
Developing Processes to Increase Technical
Debt Visibility and Manageability – An Action

Research Study in Industry

Jesse Yli-Huumo1(&), Andrey Maglyas1, Kari Smolander2,
Johan Haller3, and Hannu Törnroos4

1 Lappeenranta University of Technology, Lappeenranta, Finland
jesse.yli-huumo@aalto.fi, maglyas@gmail.com

2 Aalto University, Espoo, Finland
kari.smolander@aalto.fi

3 Tieto Sweden AB, Stockholm, Sweden
johan.haller@tieto.com
4 Tieto Oyj, Helsinki, Finland
hannu.tornroos@tieto.fi

Abstract. The knowledge about technical debt and its management has
increased in recent years. The interest of academia and industry has generated
many viewpoints on technical debt. Technical debt management consists of
technical and organizational aspects, which make it a challenge in software
development. To increase technical debt visibility and manageability, new
processes must be developed and thoroughly empirically tested for their
applicability. In this paper, we use the action research methodology to design
processes for identification, documentation, and prioritization of technical debt.
Our partner in this research is a large Nordic IT company Tieto, currently in a
need for new ways to improve their technical debt management. The results
include a set of processes and templates that were successfully used to identify
and document technical debt. The identified technical debt items were later
prioritized based on evaluation by Tieto employees. Tieto was able to create a
prioritized technical debt backlog, which is now used for reduction activities to
create a healthy and sustainable product for the future.

Keywords: Technical debt � Technical debt management � Software process
improvement � Action research

1 Introduction

Technical debt refers to a situation in software development where shortcuts and/or
workarounds are used in technical decisions to gain time-to-market [1]. The benefit of
taking technical debt is an earlier and faster release, which can lead to customer
satisfaction and other economic advantages [2]. However, the drawback is the ‘debt’
that is left in the system. In the long-term, shortcuts and workarounds will turn to
unnecessary complexity (interest) in the source code and architecture. Complexities in
software can become hard to fix and change, which may cause decrease in software

© Springer International Publishing AG 2016
P. Abrahamsson et al. (Eds.): PROFES 2016, LNCS 10027, pp. 368–378, 2016.
DOI: 10.1007/978-3-319-49094-6_24

quality and productivity of the development team [3]. Therefore, technical debt can be
a major problem for a software development company.

While shortcuts and workarounds can be seen as intentional decisions to speed up
release cycles, or to circumvent a complex part of the code, unintentional technical debt
occurs without immediate awareness [4]. Unintentional technical debt is introduced to
software, for example, by inexperienced developers or legacy software. An inexperi-
enced developer can create technical debt unintentionally with non-optimal solution.
Old legacy software can consist of obsolete or non-optimal technology and solutions
from past decades, which may require a rewrite or replacement.

Technical debt management refers to activities that are used to manage and reduce
both intentional and unintentional technical debt with various approaches, practices and
tools [5]. Technical debt management not only includes technical development activ-
ities but also organizational ones, such as communication and decision-making.

This study is made in cooperation with one of the largest IT companies in Scan-
dinavia, Tieto. Tieto’s Capital Market product unit is currently planning new processes
for their technical debt management. The goal of the study is to develop new processes
for technical debt identification, documentation, and prioritization. The outcome of this
study includes new processes to increase the visibility and manageability of technical
debt, which can be used in the future for better decision-making.

This paper is limited to studying technical debt that has already been acquired
previously, and does not take in consideration the management activities related to
decision-making process of acquiring new technical debt.

2 Background

Processes for technical debt management have been studied and suggested in the
literature. Li et al. [5] gathered in a mapping study relevant research on technical debt
management. The study showed that technical debt management can be divided into
following activities: (1) identification, (2) measurement, (3) prioritization, (4) preven-
tion, (5) monitoring, (6) repayment, (7) representation/documentation, and (8) com-
munication [5]. Li et al. [5] also state that currently there is a lack of empirical evidence
about technical debt management. In this study, we are mainly focusing on three out of
the eight management activities. Our goal is to use processes for representation/
documentation, identification, and prioritization of already incurred technical debt to
provide empirical evidence with a real case company.

Technical debt representation/documentation has been studied and suggested in
literature with specific lists and templates as an approach to store technical debt issues
[6, 7]. A backlog or a list should increase technical debt visibility and manageability.
When technical debt is properly documented, it is easier to start other technical debt
management activities, because it is visible to the company.

Before a technical debt issue can be documented, it has to be identified. Identifi-
cation of smaller technical debt issues from the source code is possible with specific
tools [8]. However, technical debt is not always only related to issues in the source
code [9]. Technical debt in software architecture and design is a larger challenge [5, 9].

Developing Processes to Increase Technical Debt Visibility and Manageability 369

The identification of architectural technical debt with tools is difficult and often the
only solution is to use human knowledge and examination [9].

The prioritization of technical debt is difficult, because some technical debt might
be important to fix for business reasons, while other for technical reasons. Some models
and methods have been developed for prioritization. Seaman et al. [10] suggested four
approaches for technical debt decision-making: simple cost-benefit analysis, analytic
hierarchical process, portfolio management model, and options. These approaches
have been used also in other domains, such as finance [10]. They support evaluating the
tradeoffs between proposed enhancements, corrective maintenance, and the payment of
technical debt items [10]. Schmid [11] developed a formal model based on providing
several well-defined approximations, which can be used for technical debt prioritiza-
tion. In addition, some papers have used quality attributes from ISO 9126 as an
evaluation to technical debt [12–14].

Overall, there exists a variety of different ideas for technical debt documentation,
identification and prioritization. However, most of them are focused on one specific
activity only. Studies that approach the whole process from identification to repaying
technical debt are rare. Therefore, we collaborate with a real software company to find
and develop processes, including technical debt identification, documentation, and
prioritization. We take inspiration from a study conducted by Li et al. [7] that had a
similar goal. Their approach was to identify architectural technical debt based on
architecture decisions and change scenarios [7]. Our approach extends this by
expanding the technical debt evaluation and prioritization processes. Our goal is to
create more reasoning possibilities in decision-making, which is required especially in
organizational aspects of technical debt management.

3 Research Methodology

Action research was selected as a research methodology for this study. Action research
combines theory and practice [15]. Action research is an iterative process involving
researchers and practitioners acting together on a particular cycle of activities,
including problem diagnosis, action intervention, and reflective learning [15]. Action
research is especially relevant in situations where participation and organizational
change processes are necessary [16]. It attempts to provide practical value to the client
organization while simultaneously contributing to the acquisition of new theoretical
knowledge [17]. The action research cycle [18] consists of three stages: (1) a pre-step -
to understand context and purpose; (2) six main steps - to gather, feedback and analyze
data, and to plan, implement and evaluate action; (3) a meta-step - to monitor.

The rationale for using action research as a research methodology is the nature of
this study. The company in this study had a goal to improve their technical debt
management. The research group in this study had previous experience on working
with various companies and cases related to technical debt and its management.
Therefore, action research, as an approach where both the company and the research
group work together to understand the problem and develop a solution, was especially
fit for the purpose.

370 J. Yli-Huumo et al.

The selected product line in this research is a financial system used in the capital
market industry by multiple customers around Nordics. The product is one of the three
main products provided by Tieto and it has a long development history including
source code from over 20 years ago. The product and development team have faced
both technological changes and organizational changes during their lifetime. Now the
main objective of Tieto’s Capital Market product unit is to migrate to new technology
with the aim to replace and rewrite old one, to improve quality and productivity, while
still serving all of its customers.

The objective of the study was to increase technical debt visibility and manage-
ability by improving processes related to identification, documentation and prioritiza-
tion. Therefore, we set up the following research questions to address the problem:

RQ1: How to improve technical debt identification and documentation? The
limitations of the tools currently available for technical debt identification can be seen
as a big challenge. The identification of architectural technical debt with tools is very
difficult. Therefore, most if not all technical debt identifications have to be done with
manual code and architecture inspection, where developer or architect examines the
system and the source code for possible issues. Our goal is to observe how technical
debt is currently identified in practice and how it is documented afterwards. The
objective is to identify possible improvements to these current processes, and test them
in practice.

RQ2: What factors should be taken in consideration when prioritizing technical
debt? The decisions related to technical debt can be sometimes made based on hun-
ches without any specific model or method to follow. Business owners might prioritize
issues that give direct value to customers, while technical people might put value more
on software quality and sustainability. Understanding both business and technical
effects of technical debt repayment can help technical debt evaluation and improve the
prioritization process for safer decisions. We will observe the processes of technical
debt evaluation and prioritization in practice with the aim to improve technical debt
evaluation and prioritization.

4 Action Research Process

The action research process used in this study is presented in Fig. 1. This research can
be divided into five main activities and outcomes.

The first step of the research process is interviews, where researcher interviews
people related to the product line or company to understand the current issues related to
technical debt and its management. We conducted seven semi-structured interviews
with the average of 45 min. We recorded, transcribed and analyzed all the interviews.
In the analysis of the interviews, we identified major issues. First, we did not find any
systematic process for technical debt identification, evaluation or prioritization. This
led to a technical debt communication gap between the development team and project
managers. Knowledge of technical debt seemed to be tacit personal knowledge rather
than explicitly stored in a common list. Secondly, we noticed that the developers and
architects had much knowledge about the current issues regarding technical debt, but

Developing Processes to Increase Technical Debt Visibility and Manageability 371

there was not any systematic way to document it. Thirdly, when there were technical
debt issues in discussion, the decision-making was mostly done based on hunches,
rather than evaluating and prioritizing them first. The outcome of this step is a problem
identification, which helps to understand the problem in current processes within a
company.

The second step is to develop a process for identification. In our case, the iden-
tification was conducted by gathering the data from previous knowledge and history of
people related to the product. The members of the product line used ten weeks to search
and identify technical debt issues. The reason for manual inspection was that the
company did not have any specific tools in use to identify technical debt. The outcome
of this step is the increase of technical debt visibility, which helps to understand the
overall technical debt view.

The third step is to develop a process for documentation. We decided to introduce
a simple process to document all technical debt issues to a single technical debt
backlog. The idea was to use backlog as an aid to make technical debt more visible to
everyone in the product line. We used a similar template (Table 1) to Guo and Seaman
[6] to collect all technical debt items. The template was sent to nine members of the
product line that was later returned back to the managers. The managers then combined
all the reported issues and created the technical debt backlog. The outcome of this step
is getting technical debt stored.

The result of documentation process was technical debt backlog that consisted 47
identified technical debt issues. For categorization we used 15 different technical debt
types identified by Alves et al. [19] in a mapping study. The majority of identified
technical debt (33/47 issues) was related to issues in design, architecture, code, and a
new category called legacy debt. Other types of technical debt (14/47) requirements,

Table 1. Template for technical debt documentation

Technical Debt ID Technical debt identification number
Date/Reporter Reporting date/Reporter name
Technical Debt Name Name of identified technical debt
Description Description of identified technical debt
Alternatives Explanation of possible alternative solutions
Rationale Reasons to fix technical debt

Fig. 1. The research process

372 J. Yli-Huumo et al.

test, test automation, and process debt were associated more to activities outside
product implementation.

The fourth step is to organize a workshop. We developed a process to prioritize
technical debt issues with a simple technical debt evaluation and prioritization template
(Table 2). This template was used when all the technical debt issues were collected to
the backlog. In the workshop, the participants would evaluate each identified technical
debt issue based on the five questions to create a prioritization. The outcome of this step
is getting technical debt evaluated.

The research group also analyzed the returned evaluation templates based on each
question to understand how technical debt was being evaluated.

We identified three different benefit categories: technical, economic, and organi-
zational benefits. Technical benefits include improvements in software quality, soft-
ware maintainability, software reusability, software performance, software testability,
and software deployment. Organizational benefits include better software deployment,
development team productivity, organizational communicability, and future adapt-
ability. Economic benefits include economic value and customer satisfaction.

We identified three different risk categories: economic, technical, and organiza-
tional risk. Economic risks include cost, time effort, testing effort, and customer sat-
isfaction. Organizational risks include management and competence. In addition,
technical risks like system breakdown and instability are critical to companies.

For reasons, we identified three different categories: intentional decision, unin-
tentional cause, and organizational cause. Intentional reasons were often related to
time constraints, lack of resources, and business driven development. Unintentional
causes were legacy product and lack of knowledge. For organizational causes, software
processes and lack of management were the main reasons for technical debt.

We identified two types of solutions for technical debt: technical and organiza-
tional solutions. Technical solutions were refactoring, redesigning, rewriting, archi-
tectural analysis, and increased testing. Organizational solutions were new processes
and new management plan/strategy.

The fifth step of the research process is sorting. When there is an evaluation for
each technical debt item, it is easier to sort the issues out based on their importance.
The last outcome of the process is prioritized technical debt backlog. The majority of
the issues (27/47) were prioritized at the lowest priorities 5 or 4, which shows that most
technical debt was not considered dangerous now. There were total of 14 issues rated as
the highest priorities at level 1 or 2. There were three level 1 issues related to legacy

Table 2. Technical debt evaluation template

Question

1 What are the benefits of fixing this issue? (Business value, quality, productivity, less bugs
etc.)

2 Are there any risks in fixing this issue? (Expensive, breaks the system etc.)
3 Why was this issue done previously like that?
4 How to fix this issue and what resources the fix would require?
5 From scale 1 – 5, how important would you rank this issue to be dealt with? (1 – most

important, 5 – not so important)

Developing Processes to Increase Technical Debt Visibility and Manageability 373

debt, which can be explained by Tieto’s current goals to migrate to a new technology to
replace and rewrite old technology. Interestingly, the priorities also show that most of
the technical debt related to design, architecture, and code debt were prioritized as 4 or
5, while test, test automation, and process debt were rated higher. However, it is
important to notice that number of technical debt issues in design, architecture, and
code is much higher than other types of debts, which might explain the difference.

The outcome of this action research cycle was a prioritized technical debt backlog
that can be now used to add more development tasks related to technical debt reduc-
tion. For example, Tieto managers expressed that the backlog would be used in the
future by Tieto to reduce technical debt in small iterations. Tieto managers also
mentioned that this same process would be applied in future to other product lines.

5 Discussion

RQ1: How to improve technical debt identification and documentation? Our study
made technical debt identification and documentation possible with simple practices
that make technical debt more visible and manageable. These similar practices have
been already suggested in other literature [6, 7]. However, the problem is not the
practices themselves, but the fact that changing or adding new practices in companies is
always a challenge and takes time [20]. In our case, we had a company that was
motivated to improve and change these practices. We started some new practices with
templates and processes that gathered previously identified technical debt from the
minds of architects and developers to a specific backlog designed only for technical
debt.

Technical debt identification is a challenge in software development. Identification
of smaller technical debt issues happening in single code lines can be done with static
code analysis tools and often it can be fixed by single developers. However, larger
issues in architecture and structure are often unreachable with tools [9, 21] and require
technical knowledge and competence [22], and discussion on an organizational level.
In our case, the people in the product line did not use any tools to find and identify
technical debt. Instead, the technical debt was identified based on previous experience
and history with the product. The experience with the product of workshop participants
shows that the people responsible for identification had extensive knowledge of the
product development history and high competence to build software. We used this fact
to our advantage, since we did not have to guide developers and architects to inves-
tigate product history, because the knowledge was already acquired during the
development years. This helped to identify existing technical debt and document it
based on our recommendations.

An interesting perspective on identified and documented technical debt and is the
variety of types of technical debts. The large variety of technical debt types shows that
when talking about technical debt, it is not only related to issues in design or code.
Instead, like in our case, the same phenomena of shortcuts and bad solutions happen in
other parts of software product development as well. To some development teams,
technical debt might include only issues happening in the source code and design,

374 J. Yli-Huumo et al.

while to some other teams, like in Tieto it might also include issues like those in testing
and processes. We argue that technical debt management is successful when a company
sets a clear standard to what is technical debt in their context and start to manage
technical debt based on that standard. However, in academia, there is a need to create a
common understanding for technical debt.

RQ2: What factors should be taken in consideration when prioritizing technical
debt? The prioritization in this study was based on evaluation of benefits, risks,
reasons, and solutions of technical debt. Using these factors to evaluate each technical
debt issue could be a good beginning for companies that are trying to improve their
technical debt management. However, these factors are not always measureable with a
numeric value. The interest in technical debt that accumulates larger if not repaid, it is
difficult to estimate [23]. Therefore, rather than trying to measure exact values, tech-
nical debt could be easier to understand from management perspective, if evaluated
based on factors related to it.

Companies should evaluate each technical debt issue on the basis of how fixing the
issue can benefit both company and software, such as improved quality, and how does
this quality improvement affect other factors such as maintainability, performance or
customer satisfaction. One challenge and risk of technical debt is that it often requires
competence to fix or change existing solutions. When developers are changing very old
parts of the code, it is not always certain that it will go as planned and it can be a huge
risk that needs to be evaluated before.

Understanding the reasons behind technical debt can help to understand bigger
underlying problems with technical debt. For example, a single technical debt issue in
one smaller feature can be caused by some larger architectural issue. Instead of just
fixing one single technical debt issue with the most economical value, it might be
possible that another major technical debt item can be actually more beneficial to fix in
a long term. Sometimes the solution might only require small refactoring, while
sometimes it might need a full rewrite of that certain part of the code. Therefore, it is
important to evaluate how much resources and effort does fixing technical debt require.
Understanding the solution can enable a better evaluation, whether the time required for
fixing is worth compared to its benefit.

We believe that technical debt prioritization should be done based on evaluation
rather than measurement. The combination of the presented factors can be used as a
simple way to create basic prioritizations, which can help companies to make decisions
with more rationality. The decision-making may improve when development teams and
management communicate and understand the benefits and risks in each technical debt
issue, accompanied with knowledge on the reasons and solutions for technical debt.

Study limitations. The first limitation to this study is the generalization of the results.
It is not certain that this process is usable in other companies. In our case, most of the
involved people had many years of experience with the product. This helped the
identification stage, since the people from the product line had already extensive
knowledge about the issues in the product. The second limitation is that we conducted
only one round of this action research. Conducting more rounds might change some
results in the priorities and numbers of technical debt issues, but we believe it would

Developing Processes to Increase Technical Debt Visibility and Manageability 375

not have any changes to the actual processes that were used in this study. The third
limitation is that the used process only takes in consideration already occurred technical
debt, and does not include management processes for a situation, where a decision has
to be made for a new technical debt case. This makes the developed management
process limited to only already occurred technical debt.

6 Conclusions

We used the action research process [18] together with a large IT company Tieto to find
and develop processes for technical debt identification, documentation, and prioriti-
zation to increase technical debt visibility and manageability. The action research
process consisted several interviews and meetings with the company representatives
and an organized technical debt workshop to improve processes in the company. The
outcome of the research was a set of templates and processes to identify, document, and
prioritize technical debt. These templates and processes were used successfully at Tieto
to transition from a situation where knowledge of technical debt was not explicitly
documented, to a situation where a specifically prioritized technical debt backlog was
available to reduce technical debt. Tieto’s Capital Market product unit is now using this
new technical debt backlog to increase technical debt visibility and manageability.
Since the results with the developed process were considered successful by both the
research group and the company, the same process will be expanded to other product
lines in Tieto. The main challenges and lessons learned can be summarized as
following:

• Technical debt can be brought visible with simple practices and processes in a
company that does not have a priori knowledge on technical debt management.

• Identification of larger scale technical debt, such as architecture and design, with
tools is a challenge that needs to be addressed and improved in future research.

• Technical debt documentation can be done with simple templates, but requires
motivation and resources from software organization.

• Technical debt prioritization based on measurements is difficult, and therefore
rougher evaluations based on e.g. benefits and risks through opinions can be seen
easier to start with.

References

1. Cunningham, W.: The WyCash Portfolio Management System, Experience Report (1992)
2. Yli-Huumo, J., Maglyas, A., Smolander, K.: The sources and approaches to management of

technical debt: a case study of two product lines in a middle-size finnish software company.
In: Jedlitschka, A., Kuvaja, P., Kuhrmann, M., Männistö, T., Münch, J., Raatikainen, M.
(eds.) PROFES 2014. LNCS, vol. 8892, pp. 93–107. Springer, Heidelberg (2014). doi:10.
1007/978-3-319-13835-0_7

376 J. Yli-Huumo et al.

http://dx.doi.org/10.1007/978-3-319-13835-0_7
http://dx.doi.org/10.1007/978-3-319-13835-0_7

3. Yli-Huumo, J., Maglyas, A., Smolander, K.: The benefits and consequences of workarounds
in software development projects. In: Fernandes, J.M., Machado, R.J., Wnuk, K. (eds.)
ICSOB 2015. LNBIP, vol. 210, pp. 1–16. Springer, Heidelberg (2015). doi:10.1007/978-3-
319-19593-3_1

4. McConnell, S.: Technical Debt-10x Software Development | Construx, 1 November 2007.
http://www.construx.com/10x_Software_Development/Technical_Debt/. Accessed 25
March 2014

5. Li, Z., Avgeriou, P., Liang, P.: A systematic mapping study on technical debt and its
management. J. Syst. Softw. 101, 193–220 (2015)

6. Guo, Y., Seaman, C.: A portfolio approach to technical debt management. In: Proceedings of
the 2nd Workshop on Managing Technical Debt, New York, NY, USA, pp. 31–34 (2011)

7. Li, Z., Liang, P., Avgeriou, P.: Architectural technical debt identification based on
architecture decisions and change scenarios. In: Proceedings of the 12th Working IEEE/IFIP
Conference on Software Architecture, WICSA (2015)

8. Zazworka, N., Vetro’, A., Izurieta, C., Wong, S., Cai, Y., Seaman, C., Shull, F.: Comparing
four approaches for technical debt identification. Softw. Qual. J. 22(3), 403–426 (2013)

9. Kruchten, P., Nord, R.L., Ozkaya, I.: Technical debt: from metaphor to theory and practice.
IEEE Softw. 29(6), 18–21 (2012)

10. Seaman, C., Guo, Y., Zazworka, N., Shull, F., Izurieta, C., Cai, Y., Vetro, A.: Using
technical debt data in decision making: potential decision approaches. In: 2012 Third
International Workshop on Managing Technical Debt (MTD), pp. 45–48 (2012)

11. Schmid, K.: A formal approach to technical debt decision making. In: Proceedings of the 9th
International ACM Sigsoft Conference on Quality of Software Architectures, New York,
NY, USA, pp. 153–162 (2013)

12. Curtis, B., Sappidi, J., Szynkarski, A.: Estimating the size, cost, and types of technical debt.
In: Proceedings of the Third International Workshop on Managing Technical Debt,
Piscataway, NJ, USA, pp. 49–53 (2012)

13. Theodoropoulos, T., Hofberg, M., Kern, D.: Technical debt from the stakeholder
perspective. In: Proceedings of the 2nd Workshop on Managing Technical Debt, New
York, NY, USA, pp. 43–46 (2011)

14. Letouzey, J.-L.: The SQALE method for evaluating technical debt. In: Proceedings of the
Third International Workshop on Managing Technical Debt, Piscataway, NJ, USA, pp. 31–
36 (2012)

15. Avison, D.E., Lau, F., Myers, M.D., Nielsen, P.A.: Action research. Commun. ACM 42(1),
94–97 (1999)

16. Baskerville, R.L., Wood-Harper, A.T.: A critical perspective on action research as a method
for information systems research. J. Inf. Technol. 11(3), 235–246 (1996)

17. Sjoberg, D.I.K., Dyba, T., Jorgensen, M.: The future of empirical methods in software
engineering research. In: 2007 Future of Software Engineering, Washington, DC, USA,
pp. 358–378 (2007)

18. Coughlan, P., Coghlan, D.: Action research for operations management. Int. J. Oper. Prod.
Manag. 22(2), 220–240 (2002)

19. Alves, N.S.R., Mendes, T.S., de Mendonça, M.G., Spínola, R.O., Shull, F., Seaman, C.:
Identification and management of technical debt: a systematic mapping study. Inf. Softw.
Technol. 70, 100–121 (2016)

20. Dyba, T.: An empirical investigation of the key factors for success in software process
improvement. IEEE Trans. Softw. Eng. 31(5), 410–424 (2005)

Developing Processes to Increase Technical Debt Visibility and Manageability 377

http://dx.doi.org/10.1007/978-3-319-19593-3_1
http://dx.doi.org/10.1007/978-3-319-19593-3_1
http://www.construx.com/10x_Software_Development/Technical_Debt/

21. Zazworka, N., Spínola, R.O., Vetro’, A., Shull, F., Seaman, C.: A case study on effectively
identifying technical debt. In: Proceedings of the 17th International Conference on
Evaluation and Assessment in Software Engineering, New York, NY, USA, pp. 42–47
(2013)

22. Robillard, P.N.: The role of knowledge in software development. Commun. ACM 42(1),
87–92 (1999)

23. Falessi, D., Shaw, M.A., Shull, F., Mullen, K., Keymind, M.S.: Practical considerations,
challenges, and requirements of tool-support for managing technical debt. In: 2013 4th
International Workshop on Managing Technical Debt (MTD), pp. 16–19 (2013)

378 J. Yli-Huumo et al.

	Developing Processes to Increase Technical Debt Visibility and Manageability – An Action Research Study in Industry
	Abstract
	1 Introduction
	2 Background
	3 Research Methodology
	4 Action Research Process
	5 Discussion
	6 Conclusions
	References

