
An ISO 26262 Compliant Design Flow and Tool
for Automotive Multicore Systems

Maria Trei1, Salome Maro2(B), Jan-Philipp Steghöfer2(B),
and Thomas Peikenkamp1

1 OFFIS e.V., Eschwerweg 2, 26121 Oldenburg, Germany
{maria.trei,peikenkamp}@offis.de

2 Chalmers | University of Gothenburg, Gothenburg, Sweden
{salome.maro,jan-philipp.steghofer}@gu.se

Abstract. Model-based design processes in the automotive industry
must support standards like ISO 26262. Especially for smaller sup-
pliers developing software for OEMs, large-scale methodologies like
AUTOSAR are impractical. Instead, smaller, focused processes that still
allow ISO 26262 compliance are required. In addition, the steps in the
process must be well-supported by the development tool-chain, in par-
ticular when developing complex multicore systems. In this paper, we
show such a process based on existing design flows and the current state
of an automotive modelling tool. We structure the design flow to ensure
compliance with the ISO 26262, where necessary complementing it with
required steps to ensure safety. Furthermore, supporting tools extending
the modelling tool are discussed. As a result, the presented design flow
covers all development phases.

1 Introduction

With the development of new functions that are needed for new car generations—
in particular in the context of autonomous driving functions—a massive perfor-
mance increase of electric and electronic (E/E) systems is needed. The needed
performance boosts are demonstrated not only by new car generations, but also
several research projects—backed up by key industrial partners—that investigate
how to use current multicore technologies. Projects like AMALTHEA4public and
ARAMIS address concrete challenges imposed by exploiting multicore technol-
ogy in model-based design processes.

These processes are very much focused on providing functional aspects of
multicore systems. However, the domains in which the final system is deployed
and the complexity of multicore development make it necessary to put a partic-
ular focus on safety aspects [12]. We address this need by presenting a safety-
oriented design workflow, where state-of-the-art modelling and analysis concepts

The work has been partially funded by the German Ministry for Education and
Research (BMBF) under the funding ID 01IS14029H (AMALTHEA4public) and ID
01IS15031H (ASSUME) and Vinnova AMALTHEA4public.

c© Springer International Publishing AG 2016
P. Abrahamsson et al. (Eds.): PROFES 2016, LNCS 10027, pp. 163–180, 2016.
DOI: 10.1007/978-3-319-49094-6 11



164 M. Trei et al.

for the development of multicore systems are structured to support the fulfilment
of ISO 26262 requirements. The underlying work was carried out in two phases
that are also reflected in the structure of this paper: First, an analysis was carried
out, identifying design steps applied in current industrial automotive processes
and the design concepts involved in these design steps. The second phase was
an analysis of the ISO 26262, identifying requirements that affect the execution
of these design steps, including the relevant information to be included in the
previously identified design concepts.

This paper is structured as follows: Sect. 2 introduces ISO 26262, method
engineering, and related work. In Sect. 3, we discuss the AMALTHEA platform
and design flow which is extended with concepts from ISO 26262 in Sect. 4. We
conclude the paper with a summary and an outlook on future work.

2 Background and Related Work

Fig. 1. V-Model of ISO 26262

The international standard
ISO 26262 (“Road vehicles –
Functional safety”) focuses on
safety issues in the development
of E/E systems of passenger cars
with a maximum gross vehicle
mass up to 3500 kg. It describes
the safety lifecycle of automotive
E/E systems, including manage-
ment, development, production,
operation, service and decommis-
sioning. A central element is the
hazard analysis and risk assess-
ment in the beginning of the
safety lifecycle, where Automotive
Safety Integrity Levels (ASILs)
are defined. Based on this clas-
sification, requirements for avoid-
ance of residual risk are defined and validation methods are recommended or pre-
scribed. The procedure of how to develop the system under development (SUD)
is given by a V-model, that divides engineering processes into phases of system,
hardware, and software development based on the safety concept as shown in
Fig. 1. This paper addresses the phases shown in bold, where the clauses high-
lighted with black boxes are already partially supported by the design flow. The
organisation of requirements and their correspondence to elements of the SUD
is prescribed to allow validation of the design and verification against the safety
concept.

Since ISO 26262 mostly focuses on safety aspects of the development, addi-
tional method content must be provided for the functional part. Such adaptation
can be done in a systematic fashion using approaches such as situational method



An ISO 26262 Compliant Design Flow and Tool 165

engineering (SME) [9] or process lines [13]. The former approach uses standard-
ised fragments to compose a process based on an analysis of the needs of a
specific team and project. The latter extends SME by making the variability
of the fragments explicit and using variability modelling primitives provided by
process modelling tools. The need for tailoring ISO 26262 to a company’s process
guidelines has been acknowledged [8].

The authors of [7] model ASPICE, IEC 61508, and ISO 26262 in a process
line with the aim to allow companies to derive processes conforming to one or
more of these safety standards. Functional aspects are not modelled explicitly.
Our work, in comparison, aims at combining a design flow for the functional
aspects of the system with one for the safety aspects. We envision its use in the
context of SME with specific adaptations for teams and projects.

The migration towards an ISO 26262 compliant process is the focus of [4].
Importantly, the authors identify the need to integrate the practices of the stan-
dard with the ones of existing processes at the companies. This is in line with
what we have done by studying the existing process and deriving the superset
of activities that are now combined with safety practices from ISO 26262.

3 The AMALTHEA Platform and Design Flow

AMALTHEA and AMALTHEA4public are ITEA funded projects running since
2011. They concentrate on software development for multi- and many core sys-
tems. One of their outcomes is the AMALTHEA platform [1,14] (APP4MC),
a tool solution to aid the design of many and multi-core systems. The design
flow has been developed in this context as the result of a survey of current
development activities in the projects.

3.1 AMALTHEA Platform

Overview. The AMALTHEA platform is an open source tool platform developed
mainly for engineering embedded systems in the automotive area. It supports
many design activities as well as complex partitioning and mapping for embed-
ded systems. Further, the platform assists engineering processes with the ability
of handling product lines and executing simulation and validation tools. It is con-
tinuously extended to integrate more facets of system engineering processes such
as verification, safety, and formal validation of timing requirements. Conformity
to ISO 26262 is one topic to be addressed. A first step was the identification of
correlations and needs between both the standard and the meta-model of the
platform in form of a gap analysis [3]. The platform supports an iterative work-
flow to accommodate rapid prototyping and feedback from validation activities.
Engineers are supported by the AMALTHEA platform in many steps ranging
from component modelling to partitioning and mapping activities. The trace
model, e.g., a result of the simulation of the system, provides helpful information
about the execution times of specific system parts as a basis for the improvement
of the existing architecture.



166 M. Trei et al.

Data Models. APP4MC uses a top-level System Model that is subdivided into
more fine-grained sub-models. They allow modelling based on the platform to
derive the description of hard- and software used in the overall system down
to the lowest level of abstraction. We will give a brief overview of the most
important features.

The SUD can be represented from the system, software and hardware point
of view. The hardware model is composed of (hardware) systems, ECUs, micro-
controllers and cores. Networks and memories can be defined. Similarly, software
can be subdivided into processes, tasks, runnables, and Interrupt Service Rou-
tines (ISRs) using the software model. The technical architecture in terms of
components and their interfaces is part of the components model. Requirements
on the behaviour of the system can be described by the constraints model, which
consists of constraints on timing, data age and runnable sequencing or group-
ing, aspects particularly important in multicore development. This also includes
requirements of the dynamical architecture, whereas interactions of software and
hardware are covered by the property constraints model. The partitioning model
describes how the software is broken down into runnables which are in turn
aggregated in tasks [10]. The final allocation of software to hardware is given by
the mapping model. The system model is completed by a stimuli model, com-
mon model, event model, configuration model and the OS model. The trace model
contains information about the simulation/execution of the software on the hard-
ware.

3.2 AMALTHEA Design Flow

Methodology. The design steps are the result of an extensive data collection
process in which the project partners in AMALTHEA4public provided detailed
information about the concrete steps they follow when developing multicore
embedded software, especially in the automotive domain. Data was collected
from five industrial partners and five academic partners. While the academic
partners provided information mostly from their experience with different indus-
trial partners they cooperate with in research projects, the industrial partners
contributed with their concrete practical experience. The overall design steps,
along with a rationale and additional information are published in [2]. The
design steps are mainly concerned with development of functionality. Interest-
ingly, safety aspects were not mentioned by any of the partners during the data
collection.

Design Steps. Table 1 gives an overview of the design steps that are the result of
the analysis. Note that no order in which these steps are carried out is implied
since defining a concrete development process with a concrete lifecycle is gen-
erally company specific. A wide variety of lifecycles can be applied, including
the V-model that is implied by ISO 26262 and AUTOSAR. While some steps
are carried out sequentially, others can be done in parallel. The dependencies
between the design steps at times imply an iterative approach where they are



An ISO 26262 Compliant Design Flow and Tool 167

repeated or at least revisited after other work has been performed. Such an app-
roach is common in iterative-incremental lifecycles. The identified steps cover
most aspects of a traditional software development effort, starting from contract
negotiation and scope identification and ending at the delivery of the software
(with the exception of software maintenance). Some steps and circumstances
are specific in the context of the automotive domain, e.g., the differentiation
of system and software. Another re-occurring theme is product line issues and
variants, even though this theme will not be regarded in detail in the context of
this paper.

Table 1. Overview of the identified Design Steps

DS 1: System Requirements Engineering DS 7: Variant Configuration

DS 2: System Architecture Design DS 8: Implementation

DS 3: Software Requirements Engineering DS 9: Validation and Testing

DS 4: Derivation of Product Variants DS 10: System Integration

DS 5: Definition of Software Architecture DS 11: Handover

DS 6: Behaviour Modelling

Some of the design steps we elicited, such as Requirement Engineering and
Architecture Design, can be found in nearly all development processes in a similar
form. However, there are specific steps steps that are only relevant in multicore
development: Partitioning, Task Creation and Target Mapping are, e.g., part of
DS 10: System Integration. We discuss these design steps in more detail in
Sect. 4.3.

4 Analysis of Compliance Towards ISO 26262

Based on the phases and clauses of ISO 26262 as well as the identified design
steps, we analyse the recommended design flow to satisfy compliance with the
standard and which support APP4MC provides. Further, we will show necessary
extensions and the steps to achieve them. This will be presented constructively
so as to show how the elicited design flow can be extended and how the platform
capabilities tie into the flow.

The resulting extended design flow as shown in Fig. 2 represents the func-
tional design steps outside the “V” and is enriched by six design steps
related to safety inside the “V”. The top of the given V-model stands for the
vehicle/system-part of the V-model of ISO 26262 while the bottom represents
the software part. As our focus lies on the design process derived for software
development, we will only briefly relate to hardware development in the follow-
ing subsections. However, many design steps, e.g., partitioning or definition of
property constraints, require the formulation of hardware assumptions that are
needed during software development.



168 M. Trei et al.

Fig. 2. Overview of the extended Design Steps

Briefly summarized, the new design flow lifts the development lifecycle up to
the vehicle level, where in DS 0 functional requirements are defined, which is
important to initiate the safety lifecycle and therefore to support the concept
phase (DS A) of ISO 26262. Safety requirements are introduced at system and
software level (DS B and DS C). Integration and testing at software level for
safety-related software elements is described by DS D, where the integration into
the system and the item is given by DS E. DS F covers integration and validation
activities at vehicle level. Since validation is against safety goals which are part
of the concept phase at vehicle and item level, DS F can be seen as system and
vehicle part. Before discussing our analysis of the different ISO 26262 phases, we
first give an overview of common models that are used in all the development
phases.

4.1 Generic Models Addressed in All Development Phases

ISO 26262 describes the development of an item based on the functional behav-
iour which is intended by each element of the item on the one hand, and the
hazardous events concerning these elements which might lead to the violation
of safety requirements on the other hand. As the different levels of abstraction
during this development process lead to different features of safety requirements
it is necessary to define the intended behaviour using concepts of certain levels
of abstraction. Analogously, occurring errors of elements of the item have to be
modelled at every level.

The overall functional system behaviour, as well as the specific aspects of the
functional behaviour of the hardware and the software are captured in a Behav-
iour Model . The functional requirements on the vehicle level are broken down
into respective parts for all levels and corresponding behaviour and thus defined
on each level. Depending on the level, the specific models can take different forms
such as algorithms, interaction protocols, state machines, etc. The model is cap-
tured in DS 6: Behaviour Modelling which is performed for each of the levels.



An ISO 26262 Compliant Design Flow and Tool 169

Further, it is necessary to introduce modelling of errors to analyse how faults of
elements of the item affect their behaviour. On the modelling side, this requires
a model that allows to perform safety activities related to the development of
such a safety concept. To this end, we are using a generic error model that has
been developed in the ITEA project SAFE [6] shown in Fig. 3.

Fig. 3. Error model from SAFE
project

Basically it captures failure behaviour, in
particular how internal and external failures are
propagated through the functions or compo-
nents of the system. Once these propagations
have been identified, safety requirements can
then be derived and allocated to the architec-
tural elements. Using this allocation scheme,
the corresponding Automotive Safety Integrity
Level (ASIL) can be derived for each of the allo-
cated requirements. The ASIL describes the risk
associated with each requirement based on the severity of a hazard, the likelihood
of its occurrence, and how well the hazard can be controlled. This error model
will be used at vehicle level to support the definition of the functional safety
concept (ISO 26262-3:2011, 8), and at system level for definition and allocation
of technical safety requirements (ISO 26262-4:2011, 6–7). Refinement of tech-
nical safety requirements to software and hardware safety requirements entails
to also introduce error models at software and hardware level. Error models on
system, hardware and software level have to include faults related to multicore
scheduling, which are much more complex than faults occurring in a singlecore
system. This is due to the fact that the scheduling does not only rely on the
basis of timing and priorities of tasks, but also on the commonly shared memory
available, temperature behaviour of the system and, going into the structure of
the hardware a little deeper, shared buses or power supply.

4.2 Concept Phase (ISO 26262 Part 3)

Processes provided by ISO 26262. The safety lifecycle given by the international
standard ISO 26262 starts with the concept phase in ISO 26262-3:2011, which
consists of the clauses given in the first column of Table 2.

Description of the SUD, called item in terms of ISO 26262, takes place at the
vehicle level and includes dependencies on, and interaction with, other items and
the environment of the item. Functional and non-functional requirements need to

Table 2. Concept phase

Clause Supporting DS Support by APP4MC

5: Item definition DS 0, DS A, DS 6 (Property) Constraint Model, Component

Model

6: Initiation of the safety lifecycle DS A ProR, Papyrus, Yakindu statecharts

7: Hazard analysis and risk assessment DS A Papyrus, Yakindu statecharts

8: Functional safety concept DS A ProR



170 M. Trei et al.

be defined, as well as constraints given by the environment and other items. Note
that at this point not only safety-related requirements are considered. Operating
modes, interfaces and boundaries on them have to be specified to enable hazard
analysis and risk assessment on the one hand and the development of the item
with its intended behaviour on the other hand. Based on the item definition,
the safety lifecycle is initiated in ISO 26262-3:2011, 6, which means that the
development category of all parts of the item is analysed.

Processes during the hazard analysis and risk assessment of ISO 26262-
3:2011, 7, systematically describe possible hazardous events and their conse-
quences. They need to be classified using metrics for the severity of potential
harm, the probability of exposure of operational situations, and the controlla-
bility of each hazardous event. As a result the ASIL can be calculated for each
hazardous event. A safety goal is derived for each hazardous event, inheriting
its ASIL. These safety goals serve as top-level safety requirements, from which
further functional safety requirements will be derived, in particular those char-
acterizing the Functional safety concept.

The definition of a functional safety concept requires to analyse how com-
ponent faults can contribute to the identified risks. On the modelling side, this
requires a model that allows to perform safety activities related to the develop-
ment of such a safety concept (ISO 26262-3:2011, 8). To this end, we are using
the generic error model introduced in the previous section and shown in Fig. 3.
Basically it is able to capture failure behaviour, in particular how internal and
external failures are propagated through the components of the system. Once
these propagations have been identified, functional safety requirements can then
be derived and allocated to the architecture according to ISO 26262-3:2011, 8.4.2
and 8.4.3. Using this allocation scheme, the corresponding ASIL can be derived
for each of the allocated requirements.

Activities in the Design Flow. We extend the elicited design steps by introduc-
ing DS 0: Functional Requirements Engineering. In this step the functional
requirements of the item at vehicle level will be collected. They provide a basis
for the functional design of the system, software and hardware on the one hand
and the initiation of the safety lifecycle on the other hand. As our design flow
does not include the development of hardware, but has to represent all impor-
tant information about the hardware available, if appropriate, it is recommended
to define hardware properties already at this early stage of development. This
can be, e.g., the intended number of available cores, the size of memory, and
the interaction with other systems. The higher complexity of multicore systems
compared to singlecore architectures may affect the exposure of certain hard-
ware failures, which has to be considered both at system and at software level
again. Further, the activities given by clauses 6–8 and discussed above need to be
represented. For this, we introduce DS A: Derivation of the Functional safety
concept, where the hazard analysis and the risk assessment take place to define
the corresponding safety goals as top-level safety requirements.



An ISO 26262 Compliant Design Flow and Tool 171

Support by APP4MC. As shown in Table 2, APP4MC can only support the Item
definition clause by allowing the definition of the system through the Compo-
nent Model and constraints through the Property Constraint Model. Other open
source eclipse-based requirements management tools such as ProR1 can be used
in the Item definition clause to describe the requirements of the item as text.
Papyrus2 and Yakindu statechart tools3 can be used to describe the relationship
between the item and the environment through component models. Description
of the safety lifecycle, hazard analysis and risk assessment and functional safety
concept can be done by text in ProR. However one needs to add safety related
attributes such as implementation categories, safety goals and hazardous events
to the requirements.

4.3 Product Development at the System Level (ISO 26262 Part 4)

Processes provided by ISO 26262. Development of the product on the system
level defines how both hardware and software capabilities form the overall sys-
tem. The division into seven clauses according to ISO 26262 is shown in Table 3.
In clauses 5–7, requirements for the system to be developed as well as its over-
all structure are defined. Then, hardware and software development takes place
(cf. Sects. 4.4 and 4.5), before clauses 8–11 manage the integration of hardware
and software components into the overall system, further verification activities
and, later on, the release for production.

Central work products of the former steps are the Technical safety require-
ments specification (ISO 26262-4:2011, 6.4) and the Technical safety concept
(ISO 26262-4:2011, 7.4.) Both contain the set of safety-related requirements that
are used to implement functional safety requirements. This hierarchical struc-
ture of requirements must be traceable back to the top-level safety goals and to
the corresponding system elements. Basic information about the intended use
of particular software and hardware resources shall be considered during these
steps. Safety mechanisms qualified to prevent parts of the system from failing
need to be described in terms of the underlying system architecture. Techni-
cal safety requirements inherit the ASIL of the corresponding functional safety
requirements following the rules for ASIL decomposition given in ISO 26262-
9:2011.

The System design specification and the Hardware-software interface specifica-
tion (ISO 26262-4:2011, 7.4) consist of the overall system architecture and a first
view on the separation into hardware and software. The system design shall be
based on the functional concept, in particular not just the safety-related parts
and the technical safety concept. If technical safety requirements are allocated
to certain parts of the system design, their ASIL shall be attached to these
parts respecting amongst others the criteria for coexistence given in ISO 26262-
9:2011. Note that the hardware-software interface specification is going to be
refined during hardware and software development.
1 http://eclipse.org/rmf/pror/.
2 https://eclipse.org/papyrus/.
3 https://marketplace.eclipse.org/content/yakindu-statechart-tools.

http://eclipse.org/rmf/pror/
https://eclipse.org/papyrus/
https://marketplace.eclipse.org/content/yakindu-statechart-tools


172 M. Trei et al.

Table 3. Phase 4: product development at the system level

Clause Supporting DS Supported by APP4MC

5: Initiation of product
development at the system level

DS B ✗

6: Specification of the
technical safety requirements

DS 1, DS B (Property) Constraint Model, Compo-
nent Model

7: System design DS 2, DS 6 Component Model

8: Item integration and testing DS 10 Mapping Model, (Property) Con-
straints Model, OS Model, Trace
Model, Stimuli Model, Event Model,
Configuration Model, Hardware Model

9: Safety validation DS E ✗

10: Functional safety assessment DS F ✗

11: Release for production DS 11 ✗

Other work products concerned with planning integration, verification and
validation activities must also be considered. The relevance of verification even
this early on during system development must be noted.

Execution of integration, verification and validation is part of ISO 26262-
4:2011, 8–11. Integration takes place on different levels, where, roughly described,
first hardware and software is integrated to systems, second systems are inte-
grated to the item, and third the item is integrated to the vehicle. The compliance
of the ASILs of different objects must be analysed, as well as the correctness of
the functionality of the system design. Together, these steps form the work prod-
ucts Integration testing specifications and Integration testing reports. Clauses 9–10
describe in more detail which methods are recommended for certain verification
and validation processes.

Activities in the Design Flow. The activities in the design flow on the system
level are concerned with requirements engineering, overall system design, and
system integration. We combine these aspects concerning the functional system
with safety-specific aspects by introducing new, safety-focused activities.

DS 1: System Requirements Engineering is concerned with the elicitation
and definition of system requirements as well as of platform and product require-
ments in case a product line approach is used. The system requirements can be
captured in different ways and describe the system as a black-box, focusing
mainly on what the system does (goals and scenarios), who the users are and
what other systems will it interact with [5]. Model-based systems engineering
methods provide a set of partial models to capture system requirements. Exam-
ples of the partial models are environment models which describe the SUD in its
context, application scenarios which capture the different use cases of the SUD
and requirements models which capture additional functional and non-functional
requirements. The relevant artefacts created in this step are the System Model
(preliminary) and the System Requirements Specification Document.



An ISO 26262 Compliant Design Flow and Tool 173

There is a strong correspondence between the described artefacts of the
design flow and the Technical Safety Requirements Specification and the Tech-
nical Safety Concept of ISO 26262, even if safety is not yet regarded. System
requirements with an impact on safety questions of the SUD should be treated
separately from system requirements as system safety requirements with neces-
sary attributes to correlate to technical safety requirements of ISO 26262. This
includes amongst others the introduction of safety mechanisms and ASILs for
these requirements. We therefore introduce DS B: System Safety Requirements
Engineering which consists of at least the following sub-steps:

1. planning verification/validation activities at system level;
2. definition of system safety requirements based on results of DS 1 and DS A,

including safety-related assumptions caused by the multicore structure of the
SUD.

DS 2: System Architecture Design addresses the design of the overall system
architecture according to the elicited system requirements. This system archi-
tecture consists of several partial models that describe the system, sub-systems,
their respective structure and behaviour, and the relations and interactions of
the system with the environment. The relevant outcome of this step is the System
Architecture that contains the architecture of the entire SUD. Along with the
functional behaviour on the system level defined in DS 6: Behaviour Modelling,
this complies in many points with the system design specification of ISO 26262.
Accordingly, traceability of different system elements and underlying (safety)
requirements should be enabled in this design step to ensure that safety-related
sub-systems with their corresponding ASIL can be identified. Safety-related
interference must be represented to allow validating if criteria for coexistence
are met by objects defined during the system design. This includes, for instance,
the problem of space and time partitioning, which describes the concurrency of
resources and is therefore related to hardware and software development, but has
to be regarded at system level. Therefore the behaviour modelling also relates
to ISO 26262’s hardware/ software interface specification as part of the system,
software, and hardware design.

After the hardware and software development has been performed, the next
relevant step is DS 10: System Integration in which executable tasks from
the system are created, partitioned and mapped to the target hardware. This is
where multicore development differs from singlecore development: multiple tasks
can run at the same time and efficiency and consistency must be guaranteed.
Therefore creation, partitioning and mapping of tasks as discussed below are
essential activities.

Task Creation. In this step, tasks that contain a set of Runnables are created
from the software model. Task creation also takes into account the constraint
model in order to decide which Runnables can be grouped together. The results
of this step are stored in an augmented Software Model . At this point, the rate
at which the tasks are activated, e.g., periodic, single, or sporadic activation is
determined and stored in a Stimulation model .



174 M. Trei et al.

Partitioning. In this step, tasks are identified to derive possible partitions that
can be executed in parallel. Partitioning includes possibilities to group Runnables
by their activation reference and group independent sets of Runnables to come
up with graph structures that have the most efficient potential when running
tasks in parallel. This step leads to a Partitioned Software Model and a Constraint
Model .

Target Mapping. The aim of this step is to find a valid and optimal distri-
bution of software elements to hardware components. Data from Software and
Hardware Models, as well as the tasks activation from the Stimulation Model are
used to calculate such a distribution. Additionally, a Property Constraints Model
may be included during the mapping process which is used to narrow down the
solution space, e.g., some tasks may require the target platform to have a cer-
tain amount of memory. The results of this step are stored in a Mapping Model .
Moreover, a preliminary OS Model is generated, which contains a scheduler for
each of the cores of the hardware platform.

The artefacts of DS 10 correspond to inputs of the hardware-software inter-
face specification (HSI) of the ISO 26262 system level, which is already supported
by DS B. But the elicited design steps do not contain explicit support for verifica-
tion of safety system requirements after the integration. This will be corrected by
introduction of DS E: Safety Validation and DS F: Functional Safety Assess-
ment. DS E consists of testing activities to verify that the safety requirements
are satisfied and DS F assesses the functional safety concept defined in DS A
and its implementation.

Finally, Design Step 11: Handover handles acceptance testing, delivery of
the product and sign-off. All acceptance tests must pass before the product can
be delivered to the customer. Including safety-related tests, this corresponds in
many points to the Release for production given by ISO 26262-4:2011, 11.

Support by APP4MC. APP4MC provides a Hardware Model which is dedicated
model that supports the mapping process. The model allows for definition of the
available hardware by specifying the number of cores, the speed, memory and
other hardware related properties [11]. This model can then be used together
with the software model and the constraint model to create an optimal distrib-
ution of the software to a specific hardware platform. The property constraints
model also offers the possibility to define safety-related constraints, e.g., to sep-
arate safety-critical from non-safety-critical software running on different hard-
ware components. This could be necessary in a development process to guarantee
freedom of interference of certain artefacts. Another use case of separation related
to safety is the principle of redundancy, which means that some safety-critical
parts of a system are implemented twice to prevent the single-point-failure for a
certain part.

4.4 Product Development at the Hardware Level (ISO 26262
Part 5)

Processes provided by ISO 26262. Due to space constraints, we restrict devel-
opment activities on the hardware level to the derivation of hardware safety



An ISO 26262 Compliant Design Flow and Tool 175

requirements (ISO 26262-5:2011, 6) as shown in Table 4 and do not dive into the
hardware design or its evaluation (ISO 26262-5:2011, 7–9). We cannot drop this
clause since hardware safety requirements have to be consistent with the techni-
cal safety concept and the system design specification (ISO 26262-5:2011, 6.1),
imposing non-trivial relationships between the hardware and system level on
one side, and between hardware and software level on the other side. The hard-
ware elements relevant for the hardware-software interface have already been
identified as shown in Sect. 4.3.

Activities in the Design Flow. Description of required hardware and its com-
ponents can be captured in the Variant Model and the Hardware Model derived
during DS 4: Derivation of Product Variants and refined in DS 6: Behaviour
Model. An important aspects to be considered when designing a multicore sys-
tems is the distribution of safety-related software to certain hardware elements
such as ECUs, cores, or memory. Depending on such a classification, hardware
can then also be categorised as safety-related or not which affects to what extent
testing activities are required. This again emphasizes why traceability of all kinds
of information is very important in the development of safety-critical systems.
The elicited design flow did not contain an explicit step for definition of hardware
safety requirements. Therefore we suggest that this is addressed as early as in
DS B: System Safety Requirements Engineering. When system safety require-
ments are defined, hardware safety requirements should be defined as well. These
can later be refined when the actual design and development of the hardware
takes place.

Support by APP4MC. Table 4 shows the tools available in APP4MC, that can
be used to support clause (ISO 26262-5:2011, 6). All necessary elements for
a description of the hardware-software interface are available in the Hardware
model, including descriptions for ECU, Microcontoller, and Core and their asso-
ciated memory access and communication characteristics. Since hardware safety
requirements have to address the effectiveness of safety mechanisms (ISO 26262-
5:2011, 6.4.2), an error model used to represent hardware failures is required for
a precise description of these. Although it has the same role as the error model
on concept level shown in Fig. 3, this model has to be rich enough to allow for the
(later) evaluation, integration and testing activities (ISO 26262-5:2011, 7–10).
Due to this detail in the hardware safety requirements it is possible to evaluate
the impact of hardware failures on system level (ISO 26262-5:2011, 7.4.4) even
before the hardware is available. The support by APP4MC for the definition of
hardware safety requirements is given by the usage of ProR on the one hand
and the Property Constraints Model on the other hand, where requirements and
constraints on hardware can be defined.

4.5 Product Development at the Software Level (ISO 26262 Part 6)

Processes provided by ISO 26262. ISO 26262 provides the clauses shown in
Table 5. Software safety requirements based on the technical safety concept spec-
ified at system level need to be defined. The HSI is updated to accord with these



176 M. Trei et al.

Table 4. Product development at the hardware level

Clause Supporting DS Support by APP4MC

6: Specification of hardware safety
requirements

DS B Hardware Model, (Property) Con-
straint Model, ProR

requirements before regarding a first version of the overall software architecture
in ISO 26262-6:2011, 7. The Software architectural design specification describes
software components and their interactions, i.e., their hierarchical structure and
interfaces, and properties that influence their implementation such as schedul-
ing properties (ISO 26262-6:2011, 7.4). Based on this, the Software unit design
specification is derived (ISO 26262-6:2011, 8.4). The next step is to generate
source code, which is followed by verification and testing activities (ISO 26262-
6:2011, 8–9). The goal of these activities is to ensure that the implementation
satisfies requirements on the software units. These requirements are not limited
to safety-related parts of the software, even if testing activities in ISO 26262
only focus on them. Integration of the software elements to the embedded soft-
ware in ISO 26262-6:2011, 10, consists of regarding the implementation results
with respect to the software architectural design specification, whereas satisfac-
tion of software safety requirements is part of ISO 26262-6:2011, 11. Relations
concerning the hardware-software interface must be considered.

Table 5. Phase 6: product development at the software level

Clause Supporting DS Supported by APP4MC

5: Initiation of product development at the

software level

DS C ✗

6: Specification of software safety

requirements

DS 3, DS 4, DS C Software Model, (Property) Constraint

Model

7: Software architectural design

specification

DS 5, DS 6, DS 7 Software Model, Component Model

8: Software unit design and implementation DS 8 Software Model

9: Software unit testing DS 9 Trace Model

10: Software integration and testing DS 9 ✗

11: Verification of software safety

requirements

DS D ✗

Activities in the Design Flow. The activities in the functional design flow cover
all aspects of the software development lifecycle, starting from requirements, to
analysis and design, to coding, and validation. DS 3: Software Requirements
Engineering addresses the elicitation of requirements pertaining to the software
part of the system. Sources for requirements are system requirements and cus-
tomers or potential users of the software. Software units shall be described so
that a partitioning can be executed to prepare the software for mapping to
the hardware. For multicore development, it is very important to describe any



An ISO 26262 Compliant Design Flow and Tool 177

kind of requirements on relations between software units, such as sequencing
and dependent deadlines. This step is usually done in several iterations. The
collected requirements are recorded in the Software Requirements Specification
Document. Acceptance Tests are defined based on the requirements to validate
that the agreed-upon system is being built.

As for the system level, requirements engineering at the software level needs
to be extended with respect to safety to comply with ISO 26262. We introduce
DS C: Software Safety Requirements Engineering which, similar to DS B,
consists of

1. planning verification/ validation activities at software level,
2. the definition of software safety requirements based on DS B (and the system

design), and the
3. validation of the software safety requirements against the software require-

ments (i.e., the part that is not safety-related).

Also, it must be ensured that the software safety requirements are correct, com-
plete, and consistent with respect to the safety goals and the system design.

DS 5: Definition of Software Architecture can produce design artefacts
such as component models which contain all the software components and their
dependencies and interaction models to describe communication between these
components. The architecture of a software can be described using more than
one model in order to capture different perspectives of the software or to further
refine it into a lower abstraction level. All models are captured in the Software
Architecture Document. The development of software is further supported by DS
6: Behaviour Modelling, where the behaviour of software components can be
specified, such as the communication between components. An iterative review
process ensures consistency and completeness of the architecture.

In Design Step 8: Implementation, the required code is produced, tests are
developed and executed, the software is integrated and the code is reviewed.
The main resulting artefacts are Source Code and different sets of Tests (unit,
component, integration) as well as the Integrated Software and its Documentation.

The final activity in this phase is Design Step 9: Validation and Testing.
It involves testing of software components to validate if they are working as
desired, i.e., according to the specified requirements. For software components
that will interact with hardware components, simulations are run in order to fix
as much defects as possible before the component can be tested on the actual
hardware. Deployable Control Software is a packaged integrated software that is
ready to be deployed on a specific hardware.

In parallel testing methods given by ISO 26262 should be introduced to
support the verification of the embedded software against the software safety
requirements. Depending on the ASIL of each safety goal, different technologies
and testing environments are feasible, as e.g. fault injection tests or interface
tests. We define DS D: Verification of software safety requirements to be the
design step supporting these activities.



178 M. Trei et al.

Support by APP4MC. The platform provides the Software Model that can be
used to model the runnables, tasks and processes that make up the software.
For software architecture specification, the Component Model can be used, as
well as the Property Constraint Model to define software constraints. Addition-
ally, the platform provides a Trace model to assist software testing. The trace
model gives details on time consumed by tasks to allow refinement of the model
to get the most efficient one.

4.6 Tool Support

As can be seen in the tables that show tool support for the design steps in
APP4MC, mainly parts introduced by the clauses related to safety assessment
and verification in ISO 26262:2011 are missing natively. Therefore, it is necessary
to accompany APP4MC with one or more additional tools that can fill those
gaps. Where open source eclipse tools are available(e.g., ProR and Papyrus),
we have proposed their use in combination with APP4MC. However, not all
phased can be supported by open source tools, for instance for functional safety
activities a commercial tool like medini analyse4 which supports Item Defini-
tion (ISO 26262-3:2011, 5; DS 0, DS A, DS 6), Initiation of the Safety Lifecycle
(ISO 26262-3:2011, 6; DS A), Hazard Analysis and Risk Assessment (ISO 26262-
3:2011, 7; DS A), and Functional Safety Concept (ISO 26262-3:2011, 8; DS A)
may be used. This covers the entire concept phase. Validation and assessment
capabilities, supporting Safety Validation (ISO 26262-4:2011, 9; DS E), Func-
tional Safety Assessment (ISO 26262-4:2011, 10; DS F), and Verification of Soft-
ware Safety Requirements (ISO 26262-6:2011, 11; DS D), can be provided by,
e.g., BTC EmbeddedValidator5.

In addition, APP4MC interfaces with a number of requirements manage-
ment and modelling tools that are commonly used in the industry. Some like
IBM Rational DOORS are integrated through the use of OSLC adapters or
other means, while many such as the different modelling environments integrate

Fig. 4. Tools providing support for clauses not covered directly by APP4MC. The star
indicates which tools are shipped with the distribution of the platform.

4 http://www.kpit.com/engineering/products/medini-functional-safety-tool.
5 www.btc-es.de/index.php?idcatside=40&lang=2.

http://www.kpit.com/engineering/products/medini-functional-safety-tool
http://www.btc-es.de/index.php?idcatside=40&lang=2


An ISO 26262 Compliant Design Flow and Tool 179

seamlessly into the Eclipse environment provided by APP4MC. If a direct inte-
gration or the use of standards like OSLC is not feasible, the export and import
capabilities of APP4MC and the tools must be used. This potentially intro-
duces synchronisation issues, however. For design steps that are not repeated
very often and occur towards the end of the development cycle—such as DS D:
Verification of software safety requirements—this problem is negligible since
exported artefacts do not need to be synchronised with the tools where they
were originally created. An overview of the tools that are currently in use to
support development with APP4MC is shown in Fig. 4.

5 Summary

An efficient way of working in an ISO 26262 compliant fashion with effective tool
support is vital to maintain the relationship between OEMs and their suppliers.
In this paper we have shown how a design flow elicited from actual development
practices at such companies can be extended for ISO 26262 compliance and how
it is supported by APP4MC. Where necessary (e.g., concept phase), missing
modelling concepts (e.g., error models) have been identified. Other tools (both
open source and commercial) that can be used in combination with the APP4MC
to support safety activities in the ISO 26262 have also been suggested.

Future work will include the deployment and validation of the design flow
in the companies that are part of AMALTHEA4public. In addition, we aim to
strengthen the interface between systems and software engineering by refining
the design steps that regard the exchange of information between these lev-
els. Issues of traceability and cross-company information exchange will also be
regarded.

We proposed extensions of the platform either through provision of own tools
or recommendation of tools compatible with APP4MC to support the additional
design steps. However, the benefit of using other external tools needs to be
analysed, especially concerning our safety extensions for which commercial tools
exist that allow ISO 26262 compliant design in some of the defined steps. But
even commercial tools do not allow to follow our design flow in all aspects, so
we have to investigate which design steps are supported by external tools, and
how they can get integrated with APP4MC. Even if some tools offer interfaces
via OSLC, there is still the need for rich traceability between different tools
to support the exchange of information between different companies as well as
change management. This leads to the implementation of tool adapters and
traceability tools across the whole AMALTHEA toolchain.



180 M. Trei et al.

References

1. Amalthea Project. http://www.amalthea-project.org/. Online; Accessed 16 Mar
2007

2. Amalthea4Public Project. D1.1: Analysis of Necessary Design Steps. Techni-
cal report, ITEA (2015). https://itea3.org/project/workpackage/document/
download/2347/13017-AMALTHEA4public-WP-1-D11:AnalysisofNecessary
DesignSteps.pdf

3. Amalthea4Public Project. D4.1: Gap analysis against ISO 26262. Technical report,
ITEA (2015). https://itea3.org/project/workpackage/document/download/2232/
13017-AMALTHEA4public-WP-4-13017-AMALTHEA4public-WP-4-d41Gap
analysisagainstISO26262.pdf

4. Born, M., Favaro, J., Kath, O., Application of ISO DIS 26262 in practice. In:
1st Workshop on Critical Automotive Applications: Robustness & Safety, pp. 3–6.
ACM (2010)

5. Braun, P., Broy, M., Houdek, F., Kirchmayr, M., Müuller, M., Penzenstadler,
B., Pohl, K., Weyer, T.: Guiding requirements engineering for software-intensive
embedded systems in the automotive industry. Comput. Sci. Res. Dev. 9(1), 21–43
(2014)

6. Cuenot, P., Peikenkamp, T., Wenzel, T., Khalil, M., Rudolph, A., Lucas, J.,
Voget, S., Ross, H., Eckel, A., Biendl, E., Adler, N., Otten, S., Buch, S.: Method-
ology and application rules documentation. Technical report, ITEA (2014).
https://itea3.org/project/workpackage/document/download/1629/10039-SAFE-
WP-6-SAFED6b.pdf

7. Gallina, B., Kashiyarandi, S., Martin, H., Bramberger, R.: Modeling a safety- and
automotive-oriented process line to enable reuse and flexible process derivation.
In: COMPSACW, pp. 504–509, July 2014

8. Hamann, R., Sauler, J., Kriso, S., Grote, W., Mössinger, J.: Application of ISO
26262 in distributed development ISO 26262 in reality. Technical report, SAE Tech-
nical Paper (2009)

9. Henderson-Sellers, B., Ralyté, J.: Situational method engineering: State-of-the-art
review. J. Univ. Comput. Sci. 16(3), 424–478 (2010)

10. Höttger, R., Krawczyk, L., Igel, B.: Model-based automotive partitioning and map-
ping for embedded multicore systems. Int. J. Comput. Control, Quantum Inf. Eng.
9(1), 268–274 (2015)

11. Krawczyk, L., Kamsties, E.: Hardware models for automated partitioning and map-
ping in multi-core systems using mathematical algorithms. Int. J. Comput. 12(4),
340–347 (2014)

12. Parkinson, P.: Safety, security and multicore. In: Dale, C., Anderson, T. (eds.)
Advances in Systems Safety, pp. 215–232. Springer, London (2011)

13. Ternité, T.: Process lines: a product line approach designed for process model
development. In: SEAA 2009, pp. 173–180. IEEE (2009)

14. Wolff, C., Krawczyk, L., et al.: Amalthea - tailoring tools to projects in automotive
software development. In: IDAACS, vol. 2, pp. 515–520, September 2015

http://www.amalthea-project.org/
https://itea3.org/project/workpackage/document/download/2347/13017-AMALTHEA4public-WP-1-D11:AnalysisofNecessaryDesignSteps.pdf
https://itea3.org/project/workpackage/document/download/2347/13017-AMALTHEA4public-WP-1-D11:AnalysisofNecessaryDesignSteps.pdf
https://itea3.org/project/workpackage/document/download/2347/13017-AMALTHEA4public-WP-1-D11:AnalysisofNecessaryDesignSteps.pdf
https://itea3.org/project/workpackage/document/download/2232/13017-AMALTHEA4public-WP-4-13017-AMALTHEA4public-WP-4-d41GapanalysisagainstISO26262.pdf
https://itea3.org/project/workpackage/document/download/2232/13017-AMALTHEA4public-WP-4-13017-AMALTHEA4public-WP-4-d41GapanalysisagainstISO26262.pdf
https://itea3.org/project/workpackage/document/download/2232/13017-AMALTHEA4public-WP-4-13017-AMALTHEA4public-WP-4-d41GapanalysisagainstISO26262.pdf
https://itea3.org/project/workpackage/document/download/1629/10039-SAFE-WP-6-SAFED6b.pdf
https://itea3.org/project/workpackage/document/download/1629/10039-SAFE-WP-6-SAFED6b.pdf

	An ISO 26262 Compliant Design Flow and Tool for Automotive Multicore Systems
	1 Introduction
	2 Background and Related Work
	3 The AMALTHEA Platform and Design Flow
	3.1 AMALTHEA Platform
	3.2 AMALTHEA Design Flow

	4 Analysis of Compliance Towards ISO 26262
	4.1 Generic Models Addressed in All Development Phases
	4.2 Concept Phase (ISO 26262 Part 3)
	4.3 Product Development at the System Level (ISO 26262 Part 4)
	4.4 Product Development at the Hardware Level (ISO 26262 Part 5)
	4.5 Product Development at the Software Level (ISO 26262 Part 6)
	4.6 Tool Support

	5 Summary
	References


