
An Industrial Case Study on Measuring
the Quality of the Requirements Scoping

Process

Krzysztof Wnuk1(&), Markus Borg2,
and Sardar Muhammad Sulaman3

1 Software Engineering Research Lab, Department of Software Engineering,
Blekinge Institute of Technology, Karlskrona, Sweden

krzysztof.wnuk@bth.se
2 SICS Swedish ICT AB, Lund, Sweden

markus.borg@sics.se
3 Department of Computer Science, Lund University, Lund, Sweden

sardar@cs.lth.se

Abstract. Decision making and requirements scoping occupy central roles in
helping to develop products that are demanded by the customers and ensuring
company strategies are accurately realized in product scope. Many companies
experience continuous and frequent scope changes and fluctuations but struggle
to measure the phenomena and correlate the measurement to the quality of the
requirements process. We present the results from an exploratory interview
study among 22 participants working with requirements management processes
at a large company that develops embedded systems for a global market. Our
respondents shared their opinions about the current set of requirements man-
agement process metrics as well as what additional metrics they envisioned as
useful. We present a set of metrics that describe the quality of the requirements
scoping process. The findings provide practical insights that can be used as input
when introducing new measurement programs for requirements management
and decision making.

Keywords: Requirements engineering � Software metrics � Process
improvement

1 Introduction

Requirements Management (RM) [4] iteratively integrates the requirements elicitation
and analysis results into the project management and development flows. RM also
supports managing requirements during the product lifecycle and between the products.
Large, globally operating software companies need to manage large quantities of
features and requirements that continuously arrive from ever-changing markets [10].
Measuring and optimizing requirements identification, prioritization, definition and
implementation processes is, in a market-driven context [10], crucial for achieving and
sustaining competitive product growth [5].

© Springer International Publishing AG 2016
P. Abrahamsson et al. (Eds.): PROFES 2016, LNCS 10027, pp. 487–494, 2016.
DOI: 10.1007/978-3-319-49094-6_34



The process of selecting a subset of requirements for implementation within a given
project is called scoping. Many software-intensive companies increase the flexibility of
decision making by allowing scope fluctuations. Our previous work highlighted that
large companies experience frequent scope fluctuations and have limited support in
scope management [14]. The resulting late changes increase the need for improved
monitoring and management capabilities that can evaluate the adequacy of the selected
requirements management process models. Despite that, most published work on
requirements measurement focus on the attributes of requirements [2] rather than the
requirements management process [1]. Some published process metrics include:
(i) how much value a software team delivers in every iteration [3], (ii) the number of
requirements awaiting analysis, prioritization or decision, and (iii) the lead time in each
state for each user story [7].

In this paper, we present the results from an exploratory interview-based case study
with 22 participants working with the requirements management process at a large
company that develops embedded systems for a global market. During semi-structured
interviews with mostly senior-level practitioners working with requirements gathering,
prioritization, scope management, software resource planning and high-level man-
agement, we investigated the following two research questions:

RQ1: What are the current scope management process quality metrics used by the case
company?

RQ2: What scope management process quality metrics would the practitioners like to
implement in the future?

2 Case Company

The case company is a large (5,000 employees) organization active in the telecom-
munication domain, developing embedded systems for the global consumer market. As
the inflow of new requirements is rapid, product management often needs to make
unplanned scoping decisions [14]. The company utilizes the Software Product Lines
concept [9] where different development projects contribute to an evolving common
code base, also called a platform. The total number of features registered in the
company’s database exceeds 10,000 and is steadily growing as new products are added
to the product line, each containing on average 60 to 80 new features and associate up
to 20 system requirements per feature. Feature implementation is allocated to
approximately 20 to 25 development teams (each team has from 40 to 80 developers).

Features are managed based on a state machine depicted in Fig. 1. When features
are created, they are put into an administrative state called New Feature (NF). In the
next step, features enter the process and are discussed at the M0 forum. This forum
critically reviews if a proposed feature has a sponsor, sufficient business justification
and is aligned with the current product and portfolio strategy. Many features are
rejected at this stage mainly due to insufficient business justification or unclear defi-
nition. Next, a feature is promoted to the M1 state where it is prioritized against other
features by scope owners using a one-dimensional prioritization based on business
value. A feature could be returned to the M0 state for further refinement.

488 K. Wnuk et al.



At the next stage, called M2 in Fig. 1, the development resources are consulted and
implementation schedules are discussed and agreed upon. Each feature comes to this
forum with a target delivery date that is discussed and adjusted depending on the
current software development organization load and other responsibilities. Prototypes
are used at this stage to provide more accurate effort estimates and possible delivery
times. A pipeline tool is used at the M2 stage to control the resources and to schedule
delivery of several hundreds of implementation running in parallel. After the M2 state,
the development organization takes the main responsibility for the features which are
promoted to the: Definition Ongoing (DO), Awaiting Execution (AE), Execution
Started (ES), Execution Completed (EC), Awaiting Integration (AI) and Integrated (I).
Transitions between any two states are in theory allowed, including backward transi-
tions. However, there is one optimal path without backward transitions through a state
machine which is visualized with a dashed line in Fig. 1.

3 Research Methodology

To gain deep understanding and explore different requirements management metrics at
the case company, a flexible case study design was chosen [11] with semi-structured
interviews as the method for data collection.

We started phase 1 by iteratively developing an interview instrument in collabo-
ration with four practitioners from the case company. Finally, two senior software
engineering researchers and two practitioners reviewed the 17 questions and they were
grouped into 6 topics: background, business goals, current metrics, desired metrics,
visualization, and open innovation. The interview instrument can be accessed online
[12]. Note that the results reported in this paper are exclusively related to questions
under topics 3 and 4 as well as background questions under topic 1. The remaining
topics are covered in a separate publication [15].

In the next step, we selected interview respondents by using a combination of
maximum variance and convenience sampling [11] to cover as many views on
the requirements management process as possible. Twenty-two respondents partici-
pated in the study. Their average experience in working with requirements processes

Fig. 1. The example history of three features. The first feature, marked with dashed lines was
implemented. The second feature marked with solid arrows was withdrawn. The third feature
marked with dashed-dotted arrows was discarded. Also available at [13].

An Industrial Case Study on Measuring the Quality of the Requirements 489



was 6.5 years with the most experienced participant having almost 13 years of expe-
rience and the least experienced participant having about 3 years of experience [12].

Prior to the interviews, we sent the questions to the participants to help them
understand the scope of the study and prepare for the discussions under the interviews.
The first author then interviewed all participants individually, recorded and transcribed
the interviews. The transcripts were sent to the interviewees to validate the content, and
to enable clarifications where needed.

As the industry partner requested a quick summary of the findings, we concluded
the first phase with five senior managers in a seminar. During this seminar, the first
author presented preliminary results from an initial analysis of the data. The seminar
delivered early tangible outcomes and the discussions at the seminar also acted as a
validation, i.e. a sanity check that the direction of our work was promising, and
motivated the deeper analysis in phase 2.

Phase 2 involves the four steps of the systematic data collection and analysis. First,
the first author divided the transcripts into chunks of text containing a few connected
sentences. The second author then repeated the process for 4 of the interviews (21 %),
to validated that we had a reasonable level of granularity. The authors compared the
chunk sizes, and agreed on simple rules resulting in the creation of a chunk for each
relevant proposition (i.e. what is believed, doubted, etc.) expressed in the interviews.
The first author then reiterated the remaining chunks to apply the rules.

In the second step, the first and second authors collaboratively analyzed 11 of the
interviews (48 %) with the goal of developing a robust coding scheme. The first and
second authors then independently coded the remaining 12 interviews (52 %). The
authors calculated an inter-rater agreement using Cohen’s Kappa [6] on the coding
results. We achieved a Kappa score of 0.59, which we interpret as moderate agreement
on the coding scheme.

In the third step of phase 2, we analyzed the coded data. The output from the coding
step was synthesized by the first and second authors, and reviewed by the third author
to provide further validation and observer triangulation. Finally, all authors prepared
the manuscript for this research article.

Validity. We discuss validity issues based on the guidelines by Runeson et al. [11].
We attempted to mitigate the interpretive validity threats by asking interviewees to
check the interview transcripts. Threats to evaluative validity are not applicable in this
case due to exploratory nature of the study and a lack of evaluative purpose. Threats to
description validity were addressed by recording the interview sessions and tran-
scribing them. The transcripts were sent back to the interviewees for validation. Threats
to theoretical validity have a minimal impact on this study due to its explorative nature
and therefore a lack of theory, specific hypotheses, or conceptual frameworks to be
validated. Moreover, we minimized the bias of unclear questions by iteratively
developing the interview guidelines. The questions were formulated in a way to
minimize the possibility of imposing a particular answer. We took precautions that the
interviewer expressed neutrality when asking the questions and therefore the risks of
reflexivity are minimized.

490 K. Wnuk et al.



Due to an exploratory nature of this study, exploring to what extent our concep-
tualizations and conclusions derived from the interviews are correct remains to a certain
degree unclear and calls for inspection by other researchers in the field as well as
follow-up studies. Since the investigated problem originates from the case company,
we can for sure claim that it is an authentic research problem.

We report that both internal and external generalizability are strongly limited in
this case, mainly due to only one company involved. The paper’s exclusive focus on an
individual company narrows the applicability of the observations. Nevertheless, we
attempted to gather as many perspectives as possible on the studied phenomenon by
inviting participants with various roles and experiences from the case company.

4 Results

Table 1 summarizes the 26 scope management process quality metrics identified in the
study. Among them, only five metrics are measured and 21 are needed or requested
metrics. The five currently used metrics are: the number of backward transitions (Q1)
and their reasons (Q2), the software design quality and if the process actually prioritizes
the most important features from the portfolio planning (Q4) and customer perspectives
(Q5).

The requested metrics include the impact of priorities on the lead-times (Q6 and
Q7) as well as the impact of high priority features on low priority features (Q8). The
accuracy of estimates and its impact on the efficiency of requirements analysis or
definitions (Q9 and Q12) clearly indicate that focusing plainly on speed may not give
the desired effects as quality of the work should not be compromised.

Several metrics also describe the features and their nature in terms of testability or
complexity, e.g. Q10 and Q11. These metrics should be introduced during the
requirements analysis phase and used as extensions to the widely accepted aspects, e.g.
correctness, ambiguity or completeness. Q10 and Q11 further detail requirements on
system test metrics suggested by Petersen and Wohlin [8].

Metrics Q14 and Q15 focus on how many times or why a feature was sent back in
the process due to unclear information. This indicates that some stages of the process
may either not do their work rigidly or receive appropriate input from earlier stages -
thus delivering requirements of insufficient quality.

Similarly, our respondents would like to measure how many times a feature is
moved between the releases (Q13) and why they were moved, which could indicate
either: i) issues with accurate release planning or ii) several strategic changes after the
release plan is agreed upon. Metric Q13 provides interesting input for the iterative
release planning approaches that are based on continuous release re-planning and timely
responses to a frequently changing market situation. The number of release changes
could be correlated with how many times previously set delivery dates are altered (Q25).

Two requested metrics focus on the “waste” generated by analyzing unimple-
mented features (Q18 and Q19) while one metric (Q20) focuses on the effort saved on
unimplemented features or software definitions in relation to the previous (waterfall)
way of working. Two other requested metrics correlate the defined scope with the
overall product strategy (Q24) or increased sales from successful products (Q23).

An Industrial Case Study on Measuring the Quality of the Requirements 491



Table 1. Elicited metrics. Respondents are coded with Greek alphabet letters.

ID Metric definition Mentioned or need
for/respondent

Q1 How many times a feature is sent backwards in the process Measured, ZETA
Q2 Why features are sent backwards in the process from the M2 forum Measured, RHO
Q3 The quality of the software design and the associated user interaction

features
Measured, TAU

Q4 The overlap or potential discrepancies between the early product
definitions from the portfolio planning and the product scope at the TG
Commit

Measured, SIGMA, ETA

Q5 Priority levels of highly requested features by various stakeholders Measured, KAPPA

Q6 The correlation between the priorities set and the time needed to
implement the features or the time needed for definition or
implementation

Need for, GAMMA,
LAMBDA

Q7 The frequency of priority changes in relation to the dev. performance Need for, PI
Q8 How new-coming highly-prioritized features impact low-priority features

(e.g. low-prioritized get delayed)
Need for, RHO

Q9 The accuracy of the estimates in relation to the efficiency of the process Need for, ZETA

Q10 The testability of the “vertical features” (features involving several
technical areas) and their impact on various technical areas

Need for, THETA

Q11 The complexity of the features that are sent to the definition (cf. DO in
Fig. 1) in terms of their impact on other organizations

Need for, THETA

Q12 The quality of feature definitions and estimates Need for, KAPPA
Q13 How many times features are moved between the releases and why Need for, BETA, ETA,

KAPPA, MY
Q14 How many times (and why) the features are send back from the M1 to

the M0 forum
Need for, ALFA and CHI

Q15 How many times (and why respondent CHI) features are send back from
M2 to M1 forum (respondents JOTA and LAMBDA)

Need for, CHI, JOTA,
LAMBDA

Q16 How many time a feature is resubmitted at the M0 forum due to unclear
information or quality issues

Need for, LAMBDA

Q17 The reasons why features are send back from the M0 forum to
redefinitions

Need for, RHO

Q18 How much “waste” the process is producing (analyzed but
unimplemented features, e.g. how many features are withdrawn at each
stage)

Need for, PHI, CHI

Q19 The “waste of the scope” after the features are promoted to the definition Need for, KSI
Q20 The effort saved on unimplemented features or software definitions in

relation to the previous (waterfall) way of working
Need for, PHI

Q21 The stability of the scope after the customer acceptance test Need for, KAPPA, NY

Q22 How many changes to the OSS code each feature requires and when to
share these changes with the open source community

Need for, PI

Q23 If the planned scope later implemented in the products is meeting the set
sales and customer satisfaction business targets

Need for, ETA

Q24 To what degree the features that are created in the process reflect the
overall strategy of the company

Need for, PI

Q25 How many times previously set delivery dates altered (caused by e.g.
resource shortages or changed priorities)

Need for, ETA

Q26 The percentage of effort put on legacy work Need for, CHI

492 K. Wnuk et al.



Finally, the amount of changes in the open source code each feature requires (Q22)
in combination with the percentage of effort put on legacy work while developing new
features (Q26) can bring interesting insights regarding the selected sourcing strategy
and also suggestions about the amount of open source code in the product.

5 Implications and Conclusions

Our study delivers several implications for research and practice. Firstly, the fact that
we elicited 26 quality metrics is a clear indication that it is challenging to come up with
an accurate set of metrics to capture the important aspects the requirements manage-
ment process. Secondly, the fact that 21 identified (required) quality metrics were
collected brings a possible interpretation that more focus should be directed towards
complementing efficiency metrics with quality metrics. For example, quickly delivering
features with minimal process waste is highly desired, as long as these features will
provide value to the end customers and positively realize product strategies, see for
example metrics Q23 and Q24.

Thirdly, requirements prioritization for agile development should go beyond pop-
ular one-dimensional priority or urgency lists and be correlated with measures that take
the holistic perspective on prioritization (see e.g. metrics Q5, Q6 and Q8) and integrate
it with product and portfolio planning.

Fourthly, measuring lead-times and delays on the interface between the require-
ments and development organizations appears to be equally important as measuring the
requirements process lead-times. Additional significant factor is to measure backward
transitions and understand why they happen (see metrics Q1, Q2, Q14, Q16 and Q17)
or transitions between the releases (Q13). Fifthly, measuring the number of features in
each state should be complemented with the derived measures of the ratios between the
features in two states. This provides useful indications for rapid identification of pro-
cess bottlenecks.

In future work, we plan to create a conceptual model of measuring and tracking
potential waste in requirements management and decision making processes. More-
over, we plan to conduct additional case studies at other companies that record the
information during their requirements management processes. Such empirical studies
would help us in expanding our knowledge about the applicability of our model.

Acknowledgements. This work is supported by the IKNOWDM project from the Knowledge
Foundation in Sweden (20150033).

References

1. Ambriola, V., Gervasi, V.: Process metrics for requirements analysis. In: Conradi, R. (ed.)
EWSPT 2000. LNCS, vol. 1780, pp. 90–95. Springer, Heidelberg (2000). doi:10.1007/
BFb0095017

2. Costello, R.J., Liu, D.-B.: Metrics for requirements engineering. J. Syst. Softw. 29(1), 39–63
(1995)

An Industrial Case Study on Measuring the Quality of the Requirements 493

http://dx.doi.org/10.1007/BFb0095017
http://dx.doi.org/10.1007/BFb0095017


3. Feyh, M., Petersen, K.: Lean software development measures and indicators - a systematic
mapping study. In: Fitzgerald, B., Conboy, Kieran, Power, K., Valerdi, R., Morgan, L., Stol,
K.-J. (eds.) LESS 2013. LNBIP, vol. 167, pp. 32–47. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-44930-7_3

4. Hood, C., Wiedemann, S., Fichtinger, S., Pautz, U.: Requirements Management: The
Interface Between Requirements Development and All Other Systems Engineering
Processes. Springer, Heidelberg (2007)

5. Höst, M., Regnell, B., Natt och Dag, J., Nedstam, J., Nyberg, C.: Exploring bottlenecks in
market-driven requirements management processes with discrete event simulation. J. Syst.
Softw. 59(3), 323–332 (2001)

6. Landis, J.R., Koch, G.G.: The measurement of observer agreement for categorical data.
Biometrics 33, 159–174 (1977)

7. Mujtaba, S., Feldt, R., Petersen, K.: Waste and lead time reduction in a software product
customization process with value stream maps. In: 21st Australian Software Engineering
Conference (ASWEC), pp. 139–148 (2010)

8. Petersen, K., Wohlin, C.: Measuring the flow in lean software development. Softw. Pract.
Exp. 41, 975–996 (2010)

9. Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering: Foundations,
Principles and Techniques. Springer, New York (2005)

10. Regnell, B., Svensson, R.B., Wnuk, K.: Can we beat the complexity of very large-scale
requirements engineering? In: Paech, B., Rolland, C. (eds.) REFSQ 2008. LNCS, vol. 5025,
pp. 123–128. Springer, Heidelberg (2008). doi:10.1007/978-3-540-69062-7_11

11. Runeson, P., Höst, M., Rainer, A., Regnell, B.: Case Study Research in Software
Engineering Guidelines and Examples. John Wiley & Sons, Hoboken (2012)

12. The interview instrument can be accessed at http://serg.cs.lth.se/fileadmin/serg/
InterviewQuestions.pdf

13. Wnuk, K., Gorschek, T., Callele, D., Karlsson, E.-A., Regnell, B., Ahlin, E.: Supporting
scope tracking and visualization for very large-scale requirements engineering-utilizing FSC
+, decision patterns, and atomic decision visualizations. IEEE Trans. Softw. Eng. 42, 47–74
(2016)

14. Wnuk, K., Regnell, B., Karlsson, L.: What happened to our features? Visualization and
understanding of scope change dynamics in a large-scale industrial setting. In: 17th IEEE
International Requirements Engineering Conference, RE 2009, pp. 89–98 (2009)

15. Wnuk, K., Pfahl, D., Callele, D., Karlsson, E.A.: How can open source software
development help requirements management gain the potential of open innovation: an
exploratory study. In: ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM), pp. 271–279 (2012)

494 K. Wnuk et al.

http://dx.doi.org/10.1007/978-3-642-44930-7_3
http://dx.doi.org/10.1007/978-3-642-44930-7_3
http://dx.doi.org/10.1007/978-3-540-69062-7_11
http://serg.cs.lth.se/fileadmin/serg/InterviewQuestions.pdf
http://serg.cs.lth.se/fileadmin/serg/InterviewQuestions.pdf

	An Industrial Case Study on Measuring the Quality of the Requirements Scoping Process
	Abstract
	1 Introduction
	2 Case Company
	3 Research Methodology
	4 Results
	5 Implications and Conclusions
	Acknowledgements
	References


