
The CRUSOE Framework: A Holistic
Approach to Analysing Prerequisites
for Continuous Software Engineering

Teemu Karvonen1(&), Tanja Suomalainen2, Marko Juntunen3,
Tanja Sauvola1, Pasi Kuvaja1, and Markku Oivo1

1 Information Technology and Electrical Engineering,
University of Oulu, Oulu, Finland

{teemu.3.karvonen,tanja.sauvola,pasi.kuvaja,

markku.oivo}@oulu.fi
2 VTT Technical Research Centre of Finland Ltd, Espoo, Finland

tanja.suomalainen@vtt.fi
3 Oulu Business School, University of Oulu, Oulu, Finland

marko.juntunen@oulu.fi

Abstract. Continuous software engineering (CSE) is used for customer
experiments and repetitive integrated processes within and between business
planning and software development. First, this paper defines a new framework,
called CRUSOE, for analysing CSE prerequisites. The framework allows for a
more precise analysis of the interrelations and estimation of the changes that are
prerequisites for moving from traditional product development to CSE. CRU-
SOE addresses prerequisites associated with and interdependencies among
(1) the strategy, (2) architecture and (3) organisation. Second, this paper
describes a case study conducted as part of a smartphone platform project to
investigate the CSE prerequisites for product-focused software development.
The results are synthesised together with recent related studies using the
CRUSOE framework. The findings confirm challenges in moving towards CSE
in embedded system development. Moreover, context-specific prerequisites
should be considered, while it is still unclear as to how CSE can be systemat-
ically applied to the non-website development context.

Keywords: Continuous software engineering � Strategy � Architecture �
Organising � BizDev � Software ecosystem

1 Introduction

Embedded and product-intensive software development project teams are becoming
increasingly interested in applying practices and tools for continuous software engi-
neering (CSE) [1]; e.g., the Lean Startup method [2], DevOps [3], continuous delivery
(CD) [4] and continuous experimentation [5]. Although many of these practices are
widely acknowledged in the field of website development [6, 7], there are only a few
frameworks that describe how CSE can be applied in product-focused embedded
system development (e.g. smartphones, cars etc.). Moreover, there is still very little

© Springer International Publishing AG 2016
P. Abrahamsson et al. (Eds.): PROFES 2016, LNCS 10027, pp. 643–661, 2016.
DOI: 10.1007/978-3-319-49094-6_52



empirical evidence of the actual usage of these practices in this context. The existing
studies have mostly indicated severe challenges in adopting these practices in
business-to-business (B2B) and embedded system development [8–11] contexts. In
addition, CD and continuous experimentation still seem to mostly be used for
small-scale website development projects [6, 8, 12]. Fagerholm et al. [5] have recently
investigated continuous experimentation in university software laboratory projects with
two case companies and have introduced a model for explaining how the continuous
experimentation can be organised. However, more empirical studies are needed to
increase our understanding of how these practices could be implemented in different
software development contexts. Consequently, in this paper, our goal is to clarify the
key prerequisites for applying CSE in product-focused software development.

The sustainable success of a company can be linked to its capabilities in terms of
bringing new innovations to market. In today’s competitive and turbulent business
environment, time to market has also become very important. Consequently, business
stakeholders have identified rapid fielding and continuous experimentation as important
elements of their long-term strategies. Development stakeholders are tasked with
finding a balance between development speed and stability, as the development process
speed can often be temporarily increased by collecting technical debt (e.g., skipping
some steps in the process), followed by a slowdown in development due to having to
pay off the debt later. Consequently, companies need practices for maintaining a
consistently high velocity. Bellomo et al.’s [13] suggests that companies must develop
combined practices such as “release planning with architecture considerations” and a
“prototype/demo with [a] quality attribute focus” to balance process speed and stability.
Efficient integrative activities between software development and other functions (e.g.,
business and operations) are needed in all stages of the product lifecycle.

Fitzgerald and Stol [3] have emphasised continuous integration (CI) between
software development and its operational deployment (i.e., DevOps) as well as con-
tinuously assessing and improving the link between the business strategy and software
development (i.e., BizDev). However, they do not explicitly define how such a busi-
ness strategy should be carried out or how it is enacted in a continuous manner. In this
paper, we want to clarify strategy planning activities and their interrelationship with
CSE. The focus of our study is on investigating CSE prerequisites in product-focused
(e.g., embedded systems) software development projects. Our research contributions
are as follows. First, we review the literature on CSE, strategy planning and models for
analysing holistic aspects of software-intensive product development. Second, we
construct and specify the CRUSOE framework (Continuous inteRdependencies in
prodUct-focused SOftware Engineering) for analysing CSE in software-intensive
projects. Third, we conduct a case study from a smartphone product platform project to
validate the framework. The research question for the case study is: What are the
prerequisites for using the CSE approach in software-intensive product development?
Finally, we synthesise the case-study findings with recent related studies by applying
the CRUSOE framework.

644 T. Karvonen et al.



2 Background

2.1 Holistic Models for Analysing the Development of Software-Intensive
Products

Various aspects of business and software ecosystems have been identified as important
research topics in the context of CSE [1, 3]. In addition, as explicitly stated by
Fitzgerald and Stol [3], continuity is required in all stages of the product lifecycle.
Subsequently, they stress that it is necessary to constantly evaluate and improve
software development interfaces with adjacent business-oriented activities. Previ-
ous CSE studies [3, 14] have suggested that delays in product development are often
caused by a lack of holistic thinking and/or models for analysing software product
development in a holistic manner. For example, inefficiencies and delays related to
“handoffs” [15], as addressed by lean thinking, have been identified as a typical form of
waste in software development, and thus the planning and engineering aspects of
software product development should not be decoupled in separate silos for efficiency
reasons. Still, information gaps and waste in between the business planning and
development cycle could become evident when organisations are pushed towards faster
(e.g., daily) or continuous software release cycles.

There are only a few documented approaches for analysing software product
development in a holistic manner. As stated by Bosch et al. [17], few, if any, models
exist that can analyse both the internal and ecosystem dimensions of research and
development (R&D). The Business, Architecture, Process and Organisation (BAPO)
[16] model (the left-hand side of Fig. 1) has been used for evaluating software product
families and for analysing four main concerns addressed in product development:
(1) how to make a profit from products, (2) the technical means to build the software,
(3) responsibilities and relationships within software development and (4) the mapping
of roles and responsibilities to organisational structures. As an update and extension to
the BAPO model, the Ecosystem, Strategy, Architecture and Organizing (ESAO) [17]
model (the right-hand side of Fig. 1) addresses both the internal and ecosystem
dimensions for analysing company strategy, architecture and organising. Recently,
both the BAPO and ESAO model dimensions have been applied to describe the evo-
lutionary steps in the transition from traditional development towards an innovation
experiment system (IES) [18]. Figure 1 illustrates the key dimensions of the BAPO and
ESAO models. Later in this paper, we elaborate on the dimensions of the ESAO model
as we construct the CRUSOE framework to analyse the CSE prerequisites.
The CRUSOE framework illustrates possible interrelationships among ESAO dimen-
sions that we consider to be important for CSE. These interrelationships (links) have
also been previously addressed by the BizDev and DevOps concepts [3].

2.2 CSE in a Nutshell

When we use the term “CSE”, we are referring to an emerging software development
paradigm recently characterised by Bosch [14] (e.g., Stairway to Heaven, IES, and
continuous deployment) and Fitzgerald et al. [3] (e.g., Continuous*). IES is

The CRUSOE Framework: A Holistic Approach to Analysing Prerequisites for CSE 645



characterised by three coexisting aspects [19]: (1) “continuously evolving the software
by frequently deploying new versions”, (2) “customers and customer usage data play
[ing] a central role throughout the development process”, and (3) “development… focus
[ing] on innovation and testing as many ideas as possible with customers”. To be able to
frequently deploy new versions, it is necessary to be capable of CD, which, as defined by
Humble and Farley [4], is an array of software development, CI and continuous
deployment patterns for enabling fast, reliable and automated deployments to produc-
tion. Consequently, the CSE paradigm can be associated with the Lean Startup method
[2] (i.e., rapid validated learning) and enterprise agility [20] sensing (i.e., the capability
of continuously determining what is the most valuable feature for the customer) and
response (i.e., the capability of continuously deploying new versions to production).
Underlying agile principles emphasise collaborative work methods between business
people and developers: “Business people and developers must work together daily
throughout the project” [21]. Interdependencies between the business and development
aspects are often addressed via the need for establishing frictionless information flow
and decision making in product development [3, 15] (e.g., fast information flow,
transparency and continuous planning practices). Continuous information flow and
smaller batch sizes allow for better synchronisation of business planning with iterative
release planning methods and tools [22] (e.g., iterative feature prioritisation and road
mapping) and for breaking down requirements into small chunks that can be imple-
mented, tested and deployed in approximately 1- to 2-week sprints, as emphasised in
Scrum methodology [23]. Finally, shorter iterations allow for faster customer feedback
cycles, thereby reducing the risk of developing the wrong product. In website devel-
opment, continuous automated deployment can even enable rapid controlled experi-
ments [7] (e.g., A/B tests) with end users.

Fig. 1. The BAPO [16] and ESAO [17] models.

646 T. Karvonen et al.



2.3 Business Management Views on Strategy and Strategic Planning

When juxtaposing the ideology of CSE practices [1, 3] with the traditional, rationalistic
view of strategy and organisations [24], they appear ill-matched. Whereas CSE stresses
the importance of real-time actions and continuous change, the rationalistic view of the
strategy process [24] focuses on the creation of a structured future plan that is tem-
porally and practically separated from its implementation [26, 27]. This separation thus
relies on the assumption of a comparatively static and predictable business environment
that allows the rational managers [26] to first create a plan based on systematic
scanning and positioning [25] and then implement it while having sufficient control
over the consequences of their actions [27]. The usefulness of such theories for practice
has been questioned, as they do not sufficiently reflect today’s volatile organisational
reality [28, 29]. Therefore, there is a need for creating an understanding of strategy-
making that better addresses the turbulent organisational reality.

Strategic planning is all about answering the questions of where you are, where you
want to be and how you get there, as well as defining how these aspects are connected
[30]. The strategy process varies across companies, but at the company level, it should
be a continuous and issue-driven process [31]. In addition, the ways in which the
strategy can be implemented fall into specific routines and work patterns that vary from
firm to firm and between different types of firms [32]. Similarly, Brömmelstroet [33]
defines how strategic planning phases can vary widely in terms of how they are
organised (i.e., bottom up or top down), but all strategic planning processes can be seen
as multilevel company processes in which planning actors work together towards a
shared outcome. Even though the value of formal strategic planning has been strongly
questioned [34], it is still an activity that is widely carried out in companies [35].
Formal strategy has power in affecting organisational actions and practices, as it defines
roughly what is done and what is not done [36]. Eisenhardt and Brown [37] state that
strategy should be seen as temporary, complicated and unpredictable and that
strategy-making is a continuous process that is more oriented towards real-time
operations than long-term stable goals [37].

From the software development perspective, and especially from the agile and lean
software organisational perspective, Mavengere [38] clarifies that supply chain par-
ticipants should have their own strategic plans which should be related to the whole
supply chain’s plan, but he does not go into detail about how these plans are created
(i.e., the planning process in detail). On the other hand, Koenigsaecker [39] presents a
lean strategic organisational process in which strategic planning is typically done once
per year and is a learning experience in and of itself. In addition, monthly strategy
deployment meetings are held to review progress and create opportunities for sharing
lessons learned. The monthly strategy deployment reviews also help get the enterprise
thinking about how to make the work process fundamentally better every month.

According to [40], among software development companies, the time frame for
long-term strategic planning is commonly 3 years plus the current year. One of the case
companies in this study used continuous strategic planning in which strategic plans
were reviewed quarterly and monthly. The two other case companies reviewed and
updated their strategic plans annually. Their strategic planning practices were closer to
traditional project-based strategies than to continuous strategy practices – because the

The CRUSOE Framework: A Holistic Approach to Analysing Prerequisites for CSE 647



planning was performed annually, management approved plans which were then
implemented for the rest of the year. Continuous strategy is extremely vital in a
business environment that is constantly changing [41]. Suomalainen et al. [41] clarify
that even though a strategy exists all the time, it should be iteratively and continuously
updated based on market and customer demands. For example, past financial crises
have forced companies to realise that continuous planning is required throughout their
organisations; not only at the software development level, but also at the strategic,
business and financial levels.

3 The CRUSOE Framework

In this section, we introduce a new framework called CRUSOE that we later use to
analyse the CSE prerequisites.

Figure 2 provides a simplified illustration of the CRUSOE framework, which
utilises the dimensions of the ESAO model [17]: (1) Strategy: ecosystem strategy
(ES) and company internal strategy (CIS); (2) Architecture: ecosystem architecture
(EA) and company internal architecture (CIA); and (3) Organising: ecosystem organ-
ising (EO) and company internal organising (CIO). The CRUSOE framework is an
enhancement of the ESAO model that, according to the principles of CSE [1, 3],
highlights the interdependencies between the three dimensions. These interdependen-
cies are illustrated in Fig. 2, in which Areas 4, 5, 6 and 7 overlap with two adjacent
dimensions. These areas illustrate interdependencies (e.g., integrative activities and
combined practices) between dimensions. Area 7 illustrates the most overarching,
holistic practices for company governance. Consequently, Areas 4, 5 and 6 illustrate
more explicit integrative activities between dimensions, such as the BizDev concept
addressed by Fitzgerald et al. [3]. We argue that the BizDev activities are associated
with Areas 4, 5 and 7. According to Linden et al. [16], due to the interrelationships
among the dimensions, any change in one dimension may have consequences in
another dimension. These interrelationships have also been illustrated in the BAPO
model with arrows and lines (Fig. 1). In the rationalistic view of the strategy process,
and as stated by Bosch et al. [17], strategy should “idealistically” drive architecture and
architecture should drive organising. However, in practice, “one has to allow for
bi-directional dependencies” [17]. Moreover, the strategy must conform to empiricism
and business realities; e.g., seemingly irrational customer behaviour and the existing
constraints and capabilities of information technology (IT) and R&D. To summarise
the notions referred to earlier about the need for a flexible and dynamic strategy
process, we argue that the strategy process should not be seen as the process governing
“only business” or “all company processes”, but rather as a process that can, and
should, be continuously influenced by other company processes. Subsequently, there
are also bi-directional interactions and dependencies illustrated as overlapping areas
between each dimension and highlighted with numbers 4 to 7 in Fig. 2. Although the
CRUSOE framework is used herein to analyse the CSE prerequisites, we anticipate that
the framework could also be used for analysing other kinds of software-intensive
product development processes.

648 T. Karvonen et al.



In Table 1, we further elaborate on the key aspects of each area of the CRUSOE
framework. Areas 1 to 3 are adopted from the ESAO model definitions. Our contri-
bution to this area of study relates to the questions associated with establishing inte-
grative practices among the various ESAO dimensions (Areas 4–7). These questions
highlight relations between the ESAO dimensions and choices that the company has
available to it. For example, there could be a vast number of choices for how to build a
software-intensive product. However, only a few of the choices perhaps allow for the
proper means with which to generate revenue in the future (e.g. providing a proper
platform for a service business based on continuous deployment). Meanwhile, different
ecosystems could provide different technical and procedural capabilities for CSE. In
this paper, the purpose of the framework is to aid in analysing CSE in software-
intensive product development.

4 Case-Study Design

To investigate CSE in a real software development context and to validate the CRU-
SOE framework, we applied the case-study method [42]. Our goal in conducting
interviews was to gather data for a comprehensive understanding of the project’s goal
and of development and deployment practices. In addition, we asked about information
flow and interactions among company stakeholders, customers and suppliers. In eight
semi-structured face-to-face interviews, we asked participants to describe company
strategy planning practices and product development processes. We also explicitly
asked interviewees to identify the benefits and barriers associated with using the CSE
approach to product development.

The unit of analysis in our case study was the project; i.e., developing a smartphone
platform. Due to confidentiality reasons, we cannot provide a very detailed description
of the features of the product. The platform included both software and hardware
components. Consequently, this project is large, employing over 100 people directly
inside the case company and also several partners involved in hardware and software
development. We interviewed company personnel who were directly involved in the
product development or company-level strategy planning. We also collected data from
the organisation’s public webpages for a better understanding of the project’s purpose,

Fig. 2. Simplified illustration of the CRUSOE framework.

The CRUSOE Framework: A Holistic Approach to Analysing Prerequisites for CSE 649



Table 1. CRUSOE framework areas explained.

CRUSOE
framework Areas 1–
7

Analysis scope: company
internal (I)

Analysis scope: ecosystem (E)

1* - Strategy What are the options for how the
company generates revenue now
and in the future? [17]

What are the options that the
company has available in its
current role in the ecosystem?
[17]

2* - Architecture What are the options for
technology choices, technical
means and technical structures
to build software-intensive
products? [17]

What are the options for how to
design interfaces between the
company’s internal
architecture and related
ecosystem partners, such as
suppliers providing solutions
and firms that build software on
top of a product or platform?
[17]

3* - Organising What are the options for ways of
organising work, ways of
working, roles, responsibilities,
processes and tools within
software development? [17]

What are the options for how a
company works with customers,
suppliers, and ecosystem
partners in terms of processes,
tools used, ways of working and
ways of organising the
collaboration? [17]

4 - Strategy &
Architecture
interdependencies

What are the options to connect
the internal strategy and
architecture? E.g. what are the
practices for continuously
validating technology choices,
technical means and technical
structures that generate revenue
now and in the future?

What are the options to connect
the ecosystem strategy and
architecture? E.g. what are the
practices for continuously
comparing different ecosystems’
technical capabilities and
interfaces that generate revenue
now and in the future?

5 - Strategy &
Organising
interdependencies

What are the options to connect
the internal strategy and
organising? E.g. practices for
continuously adopting efficient
ways of organising work, ways
of working, roles,
responsibilities, processes and
tools.

What are the options to connect
the ecosystem strategy and
ecosystem organising? E.g.
practices for continuously
validating investments in
ecosystem processes, tools,
ways of working and ways of
organising the collaboration in
the ecosystem.

6 - Architecture &
Organising
interdependencies

What are the options to connect
the architecture and organising?
E.g. practices for continuously
refactoring technical structures
that provide efficient organising
ways of working, roles,

What are the options to connect
the ecosystem architecture and
organising? E.g. practices for
providing appropriate technical
structures for continuous
deployments and collaboration

(continued)

650 T. Karvonen et al.



company vision and strategic significance at the organisational level. We used con-
venience sampling for selecting interviewees and projects (i.e., those involving the
company that we could easily access). In addition, related workshop materials such as
video clips, photos and field notes were collected and stored to support the analysis. All
of the data was collected in 1- to 1.5-hour semi-structured interviews with eight
company employees. The interviewed employees’ job titles and responsibilities are
summarised in Table 2. All interviews were recorded for later transcription and a

Table 1. (continued)

CRUSOE
framework Areas 1–
7

Analysis scope: company
internal (I)

Analysis scope: ecosystem (E)

responsibilities, processes and
tools.

with customers and ecosystem
partners.

7 - Strategy &
Architecture &
Organising
interdependencies

What are the overarching
company governance options for
connecting the company strategy
with technical architectures and
with ways of organising? E.g.
practices for enabling a
company culture of continuous
improvement, experimentation
and innovation.

What are the overarching
company governance options for
connecting the company strategy
with ecosystem interfaces and
ways of collaborating with
customers and ecosystem
partners? E.g. practices for
enabling a culture of continuous
improvement, experimentation
and innovation with customers
and ecosystem partners.

*Areas 1 to 3 are the same as in the ESAO model [17].

Table 2. Interviewees’ job titles and responsibilities.

Job title Job responsibilities Interview
duration

Senior product
manager

Responsible for delivering product programs to
customers

117 min

Software platform
product owner

Platform software component–related supervising 103 min

Quality manager Product quality management including conformance
to product safety standards and environmental
regulations

105 min

Senior specialist Design and implementation of continuous
deployment processes and tools

104 min

President of the
business segment

Chief Executive Officer for the business segment 67 min

Business developer Product business development 78 min
Scrum master Responsible for coordinating software development

team work
86 min

Product manager Responsible for coordination of the product program 92 min

The CRUSOE Framework: A Holistic Approach to Analysing Prerequisites for CSE 651



qualitative data analysis was conducted using the NVivo tool [43]. The analysis was
performed by considering the CRUSOE framework dimensions and the questions
presented in Table 1.

5 Findings

In this section, we analyse the prerequisites for applying CSE through case-study data
and by applying the CRUSOE framework areas introduced in Sect. 3.

5.1 ESAO Overview: Strategy (1), Architecture (2) and Organising (3)

The case company offers a wide range of products, platforms and R&D services that
typically involve radio technologies and wireless data transfer. Consequently, the
company is involved in multiple ecosystems. The company is also an active contributor
to several open source software projects. Recently, the company has expanded its
product portfolio towards Internet of Things (IoT) solutions and data analytics services.
Its main customers are from the B2B domain, including both private- and public-sector
organisations. Hence, when analysing the strategy and connected software development
practices, it is necessary to explicitly specify which product category and customer
segment is under analysis. The company has an established position in manufacturing
systems for public safety and the military. However, more recently, the company has
adopted a strategy for developing product platforms that allow tailored products to be
created that could be sold to consumer markets (B2C). The smartphone platform project
that we analysed in this case study is an example of this type of product.

We consider this company to be a very interesting research context for CSE
because the company has many products in their portfolio and there are many different
kinds of customers involved. This clearly addresses the challenges in defining product-
and company-level processes.

In this way, the company has systematically developed capabilities to adapt to
different customer contexts and software ecosystems and also to rotate employees
among projects to develop the employees’ skills and technical knowledge. Conse-
quently, the interviewees often referred to other projects that they were aware of or had
worked on previously. The interviewees emphasised that although there was a
company-wide defined product development process that was, in principle, guiding all
company projects, individual projects often improvised; i.e., very different methods
were used or they worked in collaboration with specific customers and other ecosystem
partners. Hence, when asked about the benefits of and barriers to using the CSE
approach in product development, the interviewees considered opportunities for using
the CSE approach as highly context-sensitive. Different products and customer seg-
ments were considered as having very different CSE prerequisites. These customer
segments could be characterised by two extremes: “conservative public-sector cus-
tomers” and “fast-moving private-sector customers”. Different product segments could
be characterised by “large and complex multivendor legacy systems” and “compact
consumer products”.

652 T. Karvonen et al.



5.2 CRUSOE Area 4: Connecting Strategy and Architecture for CSE

This section analyses the options for connecting the internal and ecosystem strategy
with the architecture for CSE; i.e., interfaces and technical structures to create revenue.
The Android operating system (OS) [44] was selected as the software baseline for the
smartphone project. When considering the various smartphone OS ecosystems, the
Android OS currently has by far the largest market share, dominating markets with
over 80 % of the total market share [45]. Hence, the selected platform also allowed for
opportunities to generate future revenue as additional product applications could be
continuously provided via the Google Play store (http://play.google.com/store/apps).

The project budget and product strategy management-level planning occurred in
monthly cycles. The development teams organised their work into 2-week sprints that
also guided and synchronised several planning-related activities such as the planning
associated with validating technical interfaces, features and release-content prioritisa-
tion. The project actively used a CI system, thus new versions of the product could be
produced several times a day. These new software versions were mainly used for
internal testing purposes. Nevertheless, the project was considered capable of contin-
uously delivering new versions to demonstrate the latest interfaces and product features
for customers and ecosystem partners. We consider that interdependency with business
planning (i.e., continuous synchronisation of development sprints with continuous
strategic planning and budgeting cycles) was clearly a key prerequisite for using the
CSE approach because it allowed for continuous feedback cycles and transparency in
terms of how the project was progressing.

5.3 CRUSOE Area 5: Connecting Strategy and Organising for CSE

This section analyses the options for connecting the company’s internal and ecosystem
strategy with internal and ecosystem organising for CSE. The interviewees emphasised
how the transition towards CSE was a strategic decision that governed practices
relating to how products were designed and how the company was organised. More-
over, adopting CSE was considered as a competitive advantage in that it provides better
transparency, efficiency and flexibility when working with different customer projects.

When considering the smartphone project-level CSE strategy, we could see that the
CSE approach was mainly limited to software development practices such as CI and
test automation. The interviewees also pointed out that while the company was a small
player in the Android OS ecosystem, it had to adjust its internal plans according to
supplier schedules and technology roadmaps. Meanwhile, larger smartphone vendors
had more power to affect their supplier’s plans. Consequently, the interviewees con-
sidered supply chain support as a key CSE prerequisite and also as a key hindrance to
not being able to fully implement the CSE approach (e.g., CD in the project).

To summarise our findings regarding strategic dimension interdependencies with
organising, we consider that currently, the company’s internal strategy is to adopt a
CSE capability. This is also the main driver for using CSE in the company projects.
The company had already made significant investments in terms of promoting CI and
CD solutions (e.g., automation) for use in software-intensive product projects.

The CRUSOE Framework: A Holistic Approach to Analysing Prerequisites for CSE 653

http://play.google.com/store/apps


As concrete evidence of the strategic decision, the company had established a team of
experts to implement the technical CI and CD framework (toolbox) so that it could be
adopted in all company projects. This expert team was also in charge of coaching
projects on how to adopt CI development practice. We consider this activity as a key
interdependency between the strategy and organising aspects that was clearly con-
tributing to the company’s transition towards CSE.

When considering other aspects of the ecosystem, some of the existing customers
showed very little interest in using the CSE approach in product development projects.
So far, only a few private-sector B2B customers had insisted on using the CSE
approach in the development of consumer products. One interviewee pointed out that
some customers have very little knowledge of and experience in agile product devel-
opment methods. Meanwhile, public-sector customers in particular often have estab-
lished and formal staged processes for acquiring software-intensive products; e.g.,
communication equipment for the military and for public safety must go through
rigorous testing and certification processes before it can be put into actual use. Con-
sequently, an educated and motivated customer was considered as an important CSE
prerequisite.

5.4 CRUSOE Area 6: Connecting Architecture and Organising for CSE

This section analyses the options for connecting the company’s internal and ecosystem
architecture with organising for CSE. The interviewees considered the selected
Android OS platform architecture (e.g., the hardware and software technology plat-
forms and associated tools) to provide an adequate technical capability in terms of
delivering software to end users rapidly and over-the-air (OTA) [46]. We consider this
as a key prerequisite associated with the interdependency between the organising and
architecture dimensions.

Several interviewees emphasised how the technical capability of providing updates
continuously must be aligned with quality assurance practices and cycles for testing.
The interviewees stated that the prerequisite of frequently delivering new updates to the
end user would have to precede the rigorous internal testing period. One interviewee
stated that some bugs can be identified only after using the product for a long period of
time, which could be a challenge for CD. System updates that require rebooting or
interrupting end-user product usage were also considered problematic since they could
easily annoy end users. Moreover, updates in business and critical safety systems
cannot interrupt or compromise the availability of the service. Consequently, it is a
prerequisite to minimise breaks in service availability and deliver updates so that the
end user is not interrupted.

We consider the interviewees’ previous experiences in using rapid prototyping and
demoing to be somewhat controversial. Although rapid prototyping was acknowledged
as very important and good practice for identifying key functionalities and require-
ments for the product in the early phases of development, there were also drawbacks
such as undisciplined processes for bug fixes and feature prioritisation. Two intervie-
wees identified the problem known as the HiPPO; i.e., the “Highest Paid Person’s
Opinion” [7]. One interviewee emphasised how the processes for building prototypes

654 T. Karvonen et al.



and actual products were very different. Although prototypes can often be used for
demonstrating new functionalities, they do not typically meet the proper internal
quality criteria that are required for real products. Consequently, some managers are
often too optimistic about how much work is still to be done in order to finalise the
product. Therefore, the company needs to develop balanced processes that integrate
speed and stability in order to build actual products in an experimental manner. An
important CSE prerequisite is thus that the company increases its understanding of the
experimentation process and that it reviews current best practices, milestones and
checklists for product development. Methods for managing technical debt are partic-
ularly important prerequisites for CSE.

5.5 CRUSOE Area 7: Overarching Governance for CSE

Finally, this section analyses the options for overarching company governance for CSE.
As stated earlier, we considered that the company management had clearly made a
strategic decision to promote the CSE approach in all of its company projects. Two
interviewees stated that any investment promoting CSE was an important “investment
for the future”. The interviewees considered it important to establish and improve
systems for company-wide information transparency and for the real-time availability
of customer feedback and product quality metrics. We consider the company’s senior
management’s commitment to promoting the capability of using the CSE approach in
product development as a key CSE prerequisite. We can identify several activities that
indicate the company management’s commitment to investing in CSE, such as an
investment in people, tools and processes for enabling the rapid deployment of CI in all
company projects; increasing test automation coverage; developing methods for
end-user data collection (product platform instrumentation for data collection); sys-
tematising customer feedback collection (e.g., customer surveys); and developing tools
and processes for analysing user data and sharing information internally in the com-
pany via IT systems. The company also arranged regular sessions for employees to
promote internal experience sharing and bottom-up strategic planning.

5.6 Findings’ Summary

In summary, we identified the following key CSE prerequisites in a smartphone
platform project: (1) customer education and motivation, (2) software ecosystem
support, (3) supply chain stakeholder support, (4) leadership commitment, (5) process
rigor for experimentation, (6) quality assurance process cycle duration, (7) technical
debt management, (8) OTA updates with minimised breaks in service availability, and
(9) internal experience sharing and bottom-up strategic planning. The CRUSOE
framework has significantly helped us to systematically categorise and more clearly
articulate the prerequisites for using CSE in the case-study (smartphone platform)
project. Based on our case-study findings, applying CSE to product-oriented devel-
opment can involve a complex organisational change within and between software
development and business activities. Whereas the adoption of technical infrastructure

The CRUSOE Framework: A Holistic Approach to Analysing Prerequisites for CSE 655



and development practices is an important starting point for CSE, one should also
consider the company’s culture, leadership and key stakeholder relations.

6 Discussion

This section continues our interpretation of the case-study results and synthesis of the
prerequisites for CSE in software-intensive projects together with recent related
empirical studies on the research topic. In Table 3, we list the main findings from the
studies.

6.1 Synthesising the Prerequisites for CSE

As identified in previous studies referred to in Table 3, the challenges associated with
CSE are often multidimensional. Incorporating pilot or lead customers in the devel-
opment process and business-model change is clearly a commonly identified prereq-
uisite for CSE that involves both the company’s internal and ecosystem processes. In
addition, the supply chain (e.g., the component and technology platform suppliers)
must be incorporated in the development cycle to be able to continuously integrate all
of the product components and test the product.

As stated by Facebook’s release engineering manager, “Mobile deployments are
more challenging than Web deployments because we don’t own the ecosystem, so we
can’t do all the things that we would normally do” [12]. A company’s role in the
ecosystem can significantly affect how feasible it is to use the CSE approach. Earlier
case studies have identified ecosystem-related challenges in CD, such as dependencies
on the hardware platform component supply process and interrelated customer pro-
cesses, such as periodic tendering, periodic budgeting, product piloting and acceptance

Table 3. Recent empirical studies on obstacles and challenges for CSE.

Leppänen et al. [8] Obstacles for CD: “resistance to change”, “customer preferences”, “domain
constraints”, “developer trust and confidence”, “legacy code considerations”, “[test automation]
duration, size and structure”, “different development and production environments”, “manual
and non-functional testing”.
Lindgren et al. [9] Domain-independent challenges associated with continuous
experimentation: “organizational culture”, “availability and sharing of data”, “data analysis”,
“identifying metrics”, “release cycle speed”, “defining product roadmap”, “time [resources]”,
funding [resources], “technical obstacles”.
Rissanen et al. [10] B2B specific challenges of CD: “technical challenges”, “customer
challenges”, “procedural challenges”.
Olsson et al. [47] Challenges identified in the adoption of CD: “diverse adoption of agile
practices among teams”, “complexity of team resource allocation”, “dependence on resources
outside of the team”, “difficulties in analyzing and maintaining automated tests”, “difficulty in
removing or reducing old tests”, “difficulties in establishing efficient rollback mechanisms”, “no
effective mechanism for analysis of customer data”, “lack of understanding about feature use”,
“no pro-active use of customer data”.

656 T. Karvonen et al.



testing practices. These ecosystem-related constraints could require overarching
changes in a company’s business model, architecture and organising.

As identified in previous case studies, the product architecture must provide
capabilities for adequate componentisation for partial and staged release, including
roll-back mechanisms. Additionally, internal and ecosystem stakeholder needs must be
addressed in the architecture; e.g., enabling CI and partial deliveries of products
without updating the whole product. Technical capabilities for CD and continuous
testing in production-like (staging) test environments are prerequisites for pushing
reliable, bug-free releases into the customer’s production environment. While
deployment to the production environment can technically be similar to deployment to
the staging environment, it involves risks directed towards the customer’s business.
Consequently, deployment to production must ensure the rapid identification of any
abnormalities in the system and, if needed, an immediate roll-back to the previous
functional configuration.

The experimentation of new functionalities on Facebook is conducted via “ca-
narying” [12]; i.e., collecting user data from alpha and beta test groups before engaging
in mass deployments, where changes are pushed out to all production systems (servers).
As identified by Rahman et al. [6], CD is used almost solely for deploying websites.
Hence, we consider that Internet- and cloud-based virtualisation technologies provide
the best technical capabilities for CSE. Cloud-based services are nowadays often inte-
grated with embedded systems and consumer products (e.g., sports-tracking and
health-monitoring applications). Consequently, this trend may also enable the increasing
use of the CSE approach in the future.

As identified in previous studies, it is a prerequisite that a project must have the
capability for continuous integration and testing of the whole product. The existing
system for CI can often be incrementally upgraded for automated delivery; i.e., a
continuous release process also involving the release of the decision-making (e.g.,
acceptance) process for customer deliveries. As the release cycle may shorten quite
dramatically, it is paramount that the user experience (UX) and system design functions
are integrated into the development team to enable the efficient planning of features.

From a release planning point of view, in traditional software projects, the cus-
tomer’s role is to be involved in the planning and freezing of requirements at the
start-up stages of the project. Consequently, the customer accepts project delivery
based on customer validation at the end of the project. From the development process
point of view, a customer’s role and responsibilities could change radically when
moving from periodic traditional methods towards CSE. Although a product owner can
represent the customer, the actual customer must also take a more active stakeholder
role throughout the project because deliveries can be experimental (tentative and prone
to change) and they can occur more frequently. Subsequently, the delta between
deliveries to be accepted by the customer is smaller. CD, however, depending on the
industry domain, may radically impact how value is delivered to users.

Moving away from periodic delivery (large releases) often leads to inevitable
business-model transformation. CD involves customer use and purchase processes.
Internal business planning, requirement prioritisation and release delivery processes are
also involved. However, organisational capabilities for CD must be considered. As
stated by Facebook’s release engineering manager, “CD works for small teams, within

The CRUSOE Framework: A Holistic Approach to Analysing Prerequisites for CSE 657



20 to 30 changes per day”. Hence, more complex systems and large projects (i.e., with
more than 100 developers) working in a common code base may have to settle for a
lower continuous deployment frequency.

6.2 Study Limitations, Future Studies and Threats to Research Validity

The main limitation in our study relates to the constructed CRUSOE framework
because it has only been validated through one case study. More empirical studies are
needed to validate the framework’s true utility. Moreover, as our goal was to under-
stand the holistic prerequisites for CSE, we acknowledge that is it also beneficial to
investigate explicit CSE practices and also dependencies within individual dimensions.
Consequently, for future studies, it might be useful to either scope the research topic
and/or apply the framework in a different software project context. Applying the
CRUSOE framework in a different context would also provide information on how to
improve the framework.

The main threats to validity and the limitations in case studies are typically
addressed by the data-collection methods, data interpretation, reliability and general-
isability of the results. Due to the nature of the case-study method, the results are not
generalisable to the whole industry. To mitigate the risks associated with construct
validity (e.g., misunderstandings and misinterpretations between the interviewer and
interviewees), we started each interview with a 5- to 10-min introduction on the
research topic and key concepts of CSE (e.g., CD and continuous experimentation).
The semi-structured interview method allowed us to ask clarifying questions
throughout the interview. We also arranged for an interactive feedback session with the
case company representatives to share interview summaries and to get feedback on our
analysis; i.e., how we (the researchers) interpreted the interviewees’ answers. The
company stakeholders confirmed that our findings were correct.

7 Conclusion

In this paper, we have applied the case-study method to a smartphone platform project
to investigate the prerequisites for CSE. First, we specified the CRUSOE framework in
terms of it allowing for a holistic, systematic and structured investigation of the pre-
requisites for CSE. We consider that the CRUSOE framework enabled us to more
precisely articulate and analyse the prerequisites for CSE. The framework can further
aid in developing estimations regarding the changes that are needed when moving from
traditional product development to CSE. Finally, the case-study findings were syn-
thesised alongside related recent studies. The results indicate that using the CSE
approach in product-focused software development could involve several areas within
and between the strategy, architecture and organising dimensions. Moreover, novel
integrative activities are needed for eliminating disconnects and for balancing speed
and stability (e.g., feature-driven development and managing cumulating technical
debt). Although these are initial ideas on how to organise continuous experimentation
in software development, rigorous processes are needed between the customer and the

658 T. Karvonen et al.



supplier. Our case study indicated that opportunities for using the CSE approach in
product development are often context-sensitive (e.g., customer and product depen-
dent). Moreover, customer motivation and ecosystem support for CSE are important.
Although the CSE approach is mostly used for website development, more systematic
use of CSE could enhance the competitiveness of product-oriented companies. How-
ever, more prescriptive models and best practices are clearly needed to describe how
CSE should be implemented in product-oriented software development.

Acknowledgments. This work was supported by TEKES as part of the Need for Speed Project
(http://www.n4s.fi/) of DIMECC (Digital, Internet, Materials & Engineering Co-Creation).

References

1. Bosch, J.: Continuous Software Engineering: An Introduction. In: Bosch, J. (ed.) Continuous
Software Engineering, pp. 3–13. Springer, Switzerland (2014)

2. Ries, E.: The Lean Startup: How Today’s Entrepreneurs Use Continuous Innovation to
Create Radically Successful Businesses (2011)

3. Fitzgerald, B., Stol, K.J.: Continuous software engineering: a roadmap and agenda. J. Syst.
Softw. (2015). doi:10.1016/j.jss.2015.06.063

4. Humble, J., Farley, D.: Continuous Delivery: Reliable Software Releases through Build,
Test, and Deployment Automation (2010)

5. Fagerholm, F., Guinea, A.S., Mäenpää, H., Münch, J.: The RIGHT model for continuous
experimentation. J. Syst. Softw. (2016). doi:10.1016/j.jss.2016.03.034

6. Rahman, A.A.U., Helms, E., Williams, L., Parnin, C.: Synthesizing continuous deployment
practices used in software development. In: 2015 Agile Conference, pp. 1–10. IEEE (2015)

7. Kohavi, R., Henne, R.M., Sommerfield, D.: Practical guide to controlled experiments on the
web. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining - KDD 2007, p. 959. ACM Press, New York (2007)

8. Leppänen, M., Mäkinen, S., Pagels, M., Eloranta, V.-P., Itkonen, J., Mäntylä, M.V.,
Männistö, T.: The highways and country roads to continuous deployment. IEEE Softw. 32,
64–72 (2015)

9. Lindgren, E., Münch, J.: Software development as an experiment system: a qualitative
survey on the state of the practice. In: Lassenius, C., Dingsøyr, T., Paasivaara, M. (eds.) XP
2015. LNBIP, vol. 212, pp. 117–128. Springer, Heidelberg (2015). doi:10.1007/978-3-319-
18612-2_10

10. Rissanen, O., Münch, J.: Transitioning towards continuous delivery in the B2B domain: a
case study. In: Lassenius, C., Dingsøyr, T., Paasivaara, M. (eds.) XP 2015. LNBIP, vol. 212,
pp. 154–165. Springer, Heidelberg (2015). doi:10.1007/978-3-319-18612-2_13

11. Lwakatare, L.E., Karvonen, T., Sauvola, T., Kuvaja, P., Olsson, H.H., Bosch, J., Oivo, M.:
Towards DevOps in the embedded systems domain: why is it so hard? In: 2016 49th Hawaii
International Conference on System Sciences (HICSS), pp. 5437–5446. IEEE (2016)

12. Adams, B., Bellomo, S., Bird, C., Marshall-Keim, T., Khomh, F., Moir, K.: The practice and
future of release engineering: a roundtable with three release engineers. IEEE Softw. 32,
42–49 (2015)

13. Bellomo, S., Nord, R.L., Ozkaya, I.: A study of enabling factors for rapid fielding combined
practices to balance speed and stability. In: Proceedings of the International Conference on
Software Engineering, pp. 982–991 (2013)

The CRUSOE Framework: A Holistic Approach to Analysing Prerequisites for CSE 659

http://www.n4s.fi/
http://dx.doi.org/10.1016/j.jss.2015.06.063
http://dx.doi.org/10.1016/j.jss.2016.03.034
http://dx.doi.org/10.1007/978-3-319-18612-2_10
http://dx.doi.org/10.1007/978-3-319-18612-2_10
http://dx.doi.org/10.1007/978-3-319-18612-2_13


14. Bosch, J. (ed.): Continuous Software Engineering. Springer, Switzerland (2014)
15. Poppendieck, M., Poppendieck, T.: Implementing Lean Software Development: From

Concept to Cash (2006)
16. Van Der Linden, F., Bosch, J., Kamsties, E., Känsälä, K., Obbink, H.: Software product

family evaluation. In: Nord, R.L. (ed.) SPLC 2004. LNCS, vol. 3154, pp. 110–129.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-28630-1_7

17. Bosch, J., Bosch-Sijtsema, P.: ESAO: a holistic ecosystem-driven analysis model. In:
Lassenius, C., Smolander, K. (eds.) ICSOB 2014. LNBIP, vol. 182, pp. 179–193. Springer,
Heidelberg (2014). doi:10.1007/978-3-319-08738-2_13

18. Olsson, H.H., Bosch, J.: Climbing the stairway to heaven: evolving from agile development
to continuous deployment of software. In: Bosch, J. (ed.) Continuous Software Engineering,
pp. 15–27. Springer, Switzerland (2014)

19. Bosch, J.: Building products as innovation experiment systems. In: Cusumano, M.A., Iyer,
B., Venkatraman, N. (eds.) ICSOB 2012. LNBIP, vol. 114, pp. 27–39. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-30746-1_3

20. Overby, E., Bharadwaj, A., Sambamurthy, V.: Enterprise agility and the enabling role of
information technology. Eur. J. Inf. Syst. 15, 120–131 (2006)

21. Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M.,
Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R.C., Mellor,
S., Schwaber, K., Sutherland, J., Thomas, D.: Agile Manifesto. http://agilemanifesto.org/

22. Ruhe, G.: Product Release Planning Methods, Tools and Applications. Auerback
Publications, Taylor and Francis Group, LLC (2010)

23. Schwaber, K., Beedle, M.: Agile Software Development with Scrum (2001)
24. Hutzschenreuter, T.: Strategy-process research: what have we learned and what is still to be

explored. J. Manage. 32, 673–720 (2006)
25. Tsoukas, H., Chia, R.: Philosophy and Organization Theory. Emerald Group Publishing

Limited (2011)
26. Vaara, E., Kleymann, B., Seristo, H.: Strategies as discursive constructions: the case of

airline alliances. J. Manag. Stud. 41, 1–35 (2004)
27. MacKay, R.B., Chia, R.: Choice, chance, and unintended consequences in strategic change:

a process understanding of the rise and fall of NorthCo Automotive. Acad. Manag. J. 56,
208–230 (2012)

28. Sandberg, J., Tsoukas, H.: Grasping the logic of practice: theorizing through practical
rationality. Acad. Manag. Rev. 36, 338–360 (2011)

29. Chia, R.: A “Rhizomic” model of organizational change and transformation: perspective
from a metaphysics of change. Br. J. Manag. 10, 209–227 (1999)

30. Bryson, J.M.: Strategic Planning for Public and Nonprofit Organizations: A Guide to
Strengthening and Sustaining Organizational Achievement (2011)

31. Bogsnes, B.: Implementing Beyond Budgeting: Unlocking the Performance Potential (2008)
32. Nordqvist, M., Melin, L.: The promise of the strategy as practice perspective for family

business strategy research. J. Fam. Bus. Strateg. 1, 15–25 (2010)
33. te Brömmelstroet, M.: Performance of planning support systems. Comput. Environ. Urban

Syst. 41, 299–308 (2013)
34. Mintzberg, H.: The Rise and Fall of Strategic Planning (2000)
35. Whittington, R., Cailluet, L.: The crafts of strategy. Long Range Plann. 41, 241–247 (2008)
36. Balogun, J., Huff, A.S., Johnson, P.: Three responses to the methodological challenges of

studying strategizing. J. Manag. Stud. 40, 197–224 (2003)
37. Eisenhardt, K.M., Brown, S.L.: Competing on the edge: strategy as structured chaos. Long

Range Plann. 31, 786–789 (1998)

660 T. Karvonen et al.

http://dx.doi.org/10.1007/978-3-540-28630-1_7
http://dx.doi.org/10.1007/978-3-319-08738-2_13
http://dx.doi.org/10.1007/978-3-642-30746-1_3
http://agilemanifesto.org/


38. Mavengere, N.B.: Information technology role in supply chain’s strategic agility. Int. J. Agil.
Syst. Manag. 6, 7–24 (2013)

39. Koenigsaecker, G.: Leading the Lean Enterprise Transformation (2009)
40. Suomalainen, T.: Defining continuous planning through a multiple-case study. In:

Abrahamsson, P., Corral, L., Oivo, M., Russo, B. (eds.) PROFES 2015. LNCS, vol.
9459, pp. 288–294. Springer, Heidelberg (2015). doi:10.1007/978-3-319-26844-6_21

41. Suomalainen, T., Kuusela, R., Tihinen, M.: Continuous planning: an important aspect of
agile and lean development. Int. J. Agil. Syst. Manag. 8, 132 (2015)

42. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research in
software engineering. Empir. Softw. Eng. 14, 131–164 (2008)

43. QRS International: NVivo (2016). http://www.qsrinternational.com/
44. Google: Android. https://www.android.com/
45. Gartner: Gartner Says Worldwide Smartphone Sales Grew 9.7 Percent in Fourth Quarter of

2015. http://www.gartner.com/newsroom/id/3215217
46. Hoffman, T.L.: Over-the-air programming of wireless terminal features (2003). https://www.

google.com/patents/US6622017
47. Olsson, H.H., Bosch, J.: Towards agile and beyond: an empirical account on the challenges

involved when advancing software development practices. In: Cantone, G., Marchesi, M.
(eds.) XP 2014. LNBIP, vol. 179, pp. 327–335. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-06862-6_27

The CRUSOE Framework: A Holistic Approach to Analysing Prerequisites for CSE 661

http://dx.doi.org/10.1007/978-3-319-26844-6_21
http://www.qsrinternational.com/
https://www.android.com/
http://www.gartner.com/newsroom/id/3215217
https://www.google.com/patents/US6622017
https://www.google.com/patents/US6622017
http://dx.doi.org/10.1007/978-3-319-06862-6_27
http://dx.doi.org/10.1007/978-3-319-06862-6_27

	The CRUSOE Framework: A Holistic Approach to Analysing Prerequisites for Continuous Software Engineering
	Abstract
	1 Introduction
	2 Background
	2.1 Holistic Models for Analysing the Development of Software-Intensive Products
	2.2 CSE in a Nutshell
	2.3 Business Management Views on Strategy and Strategic Planning

	3 The CRUSOE Framework
	4 Case-Study Design
	5 Findings
	5.1 ESAO Overview: Strategy (1), Architecture (2) and Organising (3)
	5.2 CRUSOE Area 4: Connecting Strategy and Architecture for CSE
	5.3 CRUSOE Area 5: Connecting Strategy and Organising for CSE
	5.4 CRUSOE Area 6: Connecting Architecture and Organising for CSE
	5.5 CRUSOE Area 7: Overarching Governance for CSE
	5.6 Findings’ Summary

	6 Discussion
	6.1 Synthesising the Prerequisites for CSE
	6.2 Study Limitations, Future Studies and Threats to Research Validity

	7 Conclusion
	Acknowledgments
	References


