell the TPM which key exchange protocols should be implemented.

The TPM 2.0 specification also contains the TPM2 ActivateCredential() com-
mand which uses an ECC decryption algorithm internally. This command cannot
be used for decryption of general purpose data. Therefore, we will not go into
the detail of this commands.
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3 Known ECC Use Cases for the TPM 2.0

The TPM 2.0 specification [2] supports three ECC primitives: conventional dig-
ital signatures, anonymous digital signatures that is called direct anonymous
attestation, and Diffie-Hellman (DH) key exchange.

3.1 Conventional Digital Signatures

The following three conventional digital signature algorithms are mentioned in
the TPM 2.0 specification [2].

1. ECDSA. The specification does not explain any details about this algorithm,
but simply referring it to ISO/IEC 14888-3 [3]. This algorithm is originally
described in NIST Fips 186-3 [23]. It is also defined in numerous other spec-
ifications, e.g. BSI TR-03111 [12].

2. ECSchnorr. The specification specifies an implementation of the EC Schnorr
signature scheme, which is assigned as the TPM ALG ECSCHNORR scheme.
The scheme includes the EC Schnorr signing operation and signature verifi-
cation operation. The reference for the EC Schnorr signature scheme given in
the TPM 2.0 specification is ISO/IEC 14888-3 [3].

3. SM2. The specification specifies the SM2 digital signature scheme, which
is the Chinese EC-based signature scheme, originally published as the
Chinese National Standard [27]. This digital signature scheme has recently
been adopted by ISO/IEC and the process of adding it into an amendment
of ISO/IEC 14888-3 [3] is in progress.

3.2 Direct Anonymous Attestation (DAA)

One of the main purposes of a TPM chip is to attest the state of the platform
configuration to some verifier. This is basically been done by signing the values
of platform configuration registers inside the TPM. It is an important privacy
requirement that two attestations shall not be linkable. In the pre-DAA epoch,
this has been accomplished by using a privacy certification authority (privacy
CA). This basically worked in the following way. For each attestation, the TPM
contacts the privacy CA and requests a new key, the “Attestation Identity Key”
(AIK) together with a corresponding X.509 certificate. This enables privacy,
because the verifier always sees a different public key. If the verifier gets two
attestations, then he cannot tell if they came from two different TPMs or form
the same one. In this case, the attestations are unlinkable from the verifier.

The downside of this approach is that the privacy CA is involved in every
attestation. Furthermore this CA can link two signatures from the same TPM
and can find which TPM was the signer. Therefore TGC were looking for a
solution which didn’t need the privacy CA: In the TCG history, DAA was the
only cryptographic primitive that was designed to meet the TCG special privacy
requirement. DAA is an anonymous digital signature. A DAA protocol accom-
plishes unlinkability by randomizing the signatures and associated certificates.
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The first RSA DAA scheme was introduced by Brickell, Camenisch and
Chen [10] for the TPM 1.2 specification [29]. The TPM 2.0 specification has
been designed to support a new family of Elliptic Curve (EC) based DAA proto-
cols. The TPM 2.0 specification [2] supports two different DAA protocols which
are based on pairings over elliptic curves. The first [17] is based on Camenisch-
Lysyanskana (CL) credentials [14] and the second one [11] is based on sDH
credentials [9]. The paper from Chen and Li [16] shows how both DAA protocols
can be used with a TPM 2.0 chip.

3.3 DAA with Attributes (DAA-A)

Chen and Urian [18] have recently preposed an extension of DAA by adding
multiple attributes. This protocol is related to the U-Prove protocol but has
a significant advantage over it: In contrast to the U-prove protocol, DAA-A
is multi-show unlinkable. The DAA-A protocol comes in two variants, which
correspond to the respective ECDAA protocols:

– the CL DAA-A protocol which corresponds to the CL ECDAA protocol.
– the sDH DAA-A protocol which corresponds to the sDH ECDAA (aka Epid)

protocol.

In a nutshell, the DAA-A protocol works as follows: Each attribute value will be
encoded as an exponent for an ECC key which is normally stored on the host but
can also be for better security stored on the TPM. The DAA-A Issuer defines the
list of attributes which shall be used in a DAA-A credential. According to the
minimum disclosure principle, the TPM/host shall only reveal a minimum set of
attributes to the Verifier. The TPM/host decide on each individual attestation
what attributes they will reveal to the Verifier and what attributes they will hide
form him. The revealed attributes will be sent by the TPM/host to the Verifier
as part of the DAA-A Sign protocol. The correctness of the hidden attributes
will be proved to the Verifier by a zero-knowledge proof.

Attributes can be stored on the host or on the TPM. TPM hosted
attributes are stored as conventional signature keys. The DAA-A scheme uses the
TPM2 Sign() and TPM2 Commit() commands, specified in ISO/IEC 11889 [2],
as sub-protocols to aid in the generation of the DAA-A signature (see [18] for
details).

Due to the proposed change of the TPM2 Sign() command for ECDAA (see
Sect. 2.3), the integration of DAA-A with this command must also be changed.
We leave how to handle this new adaption as an open problem, and from our
point of view this problem is not trivial.

3.4 U-Prove

The U-Prove protocol [25] from Microsoft is an attribute based protocol with
user controlled selective disclosure. The paper of Chen and Li [16] shows how
U-Prove can be integrated with a TPM 2.0 chip. But the U-Prove protocol has
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the severe drawback that it is not multi-show unlinkable. The reason for this is
that the authentication token of the U-Prove protocol is signed by a Schnorr-
like signature and the signature value can be used as a correlation handle. To
be unlinkable, a U-Prove token may only be used once.

3.5 Key Exchange

The following Diffie-Hellman (DH) based key exchange schemes in the EC setting
are mentioned in the TPM 2.0 specification [2]. Interestingly this technique is
called “secret sharing” in the TPM 2.0 specification. Secret sharing has been
broadly used as a different cryptographic protocol, in which multiple entities
each holds a share of a common secret and a number of these entities can work
together and retrieve such a secret. In order to avoid any confusion, we name
this technique “key exchange” throughout the paper.

1. One-Pass DH. The specification specifies the one-pass DH key exchange
scheme and refers it to NIST SP800-56A [26].

2. Two-Pass DH. The specification specifies the two-pass DH key exchange
scheme, which is also from NIST SP800-56A [26].

3. ECMQV. The specification specifies the two-pass DH key exchange scheme,
which is known as EC-based MQV [26].

4. SM2 key exchange. The specification specifies the two-pass DH key exchange
scheme from the SM2 family, the Chinese National Standard on ECC [27].

4 New ECC Use Cases for TPM 2.0

In this section we will discuss how cryptographic protocols can be used with a
TPM 2.0, although they have not been mentioned in the specification yet. First
we will show that a TPM can nicely be integrated in asymmetric encryption
schemes. Then we will show the limitation of TPM integration by discussing
some variants of signature algorithms.

4.1 Asymmetric Encryption

Based on the TPM 2.0 specification [2,30], ECC is not used directly for encryp-
tion. It is well-known that in ECC, a key exchange functionality is used to estab-
lish a symmetric key from an ECC key, and then a symmetric algorithm is used
for data encryption, which is known as the hybrid encryption, i.e., Key Encap-
sulation Mechanism and Data Encapsulation mechanism (KEM-DEM). The
TPM 2.0 specification does not specify any KEM-DEM scheme. In this section,
we demonstrate how to use TPM 2.0 to implement the ElGamal based KEM
schemes in the ECC setting from ISO/IEC 18033-2 [4]. For the performance
consideration (as a TPM chip is not efficient for data encryption/decryption
compared with software), a DEM scheme would likely be implemented by soft-
ware, and therefore we do not discuss it in this paper.
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Generally speaking, a KEM consists of three algorithms:

– A key generation algorithm KEM.KeyGen() that takes as input the public
system parameters par and outputs a public-key/private-key pair (pk, sk).

– An encryption algorithm KEM.Encrypt() that takes as input (pk, par) and
outputs a secret-key/ciphertext pair (K,C).

– A decryption algorithm KEM.Decrypt() that takes as input (sk, C, par) and
outputs K.

The public system parameters par depend on the particular scheme, and in
the ECC setting they should include an elliptic curve defined over a given finite
field, a subgroup of the elliptic curve group with a prime order q and a generator
G, a hash function hash() and a key derivation function kdf(). For simplicity,
we omit other items in par.

ISO/IEC 18033-2 [4] specifies three ElGamal-based KEM schemes in the
ECC setting. Respectively, they are ECIES (Elliptic Curve Integrated Encryp-
tion Scheme) based on the work of Abdalla, Bellare, and Rogaway [7,8], PSEC
(Provably Secure Elliptic Curve encryption) based on the work of Fujisaki and
Okamoto [22] and ACE (Advanced Cryptographic Engine) based on the work
of Cramer and Shoup [20,21]. Recently a new submission of the ElGamal-based
KEM scheme in the ECC setting [24] has been adopted by ISO/IEC and an
amendment of ISO/IEC 18033-2 specifying this new scheme is in progress. This
scheme is called FACE (Fast ACE).

Table 3 shows the algorithms in these four KEMs. Note that we have changed
the notation used in ISO/IEC 18033-2 for the purpose of this paper, because we
want to demonstrate that the same set of TPM functions can be used for all the
three KEMs.

By using a TPM 2.0 chip to operate a KEM, we mean that the TPM gen-
erates a public-key/private-key pair, stores the key pair in the TPM protected
environment and uses the private-key to decrypt a secret key, which is used
for the DEM operation in a later stage. For the best use of the TPM, we only
make use of the TPM for the operations involving the private-key and leaves
other operations, such as the KEM.Encrypt() algorithm, the kdf() function and
the hash() function, to the software. With this consideration, these three KEM
schemes can be implemented by using the same TPM ECC functionalities.

Now, let us see how to implement the KEM.KeyGen() and KEM.Decrypt()
algorithms in ECIES and PSEC using a number of TPM 2.0 commands, which
were introduced in Sect. 2.2. We assume that a caller enabling to run these soft-
ware operations mentioned before has authorization to use the TPM commands
as follows.

1. In the KEM.KeyGen() algorithm, The caller first chooses an existing TPM key
as a parent key parentK. If the key is stored outside of the TPM, the caller
uses the TPM2 Load() command to load the key and receives a key handle
parentK.handle from the TPM. In order to generate the public-key/private-
key pair tk = (pk, sk), where sk = x and pk = Y = [x]G, the caller calls
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Table 3. Four KEMs in ISO/IEC 18033-2 [4] and ISO/IEC 18033-2/AMD1 [5]

KEM.KeyGen(par) KEM.Encrypt(pk, par) KEM.Decrypt(sk, C, par)

ECIES [7,8] x ∈ [1, q) r ∈ [1, q) C0 = C

Y = [x]G C0 = [r]G, C = C0 D = [x]C0

sk ← x D = [r]Y K = kdf(C0||D)

pk ← Y K = kdf(C0||D) Return K

Return (pk, sk) Return (K, C)

PSEC [22] x ∈ [0, q) seed ∈ {0, 1}seedLen Parse C = C0||F
Y = [x]G t = u||K = kdf(0||seed) D = [x]C0

sk ← x r = u mod q E = kdf(1||C0||D)

pk ← Y C0 = [r]G, D = [r]Y seed = F ⊕ E

Return (pk, sk) E = kdf(1||C0||D) t = kdf(0||seed) = u||K
C = C0||(seed ⊕ E) r = u mod q

Return (K, C) Return K, if C0 = [r]P

Otherwise, return Fail

ACE [20,21] x1, x2, x3, x4 ∈ [0, q) r ∈ [0, q) Parse C = C0||D1||E
Y1 = [x1]G C0 = [r]G α = hash(C0||D1)

Y2 = [x2]G D1 = [r]Y1, D4 = [r]Y4 t = x2 + x3 · α mod q

Y3 = [x3]G α = hash(C0||D1) If D1 �= [x1]C0 ∨ E �= [t]C0

Y4 = [x4]G r′ = α · r mod q return Fail

sk ← (x1, x2, x3, x4) E = [r]Y2 + [r′]Y3 Otherwise calculate

pk ← (Y1, Y2, Y3, Y4) C = C0||D1||E D4 = [x4]C0

Return (pk, sk) K = kdf(C0||D4) K = kdf(C0||D4)

Return (K, C) Return K

FACE [24] a1, a2 ∈ [0, q) r ∈ [0, q) Parse C = U1||U2||T
G1 = [a1]G U1 = [r]G1 α = hash(U1||U2)

G2 = [a2]G U2 = [r]G2 t1 = x1 + y1 · α mod q

x1, x2, y1, y2 ∈ [0, q) α = hash(U1||U2) t2 = x2 + y2 · α mod q

C = [x1]G1 + [x2]G2 r′ = α · r mod q V = t1U1 + t2U2

D = [y1]G1 + [y2]G2 V = [r]C + [r′]D K||T ′ = kdf(V )

sk ← (x1, x2, y1, y2) K||T = kdf(V ) Return K, if T = T ′

pk ← (G1, G2, C, D) C = U1||U2||T Otherwise, return Fail

Return (pk, sk) Return (K, C)

TPM2 Create(), that takes as input the public system parameters par along
with parentK.handle, generates the key pair tk and a key blob tk.blob, and
outputs the blob. Recall that tk.blob includes sk encrypted under parentK,
pk and a tag to check integrity.

2. In the KEM.Decrypt() algorithm, the caller first loads the key pair tk into
the TPM using TPM2 Load() that will return a tk.handle. The caller then
calls TPM2 ECDH ZGen() with the input tk.handle and the value C0 = [r]P .
The TPM will computes and outputs D = [x]C0. The caller can take care of
the remaining operations using software to obtain the secret key K, and in
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PSEC the K value can be obtained if the necessary check C0 = [r]P passes;
otherwise the caller will get a Fail message.

In the ACE KEM, the key pair tk = (pk, sk) consists of four private-key
values sk = (x1, x2, x3, x4) and four corresponding public-key values pk =
(Y1, Y2, Y3, Y4). The caller can treat them as four independent key pairs tk1 =
(Y1, x1), tk2 = (Y2, x2), tk3 = (Y3, x3) and tk4 = (Y4, x4). In the KEM.KeyGen()
algorithm, the caller runs the operation in the first bullet four times each obtain-
ing one key pair tki for i = [1, 4]. In the KEM.Decrypt() algorithm, again the caller
calls the same TPM commands in the second bullet four times, each with C0 as
input but loading a different key pair tki to obtain (D1,D2,D3,D4). Obviously
the caller can verify the value E since E = D2 + [α]D3 and α = Hash(C0||D1).
By following the remaining part of the decryption algorithm, the caller can ver-
ify the ciphertext C and retrieve the secret key K if the verification succeeds or
obtain a Fail message if the verification fails.

The FACE scheme first might need some explanation regarding the value T .
The kdf function for this scheme does not only generate the bits for a key K,
but instead generates some additional bits for the so called Tag value T . The
size of the Tag value are defined in the system parameters.

The FACE KEM algorithm has four public keys and four private keys. But
the private and public keys are not directly related. In the KEM.KeyGen()
algorithm, one has to calculate two public points G1 and G2 without corre-
sponding private keys. To use a TPM here, one can use two invocations of the
TPM2 ECDH KeyGen() TPM command to generate them as ephemeral points.
Then four private keys x1, x2, y1, y2 must be generated and two further public
keys: C = [x1]G1 + [x2]G2 and D = [y1]G1 + [y2]G2. The TPM calculates the
intermediate points X1 = [x1]G1, X2 = [x2]G2, Y1 = [y1]G1, Y2 = [x2]G2 with
four TPM2 ECDH ZGen() command calls. The host then finalises the calculation
by adding the points to get C = X1+X2 and D = Y1+Y2. In the KEM.Decrypt()
algorithm, the receiver has to calculate t1 = x1 + αy1 and t2 = x2 + αy2
and then V = [t1]U1 + [t2]U2. In order to use the TPM, one must a bit re-
arrange the equations. The TPM calculates the intermediate points X1 = [x1]U1,
X2 = [x2]U2, Y1 = [y1]U1, Y2 = [y2]U2 with four TPM2 ECDH ZGen() com-
mand calls. The host then finalises the calculation by computing the point
V = X1 + X2 + [α](Y1 + Y2).

4.2 Limitations of Algorithmic Agility

The ECDSA algorithm implemented in the TPM is described in NIST Fips 186-3
[23]. It is also defined in numerous other specifications, e.g. ISO/IEC 14888-3 [3]
and BSI TR-03111 [12]. Despite this standard ECDSA scheme, [3] also describes
three further national schemes:

– EC-GDSA (Elliptic Curve German Digital Signature Algorithm)
– EC-KCDSA (Elliptic Curve Korean Certificate-based Digital Signature Algo-

rithm)
– EC-RDSA (Elliptic Curve Russian Digital Signature Algorithm)



Algorithm Agility – Discussion on TPM 2.0 ECC Functionalities 155

It would be nice if the current TPM 2.0 specification could also be integrated
in those schemes. But this seems to be impossible. Generally speaking, in order to
integrate a TPM for implementing an algorithm, one has to split the algorithm
into two parts in such a way that the TPM can calculate one part, and the
host can calculate the remaining part. It is thereby crucial that the host only
performs the operation that needs the public keys only. Every operation involving
the private key must be done by the TPM. Such a splitting can be done easily
if the underling primitive is as simple as an ECDH point multiplication. This
was the case in the KEM schemes above. But the ECDSA-type of signature
schemes require to make more complicated operations on the private key. For
instance, there is no obvious way to calculate [x−1]G by using the existing TPM
commands in which the public key is formed as Y = [x|G.

Now, instead of implementing each algorithm separately on a TPM, a sugges-
tion for a future TPM related research could be to split the different signature
algorithms in simple “atomic” pieces, where the private key parts can be easily
implemented on a TPM.

5 Compatibility Issue in Algorithm Agility

Algorithm compatibility is crucial for algorithm agility. However it is a common
practice in cryptographic standardization to ignore this. That means, different
standards for the same cryptographic protocol often use different and incom-
patible implementation choices. This will not be an issue if the TPM has been
considered at the time when the cryptographic protocol is designed. But it will
be a problem if the TPM shall be used to enhance the security for an already
existing cryptographic system.

The TCG noticed this especially for the elliptic curve based Schnorr signature
scheme. Therefore, they decided to revise the current Schnorr implementation
in the TPM 2.0 specification in order to optimize interoperability. By the date
of writing this paper, the final version of this revision has not been done. The
following discussion shows the problems one faces by trying to reach a maximum
amount of interoperability.

The public system parameters par for the EC-based digital signature scheme
also depend on the particular scheme, and they should include an elliptic curve
defined over a given finite field, a subgroup of the elliptic curve group with a
prime order q and a generator G, and a hash function hash(). We use x to
denote the private key and Y for the public key. For simplicity, again we omit
other items in par.

The Schnorr signature algorithm basically consists of the following steps:

1. Choose a random value r and calculate the point R = [r]G.
2. Calculate the signature value c by hashing the x-coordinate Rx of the point

R and a given message M , c = hash(M,Rx). See the discussion below for
the different choices how this hashing can be done on the bit level.

3. Calculate the signature value s. Here we have the two choices to calculate
either (a) s = r + c · x mod q or (b) s = r − c · x mod q.

4. Return the signature (c, s).
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The Schnorr signature verification algorithm to the signature (c, s) for the
message M consists of the following steps:

1. Calculate the point R′. Here we must use the correct version corresponding
to the sign variant, i.e. either (a) R′ = [s]G − [c]Y or (b) R′ = [s]G + [c]Y .

2. Calculate the signature value c′ by hashing the x-coordinate R′
x of the point

R′ and message M as c′ = hash(M,R′
x).

3. Return Accept, if c = c′ or Reject, otherwise.

Note that the different calculation variants for the signature value s can easily
be transformed into each other by inverting the s value, i.e. if (c, s) is a signature
for variant (a), then (c,−s) will be a signature for variant (b) (and vice-versa).

Let us now discuss the different hash calculation variants. The first decision
to make is the bit encoding of the value Rx. Since Rx is an element of the finite
field with q elements, it can be encoded as a byte string of length �log256(q)�. Let
this be the default encoding. This encoding can contain leading zero bytes. As
an alternative encoding one can strip down those leading zeroes from the default
encoding. Let the trz(x) denote the function which truncates the leading zeroes
from the default encoded byte string x. The next choice we must make is in
which order the message M and the value Rx will enter the hash function, i.e.
either as h = hash(M ||Rx) or as h = hash(Rx||M). The next choice regards
the truncation of the value h. This is necessary only if the bit size λ of the hash
result is bigger than the bit size l of the binary encoding of the number q, i.e.
l = �log2 q�. Here one has the choices to either leave the value as it is or truncate
the λ − l least significant bits of h. Let us denote this truncation of a bit string
x as trh(x). As a last choice, we can now set c = h or reduce h first to h′ = h
mod q and set c = h′.

For comparison, in Table 4, we list the three existing implementations of the
EC Schnorr signature scheme in ISO/IEC 14888-3 [3], ISO/IEC 11889 [2] and
BSI TR-03111 [12] respectively, and a new implementation proposed by the TCG
recently [32].

6 Performance Considerations

TPM chips are optimized to provide a high level of hardware security. This
means they have to be resistant against sophisticated physical attacks, like fault
injection or side channel leakage. Security certifications according to Common
Criteria or FIPS give evidence for this security level. TPM chips are also required
to be cost optimized devices. This implies that they will be somewhat restricted
regarding processor speed and memory resources. However the performance of
TPM chips is continuously increasing due to higher clock frequencies, sophisti-
cated cryptographic co-processors and firmware optimizations.

As a TPM chip is normally invoked by the software stack of an multitasking
operating system, the performance also depends on that software part. It is
therefore difficult to provide meaningful performance measurements for TPM
chips.
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Table 4. Different EC Schnorr implementation variants

Sign(par, x,M) Verify(par, Y, s, c,M)

ISO/IEC 14888-3 [3] r ∈ [1, q), R = [r]G R′ = [s]G − [c]Y

c = hash(Rx||M) c′ = hash(R′
x||M)

s = r + c · x mod q Accept, iff c = c′

BSI TR-03111 [12] r ∈ [1, q), R = [r]G R′ = [s]G + [c]Y

c = trh(hash(M ||Rx)) c′ = trh(hash(M ||R′
x))

s = r − c · sk mod q Accept, iff c = c′

ISO/IEC 11889 [2] r ∈ [1, q), R = [r]G R′ = [s]G − [c]Y

c = hash(M ||(trz(Rx

mod q)) mod q
c′ = hash(M ||(trz(R′

x

mod q)) mod q

s = r + c · x mod q Accept, iff c = c′

New TCG proposal [32] r ∈ [1, q), R = [r]G R′ = [s]G − [c]Y k

c = trh(hash(Rx||M)) c′ = trh(hash(R′
x||M)

s = r + c · x mod q Accept, iff c = c′

The bottom line is that a host CPU is faster but provides no hardware
security while the TPM chip is slower but provides a far high level of hardware
security. Due to this performance/security asymmetry, it is very important to
cleverly split the algorithm between the host CPU and the TPM chip. The TPM
should only perform the operations involving the private key.

7 Conclusion with an Open Question

In this paper, we have shown that a TPM 2.0 chip is a reasonably powerful cryp-
tographic engine, which can potentially achieve more than what have be specified
in its published specification [2]. This benefits from the property of algorithm
agility. However, the algorithm agility has made the environment much more
complex than these algorithms individually implemented and analyzed in their
original security proof. Therefore, it is a real challenge to make a sound security
analysis for the entire TPM/host system. This paper has not done anything in
this topic. We finish this paper with an open question: How to define the security
notion of algorithm agility? On the other words, whether it is possible and then
how to build a security model for TPM 2.0 ECC functionalities and to prove it?
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Abstract. In the development of TLS 1.3, the IETF TLS Working
Group has adopted an “analysis-prior-to-deployment” design philoso-
phy. This is in sharp contrast to all previous versions of the protocol. We
present an account of the TLS standardisation narrative, examining the
differences between the reactive standardisation process for TLS 1.2 and
below, and the more proactive standardisation process for TLS 1.3. We
explore the possible factors that have contributed to the shift in the TLS
WG’s design mindset, considering the protocol analysis tools available,
the levels of academic involvement and the incentives governing relevant
stakeholders at the time of standardisation. In an attempt to place TLS
within the broader realm of standardisation, we perform a comparative
analysis of standardisation models and discuss the standardisation of
TLS within this context.

Keywords: Security · Standardisation · TLS

1 Introduction

The Transport Layer Security (TLS) protocol is used by millions, if not billions,
of users on a daily basis and is the de facto standard when it comes to securing
communications on the World Wide Web. The protocol was initially developed
by Netscape Communications under the name Secure Sockets Layer (SSL) and
then officially came under the auspices of the Internet Engineering Task Force
(IETF) in the mid 1990s, eventually leading to the release of TLS 1.0 [32] in
1999. Subsequent versions were released in 2006 (TLS 1.1, [33]) and 2008 (TLS
1.2, [34]). Since then, TLS has received increasing amounts of attention from
the security research community. Dozens of research papers on TLS have been
published, containing both positive and negative results for the protocol. What
began as a trickle of papers has, in the last five years, become a flood. Arguably,
the major triggers for this skyrocketing in interest from the research community
were the TLS Renegotiation flaw of Ray and Rex in 2009 and the BEAST and
CRIME attacks in 2011 and 2012.

The many weaknesses identified in TLS 1.2 and below, as well as increasing
pressure to improve the protocol’s efficiency (by reducing its latency in establish-
ing an initial secure connection) prompted the IETF to start drafting the next
version of the protocol, TLS 1.3, in the Spring of 2014. Unlike the development
process employed for earlier versions, the TLS WG has adopted an “analysis-
prior-to-deployment” design philosophy, making a concerted effort to engage the
c© Springer International Publishing AG 2016
L. Chen et al. (Eds.): SSR 2016, LNCS 10074, pp. 160–186, 2016.
DOI: 10.1007/978-3-319-49100-4 7
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research community in an attempt to catch and remedy weaknesses before the
protocol is finalised.

Given the critical nature of TLS, the recent shift in the IETF’s design
methodology for TLS 1.3, and TLS 1.3 now reaching the beginning of the end
of the standardisation process, we think it pertinent that the TLS standard-
isation story be told. Prior to the standardisation of TLS 1.3, the TLS WG
conformed to a reactive standardisation process: attacks would be announced
and the WG would respond to these attacks by either updating the next version
of the protocol or by releasing patches for the TLS standard. A number of fac-
tors contributed to the adoption of such a standardisation process. As we argue
in the sequel, protocol analysis tools were not mature enough at the time of
the design, the research community’s involvement in the standardisation process
was minimal, and until the first wave of attacks in 2009–2012, attacks on TLS
were not considered to be of enough practical import to warrant making changes
with urgency. In contrast, the on-going TLS 1.3 standardisation process has been
highly proactive. The availability of more mature analysis tools, the threat of
practical attacks, the presence of an engaged research community, and a far more
open dialogue with that community have, we contend, enabled this shift in the
TLS standardisation process.

This newer process has arguably been successful; several research works have
helped build confidence in the protocol’s design [12,35,36,42,57,64], and others
have caught flaws in a timely fashion [18,31]. The design itself has also been
significantly influenced by the research community [61], and the amount of com-
munication between those who implement TLS and those who analyse TLS has
probably never been greater.

Despite this relative success, we deem it important to reflect on whether or
not the TLS 1.3 process could have been improved, and indeed to what extent
it fits into the broader realm of standardisation. To this end, we briefly con-
sider standardisation models as employed by differing standardisation bodies
and examine their differences, advantages and disadvantages through the lens
of TLS. Specifically, we focus on the IETF, the International Organization for
standardisation (ISO) and the US government’s National Institute for Standards
and Technology (NIST). We conduct the thought experiment of identifying which
model best suits a protocol such as TLS.

1.1 Contributions

In this paper we detail the TLS standardisation process, commenting on the
recent shift in the design methodology employed by the IETF. We examine
the era of post-deployment analysis, in which the IETF reacted to protocol
vulnerabilities, as well as the era of pre-deployment analysis, in which the IETF
is actively trying to preempt protocol weaknesses. Our contributions may be
described as follows:

Pre- Versus Post-deployment Analysis. We present an account of the TLS
standardisation process, examining factors which may have contributed to the
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different standardisation cycles employed for TLS 1.2 and below and TLS 1.3,
respectively. We comment on the tools available for analysis, levels of academic
involvement, as well as the incentives driving the agents involved in the stan-
dardisation process.

Further Improvements. We comment on how the TLS 1.3 standardisation
process could have been improved and present an alternative standardisation
cycle for security protocols.

Comparative Analysis. We perform a comparative analysis of standardisation
models and discuss the merits and faults of these models by examining their
suitability for the standardisation of critical protocols such as TLS.

1.2 Related Work

In work on standardisation transparency, Griffin [49] presents the Kaleidoscope
Conference case study which details actions by the International Telecommunica-
tion Union (ITU) to host an academic conference aimed at encouraging openness
in standards development, as well as cultivating academia as an important exter-
nal source of new ideas and technologies. We cover the concept of conferences
and workshops as a means of enhancing academic involvement but also show
that in the case of TLS 1.3, academia serves as an internal source of ideas in the
standardisation process.

Gutmann et al. discuss the importance of setting requirements for security
protocols in [50], another topic which we touch upon. But they appear to do
so in the post-analysis setting, as they discuss formal techniques for updating
requirements in response to flaws found in already published standards.

We are unaware of any work covering the complete TLS standardisation
process.

1.3 Paper Organisation

In Sect. 2 we briefly present background on TLS and the IETF. In Sect. 3 we
discuss the standardisation process for TLS 1.2 and below. We cover the process
that has been followed for TLS 1.3 in Sect. 4. In Sect. 5 we consider the standard-
isation of protocols beyond the realm of the IETF and we conclude in Sect. 6.

2 Background

2.1 TLS

We provide a high-level overview of the TLS protocol, describing only what is
relevant to the standardisation discussions to follow. We direct the reader to
[34,78] for further details.
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TLS is a network protocol designed to provide security services for pro-
tocols running at the application layer. The primary goal of TLS is to facili-
tate the establishment of a secure channel between two communicating entities,
namely the client and the server. The TLS protocol is made up of a number
sub-protocols, the two most important being the Handshake Protocol and the
Record Protocol. The Handshake Protocol negotiates all cryptographically rel-
evant parameters (including what TLS version, what authentication and key
exchange method, and what subsequent symmetric key algorithms will be used).
It authenticates one (or both) of the communicating entities, and establishes
the keys for the symmetric algorithms that will be used in the Record Protocol
to protect application data. For instance, if a client and a server agree on the
TLS RSA WITH AES 128 CBC SHA256 cipher suite during a TLS 1.2 handshake,
then the server will provide an RSA certificate to be used for key exchange and
entity authentication purposes. In this example, the Record Protocol will then
make use of AES in CBC mode for the encryption of application data, and SHA-
256 will be used in the HMAC algorithm to provide message authentication.

TLS 1.2 and Below. The message flows for an initial TLS 1.2 hand-
shake are depicted in Fig. 1. Messages marked with an asterisk are optional
or situation-dependent and braces of the type “[. . .]” indicate encryption with
the application traffic keys. The client and the server exchange ClientHello
and ServerHello messages in order to agree on a cipher suite and to exchange
nonce values. The communicating entities also exchange cryptographic para-
meters (ServerKeyExchange, ClientKeyExchange) that allow for the deriva-
tion of the pre-master secret. Certificates and the corresponding verification
information (Certificate, CertificateVerify) are sent for the purposes of
entity authentication. A master secret is derived from the nonce values and
the pre-master secret, and in turn used in the derivation of the application
traffic keys to be employed by the Record Protocol. The Finished message com-
prises a MAC over the entire handshake, ensuring that the client and the server
share an identical view of the handshake and that an active attacker has not
altered any of the handshake messages.

The Handshake Protocol runs over the Record Protocol, initially with null
encryption and MAC algorithms. The ChangeCipherSpec messages signal the
intent to start using newly negotiated cryptographic algorithms and keys; they
are not considered part of the handshake but instead are the messages of a peer
protocol, the ChangeCipherSpec protocol. Because the Finished messages come
after the ChangeCipherSpec messages, they are protected using the application
data traffic keys derived in the handshake. These messages, then, are the first to
be protected as part of the Record Protocol. They are followed by application
data messages, now protected by the Record Protocol.

The cryptographic parameters established in the initial handshake constitute
a TLS session. A session can be updated via a renegotiation handshake. This is
a full handshake that runs under the protection of an already established TLS
session. This mechanism allows cryptographic parameters to be changed (for
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C S

ClientHello

ServerHello, Certificate*, ServerKeyExchange*,
CertificateRequest*, ServerHelloDone

Certificate*, ClientKeyExchange, CertificateVerify*,
ChangeCipherSpec, [Finished]

ChangeCipherSpec, [Finished]

[Application data]

Fig. 1. TLS 1.2 handshake

C S

ClientHello, ClientKeyShare

ServerHello, ServerKeyShare,, {EncryptedExtensions},
{Certificate}, {CertificateRequest*}, {CertificateVerify},

{Finished}, [Applicaiton data*]

{Certificate*}, {CertificateVerify*}, {Finished}

[Application data]

Fig. 2. TLS 1.3 (EC)DHE handshake

example, upgraded), or client authentication to be demanded by a server. In
order to avoid the expensive public key operations in repeated handshakes, TLS
also offers a lightweight resumption handshake in which a new master secret
is derived from the old pre-master secret and new nonces, thus forcing fresh
application data keys. Each such resumption handshake leads to a new TLS
connection within the existing session; many connections can exist in parallel
for each session.

The Record Protocol, as already indicated, provides a secure channel for
transmission of Application Data (as well as Handshake Protocol and Alert mes-
sages). In TLS 1.0 and 1.1, it uses a “MAC-then-Encode-then-Encrypt” (MEE)
construction, with the MAC algorithm being HMAC instantiated with a range of
hash functions and the encryption algorithm being instantiated with CBC-mode
of a block cipher or the RC4 stream cipher. Sequence numbers are included in
the cryptographic processing, creating a stateful secure channel in which replays,
deletions and re-orderings of TLS records can be detected. TLS 1.2 added sup-
ported for Authenticated Encryption with Associated Data (AEAD) schemes,
with AES-GCM being an increasingly popular option.

TLS 1.3. We provide a brief description of TLS 1.3 as defined in the current
draft 15 of the standard [78], deferring discussion of the design rationale to
Sect. 4. The design process for TLS 1.3 is on-going and several more drafts can
be expected before it is complete. However, at the time of writing, the major
components of the protocol appear to be fairly stable.

The message flows for an initial TLS 1.3 ephemeral Diffie-Hellman handshake
are depicted in Fig. 2. Messages marked with an asterisk are optional or situation-
dependent. Braces of the type “{. . .}” indicate protection under the handshake
traffic key and braces of the type “[. . .]” indicate protection under the application
traffic key. The client and the server exchange ClientHello and ServerHello
messages in order to agree a cipher suite and to exchange nonce values. The
entities also exchange freshly generated Diffie-Hellman (DH) key shares along
with the associated set of groups (ClientKeyShare, ServerKeyShare).

The server’s first message flight will also contain extensions not used for
key establishment (EncryptedExtensions) as well as optional early application
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data. Certificates and the corresponding verification information (Certificate,
CertificateVerify) are exchanged for the purposes of entity authentication;
the client will provide this information if requested to do so by the server
(CertificateRequest). The Finished messages comprise MACs over the entire
handshake transcripts using a handshake traffic key derived from the DH key
shares. These messages provide integrity of the handshake as well as key confir-
mation. As depicted in Fig. 2, the Finished messages are encrypted with hand-
shake traffic keys, and no longer with application traffic keys as was the case in
TLS 1.2 and below. The first records to be protected by the Record Layer are
application data messages. TLS 1.3 only allows the use of AEAD schemes for
the protection of this data.

Entities may also choose to use a pre-shared key (PSK) (PreSharedKey),
or may make use of a PSK/DH combination for key exchange. In TLS 1.3,
session resumption makes use of PSKs; the same is true for transmission of early
client data, with the PSK used in both cases being established in an earlier
handshake. This so-called zero round-trip time (0-RTT) capability allows the
client to transmit data as part of its first flight of messages. Details pertaining
to these handshake modes can be found in [78]. The renegotiation handshake as
described in the TLS 1.2 RFC is no longer available in TLS 1.3.

2.2 The IETF

The IETF is a self-organized group of software developers, implementers, vendors
and researchers focused on creating and maintaining engineering standards for
the Internet. The IETF’s mission is, simply, “to make the Internet work better”
[2]. Participation by individuals is entirely voluntary and there is no formal
membership or associated membership fees. The standardisation work done by
the IETF is organised into areas, each of which contains several Working Groups
(WGs). These areas cover all protocol layers, starting from IP [75] at the internet
layer up to general application layer protocols such as HTTP [15], making the
IETF the de facto technical forum for all matters concerning Internet protocol
standards. The TLS WG falls into the Security Area of the IETF.

The IETF’s standards are published free of charge as Request for Comment
documents (RFCs). These are compiled using inputs from the WG mailing lists
and the face-to-face discussions held at IETF meetings throughout the year. The
TLS WG mailing list is remarkably active and serves as an important platform
for discussion regarding the TLS RFCs. Once published, RFCs may be aug-
mented via the use of extensions. These are RFCs intended to provide increased
functionality and/or, in the case of TLS, security enhancements.

The IETF follows an open model of standards development. There are no
barriers to entry with regards to membership and contributions, and there is a
many-to-one development philosophy: all contributions are pooled in the pro-
duction of one standard, with a consensus-based process being used to decide
between competing options. Analysis of TLS results from a mixture of inter-
nal and external sources; WG members may provide analyses at formal IETF
meetings or on the mailing list, and research originating outside of the WG may
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also be consulted. In reality, and in particular for TLS 1.3, the official IETF
processes have been supplemented by a shadow process involving input from
a small and time-varying group of cryptographic protocol design experts. This
input has been fed in to the draft editor via e-mail and in informal meetings
at various conferences and workshops. Since the IETF charges no fee for its
standards there are no financial barriers to adoption.

3 Post-deployment Analysis

The standardisation process for TLS 1.2 and below can arguably be described
as reactive. Following the announcement of attacks against the protocol, the
TLS WG has responded by either making the necessary changes to the next
version of the standard or by releasing interim recommendations or extensions.
This conforms to what we will term the design-release-break-patch cycle of stan-
dards development. In what follows, we outline this development process as
it pertains to TLS, highlighting attacks against the protocol and the IETF’s
responses to these attacks. We focus on attacks against the protocol rather than
attacks on specific implementations (though the importance of these, for exam-
ple Heartbleed and various certificate processing vulnerabilities, should not be
underestimated).

We note that each TLS version builds on the previous version, incorporating
changes where necessary. All TLS versions are currently in use, with clients and
servers often supporting more than one version. At the time of writing, almost
98 % of sites probed in the SSL Pulse survey1 support TLS 1.0, with support of
TLS 1.1 and TLS 1.2 both being in the region of 80 %.

3.1 Design, Release, Break, Patch

The TLS standard officially sprang to life with a decision by the IETF to stan-
dardize a version of the Secure Sockets Layer (SSL) protocol2 in 1996. The growing
need to support e-commerce and hence the growing deployment of the SSL proto-
col prompted the IETF to this course of action. At this stage, two versions of SSL
existed in the public domain, namely SSLv2 and SSLv3 [43]. SSLv2 had a number
of weaknesses, in particular offering no defence against downgrade attacks. It was
finally deprecated by the IETF in [84], published in 2011.

In 1998, Bleichenbacher published an attack on RSA when encryption used
the PKCS #1 encoding scheme [26], affecting SSLv3. The attack targets the
RSA-encrypted pre-master secret sent from client to server (see Sect. 2.1) by
using the distinctive server-generated PKCS #1-padding error message as an
oracle. Successive, adaptive calls to this oracle allow an attacker to narrow in
on the value of the pre-master secret, and once this is obtained, the attacker
is able to derive the symmetric keys used in the connection. The TLS 1.0 stan-
dard [32] briefly addresses this attack in a two-paragraph note that describes the
1 https://www.trustworthyinternet.org/ssl-pulse/.
2 Designed by Netscape Communications in the 1990s.

https://www.trustworthyinternet.org/ssl-pulse/
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following countermeasure: a server that receives an incorrectly formatted RSA
block should use a pre-generated, random 48-byte value as the pre-master secret
instead, thereby eliminating the oracle. The Bleichenbacher attack has been re-
enabled (in various forms) in several works [52,55,69], the most recent case being
DROWN [13], a cross-protocol attack targeting all versions of TLS running on
servers that also support SSLv2. Surprisingly, a large number of servers still
support this legacy version of the protocol.3

Following the release of TLS 1.0 [32], the first significant attack against TLS
seems to be Vaudenay’s padding oracle attack [28,86]. This attack exploits the
specific CBC-mode padding format used by TLS in its MEE construction in the
Record Protocol. The TLS WG initially responded to the attack by adding an
attack-specific countermeasure to the attack in the TLS 1.1 specification [33].
This was intended to equalise the running time of the reverse of the MEE process-
ing – decryption, decoding, MAC verification (DDM). This knowingly left a small
timing channel, but it was not believed to be exploitable. A decade later, in 2013,
AlFardan and Paterson [8], in their Lucky 13 attack, showed that in fact it was
exploitable in a sophisticated timing attack. Notably, the definitive patch against
this attack required roughly 500 lines of new code in the OpenSSL implemen-
tation, illustrating the difficulty of making the DDM operations constant time.
Moreover, several follow-up papers [7,10,11] have shown that variants of the
attack are still mountable in certain circumstances or for certain implemen-
tations. The 2014 POODLE attack [71] on SSLv3 showed that SSLv3 was also
vulnerable to a related but arguably more serious padding oracle attack, in which
timing information was replaced with much more easy to measure error informa-
tion. Because of weaknesses in the RC4 algorithm (that we discuss below), the
only other encryption option in SSLv3, and because POODLE was essentially
unpatchable, this attack left no other reasonable encryption options for SSLv3.

Following the release of TLS 1.2 [34] in 2008, we see more of a “patch” process
being adopted by the TLS WG. During this time, we saw an explosion of attacks
against TLS. We discuss some of these next.

In 2009 Ray and Rex more or less simultaneously discovered the TLS Rene-
gotiation attack4. By exploiting the lack of a cryptographic binding between an
attacker’s initial handshake and a subsequent renegotiation handshake between
an honest client and an honest server, the attacker is able to convince the server
to interpret traffic – both the attacker-injected traffic and the honest client’s
traffic – as coming from the honest client. The WG’s response to this attack was
the announcement of a mandatory TLS extension [79] applicable to all versions
of TLS. The extension proposed including the respective Finished messages
in the client and server renegotiation Hello messages, thus creating a bind-
ing between the two handshakes. Unfortunately, the Triple Handshake attack of
Bhargavan et al. [20] resurrected the Renegotiation attack by cleverly exploiting

3 At the time of writing, 7 % of the roughly 150 k servers surveyed by SSL pulse still
do.

4 See http://www.educatedguesswork.org/2009/11/understanding the tls renegoti.
html for a description of the attack.

http://www.educatedguesswork.org/2009/11/understanding_the_tls_renegoti.html
http://www.educatedguesswork.org/2009/11/understanding_the_tls_renegoti.html
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the interaction of various TLS resumption and renegotiation handshakes. The
attack completely breaks client authentication.

In 2011 Duong and Rizzo announced the BEAST5 attack [38]. The attack
affects TLS 1.0 and makes use of the chained-IV vulnerability observed by
Moeller [70] and Bard [14], though it has its roots in an observation of Rog-
away [80] from as early as 1995. BEAST exploits the fact that in TLS 1.0, the
final ciphertext block of a CBC-encrypted record becomes the IV for the next
record to be encrypted. This enables an attacker with a chosen plaintext capa-
bility to recover low entropy plaintexts. The main significance of the BEAST
attack is the clever use of malicious JavaScript running in a victim’s browser
to realise the low entropy, chosen plaintext requirement and thereby mount an
HTTP session cookie recovery attack against TLS. However, it should be noted
that the attack required a zero-day vulnerability in the browser in order to obtain
the required fine control over chosen plaintexts. The malicious JavaScript tech-
niques were leveraged a year later by the same authors in the CRIME6 attack
(see [82] for a useful description of the attack). Unlike BEAST, however, CRIME
exploits the compression side-channel inherent to all versions of TLS, a vulner-
ability noted in theoretical form by Kelsey in 2002 [54]. Interestingly, whilst the
BEAST and CRIME attacks can be seen as having triggered the flood of research
that followed, neither came from the academic research community, but instead
from the “hacker” community (which partly explains the lack of formal research
papers describing the attacks). Both attacks required a strong understanding not
only of the cryptographic aspects of the protocol, but also of how the protocol
is deployed in the web context.

The widespread response to CRIME was to disable TLS’s compression fea-
ture. However, this does not completely solve the problem of compression-based
attacks because compression can also take place at the application layer and
introduce similar side-channels (see the BREACH and TIME attacks). A com-
mon response to BEAST was to switch to using RC4 as the encryption method
in the Record Protocol, since a stream cipher would not be susceptible to the
CBC vulnerabilities. Unfortunately, the RC4 keystream has long been known to
be biased [66], and in 2013, AlFardan et al. [9] exploited newly discovered and
known keystream biases to obtain cookie recovery attacks when RC4 was used
as the method of protection in TLS. Garman et al. [45] enhanced the statistical
techniques of Al Fardan et al. and developed password recovery attacks that were
of greater practical significance than those presented in [9]. The weaknesses in
RC4 were further exploited by Vanhoef and Piessens [85] and Bricout et al. [27].
The IETF deprecated RC4 in March 2015 in [74]. Its usage has dropped rapidly
as a consequence of the high profile nature of the attacks, the deprecation, and
the decision by major vendors to disable RC4 in their browsers.7

5 Browser Exploit Against SSL/TLS.
6 Compression-Ratio Info-leak Made Easy.
7 See, for example, http://www.infoworld.com/article/2979527/security/google-moz

illa-microsoft-browsers-dump-rc4-encryption.html.

http://www.infoworld.com/article/2979527/security/google-mozilla-microsoft-browsers-dump-rc4-encryption.html
http://www.infoworld.com/article/2979527/security/google-mozilla-microsoft-browsers-dump-rc4-encryption.html
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Other notable attacks to follow the BEAST, CRIME and RC4 attacks include
the FREAK [17] and Logjam [6] attacks of 2015, and the SLOTH attack [24]
of 2016. Both FREAK and Logjam exploit the enduring widespread support
for weak export-grade cryptographic primitives. Whereas the FREAK attack
affects certain TLS implementations, the Logjam vulnerability, in contrast, is
the result of a protocol flaw and targets Diffie-Hellman key exchange in TLS.
The attack requires a server to support export-grade cryptography, and for the
client to be willing to use low security Diffie-Hellman groups. An active attacker
can convince the server to provide an export-grade 512-bit group to a client
that has requested a non-export DHE cipher suite, and the client will in turn
accept this weak group as being valid for the DHE handshake. Clever use of a
pre-computation phase for state-of-the-art discrete logarithm algorithms in [6]
allowed for the quick computation of individual connections’ secrets. An early
intimation of these types of cross-cipher-suite attack can be found in the work
of Wagner and Schneier [87] as early as 1996. The warning from this paper
seems to have been either forgotten or ignored in subsequent developments of
TLS. Moreover, from version 1.1 onwards, export-grade cipher suites were not
supported by the TLS standards. However, as already noted, almost all servers
do support TLS 1.0 and so become vulnerable to this class of attack.

The change in TLS 1.2 from supporting the MD5/SHA-1 hash function
combination to supporting single hash functions for digital signatures meant
that stronger hash functions such as SHA-256 could be supported but alas, so
could weaker hash functions, such as MD5. Wang and Yu [88] described collision
attacks against MD5 in 2005; the SLOTH attack [24] exploits this weakness to
break client authentication in TLS 1.2 when MD5-based signatures are employed.
The attacks presented are near-practical and falsify the belief of some practition-
ers that only second-preimage resistance is required of the hash functions used
for TLS signatures.

We have described, at a high-level, a number of the most prominent attacks
on TLS and the TLS WG’s responses to these attacks. We now turn to examining
whether or not these attacks were adequately addressed, and indeed, to what
extent they could have been addressed by the standardisation process.

3.2 Effective Fixing, Implementation Constraints and Time Lags

The TLS 1.2 specification provides the following cautionary note with regards
to the Bleichenbacher attack:

"a TLS server MUST NOT generate an alert if processing an
RSA-encrypted premaster secret message fails, or the version
number is not as expected. Instead, it MUST continue the handshake
with a randomly generated premaster secret. It may be useful
to log the real cause of failure for troubleshooting purposes;
however, care must be taken to avoid leaking the information to an
attacker (through, e.g., timing, log files, or other channels.)"
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Upon first glance, the countermeasure appears adequate. However, as pointed
out by Jager et al. [52], the discovery of new side-channels and the develop-
ment of more sophisticated analysis techniques allow for the implementation
of Bleichenbacher-style attacks even though the vulnerability was thought to be
successfully patched. The attacks by Meyer et al. [69] on implementations of TLS
serve as an example of this. One course open to the TLS WG was to remove
the use of the PKCS#1 v1.5 encoding scheme in favour of the PKCS#1 v2.1
encoding scheme (implementing OAEP padding). This would have been more
secure against the Bleichenbacher attack and all envisionable variants. However,
as is explained in the TLS 1.1 and TLS 1.2 RFCs, in order to maintain compat-
ibility with earlier TLS versions, this replacement was not made. We presume
that the desire to maintain backwards compatibility and confidence in the ad
hoc countermeasure trumped the evidently better security available from the use
of PKCS#1 v2.1.

A very similar situation pertains to padding oracle attacks and Lucky 13:
an implementation patch was put in place in TLS 1.1 and 1.2, but shown to
be inadequate by the Lucky 13 attack [8]. With hindsight, it would have been
less effort overall, and less damaging to the reputation of the protocol, to reform
the MEE construction used in TLS at an earlier stage, replacing it with a mod-
ern design fully supported by theoretical analysis (notwithstanding the positive
results of [58], whose limitations were pointed out in [73]). A repeated pattern
in the development of TLS 1.2 and below is that the TLS community (a larger
group of individuals and organisations than the TLS WG) seem to need to see
concrete working attacks before addressing a potential vulnerability or adopt-
ing an intrinsically more secure solution, rather than applying a patch to each
specific vulnerability.

In the case of attacks that exploit the existence of primitives or mechanisms
that have long been known to exhibit weaknesses, the simple (but naive) solution
is to simply consider removing a primitive or mechanism as soon as it is shown to
be weak. However, this might not be straightforward given implementation and
interoperability constraints. In the case of FREAK and Logjam, the standardisa-
tion process cannot be faulted: the weak export cipher suites were removed from
TLS 1.1 and TLS 1.2 and these attacks exist as a result of poor implementation
choices by practitioners. Similar remarks apply to the IV-chaining vulnerability,
which while already known in 1995, was introduced to TLS 1.0 in 1999, but
then removed in TLS 1.1 in 2006. Unfortunately, deployed versions of TLS did
not move so quickly, with widespread support for TLS 1.0 in servers even today.
On the other hand, all modern browsers will now prefer TLS 1.2 and AEAD
cipher suites in an initial handshake attempt, thanks to the long line of attacks
on TLS’s CBC-mode and RC4 options. In the case of SLOTH, however, the
issue might not be as clear-cut. MD5-based signature schemes should not have
been re-introduced in the TLS 1.2 RFC. And RC4 has a very long track-record
of weaknesses stretching back more than 15 years, meaning that its phasing out
from TLS could arguably have been initiated much sooner than it was, instead
of waiting for the attacks to become so powerful. In many cases, particularly
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where hardware support for AES is available, AES-GCM could have served as a
better choice for encryption.

With the many research papers professing the security of the TLS Handshake
Protocol, the existence of attacks exploiting the interaction of various TLS hand-
shakes may have come as a surprise to the TLS community. However, even here,
there were early signs that things were amiss with the 1996 cross-cipher-suite
attack of Wagner and Schneier [87]. Perhaps the lack of a practical attack in
that paper and in later papers such as [68] led to a more relaxed attitude being
adopted by the TLS WG here. The subtle interactions of different TLS hand-
shakes was never fully considered in any analysis of TLS prior to the Triple
Handshake attack of 2014. It is therefore not surprising that attacks of this form
would have slipped through the standardisation process. Yet it should be remem-
bered that the Triple Handshake attack is a resurrection of the Renegotiation
attack from 2009. This is indicative of insufficiently broad or powerful analysis
having been available to the TLS WG in the period intervening between the two
attacks.

We argue that, in general and in view of the extreme importance of TLS, a
much more conservative approach to dealing with attacks on TLS is warranted.
We do, however, appreciate that bringing about meaningful change is challeng-
ing given the large scale and wide diversity of TLS deployment, the historical
reticence of the major implementations to code newer versions of the protocol
(especially TLS 1.2), and the slowness with which users (particularly on the
server side) have tended to update their TLS versions.

3.3 Impact and Incentives

In the design-release-break-patch standardisation cycle, maximal reward for
researchers has come in the form of producing and promoting high impact attacks
against TLS, and engagement of the research community was largely encouraged
in a retroactive fashion. The obvious problem with this incentive model is that
it leaves users of published standards vulnerable to attack and imposes a poten-
tial patch action on the TLS WG. In the next section we consider whether or
not a shift in the standardisation cycle leaves the opportunity for researchers to
have impact (of a different kind) whilst positively benefiting the standardisation
process.

4 Pre-deployment Analysis

In contrast to the development of TLS 1.2 and below, the standardisation process
for TLS 1.3 has been proactive in nature. It has followed what we describe
as the design-break-fix-release cycle for standards development. Working more
closely with the research community, the TLS WG has released multiple protocol
drafts and welcomed analyses of the protocol before its final release. As the next
section will show, this design philosophy has simultaneously led to the discovery
of weaknesses and provided confidence in the WG’s design decisions. We explore
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the factors that have enabled this newer process by considering the improvements
in the protocol analysis tools available, as well as the shift in design attitudes
and incentives. This approach, however, has not been without its complications.
In what follows we also address the challenges inherent to such an approach and
comment on ways in which the process, a far as TLS is concerned, could have
been improved.

4.1 Design, Break, Fix, Release

The two broad design goals for TLS 1.3 are (i) to improve efficiency of the
Handshake Protocol and (ii) to address the weaknesses identified in TLS 1.2
and below.8 The initial challenge for the TLS WG was to go about achieving
these goals without having to invent an entirely new protocol: in addition to
requiring new code libraries, a new protocol might introduce new weaknesses.
The development of Google’s QUIC Crypto by Langley and Chang [63] in 2013,
offering a zero round-trip time (0-RTT) capability for the QUIC protocol [81],
put pressure on the TLS WG to consider ways of reducing handshake latency
in TLS 1.3. And, after the flurry of attacks in the preceding years, the protocol
was due an overhaul to remove weak or broken features.

In comparison to TLS 1.2 and below, the first few drafts of TLS 1.3 (beginning
with draft 00 in April 2014) incorporated changes that aim to fortify the protocol
against known attacks, such as the removal of support for compression, as well
as the removal of static RSA and Diffie-Hellman key exchange mechanisms, leav-
ing ephemeral Diffie-Hellman as the only method of key exchange. Handshake
latency was also reduced by the introduction of a one round-trip time (1-RTT)
TLS handshake (previously an initial handshake required two round trips before
a client and a server could start exchanging application data).

Two important changes that were introduced in the drafts up to and including
draft-05 are the concept of a session hash and the removal of the renegotia-
tion handshake. At the time of release of draft-04, the session hash constituted
a hash value of all messages in a handshake starting with the ClientHello,
up to and including the ClientKeyExchange. The session hash is then included
in the key derivation process to prevent an active attacker from synchronizing
the master secret across two different sessions, a trick employed in the Triple
Handshake attack [21]. The removal of renegotiation prevents renegotiation-
based attacks, the Triple Handshake attack again serving as an example of this
class of attack.

In terms of analysis of TLS 1.3, Dowling et al. [35] and Kohlweiss et al. [57]
published works on draft-05, the latter set of authors using a constructive-
cryptography approach to provide security guarantees for the protocol. Their
work highlights that the design choice in TLS 1.3 to separate out the Handshake
and Record protocols helps with their analysis, and indeed with provable security

8 See the TLS WG charter at https://datatracker.ietf.org/wg/tls/charter/ for further
details.

https://datatracker.ietf.org/wg/tls/charter/
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approaches in general. (Recall that in TLS 1.2 and below, the application traf-
fic keys derived in the Handshake Protocol were used to encrypt the Finished
messages of the Handshake Protocol itself. This interaction adds significant com-
plexity to analyses of TLS 1.2 and below, in particular because it violates the
standard indistinguishability security goal for a key exchange protocol.)

Dowling et al. [35] used the multi-stage key exchange model of Fischlin and
Günther [41] to show that the keys output by the Handshake Protocol could
be securely used in the Record Protocol. Their work provided several comments
on the design of TLS 1.3, thereby explicitly providing useful feedback to the
TLS WG.

In draft-07 we see the most radical shift away from TLS 1.2, with the
cryptographic core of the TLS handshake becoming strongly influenced by the
OPTLS protocol of Krawczyk and Wee [62], with many OPTLS elements being
incorporated into the draft. OPTLS has been expressly designed to be simple
and modular, offering a 1-RTT, forward secure TLS handshake that employs
ephemeral Diffie-Hellman key exchange. OPTLS also offers 0-RTT support as
well as a pre-shared key (PSK) mode, capturing the use case in which a client and
a server enter into the protocol having previously shared a key. This particular
mode is of relevance from draft-07 onwards as the TLS 1.2-style resumption
mechanism is replaced with a mechanism that makes use of PSKs. This draft
included a 0-RTT handshake and key derivation schedule that is similar to that
of OPTLS, employing the HKDF primitive designed by Krawczyk [59]. The
OPTLS designers provided a detailed analysis of their protocol in [62], again
providing the TLS WG with confidence in its design choices.

However, it should be noted that significant changes were made in adapting
OPTLS to meet the needs of TLS. For example, OPTLS originally assumed that
servers’ long term keys would be Diffie-Hellman values, in turn supported by cer-
tificates. However, such certificates are not widely used in practice today, poten-
tially hindering deployment of TLS 1.3. Thus, in the “translation” of OPTLS
into TLS 1.3, a two-level process was assumed, with the server using a traditional
signing key to authenticate its long-term Diffie-Hellman value. But this created
yet another real-world security issue: if an attacker can gain access to a server’s
signing capability just once, then he would be able to forge a credential enabling
him to impersonate a server on a long-term basis. Thus it was decided to change
the signature scope to also include client-supplied, session-specific information,
limiting the value of any temporary access to the signing capability. This reduces
the efficiency of the protocol, since now a fresh signature must be produced by
the server in each handshake.

Notable changes in draft-08 and draft-09 of the protocol include the
removal of support for MD5-based signatures as well as the deprecation of SHA-
1-based signatures, partly in response to the SLOTH vulnerability [24] and as
result of pressure from practitioners and researchers to remove these weak prim-
itives, as evidenced on the TLS mailing list [46,47].

Cremers et al. [31] performed an automated analysis of TLS 1.3 using the
Tamarin prover [83]. Their model covers draft-10 and their analysis showed
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that this draft meets the goals of authenticated key exchange. They showed this
in a symbolic model in which secrecy properties are more coarse-grained than
would be the case in a computational model, but where the interaction of the
different handshake components is easier to analyze. Cremers et al. anticipated
the inclusion of the delayed client authentication mechanism in the TLS 1.3
series of drafts. This feature enables a server to request authentication at any
point after the handshake has completed, reminiscent of the functionality pro-
vided by the renegotiation handshake in TLS 1.2 and below. They discovered a
potential interaction attack which would break client authentication. The attack
highlighted the strict necessity of expanding the session hash scope to include
Finished messages. This prevents the attacker from replaying a client signature
across sessions by binding the signature to the session for which it is intended.
Their attack was communicated to the TLS WG, and draft-11, which officially
incorporated the delayed client authentication mechanism, included the neces-
sary fix as part of the design. In concurrent work, Li et al. [64] analysed the
interaction of the various TLS 1.3 handshake modes in the computational set-
ting using their “multi-level&stage” security model. They found draft-10 to be
secure in this model. The delayed authentication threat was not identified in this
work presumably because this mechanism was not officially part of draft-10.

In February of 2016, just prior to the release of draft-12, the Internet Soci-
ety hosted a “TLS Ready or Not?” (TRON) workshop. The workshop showcased
analyses of TLS 1.3, both published and under development, bringing together
members of the TLS Working Group, researchers and industry professionals with
the aim of testing the readiness of TLS 1.3 in its then current form. Besides the
aforementioned work by Kohlwiess et al., Krawczyk and Wee, and Cremers et
al., there were several other presentations highlighting progress in the proto-
col’s development, as well as the challenges still facing the TLS WG. Dowl-
ing et al. updated their previous analysis to cover draft-10 [36], showing the
full (EC)DHE handshake to be secure in the multi-stage key exchange setting.
Bhargavan et al. introduced ProScript [18], a JavaScript variant of their verified
TLS implementation, miTLS [3,22]. Interestingly, ProScript also allows for the
extraction of a symbolic model for use within the ProVerif protocol analysis tool
[4,25]. This work highlighted the potential dangers of incorporating certificate-
based authentication into PSK handshakes, a potential protocol extension being
considered by the TLS WG. Work on the secure of implementation of TLS 1.3
by Berdouche et al. [16] considered how to maintain compatibility with current
TLS versions whilst protecting against downgrade attacks, and highlighted sim-
plifications to the protocol which could be beneficial from an implementation
point of of view.

Importantly, the TRON workshop led to discussions between the WG and
the research community regarding potential simplifications and enhancements
to the protocol. Some of these discussions are still ongoing and have informed
subsequent drafts of the protocol. The workshop also fostered an in-depth dis-
cussion regarding the security requirements for TLS 1.3. This has led to a call for
contributions from researchers and practitioners alike [5]. It may seem surprising
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that security requirements analysis was taking place at such a late stage in the
process. We comment on this further below.

At around the same time as the TRON workshop, an analysis by the Cryp-
tographic protocol Evaluation towards Long-Lived Outstanding Security (CEL-
LOS) Consortium, using the ProVerif tool, was announced on the TLS WG mail-
ing list [12,67]. This work showed the initial (EC)DHE handshake of draft-11
to be secure in the symbolic setting.

Further publications of relevance to TLS 1.3 include the work on downgrade
resilience by Bhargavan et al. [19] and the work on key confirmation by Fischlin et
al. [42]. The first provides suggestions on how to strengthen downgrade security
in TLS 1.3 and the second provides assurances regarding the key confirmation
mechanisms used.

A smaller ad hoc meeting informally called “TRON2” took place in May
2016. At this meeting, the latest changes to the protocol were discussed, further
formal analysis was presented, and TLS 1.3 implementations were compared.9

4.2 Available Tools

Since the release of TLS 1.2 in 2008, cryptographic protocol analysis tools have
developed and matured to the extent that they can now effectively serve a proac-
tive standardisation process, thereby contributing to, and perhaps even enabling,
a more collaborative design effort for TLS 1.3. Significant advances have been
made across all fronts, from lower-level primitives such as key derivation and
authenticated encryption, to higher level primitives such as authenticated key
exchange and cryptographic modelling of secure channels.

An early analysis of the TLS protocol itself can be found in the work of
Gajek et al. [44] in 2008. However, their analysis only covers unauthenticated
key exchange. Many refinements and advances in the area of provable security
for TLS have since been made. A major on-going challenge has been to pro-
vide accurate modelling of the protocol and to capture the complexity of its
many interacting components and modes. In 2010, Morrissey et al. [72] also
analysed the TLS Handshake Protocol. However, their work only considered a
truncated version of the protocol (with no encryption of Finished messages),
assumed that a CCA-secure encryption scheme was used for key transport (which
is unrealistic given that TLS implementations employ PKCS#1 v1.5-based RSA
encryption), and relied on the random oracle model. In 2012, Jager et al. [51]
introduced the Authenticated and Confidential Channel Establishment (ACCE)
security model in an attempt to handle the unfortunate mixing of key usage in
the Handshake and Record protocols; they used the ACCE model to analyse
certain Diffie-Hellman-based key exchanges in TLS. Their work built in part
on a 2011 work of Paterson et al. [73], who introduced the notion of length-
hiding Authenticated Encryption, which models desired security goals of the
TLS Record Protocol. Further important works include those by Krawczyk et
al. [60] and Kohlar et al. [56]. The former work analysed multiple, different TLS

9 See https://www.mitls.org/tron2/ for details.

https://www.mitls.org/tron2/
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key exchange methods using a single, uniform set of proof techniques in the
ACCE setting, while the latter extended the work of Jager et al. to show that
the RSA and DH handshakes can be proven secure in the mutual authentication
setting. Li et al. [65] performed a similar task for pre-shared key cipher suites.
Giesen et al. [48] explicitly consider multiple Handshake protocol runs and their
interactions in their formal treatment of the security of TLS renegotiation, while
Dowling and Stebila [37] examined cipher suite and version negotiation in TLS.
All of these works offer techniques that could be harnessed, and potentially
extended, in the analysis of TLS 1.3, prior to its final release. Moreover, they
represent a growth in interest in the TLS protocol from the research community,
a necessary precursor to their greater involved in the TLS 1.3 design process.

A major step forward in the domain of program verification for TLS came
with the first release of the miTLS reference implementation in 2013 [3,22]. The
miTLS implementation integrates software security and computational crypto-
graphic security approaches so as to obtain security proofs for running code.
This approach aims to eliminate the reliance on the simplifying assumptions
employed by the more traditional provable security techniques – those tend to
analyse abstract and somewhat high-level models of TLS and tend to ignore
many implementation details in order to obtain tractable models (in the form
of pseudo-code) suitable for the production of hand-generated proofs; moreover,
they tend to focus on “fragments” of the TLS protocol suite rather than the
entire system. Using this approach, Bhargavan et al. provided an epoch-based
security analysis of the TLS 1.2 handshake as implemented in miTLS [23]. The
miTLS implementation provides a reference for the secure implementation of
TLS 1.2 and below, and interoperates with all major web browsers and servers.
Not only has the miTLS project lead to the discovery of vulnerabilities such as
the Triple Handshake attack and FREAK, but it has also left the TLS commu-
nity with tools such as FlexTLS [1] which allows for the rapid prototyping and
testing of TLS implementations. These tools are now being harnessed to assess
TLS 1.3.

The rise of automated protocol analysis tools such as ProVerif [4] and the
Tamarin Prover [83] can also be counted as a boon for the TLS WG. The more
recent Tamarin tool, for instance, offers exceptional support for DH-based pro-
tocols and allows for the instantiation of an unbounded number of protocol par-
ticipants and sessions, making it a good choice for the modelling and consequent
symbolic analysis of TLS 1.3. Once established, this type of model can also be
easily adapted in response to protocol changes, making this tool invaluable in
an ongoing development process.

The advances in the areas of provable security, program verification and
formal methods have contributed to a development environment in which a
design-break-fix-release standardization cycle can thrive. Previously, the absence
of these techniques, or the limited experience in applying them to real proto-
cols like TLS, would have limited the amount of pre-release analysis that could
have been performed, making a design-release-break-patch standardisation cycle
understandable, natural even, for TLS 1.2 and below.
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4.3 Involvement, Impact and Incentives

In the development of TLS 1.3, the WG has taken many positive steps in aim-
ing to protect the protocol against the various classes of attacks mentioned in
Sect. 3. Removal of support for weak hash functions, renegotiation, and non-
AEAD encryption modes, as well as the introduction of the session hash mecha-
nism serve as illustrative examples. The WG has also made design choices that
have eased the analysis of the protocol, such as making a clean separation of the
Handshake and Record Protocols, for instance. This is undoubtedly a positive
step by the WG to respond to the research community’s needs, marking a shift
in the WG’s design mindset. The TRON workshop also displays a desire by the
WG to involve the research community in the design of TLS 1.3, and to incorpo-
rate its contributions. The research community, on the other hand, has gained
a much greater awareness of the complexities of the TLS protocol and its many
use cases, and has tried to adapt its analyses accordingly. In view of the rising
interest in and focus on TLS in the research community over a period of years,
and the attendant refinement of its analysis tools, this community has been in
a much better position to contribute to the TLS 1.3 design process than it was
for former editions of the protocol.

The ability to adapt the protocol in response to potential attacks, such as
those identified by Cremers et al. [31] and Bhargavan et al. [18], makes for a
stronger protocol and has allowed the WG to implement changes pre-emptively,
hopefully reducing the need to create patches post-release. In comparison to the
previous process described in Sect. 3, the design-break-fix-release standardisation
cycle appears to leave the incentives for researchers unchanged, with a number of
top-tier papers being produced prior to the protocol’s finalisation. However, it’s
notable that these papers provide positive security results about TLS 1.3 rather
than new attacks. We consider this to be as a result of the research community’s
stronger appreciation of the importance of TLS and its greater awareness of the
value in contributing to its standardisation than in former development cycles.

4.4 Areas for Improvement

Although a positive step with regards to collaboration between researchers
faced with analyzing TLS and the engineers faced with implementing TLS,
the analysis-prior-to-deployment design strategy is not without its difficul-
ties. Greater numbers of contributions, be they from researchers and/or imple-
menters, have led to conflicting design opinions, potentially creating a greater
administrative overhead for the TLS WG. The increase in uncoordinated con-
tributions has also meant that the TLS 1.3 draft specification has become a
rapidly moving target. This has increased the amount of analysis work required
and has rendered some analyses ‘outdated’ within the space of few months,
potentially frustrating those engaged in analysis of the protocol. The varied con-
tributions have also created tension between the researchers looking at TLS 1.3,
with those focused on implementation concerns suggesting improvements to the
potential detriment of those concerned with the provable security aspects of the



178 K.G. Paterson and T. van der Merwe

protocol. This has been an on-going issue in the area of key derivation and key
separation, for example. The time scales for analysis could also potentially be
more favourable: not only do rapid changes require quick analysis, but with the
WG/IETF wanting official publication of TLS 1.3 within a few months of pub-
lishing the final (or a near-final) draft, this does not leave much time for detailed
analysis of the final version of TLS 1.3. This is unfortunate for a protocol of such
critical importance.

It is also the case that, due to the inevitable gaps in understanding between
the scientific community and the more engineering-focussed participants in the
TLS WG, there is the potential for miscommunication (in both directions). While
we are not aware of specific instances where miscommunication or misunder-
standing has seriously hampered the development of TLS 1.3, it is true that
the formal security analyses presented to the WG by the research community
do involve assumptions concerning attacker capabilities and the strength of the
used cryptographic primitives. Sometimes these assumptions, while well under-
stood in one community, may not be so obvious to another. One example of this
would be the use of idealised cryptographic assumptions in some of the analyses
based on formal methods; another (in the other direction) would be constraints
on the TLS 1.3 handshake stemming from the use of Hardware Security Modules
for storing server private keys.

A related area of potential improvement in the process is that of the iden-
tification of security and functionality requirements for TLS 1.3. We noted pre-
viously that only after the TRON workshop in February 2016 did it become
apparent that a complete and explicit set of requirements was missing. This
suggests that a different design process for TLS 1.3 could have been adopted:
requirements analysis, design, prove, release. Instead, it appears that while some
of the requirements were established early on, many others emerged only through
discussion during the design phases. It is perhaps naive to hope that such a linear
process would be possible for a protocol as complex as TLS, with its many use
cases and with many stakeholders being involved in the development process.
Certainly, multiple cycles of the “design” and “prove” steps might be needed.
On the other hand, perhaps a TRON-like workshop could have been held at
the commencement of the process, with the objective of flushing out the design
requirements.

Finally, an issue throughout the process has been uncertainty over the degree
of change permitted in TLS 1.3 relative to TLS 1.2. Initially, changes were to be
incremental, potentially limiting the thinking of some participants to consider
only less radical designs. Now, it is hard to argue that TLS 1.3 is anything other
than a complete protocol redesign — a TLS 2.0 rather than a TLS 1.3, let us
say. What novel ideas might have been brought forward had that been clear from
the start?

5 Beyond TLS 1.3

Given its importance and pervasive nature, it is possible that the successful
rolling out of the highly collaborative, fast-paced, proactive standardisation
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process may be unique to TLS. To what extent can the TLS case serve as a
trendsetter, paving the way for the IETF, and indeed other standardisation
bodies, to foster stronger ties with security researchers? Or is TLS an outlier in
this regard? Involvement of researchers is by no means unheard of in the stan-
dardisation of security mechanisms and protocols but does the importance of
TLS increase the willingness of the research community to get involved in the
process?

We now examine how the newer, proactive standardisation process for TLS
compares to the processes inherent to other standardisation models, such as those
employed by ISO and NIST, and question to what extent these differing models
would have been suitable for the standardisation of TLS. We also comment on
the extent to which these models encourage active participation from the security
community.

ISO. This standards body conforms to a closed model for standardisation. As
with the IETF, standardisation work is organised into areas which are managed
by technical committees. These committees are further broken down into sub-
committees, with subcommittee 27 (SC27) being responsible for the creation and
maintenance of standards concerning security techniques10. Within this subcom-
mittee, WG2 is responsible for the standardisation of cryptographic mechanisms.
The members of an ISO WG are not individuals but rather National Bodies
(NBs) and standardisation decisions are made by the WG based on comments
and contributions received from participating NBs. The formation and make-up
of these NBs undoubtedly varies from nation to nation, but by and large, this
type of model is characterised by barriers to entry as far as contributions are
concerned as the process is far more “members only” in comparison to the open
model employed by the IETF.

The development philosophy is arguably many-to-one as many members pro-
vide inputs to one standard but an ISO security standard will generally contain
a number of mechanisms aimed at providing a security service, and will not be
dedicated to one protocol, as is the case with the TLS RFCs. Inclusion of mech-
anisms in SC27 WG2 standards is usually subject to the mechanisms meeting
certain maturity conditions – research from external sources is consulted and
where required, NBs may perform additional analyses. This maturity require-
ment would potentially not suit a dynamically shifting protocol such as TLS
1.3, and the closed nature of the standardisation process potentially discourages
high levels of external academic involvement. Also, ISO imposes a fee for its stan-
dards, creating a financial barrier to adoption, a less than ideal situation for a
critical protocol such as TLS. The NB structure of ISO also brings into question
the possible motives of state actors that may be involved in the standardisation
process, a potential concern for a ubiquitous protocol such as TLS.

10 Other ISO subcommittees also standardise security mechanisms, such as SC17 which
focuses on cards and personal identification but we focus our discussion here on SC27.
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NIST. We focus here on the competition model used by NIST. This model
was employed successfully in the development of AES [40] and SHA-3 [39]. This
model exhibits no barriers to entry as the competitions are public and the devel-
opment philosophy is one-to-one, since only one proposed candidate is selected
for standardisation and contributions from the respective competitors are not
pooled in the creation of the final standard. A necessity of the competition
model is that algorithm/protocol requirements are clearly established and com-
municated. The announcement of the SHA-3 competition in the Federal Register
in 2007 [77], for instance, contained sections covering minimum criteria as well
as evaluation criteria. Analysis of the SHA-3 candidates was performed by NIST
and the larger cryptographic community, with many comments being communi-
cated on the public hash forum set up for the competition. Many of the analyses
culminated in top-tier publications (see [29] for a comprehensive list), thereby
productively serving academic incentives as part of the standardisation process.
NIST also held several SHA-3 conferences as a means of obtaining public feed-
back.

Some of the elements of the SHA-3 standardisation narrative overlap with
the TLS 1.3 standardisation process discussed in Sect. 4. The analysis-prior-to-
deployment development methodology, the use of public mailing lists and the
hosting of public conferences/workshops are all aspects in which the TLS 1.3
process is similar. But the process differs in that the requirements for TLS 1.3
were not fully expressed before the design commenced. There is of course no
explicit element of competition, differentiating the competition model from the
open model. On the other hand, individual researchers and research teams do
stand to gain greatly by having their ideas adopted in TLS 1.3, whether through
personal kudos or recognition that is internal (promotion, company awards) or
external (prizes, paper citations). Finally, the SHA-3 competition ran for several
years (from 2007 to 2012), allowing more time for detailed analysis.

Like the open model, there is no cost associated with the final product and
this model could most certainly work for TLS. However, it is doubtful whether
such a model would allow for the rapid development of the protocol, as we have
seen with TLS 1.3. The competition model has proven to be suitable for cryp-
tographic primitives like block ciphers and hash functions. A complex protocol
such as TLS might be too large in scope for any one research team to design in
its entirety, perhaps making a collaborative standardisation model more appro-
priate.

6 Conclusion

We have presented an account of TLS standardisation, starting with the early
versions of TLS, right up until TLS 1.3, which is, at the time of writing, nearing
completion. We have described how the process for TLS 1.2 and below fits the
design-release-break-patch cycle of standards development and how a shift in
the process has resulted in the standardisation of TLS 1.3 conforming to the
design-break-fix-release development cycle. We have commented on the factors
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that have influenced the shift in the TLS WG’s design methodology, namely,
the protocol analysis tools available, the levels of involvement from the research
community, and the incentives driving the relevant stakeholders. This newer
process exhibits benefits over the cycle employed previously as it allows for
the preemptive detection and fixing of weaknesses, thus producing a potentially
stronger protocol and reducing the need for patches post-release. We have gone
on to suggest that the process for TLS 1.3 could have been enhanced even further
by the WG considering a requirements analysis-design-prove-release cycle for
development of the standard. We have also examined the standardisation of
TLS in relation to a number of varying standardisation models. We find that the
current, collaborative process under the open model of the IETF shows promise
in producing a strong protocol but that the competition model as employed by
NIST would also potentially have suited a protocol such as TLS.

We believe our work to be the first attempt at a TLS standardisation diegesis,
and that a detailed classification of standardisation models, based on further case
studies, would make for interesting future work.
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Abstract. Secure data sharing between computational systems is a necessity to
many workflows across domains such as healthcare informatics, law enforce-
ment and national security. While there exist many approaches towards securing
data for the purpose of dissemination, the vast majority follows the traditional
thought of security engineering that occurs as the last step of the overall soft-
ware engineering process. In this paper we extend the Unified Modeling Lan-
guage (UML) standard to: (1) modeling tree-structured data and associated
schemas and (2) information security via role-based, lattice-based, and discre-
tionary access control; both push it towards the forefront of the software
development life-cycle. Tree structured data and associated schemas are domi-
nant in information modeling and exchange formats including: the eXtensible
Markup Language (XML), JavaScript Object Notation (JSON), etc. New UML
artifacts for tree-structured data and schemas would allow the modeling of
generalized information solutions from which XML, JSON, RDF, etc., could be
generated; this is akin to generating different object-oriented programming
language code from UML class diagrams. This UML extension also allows
security experts to model and define information security requirements at the
schema level as well, before code is written. The end-result is the assurance of
information security for the purpose of sharing across computational systems.

1 Introduction

Information modeling is focused on representing the information that is used and
exchanged in large-scale applications and system-to-system operability with a common
representation for scalable reuse. The implementation of information modeling has
been predominately pursued using standards that utilize languages that facilitate
structure, such as the eXtensible Markup Language (XML) [8], which models docu-
ments as schemas that dictate and enforce the required format for instances. Sample
application areas and standards that use XML include: healthcare via the Health Level
7’s Clinical Document Architecture (HL7 CDA) [12, 14]; cXML [20] for e-commerce

© Springer International Publishing AG 2016
L. Chen et al. (Eds.): SSR 2016, LNCS 10074, pp. 187–204, 2016.
DOI: 10.1007/978-3-319-49100-4_8



communication; finance via the Open Financial Exchange (OFX) [22], and other
standards [23]. While XML has become the de-facto standard for information modeling
implementation, other formats exist that share similar capabilities: the Resource
Description Framework (RDF) [17], the Web Ontology Language (OWL) [19], and the
JavaScript Object Notation (JSON) [9]. XML, RDF, OWL, and JSON can all model
data utilizing a tree-structure of index and entity nodes that allows for information to be
represented via schemas (that define structure), which can then be used as blueprints for
the creation of new documents (instances) and their validation (enforcement), with
some of them providing semantic modeling capabilities as well (RDF and OWL).

This paper proposes extensions to the Unified Modeling Language (UML) [2, 15]
standard with new constructs that achieve a two-fold objective. The first objective
supports the modeling of tree-structured data and schemas with new UML diagrams to
allow generalized design from which target schemas/instances in XML, JSON, RDF,
etc., can be generated. The second objective supports the definition of new UML
diagrams from role-based access control (RBAC) [13], lattice-based access control
(LBAC) [30], and discretionary access control (DAC) [31]) for tree-structure schemas
and their instance. The end result is the ability to model tree-structured schemas at a
generalized level including access thereby elevating the process of secure information
design as a first-class citizen of the software engineering process. By tackling the
problem from a perspective of tree-structured schemas, any document format that is
represented by such a structure (e.g. XML, specialized JSON structures, RDF, OWL,
etc.) can be modeled, secured and safely shared. This effectively allows us to provide
separation of concerns with respect to information modeling and RBAC, LBAC, and
DAC by defining the information model itself and security requirements in a software
process phase.

The remainder of this paper is organized as follow: Sect. 2 provides background
knowledge on UML utilized in the paper. Section 3 details the initial set of UML
extensions for tree-structured data. Section 4 utilizes this initial set of extensions to
UML and builds upon the need for RBAC, LBAC and DAC support by presenting
diagram extensions that allow a security engineer to define access control requirements
on tree-structured data. Section 5 presents the automated strategy utilized to generate
enforcement policies via the proposed UML diagrams. Section 6 discusses related
work. Section 7 concludes the paper.

2 Background

UML is a general-purpose modeling language for object-oriented systems [15, 32].
Currently managed by the Object Management Group (OMG), UML can be used
throughout the software development cycle by combining data, business and object
modeling. UML provides the benefit of reducing misinterpretation and promoting
simple communication of domain requirements with its visual notation. However,
while UML can be utilized to define security requirements, what is lacking in the UML
standard is actual diagrams that are dedicated to, in our interest, access control models
(RBAC, LBAC, and DAC) that allow the definition of security requirements using new
security UML diagrams that seamlessly integrate with the UML model and unified
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design process. This is particularly true for domains such as healthcare where the
information to be utilized is private and often governed by legal constructs that assure
its proper use and dissemination [1, 3, 4].

UML can be extended via the use of the meta-model architecture developed by
OMG. This meta-model architecture, called the Meta-Object Facility [27], consists of
four layers. As shown in Fig. 1, the M3 layer consists of the meta-meta model.
M2-models are built using the M3 language. In turn, M2-models describe the elements
of the M1-layer, while the M1-models describe the elements of the M0-layer (the
runtime instance of the modeled system). Due to the inclusion of UML into ISO as a
standard [2] for software systems, several tools (and development environments) exist
to aid in UML modeling, including: ArgoUML [28], StarUML [18], Eclipse [21],
Visual Studio [29], NetBeans [7], and others. The UML meta-model will be utilized in
this paper to support the definition of new UML diagrams that are capable of modeling
tree-structured data and RBAC, LBAC, and DAC requirements for said data.

3 Extending UML with New Diagrams for Tree-Structured
Schemas

This section supports the modeling of tree-structured data and schemas by extending
UML with new UML to allow generalized design from which target schemas/instances
in XML, JSON, RDF, etc., can be generated. The presentation is in two parts. First,
section introduces the new UML Document Schema Class Diagram (DSCD), a UML
extension that can handle any tree-structured schema to model the data and realize the
instance. Second, the DSCD is demonstrated at an instance level utilizing the
HL7 CDA schema, which are specializations of a tree-structure document whose

Fig. 1. UML’s Meta-Object Facility layers.
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structure can be represented with the UML DSCD modeling construct called the UML
Profile.

The new UML Document Schema Class Diagram (DSCD) is an artifact that holds
all of the characteristics of the schema, including structure, data type, and value con-
straints. The DSCD graphically represents the schemas utilized by an information
system. Recall the requirement of all data modeling be represented by a tree-like
structure, possibly complimented with data type constraints. To achieve this, we utilize
a UML profile for tree-structured documents. There has been research in UML profiles
for tree-structured documents, mainly utilizing XML [5, 6], which range from infor-
mation modeling to systems modeling represented in XML [8]. This work also con-
siders round-trip engineering, a concept that denotes the ability of producing a UML
diagram from XML and vice-versa, without the loss of information. For the scope of
the work in this paper, we generate a DSCD a UML diagram from a source
tree-document schema, which for the purposes or demonstrating the concepts, is
actually an XML schema. To facilitate this process, we utilize the UML Profile concept
that allows new diagrams to be defined using the various UML concepts (stereotypes,
tags, constraints applied to classes, attributes, operations, etc.) that allow a tree struc-
tured document to be transitioned into DSCD, and for the particular purposes of this
section, to demonstrate the way that an XML schema (a tree structured format) can be
transitioned to the new UML DSCD diagram; this is shown in Table 1.

While it is possible to utilize the UML profile to represent an entire schema as a
UML package, we instead have chosen to represent each schema as a tree of stereo-
typed classes. This approach was chosen in order to capture the hierarchical structure of
a schema as a series of related classes. Table 1 has three columns: the first column

Table 1. Specialized UML profile for tree-structured document to DSCD with XML cases.
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represents the features of tree structured document, the second column defines the
corresponding XML equivalents of these features, and the third column transitions the
second column into the equivalent UML profile concept. In the first row of Table 1, a
general element in the tree-structured document is equivalent to an XML element
(xsd:element) and is realized as a UML class; the second row maps the element
name to a UML class name. In the third row of Table 1, an element attribute in the
tree-structured document is equivalent to a generic attribute in XML which can be
mapped to a «stereotyped» attribute in UML. The fourth row corresponds to a patient –
child relationship at the schema level to identify a tree and its subtrees, which in XML
is observed as nested elements, and is represented as a UML dependency relationship
in the DSCD. The fifth row of Table 1 describes complex elements (those that are built
out of many sub-elements), which in XML are denoted as xsd:complexType and in
the DSCD are denoted as a UML class with the «complexType» stereotype. The sixth
row covers a similar case, considering sequences or lists of elements, which in XML
are denoted as xsd:sequence and in the DSCD are denoted as a UML class with
the «sequence» stereotype. Aggregation of attributes are handled with the seventh row
of Table 1 and is represented as xsd:attributeGroup in XML and as a UML
class with the «attributeGroup» stereotype in the DSCD. In the eighth row of Table 1,
groups of elements in a tree-structured document are equivalent to an XML xsd:-
group node and is represented as a UML class with the «group» stereotype in DSCD.
The ninth row of Table 1 handles acceptable or allowable values for elements, which in
XML are usually maxOccurs and minOccurs attributes to an XML element con-
straints, realized as a «constraint» stereotyped class member in DSCD. In the tenth row
of Table 1, indirect references allow elements of a tree-structure document to be
associated with one another, which in XML is a ref attribute on an element that are
represented as a «ref» class member from UML profile in the DSCD. Lastly, in the
eleventh row of Table 1, for tree-structured document, the parent-child relationship
between non-named elements corresponds to non-named elements in XML (e.g.,
xsd:complexType, xsd:attributeGroup, etc.) and is represented with a
UML directed association relationship between classes in the DSCD. Note that by
using these mappings in Table 1 it is possible to develop an algorithm that operate over
an XML schema to generate a DSCD equivalent in UML. Note also that there would
need to be other versions of Table 1 for other data formats (e.g., JSON, RDF, etc.)
where the second column of the table would be replaced with the relevant model
constructs from the other formats.

As an example of utilizing the UML profile approach to convert a tree-structured
data into a DSCD, lets utilize the MMUCC schema [16] that is utilized in the law
enforcement domain. The conversion of the schema from Fig. 2 into a DSCD follows a
mapping process guided by the profile of Table 1, resulting in a DSCD as shown in
Fig. 3.
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Fig. 2. Segment of MMUCC from Alaska Collision Report 12-200 Schema.
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4 Extending UML Extensions to Model RBAC, LBAC,
and DAC of Tree-Structured Schemas

This section presents a set of new UML diagrams from role-based access control
(RBAC), lattice-based access control (LBAC), and discretionary access control
(DAC) for tree-structure schemas and their instance. This is accomplished by detailing
UML standard extension via, a metamodel built on top of the foundation of the security
model in Sect. 3. UML provides a large variety of diagrams for the visualization of
different software requirements: class, component, deployment, activity, use-case,
state-machine, communication, sequence, etc. [15] The work presented in this section
leverages off of early work that has extended UML with new diagrams for RBAC,
MAC, and DAC capabilities [24] from an object-oriented perspective. The extensions
presented in this section are achieved via the UML Meta-Object Facility (MOF), which
allows the extension of the modeling language with several degrees of formality, as
reviewed in Sect. 2.

The tree-document schemas, as shown in the example DSCD in Fig. 3, can be
constrained to identify those portions of the schema that require security control. To
achieve this, we introduce the new UML Secure Information Diagram, which identifies
those portions (elements and subtrees) of an application’s schema (DSCD in Fig. 3) on
which both RBAC permissions and LBAC classifications will be defined. For the SID,
the M2 metamodel is shown in Fig. 4 where each class that is part of the SID is
represented as meta-class (SecureInformation) associated with many possible instances
of any given schema element as represented with the Element meta-class. Following
the example of the MMUCC, the realization of the SID is shown in Fig. 5, a subset of
the information from Fig. 3 that needs to be secure.

The next extension is the new Document Role-Slice Diagram (DRSD), with the
purpose of supporting RBAC of operations that target schemas and their instances and
to enable granular LBAC labeling of elements. The DRSD organizes the roles into a

Fig. 3. A DSCD for the MMUCC Segment.
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hierarchy. The metamodel for the DRSD (as shown in Fig. 6) consists of the RoleSlice
meta-class represents the role slices that will be defined with permissions against the
SID (see Fig. 5 again) with respect to the schema(s) of the application to be secured.
The Permission meta-class represents the permissions allowed over the instances val-
idated against the secured schema (read, aggregate, insert, update, delete) that define
what a role can and can’t do for the elements in a schema. In order to create a relation
between the RoleSlice meta-class (which contains all of the DRSD instances) and the
Permission meta-class (which contains all of the schema targeting permissions), it is
necessary to create a relation between the users and their roles. In Fig. 6, the UserRole
meta-class is a parent-class of the RoleSlice meta-class and a sibling class of the
Permission meta-class. The connections between the UserRole and Permission
meta-classes are given by the permitted permission (PP) relation. The Element
meta-class in turn represents all of the instances of elements (from the schema) that are
targeted by the different permissions. This connection is tagged with the targeted

Fig. 4. Secure Information Diagram M2 metamodel.

Fig. 5. SID with MMUCC elements.

Fig. 6. Document Role Slice Diagram M2 metamodel.
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element (TE) label in Fig. 6. Again, following the example of the MMUCC, the
realization of the DRSD with sample roles against the SID of Fig. 5 is shown in Fig. 7.

Next, the new LBAC Secure Information Diagram (LSID) is shown in Fig. 8, a
UML package with the stereotype «SecureInformation» that decorates the SID and
contains all of the respective classes of elements from the schema to be secured per
access modes (ams) and classifications (cls). The meta-model for the LSID consists of
four meta-classes: User, AccessMode, Element, and SensitivityLevel. These meta-
classes are interconnected to represent the relations between the user (User), its
clearance level (Sensitivity), and access modes (read, aggregate, insert, update, delete;
AccessMode) for each of the elements (xs:element, xs:complexTyp, etc.; Element)
from the SID that need to be protected. To represent the relation between User and
SensitivityLevel, an arrow with a UC (user clearance) tag is used. This relation indi-
cates that the user could either have a clearance level or is without a clearance level,
therefore the utilization of the 0..1 cardinality constraint. Element and Sensitivity are
similarly related, represented with the arrow tagged EC (element classification). The
relationship between Element and AccessMode is represented with the 1.. + cardinality
constraint to cover the case of an element with different possible access modes. The
result of the metamodel instantiation with the MMUCC example is shown in Fig. 9.

Next, at the metamodel layer (M2) of the MOF, the new User Diagram (UD) ex-
tension is presented in Fig. 10. The interplay of users, their roles and delegation
permissions (for RBAC), their clearance levels (for LBAC), and their authorization
permissions (DAC) require the proper definition of a user concept. The work in secure
software engineering [26] proposed a UML extension for users via a User Diagram. In
this paper, we build upon this first iteration of the User Diagram to extend to include
both LBAC and RBAC user features directly to the metamodel. The metamodel of the
UD is composed of six major meta-classes as given in Fig. 10: User, SensitivityLevel,
UserRole, RoleSlice, SOD, and ME. The User meta-class represents all of the possible
instances of users in a particular application. Both the User meta-class and the Role-
Slice meta-class, is a subtype of the UserRole meta-class. The UR tag represents

Fig. 7. DRSD Role hierarchy for MMUCC access in the law enforcement scenario.
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user-role assignments (RBAC), the separation of duty (SOD) meta-class represents the
separation of duty relations, and, the mutual exclusion (ME) meta-class represents the
mutual exclusion relations between roles. The SensitivityLevel meta-class, which
represents the sensitivity as related to LBAC is a clearance level for a user and is tied to
the User meta-class. This distinction shows an important feature of the security
framework presented in this dissertation, namely, that RBAC and LBAC capabilities
are orthogonal. Following the examples of the roles in Fig. 7, we show an example UD
for the MMUCC in Fig. 11.

The delegation component of the underlying security model is supported with the
new Delegation Diagram (DD) extension to the UML standard given as a metamodel in
Fig. 12. The metamodel consists of three meta-classes: OriginalUser, DelegableUser,

Fig. 8. LSID M2 metamodel.

Fig. 9. LSID for MMUCC access.

Fig. 10. User Diagram M2 metamodel.
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and RoleSlice. The OriginalUser meta-class, along with the RoleSlice meta-class
represents the original users of the application and their assigned roles. The Dele-
gableUser, connected to the RoleSlice meta-class, represents the user/role pairs of
authorized delegations. In turn, the Delegation tag in the connection between Orin-
galUsers and DelegableUsers represents the ability to perform the delegation operation.
Figure 13 shows a sample instantiation of the DD metamodel would look in the
example of the MMUCC.

The final extension of the UML standard to support the security model consists of
new the Authorization Diagram (AD) metamodel in Fig. 14 that consists of four
meta-classes: UserRole, Authorization, Instance, and Schema. The UserRole
meta-class represents the specific user/role pair in a similar fashion as the case of the
UD in Fig. 6. The Authorization meta-class is connected to the Instance and Schema
meta-classes to represent whether an authorization to an instance or schema exists and
is represented with the 0.. + tag on the directional connection. This metamodel defi-
nition allows scenarios in which a user might not be authorized to any schema/instance,
or any combination of the two (e.g. all schemas and all instances). Figure 15 shows an
MMUCC related AD with the users and roles utilized from Figs. 11 and 7,
respectively.

Fig. 11. User Diagram for the Law Enforcement Scenario.

Fig. 12. Role Delegation Diagram M2 metamodel.
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5 Generating Enforcement Policies from UML Extensions
to XACML

In this section, we provide a high-level view of the security policy generation process
that combines the access control concepts and capabilities of our security model with
the new UML diagrams into an architecture. As shown in Fig. 16, the new UML
extensions in the first column (DSCD, SID, DRSD, LBAC, UD, DD, and AD) are used
in various combinations (see four different arrow types) in order to start a process that
can map them through access control models RBAC, LBAC, DAC delegations, and
authorizations (see column two) in order to identify the key policy components (see
column three) that are then utilized to automatically generate a security policy (fourth
column). First, DSCD, SID, DRSD and UD are combined to produce an RBAC ori-
ented policy for each user/role combination; as a result, multiple security policies are
generated on a user/role basis. Second, DSCD, SID, LSID, and UD are combined to
produce an LBAC oriented policy for each user; again, specific security policies are

Fig. 13. DD for User Rob in police captain role in a law enforcement scenario.

Fig. 14. Authorization Diagram M2 metamodel.

Fig. 15. AD for user van in the law enforcement scenario.

198 A. De la Rosa Algarín and S.A. Demurjian



generated for each user. Third, DRSD, UD, and DD are combined to produce a security
policy that defines the delegable users and the role that can be delegated; again, this
results in a separate policy each user/role combination. Finally, DSCD, DRSD, UD,
and AD are combined to generate the policy that identifies the schemas and instances
are authorized for a specific user. For each of these combinations, there is a transition to
the policy components that form the basis of the generated policies. The last step in the
process, illustrates the alternative policies that can be generated, including XACML
(the focus of this dissertation), SQL DDL code for a relational database system, and
aspect-oriented programing (AOP) for an object-oriented application [25].

The process of generating an XACML policy from the new UML standard
extensions can be automated with an algorithm, as shown by Fig. 17. From a high-level
perspective, the first step is to iterate over every user of the information system that
requires security. Once a user is selected, the next step is to find that user’s role and the
respective DRSD that describes all of the permissions over every element. Then, by
iterating over every permission in the relevant DRSD, the algorithm creates an
XACML <Rule> object that would map the role to the <Subject>, the elements to
the <Resources>, and the permissions (operations) to the <Actions> . Then, after that
initial mapping is done, a check for LBAC features is done. If any LBAC features exist,
such as simple-security, simple-integrity, etc., a <Condition> element is added to that
rule. This process is repeated over every permission, resulting in one <Rule> with
a <Condition> element if LBAC is needed for each permission in the DRSD. This
iteration is repeated for every role the user might hold. After the mappings over RBAC
and LBAC capabilities are complete, then delegations and authorizations are tackled.
For each delegation and authorization, a <Rule> element is created that would map the
schemas and instances to <Resources> inside the rule for authorization, or roles and
delegable users to <Resources> and <DelegationTargets> respectively, for delegation.
The end result of this high-level process is the creation of one XACML policy instance

Fig. 16. Generating policies from UML diagrams.
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per user, which could be readily deployed. Figure 18 shows the culmination of the
MMUCC example with a sample policy created by this process.

6 Related Work

There have been attempts to provide design level security for tree-structured data in the
past, though the majority of the efforts focus on securing document formats such as
XML in real-life scenarios. For example, [10] presents an access control system that
embeds the definition and enforcement of the security policies in the structure of the
XML DTD and documents in order to provide customizable security. This is similar to
our work in that security policies act in both a descriptive level of the XML instances
and target the XML instances, but differs in their use of the outdated XML DTD’s and
their security policies are embedded into the XML instance for a high cost for security
updates (recall Sect. 1). Another effort by [11] details a model that tries to combine the
two discussed methodologies to provide security to XML datasets with three security
attributes (access, condition and dirty) with changes updated in the both the XML
schema its instances. This is similar to our work at the XACML policy level, but differs
by our also taking into consideration XML document writing; their XPath’s design
only allows reads.

In terms of applying similar approaches to the one presented in this paper, but for
functional aspects of a software system, work in [24] provides the most influential
effort for the research presented in this paper by extending UML to represent RBAC

Fig. 17. Pseudo-code for XACML policy instance generation algorithm.
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and DAC via the introduction of the Role Slice Diagram, the User Diagram, the
Delegation Diagram, and MAC extensions coupled with a Secure Subsystem Diagram.
The work in [24] aims to provide security to the functional aspects of a software

Fig. 18. Resulting XACML policy for user rob and role PoliceCaptain.
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component, down to the granularity of methods in classes (in contrast, our work aims to
provide the same level of security assurance to the information/data aspect of the
software). To achieve this, the Secure Subsystem Diagram presented by [24] denotes
the subset of an application’s overall classes and methods that are restricted and require
permissions to be in place for authorized users. The Role Slice Diagram, similar to the
Document Role Slice in this paper, denotes RBAC policies from a role perspective.
From an enforcement perspective, once defined, the diagrams are utilized to generate
aspect-oriented enforcement code in AspectJ that is able to verify, at runtime, whether
the active user has a role with permissions over the protected method and grants or
denies access accordingly.

7 Conclusion

Information modeling is focused on representing, using, and exchanging data in
large-scale applications or system-to-system operability. The work presented in this
paper is a comprehensive approach that enables the modeling tree-structured schema in
UML with the addition of the modeling of access control requirements (RBAC, LBAC,
DAC) on said data for implementation solutions such as XML, JSON, and RDF. There
were main contributions presented in the paper. The first contribution Sect. 3 supported
the modeling of tree-structured data and schemas with the proposal of a new UML
Document Schema Class Diagram (DSCD) in Sect. 3 that allowed generalized design
from which target schemas/instances in XML, JSON, RDF, etc., can be generated. The
second contribution in Sect. 4 proposed new UML diagrams for RBAC, LBAC, and
DAC via the Secure Information Diagram (SID), the Document Role-Slice Dia-
gram (DRSD), the LBAC Secure Information Diagram (LSID), the User Dia-
gram (UD), the Delegation Diagram (DD), and the Authorization Diagram (AD). The
combination of DSCD in Sect. 3 along with the security diagrams presented in Sect. 4
allowed the automatic generation of enforcement code via XACML as presented in
Sect. 5. The end result is an underlying information security model that abstracts away
from specific document formats and considers their most basic form as tree-structured
containers while supporting access control capabilities as an integrated solution; and
abstracting the comprehensive information security model with new UML diagrams
that are capable of modeling tree-structured schemas and their associated RBAC,
LBAC, and DAC.
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Abstract. The extended access control protocol has been used for the
German identity card since November 2010, primarily to establish a cryp-
tographic key between a card and a service provider and to authenticate
the partners. The protocol is also referenced by the International Civil
Aviation Organization for machine readable travel documents (Docu-
ment 9303) as an option, and it is a candidate for the future European
eIDAS identity system. Here we show that the system can be used to
build a secure access system which operates in various settings (e.g.,
integrated, distributed, or authentication-service based architectures),
and where access can be granted based on card’s attributes. In particu-
lar we prove the protocols to provide strong cryptographic guarantees,
including privacy of the attributes against outsiders.

1 Introduction

The extended access control (EAC) protocol has originally been proposed by
the German Federal Office for Information Security (BSI) for identity cards
and machine readable travel documents [1]. Indeed, it is listed as an option in
Document 9303 of the International Civil Aviation Organization for protect-
ing machine readable travel documents [19]. In the latest version of the BSI
document [2] it has also been proposed as a part of the candidate for the Euro-
pean electronic identities, authentication, and trust services (eIDAS) system.
Technically, the protocol establishes a cryptographic key between an eID card,
connected to a local reader, and a remote service provider, via the so-called
terminal authentication (TA) step and the chip authentication (CA) step. The
protocol also mutually authenticates the parties. See Fig. 1.

1.1 EAC for Attribute-Based Access Control

Here we discuss how the EAC protocol can be adapted for more general (phys-
ical) access system architectures. Furthermore, using the established crypto-
graphic key in the EAC protocol one can use its channel protocol, called secure
messaging, to have the card send further attributes on which the access deci-
sion can be based, too. The advantage is that only mild changes to the existing
infrastructure of the German identity card and candidate eIDAS system are
necessary.
c© Springer International Publishing AG 2016
L. Chen et al. (Eds.): SSR 2016, LNCS 10074, pp. 205–226, 2016.
DOI: 10.1007/978-3-319-49100-4 9
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Fig. 1. Extended Access Control (EAC), consisting of the terminal authentication (TA)
step and the chip authentication (CA) step.

Ample Architecture Scenarios. The first extension refers to broader architec-
tures in which the verifying party can be distributed across various entities. The
common settings, also displayed in Fig. 2, include:

– In the integrated terminal architecture, as in the border control scenario for
travel documents, the reader implements the service provider functionality,
and only forwards the attributes (sent over the secure messaging channel) for
verification to the back-end management (via a secure connection like TLS).
The reader then potentially grants access.

– In the distributed terminal architecture, as in the eID service scenario, the
reader mainly connects the card to a controller which executes the EAC pro-
tocol with the card. The controller again calls the back-end management about
the attributes.

– In the eID-service architecture an external service provider takes care of the
cryptographic operations and forwards the attributes to the controller.

– In the authentication-service architecture the signature generation in the TA
step of the EAC protocol is outsourced to a dedicated authentication server
which holds the long-term signing key. The other steps are carried out again
by the controller.

Restoring Sessions. Another extension concerns the possibility to authenticate
faster through recognition. Here we can rely on the session contexts provided by
the EAC protocol, version 2. Roughly, the EAC protocol offers the possibility
to store the derived keys for secure messaging (and the send sequence counter)
and to re-establish a connection with these keys. In EAC this allows to switch
session contexts when changing communication partners.

By using the session context switching mechanism we can add a recognition
step to our authentication procedure (for any setting). That is, the responding
party checks if it has already successfully authenticated the card (and stored the
session context under some identifier) and tries to re-establish the session with
the card. If the card is responsive then both parties re-start the secure channel
under the stored keys and the card transmits its attributes. By this the parties
do not have to perform the more expensive public-key operations again.
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Fig. 2. Architectures for attribute-based access control.

1.2 Security of the Architectures

Our main result is to show that the proposed protocols provide strong security
guarantees in a cryptographic sense. This boils down to two important secu-
rity properties: impersonation resistance, preventing the adversary to trick the
responding party into falsely accepting a card, and attribute-privacy, preventing
the adversary from learning the attributes transmitted by genuine cards. The
latter may be necessary in cases where the attributes carry confidential data,
such as general access information or data facilitating the identification of the
person using the card.

We envision very strong adversarial capabilities in attacks against either
property, such that showing infeasiblity of attacks gives strong security guar-
antees. The adversary in our security model corresponds to similar attackers
on key exchange protocols (such as in the Bellare-Rogaway model [8]), giving
the adversary full control over the network, and allowing it to modify or inject
messages in communications, and to corrupt parties.
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For impersonation resistance the adversary wins except in the trivial case
that the identified card has been corrupted, or that the adversary has only
relayed communication between the reader and the genuine card. Relying on
previous results about EAC [16,22] we show that all architectures achieve this
strong notion. Analogously, we argue that all architectures satisfy our strong
privacy notion which postulates indistinguishability of used attributes, except
for the case of corrupt cards or corrupt responders. We also discuss security
peculiarities of the different architectures.

1.3 Related Work

Some of the aforementioned architectures and the idea of using session contexts
have already been discussed in the master thesis of one of the authors [6]. Our
contribution here is to define appropriate models and argue security according
to cryptographic standards.

The different versions of the access architectures should not be confused
with the Enhanced Role Authentication (ERA) protocol for the eIDAS token
[2]. There, an attribute provider connects to the card by establishing another
channel via the EAC protocol and can then access attribute requests stored by
the terminal on the card. For this the card uses the switching operation for
session contexts to communicate securely with the corresponding party.

The difference of ERA to our setting here is that we assume that access
attributes are stored on the card and not provided by an external service
provider. In particular, the card in our setting only communicates with a single
responder and executes the EAC protocol only once. This is accomplished in
our setting by letting the responding party read out the attributes and having it
forward them to the management system. The protocol here also uses the session
contexts to re-establish connections, instead of switching channels between the
various communication partners. This also means that the session contexts are
stored persistently here, whereas eIDAS tokens use them transiently only.

In a related proposal, Bundesdruckerei [5] introduces the possibility to secure
transactions data, such as mobile phone numbers, on top of the EAC proto-
col and its existing eID architecture (requiring only minor modifications to the
reader). The proposed transaction system has been analyzed cryptographically
in [22]. This idea is orthogonal to our setting here where we discuss different
access architectures including attributes. Yet, due to the resemblance with the
EAC protocol we can partly use their results in order to show that the vari-
ous access systems provide the common authentication guaranteed, even if the
responding party cannot communicate with the management system for checking
the attributes.

The EAC protocol (and its related protocols for the German identity card
resp. the eIDAS tokens) has been analyzed in [9–12,15–18,21]. We merely rely
on the EAC analysis in [16] and results related to secure composition of key
exchange (like EAC) with secure channels (such as secure messaging).
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2 The EAC Protocol and Adaptations

Since the access system strongly relies on the EAC protocol we first recall that
protocol and then discuss the modifications.

2.1 The EAC Protocol

The Extended Access Control (EAC) protocol is a two-party key agreement pro-
tocol between a chip card and a terminal. It consists of a terminal authentication
(TA) step and a chip authentication (CA) step. We omit explicit mentioning of
the passive authentication step in between, in which the chip forwards passively
authenticated data to the terminal, since the details of this step is irrelevant to
our security concerns here.

At the outset both parties each hold a certified long-term key pair, on the
card’s side for generating a Diffie-Hellman key, and on the terminal’s side for
signing. Both parties also hold a card identifier idC which in the execution of
the German identity card equals the compressed version of the public-key of the
preceding PACE protocol with which the card connects securely to the local
reader (see Sect. 2.3). The PACE step is omitted in our setting. One may for
now simply assume that idC is empty.

In the TA step the terminal authenticates to the chip card. For this it chooses
a session-specific ephemeral key pair (eskT , epkT ), sends over its certificate for
the long-term key pkT (which is also included in its certificate certT ) and a
compressed version Compr(epkT ) of the ephemeral public key. The compres-
sion function can be for example the projection onto the x-coordinate of the
elliptic curve point. The card returns a random nonce rC which the terminal
signs, together with Compr(epkT ) and idC (if present). The terminal sends the
signature to the card and the card accepts only if verification succeeds.

Upon successful completion of the TA phase, the card then executes the Chip
Authentication (CA) step. For this the chip sends its certificate certC and public
key pkC , and the terminal replies with its (uncompressed) ephemeral public key
epkT . The card checks that this value matches the previously sent compressed
version. Both parties then compute the Diffie-Hellman key of pkC and epkT with
the corresponding secret key they hold, and derive an encryption key Kenc and
the MAC key Kmac. This step requires the card to pick another random nonce
r′
C and include it in the key derivation process. The chip computes the MAC

over epkT and sends it together with the nonce r′
C to the terminal.

In the protocol description in Fig. 3 we also include the so-called session iden-
tifiers sid for compatibility with previous analyses [16,22]. These session identi-
fiers can be roughly seen as unique session-specific labels. These cryptographic
identifiers, determined by the protocol communication and used in the proof,
should not be confused with the integer-valued session context identifiers used
by the parties of the EAC protocol. Similarly, we include the partner identifiers
pid which refer to the designated partner and are taken from the unique identifier
in the certificate.
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Chip : Terminal :
key pair skC , pkC key pair skT , pkT
certificate certC for pkC certificate certT for pkT
card identifier idC card identifier idC

Setup: domain parameters DC , certification key pkCVCA

Terminal Authentication (TA)

certT←−−−−−−−−−−−−−−
check certT with pkCVCA

abort if certT invalid
extract pkT from certT generate (eskT , epkT ) for domain DC

Compr(epkT )←−−−−−−−−−−−−−−
pick rC ← {0, 1}n

rC−−−−−−−−−−−−−−→ sT ← Sig(skT , idC ||rC ||Compr(epkT ))
sT←−−−−−−−−−−−−−−

abort if SVf(pkT , sT , idC ||rC ||Compr(epkT ))

sid = (Compr(epkT ), rC)

Chip Authentication (CA)

pkC , certC , DC−−−−−−−−−−−−−−→ check pkC , certC with pkCVCA

abort if invalid
epkT←−−−−−−−−−−−−−−

check pkT against Compr(epkT )
abort if invalid
pick r′

C ← {0, 1}n

K = DHDC (skC , epkT )
Kenc = KDFEnc(K, r′

C)
Kmac = KDFMAC(K, r′

C)

τ = MAC(Kmac, epkT )
τ, r′

C−−−−−−−−−−−−−−→ K = DHDC (pkC , eskT )
Kenc = KDFEnc(K, r′

C)
Kmac = KDFMAC(K, r′

C)
abort if MVf(Kmac, τ, epkT ) = 0

sid = (Compr(epkT ), rC)
pid = id in certT pid = id in certC
accept accept

Fig. 3. Terminal Authentication (TA) and Chip Authentication (CA). All number-
theoretic operations are modulo q resp. over the elliptic curve.

2.2 Restoring Session Context

A session context in the domain of the German identity card consists mainly of
some (session context) identifier, the cryptographic keys for secure messaging,
the send sequence counter (and possibly additional entries like the auxiliary data
which can be used in the EAC protocol) [2]. A new session context is usually
stored after successful reception of the first secure messaging transmission. The
card is usually restricted to store at most 127 session contexts (or even less). To
restore a session the terminal is supposed to send the context identifier to the
card, encapsulated into a corresponding protocol message.

When storing the sequence counter it must be ensured that this value does not
interfere with the actual counter value used for secure messaging. The suggested
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method is to round the current value up to the next multiple of 16 and store
this value. Only if the current value reaches this bound then one again needs to
update the stored value to the next multiple of 16. For us here the details are
irrelevant as long it is guaranteed that sequence counters are used only once in
the context of a session.

We note that the card is supposed to immediately delete a session context if
an erroneous secure messaging transmission arrives. Similarly, if a terminal tries
to re-initialize a session context but receives an error (say, if some other terminal
has overwritten the context under the identifier meanwhile) then the terminal
should start from scratch running the EAC protocol.

2.3 Modifications

In this part we describe the modifications of the EAC protocol

Omitting the PACE step. First, we do not assume that the password-
authenticated connection establishment (PACE) protocol between the card and
the reader is executed before initializing the EAC protocol. The PACE protocol
requires the card holder to type in the PIN at the reader and then establishes a
secure channel between card and reader for the wireless data exchange.

As pointed out in [16] the EAC protocol itself already provides a secure
key exchange protocol between card and terminal whose security does not rely
on the strength of the PACE protocol. We therefore start with the assumption
that card and reader have not executed the PACE protocol. This, however, also
means that the card identifier value idC has not been set yet, because it usually
corresponds to data derived during the run of PACE. We simply assume that
idC is empty.

Adding Attributes. Besides completing the (modified) EAC protocol access per-
mission may depend on the attributes a card can provide. We assume that the
responder may request to see the attributes and then the card sends the stored
data. Note that these steps are carried out over the secure-messaging channel.
If the terminal requests to see the attributes then we set on the card’s side,
upon successful completion of this step, the cryptographic session identifier to
be (sid, C) for the transmitted ciphertext C of the attributes.

We stress again that, if the management system is unreachable, the ordinary
authentication process of the EAC protocol is still in effect such that reading
the attributes after executing the EAC protocol may be optional. For restored
sessions, however, reading out attributes over the secure channel is the only
mechanism to ensure that the card actually holds the secret keys.

Persistent Session Contexts. Session contexts for the German identity card are
supposed to be deleted when the card becomes unpowered or is being reset. In
contrast we may assume that session contexts are stored over longer periods of
time. One may even continuously use a stored context for “cascaded” executions.
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Chip : Terminal :
session context Cont session context Cont
with identifier i with identifier i

attributes A

Restoring Session

“restore session” i←−−−−−−−−−−−−−−
search for context i
recover data for secure messaging recover data for secure messaging

{”read att”}←−−−−−−−−−−−−−−
C = {A}−−−−−−−−−−−−−−→

sidContnew = (sidContold , C)

pidContnew = pidContold pidContnew = pidContold

Fig. 4. Restoring sessions and reading out attributes in the case of the distributed
architecture (with the controller acting as the terminal). Here, {. . . } denotes proto-
col messages sent via secure messaging. Note that the updated cryptographic session
identifier is augmented by the ciphertexts of the attributes.

Furthermore, we do not make any restrictions on the number of stored contexts;
the number may depend on the card’s architecture.

In addition, we do not pose any stipulations on the choice of the identifiers of
session contexts but advise some “collision-free” choice. For example, important
responders may be assigned a fixed identifier whereas other terminals may select
identifiers at random. Since the choice only affects efficiency but not security we
do not discuss possible strategies here further.

We let the cryptographic session identifier sid monotonously grow with the
number of restored contexts, because we append the card’s latest authenticated
ciphertext of the attributes, sent via secure messaging, to the current identifier
value sidContold of the context upon acceptance. Partner identifiers and attributes
remain unaltered. An execution example of a restored session of the distributed
architecture is given in Fig. 4.

3 Access Systems and Their Security

Before discussing the security of our (modified) EAC protocol we first abstractly
introduce access systems and their desired security features.

3.1 Access Systems

An access system AS consists of efficient algorithm (KGC ,KGR,ΠS ,ΠR) for
generating keys (and attributes) for the card, (pkC , skC , certC) ← KGC(1n). We
note that we will later add attributes to cards but in a session-specific way. More
formally, we assume that the attributes A are provided “from the outside” and
all attributes are stored externally in some list AT T and given to the managing
party. Similarly, the system comprises a key generator for the responding party,
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(pkR, skR, certR) ← KGR(1n), and stateful algorithms ΠC , ΠR for the party’s
protocol messages. We sometimes omit mentioning certificates for the public
keys explicitly, and that there must be a certification authority; all the details
are relevant when taking an in-depth look at EAC, but we are mainly concerned
with the fact that EAC provides a secure key exchange protocol.

We assume the usual completeness property, saying that for genuine keys,
the card holding attribute A ∈ AT T , and faithful execution of the algorithms
ΠS ,ΠR the responder eventually accepts the card. Here, to cover restored ses-
sions we assume that the responder may accept multiple times within a session.
Formally, this is captured by running ΠS and ΠR in modes init and restore, and
we assume that at the end of the first execution of init on genuine data (involv-
ing A ∈ AT T ) the responder accepts, as well at the end of each execution in
mode restore. Note that every time the session continues, triggered via a restore
command, the party goes from an accepting state to an unaccepting one.

3.2 Security Model

In all versions of the access system we assume a powerful adversary controlling
the network.

Attack Model. We assume that all parties, divided exclusively into cards from
set C and responders from a set R, receive their (certified) key pairs as initial
input at the outset of the attack. Since we do not want to make any assumptions
about the structure of card attributes we leave it up to the adversary to assign
attributes to cards upon initialization of a new session.

The adversary has full control over the network and can, in particular, ini-
tiate new sessions of parties and decide when to deliver protocol messages (and
potentially to modify such messages or even inject new ones). Formally, this is
modeled by giving the adversary the following oracle access:

– Init: The adversary can initiate a new card or responder session by calling
Init(id) for some identity id ∈ C∪R. We assume that the identifier id uniquely
determines a certificate and vice versa. In case of a card the adversary also has
to provide some attribute A. The adversary may thus choose to hand out the
same attribute to each card or change attributes depending on the concrete
session. This attribute is immediately stored in a list AT T . Upon such a call
we spawn a new session of the party for attribute A and assign it a unique
label � for administrative purposes. The label � is returned to the adversary
and we write � ← Init(id, [A]).

– Send: The adversary can send any protocol message m to a session with label
� via the Send(�,m) command. If the session has not been initialized before,
then the oracle immediately returns ⊥. Else, it makes the corresponding party
compute the next protocol message and this message is returned to the adver-
sary (potentially also returning ⊥ to express rejection).
In particular, we assume that the adversary may make the party switch
to modes, from init to restore or starting a new restore session, if receiving
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Send(�, restore). If the party has not finished successfully the previous mode
yet, it may reject. In case the execution is successfully completed, the adver-
sary is informed that the party has accepted.

– Corrupt: The adversary can corrupt a party with identity id by using the
Corrupt(id) command. It receives the party’s long-term keys and internal state
in return, and we put id in the (initially empty) set Corrupt of corrupt parties.
From now on, we assume that the adversary does not send further commands
to that session.

To facilitate the notation we use the following mappings. We write ACC(�) for
the (current) acceptance status of the (responder) session (true or false), and
ID(�) for the identity id of the session owner, and PID(�) for the intended partner
pid, possibly pid = ⊥ at this point. Similarly, SID(�) denotes the current value of
the session identifier. We also denote by ATT(�) for a session the attribute A the
card has been initialized with resp. the attribute the responder it has received
(if at all).

Impersonation Resistance. Impersonation resistance of the access system now
says that the adversary cannot make the responder accept, unless in the trivial
case that a card with attribute A is accepted and the adversary has corrupted a
card with these attributes (in which it could easily access the system by using
that card), or if the adversary has merely relayed the communication between
an honest card and the reader. This is formalized in Fig. 5.

While Fig. 5 describes the flow of the attack, the predicate ImpResPred in
Fig. 6, which is evaluated at the end of the attack, determines when the adver-
sary wins. There are two cases when we declare the adversary to win. The
first case is when the adversary has managed to make an honest responder
accept an honest card which has not participated in the execution (or with
different attributes). This corresponds to the foreach loop in Line 3 in Fig. 6.
The second case, covering replay resistance, is that partnered sessions are unique
between cards and responders, or else the adversary wins, too. In particular, there

Experiment ImpResAS
A (n)

1 : foreach i ∈ C ∪ S do

2 : if i ∈ C then (ski, pki, certi) ← KGC(1n) fi

3 : if i ∈ R then (ski, pki, certi) ← KGR(1n) fi

4 : endforeach

5 : pks ← {(pki, certi) | i ∈ C ∪ R}
6 : AInit(··· ),Send(··· ),Corrupt(·)(1n, pks)

7 : b ← ImpResPred // evaluate predicate ImpResPred on execution state

8 : return b

Fig. 5. Security of an access system.
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Predicate ImpResPred on execution state

1 : p ← true

2 : // accepting responder session must have honest partner with sid (or corrupt partner)

3 : foreach � ∈ {� | ID(�) ∈ R \ Corrupt ∧ ACC(�) = true} do

4 : p ← p ∧ [PID(�) ∈ C ∩ Corrupt

5 : ∨ ∃�′ 
= � : (SID(�′) = SID(�) 
= ⊥ ∧ PID(�) = ID(�′)

6 : ∧ ATT(�′) = ATT(�))]

7 : endforeach

8 : // Collisions among identifiers only between opposite partners

9 : foreach

10 : (�, �′) ∈ {
(�, �′)

∣
∣ � 
= �′ ∧ ID(�), ID(�′) /∈ Corrupt ∧ SID(�) = SID(�′) 
= ⊥}

11 : do

12 : p ← p ∧ [(ID(�), ID(�′)) ∈ C × S ∪ S × C]

13 : endforeach

14 : return p

Fig. 6. Security predicate ImpResPred for impersonation resistance.

cannot be two honest cards with the same session identifiers. This is checked in
the foreach loop in Line 9 in Fig. 6.

Note that, in the predicate ImpResPred, if the responding party accepts and
outputs some session identifier, then the card must have already accepted before,
i.e., we assume that the responder receives the last message. This ensures that
there is always a card with the same identifier sid at this point, unless the aversary
has managed to break security. This holds in our setting here as the card sends
the attributes or acknowledges the storage of the session context.

Definition 1 (Impersonation Resistance). An access system AS is imper-
sonation resistant if for any efficient adversary A the following is negligible:

Prob
[

ImpResAS
A (n) = 1

]

≈ 0.

Note that we let the adversary A decide when to stop the execution and
to start evaluating the predicate. Hence, if it is advantageous and the adver-
sary already detects a winning situation, it may end the execution immediately
(instead of messing up the winning state by, say, corrupting another party). In
our case this is easy to detect since all the data required to evaluate the predicate
are known to the adversary. In general, if the predicate relies on some informa-
tion unavailable to the adversary, then the adversary may just guess the point
in time for such a state.

3.3 Privacy of Attributes

Privacy of attributes ensures that no adversary can learn the card’s attributes
(unless it is the responder and controls that party’s long-term key). We use
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an indistinguishability-based approach here in which a privacy-adversary can,
besides regular sessions, also initiate (multiple) executions on a random choice
of one of two adversarially chosen attributes A0, A1.

The attack model is the same as for impersonation resistance. The only differ-
ence is that the adversary now also gets a challenge oracle Chall, which is ini-
tialized with a secret bit b ← {0, 1}. When called about identity id ∈ C and two
attributes A0, A1, the challenge oracle executes � ← Init(id, Ab) to initialize an
execution with the card. It returns the session label � to the adversary. From then
on the adversary can communicate with the card’s sessions via the Send oracle for
the corresponding label. The adversary eventually should predict the bit b.

To rule out trivial attacks, say, in which the adversary controls the corrupt
responder, we require that the adversary has only asked the challenge oracle for
identities of honest cards which refer to an honest partner. For this we check
that for each query (id, A0, A1) to Chall we neither have id ∈ Corrupt nor
PID(�) ∈ Corrupt, where a yet unset partner identifier PID(�) = ⊥ does not
belong to Corrupt by definition.

We can now define privacy with the experiment in Fig. 7.

Definition 2 (Attribute-Privacy). An attribute-based access system AS pro-
vides attribute-privacy private if for any efficient adversary A the following is
negligibly close to 1

2 :

Prob
[

APrivAS
A (n) = 1

]

≤ 1
2 + negl(n).

Experiment APrivAS
A (n)

1 : b ← {0, 1}
2 : foreach i ∈ C ∪ S do

3 : if i ∈ C then (ski, pki) ← KGC(1n) fi

4 : if i ∈ S then (ski, pki) ← KGS(1n) fi

5 : endforeach

6 : pks ← {(i, pki) | i ∈ C ∪ S }
7 : a ← AInit(·,·),Send(·,·),Corrupt(·),Chall(b,··· )(1n, pks)

8 : // check for trivial attacks where card or responder corrupt

9 : p ← true

10 : foreach � returned by Chall do

11 : p ← p ∧ [ID(�) /∈ Corrupt ∧ PID(�) /∈ Corrupt]

12 : endforeach

13 : return p ∧ (a = b)

Fig. 7. Attribute privacy experiment
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4 On the Security of EAC with Secure Messaging

Before discussing our analyses let us motivate the setting by the general idea
behind the security argument.

Outline. Our general proof strategy is roughly as follows. Dagdelen and Fischlin
[16] have basically shown that the EAC protocol is a Bellare-Rogaway secure key
exchange protocol. Assuming that secure messaging of the eID system, which
follows ISO/IEC 9791-1 resp. ISO/IEC 10116, provides a secure channel for
fresh keys, we can then apply the composition theorem of Brzuska et al. [13] to
conclude that the combined protocol (where the channel keys are now determined
by the EAC key exchange protocol) also provides a secure channel. In particular,
it follows that the transmissions of the card’s attributes via secure messaging can
only be carried out by the corresponding party, and that any attack will lead
the partner to reject. Let us elaborate on these steps in more detail.

Security of EAC. The result by Dagdelen and Fischlin [16] shows that EAC
is a secure key exchange protocol in the Bellare-Rogaway sense. This means
that EAC provides keys which are indistinguishable from random, even in pres-
ence of active adversaries.1 In particular, and omitting some negligible terms for
collisions among group elements and nonces, they show that the advantage of
distinguishing actual keys from random is bounded by the terms to break the
used MAC, signature and certification algorithms, to find second pre-images in
the compression function, and to solve the Diffie-Hellman problem when given
a decisional Diffie-Hellman oracle as help. All formal security notions of these
primitives are given in Appendix A:

AdvAKE
A,EAC(n) ≤ qe ·

(

Advforge
B1,MAC(n) + Advforge

B2,Sig
(n) + AdvSecPre

B3,Compr(n)
)

+ Advforge
B4,Cert(n) + 2q2e · AdvGapDH

B5,DH (n)

Here, qe is the number of executions in the attack, and B1, . . . ,B5 are adversaries
with a comparable run time as the attacker A on the EAC protocol. Since all
advantages for the underlying primitives are assumed to be negligible, this shows
security of the EAC protocol as an authenticated key exchange. The authors of
[16] also discuss that security holds in case of a projection of the curve point
onto the x-coordinate, making the compression function two-to-one.

Security of Secure Messaging. The proposed channel protocol is secure messag-
ing [3], which either uses 3DES in CBC mode with IV = 0 according to ISO/IEC
10116 for encryption, and in retail mode (MAC algorithm 3 with DES as block

1 Dagdelen and Fischlin actually show a slight modification of EAC (with an indepen-
dent authentication key) to be a BR-secure protocol; without this modification such
a proof cannot go though. We also adopt this approach here, but as pointed out in
[16] one can in principle use the strategy in [13,14] to lift this to a security for the
original protocol, at the cost of a more complicated proof.
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cipher) with IV = 0 according to ISO/IEC 9797-1 for authentication, with the
data prepended by send sequence counter SSC which is incremented for each
operation. The other option is to use AES in CBC mode according to ISO/IEC
10116 with IV = AES(Kenc,SSC) and to use AES in CMAC for authentica-
tion with 8 bytes of output according to SP 800-38B, where, again, the data is
prepended by SSC before authentication.

In [24] Rogaway analyzes the encryption modes proposed in SP 800-38A
resp. ISO/IEC 10116, including the CBC mode used in secure messaging with
the IV = AES(Kenc,SSC) computed by applying the block cipher to the current
send sequence counter SSC. Rogaway proposes an attack if the adversary has
full control over the value SSC. The attack does not carry over to the setting
used in secure messaging, where the encrypting party increments the value for
each operation. This version can be actually shown to be secure [7]. Rogaway
[24] confirms the authentication properties of the proposed MAC algorithms in
ISO/IEC 9791-1 which are proposed here for secure messaging.

We thus assume that secure messaging provides a secure channel (in the sense
of [13, Sect. 6.3] which in turn is based on the the notion of stateful authenticated
encryption [20,23]). The experiment lets an adversary call a challenge oracle to
enqueue one of two message blocks m0,m1 into the channel, the choice made
according to a secret but then fixed bit b, and to dequeue arbitrary ciphertexts on
the receiver’s side. The adversary wins if it manages to predict b or to make the
receiver accept a decryption of an out-of-order sent ciphertext. See Fig. 8. The
advantage AdvSecCh

A,Ch (n) of the adversary A is then defined to be the probability
of predicting b beyond the pure guessing probability of 1

2 (in the multi-instance
setting).

Note that a secure channel in our scenario here comprises both confidentiality
of the attributes, as well as authenticity. The latter suffices if the goal is to ensure
that only the designated card can send the attributes, whereas the former also
guarantees privacy of the attributes. If authentication suffices may be application
dependent.

Secure Channel

(k, stS , stR) ← KG(n)

b ← {0, 1}
Q ← ()

a ← ASend(··· ),Rcv(··· )

return a = b

Oracle Send(m0, m1)

(C0, st
′
S,0) ← Send(k, m0, stS)

(C1, st
′
S,1) ← Send(k, m1, stS)

if C0, C1 
= ⊥ then

stS ← st′S,b
Q.enqueue(Cb)

return Cb

else

return ⊥
fi

Oracle Rcv(C)

(m, stR) ← Rcv(k, C, stR)

if b = 1 and

Q.dequeue() 
= C then

return m

else

return ⊥
fi

Fig. 8. Security Experiment of (single instance of) channel protocol (KG, Send,Rcv).
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Compositional Security. Next we apply the compositional result in [13, Sect. 4]
The theorem says that the combined protocol EAC;SM (where the channel keys
for secure messaging in the multiple instances are determined by executing the
EAC key exchange protocol first) also provides a secure channel, as if the keys
have been chosen freshly. In particular we apply the composition theorem for
so-called single-restricted games. This is a property which basically says that
multiple concurrently running instances of a game correspond to several inde-
pendent sessions, as in case of secure channels. For such games, it is shown that:

AdvSecCh
A,EAC;SM(n) ≤ qe · AdvAKE

B1,EAC(n) + AdvSecCh
B2,SM(n).

Note that this also requires for EAC to provide match-security, a property about
collision-freeness of session identifiers, and to have public session matching, the
ability to determine partnered sessions from the public transcript. Neither prop-
erty has been discussed in [16] but it is easy to show them to hold for EAC.

EAC and Impersonation Resistance. The EAC protocol not only provides a
secure key exchange protocol but it also ensures impersonation resistance. This
roughly means that, at the end of the EAC protocol, no adversary can make
the responder accept a card, unless the card has been corrupted before or if the
adversary merely relayed the communication between the card and the reader.
Based on the results in [16] this has been proven formally in [22] for EAC with
auxiliary data, when the system is viewed as a transaction system. For “empty”
transaction data their protocol is identical to the EAC protocol here, including
also the choice for session identifiers, and their security guarantee of session-
definite unforgeability is stronger than the requirement of impersonation resis-
tance here. (It has also been shown there that session identifiers collide with
negligible probability only.)

More precisely, Morgner et al. [22] show that for any efficient adversary
A (against their unforgeability notion and thus our impersonation resistance
notion of the EAC protocol without attributes) there exists efficient adversaries
B1,B2,B3 against the underlying cryptographic primitives for forging signatures
on behalf of terminals, forging MACs on behalf of cards, and solving the com-
putational Diffie-Hellman problem in the presence of a decisional DH oracle.
Concretely, the probability of forging transaction resp. impersonating here is
bounded from above by:

Prob
[

ImpResEAC−AS
A (n) = 1

]

≤
(

s

2

)

·
(

2−n + R
q

)

+ S · Advunf
B1,SIG(n)

+S · Advunf
B2,MAC(n) + C · S · AdvGapDH

B3,DC
(n)

where it is assumed that Compr is a R-regular function, i.e., every image has
exactly R pre-images, q is the group size specified by DC , the adversary initiates
at most s sessions, and there are at most C cards and S terminals.
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5 Security of the Architectures

Here we discuss the cryptographic strength of the various settings of the access
system. For the analysis we assume that the other channels between parties,
e.g., connecting the controller with the management system, are strongly secure.
This is modeled by disallowing the adversary to tamper with, or even read the
data, sent over these secured channels. We first treat the cases of the integrated,
distributed, and eID-service architecture. By the assumption about secure con-
nection between the various parties, we can view the reader, controller, server
and management as a single entity in these settings. Only the authentication-
service architecture with the split cryptographic operations requires a special
treatment.

5.1 The Integrated, Distributed and eID-Service Architectures

We give the security statements for the integrated architecture only. Recall that
the integrated terminal architecture, for example, assumes all eID operations are
carried out by the reader itself. After completion of the TA and CA phase, the
reader gets the attributes of the card (where the communication is secured via the
secure messaging), and forwards the attributes of the card to the management
system for approval. The communication with the management system is secured
via a TLS channel. Upon approval, the reader grants access. Analogously, if
restoring a session, then the reader only accepts if the securely sent attributes
are approved.

Theorem 1 (Impersonation Resistance). The integrated terminal architec-
ture provides an impersonation-resistant access system, such that for any effi-
cient adversary A there exists efficient adversaries B1,B2 such that

Prob
[

ImpResAS
A (n) = 1

]

≤ Prob
[

ImpResEAC−AS
B1

(n) = 1
]

+2 ·AdvSecCh
B2,EAC;SM(n)

Moreover, adversaries B1,B2 have roughly the same running time A plus the
time to carry out the other steps in the experiment. Note that since the terms
on the right hand side are assumed to be negligible, as discussed in Sect. 4, it
follows that the system is impersonation resistance.

Proof. We consider three cases: (a) either the adversary manages to create col-
lisions in two honest card sessions or in two honest reader sessions; or (b) an
honest reader accepts at the end of the EAC protocol but such that the iden-
tified card is neither corrupt and there is no genuine session of the card with
the same session identifier; or (c) an honest reader accepts some encrypted and
authenticated attributes in a secure-messaging protocol where this ciphertext
has not been sent by an honest card.

The first two cases are covered by the impersonation resistance of the EAC
protocol. It is straightforward to build an adversary B1 simulating the environ-
ment for A through its own attack and by adding the extra steps for the secure
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messaging. If A breaks the impersonation resistance of the combined protocol
then B1 breaks the security of the EAC protocol. This in particular also implies
that the continuously growing session identifiers in restored sessions stay dis-
tinct among card sessions as well as among responder sessions, i.e., a subsequent
collisions cannot happen anymore.

It remains to argue that case (c) cannot occur. In order to violate the pred-
icate in the impersonation experiment, an honest reader accepts a ciphertext
C∗

i in some session with identifier sid = (Compr(epkT ), rC , C1, C2, . . . , Ci−1)
for previously sent ciphertexts C1, C2, . . . in the restored sessions before. Since
we quantify over all adversaries we can assume that C∗

i is the first cipher-
text which deviates from a session of an honest card, i.e., there exists a ses-
sion of a card with sid = (Compr(epkT ), rC , C1, C2, . . . , Ci−1) or already with
sid = (Compr(epkT ), rC , C1, C2, . . . , Ci). But then we must have that C∗

i is new
or that C∗

i �= Ci, and yet C∗
i decrypts to some attribute which the reader accepts.

This can be straightforwardly used in a reduction against the authenticity of the
composed channel protocol such that the probability of this event is bounded by
the security of the secure messaging channel.

More formally, construct algorithm B2 against the combined protocol
EAC;SM from A as follows. Recall that in this combined protocol the keys for
the channel are generated by the EAC protocol, such that this perfectly simu-
lates A’s environment up to this step. We also assume, by the above discussion,
that session identifiers are unique between cards and responders, and that each
honest responder has a unique partnered honest card.

For simulating the channel transmission of an honest card, algorithm B2 calls
the Send oracle for the pair (A,A) for the card’s attribute A to get a (valid)
ciphertext. For simulating the receipt of a ciphertext at the responder’s side, for
an honest responder, there are two cases. If the intended partner is a corrupt
card, then we can assume that B2 already knows the shared key (via a reveal
query at the end of the key exchange protocol) and can simply act as the original
responder. Otherwise, algorithm B2 forwards the ciphertext to its Rcv oracle. If
this oracle returns a message m �= ⊥, then B2 immediately outputs 1. Else, B2

lets the responder in the simulation for A accept if and only if the ciphertext has
been created by a partnered card before, complying with the “queue property”
of the channel protocol.

If, at the end, B2 has not returned 1 yet, then it outputs a random guess.
This completes the description of the perfect simulation (up to the point where
an honest responder can correctly decrypt a new ciphertext sent through the
channel protocol). If the above now happens in an actual attack, that C∗

i is new
or that C∗

i �= Ci but the original responder would accept but we reject, then we
would break the authenticity of the channel protoocl with the same probability.
That is, we then have

Prob[ case (c)] ≤ 2 · AdvSecCh
B2,EAC;SM(n)

where the factor of 2 is due to the fact that we have b = 1 and can thus see an
output by the Rcv oracle with probability 1

2 only.
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Note that this argument about the channel is independent of whether restored
sessions have been overwritten or not. 	


Attribute privacy follows analogously, using again the fact that secure mes-
saging provides a secure channel:

Theorem 2 (Privacy). The integrated terminal architecture provides an
attribute-private access system, such that for any efficient adversary A there
exists an efficient adversary B such that

Prob
[

APrivAS
A (n) = 1

]

≤ 1
2 + AdvSecCh

B,EAC;SM(n)

Proof. Note that the adversary A against privacy can only win in the experiment
if it does not query the challenge oracle about a card identity such that the card
or its partner is corrupt. This in particular means that the derived key for secure
messaging must still be secure, and the adversary here can only distinguish the
attributes if it breaks confidentiality of the channel protocol. This can again be
formalized easily via a reduction to the corresponding game.

More formally, construct adversary B as in the previous theorem, running the
combined protocol EAC;SM to simulate A’s attack. For every call of A about
attributes A0, A1 to the challenge oracle Chall to start a new session in this
attack, adversary B simply initiates a new session and stores A0, A1 for later
use. If the card is later supposed to send its attributes in this session, then B
calls its Send oracle about A0, A1 to get a ciphertext. The (honest) responder
of that ciphertext in the simulation simply accepts.

Eventually, if A outputs a bit b, then B copies this bit to its output and
stops. Since the simulation is perfect, it follows that A’s advantage is at most
the one of B. 	


5.2 The Authentication-Service Architecture

In principle one can show the same results as for the other architectures to the
case of the authentication-service scenario. Recall that there an authentication
server signs the TA data forwarded by the controller, and the controller continues
the execution with that signature. The other steps are as in the other cases.

Note that the signature and the (ephemeral) DH key in the EAC protocol
serve different cryptographic purposes. The signature only binds the ephemeral
key to the terminal’s identity and prevents the adversary to inject its own key.
The DH key is used to establish the session key and, as long as the adversary
does not get to learn the ephemeral secret key, the adversary is not able to
compute the joint DH key with the card. This has been discussed in [16] in the
context of key-compromise impersonation (KCI) resistance.

For us this means that even corruption of the authentication service’s signing
key does not allow to complete the EAC protocol and to learn the channel keys,
for sessions in which an honest reader picks the ephemeral key. In particular,
knowledge of the signing key does not allow to break security of previously
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completed sessions (forward security). Formally, we can augment both attack
model by granting the adversary another SigKey oracle which, when queried
about a responder’s identity, returns the party’s secret signing key. The party
may still act as an honest party in sessions, with the internal choices hidden
from the adversary.

The conditions for impersonation resistance remain unchanged, except for
giving the adversary access to the SigKey oracle. Since a responder party only
completes a session (and accepts with a session identifier) if it executes the pro-
tocol steps itself, any such session in question uses an honestly chosen ephemeral
key epkT on the responder’s side. Hence, the security of session keys for such
honestly ephemeral keys argued in [22] still holds.2

For attribute privacy we need to change the non-triviality check in Line 11
of the experiment in Fig. 7. There, we checked for each card session � returned
by the challenge oracle that the card nor its intended partner is corrupt:

[ID(�) /∈ Corrupt ∧ PID(�) /∈ Corrupt]

Here, we need to check that the responder’s party has contributed the ephemeral
key honestly:

[ID(�) /∈ Corrupt ∧ ∃�′ �= � : (SID(�) = SID(�) �= ⊥ ∧ PID(�) = ID(�′))]

Given this, attribute privacy follows as before, because session keys are still fresh
for such sessions.

6 Conclusion

The access system based on EAC with session restoring provides an imperson-
ation resistant and attribute-hiding solution. Here, both security properties hold
in a very strong sense, thwarting active adversaries with strong control over the
network, and leaving the adversary essentially only trivial attacks from a cryp-
tographic viewpoint. On top, the system is very similar to the existing EAC
system and may thus be easy to implement on existing infrastructures for the
German identity card (or the future eIDAS system).

Acknowledgments. We thank the anonymous reviewers of SSR 2016 for valuable
comments.

A Security Notions of Cryptographic Primitives

This part of the paper here is almost verbatim from the full version of [9].

2 The proof relies on the unforgeability of signatures only to ensure that the adversary
cannot inject its own ephemeral key, which is guaranteed by construction here.
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Message Authentication Codes. A message authentication code M consists of
three efficient algorithms (MKGen,MAC,MVf) where MAC(k,m) maps any key
k generated by key generation algorithm MKGen and any message m to a MAC
(resp. tag) T which is verifiable with the help of MVf(k,m, T ) with binary output.
Completeness demands again that for any valid key k and any message m the
value T ← MAC(k,m) makes MVf(k,m, T ) return 1.

We require that the message authentication code M is unforgeable under
adaptively chosen-message attacks. That is, the adversary is granted oracle
access to MAC(k, ·) and MVf(k, ·, ·) for random key k generated by MKGen and
wins if it, at some point, makes a verification query (m,T ) about a message
m which has not been sent previously to MAC, and such that MVf returns 1
for this message. We denote by Advforge

M (t, qm, qv) a (bound on the) value ε for
which no attacker in time t can win (making at most qm MACs queries and qv
verification queries) with probability more than ε. For a concrete attacker A we
write Advforge

A,M(n) to denote the fact that A attacks the scheme in the above
sense (for security parameter n).

Signatures and Certificates. A signature scheme S = (SKGen,Sig,SVf) con-
sists of efficient algorithms for creating key pairs (sk, pk), signing messages
s ← Sig(sk,m), and verifying signatures, d ← SVf(pk,m, s) with d ∈ {0, 1}.
It must be that for signatures created under valid key pairs SVf always returns 1
(correctness). Unforgeability says that no algorithm should be able to forge the
signer’s signature. That is, a signature scheme S = (SKGen,Sig,SVf) is (t, qs, ε)-
unforgeable if for any algorithm A running in time t the probability that A out-
puts a signature to a fresh message under a public key is Advforge

S (t, qs) (which
should be negligible small) while A has access (at most qs times) to a singing
oracle. As before, for a concrete attacker A we write Advforge

A,S (n) to denote the
fact that A attacks the scheme in the above sense (for security parameter n).

We also assume a certification authority CA, modeled like the signature
scheme through algorithms CA = (CKGen,Certify,CVf), but where we call the
“signing” algorithm Certify. This is in order to indicate that certification may
be done by other means than signatures. We assume that the keys (skCA, pkCA)
of the CA are generated at the outset and that pkCA is distributed securely to
all parties (including the adversary). We also often assume that the certified
data is part of the certificate. We define unforgeability for a certification scheme
CA analogously to signatures, and denote the advantage bound of outputting a
certificate of a new value in time t after seeing qc certificates by Advforge

CA (t, qc).
We assume that the certification authority only issues unique certificates in the
sense that for distinct parties the certificates are also distinct; we besides assume
that the authority checks whether the keys are well-formed group elements. For
a concrete attacker A we again write Advforge

A,CA(n) to denote the fact that A
attacks the scheme in the above sense (for security parameter n).

Second Preimage Resistance. We say that the compression function Compr is
(t, ε)-second preimage resistant if the probability AdvSecPre

Compr(t) of finding to a
random ephemeral public key epkT another key epk∗

T with the same compressed
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value is bounded by ε. For a concrete attacker A we again write AdvSecPre
Compr(t) to

denote the fact that A finds a second preimage in the above sense (for security
parameter n).

Gap Diffie-Hellman Problem. We need the following gap Diffie-Hellman problem
[4]. For a group G generated by g let DH(X,Y ) be the Diffie-Hellman value Xy

for y = logg Y (with g being an implicit parameter for the function). Then the
gap Diffie-Hellman assumption says that solving the computational DH prob-
lem for (ga, gb), i.e., computing DH(ga, gb) given only the random elements
(ga, gb) and G, g, is still hard, even when one has access to a decisional ora-
cle DDH(X,Y,Z) which returns 1 iff DH(X,Y ) = Z, and 0 otherwise. We say
that the GDH problem is (t, qDDH, ε)-hard if no algorithm can in time t compute
the DH value with probability larger than ε, if making at most qDDH queries.
We let AdvGDH

G (t, qDDH) denote (a bound on) the value ε for which the GDH
problem is (t, qDDH , ε)-hard. For a concrete attacker A we write AdvGDH

A,G (n)
to denote the fact that A attacks the problem in the above sense (for security
parameter n).

References

1. Bundesamt für Sicherheit in der Informationstechnik (BSI): Advanced Security
Mechanism for Machine Readable Travel Documents – Extended Access Con-
trol (EAC), Password Authenticated Connection Establishment (PACE), and
Restricted Identification (RI). BSI-TR-03110, Version 2.0 (2008)

2. Bundesamt für Sicherheit in der Informationstechnik (BSI): Technical Guideline
TR-03110-2: Advanced Security Mechanisms for Machine Readable Travel Docu-
ments and eIDAS Token, Part 2, Protocols for electronic IDentification, Authenti-
cation and trust Services (eIDAS). BSI-TR-03110, Version 2.20 (2015)

3. Bundesamt für Sicherheit in der Informationstechnik (BSI): Technical Guideline
TR-03110-3: Advanced Security Mechanisms for Machine Readable Travel Docu-
ments and eIDAS Token, Part 3, Common Specifications. BSI-TR-03110, Version
2.20 (2015)

4. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In: Boyd,
C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg
(2001). doi:10.1007/3-540-45682-1 30

5. Morgner, F.: Transaktionsabsicherung mit der Online-Ausweisfunktion. Kryp-
tographische Bindung von Transaktionsdaten an den Personalausweis. Presenta-
tion, CeBit 2014, March 2014

6. Bastian, P.: Physical Access Control Systems Using Asymmetric Cryptography,
Master-Arbeit, Humboldt-Universität zu Berlin (2015)

7. Bellare, M., Anand Desai, E., Jokipii, P.R.: A concrete security treatment of sym-
metric encryption. In: FOCS, pp. 394–403. IEEE (1997)

8. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994). doi:10.1007/3-540-48329-2 21
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12. Bender, J., Fischlin, M., Kügler, D.: The PACE|CA protocol for machine readable
travel documents. In: Bloem, R., Lipp, P. (eds.) INTRUST 2013. LNCS, vol. 8292,
pp. 17–35. Springer, Heidelberg (2013). doi:10.1007/978-3-319-03491-1 2

13. Brzuska, C.: On the Foundations of Key Exchange. Dissertation, Technische Uni-
versität Darmstadt (2013). http://tuprints.ulb.tu-darmstadt.de/id/eprint/3414

14. Brzuska, C., Fischlin, M., Smart, N.P., Warinschi, B., Williams, S.C.: Less is more:
relaxed yet composable security notions for key exchange. Int. J. Inf. Sec. 12(4),
267–297 (2013)

15. Coron, J.-S., Gouget, A., Icart, T., Paillier, P.: Supplemental access control (PACE
v2): security analysis of PACE integrated mapping. In: Naccache, D. (ed.) Cryptog-
raphy and Security: From Theory to Applications. LNCS, vol. 6805, pp. 207–232.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-28368-0 15
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1 Introduction

In today’s networked world, it is becoming more and more expensive when it comes to
configuring and updating software to large number of remote sensors and smart
devices. To alleviate the cost and scalability issues, operators and vendors perform
these operations remotely, commonly known as remote device management. While
remote configurations updates are very common and secure networking technologies
are available, normally it happens via a remote server in which each device requires to
connect the server. This process becomes bandwidth inefficient (n unicast connections)
and time consuming when the configuration update of a group of devices involves
transferring a large amount of data. On the contrary, if these updates can be performed
via a secure group communication mechanism whereby the network entity can mul-
ticast or broadcast the messages to a group of devices, the process becomes more
efficient and saves a great deal of time and network resources.

IEEE Std 802.21™-2008 [1] defines a media independent framework, services and
signaling protocol that are standardized in IEEE while the transport of the signaling
protocol over Internet Protocol (IP) is standardized by the Internet Engineering Task
Force (IETF). The standard [1] addresses the handover optimization use case whereby
the user experience of ongoing application flows can be improved significantly for
mobile nodes (MNs) that are moving from one link layer access technology to another
irrespective of whether the access network is managed by the same or different network
operators. The framework provides a signaling protocol that can be transported natively
over the link layer or over Internet Protocol (IP) using underlying unicast and multicast
mechanisms. In subsequent years of Standards amendment process, IEEE 802.21
Working Group addressed other use cases and defined signaling protocol and services
security along with a group management mechanism in [2, 3]. In particular, Standards
published in [3] targeted the use case where a large number of groups of devices are
required to be managed from a group manager that resides in an entity in the network.
Therefore [3] is relevant to our discussion in which a network entity can multicast a
message to a group of nodes (or devices) using IEEE 802.21 media independent
protocol interface, and secure group key distribution mechanism to cryptographically
protect these multicast messages. The amendment [3] not only adds the secure group
communication mechanism but also allows network nodes to communicate handover
messages and to perform other management operations such as failover, failback, and
configuration updates to a group of devices that are part of the network. The stan-
dardized approach relies on Logical Key Hierarchy (LKH) based key distribution
mechanism [4–6] and uses “Complete Subtree” to optimize the number of encryption
and decryption.

In this paper, we first introduce IEEE Std 802.21d™-2015 [3] defined group key
distribution protocol and then discuss how to use the complete subtree method to
optimize the performance of group communication. Subsequently, we introduce
specific methods to handle the issues in group key distribution for IEEE 802.21
applications. In addition, we also analyze security of the group key distribution pro-
tocol as specified in IEEE Std 802.21d-2015 [3].
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The paper is organized as follows: Sect. 2 discusses the related work. Section 3
presents the preliminaries of group key distribution approach while Sect. 4 describes
the Group Key Block (GKB). Section 5 describes the group key distribution scheme
and Sect. 6 provides a formal model-based security analysis. Section 7 captures our
initial prototype implementation results and Sect. 8 concludes the paper.

2 Related Work and Our Approach

Secure multicast-based communication has been an important research topic in cryp-
tography and in communication security. Most of the research discusses theoretical
boundaries on the message length (i.e., number of encryptions), storage (i.e., number of
keys each member holds), and computations for each receiver [7]. Some of the research
also discusses trace-and-revoke algorithm with an upper bound of coalitions, which is
outside the scope of this paper.

In practical applications, the secure group communications have been handled
through initial pairwise group key distribution to group members [8, 9]. The schemes in
[8] allow group key distribution for rekeying. On the other hand, whenever new
members join the group or some current members leave the group, the schemes defined
in [9] have to use pairwise secure channels for key distribution.

Logical Key Hierarchy (LKH) has been introduced in [4–6] for group key update,
assuming each group member has been provisioned with one fixed individual key or
the individual keys are established using other methods. The LKH is represented as a
tree while the individual keys are represented as leaves of the tree. The nodes above the
leaf level represent the keys shared by different members represented as leaves which
have a path to the node. Every time a member joins or leaves the group, the tree is
updated.

The group key distribution scheme introduced in this paper uses a similar tree to
represent the fixed keys that each group member holds. The group key is encrypted by
a set of keys represented in the tree such that each member in the group owns a key to
decrypt it, while the nodes not in the group do not have the proper decryption keys.
Each time when a group member joins or leaves, a new group key is distributed using
the proper keys for the new group. Intuitively, in a given group, if more group members
shared the same key that is, their paths meet at the same node fewer encryptions are
needed. In order to gain such efficiency, the scheme in this paper uses ‘Complete
Subtree’. The ‘Complete Subtree’ method is introduced in [10] to optimize the number
of encryptions and decryptions for each group key distribution. These methods have
not been adopted in the practical applications to the best of our knowledge.

In particular, the method in this paper uses a single key tree to distribute keys for
different groups. For a given group, our method generally requires fewer key
encryptions than LKH for the key distributor, which also means lower transmission
burden. Let Lð[ 1Þ denote the number of leaf nodes of the key tree, Nð\LÞ denote the
number of root nodes of complete subtrees covering all leaf nodes of the members of
the group, and M denote the number of ancestor nodes of the N root nodes. In initial
group key distribution, LKH requires at least L encryptions to distribute the group key
(which is the key corresponding to the root node of the key tree in LKH) and other keys
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to be used for key update. In group key update, LKH requires ðNþMÞ encryptions to
update the group key for all group members excluding revoked members. In contrast,
our method requires N encryptions of the group key for both initial group key distri-
bution and group key update. Therefore, if we assume the same key tree size, our
method always requires less number of encryptions than LKH. Our method allows to
take advantage of complete subtrees when possible. That is, when the group members
represented by the leaf nodes can be grouped to complete subtrees, the number of key
encryptions can be further reduced.

For any group member m, our method requires a single decryption to obtain the
group key, while for LKH, ðH � Hmþ 1Þ decryptions are needed where H represents
the height of the key tree and Hm represents the height of the complete subtree that
covers the leaf node of member m. In the applications where each group member is a
constrained device such as a sensor, our method has significant advantages.

On the other hand, it has not been clear how scalable complete subtree is and no
specific algorithms have been proposed to identify the complete subtrees. The use of a
media independent framework and a signaling protocol, which can be transported
natively over Ethernet or IP using underlying unicast and multicast mechanisms, is
another important aspect that has not been standardized or published earlier to the best
of our knowledge.

While different security notions for group key agreement protocols have been
introduced in [11–14], we define a variant of formal security model called Bresson and
Manulis (BM) model [15] satisfying the similar security requirements. The BM model
cannot be applied directly for our security proof because the group key distribution
protocol specified in [3] does not provide perfect forward secrecy.

3 Preliminaries

In this section, we introduce some basic concepts used in group management and key
distribution. The concepts of key tree and complete subtree are essential for the key
distribution protocol that we discuss in Subsect. 3.1. When a group key is distributed, it
is protected by a key wrapping mechanism. To authenticate the sender, the encrypted
group key is digitally signed. The security notions and definitions of key wrapping and
signatures are introduced in Subsects. 3.2 and 3.3, respectively.

3.1 Key Tree and Complete Subtree Method

In this paper, we assume there are a large set of devices U = {U1, U2,…, Um} in which
each device is provisioned with a set of keys, called device keys, DKi. In the group key
distribution protocol, the key is distributed by a group manager (GM) to a subset of the
devices S = {Ui1, Ui2, …, Uik}.

A key tree is a binary tree with depth n and it has t levels from the root to the leaves.
Therefore, such a key tree has 2n leaf nodes whereby each leaf node is a device and to
represent all the devices {U1, U2, …, Um}, it requires m ≤ 2n. Figure 1 is an example
of depth-3 tree. Each node (e.g., a leaf node, an inner node, or the root node) is coded
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with a binary string called index and a key. Assume the root node is on the top. The
next level nodes have indices 0 and 1 from the left to the right. The corresponding keys
are denoted k0 and k1. The next level nodes have indices 00, 01 as decedents of node 0
while 10 and 11 as decedents of node 1. The corresponding keys are denoted k00, k01,
k10, k11. Nodes in every level are indexed this way until the level t. In the rest of this
paper, we will denote the node with the index and the key (Ii, ki). We simply call each
key as a node key labeled with its index. For the leaf node, we also use the integer
converted from its index as the leaf number which maps to a specific device.

For device Uj, the provisioned device keys consist of all the node keys from the leaf
along the path to the root. In the example depicted in Fig. 1, a device represented by
leaf “000” is provisioned with device keys {k(root), k0, k00, and k000}.

In order to distribute a master group key to the devices in a specific group, the
master group key mgk is protected with a set of keys in such a way that each device in
the group must own a key in its device key set to recover the mgk, while for any device
not in the group, it cannot recover the mgk. For a given group, there must be many
different ways to protect the mgk. For example, in Fig. 1 consider a group represented
by the leaf nodes 000, 001, 010, 011, 101, and 111. Notice that nodes 000 and 001
share the same key k00 and nodes 000, 001, 010, 011 all share the key k0, then
protection with the following key sets all satisfy the condition stated above.

a. k000, k001, k010, k011, k101, k111;
b. k00, k01, k101, k111;
c. k0, k101, k111.

Obviously, key set c is more appealing because it calls the least number of the
protection mechanisms and thus, generated the shortest of the ciphertext for broadcast.
The concept of complete subtree is introduced to optimize the number of calls to the
protection mechanisms. In this paper, the protection mechanisms can be a key wrap-
ping algorithm or an encryption algorithm.

Fig. 1. A depth-3 key tree

Secure Multicast Group Management and Key Distribution 231



A complete (depth-l) subtree in a depth-t tree is a subtree with 2l leaf nodes such
that their indices have common prefix of t-l bits. For the tree in Fig. 1, nodes repre-
sented with indices 000 and 001 form a depth-1 complete subtree at root 00, while
nodes represented with indices 000, 001, 010, and 011 form a depth-2 complete subtree
at root 0. For a subset of the group, if it can form a complete subtree, using the key
represented by the subtree root allows all the members to recover the protected group
key. Therefore, identifying complete subtrees in a given group can optimize the
computation and communication resources in group key distribution for that group.

It shall be noticed that a single leaf is a depth-0 complete subtree. In fact, the
optimization is to find out the non-overlapping maximum complete subtrees, which can
cover the whole group. The set of non-overlapping maximum complete subtrees is
unique for a given group. For example, for the group with the leaf nodes 000, 001, 010,
011, 101, 111, the set of the non-overlapping maximum complete subtrees that covers
all the members is a depth-2 complete subtree and two depth-0 complete subtrees.
Standards published in [3] specifies a complete subtree algorithm to determine such set.

3.2 Key-Wrapping Scheme

After determining which keys to use through the complete subtrees, for the group key
distribution, the key is protected by a key wrapping scheme. Key-wrapping scheme is a
symmetric key encryption scheme for sending a group key. For group key distribution,
IEEE Std 802.21d-2015 [3] supports two deterministic symmetric key schemes
based on the Advanced Encryption Standard (AES), AES-key-wrapping-128 and
AES-ECB-128. Here x RX means that x is an element chosen uniformly at random
in a finite set X.

Definition 1. Key-wrapping KW is a 3-tuple of algorithms KeyGenKW ;ð
Wrap;UnwrapÞ satisfying:
– KeyGenKW: a probabilistic algorithm takes the security parameter j, and returns

K 2 f0; 1gj,
– Wrap: a deterministic algorithm takes K 2 f0; 1gj and D 2 f0; 1gl, and returns

C 2 C where l is a bit-length of key to be wrapped.
– Unwrap: a deterministic algorithm takes K 2 0; 1f gj and C 2 C, and returns

D 2 0; 1f gl [ ?f g;
where 8K  KeyGenKWðjÞ; 8D 2 f0; 1gl: UnwrapðK;WrapðK;DÞÞ¼D.

A basic security requirement for symmetric encryption scheme is the indistin-
guishability against chosen plaintext attack (IND-CPA), and it is well-known that no
deterministic encryption schemes can satisfy the IND-CPA. On the other hand, for
sending a random key, the following weaker security requirement is sufficient.

Definition 2 (Indistinguishability against Random-Plaintext Attack). Let b R 0; 1f g
and W  KeyGenKW jð Þ where j is a security parameter. The RPA-advantage of A
can send queries to oracles WrapW and LRW. When the oracle WrapW receives a
query, WrapW selects D R f0; 1gl; and returns ðD;Wrap W ;Dð ÞÞ. When the oracle
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LRW receives a query, LRW selects D0;D1  R f0; 1gl, and returns ðD0;D1;
Wrap W ;Dbð ÞÞ. The RPA-advantage of A is defined as

Adv
kw:rpa
A;KW jð Þ ¼ Pr AWrapW ;LRw ! 1jb ¼ 1

� �� Pr AWrapW ;LRw ! 1jb ¼ 0
� �

where A is a probabilistic polynomial-time algorithm that sends at most q queries to
WrapW and at most 1 query to LRW .
KW is IND-RPA secure if for all A, Advkw:rpaA;KW jð Þ is negligible.
Random-Plaintext attack is originally defined in [16]. In the original definition in

[16], the adversary is not allowed to query the WrapW . According to a similar dis-
cussion in [16], we can show that an ECB (electronic code book) mode based on a
random permutation with block length n is IND-RPA secure per Definition 2.

3.3 Signature Scheme

In order to authenticate a sender, IEEE Std 802.21d-2015 [3] supports one digital
signature scheme, ECDSA (Elliptic Curve Digital Signature Algorithm). Here x R X
means that x is an element chosen uniformly at random in a finite set X.

Definition 3. Signature R is a 3-tuple of algorithms KeyGenKW ;Sign;Verifð Þ
satisfying:

– KeyGenR: a probabilistic algorithm that takes the security parameter j, and
returns a pair of public key and secret key ðpk; skÞ,

– Sign: a probabilistic algorithm takes sk and a message m 2 f0; 1g�, and returns r,
– Verif: a deterministic algorithm takes pk, m, and σ, and returns 0 or 1,

where 8 pk; skð Þ  KeyGenRðjÞ, 8m 2 f0; 1g�: Verif pk;m;Signðsk;mÞð Þ ¼ 1:

Definition 4 (Existential Unforgeability against Chosen Message Attacks). Let R ¼
ðKeyGenR;Sign;VerifÞ be a digital signature scheme, and pk; skð Þ  KeyGenR jð Þ.
When a signing oracle Signsk receives a query m 2 0; 1f g�, it returns r ¼ Signðsk;mÞ.
The advantage of A is defined as

Adveuf�cma
A;R jð Þ ¼ Pr½ASignsk pkð Þ ! m�; r�ð Þ : Verif pk;m�; r�ð Þ ¼ 1^m�62 M�

whereM is the set of message queried to Signsk and A is a probabilistic polynomial-
time algorithm who sends at most qS queries to Signsk.

R is EUF-CMA secure if for all A, Adveuf�cma
A;R jð Þ is negligible.
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4 Group Key Block

Group Key Block (GKB) is a data format defined in IEEE Std 802.21d-2015 [3] for
encoding a group key and other data associated with the group key. The following
attributes are contained in a GKB:

• GroupKeyData: a list of octet strings, each of them contains the group key
encrypted by using a distinct node key specified in ‘CompleteSubtree’. Either
AES_Key_Wrapping-128 or AES_ECB-128 is used for encrypting the group key.

• GroupIdentifier: an identifier of a group.
• CompleteSubtree: a list of node indices corresponding to root nodes of specific

subtrees of the key management tree. See Sect. 4.1 for more details.
• SubgroupRange: a range of valid leaf identifiers in the ‘CompleteSubtree’.

A ‘SubgroupRange’ is used when a GKB is fragmented into multiple smaller pieces
(see Sect. 4.2).

• VerifyGroupCode: a pre-known octet string encrypted by the group key. A ‘Ver-
ifyGroupCode’ is used for checking whether the decrypted group key is the same as
the one generated by the GM. ‘VerifyGroupCode’ may be used when
AES_ECB-128 is used for group key encryption (Note that AES_Key_Wrapping
has a built-in key verification mechanism).

Digital signature is added to each message carrying a GKB using the signature
scheme described in Sect. 3.3.

4.1 Encoding Complete Subtrees

IEEE Std 802.21d-2015 [3] defines three methods for encoding ‘CompleteSubtree’. In
this section, the default encoding method is explained. In the default encoding method,
a list of the node indices is contained in the ‘CompleteSubtree’ where each node index
in the key management tree represents the root node of a distinct subtree covering only
leaf nodes corresponding to members of the group. A node index consists of a depth in
the key management tree and a subindex that is unique within the depth. In ‘Group-
KeyData’, i-th string contains the group key encrypted by the node key corresponding
to the i-th node index in the ‘CompleteSubtree’.

4.2 GKB Fragmentation

As described in Sect. 4.1, the size of CompleteSubtree in Method 1 is proportional to
the number of subtrees encoded. Also, when a GKB is multicast and the number of
recipient is large (e.g., thousands or more), it is difficult to reliably deliver the GKB to
all recipients.

IEEE Std 802.21d-2015 [3] addresses this issue by defining a special fragmentation
mechanism for fragmenting GKB. Unlike other general-purpose fragmentation mech-
anisms (e.g., IP fragmentation), a recipient of GKB does not have to receive all the
fragments of a single complete GKB and reassemble into the original GKB data.
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The recipient can instead determine whether it is a member of the group and can obtain
the group key by receiving one GKB fragment that contains in ‘SubgroupRange’
attribute. Suppose a single complete GKB is fragmented into five GKB fragments with
‘SubgroupRange’ of each fragment set to (0,99), (100,199), (200,299), (300,399), and
(400,499). A recipient whose leaf identifier is 250, when receiving the GKB fragment
with ‘SubgroupRange (200,299)’, can determine whether it is a member of the
group. Thus it can obtain the group key if it is a group member and can simply ignore
other four GKB fragments.

5 Group Key Distribution Protocol

IEEE Std 802.21d-2015 [3] defines an architecture and a group key distribution pro-
tocol that a group manager (GM) can use to communicate to group members via a
multicast transport. The group key distribution protocol uses the ‘Complete Subtree’
method with a deterministic symmetric key encryption scheme and a digital signature
scheme. In this section, we introduce a simplified version of the group key distribution
protocol using an option that is described in [3]. In this section we refer a group
member to a user.

Provisioning
IEEE Std 802.21d-2015 [3] assumes that a group manager and each user has device
keys, which are also called long-term keys. The secure provisioning method is not
defined in the standard.

1. Let 2n be the number of (potential) users managed by the group manager GM, and let
U be a set of all users. GM generates a key tree T with depth n, and assigns Ii; kið Þ to
each node in T where Ii is a node index represented as a binary string of length
between 1 to n and ki  KeyGenKWðjÞ is a node key where i corresponding to the
node index Ii. For digital signature, GM generates ðpk; skÞ  KeyGenRðjÞ.

2. For all user Ui in U, GM assigns each user Ui to a leaf node in T . Let PathUi be a set
of node indices of nodes from the leaf node which is assigned to Ui along the path
to the root node. GM assigns DKi ¼ Ij; kj

� �� �
Ij2PathUi

, to Ui as the long-term keys.

3. GM securely sends pk and DKi to each of Ui.

Procedure of GM

1. Decide a set of group members, S; which is a target for group key distribution and a
group identifier GI which identifies a group using the distributed group key.

2. Pick a current sequence number SN for GI.
3. Decide a destination group DG for the group key distribution message. GM is

required to send the group key distribution message to all of its members S: For
simplicity, we assume that DG includes S. A broadcast group BG including all users
may be used as DG.

4. Select a master group key mgk 2 0; 1f gl uniformly at random and select a security
association identifier SAID which is an identifier of a group session key gsk ¼
KDFðmgkÞ where KDF is a key derivation function which is publicly shared.
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5. Compute a list of indices CS from UnS and T by ‘Complete Subtree’ method.
6. For all Ii 2 CS, compute ci ¼Wrapðki;mgkÞ where ðIi; kiÞ is a node of T , and adds

ci to a group key data GKD ¼ GKDjjci.
7. Read a sequence number sq for the destination group DG.
8. Compute r ¼ Signðsk;GIjjSNjjCSjjGKDjjSAIDjjsqÞ.
9. Send ðGIjjSNjjCSjjGKDjjSAIDjjsqjjrÞ to DG.

Procedure of receiver Ui

1. Receive ðGIjjSNjjCSjjGKDjjSAIDjjsqjjrÞ.
2. Check sq whether the received message is not a replay attack. If the message with

sq was already accepted, Ui stops the subsequent procedure.
3. If Verifðpk;GIjjSNjjCSjjGKDjjSAIDjjsq;rÞ 6¼ 1, Ui stops the subsequent

procedure.
4. If Ui has ðIj; kjÞ 2 DKi such that Ij 2 CS,

(a) compute mgk ¼ Unwrapðk; ckÞ where ck 2 GKD is the ciphertext corre-
sponding with Ij,
(b) compute the group session key gsk ¼ KDFðmgkÞ, and record ðGI; SN;
SAID; gskÞ.

6 Security Analysis

6.1 Security Requirements

We define a formal security model based on the BM model [15]. Our security model
modifies the definition of freshness from BM model by removing perfect forward
secrecy. This is due to the reason that for IEEE 802.21 applications, reducing the
number of multicast communication traffic is an important requirement.

Attack Model. Let an adversary A and the users (including the group manager GM)
be probabilistic polynomial-time algorithms. In order to capture multiple sessions, each
user U is modeled by an oracle Ps

U for s 2 N. Every session is identified by a unique,
publicly-known sidsU . Let pid

s
U be a partner id that contains the identities of partici-

pating users (including U), and GðPs
Uj
Þ ¼ fPt

Uj
where Uj 2 pidsUi

and sidsUi
¼ sidtUj

g.
Ps

Ui
and Pt

Uj
are called partner if Pt

Uj
2 GðPs

Ui
Þ and Ps

Ui
2 GðPt

Uj
Þ. A learns each

message to be sent, and it can prevent sending or modifying the message. We assume
that receivers always receive the original message sent by the sender, even if A blocks
or modifies it.
A issues following queries.

– InitializeðSÞ: For each user in the set S, a new oracle Ps
U is initialized and the

resulting session id sid is given to A.
– Invokeðsid;S0Þ: It assumes that sid is a valid session id and S0 is a set of initialized

oracles (S0 � S where S led to the construction of sid). In response, for each
U 2 S0 , the oracle Ps

U turns into the processing stage. If Ps
U is an initiator of the

protocol, Ps
U outputs the first protocol message.
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– SendðPs
U ;mÞ: The message m is sent to Ps

U . In response, A receives a processing
result of m based on the protocol. The response may be empty, if m is incorrect.

– CorruptðUÞ: In response, A obtains the long-term key of U, LLU .
– AddUserðU;KÞ: In response, a new user U with a long-term key is added to U

where Λ contains the registration information and the long-term key. If the protocol
prohibits U from selecting the long-term key, the long-term key in Λ is empty, and
in response A additionally receives U’s long-term key.

– RevealStateðPs
UÞ: In response, A obtains ephemeral secrets stored in statesU .

– RevealKeyðPs
UÞ: In response, A obtains the group session key ksU (only if Ps

U has
already accepted).

We say U is corrupted if LLU is known to A, either via CorruptðUÞ or
AddUserðU;KÞ; if no such queries have been asked then U is honest.

Definition 5. (Oracle Freshness) In a session sid of P, an oracle Ps
U has accepted is

fresh if all of the following holds:
1. no U

0 2 pidsU has been added by A via corresponding AddUser query,
2. no U

0 2 pidsU has been corrupted via corresponding Corrupt query,
3. neither Ps

U nor any of its partners is asked for a query RevealState until Ps
U and

its partners accept,
4. neither Ps

U nor any of its partners is asked for a query RevealKey after having
accepted

In the original definition in [2], the condition 2. is “no U
0 2 pidsU is asked for a

query Corrupt prior to a query of the form SendðPt
Uj
;mÞ with Uj 2 pidsU until Ps

U and

its partners accept”. It means that Ps
U is fresh even if U

0 2 pidsU who is a participant of
a future session is corrupted, i.e., it represents perfect forward secrecy.

In order to provide a formal security proof of our protocol without perfect forward
secrecy, we modify condition 2 for the weaken A as descried in Definition 5.

Definition 6 (Authenticated Key Exchange (AKE) security). Let P be a group key
distribution protocol. Let b R 0; 1f g and AAKE be an adversary against AKE security
of P. The attack game Gameake�bAAKE ;P is defined as follows.
1. AAKE interacts with each oracle using the queries defined in Sect. 6.1.
2. AAKE sends Test query to Ps

U in arbitrary timing. Ps
U returns ksU if b ¼ 0, else U

returns a key kr chosen from the key space uniformly at random.
3. AAKE continues to interact with each oracles using the queries defined in

Sect. 6.1.
4. AAKE outputs b

0 2 f0; 1g and stops.

Let Fr be an event that Ps
U who receives Test query is still Fresh when AAKE has

been stopped. The advantage of AAKE is defined as follows:
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Advake�bAAKE ;P jð Þ ¼ Pr Gameake�bAAKE ;P jð Þ ¼ b ^ Fr
h i

� 1
2

����
����:

We say that a protocol P is AKE secure if for all probabilistic polynomial-time
adversary AAKE; Adv

ake�b
AAKE ;P jð Þ is negligible.

6.2 Security Proof

Theorem 1. If Σ satisfies EUF-CMA security and KW satisfies IND-RPA security, the
protocol P described in Sect. 5 satisfies AKE-security in Definition 6, and

Advgk�bAAKE ;P
jð Þ� 2N � 1ð Þ � ns � n�g

2
� Advkw:rpaA;KW jð ÞþAdveuf�cmaA;R jð Þ

where N is the maximum number of users, n�g is the number of ciphertexts containing
within GKD inPs

U� who is the receiver of Test query, and ns is the maximum number of
sessions.

Proof of Theorem 1. The security proof is given by the game hopping technique [17].
Let Wi be an event that b ¼ b0 and Ps

U who receives Test query is fresh at the end of
Game i.

Game 0: The original attack game of AKE security. Due to Definition 6,

Adv
gk�b
AAKE ;P

jð Þ ¼ Pr W0½ � � 1=2j j: ð1Þ

Game 1: Let LGM be a list of messages issued by GM. In Game 1, each Ps
U ignores

Send ðPs
U ;mÞ if m 62 LGM; and other operations are the same as Game 0.

In the protocol P, the protocol message without the valid signature of GM is
dropped by the receivers. The behavior of Ps

U may be different between Game 0 and
Game 1, if and only if AAKE succeeds the existential forgery of R. We assume R is
EUF-CMA secure, then

Pr W0½ � � Pr W1½ �j j �Adveuf�cmaA;R jð Þ: ð2Þ

Game 2: Let LU be a list of messages received by the user U. In Game 2, Ps
U ignores

Send ðPs
U ;mÞ if m 2 LU , and other operations are the same as Game 1.

The message of P contains the sequence number sq, and each receiver does not
accept the same sequence number. The number of Send queries is at most polynomial
times in j since A is a polynomial-time algorithm. If the space of sq is exponentially
large in j, the behaviors of Ps

U in Game 1 and Game 2 are the same, then
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Pr S2½ � ¼ Pr S1½ �: ð3Þ

Game 3: GM tries to guess a session s� that AAKE sends Test query and I�; k�ð Þ used in
s�: If it finds that the guess is failed, Game 3 is aborted, and GM decides b

0
which is the

output of Game 3 instead of AAKE. Game 3 is the same as Game 2 excluding following
operations;

– After the Provisioning phase, GM randomly selects a session s� 2 1; . . .; nsf g and a
node in the key management tree T which has N leaf nodes1, for guessing the
session s� and the node key k� used in s�. Let Hit be an event that GM succeeds the
guess2.

– When it finds Hit does not occur, Game 3 is aborted and GM decides b
0  R 0; 1f g

instead of AAKE:

When Hit occurs, Game 3 and Game 2 are the same. When Hit does not occur, W3

occurs at random since GM selects b
0  R 0; 1f g.

Pr W3½ � ¼ Pr W3 ^ Hit½ � þ Pr W3 ^ :Hit½ �
¼ Pr Hit½ � Pr W3jHit½ � þ Pr :Hit½ �Pr½W3j:Hit�
� 1

2N � 1ð Þns Pr W2½ � þ 1
2
� 1
2 2N � 1ð Þns

ð4Þ

where N is the maximum number of users, ns is the maximum number of the sessions.

Game 4: In order to estimate j Pr W3½ � � 1=2|, we consider the following hybrid game.
In order to replace the reply of Test query with C where D0;D1;Cð Þ  LRW , a

node key k� is replaced by W using an WrapW oracle. Game 4 is the same as Game 3
excluding the following operations;

– For a session s excluding s�; when the group manager Ps
GM needs a ciphertext with

k� for generating a group key data GKD, Ps
GM accesses WrapW oracle and it

receives ðD;CÞ. D is regarded as a master group key mgk distributed in s, GKD is
generated by C and D with other node keys excluding k� in T, e.g.,

Wrap ki1 ;Dð Þ; . . .;Wrap kik�1 ;D
	 


;C;Wrap kik�1 ;D
	 


; . . .;Wrap kknk ;D
	 


where nk

is the number of ciphertext contained in GKD.
– For the session s�, the group manager Ps�

GM sends a query to LRW and receives
D0;D1;C�ð Þ: D0 is regarded as a master group key mgk distributed in s�, and D1 is
regarded as a random key. Let GKD� be a group key data for s�. GKD� is generated
by C�, D0, and D1 with other node keys excluding k� in T, e.g.,

1 The complete binary tree T with N leaf nodes has (2N-1) nodes.
2 If the guess is correct, i.e., Hit occurs, no U� assigned ðI�; dk�Þ is corrupted at the end of Game 3
since P�U who receives Test query must be fresh.
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Wrap ki1 ;D0ð Þ; . . .;Wrap kij�1 ;D0

	 

;C�;Wrap kijþ 1

;D1

	 

; . . .;Wrap kin�g ;D1

	 


where n�g is the number of ciphertext contained in GKD�

– When Ps�
Uj

receives Test query, it returns a group session key KDFðD0Þ.
Let Hj be a hybrid game that GKD� ¼Wrap ki1 ;D0ð Þ; . . .;Wrap kij�1 ;D0

� �
,

Wrap kij ;D0
� �

;Wrap kijþ 1 ;D1
� �

; . . .;Wrap ki
n�g
;D1

� �
. Let br be the bit of IND-RPA

game. If br ¼ 0, Game 4 is the same as Hjþ 1 since C� ¼ Wrap W ;D0ð Þ. If br ¼ 1,
Game 4 is the same as Hj since C� ¼Wrap W ;D1ð Þ. Let Ei be an event that occurs if

AAKE outputs 1 in Hi, then Pr Ei�1½ � � Pr Ei½ �j j �Advkw:rpaA;KW jð Þ holds. By the hybrid
argument, we have

Pr E0½ � � Pr En�g

h i��� ��� ¼Xng�
i¼1
j Pr Ei�1½ � � Pr½Ei�j � n�g � Advkw:rpaA;KW jð Þ:

Accordingly, H0 is the same as Game 3 when b ¼ 1, and Hn�g is the same as Game 3
when b ¼ 0;

Pr W3½ � � 1=2 ¼ Pr AAKE ! 1 in Game 3 ^ b ¼ 1½ � þ Pr AAKE ! 0 in Game 3 ^ b ¼ 0½ � � 1=2j j
¼ 1

2
Pr AAKE ! 1 in Game 3jb ¼ 1½ � þ 1� Pr AAKE ! 1 in Game 3jb ¼ 0½ �ð Þ � 1j j

¼ 1
2
Pr E0½ � � Pr En�g

h i��� ���:
ð5Þ

According to Eqs. (1), (2), (3), (4), and (5),

Advgk�bAAKE ;P
jð Þ ¼ Pr W0½ � � 1

2

����
����

¼ Pr W1½ � þ Pr W1½ � � Pr W0½ �j j � 1
2

����
����� Pr W1½ � þAdveuf�cmaA;R jð Þ � 1

2

����
����

¼ Pr W2½ � þAdveuf�cmaA;R jð Þ � 1
2

����
����

¼ 2N � 1ð Þ � ns Pr W3½ � � 1
2

� �
þAdveuf�cmaA;R jð Þ

����
����

� 2N � 1ð Þ � ns � n�g
2

� Advkw:rpaA;KW jð ÞþAdveuf�cmaA;R jð Þ:
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7 Prototyping

We implemented the group key distribution protocol as described in Sect. 5 and
measured the processing time of group manager (GM) and receivers. In real systems,
the receivers may have memory constraints. For such system, the code footprint size is
also important. Therefore, we also measure the footprint size of the receivers. Table 1
shows the benchmark of the computing machine used for GM and receivers3.

We considered the number of receivers are 1024, with threshold of fragmentation as
32. Table 2 shows processing time that GM takes to generate the protocol messages
and the receiver takes to process them. During processing cycle, signing time and
verification time of ECDSA are dominant, when ECDSA is attached to each messages.
Table 3 shows the size of the protocol messages. The processing time and message size
depend on the selection of group members.

In a best case scenario, GroupKeyData contains only one ciphertext and hence GM
sends only one message. In worst case scenario, GM sends 512 ciphertexts, where GM
issues 16 messages with GroupKeyData which contains 32 ciphertexts (given the
threshold of fragmentation is 32). In our implementation, when the receiver receives a
message, it first verifies an ECDSA signature in the message. Therefore, in worst case
scenario, receiver verifies 16 messages and hence the processing time increases. On the
decryption side though the receiver needs to decrypt only one message that carries the
Complete Subtree covering the receiver in order to extract the group key, and other 15
messages can be ignored after verification. So even in worst case, there is a significant
advantage in terms of overall processing time.

Table 1. Computing machine specification

GM Receivers

CPU Core i5-4310 M, 2.7 GHz ARM11176JZF-S, 700 MHz
RAM 4 GB 512 MB
OS Ubuntu 14.04.4 Raspbian

Table 2. Processing times

GM Receiver
Average [msec] Max [msec] Average [msec] Max [msec]

Best case 4.71 4.74 265.15 303.59
Worst case 83.80 85.01 4253.91 4276.05

3 Disclaimer: Any mention of commercial products or organizations is for informational purposes
only; it is not intended to imply recommendation or endorsement by the National Institute of
Standards and Technology (NIST), nor is it intended to imply that the products identified are
necessarily the best available for the purpose.
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Table 4 shows foot print size of the receivers.

We measured the memory usage occupied on the virtual memory space. The text
segment corresponds to the code size. The data and bss segments include pre-defined
variables (data has initialized data, while bss is uninitialized). The stack area is used for
storing temporal variables on the program that is executed. The heap area is managed
by malloc()-like functions. Each size of text, data, and bss segments are fixed in every
program execution. These values are measured by the size of the command. In this
early prototype implementation, we focus on reducing the heap size for memory
management simplification. The maximum sizes of stack or heap areas are measured
by valgrindTM [18].

8 Conclusion

We introduced a secure multicast-based group key management and key distribution
protocol that is recently standardized in IEEE 802.21. Although it is based on the
concept of logical key hierarchy, a method has been specified on how the ‘Complete
Subtree’ can be used to optimize the number of encryptions for each group key dis-
tribution. A data format called ‘Group Key Block’ has been used for encoding the
‘Complete Subtree’ and other data associated with it. To support the practical appli-
cations, the standard assumes an architecture whereby a group manager is responsible
for distributing the group key. The group key distribution protocol uses a deterministic
symmetric key wrapping scheme and a digital signature scheme. A formal security
analysis and corresponding proof have been performed based on Bresson and Manulis
model. While additional work is required, an early prototype implementation results
with 1024 nodes and tree depth of seven (7) show that the scheme is realizable in
memory constrained devices. It provides an easy way to securely add and remove the
group members.

Table 3. Protocol message size

Message size[bytes]

Best case 272
Worst case 18 336

Table 4. Footprint size of Receivers

Size [Byte]

heap 55 264
stack 12 200
text 172 257
data 1 268
bss 119 900
Total 360 889
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Abstract. The unavoidable transition to post-quantum cryptography
requires dependable quantum-safe digital signature schemes. Hash-based
signatures are well-understood and promising candidates, and the object
of current standardization efforts. In the scope of this standardization
process, the most commonly raised concern is statefulness, due to the
use of one-time signature schemes. While the theory of hash-based sig-
natures is mature, a discussion of the system security issues arising from
the concrete management of their state has been lacking. In this paper,
we analyze state management in N -time hash-based signature schemes,
considering both security and performance, and categorize the security
issues that can occur due to state synchronization failures. We describe
a state reservation and nonvolatile storage, and show that it can be
naturally realized in a hierarchical signature scheme. To protect against
unintentional copying of the private key state, we consider a hybrid state-
less/stateful scheme, which provides a graceful security degradation in
the face of unintentional copying, at the cost of increased signature size.
Compared to a completely stateless scheme, the hybrid approach realizes
the essential benefits, with smaller signatures and faster signing.

Keywords: Post-quantum cryptography · Hash-based signatures ·
Statefulness · System integration

1 Introduction

Security protocols routinely rely on digital signatures for authentication. Com-
mon examples are code signing for software updates, server authentication for
TLS, and S/MIME for secure email. The most common cryptographic schemes
for digital signatures (RSA [26], DSA [8], and ECDSA [17]) are all susceptible
to quantum computer cryptanalysis using Shor’s algorithm [28]. While the con-
crete realization of quantum computers still is an object of ongoing research,
substantial efforts in this area are ongoing [23,27].

Independently of the actual realization of quantum computing, governmen-
tal and standardization organizations are encouraging the transition to post-
quantum cryptography, i.e. cryptographic schemes not known to be vulnerable
c© Springer International Publishing AG 2016
L. Chen et al. (Eds.): SSR 2016, LNCS 10074, pp. 244–260, 2016.
DOI: 10.1007/978-3-319-49100-4 11
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Table 1. Signature sizes (in KB) of hash-based signature schemes (128-bit security
level, 260 messages).

Stateful Stateless

LMS XMSSMT SPHINCS

Signature size (KB) 5 15 28 41

to quantum computer attacks. Notably, the NSA recently announced its tran-
sition from the Suite B set of cryptographic algorithms towards post-quantum
cryptography [16]. Standardization efforts are also underway, for instance by
NIST [6] and ETSI [9]. As more stakeholders are required to heed official recom-
mendations, the deployment of post-quantum cryptography becomes inevitable.

Fortunately, post-quantum cryptographic schemes exist, and some are
already well-understood. In particular, hash-based signatures have been thor-
oughly analyzed [2,3,7,13,19,22] and are currently undergoing standardiza-
tion [14,21].

Motivation. One major obstacle to the widespread use of hash-based signatures
is the fact that the signing algorithm is stateful. That is, with each message
being signed, the private key must change. There are stateless hash-based sig-
nature schemes [1,12] that address state concerns, but their signature sizes are
significantly higher. Table 1 shows the signature size of two stateful schemes
(LMS [21], XMSSMT [15]) and stateless SPHINCS [1] for parameters that lead
to 260 signed messages and a security level of 128-bits. For LMS we are consider-
ing LMS SHA256 N32 H10 with LMOTS SHA256 N32 W16 with a supertree
height of l = 6. For XMSS, we use XMSSMT SHA2-256 M32 W16 H60 D6
and XMSSMT SHA2-256 M32 W16 H60 D12 with n = 32 respectively. For
SPHINCS, the parameters h = 60, d = 12, w = 16 and n = 32 are considered. It
is clear that stateless SPHINCS has significantly larger signatures, which could
make it impractical in some scenarios. The public key size of the stateful schemes
are in the range of 70 B. The SPHINCS public key is in the 1000 B range.

In a stateful scheme, when a private key is long-lived, it must be stored in
nonvolatile memory, and the version of the private key in memory must con-
tinuously be synchronized with that in volatile memory (e.g. Random Access
Memory, or RAM). State synchronization is especially important because it is
critical to the security of the system; if two distinct messages are signed with
the same private key, then an attacker can use those signatures to construct a
forgery. Thus, after signing one message, the signer must update the state so the
same key is not reused. Key synchronization also requires a time delay between
signatures that can lead to a significant performance penalty.

In this paper, we consider the design of N -time signature schemes and the
system engineering considerations needed to ensure that they avoid the problems
outlined above. To the best of our knowledge, no work addressing state man-
agement strategies for stateful hash-based signatures exists so far. We describe
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a simple state management scheme for hierarchical signature schemes that min-
imizes synchronization delay and reduces the chance of synchronization failure.
It works by storing only the root (or topmost) level(s) of the signature hierar-
chy in nonvolatile storage, and having the remaining levels exist only in volatile
memory. However, this scheme does not address the cloning problem, which
occurs when a system, e.g. a virtual machine may be copied and reveal sensitive
cryptographic data; to address that point, we then consider a hybrid scheme:
a hierarchical signature scheme in which the root level consists of a stateless
N -time scheme, while the other levels are stateful.

Outline. The remainder of this paper is organized as follows. We recall one-
time signature schemes as well as N -time and hierarchical signature schemes,
and establish some notation (Sect. 2). We then review the security and perfor-
mance issues with stateful signature schemes, notably the impact of volatile
and nonvolatile cloning (Sect. 3). Next, we cover the basics of synchronization
between volatile and nonvolatile storage (Sect. 4), including possible mitigation
for caching mechanisms, illustrated with concrete examples. We proceed by
describing a strategy for loosening the coupling between those data stores by
having the signer ‘reserve’ the state needed to sign multiple messages (Sect. 5).
We show that hierarchical signature schemes naturally support this state reserva-
tion strategy, in a way that benefits security and performance. These techniques
provide the best possible security for stateful signature schemes, but they do
not address scenarios in which a private key may be unintentionally cloned. To
address those cases, we outline a hybrid approach, in which the root level scheme
of a hierarchical scheme is stateless — ensuring inadvertent nonvolatile cloning
does not compromise the whole structure — but the lower levels are stateful
(Sect. 6). We then offer our conclusions and sketch future work (Sect. 7).

2 Stateful Hash-Based Signature Schemes

One-time Signature Schemes. Hash-based signatures use one-time signature
schemes as a fundamental building block. One-time signature schemes, unlike
most other signature schemes, require only a secure cryptographic hash function
and no other hardness assumption (about a number-theoretic problem) and are
not known to be vulnerable to Shor’s algorithm. Secure here refers to either col-
lision resistance or mere second-preimage resistance, depending on the specific
one-time signature used. Common examples of one-time signature schemes are
the seminal one by Lamport [19], the Winternitz scheme [7], and its recent vari-
ant W-OTS+ [13]. In one-time signatures, the private key is usually randomly
generated and the public key is a function of the private key, involving the under-
lying hash function. Advanced one-time signature schemes feature a parameter
enabling a time/memory trade-off, e.g. the Winternitz parameter. These schemes
are inadequate on their own in practice, since each one-time private key can only
be used to securely sign a single message.
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N-time Signature Schemes. Stateful N -time signature schemes, introduced by
Merkle [22] and often improved since (e.g. [2,3,20]), are built out of one-time
signature schemes. They make one-time signatures practical by combining N =
2H of them in a single structure — a complete binary tree of height H. Let ΥN =
(K,S, V ) denote an N -time signature scheme that consists of a key generation
algorithm K, a signing algorithm S, and a signature validation algorithm V .
The private key Ψ for the N -time scheme ΥN consists of the set of N private
keys of the underlying one-time scheme. An integer counter has to keep track of
the advancement of the key, as with each signature generation another one-time
private key has to be used. A simple way to reduce the size of that N -time key
is to instead define it to be a short string, and then use a cryptographically
secure pseudorandom function to generate the keys of the underlying one-time
scheme [22]. Formally speaking, this strategy changes the algorithms K and S by
creating an additional preprocessing step. The private state is thus reduced down
to the short private key and the integer counter, simplifying state management
somewhat through a reduction in scale. Nonetheless, the correct management
of the counter across multiple invocations of S is critical to security, as any
one-time private key must not be used twice.

Hierarchical Signatures. A hierarchical signature scheme is an N -time sig-
nature scheme that uses other hash-based signatures in its construction. Let
Γ = (ΥN0 , ΥN1 , . . . , ΥNl−1) denote a hierarchical signature scheme with l levels.
The public key Z for Γ is the output of K0 (that is, the key generation algorithm
of the top level). The private key for Γ consists of the private keys of each level:
Ψ0, Ψ1, . . . , Ψl−1. A signature for Γ consists of the public keys Z1, . . . , Zl−1 of
levels 1 through l − 1, along with the signatures Y0(Z1), Y1(Z2), . . . , Yl−2(Zl−1)
of the ith level’s public key by the (i − 1)th level private key, and the signature
Yl−1(M) of the message M with the private key of the last level. If the signature
scheme ΥNi

at the ith level of Γ can sign Ni signatures, then Γ is an N -time
signature scheme with N =

∏l−1
i=0 Ni. Hierarchical signatures allow for shorter

signing time of a message M by a Nl−1-time (instead of
∏l−1

i=0 Ni-time) signa-
ture while offering a higher total number (

∏l−1
i=0 Ni) of signed messages. Concrete

examples of hierarchical hash-based signatures include XMSSMT [15], a scheme
by Leighton and Micali [20] and SPHINCS [1]. XMSSMT and SPHINCS define
parameter d as the number of layers in the hierarchical structure. Additionally,
the LMS [21] specification describes a hierarchical hash-based signature variant
based on Leighton and Micali’s scheme.

3 State Synchronization Security Risks

We identified several distinct issues with stateful signature schemes, which we
consider here. Ensuring the correct synchronization of the private key between
a storage unit and the execution unit requires a carefully engineered system. In
most cases, the synchronization cost is likely to add to the time required for
signature generation. We call this additional latency the synchronization delay.
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We say that a synchronization failure occurs if the private key or counter in
nonvolatile storage fails to advance at or before the time that the private key
in RAM advances. This could be caused by the crash of an application or an
operating system, by a power outage, by the corruption of the nonvolatile state,
or by a software bug. Another issue with statefulness is the cloning problem: the
situation arising when a private key is copied and then used without coordination
by two or more execution units. This can for instance happen through Virtual
Machine (VM) image cloning, or by the restoration of a key file to a previous state
from a backup system. Cloning will cause multiple signatures to be generated
from the same system state, thus undermining security. The most important
issue is nonvolatile cloning, as outlined above. A related but distinct problem
is that of volatile cloning, which is the copying of a private key from volatile
memory, as discussed below.

In a well-designed stateful signature system, synchronization failure can be
avoided, but also synchronization delay will greatly impact performance. Non-
volatile cloning may not be a consideration on a system that is dedicated to
signature generation, but it is a significant risk on general-purpose software
systems.

Volatile Cloning in VM Environments. There is a low risk of volatile cloning,
except in VM environments. Most contemporary VM environments (e.g. VMware
Virtual Center, Oracle Virtual Box, KVM or Xen) support live cloning. This is
usually achieved by first capturing a system snapshot. Such environments intro-
duce several other risks for cryptography and security protocols. Pseudorandom
number generators are at risk, since their state can be cloned, too. The exact risk
to pseudorandom number generation depends on the method of entropy collec-
tion (possibly causing state divergence), but the risk is great enough that volatile
cloning should be avoided. Generally speaking, values that may only be used once
are at risk from live VM cloning. In addition to random numbers, this includes
“initialization vectors, counters for encryption, seeds for digital signatures, and
one-time passwords” [10]. Issues with such primitives can result in catastrophic
failures for classic (pre-quantum) digital signature schemes such as DSA, and
even on the level of security protocols such as TLS [25]. These vulnerabilities
relate to random number generators caching randomness far in advance. Many
other systems are at risk from live virtual machine cloning, including the S/KEY
one-time password system and the TCP protocol [11], for which initial sequence
numbers could be reused for hijacking. Volatile cloning therefore appears prob-
lematic to such an extent that the vulnerability of hash-based signature to this
scenario is by no means a special case.

In our view, stateful hash-based signature techniques can be safely imple-
mented in some scenarios, such as dedicated cryptographic hardware, which can
then benefit from their smaller signatures and signing times. On the other hand,
there is also a need for techniques that are secure even when nonvolatile cloning
occurs, for use in general purpose software environments. The hybrid approach
of Sect. 6 addresses the latter need.
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4 State Synchronization Considerations

State synchronization can be delayed by caching, or interfered with by other
processes on the used system. Of course, it is neither possible nor reasonable
to avoid caching and therefore the resulting delay completely. Multiple levels of
caches coexist on typical systems, both in hardware and software, helping the
system to function quickly and properly, by making frequently used data easily
accessible. Nevertheless, partially mitigating measures can be applied by forcing
cache flushing, or by deactivating it. As dealing with the state synchronization
is highly dependent on several factors like the used operating system or hard-
ware specifics, no universal approach exists. In the following, we present diverse
options to cope with state synchronization.

The access to nonvolatile storage deserves more detailed consideration as the
essential operation in our case is storing the new key state held in the main or
volatile memory on that nonvolatile storage (as shown in Fig. 1). To minimize
I/O operations e.g. on hard disks for frequently used or written data, caches
provide recently used or repeatedly accessed data based on prior operations. So
data supposed to be written to the disk may stay in the cache rather than being
written to the actual disk memory. Hard disks and other nonvolatile storage
devices often feature a (disk) cache that holds the data before actually writing
to disk. Most modern operating systems offer a page cache which behaves sim-
ilarly to the memory caches of hard disks but remains in the main memory of
the system. Usually data that is read or written for the first time is held in the
page cache which gets synchronized to the disk or disk cache in fixed intervals,
by exceeding thresholds e.g. a limit for non-synchronized data or due to system
calls. Data sometimes can be swapped between both caches. In most cases the
use of those caches is transparent and therefore unknown to applications running
in userspace. In matters of key state synchronization, a write-through is ideal.
In such a scenario using stateful schemes it is desirable to use state-of-the-art
techniques to overwrite the sections of the main memory with random values if
they hold cryptographic data that is not needed after writing to disk. Mecha-
nisms that come with the operating system (and may be applied automatically)
should be preferred over self-made implementations which need special attention
i.e. regarding compiler optimizations.

In terms of file I/O, on POSIX environments, the O SYNC flag (for the open()
system call) will cause invocations of the write() system call to block the calling
process until the data has been written to the underlying hardware. Equivalent
flags (e.g. FILE FLAG WRITE THROUGH for CreateFile() on Win32 API) exist on
other platforms. Modern Linux systems offer writeback or flusher threads (for-
merly pdflush) for the page cache that may be optimized. Synchronization may
be triggered manually by the sync or fsync system calls. However, if hardware
has its own memory cache, it must be separately dealt with using an operating
system- or device-specific tool such as hdparm to flush the on-drive cache, or to
deactivate write caching for that drive. The secure way to ensure that the data
was written is to read it again and compare it to what was expected, which
requires the data to be written to disk without cache interruption and would
add to the synchronization delay.
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Fig. 1. A simplified view of the data flow from signing engine to nonvolatile storage,
via cache layers.

4.1 Overhead for Hash-Based Signatures

The synchronization latency introduced earlier depends on the chosen hash-
based signature scheme and its implementation. A typical example following the
specification of XMSS [14] merely requires updating the leaf index in the secret
key, a 4-byte value; or an 8-byte value for XMSSMT . This assumes that all data
including the one-time keys and all nodes are stored in the global secret key. The
LMS [21] specification also requires updating a 16 or 32-byte random private key
value. Of course, generating 16 or 32-byte values can be avoided by generating
them from a seed and index with a pseudorandom number generator (PRNG),
which would reduce the state update of a few byte long index.

A PRNG is often used to help generating the one-time signature (OTS)
keys [5]. That way one is able to reduce the size of the scheme’s secret key
by storing only a part of it and rebuilding the necessary information on the
fly. A sequence of 2h seeds is computed from a single initial seed, iteratively
(Fig. 2). In that case, the one-time key pairs (2h in total) are not all stored in
the overall secret key but are generated successively instead. This generation
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Fig. 2. Iterative generation of successive PRNG seeds (si) from an initial one (seed),
and OTS signing key generation. The OTS signing keys are Σi = σi[0] . . . σi[len−1], i ≤
2h, where len is the number of n-byte string elements in a W-OTS+ secret key, public
key, and signature. As part of the state synchronization, after the generation of the ith
OTS signing key, the next seed si+1 (in red) must be stored (Color figure online).

takes place twice: for the generation of the overall public key and for signing1.
The very basic data to be synchronized are the index and the succeeding seed.
This would be just 36 bytes with n = 32 and XMSS or 72 bytes with n = 64 and
XMSSMT .

The total size of the state data to be updated then depends on the used para-
meters and implementation choices. In particular, different methods to update
the authentication path2 involve the storage of different elements (e.g. nodes for
the next authentication path or precomputed nodes) as part of the state.

We now consider this case where a PRNG is used. When nodes are computed
on the fly like this, an important concern is the worst case running time. Without
precomputation, the large variation in node computing time (depending on how
many already known nodes can be reused) would lead to unbalanced node com-
putations and unacceptable delays in signing speed. By precomputation, modern

1 This allows for forward-secure constructions if used with the right schemes, e.g.
special instantiations of XMSS using a forward-secure PRNG as shown by [2]. That
way an attacker may get access to the secret key on a system but is not able to forge
signatures using previous keys. A hash-based secret key is then to be seen just as
secure as any other signing key that an attacker gets access to.

2 The authentication path is the sequence of tree nodes that a verifier needs to recon-
struct the path to reach the root of the tree from a leaf.
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tree traversal algorithm proposals strive to mitigate these variations by balanc-
ing the number of leaves computed in each computation of an authentication
path [4]. Besides the index and the seed, the next authentication path and some
nodes, which are needed in the near future, must be stored in the meantime
(while some older nodes may be deleted). As more data has to be written one
should also consider the impact of interrupts to the storing procedure. A gener-
ated signature must not be handed out before a new state, in this case including
additional data by tree traversal algorithms, is available in storage. That way
the old key state does not get compromised in case of an outage or other harmful
events.

To give a sense of the size of the state to be synchronized in this case, we
consider the following typical (plain) XMSS parameter set: tree height h = 16,
message length m = 32 bytes, node length n = 32 bytes, Winternitz parameter
w = 163. For LMS [21], the parameter set are equivalent. They are provided in
the specification’s Table 1.

A number of different tree traversal algorithms exist (e.g. [4,18]), and the
choice of this algorithm defines the exact node precomputation method. In turn,
the total size of the state depends on the chosen node precomputation method.
The choice of a tree traversal algorithm does not affect the security of the overall
signature scheme, but has a massive impact on performance. As an example,
consider the BDS tree traversal algorithm [4]. We assume the value K = 2
for the BDS parameter. The state of the BDS algorithm comprises the current
authentication path, an array of nodes used for the efficient computation of
left authentication nodes, a single right authentication node, tail nodes on the
stack and nodes for the treehash algorithm. Buchmann, Dahmen and Schneider
showed [4] that the total space requirement of this algorithm depends only on
the height of the tree and the size of the nodes: it is bounded by (3.5h − 4)n
bytes for that algorithm, i.e. 1664 bytes for our chosen concrete parameter set,
which have to be written to the nonvolatile storage in addition. The algorithm
computes h−1

2 leaves and h−3
2 inner nodes on average for each authentication

path.
Storing therefore adds to each signing operation by several milliseconds, but

using the techniques introduced in the following section helps reducing the need
for storing each update of the key.

5 A State Reservation Strategy

When an N -time signature system’s private key is read from nonvolatile storage
into RAM, it can use a state reservation approach by writing back into storage
the private key that is u signatures ahead of the current signature. In this way,
the execution unit reserves the next u signatures for use, and avoids the need to
write the updated private key u times into nonvolatile storage.

3 Recall that the Winternitz parameter is used as a trade-off setting for the underlying
one-time signature scheme.
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We formalize this idea by introducing a new reserve operation R : [0, N ] →
{0, 1}K , which takes as input the number of private keys to reserve for use, and
returns their values after it has updated the nonvolatile storage. We define an N -
time signature system with reservation as an N -time system Υ = (K,R, S, V ) in
which the signing algorithm cannot directly access any private key information,
and must first call the reserve function to obtain that key. For example, to sign
the next X messages with X ≤ N the signer will receive X one-time signature
keys from the reserve function R (or i.e. a key that may be advanced for up to X
signatures, depending on the implementation). These keys are not sequentially
synchronized in nonvolatile storage. They are delivered to the signing function
only after the key state of the last key in the reservation is synchronized by
R. If the signer crashes while it is using the X keys to sign the messages, the
remaining keys in the reservation will not be used, which reduces the maximum
number of signed messages, but there is no change of key reuse since the key
state has already been updated in nonvolatile storage.

Given any N -time signature system, it is easy to define a signature system
with reserve by introducing the appropriate function and a counter. Multiple
signing engines can be accommodated by calling the reserve function to obtain
a distinct private key range for each signing engine. The key still is a critical
resource with this approach, but access to it is accelerated, as an engine calling
the reserve function does not have to wait for another engine or process to finish
signing first.

The reserve strategy minimizes the number of write operations to nonvolatile
storage, which significantly reduces synchronization delay. The larger the inter-
val u is, the less storage overhead is necessary. It also incurs a small penalty.
Interrupting the update process of the reserve function is not a problem, as the
key may not be written to nonvolatile storage but also will not be handed to a
signing engine. However, any interruption of the signing process — including a
crash, a graceful shutdown or the signing process simply not using all the signa-
tures available — will reduce the number of messages that can be signed by the
long-term key.

To offer an optimal coverage on diverse keys for addressing different use cases,
for example with keys using different parameter sets or to provide backup keys
if the current key’s compromised somehow, a key provider tool may be used,
holding a key pool P = (Ψ0, Ψ1, . . . , Ψp−1) where p is the number of different
keys. Each private key Ψ can be accessed via a reserve function.

Even though a reservation function introduces extra processing to generates
a series of keys, key generation is less costly than signing. When decoupled
from signing, a reservation function does not introduce a performance high risk
factor. Several ways to improve the performance of N -time signature schemes
in practice exist. As mentioned above, one common strategy is to generate the
one-time signature key pairs by using a PRNG, instead of creating each key pair
randomly following a uniform distribution. That way a seed s is used to feed
the PRNG, which returns output for the key generation as well as the successor
seed s′. In this case the nature of N -time signature schemes can be used in
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favor of more security. Instead of creating all one-time signature key pairs using
one initial seed that is employed iteratively by the PRNG, one may reseed the
PRNG for every fixed interval u and limit the reserve function to a maximum
limit of u signatures per call of the function by an engine. That way a signing
engine receives several signing keys, but cannot get any information about the
remainder of the long-term key. One then has to consider the compatibility
with the used tree traversal algorithm and call that one correctly. As mentioned
above, a tree traversal algorithm may precalculate further nodes to allow for a
balanced average signing time. If using different seeds, a tree traversal algorithm
used by the signing engine must be compatible with that behavior. To simplify
implementation and streamline operation, the interval u should be a divisor of
the number of leafs of a (bottom-layer) subtree so subtree boundaries are not
crossed. The reserve function does have access to all secret key information and
therefore has no problem updating the secret key using several seeds.

Another way to improve security is to introduce volatile and nonvolatile levels
within the signature scheme Υ . This approach is detailed next.

5.1 Volatile and Nonvolatile Levels

A hierarchical signature scheme very naturally supports a reserve operation of all
r = Nl−1 signatures associated with level l − 1. We formalize this notion in this
section with the idea of a volatile level. In a hierarchical signature system, the
first k ≤ l levels can be maintained in nonvolatile storage, while the remaining
l − k levels can be volatile (Fig. 3).

Without essential loss of generality, we consider a signature chain with exactly
two levels4; Υ0 is nonvolatile, and Υ1 is volatile. The overall scheme is an N0N1

time signature scheme that naturally supports a reserve of exactly r = N1. The
only time that Υ0 needs to sign is when the reserve operation is invoked and
when Υ1 is exhausted (that is, it has produced all N1 of its signatures). Each
invocation of the reserve operation invokes the top level signing algorithm and
the bottom level key generation algorithm. The key generation process may take
a long time, but the system could generate bottom-level private keys in advance
of when they are needed, and bring them into Υ at that time.

When a bottom level public/private key pair is generated, any public data
(such as the components of a Merkle hash tree) can be cached in nonvolatile
storage without raising any security issues. Furthermore, a private key could
be kept in nonvolatile storage for some period of time pending its use in a
volatile level, as long as it is erased from nonvolatile storage before it is used.
That is to say, the private key of a volatile level may be temporarily stored in
nonvolatile memory between the time that it is generated and the time that
it is linked into Υ by signing its public key with the top level. We emphasize,
however, that all private keys at the volatile level must not be synchronized with
nonvolatile storage. A system that uses this volatile key precomputation strategy

4 Note that either of these two levels could themselves be hierarchical signature
schemes.
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Fig. 3. Combined volatile/nonvolatile hierarchical signature scheme with l = 3 and
k = 2. r is the multitree root, i.e. the public key of the entire scheme. Each subtree
can be a stateful N − time signature scheme like XMSS or LMS.

must carefully avoid synchronization issues that might cause a cached private
key to be used in multiple levels.

A hierarchical signature scheme with a volatile bottom level enforces the
reservation property; since the private key of the volatile level is not synchronized
in nonvolatile storage, it avoids synchronization problems. Of course, the root
level must be nonvolatile, but it only rarely performs signing, and thus rarely
changes its state. This is a benefit because synchronization delay is no longer an
issue, and there is less chance of a synchronization problem (in the reasonable
model that problems occur when there is a crash or power outage during a write
operation).

We conjecture that a nonvolatile level with 220 signatures is sufficient to
provide security in general-purpose software environments, since that number of
keys can be used to sign once per hour for over a century, or once per second
for nearly two years. This is enough time to allow for almost all types of system
failures to be detected and corrected. Even 216 signatures may be sufficient if
a signature is associated with an hourly re-initialization, considering that it is
enough to last for seven years.
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However, the reservation strategy and hierarchical signature schemes do not
address the nonvolatile cloning problem. If a root level private key is copied and
then used by multiple execution units, an attacker could forge a signature on
a bottom level public key, and thus perpetrate Nl−1 forgeries. This limits the
scenarios in which signature scheme could be used.

6 Stateless and Hybrid Approaches

The SPHINCS hash-based signature scheme [1] is stateless, and thus avoids the
synchronization delay and cloning problems outlined above. It can sign a nearly
arbitrary number of messages, but unfortunately, it is less efficient than stateful
hash-based signatures; its signatures are over 40 KB in length, and they take a
relatively long time to generate.

Ideally, we would like to have a signature scheme that has the shorter signa-
tures and quicker signing of a stateful method, but which has the advantages of
the stateless methods. A reasonable compromise is the following hybrid scheme:
a hierarchical signature scheme with a stateless N0-time scheme at the root level
of Υ , while the other levels are stateful (i.e. XMSS, LMS). Such a structure is
shown in Fig. 4 (which is similar to Fig. 3) with k = 1 and the top tree (non-
volatile level) being a stateless signature scheme. This hybrid approach provides
security against nonvolatile cloning, because it does not require any state syn-
chronization at the root level. It also avoids synchronization delay.

A stateless N -time signature scheme can sign up to N signatures at a cer-
tain security level. If more than N signatures are generated, its security will
degrade, but this degradation can be graceful. The Hash to Obtain Random
Subset (HORS) scheme [24] is a good example of this type of system. Each dis-
tinct message that is signed reveals a small subset of the private state, i.e. a
few-time signature scheme is used instead of a one-time signature scheme as a
cornerstone of the system. In order to perpetrate a forgery, an attacker would
need to collect the private state that is revealed from many different signatures.
HORS is further improved by HORST which is used in SPHINCS.

The hybrid approach described above can bring worthwhile advantages,
because it can make use of a stateless signature scheme that can sign only a
limited number of signatures, e.g. 64K or 1M. It does not entirely eliminate all
of the issues surrounding state management. Even with a stateless N -time signa-
ture scheme, there is still a need to limit the number of signatures created with
the scheme, and the enforcement of that limit might require some state synchro-
nization. Of course, this need to restrict the number of signatures is fundamental
to any N -time signature scheme. However, there may be some natural bounds on
the number of signatures that a system could create with a nonvolatile private
key. If those signatures are associated with the initialization of an application or
an operating system, for example, then even if a restart or reboot occurs every
hour, it would take seven years to reach N = 216 root-level signatures and over
a century to reach N = 220 signatures. In a backup scenario, either of those root
level schemes would be adequate, since the restoration of an operating system
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Fig. 4. A hybrid approach combining a stateless signature scheme like HORST [1] at
the root level and stateful schemes like LMS and XMSS at the lower levels.

or application from backup does not change the number of execution units. In
a VM scenario, however, each cloning would produce multiple execution units;
we do not recommend the hybrid approach for the volatile part of the hybrid
structure for such environments. As discussed earlier (Sect. 3), there are several
other security issues with the cloning of VMs, so it is not clear how important
this limitation is in practice.

If volatile private keys are cached in nonvolatile storage, it is essential to
make sure that they are not cloned. For instance, it is acceptable to have the
private key stored in swap memory (assuming that there are adequate security
protections in place), but it is not acceptable to cache those keys in a file that
might be cloned in a VM or backed up.

In practice, with a hybrid scheme, if one never performs more than N restarts
(for some reasonable N), all issues with state management are eliminated. One
would regenerate the volatile state after every reboot (and generate a signature
of that volatile state based on the stateless scheme); one would then generate
signatures based on the volatile state. If the volatile signature scheme is designed
to be able to generate enough signatures, one can avoid regenerating that state
until the next reboot.
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7 Conclusions

As the transition to post-quantum cryptography moves forward — notably with
standardization efforts at NIST, the IETF, and other organizations — existing
schemes must be evaluated for real-world scenarios. In particular, hash-based
signature schemes such as LMS and XMSS/XMSSMT are good candidates for
the post-quantum era, with minimal security requirements, but their statefulness
is often mentioned when adoption is discussed.

We have taken a closer look at concrete cloning and state management sce-
narios, considered examples with typical parameter sets, and shown that the
security-critical issues can be avoided using relatively simple measures. We dis-
cussed the effects of caching on state synchronization delays, and measures to
mitigate these effects. It was shown how the size of the state to be synchro-
nized depends not only on the chosen scheme and its parameters, but also on
implementation choices — such as the tree traversal algorithm selection — which
directly impact performance. A trade-off between performance and the (quantifi-
able) risk of slower state synchronization is therefore available to signing engines.

The state reservation strategy is essential for practical implementations. It
makes sense to formalize this fact by defining it into the interface. The only way
to avoid the reserve scheme is to accept the inefficiency of synchronizing state
with nonvolatile storage, or to have N be so large that it could not be exceeded by
the signing systems in use. Hierarchical signatures are a practical and reasonably
simple scheme. The hybrid approach could be useful in general-purpose software
environments, and deserves further exploration.

Currently specifications of hash-based signature schemes do not allow reserve
parameters to be set. Since the reserve operation is not scheme-dependent, it
can be specified generically. To offer an optimal granularity of reserve parame-
ter choices for end users, feedback from stakeholders on this matter would be
beneficial. Since hash-based signature schemes normally already require a large
number of parameters to be set, additional complexity may impede usability.

While the statefulness of hash-based signature schemes must be carefully
managed, it can be seen that a number of trade-offs are available to accelerate
state synchronization if need be. This flexibility underscores the need to select
parameters according to use case constraints, instead of always simply opting
for maximal speed. We consider a detailed analysis of use case requirements for
widespread security protocols relying on digital signatures as the next step in
this direction. This study of use case requirements would pave the way for the
standardization of state management strategies for typical applications.
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Abstract. We analyze the concrete security of a hash-based signature
scheme described in a recent series of Internet Drafts by McGrew and
Curcio. We show that an original version of their proposal achieves only
a “loose” security bound, but that the latest version can be proven to
have tighter security in the random-oracle model.

1 Introduction

There has been growing interest in standardizing “post-quantum” public-key
cryptosystems, i.e., schemes that are not based on the hardness of factoring or
computing discrete logarithms, but are instead based on other problems that
are not known (or believed) to be solvable in polynomial time by a quantum
computer. In the context of digital signatures, where it is known that one-way
functions suffice to construct secure schemes [7,11–14] (see [5]), a number of
proposals based on cryptographic hash functions have been suggested recently
for standardization [1,4,10].

We analyze the security of a signature scheme described in two successive
versions of an Internet Draft by McGrew and Curcio [9,10]. Both versions of
their proposal construct a (stateful, many-time) signature scheme by instantiat-
ing Merkle’s tree-based approach [11,12] with an underlying one-time signature
scheme based on work of Lamport, Diffie, Winternitz, and Merkle [7,11,12].
We provide a concrete-security analysis of their proposals in the multi-user set-
ting [3,6], where we explicitly model an adversary who simultaneously attacks
multiple users running independent instances of the scheme, and who succeeds
if it is able to forge a signature with respect to any one of those users.1 In the
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that scheme with probability better than N · ε. But we are interested in settings
where N is large and we do not want to lose the factor of N in the security bound.
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context of the McGrew-Curcio drafts, a single instance of the tree-based (many-
time) signature scheme is itself composed of multiple instances of an underly-
ing one-time signature scheme, and so obtaining a tight security reduction for
the many-time signature scheme—even in the single-user setting—inherently
requires tight security for the underlying one-time signature scheme in the multi-
user setting.

As noted above, we study two versions of the McGrew-Curcio draft. We show
that the many-time signature scheme in version 02 of their proposal [9] does not
have a tight security reduction (even in the single-user setting), because the
underlying one-time signature scheme used is not tightly secure in the multi-
user setting. Fortunately, we show that the many-time signature scheme in ver-
sion 04 of their proposal [10], which incorporates modifications first suggested
by Leighton and Micali [8], is tightly secure—even in the multi-user setting—if
the underlying hash function is modeled as a random oracle.

Note that we restrict ourselves to an analysis of the one-time signature scheme
and the many-time signature scheme described in Sects. 4, 5 of the McGrew-
Curcio draft, respectively. We leave an analysis of their hierarchical signature
scheme (proposed in Sect. 6 of their draft) for future work.

1.1 Organization of the Paper

As explained above, both versions of the McGrew-Curcio proposal construct
a (stateful, many-time) tree-based signature scheme based on an underlying
one-time signature scheme. In both cases, concrete security of the tree-based
scheme—even in the single-user setting—depends on the concrete security of
the underlying one-time signature scheme in the multi-user setting.

In Sect. 2, we look at the one-time signature scheme used in version 02 of
the McGrew-Curcio draft [9]. After describing the scheme, we show that it is not
tightly secure in the multi-user setting. This implies that the tree-based signature
scheme of that draft is not tightly secure, even in the single-user setting.

We look at the most recent version of the McGrew-Curcio draft (version 04)
in Sect. 3. We begin by focusing on the underlying one-time signature scheme
used there, showing that it does have a tight security reduction in the multi-user
setting if the hash functions used are modeled as random oracles. Building on
this analysis, we then study the tree-based scheme proposed in that version of
their draft, proving that it is tightly secure in the multi-user setting as well.

1.2 Related Work

There are several other works proposing candidate tree-based signature schemes,
and analyzing their (concrete) security based on various assumptions about the
underlying hash function(s) [1,2,4]. It is not the goal of this work to propose
a new scheme, or to weigh the pros and cons of the various competing propos-
als; our aim is simply to provide a concrete analysis of the tree-based scheme
described in the McGrew-Curcio draft.
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2 Version 02 of the McGrew-Curcio Draft

As noted earlier, we focus in this section on the one-time signature scheme from
version 02 of the McGrew-Curcio draft, and show that it does not have tight
security in the multi-user setting. Because of the way the many-time signature
scheme in version 02 of their draft is constructed from the one-time signature
scheme, our result implies that their many-time scheme does not have a tight
security proof even in the single-user setting.

2.1 Description of the One-Time Signature Scheme

We begin by describing the one-time signature scheme, called the LDWM
scheme, contained in version 02 of the internet draft by McGrew and Curcio [9].
Let H : {0, 1}∗ → {0, 1}8n and F : {0, 1}8m → {0, 1}8m be cryptographic
hash functions. Let F i, for integer i ≥ 1, denote i-fold iterated application
of F , and let F 0 denote the identity function. Fix w ∈ {1, 2, 4, 8} as a para-
meter of the scheme, and set e

def= 2w − 1. Set u
def= 8n/w; note that outputs

of H can be viewed as a sequence of u integers, each exactly w bits long. Set
v

def= ��log u · (2w − 1) + 1�/w�, and define a function checksum : ({0, 1}w)u →
{0, 1}wv as follows:

checksum(h0, . . . , hu−1)
def=

u−1
∑

i=0

(2w − 1 − hi) ,

where each hi ∈ {0, 1}w is viewed as an integer in the range {0, . . . , 2w − 1} and
the result is written as an integer using exactly wv bits. Set p

def= u + v.
Define a one-time signature scheme as follows:

Key generation

1. Choose p uniform values x0, . . . , xp−1 ∈ {0, 1}8m.
2. For i = 0 to p − 1, compute yi := F e(xi).
3. Compute pk := H(y0, . . . , yp−1).

The public key is pk, and the private key is x0, . . . , xp−1.

Signing
To sign a message M ∈ {0, 1}∗ using private key x0, . . . , xp−1 do:

1. Compute h := H(M) and c := checksum(h). Set V := h‖c, and parse V as a
sequence of w-bit integers V0, . . . , Vp−1.

2. For i = 0, . . . , p − 1, compute σi := FVi(xi).
3. Return the signature σ0, . . . , σp−1.

Verifying
To verify a signature σ0, . . . , σp−1 on a message M ∈ {0, 1}∗ with respect to the
public key pk do:

1. Compute h := H(M) and c := checksum(h). Set V := h‖c, and parse V as a
sequence of w-bit integers V0, . . . , Vp−1.



264 J. Katz

2. For i = 0, . . . , p − 1, compute yi := F e−Vi(σi).
3. Return 1 if and only if pk = H(y0, . . . , yp−1).

2.2 Security Analysis

We are interested in understanding the concrete security of the one-time sig-
nature scheme described above, as a function of the total number q of H- and
F -evaluations performed by an attacker. (Thus, we will effectively be treating
H and F as independent random oracles.) We sketch two approaches that may
be used to attempt a signature forgery in the multi-user setting. In each case,
for simplicity, we assume all signers use the same value for w.

First approach. Assume N instances of the LDWM scheme are run, either by
the same signer or by multiple signers. Recall that the ith public key pki has
the form

pki = H(yi
0, . . . , y

i
p−1).

Consider computing the Q values y∗
0 := F e(x∗

0), . . . , y
∗
Q−1 := F e(x∗

Q−1), for
distinct x∗

i , and evaluating H on all (ordered) length-p lists of the y∗
i . (There

are q
def= Q!/(Q − p)! such lists. Note that eQ 
 q for practical settings of the

parameters, so the overall work is dominated by the q evaluations of H.) If any
of the resulting hashes is equal to some pki, then it becomes trivial to forge
arbitrary signatures with respect to that public key. The probability that this
occurs is roughly qN · 2−8n.

Second approach. A similar issue as above arises because F is used in all
instances of the scheme. As above, let pki (for 1 ≤ i ≤ N) denote the ith
public key, and assume a signature with respect to each public key has been
released so that, in particular, values yi

0, . . . , y
i
p−1 with pki = H(yi

0, . . . , y
i
p−1)

are known for all i. Consider evaluating F e on q/e random inputs, looking for
an input x such that F e(x) = yi

j for some i, j. If such an x is found, a forgery
becomes possible with high probability.2 The probability that such an x is found
is roughly (q/e) · pN · 2−8m. (Small variants of this approach, having slightly
better parameters, are also possible.)

We thus see that in the multi-user setting, security of the LDWM scheme can
be no better than O(qN · (2−8n + 2−8m)), and so in particular degrades linearly
in the number of users N .

3 Version 04 of the McGrew-Curcio Draft

In analyzing the most recent version of the McGrew-Curcio proposal, we begin
by showing that their underlying one-time signature scheme has tight security
in the multi-user setting. We then build on this to prove tight security for the
(tree-based, stateful, many-time) signature scheme they propose.

2 A precise calculation depends on the messages that have already been signed.
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3.1 Description of the LM-OTS Scheme

We begin with a description of the LM-OTS scheme [10], the underlying one-
time signature scheme used. Let H : {0, 1}∗ → {0, 1}8n be a cryptographic hash
function. Fix w ∈ {1, 2, 4, 8} as a parameter of the scheme, and set e

def= 2w − 1.
Set u

def= 8n/w; note that the output of H can be viewed as a sequence of u

integers, each w bits long. Set v
def= ��log u · (2w − 1) + 1�/w�, and p

def= u + v.
Define a function checksum : ({0, 1}w)u → {0, 1}wv as follows:

checksum(h0, . . . , hu−1)
def=

u−1
∑

i=0

(2w − 1 − hi) ,

where each hi ∈ {0, 1}w is viewed as an integer in the range {0, . . . , 2w − 1} and
the result is expressed as an integer using exactly wv bits.3 For integers i, b with
0 ≤ i < 28b, we let [i]b denote the b-byte representation of i. For a string s and
integer j ≥ 0, set H0

s (x; j) def= x. For integers k ≥ 1, j ≥ 0, define

Hk
s (x; j) def= H

(

Hk−1
s (x; j), s, [j + k − 1]1, 0x00

)

.

The LM-OTS scheme is defined as follows:

Key-generation algorithm Gen
Key generation takes as input id = (I, q), where I is a 31-byte identifier and q
is a 4-byte diversification factor.4 The steps of the algorithm are:

1. Choose p uniform values x0, . . . , xp−1 ∈ {0, 1}8n.
2. For i = 0 to p − 1, compute yi := He

id,[i]2
(xi; 0).

3. Compute pk := H(id, y0, . . . , yp−1, 0x01).

The public key is pk, and the private key is sk = (x0, . . . , xp−1).

Signing algorithm Sign
Signing takes as input a private key sk = (x0, . . . , xp−1) and message M ∈ {0, 1}∗

as usual, as well as id = (I, q) as above. It does:

1. Choose uniform C ∈ {0, 1}8n.
2. Compute Q := H(M,C, id, 0x02) and c := checksum(Q). Set V := Q‖c, and

parse V as a sequence of w-bit integers V0, . . . , Vp−1.
3. For i = 0, . . . , p − 1, compute σi := HVi

id,[i]2
(xi; 0).

4. Return the signature σ = (C, q, σ0, . . . , σp−1).

Verification algorithm Vrfy
Verification takes as input a message M ∈ {0, 1}∗ and a signature
(C, q, σ0, . . . , σp−1) as usual, as well as I as above. It sets id := (I, q) and does:

3 In [10] the result is expressed as a 16-bit integer, but only the top wv bits are used.
4 The purpose of I and q will become clear later, when we describe the many-time

scheme based on LM-OTS.
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1. Compute Q := H(M,C, id, 0x02) and c := checksum(Q). Set V := Q‖c, and
parse V as a sequence of w-bit integers V0, . . . , Vp−1.

2. For i = 0, . . . , p − 1, compute yi := He−Vi

id,[i]2
(σi;Vi).

3. Output H(id, y0, . . . , yp−1, 0x01).

We note that, in contrast to the usual convention, Vrfy outputs a string rather
than a bit and does not take a public key as input. A signature σ on some
message M is valid relative to some fixed public key pk if the output of Vrfy is
equal to pk. One can verify that correctness holds in the following sense: for any
I, q, any (pk, sk) output by Gen(I, q), and any message M , we have

Vrfy(M,Sign(sk,M, I, q), I) = pk.

3.2 Security of the LM-OTS Scheme

We adapt the standard notion of security for one-time signature schemes (see [5])
to the multi-user setting, where multiple (independent) instances of the scheme
are run and the attacker is considered successful if it generates a signature forgery
with respect to any of those instances. We also explicitly handle the values I, q
used as additional input to the various algorithms of the scheme.

If values id = (I, q) are used for key generation in some instance of the scheme,
we refer to id as the identifier for that instance. Let N be an upper bound on
the number of instances overall. We assume5 some fixed set {idi = (Ii, qi)}N

i=1

of identifiers, where idi �= idj for i �= j.
We are interested in bounding the attacker’s success probability in the fol-

lowing experiment. (We explicitly incorporate choice of the random oracle H
into the experiment.)

1. A random function H : {0, 1}∗ → {0, 1}8n is chosen.
2. For i = 1, . . . , N , the key-generation algorithm is run using identifier idi to

obtain (pki, ski). The attacker is given (id1, pk1), . . . , (idN , pkN ).
3. The attacker is given oracle access to H, plus a signing oracle Sign(·, ·) such

that Sign(i,M) returns Sign(ski,M, idi). For each i, the attacker may make at
most one query Sign(i, �). Without loss of generality we assume the attacker
makes exactly one signing query Sign(i,M i) for each value of i. We also
assume that when the attacker is given a signature, it is additionally given
the answers to all the H-queries needed to verify that signature.

3. The attacker outputs (i,M, σ) with M �= M i. The attacker succeeds if σ
is a valid signature on M for the ith instance, i.e., if Vrfy(M,σ, Ii) = pki.
Without loss of generality we assume the attacker has previously made (or
has been given the answers to) all the H-queries needed to run the verification
algorithm on these inputs.

5 These identifiers could be chosen adaptively by the attacker (subject to being dis-
tinct) without any significant change to the proof in the following section, but for
simplicity we treat them as fixed in advance. When LM-OTS is subsequently used
in the many-time signature scheme, the identifiers will be fixed in advance.



Analysis of a Proposed Hash-Based Signature Standard 267

Instantiating the security experiment above with the algorithms of the LM-
OTS scheme, and performing some syntactic changes that do not change the
probability space, we obtain the following experiment (we use ‖ for string con-
catenation when using commas would cause confusion):

1. Initialize an empty set H. (H will contain defined query/answer pairs for the
function H. That is, if (x, y) ∈ H then H(x) = y.)

2. For i = 1, . . . , N , do:
(a) For j = 0, . . . , p − 1, choose uniform xi

j,0 ∈ {0, 1}8n.
(b) For j = 0, . . . , p−1 and k = 0, . . . , e−1, choose uniform xi

j,k+1 ∈ {0, 1}8n

and add
(

xi
j,k ‖ idi ‖ [j]2 ‖ [k]1 ‖ 0x00, xi

j,k+1

)

to H. Define yi
j := xi

j,e.

(c) Choose uniform pki ∈ {0, 1}8n. Add
(

idi‖yi
0‖ · · · ‖yi

p−1‖0x01, pki
)

to H.
(d) Choose uniform Ci ∈ {0, 1}8n and Qi ∈ {0, 1}8n.
(e) Give (idi, pki) to the attacker.

3. When the attacker makes a query H(x), answer it as follows:
(a) If there is an entry (x, y) ∈ H for some y, then return y.
(b) Otherwise, choose uniform y ∈ {0, 1}8n, return y to the attacker, and

store (x, y) in H.
4. When the attacker makes a query Sign(i,M i), answer it as follows:

(a) If there is an entry (M i‖Ci‖idi‖0x02, Q) ∈ H for some Q, then redefine
Qi := Q. Store (M i‖Ci‖idi‖0x02, Qi) in H.

(b) Let ci := checksum(Qi), and set V i := Qi‖ci. Parse V i as a sequence of
w-bit integers V i

0 , . . . , V i
p−1.

(c) Return the signature (Ci, xi
0,V i

0
, . . . , xi

p−1,V i
p−1

).

5. The attacker outputs (i,M, σ) with M �= M i. The attacker succeeds if
Vrfy(M,σ, Ii) = pki.

Note we assume that all instances of the scheme use the same value e; however,
one can check that the proof can be suitably modified if this is not the case.

We define the following events in the above experiment:

– Coll1,i is the event that the attacker queries H(Ii, q, y0, . . . , yp−1, 0x01) with
(q, y0, . . . , yp−1) �= (qi, yi

0, . . . , y
i
p−1), and receives the response pki.

– Coll2,i is the event the attacker queries H(�, Ci, idi, 0x02) before making the
query Sign(i, �).

– Coll∗2,i is the event that either Coll2,i occurs, or either of the following occur:
(1) before making the query Sign(i, �), the attacker queries H(�, �, idi, 0x02)
and receives the response Qi, or (2) after making the query Sign(i,M i),
the attacker queries H(M,�, idi, 0x02) with M �= M i, and receives the
response Qi.

– Coll3,i,j,k is the event that the attacker queries H(xi
j,k, idi, [j]2, [k]1, 0x00)

either before making the query Sign(i, �), or after making the query Sign(i, �)
but with k < V i

j .
– Coll∗3,i,j,k is the event that either Coll3,i,j,k occurs, or that the attacker queries

H(x, idi, [j]2, [k]1, 0x00) with x �= xi
j,k, and receives the response xi

j,k+1.
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We first observe that the probability of forgery can be upper-bounded by the
probability that one of the above events occurs.

Lemma 1. If the attacker succeeds, then either Coll1,i or Coll∗2,i occur for some
i ∈ {1, . . . , N}, or else Coll∗i,j,k occurs for some i ∈ {1, . . . , N}, j ∈ {0, . . . , p−1},
and k ∈ {0, . . . , e − 1}.
Proof. Say the attacker outputs (i,M, σ) with M �= M i and σ a valid signature
on M with respect to Ii, pki. By assumption, all the H-queries needed to verify
σ on M with respect to Ii, pki are defined when the attacker outputs (i,M, σ).
Parse σ as (C, q, σ0, . . . , σp−1) and set id = (Ii, q). Define Q = H(M,C, id, 0x02)
and c = checksum(Q), and let V0, . . . , Vp−1 = Q‖c and yj = H

e−Vj

id,[j]2
(σj ;Vj) be

the values computed by running the verification algorithm on M , σ, and Ii.
Since the attacker succeeds, H(id, y0, . . . , yp−1, 0x01) = pki.

We show that if Coll1,i and Coll∗2,i have not occurred (where i is the instance
of the attacker’s forgery), then Coll∗i,j,k must have occurred for some j, k. If
Coll1,i has not occurred, we must have (q, y0, . . . , yp−1) = (qi, yi

0, . . . , y
i
p−1) and

so id = idi. If Coll∗2,i (and hence Coll2,i) has not occurred, the value of Qi was
not changed in step 4(a) of the experiment, and Q �= Qi. By construction of
checksum, we must therefore have Vj < V i

j for some j. But then one can verify
by inspection that Coll∗3,i,j,k must have occurred for some k.

Thus, to bound the success probability of the attacker it suffices to bound
the probabilities of the above events.

Lemma 2. For all i, Pr[Coll1,i] ≤ q1,i · 2−8n, where q1,i is the number of H-
queries of the form H(Ii, �, �, . . . , �, 0x01).

Proof. Any H-query H(Ii, q, y0, . . . , yp−1, 0x01) for which (q, y0, . . . , yp−1) �=
(qi, yi

0, . . . , y
i
p−1) returns a uniform value in {0, 1}8n that is independent of pki.

The lemma follows.

Lemma 3. For all i, Pr[Coll2,i] ≤ q2,i · 2−8n, where q2,i is the number of H-
queries of the form H(�, �, idi, 0x02).

Proof. Ci is a uniform 8n-bit string, and the attacker has no information about
Ci until it queries Sign(i, �). The lemma follows.

Lemma 4. For all i, Pr[Coll∗2,i] ≤ 2q2,i · 2−8n, where q2,i is as in the previous
lemma.

Proof. We have Pr[Coll∗2,i] ≤ Pr[Coll2,i] + Pr[Coll∗2,i | ¬Coll2,i]. The previous
lemma provides an upper bound on the first term. As for the second term,
when Coll2,i does not occur, the value of Qi does not change in step 4(a) of
the experiment. Each time the attacker queries H(�, �, idi, 0x02) before making
the query Sign(i, �), or queries H(M,�, idi, 0x02) with M �= M i after the query
Sign(i,M i), the value returned is uniform in {0, 1}8n and independent of Qi.
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Lemma 5. For all i, j, k,

Pr
[

Coll3,i,j,k | ∧k−1
�=0 ¬Coll∗3,i,j,�

]

≤ q3,i,j,k

28n − q3,i,j,k−1
,

where q3,i,j,k for k ≥ 0 is the number of the attacker’s H-queries of the form

H(�, idi, [j]2, [k]1, 0x00), and q3,i,j,−1
def= 0.

Proof. As long as Coll∗3,i,j,k−1 has not occurred, the attacker’s information about
the uniform value xi

j,k (assuming k < V i
j in case the attacker has already made

the query Sign(i,M i)) is limited to the fact that xi
j,k was not the result of one

of the attacker’s previous queries of the form H(�, idi, [j]2, [k − 1]1, 0x00). The
lemma follows.

Lemma 6. For all i, j, k,

Pr
[

Coll∗3,i,j,k | ∧k−1
�=0 ¬Coll∗3,i,j,�

]

≤ q3,i,j,k

28n − q3,i,j,k−1
+

q3,i,j,k

28n
,

where q3,i,j,k is as in the previous lemma.

Proof. We have

Pr
[

Coll∗3,i,j,k | ∧k−1
�=0 ¬Coll∗3,i,j,�

]

≤ Pr
[

Coll3,i,j,k | ∧k−1
�=0 ¬Coll∗3,i,j,�

]

+ Pr
[

Coll∗3,i,j,k | ∧k−1
�=0 ¬Coll∗3,i,j,�

∧ ¬Coll3,i,j,k

]

.

The previous lemma provides an upper bound on the first term. As for the
second term, note that when Coll3,i,j,k does not occur then whenever the attacker
queries H(�, idi, [j]2, [k]1, 0x00), the value returned is uniform in {0, 1}8n and
independent of xi

j,k+1. The lemma follows.

Lemma 7. For all i, j, Pr
[

∨e−1
k=0 Coll

∗
3,i,j,k

]

≤ 3·∑e−1
k=0 q3,i,j,k ·2−8n, where q3,i,j,k

is as in the previous lemma.

Proof. Let q∗ def=
∑e−1

k=0 q3,i,j,k, and note that the lemma is trivially true when
q∗ ≥ 28n/2. Otherwise, we have

Pr
[

∨e−1
k=0 Coll

∗
3,i,j,k

]

≤
e−1
∑

k=0

Pr
[

Coll∗3,i,j,k | ∧k−1
�=0 ¬Coll∗3,i,j,�

]

≤
e−1
∑

k=0

q3,i,j,k

28n − q3,i,j,k−1
+

e−1
∑

k=0

q3,i,j,k · 2−8n,

using the previous lemma. Since q3,i,j,k−1 ≤ q∗, when q∗ < 28n/2 each term in
the first summation is upper-bounded by 2q3,i,j,k · 2−8n. This proves the lemma.
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Putting everything together, we have:

Theorem 1. For any adversary attacking any number of instances of the LM-
OTS scheme and making at most q hash queries of the form H(�, . . . , �, n) with
n ∈ {0x00, 0x01, 0x02}, the probability that the adversary forges a signature with
respect to any of the instances is at most 3q · 2−8n.

Proof. Let N denote the number of instances of the scheme. Using Lemma 1 and
a union bound, the probability with which the adversary forges a signature is at
most

∑N
i=1 Pr[Coll1,i] +

∑N
i=1 Pr[Coll∗2,i] +

∑N
i=1

∑p−1
j=0 Pr

[

∨e−1
k=1 Coll

∗
3,i,j,k

]

.

Using Lemmas 2, 4 and 7, the above is at most

N
∑

i=1

q1,i · 2−8n + 2 ·
N

∑

i=1

q2,i · 2−8n + 3 ·
N

∑

i=1

p−1
∑

j=0

e−1
∑

k=0

q3,i,j,k · 2−8n

≤ 3 ·
⎛

⎝

N
∑

i=1

q1,i +
N

∑

i=1

q2,i +
N

∑

i=1

p−1
∑

j=0

e−1
∑

k=0

q3,i,j,k

⎞

⎠ · 2−8n.

Each of the adversary’s H-queries of the stated form increases the value of at
most one of q1,i, q2,i, or q3,i,j,k and so the sum in the parentheses is at most q.
This proves the theorem.

3.3 The LMS Scheme

An instance of the LMS scheme is defined by computing a Merkle tree of height
h using 2h LM-OTS public keys at the leaves. We give a formal definition now.

Key-generation algorithm Gen′

Key generation takes as input a 31-byte identifier I and a parameter h. Set
N = 2h − 1. The algorithm proceeds as follows:

1. For q = 0, . . . , N , compute (pkq, skq) ← Gen(I, q).
2. For r = 2h, . . . , 2h+1 − 1, set T [r] := H(pkr−2h , I, [r]4, 0x03).
3. For r = 2h − 1, . . . , 1, set T [r] := H(T [2r], T [2r + 1], I, [r]4, 0x04).

The public key is pk = (h, I, T [1]), and the private key is sk = (0, sk0, . . . , skN ).

Signing algorithm Sign′

Signing takes as input a private key (q, sk0, . . . , skN ) and a message M ∈ {0, 1}∗

as usual, as well as I as above. It sets id = (I, q) and does:

1. Compute σ := Sign(skq,M, id).
2. Also compute p0, . . . , ph−1, the siblings of the nodes on the path from leaf q

to the root in the Merkle tree.
3. Return the signature Σ = (σ, p0, . . . , ph−1).
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After generating a signature, the value of q is incremented. (Signing is stateful.)
If q = 2h the key is erased, and no more signatures can be issued.

Verification algorithm Vrfy′

Verification takes as input a public key (h, I, T ), a message M ∈ {0, 1}∗, and a
signature Σ = (σ, p0, . . . , ph−1). It does:

1. Compute pk := Vrfy(M,σ, I).
2. Extract value q from σ. Compute T [q + 2h] := H(pk, I, [q + 2h]4, 0x03).
3. Using p0, . . . , ph−1, compute a value T [1]. Return 1 if and only if T [1] = T .

3.4 Security of the LMS Scheme

Security of the LMS scheme can be proven generically based on any one-time
signature scheme and any second preimage-resistant hash function. However,
since the hash function H was modeled as a random oracle in our analysis of the
LM-OTS scheme, we continue to model it as a random oracle here. Note also
that although the same function H is used both to compute the Merkle tree and
in the underlying one-time signature scheme, the fact that domain separation is
used means that we can cleanly separate these two usages.

Here, we are interested in the attacker’s success probability in the following
experiment:

1. A random function H : {0, 1}∗ → {0, 1}8n is chosen.
2. The key-generation algorithm for the LMS scheme is run using I and h to

obtain (pk, sk). The attacker is given pk.
3. The attacker is given oracle access to H, plus a stateful signing oracle Sign′(·)

such that Sign′(M) returns Sign′(sk,M, I) and updates the private key.
We assume that when the attacker is given a signature, it is additionally given
the answers to all the H-queries needed to verify that signature.

4. The attacker outputs (M,Σ), where M was not previously submitted to its
signing oracle. The attacker succeeds if Σ is a valid signature on M , i.e., if
Vrfy′(pk,M,Σ) = 1. Without loss of generality we assume the attacker has
previously made (or has been given the answers to) all the H-queries needed
to run the verification algorithm on these inputs.

We remark that we consider the single-user setting for simplicity, but one can
verify that security does not degrade in the multi-user setting as long as each
instance uses a distinct value of I.

Considering an execution of the above experiment, let pk0, . . . , pk2h−1 be the
LM-OTS public keys at the leaves, and let T [r] denote the intermediate values
computed during the course of key generation. Denote the components of the
signature output by the attacker by Σ = (σ, p0, . . . , ph−1). (We may assume Σ
has this form, since otherwise the signature will surely be invalid. In particular,
we may assume without loss of generality that Σ consists of a value σ in the
format of an LM-OTS signature and h values p0, . . . , ph−1.) Let q be the value
contained in σ, and let pk be the value computed during verification of Σ on M .
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Let Forge1 be the event that attacker succeeds and pk = pkq, and let Forge2 be
the event that the attacker succeeds but pk �= pkq.

We have

Lemma 8. Pr[Forge1] ≤ 3q1 · 2−8n, where q1 is the number of H-queries of the
form H(�, . . . , �, n) with n ∈ {0x00, 0x01, 0x02}.
Proof. Let A be an adversary attacking the LMS scheme; we construct an
attacker A′ attacking the LM-OTS scheme.

Fix some I, h, and let idq = (I, q) for q = 0, . . . , 2h − 1. Attacker A′ is given
public keys pk0, . . . , pk2h−1 and does as follows:

1. Compute T [1] from pk0, . . . , pk2h−1 as in algorithm Gen′. Give public key
pk = (h, I, T [1]) to A.

2. When A requests the ith signature on a message M i (for i = 0, . . . , 2h − 1),
attacker A′ queries Sign(i,M) to obtain σ. It then computes p0, . . . , ph−1 as
in algorithm Sign′, and returns the signature (σ, p0, . . . , ph−1) to A.

3. A′ answers H-queries of A by forwarding them to its own H-oracle.
4. When A outputs a forgery (M,Σ = (σ, p0, . . . , ph−1)), adversary A′ extracts

the value q contained in σ and outputs (q,M, σ).

Observe that A′ succeeds if Forge1 occurs. Moreover, although A′ may make
H-queries in addition to those made by A (to compute T [1]), all those queries
are of the form H(�, . . . , �, n) with n ∈ {0x03, 0x04}; the number of H-queries
of the form H(�, . . . , �, n) with n ∈ {0x00, 0x01, 0x02} is exactly the same as
the number made by A. Theorem 1 thus implies the claim.

We turn to bounding Forge2. For some fixed I, h, define the following events:

– Collr, for r = 2h, . . . , 2h+1 − 1, is the event that the attacker makes a query of
the form H(pk, I, [r]4, 0x03) with pk �= pkr−2h and receives the response T [r].

– Collr, for r = 1, . . . , 2h −1, is the event that the attacker makes a query of the
form H(T, T ′, I, [r]4, 0x04) with (T, T ′) �= (T [2r], T [2r + 1]) and receives the
response T [r].

Lemma 9. Pr[Forge2] ≤ q′ · 2−8n, where q′ is the number of H-queries of the
form H(�, . . . , �, n) with n ∈ {0x03, 0x04}.
Proof. If Forge2 occurs then Collr occurs for some r. It is also easy to see
that Pr[Collr] ≤ qr · 2−8n, where qr is the number of H-queries of the form
H(�, I, [r]4, �). Since each of the adversary’s queries of the stated form increases
the value of at most one qr, the claim follows.

Theorem 2. For any adversary attacking the LMS scheme and making at most
q hash queries, the probability the adversary forges a signature is at most 3q·2−8n.

Proof. The attacker forges a signature with probability Pr[Forge1] + Pr[Forge2].
By Lemmas 8 and 9, this is bounded by 3q1 · 2−8n + q′ · 2−8n, where q1, q

′ are
as in those claims. Since each H-query by the attacker increases the value of at
most one of q1 or q′, the claimed bound follows.
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