
Problems and Solutions in Mobile
Application Testing

Triin Samuel and Dietmar Pfahl(&)

Institute of Computer Science, University of Tartu, Tartu, Estonia
{triin.samuel,dietmar.pfahl}@ut.ee

Abstract. In recent years the amount of literature published about mobile
application testing has significantly grown. However, it is unclear to what
degree stated problems and proposed solutions are relevant to industry. To shed
light on this issue, we conducted a literature survey to provide an overview of
what current scientific literature considers problems and potential solutions in
mobile application testing, and how often proposed solutions were reportedly
evaluated in industry. Then we conducted a case study involving six software
companies in Estonia to find out which of the problems are considered relevant
by professionals, and which of the proposed solutions are considered novel and
applicable. In total, we identified 49 potential problems or challenges in the
mobile application testing domain and 39 potential solutions, some of which
were implemented software tools while others were just theoretical concepts.
Although some of the solutions were reportedly applied in practice, in most
cases the literature did not give much information on the actual usage in industry
of the proposed solutions. The case study revealed that while the relevance of
each identified problem was highly variable from one company to another, there
are some key problems that are generally considered vital both by research and
industry. Regarding solution proposals, it turned out they are often described too
much on the conceptual level or are too unrelated to the most urgent test-related
problems of our case companies to be of interest to them.

1 Introduction

In the recent years, mobile devices have grown from futile entertainment gadgets to
popular and ever-present media with a wide range of uses from social applications to
business, medicine and others. This has brought the importance of testing mobile
applications into highlight. As mentioned by various researchers [1–4] mobile appli-
cations have some unique qualities that demand new or modified testing approaches to
ensure effectiveness and efficiency. Accordingly, the number of scientific papers
written about mobile application testing is steadily increasing. However, it is uncertain
whether the proposed solutions are usable in industry and whether the problems
mentioned in industry are actually relevant in real mobile application development and
testing. In order to find answers to these questions, we decided to carry out a literature
survey and followed by a case study to assess the practical relevance of the information
collected from literature. The exact research questions are as follows:

© Springer International Publishing AG 2016
P. Abrahamsson et al. (Eds.): PROFES 2016, LNCS 10027, pp. 249–267, 2016.
DOI: 10.1007/978-3-319-49094-6_16



• RQ1: What are the problems specific to testing of mobile applications as opposed to
conventional applications, according to scientific literature?

• RQ2: What are the solutions (methods, tools) proposed by literature, if any?
• RQ3: According to literature, to what extent are these solutions used in industry?
• RQ4: Does industry consider the solutions proposed in the literature as relevant?
• RQ5: Does industry consider the solutions proposed in the literature as useful?

The rest of this paper is structured as follows. After a brief overview of the topic
given in Sect. 2, the methodology is introduced in Sect. 3. Section 4 covers the results
of the literature survey presenting answers to research questions RQ1 to RQ3. More
specifically, it presents what scientific literature considers being problems in mobile
application testing, which solutions are proposed, and how much the solutions are used
in industry. Section 5 discusses the results of interviews conducted within six com-
panies in order to evaluate how relevant industry considers the problems and solutions
mentioned in literature. This addresses research questions RQ4 and RQ5. Section 6
provides a brief discussion of the limitations of the literature survey and case study.
The paper ends with a summary of the results and conclusions.

2 Background

The first device that could be considered a smartphone was IBM Simon [5] released in
1994. Smartphones as we know them today started gaining mainstream popularity only
in year 2007 when the first iPhone was released [6]. Since then, smartphone sales have
skyrocketed [7]. What initially were thought to be just enhanced phones and enter-
tainment devices have now developed into a wide range of different devices capable of
performing business tasks, simplifying everyday life and enabling users to be contin-
ually connected to their work, social circles and service providers [1, 8]. Mobile
devices are challenging conventional computers [9]. Consequently, the criticality of
mobile applications has significantly increased [1, 3]. This has forced developers to
focus more on the quality of their applications.

Testing of mobile applications incorporates many of the problems inherent to
software testing in general. However, mobile devices also have qualities that differ-
entiate them from conventional computers and therefore create testing challenges that
are either unique to or more relevant in the case of mobile applications.

The three dominating mobile operating systems (OS) are Android, iOS and Win-
dows Phone. According to net market share [10], Android was the most popular OS in
the first quarter of 2016 with a 60 % market share. iOS followed with 32 %. Windows
Phone was third with 3 %, followed by Java ME having 2 %.

Android is a free open-source operating system based on the Linux kernel and was
released by Google in 2008. Android applications are normally developed in Java,
compiled to Java bytecode and then to Dalvik bytecode to be run on Dalvik virtual
ma-chine (DVM), with most of the code interpreted during runtime. From version 5.0,
DVM has been replaced by Android Runtime (ART) that compiles the application to
machine code during installation. Therefore, even though Android applications are
commonly developed in Java, they cannot be run on Java Virtual Machine.

250 T. Samuel and D. Pfahl



The second most popular operating system is iOS, a proprietary, closed source
operating system released by Apple in 2007. The iOS operating system can be used
only on Apple devices. Applications for iOS are normally developed either in Swift or
Objective-C. The core of iOS is based on Darwin, a Unix operating system also used
for Apple OS X, and Cocoa Touch is used for the user interface.

Windows Phone (previously Windows Mobile, now Windows 10 Mobile) is a
proprietary closed-source operating system developed by Microsoft and released in
2010. Applications for Windows mobile devices can be developed in various languages
like C#, .NET, C++ and HTML5. The latest mobile operating system from Microsoft
was released as Windows 10 Mobile, reflecting Microsoft’s intention to essentially
merge the desktop and mobile versions of Windows [11] so that same apps could be
run on both of them.

3 Methodology

In this section, we describe our research methods, i.e., how we conducted our literature
survey and case study. We used the guidelines provided in [12, 13] as an orientation
but didn’t follow all of them to the letter.

3.1 Literature Survey

In order to get familiar with the literature, we first conducted an informal search in the
ACM Digital Library. We searched for articles related to problems in mobile appli-
cation testing published in 2007 or later because that was the year when the first
iPhone, as well as the first alpha version of Android was released. Since we did not use
any additional filtering, we got an excessive amount of results which we ordered based
on relevance. We skimmed through the most relevant search results and manually
chose 26 articles that seemed relevant to the question in hand by title.

Through reading the initial papers, we learned some additional keywords and
search criteria that could be used. We also noticed that most of the results were
conference papers and papers that mentioned problems usually also discussed solutions
to them. We then conducted a second, more formal and structured search for journal
articles. Since some relevant papers might not be indexed by the ACM Digital Library,
we conducted the second search in the following four databases:

• ACM Digital Library
• SpringerLink (Computer science)
• Scopus (Computer science)
• ScienceDirect (Computer science)

We applied the following inclusion criteria:

• Only journal articles
• Published 2007 or later
• Full-text is available in the database

Problems and Solutions in Mobile Application Testing 251



We applied the following exclusion criteria:

• Papers that were mainly about hardware-related, low-level communication or net-
work issues, as opposed to end-user mobile applications.

• Papers to which we do not have full text access rights.
• Articles that do not analyse or make new contributions to the testing process itself;

for example, if the paper was about developing a non-testing-related mobile
application and at the end it was tested just to prove that the application works, then
the article is not really about testing, even though it features it.

• Papers that are about mobile web application testing. Since web applications run in
a browser or in a browser-like program, they don’t inherit many of the challenges
that native mobile applications have and are often more similar to web applications
meant for desktop devices than to native mobile applications [14].

• Testing techniques that are not meant for consumer-oriented mobile applications.

The exact search queries can be found in Appendix I of [15]. The second, formal,
search yielded 374 results, 355 of which were unique. Out of these, 84 were left after
manual filtering based on the title. Therefore, the total set of abstracts to read was 26 +
84 = 110. Based on the abstract, 57 papers were discarded, which results in a set of 53
papers to read. While reading we discarded two papers because one had low relevance
and one was superseded by another more recent publication. This left us with 50
publications.

Extracting Problems and Solutions. For each of the selected publications, we
highlighted problems and solutions mentioned. If a solution was proposed in the paper,
we assigned an approximate category to it and wrote the most important keywords
concerning the solution to the front page. After reading all publications, we went
through all the highlighted parts concerning RQ1 and wrote out all the found problems.
Researchers rarely used the word ‘problem’, but often highlighted ‘challenges’ to
justify the necessity of the solution they were going to propose. Offering a solution
clearly shows that they considered the ‘challenge’ something that needed to be solved,
so we counted these as problems. Some problems were also collected from general
discussion parts of the papers.

After extracting a list of problems, we went through the papers again to write
summaries of the proposed solutions (RQ2). The solutions were based mostly on the
highlighted parts and the keywords we had written on the papers while reading, but
details often needed to be clarified from other parts of the paper.

Assessing Whether Proposed Solutions were Evaluated in Industry. After we had
extracted the list of solutions from the selected papers, we analysed the papers once
again with the goal to find evidence that proposed solutions had actually been evaluated
or applied in industry (RQ3).

252 T. Samuel and D. Pfahl



3.2 Case Study

Selection of Industry Professionals. We compiled a set of 23 potentially relevant
companies based on a Google search and our existing knowledge about software
companies in Estonia. Then we explored web sites of the companies and selected those
which fulfilled the following criteria:

• Operate in Estonia
• Deal with testing of native mobile applications. If a company develops native

mobile applications, then we assumed that testing is done unless the home page
hints that it is outsourced

• Are not a one-person company
• Seem professional enough to pay attention to the testing process

This restricted the list to seven companies, which we contacted. Five of the contacted
companies replied and were willing to participate. In addition to these, one of the
chosen companies put us in contact with a very suitable, but less known company that
we were not aware of, which also agreed to participate. This resulted in a total of 6
companies to interview. We then asked our contacts to suggest interviewees involved
in testing native mobile applications. In two cases we used pre-existing in-company
contacts to find a suitable person in the company to interview.

Participating Companies. The following companies were selected:

• Fob Solutions: a mobile-oriented quality assurance company that on the side also
provides development of web and native mobile applications. Fob Solutions has
about 20 testers and some developers who work with Android, iOS and Windows
Phone. We talked to the head of quality assurance.

• Testlio: a company that provides a community-based testing service. Testlio
manages the testing process and prepares everything necessary, but actual testing is
performed by a network of approximately 200 freelance testers who are not
employees of Testlio. Testlio works with Android, iOS, Windows Phone and to a
lesser degree BlackBerry. In Testlio testing is performed manually and the company
doesn’t diagnose the found problems. The company does have its own platform to
facilitate testing but it mostly has management functionalities, not test running or
generation. We interviewed a QA manager that we knew prior to the interview.

• TestDevLab: a quality assurance company that in addition to the more common
testing services also provides battery, penetration and data usage testing. About 50
people are involved in Android, iOS and Windows Phone applications testing in
TestDevLab. TestDevLab QA engineers are not oriented to a certain platform,
therefore my interviewee had worked with different platforms (web, iOS, Android)
in different projects. TestDevLab owns a test automation tool called Apimation1.
The company has its headquarter in Latvia but it is common for their employees to

1 https://apimation.com.

Problems and Solutions in Mobile Application Testing 253

https://apimation.com


temporarily move to where the client is located. Therefore, we got a chance to talk
to one of their QA engineers who lives in Estonia.

• Wazombi: a company focused on providing end-to-end solutions where everything
from electrical engineering to UI design is done in one house. Wazombi works with
Android and iOS, but as learned from the interview, most of their Android appli-
cations are not Java-based. Instead, Xamarin and C# are used. Xamarin also con-
stitutes the only test generation tool mentioned by case study participants. Since the
company is more oriented on development, it has only one person specifically
assigned to mobile application testing, whom we interviewed.

• MoonCascade: a company that mainly provides mobile, responsive web and
back-end development. From mobile platforms, Android, iOS and Windows Phone
are used. There are four people working at mobile application testing. Some testing
frameworks like Appium and Selendroid are used for test running. We interviewed
the lead of the quality assurance team.

• Mobi Lab: a mobile application design and development company, formerly a part
of current parent company Mobi Solutions. They work with Android, iOS and
Windows Phone. We interviewed the only dedicated tester, but developers are also
responsible for testing the applications that they are making.

Producing a Problem-Solution Matrix. Explaining every solution proposed in the
literature to our interviewees would have resulted in unrealistically long and inefficient
interviews. Therefore, we planned to only present solutions to problems that inter-
viewees previously identified as being highly relevant to them. Since we did not have
any information about the perceived relevance of each problem prior to the interview, it
was not possible to choose the set of solutions to explain beforehand. We needed a
mapping of problems and solutions that we could use during the interview to choose
which solutions to explain.

In order to find out which problems a given solution solves, we used the knowledge
of the solutions that we had gained from reading the papers, as well as the problems
and challenges that researchers presented as justifications for their solution. For each
problem-solution combination there were 4 options:

• ‘Y’ - a proposed solution significantly contributes to solving the given problem
• ‘Partly’ - partly solves the problem
• ‘Maybe’ - might be useful, but more information is needed to know
• Blank - a proposed solution does not address this problem

This resulted in the problem-solution matrix described in Sect. 5. Having this
matrix handy allowed us to present exactly those solutions that were related to the most
urgent problems highlighted by the interviewee, no matter which problem that was.

The Interview Process. The interview structure was as follows:

1. We introduced the research problem and collected some general information about
the company. This information included the number of employees involved in
testing mobile applications, whether the company is oriented at testing or devel-
opment, mobile platforms the company works with, and experience with using or

254 T. Samuel and D. Pfahl



developing automated solutions for mobile application testing. In addition to this,
before showing the list of problems acquired from literature, we asked whether the
interviewee sees any notable challenges in mobile application testing.

2. We presented the list of testing problems found from literature and asked the
interviewee to rate the relevance of each problem for their actual mobile application
testing. The answers were given on a multiple choice scale that also included
options for “N/A” and “Already solved”. The questionnaire can be found in
Appendix II of [15].

3. We looked at those problems the interviewee considered important (marked as
“Definitely”) and used the Problem-Solution mapping presented in Sect. 5 to extract
the set of corresponding solutions proposed in literature. Thereafter, we introduced
these solution ideas to the professional and asked which of them seem potentially
useful in practice. Since the respondents were only interested in practically appli-
cable solutions and time was scarce, we omitted articles that were very general or
too theoretical.

The time planned for each interview was 1.5 h. The first interview part took about
10 min while the duration of the second part was dependent on how fast the inter-
viewee filled out the questionnaire, averaging at about 30 min. Duration of the third
part was affected by how many problems the interviewee considered relevant in the
questionnaire. Two respondents filled out the questionnaire very fast, which resulted in
these interviews taking only 1 h. One interview was extended to 2 h because there were
many potentially relevant solutions to present and discuss.

4 Results from the Literature Survey

The results from the literature survey were used to answer research questions RQ1-3:

• RQ1: What are the problems specific to testing of mobile applications as opposed to
conventional applications, according to scientific literature?

• RQ2: What are the solutions (methods, tools) proposed by literature, if any?
• RQ3: According to literature, to what extent are these solutions used in industry?

4.1 Findings Related to RQ1

In this sub-section, we give an overview of problems and challenges (in the following
subsumed under the term ‘problems’) that are specific to or especially relevant in the
testing of mobile applications (cf. Table 1). We grouped problems according to their
core causes. In reality, however, each problem can have more than one cause and, thus,
the grouping shown in Table 1 should be taken as an approximation made in an effort
to simplify reading. A detailed description of each problem can be found in [15]. In
total 49 problems were identified.

Problems and Solutions in Mobile Application Testing 255



4.2 Findings Related to RQ2

In this sub-section, we present the tools and methods proposed in the literature for
solving the problems described in the previous sub-section (cf. Table 2). The solutions

Table 1. List of identified problems grouped by core cause

Core cause Problems with references

Fragmentation (large variety of platforms
with different operating systems, hardware,
storage, and screen sizes)

P1 [3, 18, 20, 22–25] - P2 [1] - P3 [23, 26] -
P4 [27, 28] - P5 [23] - P6 [22, 26] - P7 [22]

External software dependencies P8 [1, 29] - P9 [30] - P10 [31]
Frequent external communication P11 [1, 9, 16, 19] - P12 [19, 24, 29, 31–35] -

P13 [1, 23, 24, 36] - P14 [1, 37] - P15 [38] -
P16 [9, 21, 28, 32] - P17 [9, 39] - P18 [39] -
P19 [39]

Variable users and usage contexts P20 [40, 41] - P21 [21, 42] - P22 [21, 28, 43–
45] - P23 [26] - P24 [35, 43] - P25 [21, 43,
46] - P26 [33, 45] - P27 [43]

Fast evolution P28 [16, 32] - P29 [18, 21, 22, 47] - P30 [9,
46]

Limited resources P31 [24, 35] - P32 [35] - P33 [1] - P34 [46]
Novelty P35 [32, 41, 48–50] - P36 [21, 32, 46, 51] -

P37 [36] - P38 [41, 51] - P39 [9, 21, 32, 43,
52]

Limitations related to platform
implementation.

P40 [23, 29, 39, 48] - P41 [48] - P42 [19, 53]
- P43 [54] - P44 [1, 24] - P45 [55] - P46 [32,
56] - P47 [35]

Other problems P48 [9, 16] - P49 [9]

Table 2. List of identified solutions grouped by type

Type Solutions with references

Theoretical S1 [4] - S2 [21] - S3 [27] - S4 [47] -S5 [33] -S6 [57] - S7 [23]
General tools &
methods

S8 [35] - S9 [17] - S10 [29] - S11 [31, 34, 48] - S12 [50] - S13
[26]

GUI-based testing S14 [52, 58] - S15 [16, 59]
Record-and-replay S16 [56]
Model-based S17 [40] - S18 [30]
Model-learning S19 [55, 60] - S20 [61] - S21 [24]
Search-based S22 [61–64]
Performance testing S23 [36]
Reliability testing S24 [38] - S25 [19] - S26 [39]
Compatibility S27 [22] - S28 [20] - S29 [18]
Usability and user
testing

S30 [65] - S31 [32] - S32 [54] - S33 [28] - S34 [46] - S35 [45]

Security testing S36 [37] - S37 [66] - S38 [25] - S39 [49]

256 T. Samuel and D. Pfahl



are grouped by type. A detailed description of each solution can be found in [15]. In
total, 39 solutions were identified.

4.3 Findings Related to RQ3

In this sub-section, we discuss to what extent proposed solutions (methods and tools)
have reportedly been used in industry.

Most of the solutions listed in Sect. 4.2 were evaluated either on one or a few
applications familiar to the researchers or on a more representative set of applications
acquired from app stores. However, in both cases the evaluation was performed by the
researchers themselves, usually in a controlled environment. Only one paper explicitly
mentioned that their proposed solution was used in a company, i.e. Swisscom (S13).
Also some proposed tools were evaluated on published apps (S16, S19, S21, S25, S37,
S39) and one was partly tested on apps currently under development (S39).

However, publications were (co-)authored by individuals with a company affilia-
tion. This applies to S1 (both authors affiliated with Microsoft), S5 (both authors
affiliated with Nokia Research Center), S6 (one of the authors affiliated with Fujitsu
Laboratories), S8 (all authors affiliated with Microsoft Research), S10 & S11 (one of
the authors affiliated with NASA Ames Research Center), S25 (three out of four authors
affiliated with Microsoft Research), S29 (first author is one of the founders of the
TestDroid testing platform), S30 (one of the two authors affiliated with Ericsson
Research), S35 (one of the authors affiliated with Telecom Italia). Even though in these
cases it was not mentioned in the paper whether the proposed solution was evaluated in
industry, it is highly probable that some of them are used in the companies to which
(some of) the authors are affiliated. It is worth noting, however, that most of the
affiliations are with research units within large corporations. Therefore, results reported
in the related papers might not have been applied in the business units of these com-
panies, and they might not be suitable for problems in the in the rest of the industry, i.e.
in small and mid-sized companies.

5 Results from the Case Study

The results from the case study were used to answer research questions RQ4-5:

• RQ4: Does industry consider the solutions proposed in the literature as relevant?
• RQ5: Does industry consider the solutions proposed in the literature as useful?

In order to make the interviews conducted during the case study more efficient, we
developed a problem-solution mapping based on the results from the literature survey.
For easier viewing, we made the original file available on Dropbox2. Note that the
columns in grey indicate solutions that were not presented in detail to the interviewees
because they related to problems that were not of high priority for the interviewees.

2 https://www.dropbox.com/s/ia8vgjr7a8ppxkr/Problem-solution%20matrix.ods?dl=0.

Problems and Solutions in Mobile Application Testing 257

https://www.dropbox.com/s/ia8vgjr7a8ppxkr/Problem-solution%20matrix.ods%3fdl%3d0


5.1 Findings Related to RQ4

Five of the six interviewed companies said that fragmentation was a significant
problem in mobile application testing even before seeing the list of problems proposed
in the literature. Testlio was the only company that didn’t consider fragmentation as a
significant problem because their community-based approach already ensures a high
number of different platform, OS version, device, and screen size combinations. The
interviewee from Testlio mentioned two challenges in mobile application testing.
Firstly, there is a lack of fine-grained tools that testers could use to record GUI
interactions leading to a fault. The ideal approach would be able to capture videos,
screenshots with click positions and have better logs than the current approaches. The
second problem was applications that need to be tested in very specific geographical
locations, especially on iOS where location information is more difficult to mock than
on Android.

The questionnaire answers provided by all of the participating companies are listed
in Table 3. Questions corresponding to each question number can be found in
Appendix II of [15]. Basically, interviewees were asked to tell for each problem P1 to
P49 mentioned in the literature whether it is also a problem for them. The answer
choices were: ‘Definitely’ – ‘Maybe’ – ‘Probably not’ – ‘Definitely not’, plus the
answer options ‘n/a’ (not applicable) and ‘Solved’ (in case the problem existed but has
been solved in the meanwhile). The first column shows the problem ID together with
an indicator representing the relevance of the problem for the case companies. The
symbol ‘++’ indicates that at least four companies found the problem relevant (at least
four times ‘Definitely’), ‘+’ indicates that two or three companies found the problem
relevant (two or three times ‘Definitely’), and ‘−’ indicates that no company felt
strongly that the problem is relevant (none of the companies stated ‘Definitely’).

The responses from the three companies that mainly focus on testing are displayed
on the left while companies whose main area of business is mobile application
development are displayed in the right half of Table 3.

The surveyed companies didn’t agree on the relevance of any of the listed prob-
lems. However, some patterns can be pointed out. 18 of 49 listed problems were not
considered relevant by all case companies. For example, testing inter-application
communications (P14) and more sophisticated testing techniques like simulating
external dependencies (P10), automatic page-load detection (P40) and ensuring com-
pletely clean application restart (P43) were never mentioned to be definitely relevant.
None of the companies considered the lack of testing methods, tools or theory a
significant problem (P33–P35, P37). Modelling applications before testing was not
popular and some companies mentioned that testing on all devices is not needed
because a set of supported devices is chosen before development. It can be argued that
this practice of choosing a set of supported devices itself shows that testing an
application on all potentially suitable devices is too difficult, expensive or
time-consuming.

Some problems not considered highly relevant by companies mainly focusing on
development were still considered potentially problematic by testing companies. These
included acquiring a mental model of a complex application (P9), the unpredictability
of external dependencies during testing (P12), ignoring unexpected user behavior

258 T. Samuel and D. Pfahl



Table 3. Relevance of problems to our case companies

Problem Testing companies Development companies

Fob Solutions Testlio TestDevLab Wazombi MoonCascade Mobi Lab

P1 ++ Definitely Solved Definitely Maybe Definitely Definitely

P2 + Solved N/A Probably not Definitely Definitely Maybe

P3 + Definitely N/A Definitely not Maybe N/A Definitely

P4 Maybe Solved Definitely not Definitely Probably not Definitely not

P5 + Maybe Solved Definitely Definitely not Maybe Definitely

P6 ++ Definitely Solved Definitely Definitely not Definitely Definitely

P7 + Definitely not N/A Definitely not Solved Definitely Definitely

P8 + Definitely not Definitely Definitely Probably not Definitely Probably not

P9 Probably not Maybe Definitely Definitely not Definitely not Definitely not

P10 − Maybe Maybe Probably not Maybe Probably not Definitely not

P11 Probably not N/A Definitely Solved Maybe Probably not

P12 + Definitely Maybe Definitely Probably not Probably not Definitely not

P13 + Definitely not N/A Definitely Solved Definitely Definitely

P14 − Probably not Maybe Probably not Probably not Maybe Definitely not

P15 − Maybe Solved Definitely not Definitely not Probably not Definitely not

P16 + N/A Definitely Probably not Definitely not Maybe Definitely

P17 − Maybe Maybe Maybe Definitely not Maybe Definitely not

P18 Probably not N/A Definitely Maybe Maybe Definitely not

P19 + Probably not N/A Definitely not Probably not Definitely Definitely

P20 + Definitely Definitely Probably not Probably not Definitely Maybe

P21 + Maybe Definitely Definitely Solved Probably not Maybe

P22 Maybe Maybe Definitely not Solved Definitely Probably not

P23 + Definitely N/A Definitely not Definitely Definitely Maybe

P24 Maybe Solved Probably not Probably not Definitely Probably not

P25 Probably not Definitely Definitely not Probably not Maybe Probably not

P26 Probably not Definitely Probably not Definitely not Probably not Definitely not

P27 + Definitely Definitely Maybe Probably not Definitely Definitely not

P28 + Definitely Maybe Definitely Probably not Probably not Definitely not

P29 − Probably not N/A Maybe Maybe Maybe Maybe

P30 − Probably not N/A Maybe Definitely not Definitely not Definitely not

P31 Maybe Maybe Maybe Maybe Definitely Definitely not

P32 Definitely not Maybe Definitely Definitely not Probably not Definitely not

P33 − Probably not N/A Definitely not Solved Probably not Definitely not

P34 − Probably not Maybe Definitely not Solved Maybe Definitely not

P35 − Maybe N/A Definitely not Definitely not Probably not Definitely not

P36 − Solved Maybe Probably not Solved Solved Definitely not

P37 − Solved Maybe Probably not Probably not Solved Definitely not

P38 + N/A N/A Definitely Definitely Definitely not N/A

P39 − N/A N/A N/A N/A N/A Probably not

P40 − Probably not N/A Definitely not Definitely not Probably not Probably not

P41 − Solved Maybe Definitely not Solved Solved Solved

P42 + N/A N/A Definitely Definitely not Definitely Probably not

P43 − Probably not Probably not Definitely not Definitely not Solved Solved

P44 Solved Definitely Definitely not Solved Solved Solved

P45 − N/A N/A N/A Solved Solved Probably not

P46 − Definitely not Probably not Definitely not Probably not Maybe Definitely not

P47 − Definitely not Maybe Probably not Solved Solved Probably not

P48 N/A Definitely Probably not Maybe Probably not Definitely not

P49 + N/A Maybe Definitely not Definitely Definitely Definitely not

Problems and Solutions in Mobile Application Testing 259



(P15), users’ variable mobile device usage experience (P21), insufficient OS failure
logging (P30) and the usability and accessibility aspects of complex input mechanisms
(P32). We suppose that testing companies do testing more thoroughly or are just more
aware of their testing processes. In addition to this, if testing is performed by devel-
opers or at least in the same company, then the people doing the testing probably have a
better overview of how the application is intended to function.

Since Testlio was the only company that actively uses a community-based testing
approach as opposed to just testing in-house, different problems are sometimes con-
sidered relevant by them. Notably, fragmentation (P1) and the large number of test
devices to buy (P6) that were considered problems by most companies are not a
problem for Testlio because their testers use personal devices for testing. On the other
hand, they are subject to some challenges that are not relevant for any other companies.
For example, since their testers are working remotely, they need more advanced UI
recording tools (P44) than companies that perform testing locally. The large number of
test devices (P6) is also not a problem for Wazombi who mainly provides end-to-end
services that include both hardware and software development.

The lack of design principles (P36) was considered already solved by guidelines
provided by mobile operating systems and cross-platform principles were not con-
sidered necessary. The problem of not being able to modify a mobile application after
installing (P41) was considered solved by either automatic updates provided by app
stores or specialized software that can be embedded into applications for A/B testing.
The fact that testing is expected to be faster for mobile applications was not considered
a big obstacle because mobile applications on average were said to contain less
functionality than desktop applications.

5.2 Findings Related to RQ5

In this sub-section we present the results regarding the extent to which industry pro-
fessionals interviewed in our case study consider the solutions provided in literature
potentially useful in practice (cf. Table 4).

11 solutions were presented to industry professionals based on the problems that
they considered relevant. None of the solutions were uniformly accepted by the
companies, although solution S26 (An approach for amplifying exception handling
code) was considered useful by all the companies that found it applicable.

Solution S8 (MobiBug) was presented to all companies. Respondents from Testlio,
TestDevLab and Mobi Lab considered it potentially useful. Wazombi commented that
since even devices of the same model don’t function completely identically, a model
that assumes they do might be inaccurate. MoonCascade said that nowadays OS
built-in logging is already more fine-grained than stated in the article and 3rd party
libraries for monitoring fault configurations exist, there-fore this solution already exists.

None of the interviewees considered solution S9 (iTest) a useful innovation. Some
mentioned that a solution of this kind already exists. Others were skeptical of whether
this approach would work well because people rarely give any feedback when things
work (Mobi Lab) and it is difficult to ensure a full variety of user profiles in registered
testers (Testlio). One company expressed that the success of this approach highly

260 T. Samuel and D. Pfahl



depends on the tester incentive mechanism. Therefore, the technical solution alone does
not bring much value.

Solution S10 (Symbolic execution of Android apps) was presented to two com-
panies. TestDevLab considered it potentially useful while Wazombi said the solution
would not applicable for them because it can only handle applications written in Java.

Solution S11 (JPF-Android) is not applicable to Wazombi whose applications are
not Java-based. TestDevLab was hesitant about whether this would work and
MoonCascade said the tool would be useful if it could emulate drivers of all kinds of
sensors and developers manage to keep the tool up to date with new OS versions.

Most of the companies liked the concept of solution S16 (VALERA) and thought it
would be useful. Wazombi was more skeptical due to the fact that VALERA does not
record memory operations.

Solution S21 (Tool with 2 approaches for automated model-based testing) was only
presented to the Testlio representative who found it useful.

Solution S23 (Unit-testing performance) was presented to Mobi Lab and Test-
DevLab. Mobi Lab found it useful while the latter commented that the duration of
method execution can depend on things outside the developer’s control, e.g. network
conditions, therefore duration of execution cannot be accredited to just performance.

TestDevLab considered solution S25 (VanarSena) useful. Mobi Lab said that it is
already used for Windows Phone applications.

Solution S26 (Approach for amplifying exception-handling code) was presented to
4 companies. For Wazombi, this solution wasn’t applicable due to being Java-based,
but the others considered it useful.

Regarding solution S28 (Knowledge base for compatibility testing) Mobi Lab
thought it could work and Wazombi said it could work partly, for API version based
problems. MoonCascade was skeptical about how an appropriate level of granularity
could be set for recording results – if every combination of application version, device,
OS version, etc. would be recorded separately then very few queries would get a reply
from the database while in other cases there is a high probability of over-generalization.
TestDevLab said that a solution like this is probably already integrated to some testing
software.

Solution S29 (TestDroid) was not very well-received. Sob Solutions and Mobi Lab
said that this solution already exists. TestDroid itself is available online and is not the
only cloud-based testing platform. Testlio said that in principle the approach is plau-
sible while TestDevLab thought it might be useful only for small teams that do not
have access to an extensive set of test devices. MoonCascade was also of the opinion
that for companies of significant size, it is better to have their own set of devices as
cloud-based solutions are expensive, unreliable and do not have support for various test
styles and frameworks.

In total, there were only 3 solutions that were considered relevant by all companies
to which they were presented and who found them applicable, i.e. S10 (2 companies),
S21 (1 company), and S26 (3 out of 4 companies). None of the respondents considered
S9 a good solution and most were skeptical about S28 and S29.

Upon hearing the solution concepts, many interviewees expressed that the general
concept of the solution is familiar to them or already exists. However, they had not
marked the corresponding problems as ‘Solved’ in the questionnaire part of the

Problems and Solutions in Mobile Application Testing 261



interview. This implies that the concepts they already knew either do not fully solve the
proposed problem or the professionals have not thought about using this concept to
solve the given problem. The latter is compatible with our general observation that
companies seem to consider the new challenges of mobile application testing inevitable
and thus do not think about the possibility to eliminate them with the help of new
methods and tools. In that sense, help from the scientific community could actually
help if they were considered more seriously.

Several proposed solutions were considered to be either too theoretical, general or
relating to problems that were already solved by the case companies. The latter point
can to some degree attributed to the fact that we included articles published from 2007,
i.e. almost 10 years ago, in the literature study. However, the two least supported
solution concepts, TestDroid and iTest, were published in 2014 and 2012, respectively.
Therefore, either the field of mobile application testing is developing so fast that only
papers published less than two years ago provide practical value for companies or
research is sometimes detached from the current problems in industry.

Another observation was that additional attention could be paid to the fact that
companies use different tools for developing and testing mobile applications. For
example, not all Android applications are developed in Java and cloud-testing plat-
forms would be more useful if they supported different testing frameworks.

6 Discussion of Limitations

In the following, we summarize the limitations of our literature survey and case study.

6.1 Limitations of the Literature Survey

The literature study was performed by one person (the first author) within a limited
amount of time (four weeks). Due to this resource limitation a systematic literature
study following the guidelines defined in [12] to the letter was not viable. Therefore, it
is possible that some relevant papers were either not found or filtered out incorrectly
when applying the defined search strings and inclusion/exclusion criteria. Also, there
was not enough time for conducting a thorough quality assessment of the included
papers. Additionally, since the information was extracted from papers by just one
person and without previously specifying what constitutes a problem or solution, the
analysis is bound to be somewhat subjective, although we tried to mitigate this problem
by having another person (the second author) review the results of the paper identifi-
cation and selection. The limitation applies to the linking of problems to their potential
solutions in the problem-solution matrix. Lastly, since papers from 2007 to 2016 were
used in the study, it is possible that some of the problems mentioned in the literature
have been solved and thus the problems have become obsolete. Also, Android was
significantly more represented than other platforms in the set of found papers and
therefore many of the found problems and solutions concern mobile applications on the
Android platform.

262 T. Samuel and D. Pfahl



6.2 Limitations of the Case Study

In our case study, we used [13] as a guideline but due to time and resource constraints,
we didn’t follow all recommendations to the letter. While both testing and development
oriented companies in Estonia were included in the study, the initial list of companies
was compiled mostly opportunistically, i.e. where the first author had some previous
knowledge and (in some cases) personal contacts. Therefore, it is likely that the par-
ticipants of this study are not fully representative for all companies in Estonia doing
mobile application testing. During the interviews, participants were asked to assess the
potential suitability of some solutions proposed in literature. Since it would be
unreasonable to expect participants to read the relevant scientific articles, we shortly
explained each solution concept that the interviewees were asked to assess on the spot.
As a result, our personal bias and the quality of our explanations might have had an
effect on the perceived usefulness of the solutions. Due to time constraints not all
potential solutions were presented. In each case, the decision of which solutions to
present was made based on the prioritization of problems and using the
problem-solution matrix. This creates the possibility that the set of solutions proposed
to the case companies might not have been complete.

7 Summary and Conclusion

We conducted a two-staged study involving a literature survey and a case study to find
answers to five research questions concerning challenges and solutions of mobile
application testing as seen by researchers and industry.

In the attempt to answer RQ1 and RQ2, 49 problems and 39 potential solutions
were extracted in our literature survey. These lists answer research question 1 and 2,
respectively. For RQ3, the result is less clear. Even though only one paper specified
that the proposed solution is already used in industry, it is likely that some of the others

Table 4. Relevance of solutions

Solution Company
Fob Solutions Testlio Wazombi TestDevLab MoonCascade Mobi Lab

S8 No Yes No Yes Exists Yes
S9 Exists Partly No No Exists No
S10 n/a Yes
S11 n/a Maybe Maybe
S16 Yes No Yes Yes Yes
S21 Yes
S23 No Yes
S25 Yes Exists
S26 n/a Yes Yes Yes
S28 Partly Exists No Yes
S29 Exists Yes Partly No Exists

Problems and Solutions in Mobile Application Testing 263



are as well, considering that many authors were associated with companies active in the
industry. Therefore, it can be said that the solutions are used in industry, but the extent
of this usage cannot be adequately determined just based on scientific litera-ture. For
RQ4, none of the problems mentioned in literature were considered uniform-ly relevant
by all industry professionals. However, most companies considered frag-mentation a
serious problem and usually mentioned it before being handed the ques-tionnaire.
Many of the problems mentioned in literature were not considered im-portant by our
case companies. Regarding RQ5, many of the solutions proposed in literature were too
general, too little evaluated, or too little related to the most relevant problems, to be
explained to and discussed with the professionals in sufficient detail. And of those that
were presented and discussed, only a subset was uniformly consid-ered useful while
others were said to already exist (i.e., are already implemented) or have significant
shortcomings (and thus would not be considered for implementation.

In conclusion, research literature is addressing some problems that are considered
very important by our case companies. However, there seems to be room for making
research more useful for industry since many of the currently proposed solutions are
considered as too much conceptual and too little practical by professionals.

Acknowledgements. We would like to thank Fob Solutions, Testlio, Mobi Lab, Wazombi,
TestDevLab and MoonCascade. This research was supported by the Estonian Research Council.

References

1. Muccini, H., Di Francesco, A., Esposito, P.: Software testing of mobile applications:
challenges and future research directions. In: Proceedings of AST 2012, Piscataway, NJ,
USA (2012)

2. Paul, S.: Role of mobile handhelds in redefining how we work, live and experience the world
around us: some challenges and opportunities. In: Proceedings of SIGCOMM 2010, New
Delhi, India (2010)

3. Wasserman, A.I.: Software engineering issues for mobile application development. In:
Software Engineering Issues for Mobile Application Development, Santa Fe, New Mexico,
USA (2010)

4. Santos, A., Correia, I.: Mobile testing in software industry using agile: challenges and
opportunities. In: Proceedings of ICST 2015, Graz, Austria (2015)

5. N. T., Did you know what was the first smartphone ever? PhoneArena, 31 July 2014. http://
www.phonearena.com/news/Did-you-know-what-was-the-first-smartphone-ever_id58842.
Accessed 10 May 2016

6. Apple Inc., Apple Reinvents the Phone with iPhone. http://www.apple.com/pr/library/2007/
01/09Apple-Reinvents-the-Phone-with-iPhone.html. Accessed 12 May 2016

7. Statista Inc., Number of smartphones sold to end users worldwide from 2007 to 2015 (in
million units). http://www.statista.com/statistics/263437/global-smartphone-sales-to-end-
users-since-2007/. Accessed 14 May 2016

8. Martinie, C., Palanque, P.: Design, development and evaluation challenges for future mobile
user interfaces in safety-critical contexts. In: Proceedings of the 2015 Workshop on Future
Mobile User Interfaces, Florence, Italy (2015)

264 T. Samuel and D. Pfahl

http://www.phonearena.com/news/Did-you-know-what-was-the-first-smartphone-ever_id58842
http://www.phonearena.com/news/Did-you-know-what-was-the-first-smartphone-ever_id58842
http://www.apple.com/pr/library/2007/01/09Apple-Reinvents-the-Phone-with-iPhone.html
http://www.apple.com/pr/library/2007/01/09Apple-Reinvents-the-Phone-with-iPhone.html
http://www.statista.com/statistics/263437/global-smartphone-sales-to-end-users-since-2007/
http://www.statista.com/statistics/263437/global-smartphone-sales-to-end-users-since-2007/


9. Corral, L., Sillitti, A., Succi, G.: Software assurance practices for mobile applications.
Computing 97(10), 1001–1022 (2015)

10. Net Applications, Mobile/Tablet Operating System Market Share January–March 2016.
https://www.netmarketshare.com/operating-system-market-share.aspx?qprid=
8&qpcustomd=1&qpsp=68&qpnp=1&qptimeframe=Q&qpmr=10&qpdt=0&qpct=3. Acces-
sed 12 May 2016

11. Albanesius, C.: Nadella Raises Eyebrows With Plans to ‘Streamline’ Windows, PC
Magazine, 23 July 2014. http://www.pcmag.com/article2/0,2817,2461253,00.asp. Accessed
13 May 2016

12. Kitchenham, B.A., Charters, S.: Guidelines for performing systematic literature reviews in
software engineering. Technical report EBSE-2007-01, School of Computer Science and
Mathematics, Keele University (2007)

13. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research in
software engineering. Empirical Softw. Eng. 14(2), 131–164 (2009)

14. Charland, A., Leroux, B.: Mobile application development: web vs. native. Commun. ACM
54(5), 49–53 (2011)

15. Samuel, T.: Problems and solutions in mobile application testing, MSc thesis, University of
Tartu, Estonia (2016). https://comserv.cs.ut.ee/ati_thesis/datasheet.php?id=54422&year=
2016

16. Zhifang, L., Bin, L., Xiaopeng, G.: Test automation on mobile device. In: Proceedings of the
5th Workshop on Automation of Software Test, Cape Town, South Africa (2010)

17. Yan, M., Sun, H., Liu, X.: ITest: testing software with mobile crowdsourcing. In:
Proceedings of CrowdSoft 2014, Hong Kong, China (2014)

18. Kaasila, J., Ferreira, D., Kostakos, V., Ojala, T.: Testdroid: automated remote UI testing on
android. In: Proceedings of 11th International Conference on Mobile and Ubiquitous
Multimedia, Ulm, Germany (2012)

19. Ravindranath, L., Nath, S., Padhye, J., Balakrishnan, H.: Automatic and scalable fault
detection for mobile applications. In: Proceeidngs of MobiSys 2014, Bretton Woods, New
Hampshire, USA (2014)

20. Ham, H., Park, Y.: Designing knowledge base mobile application compatibility test system
for android fragmentation. Intl. J. Softw. Eng. Appl. 8(1), 303–314 (2014)

21. Tang, L., Yu, Z., Zhou, X., Wang, H., Becker, C.: Supporting rapid design and evaluation of
pervasive applications: challenges and solutions. Pers. Ubiquit. Comput. 15(3), 253–269
(2011)

22. Galindo, J.A., Turner, H., Benavides, D., White, J.: Testing variability-intensive systems
using automated analysis: an application to Android. Softw. Qual. J. 42(2), 365–405 (2014)

23. Baride, S., Dutta, K.: A cloud based software testing paradigm for mobile applications.
SIGSOFT Softw. Eng. Notes 36(3), 1–4 (2011)

24. Azim, T., Neamtiu, I.: Targeted and depth-first exploration for systematic testing of Android
apps. ACM SIGPLAN Not. 48(10), 641–660 (2013)

25. Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J., Le Traon, Y., Octeau, D.,
McDaniel, P.: FLOWDROID: precise context, flow, field, object-sensitive and
lifecycle-aware taint analysis for Android apps. ACM SIGPLAN Notes 49(6), 259–269
(2014)

26. Haller, K.: Mobile testing. SIGSOFT Softw. Eng. Notes 38(6), 1–8 (2013)
27. Bastien, J.C.: Usability testing: a review of some methodological and technical aspects of the

method. Intl. J. Med. Inf. 79(4), e18–e23 (2010)
28. Ma, X., Yan, B., Chen, G., Zhang, C., Huang, K., Drury, J., Wang, L.: Design and

implementation of a toolkit for usability testing of mobile apps. Mob. Netw. Appl. 18(1),
81–97 (2013)

Problems and Solutions in Mobile Application Testing 265

https://www.netmarketshare.com/operating-system-market-share.aspx%3fqprid%3d8%26qpcustomd%3d1%26qpsp%3d68%26qpnp%3d1%26qptimeframe%3dQ%26qpmr%3d10%26qpdt%3d0%26qpct%3d3
https://www.netmarketshare.com/operating-system-market-share.aspx%3fqprid%3d8%26qpcustomd%3d1%26qpsp%3d68%26qpnp%3d1%26qptimeframe%3dQ%26qpmr%3d10%26qpdt%3d0%26qpct%3d3
http://www.pcmag.com/article2/0%2c2817%2c2461253%2c00.asp
https://comserv.cs.ut.ee/ati_thesis/datasheet.php%3fid%3d54422%26year%3d2016
https://comserv.cs.ut.ee/ati_thesis/datasheet.php%3fid%3d54422%26year%3d2016


29. Mirzaei, N., Malek, S., Pasareanu, C.S., Esfahani, N., Mahmood, R.: Testing Android apps
through symbolic execution. SIGSOFT Softw. Eng. Notes 37(6), 1–5 (2012)

30. Kim, H.-K.: Hybrid model based testing for mobile applications. Intl. J. Softw. Eng. Appl. 7
(3), 223–238 (2013)

31. van der Merwe, H., Tkachuk, O., van der Merwe, B., Visser, W.: Generation of library
models for verification of android applications. SIGSOFT Softw. Eng. Notes 40(1), 1–5
(2015)

32. Hussain, A., Hashim, N., Nordin, N., Tahir, H.: A metric-based evaluation model for
applications on mobile phones. J. Inf. Commun. Technol. 12(1), 55–71 (2013)

33. Koivisto, E.M.I., Suomela, R.: Using prototypes in early pervasive game development. In:
Proceedings of ACM SIGGRAPH Symposium on Video Games, San Diego, California,
USA (2007)

34. van der Merwe, H., Tkachuk, O., Nel, S., van der Merwe, B., Visser, W.: Environment
modeling using runtime values for JPF-Android. SIGSOFT Softw. Eng. Notes 40(6), 1–5
(2015)

35. Agarwal, S., Mahajan, R., Zheng, A., Bahl, V.: Diagnosing mobile applications in the wild.
In: Proceedings of ACM SIGCOMM Workshop on Hot Topics in Networks, Monterey,
California (2010)

36. Kim, H., Choi, B., Yoon, S.: Performance testing based on test-driven development for
mobile applications. In: Proceedings of ICUIMC 2009, Suwon, South Korea, (2009)

37. Ceccato, M., Avancini, A.: Security testing of the communication among Android
applications. In: Proceedings of AST 2013, San Francisco, CA, USA (2013)

38. Adamsen, C.Q., Mezzetti, G., Moller, A.: Systematic execution of android test suites in
adverse conditions. In: Proceedings of ISSTA 2015, Baltimore, MD, USA (2015)

39. Zhang, P., Elbaum, S.: Amplifying tests to validate exception handling code: an extended
study in the mobile application domain. ACM Trans. Softw. Eng. Methodol. 23(4), 32:1–
32:28 (2014)

40. De Cleva Farto, G., Endo, A.: Evaluating the model-based testing approach in the context of
mobile applications. Electron. Notes Theor. Comput. Sci. 314, 3–21 (2015)

41. Zapata, B.C., Fernandez-Aleman, J.L., Idri, A., Toval, A.: Empirical studies on usability of
mHealth apps: a systematic literature review. J. Med. Syst. 39(2), 1–19 (2015)

42. Diewald, S., Geilhof, B., Siegrist, M., Lindemann, P., Koelle, M., Halle, M., Kranz, M.:
Mobile AgeCI: potential challenges in the development and evaluation of mobile
applications for elderly people. In: Computer Aided Systems Theory – EUROCAST
2015, Las Palmas, Spain (2015)

43. Oulasvirta, A.: Rethinking experimental designs for field evaluations. IEEE Pervasive
Comput. 11(4), 60–67 (2012)

44. Biel, B., Grill, T., Gruhn, V.: Exploring the benefits of the combination of a software
architecture analysis and a usability evaluation of a mobile application. J. Syst. Softw. 83
(11), 2031–2044 (2010)

45. Rapp, A., Cena, F., Gena, C., Marcengo, A., Console, L.: Using game mechanics for field
evaluation of prototype social applications: a novel methodology. Behav. Inf. Technol. 35
(3), 184–195 (2015)

46. Billi, M., Burzagli, L., Catarci, T., Santucci, G., Bertini, E., Gabbanini, F., Palchetti, E.: A
unified methodology for the evaluation of accessibility and usability of mobile applications.
Univ. Access Inf. Soc. 9(4), 337–356 (2010)

47. Nascimento, L.H.D., Machado, P.D.: An experimental evaluation of approaches to feature
testing in the mobile phone applications domain. In: Proceedings of DOSTA 2007: in
Conjunction with the 6th ESEC/FSE Joint Meeting, Dubrovnik, Croatia (2007)

266 T. Samuel and D. Pfahl



48. van der Merwe, H., van der Merwe, B., Visser, W.: Verifying android applications using
Java pathfinder. SIGSOFT Softw. Eng. Notes 37(6), 1–5 (2012)

49. Salva, S., Zafimiharisoa, S.R.: APSET, an Android aPplication SEcurity Testing tool for
detecting intent-based vulnerabilities. Intl. J. Softw. Tools Technol. Transfer 17, 201–221
(2015)

50. Aranha, E., Borba, P.: Estimating manual test execution effort and capacity based on
execution points. Intl. J. Comput. Appl. 31(3), 167–172 (2009)

51. Serra, L.C., Carvalho, L.P., Ferreira, L.P., Vaz, J.B.S., Freire, A.P.: Accessibility evaluation
of e-government mobile applications in Brazil. Procedia Comp. Sci. 37, 348–357 (2015)

52. Morgado, I.C., Paiva, A.C.R.: Test patterns for android mobile applications. In: Proceedings
of the 20th European Conference on Pattern Languages of Programs, Kaufbeuren, Germany
(2015)

53. Wang, X.S., Balasubramanian, A., Krishnamurthy, A., Wetherall, D.: Demystifying page
load performance with WProf. In: Proceedings of the 10th USENIX Conference on
Networked Systems Design and Implementation, Lombard, IL (2013)

54. Hutflesz, P., Holzmann, C.: Multivariate testing of native mobile applications. In:
Proceedings of MoMM 2014, Kaohsiung, Taiwan (2014)

55. Choi, W., Necula, G., Sen, K.: Guided GUI testing of Android apps with minimal restart and
approximate learning. ACM SIGPLAN Not. 48(10), 623–639 (2013)

56. Hu, Y., Azim, T., Neamtiu, I.: Versatile yet lightweight record-and-replay for Android. In:
Proceedings of 2015 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, vol. 50(10), pp. 349–366 (2015)

57. Gao, J., Tsai, W.-T., Paul, R., Bai, X., Uehara, T.: Mobile testing-as-a-service (MTaaS) -
infrastructures, issues, solutions and needs. In: Proceedings of 2014 IEEE 15th International
Symposium on High-Assurance Systems Engineering, Miami, FL, USA (2014)

58. Costa, P., Paiva, A.C.R., Nabuco, M.: Pattern based GUI testing for mobile applications. In:
9th International Conference on the Quality of Information and Communications,
Guimaraes, Portugal (2014)

59. Bo, J., Xiang, L., Xiaopeng, G.: MobileTest: a tool supporting automatic black box test for
software on smart mobile devices. In: Proceedings of AST 2007, Washington, DC, USA
(2007)

60. Google, Performance focus. http://developer.android.com/about/versions/lollipop.html#Perf.
Accessed 8 Apr 2016

61. Amalfitano, D., Fasolino, A.R., Tramontana, P., Ta, B.D., Memon, A.M.: MobiGUITAR:
automated model-based testing of mobile apps. IEEE Softw. 32(5), 53–59 (2015)

62. Amalfitano, D., Amatucci, N., Fasolino, A.R., Tramontana, P.: AGRippin: a novel search
based testing technique for android applications. In: Proceedings of 3rd International
Workshop on Software Development Lifecycle for Mobile, Bergamo, Italy (2015)

63. Amalfitano, D., Amatucci, N., Fasolino, A.R., Tramontana, P., Kowalczyk, E., Memon, A.
M.: Exploiting the saturation effect in automatic random testing of android applications. In:
Proceedings of the 2nd ACM International Conference on Mobile Software Engineering and
Systems, Florence, Italy (2015)

64. Amalfitano, D., Fasolino, A.R., Tramontana, P., De Carmine, S., Memon, A.M.: Using GUI
ripping for automated testing of android applications. In: Proceedings of ASE 2012, Essen,
Germany (2012)

65. Bergvall-Kareborn, B., Larsson, S.: A case study of real-world testing. In: Proceedings of the
7th International Conference on Mobile and Ubiquitous Multimedia, Umeå, Sweden (2008)

66. Guo, C., Xu, J., Yang, H., Zeng, Y., Xing, S.: An automated testing approach for
inter-application security in android. In: Proceedings of AST 2014, Hyderabad, India (2014)

Problems and Solutions in Mobile Application Testing 267

http://developer.android.com/about/versions/lollipop.html%23Perf

	Problems and Solutions in Mobile Application Testing
	Abstract
	1 Introduction
	2 Background
	3 Methodology
	3.1 Literature Survey
	3.2 Case Study

	4 Results from the Literature Survey
	4.1 Findings Related to RQ1
	4.2 Findings Related to RQ2
	4.3 Findings Related to RQ3

	5 Results from the Case Study
	5.1 Findings Related to RQ4
	5.2 Findings Related to RQ5

	6 Discussion of Limitations
	6.1 Limitations of the Literature Survey
	6.2 Limitations of the Case Study

	7 Summary and Conclusion
	Acknowledgements
	References


