
The Relationship Between Software Process,
Context and Outcome

Dag I.K. Sjøberg1,2(✉)

1 Department of Informatics, University of Oslo, Oslo, Norway
dagsj@ifi.uio.no

2 SINTEF ICT, Trondheim, Norway

Abstract. Most practitioners and researchers agree that when developing soft‐
ware, process affects product, and the usefulness of a process depends on the
context. However, which processes are most useful for a specific company or
project is generally unknown. When studying the relation between context,
process and product, one challenge is that experiments often lack realism, which
makes the transfer of results to industry difficult. In contrast, most of the important
factors vary beyond the researcher’s control in case studies, which makes it diffi‐
cult to identify cause and effect relationships. This paper reports a study where
realism was combined with control over certain context and process factors. Four
companies developed the same system, and the price varied by a factor of six.
Certain patterns of relationships were expected (expensive company, low cost,
schedule overrun); others were unexpected (cheap company, maintainable system
because of small code). The community needs to identify the most important
relationships among process, context and outcome.

Keywords: Software process improvement · Controlled multiple-case study ·
Software industry · Theory · Software engineering folklore · Measurement

1 Introduction

I am regularly contacted by various organizations for help regarding their software
processes. They range from small, private companies to large, public sector agencies,
some of whose projects failed to the order of hundreds of millions of euros. These
organizations are not interested in general, overall principles regarding process; they are
interested in what would work for them. They expect us, as researchers in the field, to
know “what works for whom, where, when, and why” [1].

In a few cases, I have immediate suggestions for improvement, such as introducing
automated testing if the number of defects is out of control. But in most cases, I cannot
propose anything without working with the organization for some length of time. Iden‐
tifying and measuring the factors that should be taken into account when proposing
process changes are far from trivial; the software engineering literature does not give
much help in concrete settings. The current body of knowledge is mostly too general or
too specific; see Fig. 1.

© Springer International Publishing AG 2016
P. Abrahamsson et al. (Eds.): PROFES 2016, LNCS 10027, pp. 3–11, 2016.
DOI: 10.1007/978-3-319-49094-6_1



Fig. 1. Useful theories and patterns

Software engineering folklore guides processes to some extent. For example, a
collection of “laws” and principles that have emerged over the years can be found in
[2–4]. One of the laws stated by Endres and Rombach [4], attributed to the work by
Boehm [5], is: “Errors are most frequent during the requirements and design activities
and are more expensive the later they are removed.” This “law” encourages processes
that emphasize the analysis and design phases. However, what does this mean in prac‐
tice? Should one spend, say, 10 to 30 percent of the total effort of a development project
in these phases? Because of varying contexts, software engineering folklore is often
contradictory. For example, much effort has been devoted to developing process models
that include a large number of activities, practices and roles together with formal,
detailed project documents. In contrast to such heavy processes are the light processes
recommended in agile development.

Few empirical studies in software engineering discuss the contexts to which the
results may be generalizable. Experiments in software engineering generally have few
subjects and almost all of them use convenience sampling [6]. Most case studies are of
single cases, and few attempt to generalize the results through theories with a well-
defined scope of validity [7]. Surveys collect people’s subjective opinions, which are
based on knowledge and experience gained in specific contexts. The results of surveys
also need to be related to theories to become generally useful.

Nevertheless, a premise in software engineering is that there is a relationship between
software processes and success of a project or task. The success is typically described
in terms of the quality of the delivered software, how long it takes to develop it and how
much it costs. It is also commonly agreed that this relationship is moderated by the
context of the processes, as illustrated in Fig. 2. It is reasonable to assume that an optimal
process varies with context; for example, a small team may not benefit from activities
designed to help large teams.

4 D.I.K. Sjøberg



Fig. 2. Relationship between process, context and outcome

The ideal model would be a deterministic one, in which a set of given context and
outcome parameters would determine the optimal process, and a given process and
context would determine the outcome. However, it is unlikely that we will manage to
develop such models given that software development is a mostly human activity and
we are unable to describe human behaviour deterministically in general, even though
certain theories describe human behaviour in specific situations, for example, the pros‐
pect theory [8].

Although we are far from a scenario where we can fully determine which process
gives which result in a specific context, our community can improve in identifying
patterns and proposing theories for the relationships among process, context and
outcome. This paper reports on a study that is an ongoing attempt in that direction.

2 Design of Study

The empirical software engineering community conducts both controlled experiments,
which focus on cause and effect, and case studies, which focus on realism. How to
identify cause–effect relationships in realistic settings is a challenge. What if we hire
several companies to develop the same system and see what happens? Some years ago,
our research group had such an opportunity. We needed a web application to store
information about all the empirical studies of the group. We developed a requirement
specification and sent a call for tender to 81 consultancy companies and received bids
from 35 of them. A study of this bidding process was reported in [9].

The striking difference in the bids, given that we provided a well-defined 11-page
requirement specification, led us to use price as the selection criteria. We wanted to study
the effect of price on process and outcome. Thus, in four price segments, we selected
the company that appeared most likely to develop a good system based on the quality
of the bid documents. The companies are named A to D in this paper, in the order of bid
price; see Fig. 3.

The Relationship Between Software Process, Context and Outcome 5



Fig. 3. Four out of 35 companies selected for development

The data sources in this study are comprehensive. They include daily time sheets on
tasks and subtasks of each developer, weekly snapshots of all documents including
source code produced during the projects, full history provided by the configuration
management and issue tracker tools and other information collected from defect logs,
e-mail communication and team interviews.

From this study, we published an investigation on reproducibility and variability in
software engineering [10] and a study of effort estimation based on use case points [11].
The code developed by the four companies has also been used in follow-up studies on
maintenance metrics [12] and effects of code smells [13]. (In this paper, the companies
are named according to bid price, while in the papers already published, the order was
alphabetic. Company C is now Company A, Company A is now Company B, and
Company B is now Company C. Company D remains Company D.)

A detailed investigation of the effect of process and context has not yet been
published. Initial results are reported here.

3 Context

We controlled parts of the context to make them the same for all the companies; other
context factors were specific to each company. The controlled ones included:

• Requirement specification
• Application domain (web document management)
• Functional size of the system (57 unadjusted use case points [11])
• Low complexity of system
• Customer (our research department)
• Programming language (Java, Javascript and SQL)

6 D.I.K. Sjøberg



• Tools (IDE: Netbeans or Eclipse, Build & Deploy: Ant, Configuration management:
CVS; note that these tools were selected by the companies themselves but they
happened to be the same by accident)

• Team composition (1 project manager and 2 developers, except in Company B, which
had 1 developer and 1 interaction designer)

• Uniform interaction between development team and customer (e.g., use of same issue
tracker, acceptance tests by the same customer team)

• Intermediate skill level of the developers

Regarding skill level, we selected the developers on the basis of their CVs. All of
them had at least three years of formal education in programming and three years of
industrial experience with the technology to be used. Ideally, we should have tested the
developers using a validated skill evaluation instrument [14], but in the absence of such
an instrument at that time, the developers were tested for their Java skills by taking part
in a one-day exercise in which they performed the same Java programming tasks used
in a former experiment [15]. Their performance was thus compared with that of 77 other
Java programmers. Similarly, the developers were tested for their design skills by taking
part in a half-day UML exercise where they performed the same tasks used by 28 persons
in a former experiment on use cases and class diagrams [16]. We did not observe any
clear relationship between the skills of the team and project outcome.

Table 1 shows context factors that varied among the companies. Some factors were
specific to the development organization; others were specific to this development
project. Note that the bid by Company D, of 69,000 euros, shown in Fig. 3, was nego‐
tiated down to the 56,000 euros, shown in Table 1.

Table 1. Varying context

Aspect Variable Company A Company B Company C Company D
Development 
organization

Size (# 
employees)

Appr. 8 Appr. 100 Appr. 25 Appr. 13,000 
worldwide

Nationality Domestic Domestic Domestic International
Ownership By employees Private By employees Listed

exchanges
Location Bergen Oslo Oslo Oslo, 20 

countries
Process
models

Light Intermediate Intermediate Heavy

Project Firm price 8,750 20,000 45,380 56,000
Agreed time
schedule

41 days 55 days 73 days 62 days

Estimated
effort

100 hours 220 hours 341 hours 650 hours

Allocation Part-time Part-time Part-time Full-time
Co-location No No No Yes

The Relationship Between Software Process, Context and Outcome 7



The table shows several internal relationships among the factors. Company A is small
and can therefore only run fairly small projects with small teams. Their organization-
level process models are therefore light. The low price offered to build the system is
followed by an expectation of a short lead time, a low number of effort hours, and the
need for the developers to work on several projects in parallel. At the other end, Company
D is large and has a heavy organization-level process model. The high bid allows higher
estimated effort and allows developers to work full time on this project.

4 Processes

As an example of process data, Fig. 4 shows the number of hours the companies spent
on various development activities. Note the one-to-one correspondence between the
effort spent on the activities “Implementation” and “Analysis and Design”. There is no
indication here that much effort spent on analysis and design reduces the effort needed
on implementation, or vice versa. Remember that the amount of functionality is fixed.
Figure 5 shows the hours spent on the activities as the projects were running.

Fig. 4. Effort spent on various activities

8 D.I.K. Sjøberg



Fig. 5. Effort on activities along the way

5 Outcome

The outcome of a process or project may be measured along many dimensions. For the
four systems, we assessed reliability, usability and maintainability. Reliability was
measured by investigating the defects found over a period of two years when the systems
were operational [10]. The usability was measured through a dedicated experiment [17]
and maintainability in a follow-up experiment [13]. Table 2 shows the results and also
includes measurements of effort and lead time.

Table 2. Outcome variables

Aspect Variable Company A Company B Company C Company D
System Reliability Poor Good Good Fair

Usability Fair Good Fair Good
Maintainability Good Fair Poor Fair

Effort Actual effort 315 hours 562 hours 894 hours 796 hours
Overrun effort 215 % 155 % 74 % 22 %

Lead time Actual lead time 79 days 87 days 90 days 65 days
Overrun lead time 93 % 58 % 23 % 5 %

The Relationship Between Software Process, Context and Outcome 9



6 Relationships

Did the rather extreme price differences, of a factor from 1 to 6, lead to corresponding
differences in outcome? Generally not. Company A had given the lowest bid and
accordingly spent the least effort on the whole development, particularly on analysis and
design and on testing. In a sense, this company developed a “quick and dirty” solution,
but the small size of their Java code led to the most maintainable system. The low number
of lines of Java code trumped other maintainability metrics [12]. On the other hand, the
low focus on testing resulted in the least reliable system and required us as a customer
to spend much more effort on testing than we did for the other companies. In total, we
spent almost twice the number of effort hours on Company A as we did on the other
companies, which to some extent reduces the cost savings of hiring Company A.
Furthermore, we were a competent customer; an incompetent customer might have
resulted in a failed project.

Company B scored best on the system quality dimensions on average. Given the next
lowest price, one may consider their project as the best value for money.

Company C over-designed their system, which resulted in excess code size, which
in turn resulted in poor maintainability. But they scored top on reliability.

Company D had relatively heavy processes and a highly competent project manager.
The developers worked full-time and were co-located. Their project seemed to have full
control all the way and resulted in the lowest lead time and very little overrun.

We have observed many other relationships among context, process and outcome,
but much analysis remains. We hope to reveal interesting patterns that may shed new
light on existing theories or be the basis for new theories.

References

1. Dybå, T., Sjøberg, D.I.K., Cruzes, D.S.: What works for whom, where, when, and why? On
the role of context in empirical software engineering. In: ACM-IEEE International
Symposium on Empirical Software Engineering and Measurement. ACM (2012)

2. Brooks Jr., F.P.: The Mythical Man-Month: Essays on Software Engineering. Addison-
Wesley Publishing Company, Reading (1975)

3. Glass, R.L.: Facts and Fallacies of Software Engineering. Addison-Wesley Professional,
Reading (2002)

4. Endres, A., Dieter Rombach, H.: A Handbook of Software and Systems Engineering:
Empirical Observations, Laws, and Theories. Pearson Education, New York (2003)

5. Boehm, B.W., McClean, R.K., Urfrig, D.E.: Some experience with automated aids to the
design of large-scale reliable software. IEEE Trans. Softw. Eng. 1, 125–133 (1975)

6. Sjøberg, D.I.K., Hannay, J.E., Hansen, O., Kampenes, V.B., Karahasanovic, A., Liborg, N.K.,
Rekdal, A.C.: A survey of controlled experiments in software engineering. IEEE Trans. Softw.
Eng. 31(9), 733–753 (2005)

7. Sjøberg, D.I.K., Dybå, T., Anda, B.C., Hannay, J.E.: Building theories in software
engineering. In: Shull, F., et al. (eds.) Guide to Advanced Empirical Software Engineering,
pp. 312–336. Springer, London (2008)

8. Kahneman, D., Tversky, A.: Prospect theory: an analysis of decision under risk. Econometrica
47(2), 263–291 (1979)

10 D.I.K. Sjøberg



9. Jørgensen, M., Carelius, G.J.: An empirical study of software project bidding. IEEE Trans.
Softw. Eng. 30(12), 953–969 (2004)

10. Anda, B.C.D., Sjøberg, D.I.K., Mockus, A.: Variability and reproducibility in software
engineering: A study of four companies that developed the same system. IEEE Trans. Softw.
Eng. 35(3), 407–429 (2009)

11. Anda, B., Benestad, H.C., Hove, S.E.: A multiple-case study of software effort estimation
based on use case points. In: International Symposium on Empirical Software Engineering,
pp. 407–416 (2005)

12. Sjøberg, D.I.K., Anda, B.C., Mockus, A.: Questioning software maintenance metrics: a
comparative case study. In: ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement (2012)

13. Sjøberg, D.I.K., Yamashita, A., Anda, B.C., Mockus, A., Dybå, T.: Quantifying the effect of
code smells on maintenance effort. IEEE Trans. Softw. Eng. 39(8), 1144–1156 (2013)

14. Bergersen, G.R., Sjøberg, D.I.K., Dybå, T.: Construction and validation of an instrument for
measuring programming skill. IEEE Trans. Softw. Eng. 40(12), 1163–1184 (2014)

15. Arisholm, E., Sjøberg, D.I.K.: Evaluating the effect of a delegated versus centralized control
style on the maintainability of object-oriented software. IEEE Trans. Softw. Eng. 30(8), 521–
534 (2004)

16. Anda, B., Sjøberg, D.I.K.: Investigating the role of use cases in the construction of class
diagrams. Empirical Softw. Eng. 10(3), 285–309 (2005)

17. Følstad, A., Anda, B.C.D., Sjøberg, D.I.K.: The usability inspection performance of work-
domain experts: An empirical study. Interact. Comput. 22(2), 75–87 (2010)

The Relationship Between Software Process, Context and Outcome 11


	The Relationship Between Software Process, Context and Outcome
	Abstract
	1 Introduction
	2 Design of Study
	3 Context
	4 Processes
	5 Outcome
	6 Relationships
	References


