
Is Mutation Testing Ready to Be Adopted
Industry-Wide?

Jakub Možucha and Bruno Rossi(B)

Faculty of Informatics, Masaryk University, Brno, Czech Republic
{jmozucha,brossi}@mail.muni.cz

Abstract. Mutation Testing has a long research history as a way to
improve the quality of software tests. However, it has not yet reached
wide consensus for industry-wide adoption, mainly due to missing clear
benefits and computational complexity for the application to large sys-
tems. In this paper, we investigate the current state of mutation test-
ing support for Java Virtual Machine (JVM) environments. By running
an experimental evaluation, we found out that while default configura-
tions are unbearable for larger projects, using strategies such as selective
operators, second order mutation and multi-threading can increase the
applicability of the approach. However, there is a trade-off in terms of
quality of the achieved results of the mutation analysis process that needs
to be taken into account.

Keywords: Software mutation testing · Experimentation · Equivalent
mutants · Selective mutation operators · Cost-reduction strategies

1 Introduction

Large amount of resources are wasted yearly due to bugs introduced in soft-
ware systems, making the testing process one of the critical phases of software
development [2]. A recent research reported the cost of software debugging up to
a yearly $312 Billion, with developers utilizing 50 % of their allocated time to
find and fix software bugs [1]. Software Engineering is for long time striving
to find ways to reduce such inefficiencies, with the constant challenge to build
more robust software. Mutation Testing is one such ways, representing a pow-
erful technique to evaluate and improve the quality of software tests written by
developers [7,14].

The main idea behind Mutation testing is to create many modified copies
of the original program called mutants — each mutant with a single variation
from the original program. All mutants are then tested by test suites to get the
percentage of mutants failing the tests. It has been proven that mutation testing
can bring several benefits to complement the applied testing practices, e.g. for
test cases prioritization [6].

However, mutation testing has been often reported to struggle to be intro-
duced in to real-world industrial contexts [8,11,15]. So why is mutation testing
c© Springer International Publishing AG 2016
P. Abrahamsson et al. (Eds.): PROFES 2016, LNCS 10027, pp. 217–232, 2016.
DOI: 10.1007/978-3-319-49094-6 14

218 J. Možucha and B. Rossi

not widely adopted within industry? According to Madeyski et al. [9], mainly due
to (a) performance reasons, (b) the equivalent mutants problem — syntactically
but not semantically equal mutants — and (c) missing integration tools. In our
view, the biggest drawback of mutation testing — its great computational costs
— prevented until recently to include mutation testing into the development
cycle of most companies. This resulted in development of many techniques to
reduce the costs of mutation testing. Furthermore, another perceived drawback
might be that the advantages of running mutation testing might not be fully
clear as opposed to other simpler testing approaches.

Problem. The applicability of Mutation Testing to real-world project is far from
reaching consensus [4,8,9,11,15]. While it seems that improvements have been
done in tools integration, performance and equivalent mutants concerns still
remain the most relevant issues, and call for further analyses.

Contribution. We report on an experiment addressed at understanding the cur-
rent performance of Mutation Testing in Java Virtual Machine (JVM) environ-
ments, based on our previous experience on empirical studies [16] and the needs
for more industry-academia cooperation [3]. With the collaboration of an indus-
trial partner, we are in particular looking at different strategies that can reduce
runtime overhead of Mutation Testing. Among the results, we provide indica-
tions about selective operators efficiency for Mutation Testing and their impact
on performance. Practitioners can gain more insights about the performance /
quality trade-offs in running mutation testing by evaluating several cost reduc-
tion strategies on a typical set of projects. Such information can be relevant
for the integration in their own software development process. Furthermore, we
make available the experimental package for replications.

The paper is structured as follows. Section 2 reports about the background
on mutation testing. In Sect. 3, we refer about the experimental evaluation,
describing the experimental design, choices made, results, and threats to validity.
Section 4 provides related works that evaluated mutation testing in an experi-
mental setting. Section 5 provides the discussions and Sect. 6 the conclusions.

2 Mutation Testing Background

Mutation Testing has undergone several decades of extensive research. First
formed and published by DeMillo et al. in a 1971’s seminal paper [5], Mutation
Testing was introduced as a technique that can help programmers to improve the
tests quality significantly. The core of Mutation Analysis is creating and killing
mutants. Each mutant is a copy of original source code modified (mutated) with
a single change (mutation). These mutations are done based on set of predefined
syntactic rules called mutation operators. Traditional mutation operators consist
of statement deletions (e.g. removing a break in a loop), statement modifica-
tions (e.g. replacing a while with do-while), Boolean expression modification
(e.g. switching a != logical operator to ==), or variables/constants replacements.
These mutation operators can be considered to be traditional mutation opera-
tors and are mostly language independent. There are also language-dependent

Is Mutation Testing Ready to Be Adopted Industry-Wide? 219

mutation operators that are used to mutate language-specific constructs, taking
into account aspects such as encapsulation, inheritance and polymorphism.

Tests are then executed on the mutants and the failure of mutants is expected.
When the tests fail, the mutant is considered killed and no further tests are
needed to be run using this mutant. For example, the original Java code in
Algorithm 1 is mutated using a mutation operator, which replaces == with !=
and produces the mutant in Algorithm2.

Algorithm 1. Original Code
if (a == b) then

// do something
else

// do something

Algorithm 2. Mutated Code
if (a != b) then

// do something
else

// do something

If any mutant does not cause the tests to fail, it is considered live. This
can have two meanings: that the tests are not sensitive enough to catch the
modified code or that this mutant is equivalent. An equivalent mutant is syntac-
tically different from the original, but its semantics are the same and therefore
it is impossible for tests to detect them. The final indication of tests quality is
mutation score, that is the percentage of non-equivalent mutants killed by the
test data or in other terms, the number of killed mutants over the number of
non-equivalent mutants generated.

A test data is considered mutation-adequate [12] if its mutation score is
100 %. The higher mutation score is, the more faults were discovered — therefore
the better the test process. This process leads to iterative improvement of testing,
moreover, inspecting live mutants can lead to discovery and resolution of other
source code issues. The most serious problem with equivalent mutants is the
distortion of the mutation score: software tools include them in the computation,
as their accurate detection is undecidable and can only be performed by manual
inspection [9].

Mutation testing is a powerful technique, but has great computational costs.
In fact, these costs have prevented mutation testing to be used in a practical way
for many years, despite the relatively long history of mutation testing related
research. In general, these are the most expensive phases:

1. Mutant Generation – aside from great computational costs, also the mem-
ory consumption is considerably high in this phase. Mutation operators have
to be applied on the original code and mutants have to be stored;

2. Mutant Compilation – phase in which the generated mutants have to be
compiled. This phase can be very costly for larger programs;

3. Execution of tests – for every mutant, the tests have to be executed until
they are not killed. Most costly are live mutants, because every test has to
be run on them;

There are several approaches that have been proposed to reduce the
equivalent mutation problem ([9] provides an extensive review in the area).

220 J. Možucha and B. Rossi

At the same time, the problem is very often linked to performance optimization,
as less equivalent mutants generated lead to a reduction in the three phases of
mutant generation, mutant compilation, and tests execution. For this reason,
various cost reducing strategies were developed.

In this paper we look into several of these strategies and their applicability to
improve the performance for industrial applicability. A first strategy is the Selec-
tive Mutation technique — the idea is to use only the mutation operators that
produce statistically less equivalent mutants than others. This approach allows
to reduce not only equivalent mutants, but also to improve the performance.
The aim of Selective Mutation is to achieve maximum coverage by generating
the least number of mutants. Complexity reduction of mutants generation is
from quadratic (O(Refs∗V ars)) to linear (O(Refs)) [13], while retaining much
of effectiveness of non-selective mutation.

Another strategy we adopt in the current paper is Higher Order Mutation
(HOM). Taking into account the original mutants we discussed so far as First
Order Mutants (FOMs), the technique creates mutants with more than a single
mutation, referred as higher order mutants as combination of several FOMs [6].
We look in particular at four different algorithms (Last2First, DifferentOpera-
tors, ClosePair and RandomMix) implemented in Judy [9,10] to combine FOMs
into Second Order Mutants (SOMs) — in which two mutants are combined:

– Last2First – the first mutant in the list of FOMs is combined with the last
mutant in the list, the second mutant with next to last and so on;

– DifferentOperators – only FOMs generated by different mutation operators
are combined;

– ClosePair – two neighboring FOMs from the list are combined;
– RandomMix – any two mutants from the FOMs are combined;

All these strategies use a list of first order mutants (FOM) and should gen-
erate at least 50 % less mutants, with impact on the final mutation score [9].

3 Experimental Evaluation

We designed an exploratory experiment aimed at getting insights about the cur-
rent applicability of mutation testing in industrial context (summary of the over-
all process, Fig. 1). We run in parallel a literature review (1) and an exploratory
analysis about the usage of the tools for Mutation Testing (5). The selection
of the tools for the experimentation (2), as well as the experimental units (3)
were done based on the criteria of the company. We designed the research ques-
tions (6) and created the experimental design (7) based on the results from the
exploratory analysis, taking both into account the company’s needs and theoret-
ical constraints and aspects worth investigation from theory. Experiments were
then run (8) and results provided to the industrial partners for knowledge trans-
fer and identification of future works. Based on an exploratory pre-experiment
phase, we set the following research questions:

Is Mutation Testing Ready to Be Adopted Industry-Wide? 221

Fig. 1. Research process workflow

– RQ1. What is the performance of Mutation Testing by taking into account
standard configurations (i.e. no selective operators and no mutation strategy)?

– RQ2. What is the impact of Selective Operators on Mutation Testing effi-
ciency & performance?

– RQ3. What is the impact of Second Order Mutation strategies on Mutation
Testing efficiency & performance?

Given the selection of the tools for mutation testing supported by the indus-
trial partner, we looked specifically at three areas of experiments according to
the three research questions set:

EXP1. Mutation Operators Efficiency Experiments. Looking at the selec-
tion of the most efficient mutation operators that then be evaluated in the per-
formance experiments;
EXP2. Performance Experiments & Concurrency Experiments. Look-
ing at the single-thread and multi-threading performance of the tools with stan-
dard configurations and according to different selective operator strategies;
EXP3. SOM Experiments. Evaluating the impact of different Second Order
mutation strategies (Last2First, DifferentOperators, ClosePair, RandomMix).

We run an initial review of the tools available for mutation testing in JVM
environments, omitting experimental tools. We overall considered seven tools:
MuJava, PITest, Javalanche, Judy, Jumble, Jester, MAJOR, that we compared
according to several characteristics (Table 1). To speed-up the mutation genera-
tion process, it is now a standard the support of byte-code mutation — mutants
are applied at the byte code level. The industrial partner involved in the exper-
imentation considered PITest and Judy more relevant for a series of reasons, in
particular the availability of plugins and general easiness of integration, as well
as the open source license and support for Java 8. Both software were used to
run the experiments.

222 J. Možucha and B. Rossi

Table 1. JVM mutation testing tools

MuJava PITest Javalanche Judy Jumble Jester MAJOR

State active active – active active – active

License Apache 2.0 Apache 2.0 LGPL BSD GPL open ?

Java vers. 7 5 – 8 5, 6 6 – 8 6 –8 6 7

Unit test.

framework

jUnit4 jUnit4, TestNG6 jUnit4 jUnit4 jUnit4 jUnit3 jUnit4

Production

tools

GUI, Eclipse 3rd part. plugins Eclipse plugin Cmd Cmd Cmd Ant

Automated

class/test

selection

Only classes Yes Yes Yes Only tests Yes Yes

Mutation

Operators

method class method method concurr meth. class meth meth method

self-def.

Byte-code

mutation

Yes Yes Yes Yes Yes – Yes

For experimentation, we used as experimental projects libraries suggested
by the industrial partner (Table 2): various Apache Commons projects and the
JodaTime library. The selection was done so that the chosen projects contain
possibly the most different distribution of size types, tests duration and test
coverage. However, we couldn’t include larger projects due to the high complexity
of running mutation tests. From an initial list, we had to discard other projects
that had either no tests (Apache Commons Daemon) or in which test cases were
failing with either PITest or Judy (Apache Commons Compression, BeanUtils).

We included in Table 2 Mutation Size, a metric that can give indication of
the complexity of the mutation process. While previous research has proved
that the number of mutants is proportional to the number of variable references
times the number of data objects (O(Refs * Vars)) [12]. However, it is uneasy to
determine the number of variable references for such large projects. Taking into
account that modern mutation testing tools are creating mutants and running
tests based on code coverage, Mutation Size is computed as coverage times size
of project, as a measure of the complexity of the mutation testing process MS =
coverage ∗ KLOC.

3.1 Experimental Procedure

The first set of experiments was done with both tools using their default settings.
The only modification was the configuration to the same number of threads, as
Judy runs by default in parallel, while PITest uses only one thread.

After experiments with default settings, the experiments on mutation oper-
ators efficiency were done for each tool. The aim of these tests was to reduce
the number of active operators selecting only the most efficient operators — the
ones that produce mutants that are not so easy-to-kill.

After the selection of mutation operators, another set of performance tests
was done using only the the selected operators. Concurrency tests were done on
various number of used threads, comparing time and memory usage (PITest).

Is Mutation Testing Ready to Be Adopted Industry-Wide? 223

Table 2. Projects considered for the experimental evaluation. NCL = Number of
Classes, KLOC = Lines of Code (thousands), NTCL = Number of Test Classes,
TKLOC = Test Lines of Code (thousands), TT = Test Time, CC = Code Coverage,
MS = Mutation Size

Project Ver. NCL KLOC NTCL TK-LOC TT CC MS

Apache Commons Chain 1.2 55 9.852 37 7.398 1.17 66.68% 6.57

Apache Commons CLI 1.3.1 23 6.161 25 5.214 1.39 96.38% 5.94

Apache Commons Codec 1.10 60 15.869 55 15.042 5.31 95.01% 15.08

Apache Commons CSV 1.2 11 3.515 15 3.821 1.76 94.00% 3.30

Apache Commnos DbUtils 1.6 30 7.611 26 4.453 1.36 57.71% 4.39

Apache Commons Digester 3.2 168 23.125 101 14.220 2.31 72.49% 16.76

Apache Commons Lang 1.2 133 68.684 148 55.467 16.51 93.80% 64.43

Apache Commons Validator 3.4 62 16.516 77 14.117 3.42 77.61% 12.82

Joda Time 1.5.0 166 70.593 158 72.423 5.02 90.18% 63.66

Second Order strategies were then evaluated in terms of time performance and
mutation score (Judy).

All tests were run remotely on 4 x Intel Xeon 3.35 GHz CPUs, 16 GB RAM.
Every test result is an average of at least 10 iterations, with code coverage
computed using the Cobertura tool. The iterations of tests were launched using
simple bash scripts, which also automated renaming and moving of output files
into specified folders. Every run of tests was launched under a modified version
of the open-source memusg.sh1 program, which measures the average and peak
memory usage of all processes invoked by the current terminal session and sub-
sessions2. The versions of the two tools used were PITest 1.1.9 and Judy 2 (release
from 13.5.2015).

Initial Performance Evaluation. The initial evaluation was run with default
settings using one thread with default operators (Table 3). By default Judy has
active all 56 mutation operators, while PITest 7 out of 16. Missing values in the
table indicate a failure to complete the testing process.

Looking at the time performance in relation with mutation size (MS), intro-
duced in the previous section to characterize the projects, we found a positive
correlation (Spearman’s Rank-Order, 0.85, p=0.0037, two-tailed). The exper-
iments showed that with one exception, PITest is always faster to generate
mutants than Judy, which generated more mutants. Similarly, when comparing
how many mutants per second were generated, PITest generated mutants faster
than Judy. In our experiments, Judy was not able to finish mutation analysis for
larger projects (in particular Lang and Joda Time, that have the highest Muta-
tion Size among the considered projects). When comparing time per number of
mutants, Judy is generally faster for all tested projects using the default settings
1 https://gist.github.com/netj/526585.
2 the experimental package is available at https://goo.gl/5GPdQv.

https://gist.github.com/netj/526585
https://goo.gl/5GPdQv

224 J. Možucha and B. Rossi

tests. When considering the tested projects metrics, Judy is faster for smaller
projects. However, for bigger projects or for projects with higher line coverage
or longer tests run, the performance is rapidly lower.

Comparing average memory consumption, the same pattern applies as for
comparison of tests duration. Judy consumes less memory for very small projects,
but PITest shows better results for medium and bigger projects. Similarly, the
peak of memory consumption is normally lower for Judy, but for big or better
covered projects, the memory usage peak for Judy is a lot higher than for PITest.

Table 3. Run-time performance - default settings one thread - values in () are by using
selective operators.

Project Gen.Time (sec) Total Time (sec) Peak Memory (MB)

PITest Judy PITest Judy PITest Judy

Commons Chain 1.1 (1.4) 3.18 (2.0) 33.5 (30.2) 5.67 (2.6) 956 (1587) 302 (240)

Commons CLI 1.3 (1.4) 12.8 (6.3) 45.8 (42.4) 228.5 (46.9) 1764 (1743) 4505 (3677)

Commons Codec 5.7 (6.2) — (28.3) 247.6 (278.9) — (2225.5) 3028 (3061) — (4055)

Commons CSV 1.9 (1.6) 2.5 (1.4) 48.1 (44.1) 10.5 (4) 1648 (1654) 900 (351)

Commons DbUtils 1.6 (1.0) 6.2 (47.7) 34.2 (12) 45.6 (78.7) 784 (399) 1441 (4653)

Commons Digester 3.9 (3.0) 13.6 (8.2) 258.8 (120.1) 38.7 (20.2) 2678 (2540) 1509 (2071)

Commons Lang 21.1 (20.3) — (—) 943.6 (907.9) — (—) 3825 (3600) — (—)

Commons Validator 3.5 (3.5) 13.9 (5.1) 207.9 (148.2) 135.5 (29.7) 1309 (1365) 1638 (609)

Joda Time 28.3 (28.3) — (—) 638.8 (546) — (—) 3857 (4267) — (—)

Time required for Mutation Testing is positively correlated with Mutation Size
(LOCS*Coverage). It can be used as initial measure of complexity. Missing
tests or tests failures (for analysis tool) hinder the possibility to apply MT.

Mutation Operators Efficiency Results. The procedure of selection of the
most efficient operators needs some further clarification. The strong mutation
operators are those whose mutants are not easy to be killed. It would be very
difficult to create tests that would kill 100 % of selective mutants. Therefore, we
adopted a different approach by defining some thresholds to define the selective
operators:

1. Run tests on all projects with all stable mutation operators (stable operators
— not causing unrecoverable crashes during mutation);

2. Find most the populous (generating the highest number of mutants) mutation
operators;

3. Exclude the operator if:
– Mutation score of mutants created by the operators is higher than the

average mutation score on all the tested projects;
– The mutation operator belongs to the most populous operators and the

score of mutants created is higher than the average of 80 % for all the
tested projects;

Is Mutation Testing Ready to Be Adopted Industry-Wide? 225

Table 4. Efficiency of PITest operators

%tuM#rotarepO >avg %tuM#rotarepO >avg

INLINE CONSTS 12455 56 VOID METHOD CALLS (D) 2653 33
NEGATE CONDITIONALS (D) 11087 100 INCREMENTS (D) 1128 100
RETURN VALS (D) 10457 89 INVERT NEGS 71 100
REMOVE CONDITIONALS EQ IF 8335 100 REMOVE CONDITIONALS EQ ELSE
MATH (D) 3457 78 NON VOID METHOD CALLS
REMOVE CONDITIONALS ORD ELSE 2752 89 CONSTRUCTOR CALLS
CONDITIONALS BOUNDARY (D) 2752 22 EXPERIMENTAL MEMBER VARIABLE
REMOVE CONDITIONALS ORD IF 2752 67 EXPERIMENTAL SWITCH

Table 5. Efficiency of Judy operators

Non-excluded operators were considered selective operators and were active for
the selective mutation performance tests. Tables 4 and 5 are sorted by the most
populous operators from all projects (# Mut) with indication of the percentage
of mutation score of the operator being higher than average mutation score
(% > avg)3. The (D) at the end of some operator names for PITest means
that the operator is active by default. The red-painted operators are unstable
ones, yellow are excluded operators and green are the selected operators for
the Selective Operators experiments. The Judy operators that generated many
mutants from which none were killed were considered as unstable ones.

Out of the total 16 PITest mutation operators, 5 were selected for selective
mutation including the most populous operator INLINE CONSTS, causing that
the total number of generated mutants during selective mutation was almost
the same as during the mutation using default PITest operators. For selective
mutation using Judy, 28 out of 56 mutation operators were selected and the
number of generated mutants was reduced significantly.

3 description of operators can be found at http://pitest.org/quickstart/mutators/ and
http://mutationtesting.org/judy/documentation/.

http://pitest.org/quickstart/mutators/
http://mutationtesting.org/judy/documentation/

226 J. Možucha and B. Rossi

The selected operators can be used to evaluate the number of mutated classes
vs the mutation score (Fig. 2a,b). The % of mutated classes refers to the number
of mutated classes over the total projects’ classes. The comparison of muta-
tion score showed that the mutation score of PITest selective mutation is always
lower than mutation score of default operators. This can mean that default oper-
ators are either too easy-to-be-killed, or that selected operators produced more
equivalent mutants. Comparing selective vs non-selective strategies for mutation
score by running a Wilcoxon Signed-Rank Test showed significant differences
(p = 0.0012 < 0.05, two-tailed, N = 15).

(a) PITest (b) Judy

(c) PITest (d) Judy

Fig. 2. Default vs selective mutation per mutated classes and mutation score

The total time of mutation analysis showed the real advantage of selective
mutation also for PITest tests ((Fig. 2c,d and Table 3). Except of one tested
project, all other were done faster using selective mutation. Comparing selective
vs non-selective strategies by running a Wilcoxon Signed-Rank Test showed sig-
nificant differences (p = 0.0096 < 0.05, two-tailed, N=16) in duration time. To
note also that selective operators allowed Judy to provide results on the Apache
Commons Codec project (with mutation size of 15.08).

Is Mutation Testing Ready to Be Adopted Industry-Wide? 227

EXP1. Using Selective Operators can bring benefits in terms of runtime per-
formance, however, at the expense of lower mutation score. Selective Operators
can also help in running Mutation Testing on some projects.

(a) Mutation Testing time vs # threads (b) Average Memory vs # threads

Fig. 3. Concurrency experiments results

Performance and Concurrency Results. The results of the concurrency
experiments showed that using two or three threads can result in considerable
reduction of time compared to memory consumption increase (Fig. 3). The aver-
age memory consumption is rising for all testing projects almost linearly (fitted
regression up to 7 threads, avgmem=660.42+148.55*#threads, adj R2=0.22),
while time reduction is less than linear with the number of threads (fitted regres-
sion up to 7 threads, time=262.81-21.71*#threads, adj R2=0.20).

Looking at the combined effect of decrease in time and increase in memory
consumption, we considered Δtime vs Δavgmemory (Fig. 4). In this case, time
reduces less than linearly than the increase in memory (fitted regression up to 7
threads, time=13.61-0.2656*avgmem,adj R2=0.45), so using more threads might
increase consistently memory usage without larger benefits on time reduction.

EXP2. Up to 2–3 threads can bring high benefits in terms of runtime per-
formance. Change in average memory consumption grows more than linearly
compared to reduction in performance when increasing the number of threads.

SOM Experiments Results. We next looked at the Higher Order Mutation
Testing strategy for the Judy project, in particular the four different algorithms
(Last2First DifferentOperators, ClosePair and RandomMix) to combine first
order mutants (FOMs) into second order mutants (SOMs) implemented in Judy
[9,10]. Also in this case, we were interested in performance changes and qual-
ity of mutation score. In running the experiment, we noticed that the number

228 J. Možucha and B. Rossi

Fig. 4. Delta time vs delta average memory

(a) Mutation Score (b) Total Time

Fig. 5. Application of different SOM strategies vs FOM

of generated mutants was reduced at least by 50 % for some of the strategies
and projects. Mutation score for all SOM strategies was higher than for FOM
(Fig. 5a), while total time was generally lower for the three strategies in compar-
ison with FOM (Fig. 5b). Running a Friedman non-parametric test for the dif-
ferences across groups yielded significant results (0.05, two-tailed) for generated
mutants (p = 0.0089), mutation score (p = 0.0031), and total time (p = 0.0009).
However, like mentioned, the improvement of mutation score might be due to
the inclusion of less equivalent mutants by applying such strategies.

When comparing individual SOM strategies, the ClosePair strategy gave the
lowest mutation score, while Last2First and RandomMix produced very similar
results for most of tested projects. This can be caused by the fact that neigh-
boring mutants from the list of FOMs combined same type of mutants and the
highest number of equivalent SOM mutants were generated using this strategy.

Is Mutation Testing Ready to Be Adopted Industry-Wide? 229

EXP3. SOM strategies improve the results in terms of mutation score and
in terms of generated mutants, having positive benefits on the performance.
However, manual inspection is needed to understand how many equivalent
mutants are generated.

Threats to Validity. We have several threats to validity to report [17].
For internal validity, measurements performed were averaged over several

runs to reduce the impact of external concurring for resources. One of the main
issues is the reliability of mutation score as quality indicator. The score always
includes equivalent mutants as the automated detection is undecidable [9], and
the only way to discover them is by manual inspection — unfeasible for larger
projects. In fact, two projects with the same mutation score might be quite dif-
ferent depending on the number of equivalent mutants. We also used thresholds
for the definition of the selective operators, and some sensitivity analysis can be
more appropriate to define the best ranges.

Related to external validity, we cannot ensure that results generalize to other
projects. However, we selected 9 heterogeneous projects in terms of size, code
coverage. More insights will be given by testing on even larger software projects
of industrial partners. Furthermore, the package of the current experiments will
be available to increase external validity by means of replications.

For conclusion validity, we applied several statistical tests and simple lin-
ear regression in different parts of the experiment. We always used the non-
parametric version of the tests, without normality distribution assumption, and
we believe to have met other assumptions (type of variables, relationships among
measurements) to apply each test.

4 Related Works

There are several related works about experimental evaluations of tools for auto-
mated mutation testing in JVM environments.

One of the first experimental evaluations [13] was done on the mutation
operators of the Mothra project omitting two, four and six of the most populous
mutation operators. The test cases killed 100 % of mutants generated by selective
mutation. These test cases were then run on non-selective mutants. These test
cases killed almost 100 % percent of mutants. Out of 22 mutation operators
used by Mothra, 5 were key operators that provide almost the same coverage as
non-selective mutation [14].

Madeyski et al. provided an experimental evaluation comparing the perfor-
mance of generating mutants between Judy and MuJava on various Apache
Commons libraries [10]. From the experiments, Judy was able to generate at
least ten time more mutants per second as MuJava.

In 2011, the applicability of mutation testing was examined in Nica et al.
[11]. The selected tools were MuJava, Jumble and Javalanche, focusing on the
performance of generating mutants. The only tool able to generate mutants

230 J. Možucha and B. Rossi

was MuJava generating about 123 class-level mutants and 30,947 method level
mutants in approx. 6 hours. Jumble and Javalanche showed configuration dif-
ficulties and low performance. The main conclusion was that mutation testing
was too slow to be used in real world software projects.

In 2013, Delahaye et al. compared Javalanche, Judy, Jumble, MAJOR and
PITest on several sample projects [4]. The results showed that Jumble, MAJOR
and PITest were able to finish the analysis for every project, while Judy gen-
erated the highest number of mutants and Javalanche the lowest number of
mutants. The research indicated that mutation testing tools still need a lot of
improvements to be usable in real world projects.

In 2015, Rani et al. compared MuJava, Judy, Jumble, Jester and PITest in an
experimental evaluation [15]. The experiments were run on set of short programs
(17-111 LOC). The research showed that all the tools produced almost the same
average mutation scores except of PITest, which produced 25 % higher score than
the rest of the tools. One of the conclusions was that a new mutation system for
Java should be created, with faster generation and execution of mutants.

In 2016 Klischies et al. run an experimentation considering PITest on several
Apache Commons projects. As metric for the experiments authors use the inverse
of mutation score, as an indication of the goodness of the mutation operator set.
They overall considered Mutation Testing applicable to real world projects with
a low number of equivalent mutants, inspected manually, on the set of projects
that were considered. However, strong concerns remained for the applicability
to larger projects and in case code coverage within projects is too low, making
the whole mutation analysis less effective [8].

Our work is different from the aforementioned set of related works as we
focus on the selection of the best mutation operators and mutation strategies for
improvements in performance on a set of medium sized projects. We can directly
compare the SOM experiments results with Madeyski et al. [9], getting the same
results in terms of increase of mutation score and performance improvement.

5 Discussion

There are several findings about the application of Mutation Testing that we put
forward in the current paper. The general performance of Mutation Testing is
impacted by Mutation Size, that is the size of the project and the code coverage
level (RQ1). When taking into account the applicability of Mutation Testing,
is appropriate to consider Mutation Size (LOCs size and code coverage) as an
indication of the time required. This can be a good indicator to use by anal-
ogy for the application to other projects. A good strategy for the application
of Mutation Testing is, in fact, to first increase code coverage to good levels, as
having lower code coverage levels cannot tell much about the quality of tests.
Clearly, larger coverage impacts on the execution of the tests, while mutant gen-
eration and mutant compilations stay the same. Taking into account multiple
threads, time reduction decreases less than linearly with the increase of mem-
ory consumption. Mutation Testing can be optimized by looking at points in

Is Mutation Testing Ready to Be Adopted Industry-Wide? 231

which parallelization does not bring enough incremental benefits. For the set of
projects considered, 2–3 threads are effective numbers for performance / memory
resources optimization.

Identifying the most efficient operators and applying selective operators
improves the results in terms of runtime performance at the expense of lower
mutation score and lower number of mutated classes (RQ2). This is a strategy
that can be applied to extend the applicability of Mutation Testing to allow to
run the approach to wider set of projects. In the selective strategy we looked at
the efficiency of the operators in terms of killed mutants, but other approaches
may look at the operators that generate more mutants. Based on the results,
we believe that this set of strategies can help to apply Mutation Testing within
industrial contexts, as default configurations can lead to a larger overhead in
running the process. However, practitioners would need to fine-tune the Muta-
tion Testing environments according to the specific projects needs. We included
a list of selected operators efficiency based on the overall set of projects, that
can give indications for application to other projects.

We looked at the impact of Second Order Mutation to recombine First Order
Mutants and reduce in this way the number of mutants RQ3. All different sub-
strategies considered (Last2First DifferentOperators, ClosePair, RandomMix)
improve in terms of time required to run mutation testing, with higher muta-
tion score than considering the initial mutants. However, while improvements in
time are due to the lower number of generated mutants, mutation score can be
influenced by equivalent mutants, as such manual inspection would be suggested
to look for the effect on each considered project.

6 Conclusion

Mutation Testing is still an evolving testing methodology that can bring great
benefits to software development. With increasing computational resources, it
can reach wider adoption within industry, aiding to build more robust software.
However, there are still aspects that hinder its usage, namely the computational
complexity, equivalent mutants and possible lack of integration tools [9].

In this paper, we looked at the current support of Mutation Testing in JVM
environments, with an experimental evaluation based on industrial partner’s
needs. We focused on various aspects of performance, evaluating different strate-
gies that can be applied to reduce the time needed for mutation analysis. We
evaluated how selective operators and second order mutants can be beneficial for
the mutation testing process, allowing to reduce runtime overhead. Based on the
results, we believe that Mutation Testing is mature enough to be more widely
adopted. In our case, the experimental results have been useful for knowledge
transfer in an industrial cooperation, with future works aimed at exploring the
experimented approaches on the company’s source code repositories.

Acknowledgments. We are grateful to the developers of both PITest and Judy for
feedback provided in the usage of the tools. In case of Judy, the SOM experiments have
been possible with a newer version provided by the developers.

232 J. Možucha and B. Rossi

References

1. CJBS Insight: Cambridge university study states software bugs cost economy $312
billion per year. http://insight.jbs.cam.ac.uk/2013/financial-content-cambridge-
university-study-states-software-bugs-cost-economy-312-billion-per-year/

2. Crispin, L., Gregory, J.: Agile Testing: A Practical Guide for Testers and Agile
Teams. Pearson Education, Boston (2009)

3. Ded́ık, V., Rossi, B.: Automated bug triaging in an industrial context. In: 42nd
EUROMICRO Conference on Software Engineering and Advanced Applications,
pp. 363–367. IEEE (2016)

4. Delahaye, M., Du Bousquet, L.: A comparison of mutation analysis tools for Java.
In: 13th International Conference on Quality Software (QSIC), pp. 187–195. IEEE
(2013)

5. DeMillo, R.A., Lipton, R.J., Sayward, F.G.: Hints on test data selection: help for
the practicing programmer. Comput. 11(4), 34–41 (1978)

6. Jia, Y., Harman, M.: Higher order mutation testing. Inf. Softw. Technol. 51(10),
1379–1393 (2009)

7. Jia, Y., Harman, M.: An analysis and survey of the development of mutation
testing. IEEE Trans. Softw. Eng. 37(5), 649–678 (2011)

8. Klischies, D., Fögen, K.: An analysis of current mutation testing techniques applied
to real world examples. In: Full-scale Software Engineering/Current Trends in
Release Engineering, p. 13 (2016)

9. Madeyski, L., Orzeszyna, W., Torkar, R., Jozala, M.: Overcoming the equivalent
mutant problem: a systematic literature review and a comparative experiment of
second order mutation. IEEE Trans. Softw. Eng. 40(1), 23–42 (2014)

10. Madeyski, L., Radyk, N.: Judy-a mutation testing tool for Java. IET Softw. 4(1),
32–42 (2010)

11. Nica, S., Ramler, R., Wotawa, F.: Is mutation testing scalable for real-world soft-
ware projects. In: VALID Third International Conference on Advances in System
Testing and Validation Lifecycle, Barcelona, Spain (2011)

12. Offutt, A.J., Lee, A., Rothermel, G., Untch, R.H., Zapf, C.: An experimental deter-
mination of sufficient mutant operators. ACM Trans. Softw. Eng. Methodol. 5(2),
99–118 (1996)

13. Offutt, A.J., Rothermel, G., Zapf, C.: An experimental evaluation of selective muta-
tion. In: Proceedings of the 15th International Conference on Software Engineering
ICSE 1993, pp. 100–107. IEEE Computer Society Press, Los Alamitos (1993)

14. Offutt, A.J., Untch, R.H.: Mutation 2000: uniting the orthogonal. In: Wong, W.E.
(ed.) Mutation Testing for the New Century, pp. 34–44. Kluwer Academic Pub-
lishers, Norwell (2001)

15. Rani, S., Suri, B., Khatri, S.K.: Experimental comparison of automated mutation
testing tools for Java. In: 2015 4th International Conference on Reliability, Infocom
Technologies and Optimization (ICRITO), pp. 1–6. IEEE (2015)

16. Roy, N.K.S., Rossi, B.: Towards an improvement of bug severity classification. In:
40th EUROMICRO Conference on Software Engineering and Advanced Applica-
tions, pp. 269–276. IEEE (2014)

17. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Exper-
imentation in Software Engineering. Springer, Heidelberg (2012)

http://insight.jbs.cam.ac.uk/2013/financial-content-cambridge-university-study-states-software-bugs-cost-economy-312-billion-per-year/
http://insight.jbs.cam.ac.uk/2013/financial-content-cambridge-university-study-states-software-bugs-cost-economy-312-billion-per-year/

	Is Mutation Testing Ready to Be Adopted Industry-Wide?
	1 Introduction
	2 Mutation Testing Background
	3 Experimental Evaluation
	3.1 Experimental Procedure

	4 Related Works
	5 Discussion
	6 Conclusion
	References

