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Abstract. Software Reference Architecture (SRA), which is a generic architec‐
ture solution for a specific type of software systems, provides foundation for the
design of concrete architectures in terms of architecture design guidelines and
architecture elements. The complexity and size of certain types of software
systems need customized and systematic SRA design and evaluation methods. In
this paper, we present a software Reference Architecture Design process Frame‐
work (RADeF) that can be used for analysis, design and evaluation of the SRA
for provisioning of Tools as a Service as part of a cloud-enabled workSPACE
(TSPACE). The framework is based on the state of the art results from literature
and our experiences with designing software architectures for cloud-based
systems. We have applied RADeF SRA design two types of TSPACE: software
architecting TSPACE and software implementation TSPACE. The presented
framework emphasizes on keeping the conceptual meta-model of the domain
under investigation at the core of SRA design strategy and use it as a guiding tool
for design, evaluation, implementation and evolution of the SRA. The framework
also emphasizes to consider the nature of the tools to be provisioned and under‐
lying cloud platforms to be used while designing SRA. The framework recom‐
mends adoption of the multi-faceted approach for evaluation of SRA and quan‐
tifiable measurement scheme to evaluate quality of the SRA. We foresee that
RADeF can facilitate software architects and researchers during design, applica‐
tion and evaluation of a SRA and its instantiations into concrete software systems.

Keywords: Cloud Computing · Software Reference Architecture (SRA) · Tools
as a Service (TaaS) · Architecture Design · Architecture evaluation

1 Introduction

A Software Reference Architecture (SRA) provides an abstraction for designing and
reasoning about a concrete software architecture of a specific system domain [1, 2].
Whilst a concrete architecture is designed for a specific project according to well-defined
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business goals and requirements, a SRA usually aims to address generic business goals
and domain requirements. A SRA consists of not only details on architecture compo‐
nents and its view, but also encompasses best practices for describing the architecture
and the process guidelines for analysis, design and development of the architecture [3].
Though describing stakeholders concerns in terms of architecture view points and
presenting the details of a SRA using multiple views [4] is important, it is equally
important to describe the design-time and run-time quality characteristics of a SRA and
the use of appropriate architecture styles and patterns [5]. A SRA is primarily designed
for two main reasons: (i) to standardize existing available concrete architectures or (ii)
to propose a preliminary SRA that can facilitate concrete architecture design for a
specific domain. Whilst a SRA standardization effort focuses on extracting reusable
architecture elements from a number of concrete architectures, a SRA preliminary prop‐
osition focuses on recommendations for SRA documentation, guidelines for SRA design
and evaluation as well as SRA adoption and evolution.

In this paper, we present a software Reference Architecture Design process Frame‐
work (RADeF) for designing cloud-based systems in general and cloud-based Tools as
a service workSPACE (TSPACE) in particular. RADeF reports a set of key specifica‐
tions and SRA design guidelines. Whilst cloud-based systems provision on-demand
computing as Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and Soft‐
ware as a Service (SaaS) [6], a TSPACE is characterized by as an activity or a task
specific selection and on-demand provisioning of Tools as a Service (TaaS) as part of
an integrated cloud-enabled workspace [6]. We assert that designing and evaluating a
TSPACE SRA is more challenging than SRAs of general cloud-based systems because
of the involvement of diversified tools and tenants with varying functional requirements
and quality concerns. For example, performance and scalability can be more important
for tenants and users of software development and testing TSPACE, whereas integration
can be more important for tenant and users of architecture analysis and design TSPACE.
Furthermore, instantiation of a TSPACE SRA for different domains can require custom‐
ization (e.g. addition of new components or only selecting a subset of a SRA), which
requires a mechanism that can be used to analyze quality and completeness of the
instantiated architectures. Although there have been attempts to provide a systematic
approaches for reference architecture design, documentation and evaluation [2, 3, 7], to
the best of our knowledge, there has been a little work done on providing a process
framework for SRA design given the specific needs of SRA design and evaluation of
the TSPACE. Our work reported in this paper aims to address the following research
objectives:

• Provide a systematic approach that can lead to a SRA’s design elements identifica‐
tion, requirements analysis and detailed design.

• Provide insight to the specific needs of TSPACE SRA evaluation and instantiation
into concrete architectures.

• Demonstrate application of RADeF on SRAs of software architecture design and
implementation TSPACEs.

The organization of the paper is as follows. Section 2 provides the details of RADeF.
Section 3 describes the results of the case studies of applying RADeF for describing and
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implementing TSPACE. Section 4 provides an overview of the related work and
Sect. 5 concludes the paper by sharing lessons learned and experiences.

2 Reference Architecture Design Process Framework (RADeF)

A SRA is expected to provide guidance for designing and evaluating a concrete archi‐
tecture. A SRA description usually includes reusable solutions in terms of architectural
goals, architectural styles, design patterns, design principles and decision and guidelines
for initiating a SRA. That is why it is important that a SRA description includes as much
details as possible. It is also important to have a clearly described process that can be
used to design and evaluate a SRA [2]. In this section, we describe RADeF, the process
that can lead to TSPACE SRA development, evaluation and implementation. We also
discuss important factors that should be considered at each stage of TSPACE SRA
design. A pictorial representation of RADeF is presented in Fig. 1. RADeF is an iterative
process framework and information produced in preceding stages is used as input for
the proceeding stages of the process and as shown in Fig. 1.

Fig. 1. A process framework for designing a Software Reference Architecture

2.1 Identification of a Reference Architecture’s Concepts and Elements

First step in designing a SRA of a cloud-based TSPACE is to identify the concepts and
elements that constitute TSPACE. A SRA consists of not only SRA requirements and

A Process Framework for Designing SRAs for TaaS 113



SRA views, but it also provides guidelines for SRA evaluation. A generic view of the
SRA elements is depicted in Fig. 2(a). The required concepts an elements are identified
through a high-level analysis of a particular domain. TSPACE SRA elements can be
classified into: Tenants, Tools, Provisioning Infrastructure, Artifacts, Context and Inte‐
gration Methods. Each of the elements is tailored and extended with respect to the
domain requirements for which the SRA is to be enacted.

Participants’ Roles: End users, Requirements Analysts and Software Architects.
Artifact(s) Consumed: Business Requirements.
Artifact(s) Produced: High-level relationship models for TSPACE concepts and
elements.

Fig. 2. Software Reference Architecture elements

2.2 Refinement of Domain Element and Relationships Modeling

The activities identified for this stage are aimed at refining the identified elements in
previous stage, establishing the hierarchical structure of TSPACE elements and
modeling relations among the elements. Domain models are considered the main sources
of the information for this stage. The domain models can provide standardizations for
elements, their hierarchical structures and the relationships among the elements.
However the domain models need to be extended in order to cover all the dimensions
of TSPACE including the tools, the development processes which govern the provi‐
sioning and usage of the tools, data integration and exchange formats among the tools,
and any additional functional aspects that are required by TSPACE in a specific domain.
Figure 2(b) shows TSPACE elements and relationships among the elements. The arti‐
facts that are produced at this stage, serve as a foundation for the detailed requirements
analysis and architecture design of the components that are responsible for tools
bundling and integration in the TSPACE.
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Participants’ Roles: Business Analyst and Software Architect.
Artifact(s) Consumed: Documentation approaches, documentation templates and
architecture design abstractions.
Artifact(s) Produced: TSPACE conceptual models that consists of concepts and
elements that encompass TSPACE and relationship among the concepts and models.

2.3 Functional Demarcation Between the Reference Architecture Elements
and the Tools to Be Provisioned

This stage of the activities deals with demarcation of functional requirements to be
handled by a SRA and functional requirements for which TSPACE can rely on the tools
(that can be provisioned by TSPACE). The artifacts that are produced at this stage
provide a foundation for TSPACE functional requirements. The high-level architecture
design with specific focus on the identification of components responsible for the
TSPACE features.

Participants’ Roles: Requirements Analyst, Business Analyst and Software Architect.
Artifact(s) Consumed: Domain models.
Artifact(s) Produced: Documents describing functional demarcation of TSPACE and
encompassing tools.

2.4 Requirements Identification and Classification

The TSPACE SRA requirements can be classified into service model, integration and
quality requirements as discussed below.

Service Model Requirements: This task aims at identifying the requirements for tools
bundling, provisioning and enactment. For example, one of the primary objectives for
providing a software architecting TSPACE is to provide the bundled suite of tools on
demand as part of a TSPACE. It is critical to determine bundling and provisioning
constraints and parameters. The tools bundling mechanism should be flexible enough
to cater integration needs of different types of the tools to be used in a particular domain.
In certain cases, there can also be some constraints with respect to the underlying
virtualized infrastructure (e.g., IaaS cloud virtual machines) that can host the tools to
enable their operations within acceptable runtime quality parameters (e.g., performance,
scalability and reliability). The artifacts that are produced in this activity provide guide‐
lines to identify integration needs of the tools in a TSPACE and guide the SRA analysis
and design process.

Integration Requirements: Integration requirements focus on integration needs of the
tools that can be provisioned in TSPACE. With reference to software architecting
domain, the integration mechanism should be flexible enough to accommodate different
proprietary and standardized formats as well as support integration among heteroge‐
neous types of tools (e.g. desktop-based, web-based and cloud-based tools). The tools
that are provisioned in a TSPACE instance can vary and the integration mechanism
should be flexible enough to adapt to the tools’ integration requirements of the
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provisioned tools. The integration mechanism should also support workspace require‐
ments, such as awareness of the operations that are performed on the artifacts as a result
of the users’ activities [8]. The artifacts that are produced at this stage guide the reference
architecture design and analysis process of integration.

SRA Quality Requirements: The SPACE is aimed at providing a bundled suite of tools
following a service model. As a result, the TSPACE SRA needs to incorporate archi‐
tecture quality requirements of cloud-enables services based system such as scalability
[9], multi-tenancy [10] and dynamic provisioning [11]. The activities that are performed
at this stage aim to identify important quality characteristics with reference to the domain
in which the TSPACE is to be used. For the software architecting domain, scalability,
multi-tenancy and dynamic provisioning are important. For another domain such as
software testing, elasticity [12] and reliability [13] can be important. The artifacts that
are produced as a result of this activity provide a foundation for runtime architecture
quality requirements of TSPACE.

Participants’ Roles: Business Analyst and Software Architect.
Artifact(s) Consumed: Design time constrains and tools bundling constraints,
TSPACE functional boundaries, required activities and tasks, and tools enactment/
provisioning parameters and constraints, Collaboration and integration models.
Artifact(s) Produced: Integration and collaboration models. Design time constrains,
tools bundling constraints and tools’ provisioning/enactment parameters. TSPACE
runtime architecture quality requirements.

2.5 Impact of Potential Cloud Hosting Environments on the Domain

The suitability of the underlying IaaS or PaaS platform can impact the way a reference
architecture is designed. E.g. PaaS environments can be a suitable choice for testing
domains in which autonomous scalability of the resources is more important. Whilst
IaaS environments can be suitable for hosting tools implemented using different tech‐
nologies as IaaS clouds provide customizable hosting environments.

Participants’ Roles: Software Architect.
Artifact(s) Consumed: List of potential cloud hosting environments.
Artifact(s) Produced: Selected cloud hosting environments.

2.6 Reference Architecture Documentation, Analysis and Design

This stage of the activities focus on analyzing architecture documentation approaches
and preliminary analysis of the maturity of the domain for which a SRA is designed.
The analysis of the documentation approaches determines the most appropriate strat‐
egies for capturing the architecture of the domain for which TSPACE is designed. A
comprehensive analysis of the SRA documentation approaches is reported in [2, 3].
Angelov et al. have recommended that a reference architecture documentation include
information about the context, goals and design decisions. The context dimension covers
the purpose, the organization(s) that is (are) developing a reference architecture and its
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maturity stage (e.g., preliminary or classic) [2]. The goal dimension encompasses busi‐
ness goals and quality attributes as well as the purpose of defining a reference architec‐
ture (e.g., to standardize concrete architecture or to facilitate design of concrete archi‐
tecture). The design dimension elaborates whether a SRA is concrete or abstract and
whether the SRA has been described using formal, semiformal or informal approaches.
Avgeriou et al. [3] propose that a SRA description should have three main elements: (i)
description of the approach used to document a SRA, (ii) guidelines on instantiation of
a SRA and (iii) evaluation of a SRA corresponding to desired functional requirements
and quality attributes. The outcome of this activity determines the approach used for
describing a SRA, the level of abstractions to be covered in the SRA documentation,
the objectives and the selection of the approaches for evaluation and instantiation of a
SRA. Outcome of this activity has impact on all the proceeding stages of the reference
architecture design process. A summary of a SRA design dimensions is shown in
Fig. 2(a).

A SRA design should be based on reference models and architecture styles and patterns
[14, 15]. If a TSPACE SRA is to be used for mission-critical and safety-critical tools, then
it is also important to have metrics that can be used to measure runtime quality parameters
of an architecture. An empirical investigation of the SRAs have revealed the absence of
important views [4] in a SRA and the details of the supporting algorithms and formaliza‐
tion to achieve the required functionality of the reference architecture [4] impact a SRA’s
adoption and applicability. Hence, a SRA should encompass all the important views
according to some well-known approaches such as 4 + 1 view model [4].

Participants’ Roles: Software Architect.
Artifact(s) Consumed: Architecture documentation templates and models.
Artifact(s) Produced: SRA documentation approaches used, filled templates, details
of the abstractions to be used, evaluation and initialization approaches and views.

2.7 Evaluating a Reference Architecture

Evaluation of a SRA is an important step for analyzing its feasibility and applicability.
Different considerations for evaluating a reference architecture have been proposed [3,
7, 16]. Avgeriou et al. [3] have proposed to evaluate a SRA using scenarios and proto‐
typing. Scenarios based approaches enable an implementation-independent evaluation.
The evaluation scenarios need to be focused on important design time and runtime
qualities of the architecture. The prototyping helps analyze the suitability of the imple‐
mentation decisions such as platform choices and programming languages for the design
decisions incorporated in a SRA. Angelov et al. [7, 16] have argued that straightforward
adoption of architecture evaluation methods such as Architecture Tradeoff Analysis
Methods (ATAM) [17] and Software Architecture Analysis Methods (SAAM) [18] is
not feasible because: gathering all the stakeholders and generating scenarios for a SRA
evaluation may not be possible, there can be a significantly large diversity of stake‐
holders and the levels of abstractions in the designed components can be quite high.
Hence, it is important to identify the most relevant architecture requirements by
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involving domain experts or domain models and then preparing scenarios by involving
a SRA’s potential users [7, 16].

Other than the above-mentioned challenges, a TSPACE SRA evaluation activity has
some additional complexities. For example, a TSPACE provision the tools for
performing the different activities; hence there is a need for tools integration and work‐
space specific functions in a *aaS model. An evaluation activity focuses on the parts of
a SRA that are embodied by TSPACE boundaries rather than by the tools to be provi‐
sioned. Some of the key quality characteristics are inherited from *aaS model for eval‐
uating a TSPACE SRA’s abilities of on-demand provisioning of tools in a particular
domain, whose quality attributes should drive the evaluation activities. Hence, the eval‐
uation activity should focus on identifying and analyzing the relevant quality attributes
for the given domain. Moreover, as the SRA’s elements (i.e. components or services)
and design decisions collectively constitute to SRA quality, traditional architecture
analysis and evaluation methods such as utility tree [17] from ATAM are not sufficient
because these are unable to quantify architecture quality. We advocate for leveraging
an new approach inspired from attack-defense trees [19] to enhance the utility tree for
analysis of the completeness of a SRA. Figure 3(a) shows the structure of the enhances
utility tree. Sub-nodes of the utility tree corresponding to each quality can be assigned
with three types of operators: logical OR operator which identifies that opting any of
the branch can achieve a quality attribute, logical AND operator that indicates that opting
all of the branches will be essential to meet a quality criteria, and a Seq-AND (sequential
AND) operator indicates that the design decisions corresponding to the branches need
to be executed in a specific sequence in order to achieve the corresponding quality char‐
acteristic. In some cases, it might be required to analyze overall quality and completeness
of the SRA. For this purpose, the probability values for the effectiveness of the design
decisions can be assigned to each branch of the quality attribute nodes (such that
maximum probability of all design decisions corresponding to each quality attribute do
not exceed one). When probability values are used, OR operator takes minimum, AND
takes sum and SeqAND takes sum of the probability values of all the branches of a
quality attribute sub-tree. Finally, to evaluate the tools bundling and integration
approaches, a prototype based evaluation is considered more effective. That means a
TSPACE SRA prototype can play a critical role for the SRA evaluation and the tools
that are selected for provisioning using the prototype can help to cover the most critical

Fig. 3. SRA utility tree template and models
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evaluation scenarios. The outcome of evaluation activity can trigger modification in the
artifacts that were generated in previous stages as depicted in Fig. 1.

Participants’ Roles: User, Requirement Analyst, Business Analyst and Software
Architect
Artifact(s) Consumed: TSPACE Software Reference Architecture.
Artifact(s) Produced: Evaluation results.

2.8 Reference Architecture Instantiation and Implementation

As a SRA provides a generic architecture solution for a specific domain, its instantiations
can require appropriate tailoring, sometimes significant. As a result, some of the compo‐
nents can be excluded from the instantiated architecture and some additional compo‐
nents can be incorporated. The enhanced utility tree (Fig. 3(a)) presented in Sect. 2.7
can facilitate the analysis and quantification of the concrete architecture.

Participants’ Roles: Business Analyst, Software Architect and Developers.
Artifact(s) Consumed: Evaluated TSPACE Software Reference Architecture.
Artifact(s) Produced: Instantiated system.

3 Two Cases of Applying RADeF

We have followed RADeF to support the design of a SRA for two types of TSPACE:
software architecting tools domain and software implementation tools domain. The two
case studies of applying RADeF for analysis, design, evaluation and implementation of
the TSPACE aimed at provisioning integrated suite of tools for the domains. The tools
commonly used for software architecture design and software implementation were
selected for the case studies and TSPACE was designed by following RADeF steps. In
this section, we provide the insight gained from our experiences from applying RADeF.

First and second stage of RADeF is to identify concepts and elements of a SRA and
establish relationships between the elements. The generic model presented in Fig. 2(b)
provides a foundation for TSPACE elements identification and relationship modeling.
Though the generic model needs to be extended to cater the needs of a specific type of
tools and the operations that can be performed using the tools. Figure 3(b) shows the
extensions to the generic model for software architecting and software implementation
domain. The tools used for software architecting have different types of the artifacts,
e.g., architecture knowledge artifacts, design decision artifacts and architecture design
diagrams. Since software architecture artifacts can be at different levels of abstractions,
and there is no need to exchange complete artifacts (although selected information
exchange is required) among architecting tools, which can be integrated through
semantic integration technologies. We have leveraged IEEE 1471-2000 [20] and
ISO/IEC/IEEE 42010:2011 [21] to build the semantic integration model for SRA of the
architecting tools. Figure 3(b) shows a high-level view of the elements of the semantic
model (the details can be found in [22]). The software implementation need to exchange
the artifacts for collaborative work. For example, in a scenario where a UML modeling
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tool is used to design class diagrams, the code skeleton generated using the UML
modeling tool (forward engineering) has to be used as input by Integrated Development
Environments (IDEs). For example, process-oriented tools bundling requires process-
centric integration. At this stage the SRA integration models are produced that provide
foundations for the detailed architecture design.

Functional demarcation between the requirements to be incorporated by a SRA and
the requirements to be incorporated by the provisioned tools is an important step for the
requirements identification. As in the case studies, our focus was on providing software
architecting and development tools, the SRAs focused on tools provisioning, tools inte‐
gration and awareness of the operations that are performed on the artifacts using the
tools. Whereas, individual tools were responsible for providing support for specific
activities such as architecture knowledge management, architecture design decision
management, architecture design and software implementation. Table 1 shows details
of the SRA and the tools’ requirements classification. The details of the requirements
can be found in [22, 23]. Multi-tenancy and scalability are domain specific quality
requirements to support a large number of tenants [24]. Analysis and identification of
cloud hosting environments for software architecting and implementation domains
requires using IaaS cloud because of heterogeneity of the tools. A combination of
desktop and web-based tools are used for software architecting and implementation. The
IaaS provides flexibility to host the existing tools by configuring the virtual machine
templates.

Table 1. Functional demarcation and requirements

F
un

ct
io

na
l D

em
ar

ca
ti

on

Tools 
Requirements

Architecting Knowledge management, design deci-
sion management, architecture model-
ing.

Implementation Software development, unit testing.
SRA 
Requirements

Functional Autonomous provisioning, semantic 
integration, process centric integration, 
awareness of the operations.

Quality Flexibility, interoperability, complete-
ness and adaptability.

Domain Quality Multi-tenancy, scalability

For the TSPACE SRAs detailed design, we have used a layered architecture [5] and
a view-based approach [4] to represent different parts of the SRA. A layered architecture
can facilitate easy modifiability of a TSPACE SRA, whose different dimensions can be
represented using a view-based approach. The TSPACE meta-model (Fig. 2(b)) and the
detailed models (Fig. 3(b)) produced in the second stage of RADeF are used as a foun‐
dation for the detailed design. Table 2 shows the key architecture design decisions for
software architecting and software implementation of a TSPACE SRA design. We have
reported the details on the architecture views and design decisions in [6, 23].
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Table 2. Decisions for software architecting (Arc.) and implementation (Impl.) case studies

Architecture Design Decisions Case Study
Arc. Impl.

Service Oriented and REST Architecture
Centralized Repository to have common semantic integration models
Use of pipes and filter patterns to support multi-tenancy and easy 
scalability
Tenant specific integration, information discovery and awareness 
rules
Process-centric integration
IaaS cloud for hosting tools

As discussed earlier, the inclusion of heterogeneous tools producing and consuming
artifacts at different levels of abstractions makes the evaluation of a TSPACE SRA a
challenging activity. We have adopted multi-faceted approach to evaluate the TSPACE
SRAs for the reported case studies. (i) We evaluated the TSPACE SRAs and their
respective implementations for functional completeness corresponding to the functional
and quality requirements. (ii) We implemented the prototype systems for TSPACE
SRAs using Amazon IaaS cloud1. Interface modules of TSPACE have been imple‐
mented using Service Oriented Architecture (SOA) [25] and REST [26] architecture
styles using JavaEE service technologies (JAX-RS2, JAX-WS3) for enabling easy inter‐
operability of different types of tools with the systems. The semantic integration has
been implemented using Apache Jena Framework4. The process-centric integration has
been implemented using jBPM5 process workflow engine. (iii) We used quantitative
architecture evaluation approach that is presented in Sect. 2.7, which is based upon utility
tree of ATAM, but can quantifiably measures the TSPACE SRA’s quality. The evalu‐
ation was carried out by six potential stakeholders, who had experiences (of architecting
and implementation) of software development tools, process-based applications, cloud-
based systems and collaborative software development systems.

A subset of the enhanced utility tree (described in Sect. 2.7) constructed in the eval‐
uation session is presented in Fig. 4. The participants of the evaluation session were
asked to assign each of the design decisions with values 0, 0.25, 0.50, 0.75 or 1.00. Then
the average of the value score was taken for each of the design decisions to be assigned
to a specific quality attribute on a utility tree branch. In case, if there were more than
one design decisions corresponding to a specific quality attribute, an average was divided
by the total number of design decisions to keep the maximum probability value under
1 corresponding to each of the quality attributes. If some of the design decisions are
important than others, then weighted averages can be used. Whilst we considered all of

1 http://aws.amazon.com/.
2 http://jax-rs-spec.java.net/.
3 https://jax-ws.java.net/.
4 https://jena.apache.org/.
5 http://www.jbpm.org/.
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the design decisions of the equal importance, the enhanced utility tree branches corre‐
sponding to each of the quality attributes (and sub attributes) had either AND, OR and
SeqAND operators (as discussed in Sect. 2.7). The evaluation participants found the
proposed operators (that were assigned to the enhanced utility tree) helpful to quantify
the architectural quality of the TSPACE SRA. Figure 4 shows the evaluation results
corresponding to four key quality attributes of the TSPACE SRAs for software archi‐
tecting and implementation TSPACE. An average of the quality score (average of the
score given by the six evaluators) is shown in the figure corresponding to each of the
design decisions of the quality attributes. Sum and Min functions (as described in
Sect. 2.7) are used to calculate the aggregated quality score of the reference architectures.

Fig. 4. SRA evaluation utility tree

4 Related Work

Given the increasing importance of SRAs for guiding the designing and evaluating of
concrete architectures in different domains, several researchers have attempted to
provide a set of standardized activities and frameworks for designing and documenting
reference architectures. One of the most comprehensive and detailed guidelines have
been reported by Angelov et al. [1, 2, 7, 16]. Their work provides a classification tech‐
nique of the reference architectures based upon the domain-specific maturity and how
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the reference architectures are designed. For the mature domains, the aim of a reference
architecture is to provide the standardization of the architectures, whereas, for the
emerging domains, the purpose is to facilitate the design of concrete architectures in
multiple organizations. Some of the problems associated with designing a reference
architecture are missing design methods, challenges in defining non-functional require‐
ments, problems with selecting appropriate views, lack of suitable architecture docu‐
mentation methods and relatively little support for evaluating the reference architectures
[1]. In our TSPACE SRA design process, we have explicitly catered all of the above-
mentioned challenges to support the process of designing the reference architecture and
have explicit stages for design and documentation methods, define non-functional
requirements, select appropriate views and choose appropriate evaluation strategies.

Avgeriou [3] suggests representing a reference architecture using multiple view‐
points of Rational Unified Process (RUP) including logical viewpoint, deployment
viewpoint, implementation viewpoint and data viewpoint. Avgeriou has emphasized
that the reference architecture should be evaluated using both scenario-based and archi‐
tecture prototype-based evaluation with respect to development-time and run-time qual‐
ities [3]. Nakagawa et al. [27] have proposed the use of ontologies to identify different
components of the reference architecture. Fernandez et al. [28] have described the key
documentation elements of a software reference architecture. The documentation
elements include technical design, architecture knowledge and experiences and manage‐
ment documentation. For TSPACE SRA, we have described the details about the tech‐
nical design and architecture knowledge. However, the management of the documen‐
tation (during applications of the software reference architecture in different setting) is
out of the scope of this work.

5 Discussion and Conclusions

The cloud-enabled tools not only need to be compliant with specific quality requirements
but also need to provide support for different activities, just like desktop-based tools.
Whilst tools in every domain have their specific challenges, there are some generic
characteristics that tools in every domain need to address. We share our experience from
different activities of designing the TSPACE SRA.

Adoption of Appropriate Methodology to Formalize relations among TSPACE
Elements: To establish relationship among the artifacts that are maintained by cloud-
based tools with other tools is a critical characteristic and can play a significant role in
cloud-based tools adoption. Hence, it is important to identify the integration needs for
the tools to be provisioned from a cloud-enabled workspace. Our experience has shown
that an ontology driven semantic model can provide support for tools selection, relating
different artifacts with each other even though the artifacts are maintained by using
different proprietary data structures, and awareness needs in a cloud based workspace.
As different tools have different requirements for integration, there is a need to have
appropriate semantic integration models corresponding to the artifacts’ formats used by
the tools.
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Incorporating Workflows with Tools Provisioning: In some cases, the tools that are
provisioned as part of a tools suite need to exchange information according to project
specific development processes (e.g., to manage collaboration in distributed architecture
evaluation processes [29]). In such cases, the integration support for the tools needs to
be complemented by a workflow based process on the cloud so that artifacts among the
tools can be exchanged according to the specific software development processes.

Quality of Individual Tools in TSPACE: In our proposed TSPACE SRAs, we have
considered each of the provisioned tools as a black box and have not considered the
management of quality characteristics of each individually provisioned tool during the
lifecycle of a TSPACE instance. However, for certain tools that produce executable
artifacts, e.g. model driven tools used to generate code, may require extra computing,
memory or other resources during their life cycle depending on the tasks to be executed.
In such cases, a TSPACE for the tools needs to incorporate the metrics and corresponding
prediction models so that additional resource needs can be predicted and resources can
be acquired according to the needs of a specific task.

Impact of software reference models: Availability of standardization models for
respective domain impact the reference architecture design process. Whist designing
TSPACE software reference architecture for software architecting domain, we have
leveraged IEEE 1471-2000 [20] and ISO/IEC/IEEE 42010:2011 [21] architecture docu‐
mentation models as a baseline for the identification of the TSPACE architecture
elements and the TSPACE ontology meta-model design. The meta-model has been
further enhanced by analyzing architecting TSPACE requirements. The incorporation
of standardized domain model in the reference architecture design ensures the applica‐
bility of reference architecture for broader range of tools. Unavailability of the stand‐
ardization models for the respective domain or not using them during the reference
architecture design can negatively impact the applicability of a reference architecture.

Selection of Appropriate underlying IaaS Clouds and Cloud Deployment Models: As
tools in a TSPACE SRA are considered as black box, the tenant specific constrains on
artifacts’ storage location are applied onto the tools that are provisioned on the location
that is compliant with the constraints (in our prototype implementation, we have used
Amazon EC2 location specific provisioning features). However, for more complex use
cases, where location constraints on the artifacts can change during their lifecycle,
Virtual Machines (VMs) hosting the tools might need to be migrated from one location
to another. In such cases, the capability of underlying IaaS to support VMs migration
would play a critical role. Hence, IaaS cloud selection and selection of cloud deployment
model (e.g., public, private or hybrid) should be carefully made. A cloud environment
that supports the desired features should be selected.

Multi-facet approach for TSPACE SRA Evaluation: Considering a generic nature of
TSPACE SRA and a broad range of potential stakeholders, multiple architecture eval‐
uation techniques need to be adopted for evaluating a reference architecture from
different perspectives. We have evaluated the TSPACE software reference architecture
using scenario-based evaluation approaches [18], architecture tradeoff analysis method
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[17] and a prototype implementation of the reference architecture. Scenario-based eval‐
uation approaches can help evaluate completeness of a SRA with respect to reference
architecture objectives and requirements. Architecture tradeoff analysis method enables
the identification of strong and week points of a SRA. A prototype is a viable way to
demonstrate the feasibility of a SRA. The proposed TSPACE SRA evaluation method‐
ology facilitates the quality score of not only the SRAs but also their concrete repre‐
sentations. For example, if a concrete implementation of the SRA corresponding to
evaluation tree presented in Fig. 4 adopts different parts of the design decisions and
corresponding components for different tenants, the quality of the instantiated architec‐
ture and corresponding system can be computed on the fly, especially for SaaS based
systems.

In future, we intend to apply RADeF on software reference architecture design and
analysis of other types of cloud-based systems. We also intend to carry out empirical
evaluations on our proposed quantification mechanism for SRA evaluation utility tree
to analyze its impact on long-term management of the software reference architectures.
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