
The Developers Dilemma: Perfect Product
Development or Fast Business Validation?

Henri Terho(B), Sampo Suonsyrjä, and Kari Systä

Tampere University of Technology, P.O. Box 553, 33101 Tampere, Finland
{henri.terho,sampo.suonsyrja,kari.systa}@tut.fi

Abstract. To find a fast-track to profitability, a startup needs to
streamline and speed up two vital processes – developing novel prod-
ucts and finding new markets for their products. These two goals are
typically opposed to each other, business development requiring quick
iteration and product development requiring focus on quality. This dif-
ference in mindsets, where the focus should be on the balance of quality
to the business experimentation causes a conflicting environment for the
developers to develop products. This problem is aggravated in a startup
environment, where the reasons for product failure are not clear, increas-
ing the frustrations felt by the developers. Clear ways to communicate
the product goals and even successes between management and devel-
opers is needed to create an environment for success. This balancing
act between quality and speed to achieve fast product iteration is the
developers dilemma.

Keywords: Startups · Software development · Business development ·
Lean startup · Prototyping · Agile

1 Introduction

The success of a startup, or a potential company looking for a repeatable and
scalable business model, is often related to the time it takes for the startup to
develop their business model. [4,9] Consequently, the importance of fast iteration
cycles is intensified, as the entire business model can be unclear or at least it
remains under constant development [3,13].

Mastering this requires optimized techniques and methods for product and
customer management [3]. An emerging choice for such a management method is
the Lean Startup framework [4,9]. Products are tested through hypothesis driven
iterations, where the success of the product is measured by actionable metrics.
Moreover, when a product is deemed failed, a pivot is encouraged. As each
iteration brings new knowledge, iteration speed is vital – Failing faster means
also finding success faster. To meet the requirements of rapid course corrections
in the business, i.e. pivoting, the product development process has to adapt to
fast iterations [13].

In a startup environment the developers should be constantly aware that the
software might become waste and therefore typical quality thinking can become
c© Springer International Publishing AG 2016
P. Abrahamsson et al. (Eds.): PROFES 2016, LNCS 10027, pp. 571–579, 2016.
DOI: 10.1007/978-3-319-49094-6 42



572 H. Terho et al.

difficult. This creates a situation where a software developer is pulled in two
directions: should I follow the values of professional software development or
work fast to support the constantly changing business directions?

This delicate balancing act between writing good quality software and spend-
ing as little resources as possible on a product that could be scrapped creates
the Developers Dilemma that we explore further in this paper.

2 Background

The Lean Startup method is a popularized collection of best practices from mul-
tiple previous entrepreneurship theories such as Creation theory [1] and Bricolage
[2]. With it, business development is seen as an iterative process of confirming
business hypotheses with minimum viable products (MVPs) [9]. The method
consists of iterative cycles of building, measuring, and learning.

Each cycle is typically linked with its own MVP, which is used to test the
hypothesis of the current cycle. Based on these tests, the company either stays
on the same path, building additional MVPs on top of the data gained from the
first, or pivots their business plan to a new trajectory. Startups could even be
said to be defined by their pivot making capabilities [12].

An MVP is a version of the product that enables a full turn of the build-
measure-learn loop. It should contain the features that realize the unique value
proposition of the software solution and little else. The idea is to cut out all
non-essential features and leave just the core features of your application and
the tools to enable learning [8].

As a software development method, producing MVPs is somewhat similar to
prototyping. Prototyping approaches have been developed for situations where
the work steps of a project cannot be clearly detailed before execution [10]. Pro-
totyping incorporates many styles, such as iterative, rapid, evolutionary, throw-
away incremental and mock up prototyping [7]. Stephen and Bates [11] define
the prototype through two common characteristics:

1. The prototype enables a high degree of user evaluation which substantially
affects requirements, specifications, or design.

2. The prototype initiates a learning process for users and developers of the
system.

The first definition matches the MVP’s aspect of user evaluation. The second
definition matches the MVP cycle, where the MVP is designed to enable one cycle
of the experimentation and produce learning with minimal development effort.

The prototypes can be split into throwaway and evolutionary prototypes.
These two types are classified by their intended life cycle. Development based on
evolutionary prototypes goes through sequences of re-design, re-implementation
and re-evaluation without knowing the complete set of requirements beforehand
[7]. Although the exact requirements for further development might be unclear,
the implementation choice still matters as large parts of the code will be reused.
On the contrary, throwaway prototypes will not be reused.



The Developers Dilemma 573

Comparing these two with MVPs, MVPs cover both aspects and possibilities
of prototypes. In MVP development, the key idea is to validate the business case
as fast as possible with a minimum set of features. If the experiment fails, the
MVP should be thrown away, but in the case of a success it will be used again.
However, it is not typically known beforehand if the MVP results in a throwaway
prototype or in an evolutionary prototype. Therefore, the developers encounter
a dilemma of writing code suitable for either throw-away or evolutionary proto-
typing.

3 Developers Dilemma

3.1 Environment

Modern software development, especially in a startup business where direction
is changed rapidly, challenges the professional mind-set of software developers.
These contradicting goals summarize the Developer’s dilemma:

– As any professionals, software developers want to create artifacts. However,
experimentation and pivoting that are implemented in many startups often
lead to abandoning of software that did not receive positive feedback from the
users or could not create an attractive business model fast enough.

– One of the main ways of showing your skills as a software developers is to write
elegant code. However, when aiming at the minimum viability, developers
should not refine their work in terms of quality and functionality to a level
that they can be proud of.

– Developers can be used to creating prototypes that are thrown away, but this
is not the case if they look at an MVP more as the first version of a final
product, i.e. an evolutionary prototype. When such an MVP fails, this can
cause a sense of loss for the developers who have poured their talent into the
creation of the MVP.

– In the sense that an MVP is actually closer to being a tool for market research
than an actual product, developers might spend too much effort on developing
features that are ultimately not needed. The stress about features which are
not essential is unneeded.

This environment of creating software, where the passion of the software
developers might work against the goals of the company is typical in product
development and startup environments. It creates a difficult environment to
manage and develop software in.

To further elaborate, developers typically want to distinguish prototypes from
a real products, but if the operation of the company is based on business exper-
imentation, the choice is not known in advance.



574 H. Terho et al.

3.2 Organizational View

The developers dilemma is a problem and a strategic question for the whole
organization. The disjoint between the quality expectations of the software and
the learning that the organization wants to achieve can cause problems.

This problem is illustrated in Fig. 1. The quality of the software and the size
of the learning goals are placed on different axes. Typically the more complex
the learning objectives, the larger product has to be built. For example, you are
assessing solutions to complex networked problems or totally novel technology.

Fig. 1. Quality vs learning scale

The quality of this product has to be above a viable level to produce reliable
results. This is illustrated by the Minimum Viability line on the graph. The
quality of an MVP above the line is such that it does not interfere in assessing
an business hypothesis. To further elaborate, the reason why the customers will
not use or buy the MVP is that the they actually do not see it worthy – not
because for example that the UI is horrible. Consequently, MVPs that are under
the Minimum Viability line do not produce reliable results to the learning goals.

On the other hand, when the learning goals are still small and abstract, such
as when an organization is just looking for the initial problem solution fit (PSF),
MVPs can be smaller and of worse quality than when looking for product market
fit (PMF). This is illustrated by the dotted vertical line.

In this case, we define quality to include not only typical quality attributes,
but also the effort level it takes to develop an MVP such as additional features
and keeping track of technical debt. So the challenge is to optimize quality as
close to the Minimum Viability line as possible to reduce the amount of wasted
quality and work. Also the two steps to product validation, PSF and PMF are
marked to the chart to show the different phases of validation [4].



The Developers Dilemma 575

Research into the motivations of programmers show that competence, not
experiments and financial incentives motivate them. [5] For the developers the
way to show talent is to write quality code, so the natural tendency for quality in
this is to go up. When such overquality prototypes are thrown away, the efforts
of the developer are wasted and it results in frustration for the developers. The
goal of the organization would be to make sure that the developers understand
the goals of the prototype/MVP. The management has to message to the devel-
opers the point in the x-axis for the current product. The developers are then
responsible for the positioning in the y-axis.

Some typical first products are positioned on the scale. Landing pages are
small products which enable learning on a small scale, but do not require much
quality. Typically the goal of the landing page MVP is to just assess the initial
PSF. Brick and mortar stores as the first product on the other hand require
a huge investment of resources to start and they may result in an immediate
failure, if the clientele is not interested in the products of the store. The idea
being that initially starting a brick-and-mortar store to asses your initial business
hypothesis produces a high quality “product”, but is a huge risk.

This positioning on the axes is at the heart of the developers dilemma and
how the wanted position in these axes is messaged to the developers. The posi-
tioning on both axes is important to the success of the company, but the man-
agement typically forgets to take into account the quality tendencies and its
psychological effects when deciding the goals.

3.3 Example

The issues that result from the developers dilemma in development can be better
shown through an example:

A small startup is investigating their new hypothesis that people want to buy
blood pressure measurement services. An MVP to test the validity of the idea
is created. This MVP is a small website which enables customers to contact a
person to come and measure their blood pressure. For the software development
the user story in the backlog would be “As a user I want to fill in my contact
details so the company can contact me to measure my blood pressure”. In this
first iteration, the experiment is to see if people want to even buy these services.
The enabling MVP is the website that collects and stores contact information.

After the success of MVP, the company decides to experiment if they can
expand the business by changing the contact form to a time reservation system.
This way they can allocate personnel more efficiently. To facilitate this, a time
reservation website is built as the second MVP.

At the third stage, the company has seen that there is demand for blood pres-
sure measurements and decides to experiment if the people are willing to mea-
sure their blood pressure in predesignated locations. To test this, they develop
a mobile application with GPS location to show the closest free blood mea-
surement point. The new user story is: “As a user I want to be able to find
out the nearest point where I can measure my blood pressure and reserve it.”
Here the experiment has expanded from a web form to a mobile application.



576 H. Terho et al.

Again from the angle of the software developer, the development of the mobile
application is a new production of a new stand alone application.

On the business development side, the continuous development of the theme
progresses and builds upon the results from the previous application, expanding
the scope of the project to one direction at a time. This however is not reflected
even in the backlog items created. The actual goals of the company are not
reflected by the user stories that the development is based upon. To improve
upon this, the startup should have a backlog item that shows the goals of the
current experiment, e.g. “We as a startup want to know if the customers want
to come to our premises for measurement.”

This communication problem causes the developers to develop three different
projects. First a web application contact form is developed. Next a reservation
system is developed and third a separate GPS location application is built. These
three separate projects do not have large amounts of overlap and also the two
previous versions of the product have now been throwaway prototypes. On top
of this, the developer has seen two of his products thrown out as waste.

Even though the company has achieved its goals, this feeling might not have
been transferred to the developers. The feeling with the developers might even
be that most of their work was wasted, even though it clearly contributed to the
company goals. Similarly, if the developers have used huge amount of resources
in refining for example the first contact form MVP and its back-end scalability,
the organization can leave the developers without proper recognition as their
efforts have done in vain in the eyes of the organization.

3.4 Lean Startup Difficulties

One of the most difficult things in the execution of Lean Startup’s Build-
Measure-Learn cycle is understanding why an MVP actually fails. This assess-
ment of product failures is a critical part of the Developer’s Dilemma. The Lean
Startup tries to avoid the dilemma, however, by focusing on learning goals, not
on development goals.

By developing different types of MVPs, a startup can split their learning
goals into appropriately sized fragments. The different types of MVPs have been
described e.g. in [9,13]. By sharing the vision of using many of them along the
life cycle within the whole organization, we think that the risk of Developer’s
Dilemma can be mitigated.

However, if the targets of developing an MVP are not made clear for the whole
organization (including developers) Lean Startup will not help in resolving the
Developer’s Dilemma. Therefore, the underlying communications problems and
the way developers valuate their own work form the crux of the Developer’s
Dilemma.

We propose that developers are intrinsically drawn to think that it is the
lack of refining, missing features and things such as technical debt that make an
MVP fail. If this opinion is given the most value, an unsetting can be created in
which an MVP is refined forever or until the organization runs out of funds, but
no one really understands (or accepts) why no user actually needs the product.



The Developers Dilemma 577

On the other hand, the development organization can be drawn to think
that an idea and the related MVP do not have any business value because the
MVP does not succeed straight away at a targeted level. In such a case, the
organization might perceive the developed MVP as a perfect artifact to find
out if a business problem is worth solving. This, however, is quite often not the
case. Rather, MVPs usually need some refining to be able to produce reliable
results for learning, if a business problem is actually worth solving. Again, this
premature rejection of an MVP can create an unfavorable setting. In such, MVPs
are thrown away before they are developed to their minimum viability.

We propose that the difficulty of balancing between these two unfavorable
settings, can be a root cause for the Developer’s Dilemma. On one hand, the
technical development of MVPs that can produce reliable results is required
and expected from the software developers. Also the developers naturally tend
toward better quality because it is a way for them to show their skills. However,
developing MVPs above the quality of minimum viability can be considered
waste. Thus, developers need to understand thoroughly the level of quality they
are expected to produce. On the other hand, the organization needs to have an
amazing competence in chopping down the learning goals to appropriate size
experiments. If these two premises do not exist in a case, the setup is ready for
example for contradicting opinions on why an MVP fails, i.e. one of the result
of the Developer’s Dilemma.

3.5 Analysis of the Developer’s Dilemma

This conflict between business-driven and technical-driven goals is not new. Sim-
ilar dilemma exists in most Agile processes since the development should focus
on the tasks of the biggest business value. This often leads to compromises in
the architecture, and the maintenance of the architecture requires special care
in Agile development [6]. In one way, Lean approaches partly amplify this since
non-productive work is considered waste but by including principles like build
quality in the Lean community has recognized the importance of professional
development.

Many aspects of the developer’s dilemma are known but the startup app-
roach amplifies the developer dilemma since the process is driven by the busi-
ness experiments. As in all organizations, the key element is communication and
understanding of common goals. Based on these assumptions we propose several
aspects that can be used to identify the developers dilemma:

– Do the same people develop the software and business aspects of the software?
The easiest way to understand both sides of the problem is to work on both
development and management roles. This allows for a larger perspective on
the whole company. The management should be transparent and allow for
opinions from both sides to be intermixed.

– Is the software development outsourced? Outsourcing the software develop-
ment splits the goals of the company in two. The software company is respon-
sible for delivering software and they have their own goals. The original busi-
ness is left with just the business goals in mind and can optimize to fulfill



578 H. Terho et al.

those. For the outsourcing companies, the fulfillment of developer ethos might
be easier because the clients bring the problems to them and the company
does not have to do validation on those. Even if the product would fail on the
business side, the software developers have met their goals.

– What are the performance indicators that are used to measure the software
development? You get what you measure is an old mantra that still holds
true. If the development is only measured in regard to quality or number of
tickets completed the development work is separated from the business goals.
The measures should be developed in such a way to encompass business and
quality indicators.

– If asked, do management and software development teams have the same goals
for the product? Do they see the same future for it, i.e. still in use after
6 months, profitable. Also what do the developers see as the core targets,
optimizing performance, creating products quick? Does management share
these goals?

– How does the company handle the failures of the previous MVP? Is it taken
as a way to learn from failure and do the management and development see
it in the same way. Are questions like was the UI good enough handled in the
same light as was there a market for the product?

4 Conclusions and Future Work

In this paper, we have analyzed the mismatch and especially the Developers
Dilemma between professionalism in software development and the needs of fast
business development. Thus this problem is not just limited to lean startup, but
also to other environments, where rapid product development is needed.

As as response, we propose a set of questions that can be used to analyze if
the developers dilemma is a problem in your company, outlined in Subsect. 3.4.
These questions allow for the initial recognition of possible problems between
unified goals of the developers and the management. It seems that one core
aspect to the developers dilemma might be the usage of different measurements
to measure product success on the business development side and the software
development side. If these two sides are brought closer together and both sides
share a deeper understanding of the project goals the problem can be mitigated.

Although the idea comes from our personal experience and communication
with a number of local startups, there is still work to be done in refining and
validating the proposed concepts.

As future work, we want to analyze how startups can efficiently recognize the
difference between throw-away and evolutionary parts of MVPs to assess the first
solution. Similarly, we need to study to which extent the idea of experiments as
top-level requirements is already used and how it affects development. Also other
ways that companies use to handle failure and waste are of interest. Instructions
on how to write and manage such requirements should be developed e.g. with
action research methodology. These two methods could be used to help solve the
dilemma.



The Developers Dilemma 579

The Developer’s Dilemma is a mismatch between the software developer’s
professional ambitions and the startup’s need for fast business experimentation.
As not responding to the dilemma can have grave consequences for the company,
the dilemma should be alleviated as well as possible to ensure the growth. This is
not just a problem for the management, but a challenge for the whole company
on how to communicate their core targets.

Acknowledgments. The authors wish to thank Digile’s Need4Speed program
(http://www.n4s.fi/) funded by the Finnish Funding Agency for Innovation Tekes
(http://www.tekes.fi/en/tekes/) for its support for this research.

References

1. Alvarez, S.A., Barney, J.B.: Discovery and creation: alternative theories of entre-
preneurial action. Strateg. Entrepreneurship J. 1(1–2), 11–26 (2007)

2. Baker, T., Nelson, R.E.: Creating something from nothing: resource construction
through entrepreneurial bricolage. Adm. Sci. Q. 50(3), 329–366 (2005)

3. Blank, S.: The Four Steps to the Epiphany. K&S Ranch, Pescadero (2013)
4. Blank, S., Dorf, B.: The Startup Owner’s Manual. K&S Ranch, Pescadero (2012)
5. Da Silva, F.Q., França, A.C.C.: Towards understanding the underlying structure of

motivational factors for software engineers to guide the definition of motivational
programs. J. Syst. Softw. 85(2), 216–226 (2012)

6. Eloranta, V.P., Koskimies, K.: Aligning architecture knowledge management with
scrum. In: Proceedings of the WICSA/ECSA 2012 Companion Volume. pp. 112–
115. WICSA/ECSA 2012. ACM, New York (2012). doi:10.1145/2361999.2362023

7. Floyd, C.: A systematic look at prototyping. In: Budde, R., Kuhlenkamp, K.,
Mathiassen, L., Züllighoven, H. (eds.) Approaches to Prototyping, pp. 1–18.
Springer, Heidelberg (1984). doi:10.1007/978-3-642-69796-8 1

8. Maurya, A.: Running lean: iterate from plan A to a plan that works. O’Reilly
Media Inc., Sebastopol (2012)

9. Ries, E.: The Lean Startup. Penguin, New York (2011)
10. Sandor, C., Klinker, G.: A rapid prototyping software infrastructure for user inter-

faces in ubiquitous augmented reality. Pers. Ubiquit. Comput. 9(3), 169–185 (2005)
11. Stephens, M., Bates, P.: Requirements engineering by prototyping: experiences in

development of estimating system. Inf. Softw. Technol. 32(4), 253–257 (1990)
12. Terho, H., Suonsyrjä, S., Jaaksi, A., Mikkonen, T., Kazman, R., Chen, H.M.: Lean

startup meets software product lines: survival of the fittest or letting products
bloom? (2015)

13. Terho, H., Suonsyrjä, S., Karisalo, A., Mikkonen, T.: Ways to cross the rubicon:
pivoting in software startups. In: Abrahamsson, P., Corral, L., Oivo, M., Russo, B.
(eds.) PROFES 2015. LNCS, vol. 9459, pp. 555–568. Springer, Heidelberg (2015).
doi:10.1007/978-3-319-26844-6 41

http://www.n4s.fi/
http://www.tekes.fi/en/tekes/
http://dx.doi.org/10.1145/2361999.2362023
http://dx.doi.org/10.1007/978-3-642-69796-8_1
http://dx.doi.org/10.1007/978-3-319-26844-6_41

	The Developers Dilemma: Perfect Product Development or Fast Business Validation?
	1 Introduction
	2 Background
	3 Developers Dilemma
	3.1 Environment
	3.2 Organizational View
	3.3 Example
	3.4 Lean Startup Difficulties
	3.5 Analysis of the Developer's Dilemma

	4 Conclusions and Future Work
	References


