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Chapter 2
The Physiology of Numerical Learning: 
From Neural Correlates to Embodied 
Trainings

Ursula Fischer, Elise Klein, Tanja Dackermann, and Korbinian Moeller

Abstract Numbers are an important part of everyday life in our modern knowledge 
societies. Accordingly, numerical deficits are associated with severe consequences 
for life prospects of affected individuals and society as a whole. Therefore, increas-
ing research interest is devoted to broaden our understanding of the neurocognitive 
underpinnings of numerical learning and the development of new training 
approaches using new digital media. In this chapter, we will first evaluate the neural 
correlates of numerical cognition with a specific focus on structural and functional 
connectivity and how numerical learning is reflected in the human brain. In the 
second part of the chapter, we will elaborate on how numerical learning can be cor-
roborated by computer-supported embodied spatial-numerical trainings. In these 
trainings, participants engage physically in a task using interactive input devices 
such as a digital dance mat or the Kinect sensor to corroborate spatial-numerical 
associations as reflected by the conceptual metaphor of a mental number line. 
Integrating these two lines of argument we discuss the possible origins of numerical 
cognition as redeployed neural correlates from physical experiences.
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 Introduction

Numbers are more or less omnipresent in everyday life. On a typical day, we may 
be confronted with numbers as soon as the alarm clock rings at 06.00 o’clock. One 
may then pick it up to read the time and estimate whether there is still enough time 
to put the alarm on snooze for another 8 min when one has to catch tube number 4 
leaving from platform 2 which one usually takes to get to the office. On the way, one 
may evaluate whether there is still enough money in one’s wallet to pay for the 
expensive coffee at the train station. These scenes nicely illustrate the prevalence of 
numerical information in our everyday life.

Accordingly, there is accumulating empirical evidence indicating that success in 
managing modern life at the beginning of the twenty-first century is associated sub-
stantially with the ability to appropriately deal with and handle numbers (e.g. 
Parsons & Bynner, 2005). Deficits in numerical competencies can entail both con-
siderable personal handicaps (e.g. Dowker, 2005) and socio-economic costs (e.g. 
Gross, Hudson, & Price, 2009). Generally, there is now evidence that the ability to 
reason with numbers seems even more important than literacy for individual life and 
career prospects (see Butterworth, Varma, & Laurillard, 2011 for a review).

Therefore, it is of particular importance to investigate the processes underlying 
numerical cognition from its neuronal correlates to its developmental trajectories 
and how it can be acquired best. This chapter aims at providing a brief overview of 
these aspects. In the first part, we will summarize current research on the neural 
correlates of numerical cognition with a specific focus on the neural fibre pathways 
connecting the involved brain areas, as well as the neural correlates of numerical 
learning. In part two we will then describe related approaches for numerical learn-
ing using embodied and interactive training methods for numerical competencies 
drawing on the metaphor of a mental number line (henceforth: MNL) representa-
tion. Finally, by integrating these two lines of research, we open up a new perspec-
tive on the possible origins of numerical cognition as redeployed neural correlates 
from physical experiences.

 Neural Correlates of Numerical Cognition

Considering the scenes from daily life described above, it is obvious that they 
require an adequate understanding of numbers. However, there seem to be different 
aspects of numbers that are meaningful in different situations. For example, reading 
the time requires knowledge of Arabic number symbols. Estimating the money left 
in our wallet as well as time needed requires understanding the meaning of number 
magnitude and computational processes. Finally, for the mere naming of number 
words, but also for the use of numerical labels (i.e. tube number 4), verbal processes 
are involved. From a scientific point of view, these processes are specified by the 
currently most influential model of numerical cognition, the Triple-Code Model 
(Dehaene, 1992; Dehaene, Piazza, Pinel, & Cohen, 2003).
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�The�Triple-Code�Model

As already reflected in its name, this model assumes three numerical codes or rep-
resentations underlying our numerical and mathematical competencies. The codes 
comprise (1) a visual Arabic number form necessary for identifying number sym-
bols, (2) a verbal representation for processing spoken number words and storing 
arithmetic facts such as multiplication tables, and (3) an analogue representation of 
number magnitude (Dehaene & Cohen, 1995). This analogue magnitude representa-
tion is assumed to be essential for our understanding of (numerical) magnitudes. 
Interestingly, the analogue magnitude code was also hypothesized to contain a spa-
tial component reflected in a left-to-right ordering of numbers along the MNL (e.g. 
Dehaene, Bossini, & Giraux, 1993; Fischer & Shaki, 2014 for a review; see below 
for a more elaborate discussion on the MNL).

Importantly, however, the TCM not only provides a theoretical differentiation of 
representations involved in numerical cognition but gained its high influence on the 
field because of its unique integration of behavioural and neuro-functional aspects—
making it an anatomo-functional model. This means that the three representational 
codes introduced above can be associated with specific brain regions: (1) The visual 
number form representation was attributed to the fusiform gyrus (e.g. Klein et al., 
2014). (2) The verbal representation of numbers and with it the representation of 
arithmetic facts seems to be associated with left-lateralized perisylvian language 
areas and the angular gyrus in particular (e.g. Klein, Willmes, et al., 2010). Finally, 
(3) the analogue magnitude representation is supposed to be situated in the bilateral 
intraparietal sulci (IPS, Arsalidou & Taylor, 2011 for a meta-analysis) as well as 
additional posterior parietal areas associated with navigating upon the MNL (e.g. 
Dehaene et al., 2003)—reflecting a spatial representation of number magnitude.

The most important content-wise postulate of the triple-code model is the gen-
eral distinction between a mental representation of number magnitude on the one 
side and rather verbally mediated retrieval processes for arithmetic facts on the 
other side. It is important to note that these two representational codes (e.g. number 
magnitude vs. verbal code for arithmetic facts) can dissociate. For instance, patients 
suffering from a stroke in the left hemisphere can present with a selective deficit of 
rote verbal knowledge (including multiplication facts) with preserved semantic 
knowledge of numerical quantities. On the other hand, patients with intraparietal 
lesions can show specific impairments of quantitative numerical knowledge (e.g. in 
subtraction), whereas knowledge of rote arithmetic facts is preserved (Dehaene & 
Cohen, 1997). Such double dissociations corroborate that numerical information is 
processed in different formats within distinct cerebral areas (for reviews, see Nuerk, 
Klein, & Willmes, 2012; Willmes & Klein, 2014). These two dissociable systems 
have also been substantiated by recent neuroimaging studies (i.e. left-hemispheric 
perisylvian areas and angular gyrus for arithmetic facts: e.g. Delazer et al., 2003, 
Klein, Willmes et al., 2010, bilateral IPS for number magnitude information: e.g. 
Klein, Nuerk, Wood, Knops, & Willmes, 2009; Klein, Moeller, Nuerk, & Willmes, 
2010; Klein, Mann, et al., 2013).
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In this context, it is important to note, however, that the vast majority of existing 
studies investigating the neural correlates of numerical cognition in general and 
numerical learning in particular focused on grey matter activation patterns and their 
changes. In contrast, knowledge on how these observed brain areas work together 
considering their connectivity is still rather patchy.

�Adding�Neural�Connectivity�to�the�Triple-Code�Model

Already in its initial form, the TCM assumed that mental arithmetic requires the 
close interplay of parietal as well as additional (pre)frontal processes (Dehaene & 
Cohen, 1995). Therefore, numerical cognition and mental arithmetic are a clear case 
of multi-modular and distributed processing within the human brain (i.e. involving 
different number-specific representations as well as number-unspecific processes 
associated with different brain regions). However, even though numerous neuroim-
aging studies localized grey matter cortical structures recruited during number pro-
cessing (see Arsalidou & Taylor, 2011; Dehaene et al., 2003 for reviews), the white 
matter pathways connecting these areas have largely been neglected so far. Thus, 
the TCM so far does not take into account the connecting fibre pathways underlying 
its multi-modular organization of numerical cognition. Accordingly, this approach 
has been criticized as “corticocentric myopia” (Parvizi, 2009) because it does not 
take into account that any given brain function depends on the integrity of a wide-
spread network integrating cortical areas across the entire brain. Therefore, attempts 
to explain typical and atypical cognitive functioning in general and numerical cog-
nition in particular should combine (1) localized neural correlates of cognitive func-
tions in circumscribed grey matter areas and (2) the connectivity of these cortical 
areas via white matter pathways to other cortical and subcortical areas.

However, hodology, the science of connectional anatomy (Catani & ffytche, 
2005), has only recently become accessible to evaluation in the living brain by using 
DTI (diffusion tensor imaging). While functional magnetic resonance imaging 
(fMRI) identifies functionally defined cortical areas, DTI tractography also indi-
cates the white matter tracts connecting these areas. This provides a powerful non- 
invasive tool to study brain connectivity patterns underlying cognitive functions. 
Employing diffusion tensor tractography, perisylvian language networks (e.g. Saur 
et al., 2008) but also networks underlying attentional processes (e.g. Umarova et al., 
2010) have already been specified. In contrast, research interest into brain connec-
tivity underlying numerical cognition has increased only recently (see Matejko & 
Ansari, 2015; Moeller, Willmes, & Klein, 2015 for reviews).

Importantly, there are currently only two studies worldwide which systemati-
cally investigated white matter connections of the representational codes suggested 
by the TCM (Klein, Moeller, Glauche et al., 2013, Klein et al., 2014, see Fig. 2.1). 
In these studies, we showed that the representations of arithmetic facts and number 
magnitude were subserved by two largely distinct neural networks, which do not 
share common neural pathways. This is of particular interest because the TCM 
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proposes a contribution of both magnitude manipulations and arithmetic fact 
retrieval to complex arithmetic. However, our recent results further add to answer-
ing the question how magnitude manipulations and arithmetic fact retrieval actually 
interact. In the latter study by Klein et al. (2014) we suggested the idea that it might 
not be a question of either magnitude manipulation or fact retrieval. Instead, both 

Fig. 2.1 Overlay of fibre tracts identified for magnitude manipulations (red) and arithmetic fact 
retrieval (blue). Panel A gives a detailed view on the course of the fibre tracts in axial orientation. 
Two anatomically largely distinct dorsal vs. ventral fibre pathway profiles for magnitude manipula-
tions (red) and arithmetic fact retrieval (blue) can be observed. Importantly, the two networks differ 
not only in localization of activation but also in the connections between associated cortex areas. 
Additionally, the connection between the visual number form area (VNF) and the number magni-
tude representation (IPS/pIPS) is displayed in red. Panel B again reflects the identified pathways in 
a 3D volume rendering. Finally, Panel C depicts a detailed view on the course of the fibre tracts in 
coronal orientation
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networks will contribute to numerical cognition in a 'more or less' manner. Thus, it 
seems reasonable to assume that single digit multiplications or additions with sum-
mands up to five are primarily solved by processes of fact retrieval. However, there 
is also evidence for magnitude-related influences on these very easy tasks (e.g. 
Thevenot et al., 2007). The other way around, multiplying two three-digit numbers 
requires calculation and thus the manipulation of number magnitudes. Nevertheless, 
column-wise processing (i.e. unit digit * unit digit, tens digit * tens digit, etc.) 
involves single digit multiplications so that intermediate steps can be solved using 
arithmetic fact retrieval. Even though this idea seems to work for what is going on 
cognitively, we still can only speculate on the neural structures at which the two 
networks might interact. From an anatomical point of view, this might most proba-
bly be at the junction of the left angular gyrus and the IPS. These structures are not 
only anatomically close but are also well connected via association fibres and most 
probably via U-fibres as well (Caspers et al., 2011). However, future studies will 
have to evaluate this claim.

Furthermore, there is also evidence extending the TCM by means of identifying 
new structures and their connectivity involved in numerical cognition. Only recently, 
studies on functional/effective connectivity also indicated a specific role of the hip-
pocampus in numerical development (Qin et al., 2014; Supekar et al., 2013). In chil-
dren, hippocampal-prefrontal as well as hippocampal-parietal connectivity was 
found to be associated with the acquisition of retrieval-based solution strategies, 
while in adults hippocampal-parietal connectivity was associated with the retrieval 
of arithmetic facts. This latter finding was corroborated by our structural connectiv-
ity analyses (Klein et al., 2014) but also by a recent intervention study evaluating the 
neural correlates of multiplication fact learning in adults (Bloechle et al., 2016).

In summary, it can be said that our structural connectivity results not only updated 
the TCM by considering fibre pathways for the representations of magnitude 
(manipulations) and verbally driven arithmetic fact retrieval (Klein et  al., 2014). 
Additionally, we were able to specify how brain structures associated with long- 
term memory processes (such as the hippocampus) are involved in the fronto- 
parietal network of numerical cognition. However, describing the neural networks 
subserving numerical cognition is only the first step. In a next step, it is important to 
evaluate the changes within these networks through numerical development and 
learning.

�Neural�Correlates�of�Numerical�Learning

After initial scepticism, the majority of researchers are now confident that neuro- 
scientific research offers new approaches to investigate brain plasticity—a neces-
sary prerequisite for both numerical instruction/education and rehabilitation—because 
it is able to specify the functional relationship between brain and behaviour (e.g. 
Ansari, De Smedt, & Grabner, 2012; Goswami, 2008). Recent research indicates 
that this can not only be achieved on the theoretical but also on the empirical level.

U. Fischer et al.
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Importantly, there are now first studies investigating the neural correlates of 
numerical learning by means of evaluating changes in activation patterns within the 
above described neural networks. On an ontogenetic level, the meta-analyses of 
Kaufmann et al. (2011) indicated that numerical development in children is reflected 
by a frontal-to-parietal shift of activation associated with the processing of numeri-
cal information. This shift of activation within the fronto-parietal network of num-
ber processing is usually argued to indicate that the processing of numerical 
activation gets more specific and automated with increasing age and experience. 
Accordingly, neural activation in frontal brain areas associated with domain-general 
processes such as working memory and executive control (e.g. Nee et al., 2013) 
decreases while activation in parietal areas primarily associated with the processing 
of numerical content increases.

A more specific and controlled evaluation of the neural correlates of numerical 
learning was pursued by intervention studies. As regards the processing of arithme-
tic facts, Zaunmüeller et al. (2009) evaluated the effects of a training of arithmetic 
facts for a stroke patient. Following a left-hemispheric lesion, he showed a severe 
multiplication deficit (see also Klein, Moeller, & Willmes, 2013). An intensive 
training of multiplication tables restored the patient’s ability to directly retrieve 
results from memory instead of having to calculate results. On the neural level, the 
authors observed a specific increase in activation of right-hemispheric areas (e.g. 
the angular gyrus) homologue to those of the lesioned left hemisphere which are 
usually associated with the processing of arithmetic facts. This indicated that the 
intact right hemisphere seemed to have taken over arithmetic fact retrieval—at least 
to some degree. Moreover, Bloechle et  al. (2016) measured brain activation in 
healthy participants before and after an extensive multiplication training to evaluate 
the neural correlates of arithmetic fact acquisition more specifically. When compar-
ing activation patterns for trained and untrained problems in the post-training fMRI 
session, the authors replicated a higher activation of the left AG for trained problems 
as observed previously (Delazer et al., 2003; Ischebeck et al., 2007). However, in a 
pre-post comparison of activation for trained problems and the same problems in 
the pretraining fMRI session, no signal change in the AG was observed. Instead, we 
observed changes in neural activation through the training in hippocampal, parahip-
pocampal, and retrosplenial structures suggesting the involvement of these areas 
associated with long-term memory in arithmetic fact retrieval.

With respect to the representation of number magnitude and its spatial dimen-
sion, Kucian et al. (2011) evaluated the effects of a number line estimation training 
for children at both the behavioural and the neural level. The authors found that the 
training not only improved children’s performance in number line estimation, but 
also led to functionally related remediation of neural activation in number-related 
parietal brain areas. For children with mathematics learning difficulties in particu-
lar, the training led to a specific change in the brain activation pattern: differences 
between the activation of children with and without mathematics learning difficul-
ties in number-specific parietal cortex areas were reduced after the training.

Thereby, these studies demonstrated that it is possible to directly associate effects 
of numerical learning with changes in brain activation patterns (see also Delazer 
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et al., 2003; Ischebeck et al., 2006). The effects of the spatial-numerical training of 
number line estimation in children as found by Kucian et al. (2011) seem of particu-
lar importance. These fit nicely with the suggestion of Dehaene et al. (2003) that 
apart from the content-wise differentiation between magnitude manipulations and 
arithmetic fact retrieval, spatial processes associated with the internal navigation on 
the MNL have a specific neural correlate in the posterior superior parietal lobules. 
Following this rationale and considering the results of Kucian et al. (2011), an asso-
ciation of numbers with physical space should be observable at the neural level.

�Spatial-Numerical�Associations�at�the�Neural�Level

First evidence for spatial-numerical associations to be represented at the neural 
level comes from observations of patients with hemi-spatial neglect (see Umiltà, 
Priftis, & Zorzi, 2009 for a review). These patients treat any objects, people, etc. in 
the neglected hemi-field (most often the left one following a right-hemispheric 
stroke) as if they did not exist at all (Bisiach, Capitani, Luzzatti, & Perani, 1981; 
Guariglia, Palermo, Piccardi, Iaria, & Incoccia, 2013). Accordingly, in case there is 
a spatial representation of number magnitude (in terms of a left-to-right oriented 
MNL), it should be affected in patients suffering from neglect. And indeed, the 
characteristic rightward bias observed in neglect patients for spatial tasks such as 
line bisection (see Jewell & McCourt, 2000 for a review) was found to generalize to 
numerical tasks. Accordingly, neglect patients not only misplaced the midpoint of a 
physical line towards the right, but also the middle of a numerical interval (e.g. 
indicating 7 as the middle between 1 and 9; Zorzi, Priftis, & Umiltà, 2002, see also 
Hoeckner et al., 2008 for two-digit numbers). These results demonstrated that spa-
tial neglect influences the representation of number magnitude and its mapping onto 
physical space (see also Mihulowicz, Klein, Nuerk, Willmes, & Karnath, 2015).

Further corroboration for the claim of spatial-numerical associations on the neu-
ral level is provided by the results of Knops, Thirion, Hubbard, Michel, and Dehaene 
(2009). These authors investigated the interrelation between addition and subtrac-
tion and saccadic eye movements. In particular, the authors used the brain activation 
associated with either left- or rightward saccades to predict whether participants 
were performing either addition or subtraction problems. The authors observed that 
participants’ completion of addition problems was predicted reliably by the neural 
activity observed for rightward saccades, whereas the completion of subtraction 
problems was predicted by neural activation associated with leftward saccades. 
Interestingly, this nicely fits with the idea of the operational momentum effect 
(McCrink, Dehaene, & Dehaene-Lambertz, 2007), which assumes that addition 
reflects a rightward movement on the MNL, whereas subtraction reflects a leftward 
movement. Knops et al. (2009) argue that the association of leftward saccades with 
subtraction and of rightward saccades with addition indicates systematic navigation 
upon the MNL during subtraction and addition.

U. Fischer et al.
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Taken together, these findings indicate a reliable association of the neural repre-
sentation of number magnitude and physical space as reflected by the conceptual 
metaphor of the MNL. Importantly, the idea of a spatial representation of number 
magnitude is not restricted to basic research on the neural underpinnings of numeri-
cal cognition but generalizes to research on children’s numerical development and 
has already been applied in intervention studies.

 Development and Applications of Spatial-Numerical 
Associations

The metaphor of a MNL is a well-established theoretical concept (1) investigated in 
research on children’s numerical development in general but also (2) used success-
fully as an instructional tool to corroborate numerical development in primary 
school years. In the following part of this chapter we will elaborate on these points 
in more detail.

�Spatial-Numerical�Associations�in�Children’s�Numerical�
Development

Research on the development of numerical abilities in infants suggests that an innate 
sensitivity to magnitudes exists (e.g. Xu, Spelke, & Goddard, 2005). This means 
that only a few months old infants already seem to recognize differences in num-
ber—an interpretation that is supported by an increasing number of studies (e.g. De 
Hevia, Izard, Coubart, Spelke, & Streri, 2014; McCrink & Wynn, 2004). Moreover, 
infants have even been reported to be able to perform simple arithmetic (e.g. 
McCrink & Wynn, 2004, 2009). For instance, in one of the first studies on the topic, 
Wynn (1992) used a habituation paradigm considering infants’ looking times as an 
indicator of their number-related cognitive processing. The author placed one object 
behind a screen and then added a second object while the infant was watching the 
scene. The screen was then removed to reveal either one or two objects. Infants 
looked longer at the display when there was only one instead of two objects. Wynn 
(1992) interpreted this to indicate that infants were surprised about the outcome 
because it violated their expectation to see two objects. This was observed not only 
for addition but also subtraction problems and thus indicates infants’ innate sensi-
tivity to numerical magnitude. Likewise, there is also first evidence on systematic 
spatial-numerical associations early in numerical development.

First systematic evidence for a left-to-right oriented association of number and 
physical space came from the Spatial Numerical Association of Response Codes 
(SNARC) effect (Dehaene et  al., 1993; see also Wood et  al., 2008, for a meta- 
analysis). This effect describes the phenomenon that in Western cultures, partici-
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pants tend to react faster to smaller numbers with their left hand and to larger 
numbers with their right hand (Dehaene et al., 1993). Initially, the fact that the effect 
was not observed before primary school was interpreted to indicate that it is driven 
by culture (e.g. Cohen-Kadosh, Lammertyn, & Izard, 2008; Zebian, 2005). This 
hypothesis, however, seems outdated as spatial-numerical associations other than 
the SNARC effect have already been observed for kindergartners (e.g. Ebersbach, 
2015; Patro & Haman, 2012) and even infants (de Hevia et  al., 2014, see Patro, 
Nuerk, Cress, & Haman, 2014 for a review). In the study by de Hevia et al. (2014), 
7-months-old infants were found to associate the dimensions of physical space and 
number, as indicated by infants preference in looking times for left-to-right oriented 
increasing numerical sequences. This indicates that the analogue magnitude repre-
sentation described in the TCM (Dehaene & Cohen, 1995) might be innately associ-
ated with physical space (de Hevia & Spelke, 2010).

Although this indicates a very early association of physical space and number, 
which is preserved through life (de Hevia & Spelke, 2009), a precise mapping of 
number magnitude onto space (reflecting a number line) nevertheless takes time to 
develop, as indicated by children’s number line estimation performance (e.g. Siegler 
& Booth, 2004). For instance, when asked to estimate the position of a target num-
ber on a given number line, young children tend to systematically overestimate the 
spatial positions of small numbers (i.e. placing 10 where 40 should be on an number 
line ranging from 0 to 100, e.g. Moeller, Pixner, Kaufmann, & Nuerk, 2009).

However, an accurate number-to-space mapping was argued to be an important 
building block for the development of later arithmetic skills. In line with this notion, 
there is convincing evidence showing that children’s number line estimation accu-
racy is correlated reliably with their arithmetic performance (e.g. Link et al., 2014; 
Schneider, Grabner, & Paetsch, 2009; Siegler & Booth, 2004). Even more so, chil-
dren with mathematics learning difficulties were observed to present with particu-
larly worse number line estimation performance (e.g. Geary, Hoard, Nugent, & 
Byrd-Craven, 2008; Landerl, 2013). Accordingly, there have even been attempts to 
identify subtypes of mathematics learning difficulties that suggest the existence of a 
specific weak MNL subtype (e.g. Wilson & Dehaene, 2007; see also Bartelet, Ansari, 
Vaessen, & Blomert, 2014 for a data-driven approach).

However, the argument on the importance of a MNL representation also works 
the other way around. Not only is the MNL influential in numerical development, it 
can also be trained successfully by approaches specifically strengthening children’s 
spatial-numerical associations.

�Towards�an�Embodied�Training�of�the�Mental�Number�Line

In recent years, an increasing number of trainings have been developed to train 
number magnitude understanding in general (e.g. The Number Race, Wilson, 
Revkin, Cohen, Cohen, & Dehaene, 2006) and spatial-numerical associations in 
particular (e.g. Ramani & Siegler, 2008). Some approaches even address the MNL 
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metaphor explicitly and directly train the association between numbers and physical 
space. For example, a preliminary version of the now commercially available 
Dybuster® Calcularis program (for an evaluation see Käser et al., 2013) specifically 
trained children in the number line estimation task. In this study, Kucian et  al. 
(2011) found their number line estimation training to be effective. Children with 
and without mathematics learning difficulties improved significantly not only in 
number line estimation but also arithmetic problem solving. Considering recent 
theoretical developments on embodied cognition in general (e.g. Barsalou, 2008; 
Wilson, 2002) and embodied representations of numbers in particular (e.g. Fischer 
& Brugger, 2011; Myachikov et al., 2013 for theoretical considerations), we aimed 
to increase the effects of number line trainings by allowing for an embodied interac-
tion and experience of the trained spatial-numerical association through movement- 
based elements.

In a new training approach building on the concept of embodied numerosity 
(Domahs, Moeller, Huber, Willmes, & Nuerk, 2010), we evaluated the benefits of 
incorporating whole-body movement into the training of spatial-numerical associa-
tions. The rationale behind this idea were findings of other types of number-related 
physical movement such as finger counting that influenced spatial-numerical asso-
ciations (Fischer, 2008). However, not just finger counting has been associated with 
numerical processing. In recent years, accumulating evidence suggested a link 
between whole-body movement and numerical processing (Hartmann, Farkas, & 
Mast, 2012; Hartmann, Grabherr, & Mast, 2012; Shaki & Fischer, 2014). For exam-
ple, Shaki and Fischer (2014) showed that the magnitude of numbers that partici-
pants should generate randomly while walking influenced their decision whether to 
turn left or right after some steps. When the last generated number was relatively 
small, this led to a significant increase of left turns, whereas relatively large num-
bers were associated with reliably more right turns.

In line with the results of this and other previous studies, we developed an 
embodied spatial-numerical training on a digital dance mat (Fischer, Moeller, 
Bientzle, Cress, & Nuerk, 2011). In this training, kindergarteners had to perform 
number magnitude comparisons in a set-up in which one number was presented on 
a number line, and another number had to be classified as either larger or smaller 
than the first one. Children’s responses had to be made by jumping from the central 
field of the dance mat to the left for a smaller decision and to the right for a larger 
decision (see Fig. 2.2). This training was compared to a similar training performed 
on a tablet PC. In a randomized crossover design, each child received both trainings 
in a balanced order, and improvements over the two training phases were compared 
against each other. Importantly, we observed that children not only improved their 
number line estimation performance more through the experimental than the control 
training, but also showed more pronounced improvements in their understanding of 
counting principles.

Follow-up studies were conducted using different digital media and training dif-
ferent numerical concepts (Fischer et al., 2015; Link et al., 2014; Link et al., 2013; 
see Fischer et al., 2014; Dackermann et al., 2016 for overviews). For instance, in 
another study (Link et al., 2013), we trained first-graders to perform the number line 

2 The Physiology of Numerical Learning: From Neural Correlates to Embodied…



32

estimation task with their entire body. On an up to 3 m long number line taped on 
the floor, children marked their estimates by walking to the estimated location of the 
target numbers on the number line (see Fig. 2.2). We used a Kinect™ sensor to 
record children’s estimates. Results following a randomized crossover design 
revealed that the embodied training was equally effective compared to a PC training 
of the very same content. However, the embodied training led to more pronounced 
improvements of children’s performance on simple addition problems and addition 
problems involving a carry operation. What is more, we observed that children with 
lower general cognitive abilities and visual working memory capacity specifically 
benefitted from the embodied training.

In a recent study (Fischer et al., 2015), we used an interactive whiteboard to train 
the number line estimation task. Due to the width of the whiteboard (about 1.5 m), 
second-graders had to move left or right to mark their estimates on the presented 
number line. Compared to a number line training on a PC and a non-numerical 
training on the interactive whiteboard (controlling for the motivational appeal of 
this medium), the experimental training again led to more pronounced improvement 
in children’s number line estimation but also their addition performance.

In another innovative approach, promising results were obtained when training 
children’s understanding of the equidistant spacing of numbers upon the number 
line in an embodied fashion (Dackermann, Fischer, Cress, Nuerk, & Moeller, 
2016). In this study, the embodied training condition required children to walk a 
certain distance in a given number of equally spaced steps. In the control training 
children had to subdivide a given line—presented on a tablet PC—into equally 
spaced segments without any embodied experience of the equidistance principle. 
Importantly, results indicated that children not only improved more strongly 
through the embodied training condition in their ability to divide distances into 
equally spaced segments. Additionally, their performance on an unbounded  number 

Fig. 2.2 Schematic illustrations of embodied trainings: Panel A depicts a training set-up with the 
digital dance mat as in Fischer et al. (2011). Panel B shows a simplified version of the training set-
 up used by Link, Moeller, Huber, Fischer, and Nuerk (2013), with the green screen indicating from 
which end of the number line the child should start walking
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line estimation task also increased more strongly after the embodied compared to a 
control training.

Taken together, these promising results indicate that embodied numerical train-
ings are effective in corroborating children’s basic numerical concepts. In light of 
current numbers of about 6 % of children who suffer from mathematics learning 
difficulties (e.g. Fischbach et al., 2013; see Moeller, Fischer, Cress, & Nuerk, 2012 
for an overview), our next step will be a training specifically addressing these chil-
dren. Since our trainings are designed to promote basic numerical competencies, 
and children with mathematics learning difficulties are facing problems already at 
this level of competencies, this seems a reasonable and promising starting point for 
applying embodied intervention methods.

�Overlapping�Brain�Activation�for�Numbers�and�Space

An additional benefit of such embodied trainings addressing basic numerical com-
petencies is that these basic competencies have been associated with specific brain 
areas (see above, e.g. Arsalidou & Taylor, 2011; Dehaene et  al., 2003). Thus, it 
should be possible to evaluate changes of the way in which numerical information 
is processed in the brain through training as previously attempted by Kucian et al. 
(2011). Therefore, neuro-scientific methods such as fMRI may not only be used to 
evaluate specificities of brain activation associated with number processing but also 
changes in brain activation due to numerical training and instruction in particular.

As described above, there is now accumulating evidence corroborating the idea 
that the underpinnings of numerical cognition but also the effects of specific 
(embodied) spatial-numerical trainings can be evaluated on the neural level. 
Interestingly however, when it comes to spatial-numerical associations, the evi-
dence also suggests a major involvement of brain areas not primarily associated 
with the processing of number magnitude. For example, an involvement of areas 
associated with attentional shifts in physical space reflected by saccades (Knops 
et al., 2009, see above) or mental navigation (Dehaene et al., 2003) was observed. 
Moreover, there are empirical findings suggesting an involvement of further brain 
areas in numerical cognition more broadly such as areas associated with specific 
motoric functioning and finger movements in particular (e.g. Kaufmann et al., 2008; 
Tschentscher, Hauk, Fischer, & Pulvermüller, 2012). Furthermore, there is even 
more specific empirical evidence indicating overlapping neural activation in (intra)
parietal cortex areas for the processing of numbers, the execution of saccades, but 
also grasping and pointing movements (Simon, Mangin, Cohen, Le Bihan, & 
Dehaene, 2002; Simon et al., 2004). Importantly, these prominent co- and overlap-
ping activations of brain areas associated with the mental representation of physical 
space and the representation of the body (as required for saccades and grasping/
pointing movements) raise the question how and why these areas are specifically 
related to the processing of numerical information. In the following, we will discuss 
a neuro-functional account on this question.
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 Numerical Cognition: Reused Neural Circuits for Physical 
Experiences

The question how and why specific brain areas are co-activated for or show overlap-
ping activation with the processing of numerical information addresses the issue of 
how specific observed neural correlates reflect specific cognitive functions such as 
motor abilities, spatial cognition, attention, and also numerical cognition. However, 
while it is reasonable to assume that neural circuits for motor abilities and also the 
processing of spatial information are necessary phylogenetic developments to allow 
interactions with the environment, this does not hold for the human ability to use 
symbol systems such as Arabic numbers for numerical cognition. In fact, such cul-
tural acquisitions are far too recent to evolve their specific brain mechanisms (with 
Arabic numbers being used for about 1000 years, cf. Menninger, 1957, see also 
Chrisomalis, 2004). Instead, it was suggested that the capacity of numerical cogni-
tion (and also other cultural competencies such as reading) may have evolved 
through a specific form of cortical plasticity unique to humans termed neural recy-
cling (Dehaene, 2005). Following the neural recycling hypothesis, “the human abil-
ity to acquire new cultural objects relies on a process […] whereby those novel 
objects invade cortical territories initially devoted to similar or sufficiently close 
functions. According to this view, our evolutionary history, and therefore our genetic 
organization, has created a cerebral architecture that is both constrained and par-
tially plastic, and that delimits a space of learnable cultural objects. New cultural 
acquisitions are therefore possible only inasmuch as they are able to fit within the 
pre-existing” (Dehaene, 2005, p. 126).

For the case of numerical cognition, it was suggested that even for tasks with 
symbolic Arabic numbers humans rely on an analogue magnitude code, also 
described as a MNL (Dehaene et al., 2003). Importantly, this analogue magnitude 
code does not seem to be specific to the processing of number magnitude but may 
generalize to the processing of physical and temporal magnitudes (i.e. spatial dis-
tances and time durations, e.g. Bueti & Walsh, 2009; Santiago & Lakens, 2015; 
Walsh, 2003). This indicates that the cultural acquisition of processing number 
magnitude may have invaded the phylogenetically older circuits for processing 
physical space and time. This seems reasonable as all three domains share and build 
upon a generalized representation of magnitude. Accordingly, this might not only 
account for spatial-numerical associations on the behavioural level such as the 
SNARC effect but also explain co-activation and overlapping activation of brain 
areas associated with grasping and saccades (which require the integration of spatial 
and temporal information) and numerical processing (e.g. Simon et al., 2002, 2004).

Related to the neural recycling hypothesis and providing a more specific account 
on the involvement of brain areas associated with finger movements in numerical 
cognition (e.g. Kaufmann et al., 2008; Tschentscher et al., 2012), Penner-Wilger 
and Anderson (2008, 2011; see also Anderson & Penner-Wilger, 2013) suggested 
what they termed the massive redeployment hypothesis. This hypothesis suggests 
that at least parts of the neural circuitry originally subserving finger use may have 
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been redeployed to support the representation of number. Because this part serves 
both functions now, this neural circuit should be commonly activated in tasks requir-
ing finger use or number processing. Thereby, the massive redeployment hypothesis 
also accounts for the finding that finger gnosis (i.e. the ability to recognize one’s 
fingers without visual control) is a reliable predictor of children’s numerical devel-
opment with those children presenting with better finger gnosis also showing better 
numerical performance (e.g. Noël, 2005; Wyschkon, Poltz, Höse, von Aster, & 
Esser, 2015).

Although very similar at first glance, there is an important difference between 
this hypothesis and the neural recycling hypothesis. The massive redeployment 
hypothesis proposes that existing components are reused and thus lower level cir-
cuits are combined to evolve more complex cognitive functions. In contrast, the 
neuronal recycling hypothesis suggests that novel cultural acquisitions such as 
number invade and change existing neural circuits that show sufficient proximity 
(cf. the idea of a generalized magnitude representation, e.g. Walsh, 2003).

Coming back to the idea of our embodied numerical training, both of these 
hypotheses on the neuro-functional organisation and integration of the neural cir-
cuits underlying numerical cognition may actually account for (parts of) the benefi-
cial effects of the embodied training approach. As these trainings require participants 
to move their whole body in physical space to perform a numerical task, the respec-
tive correlated or even overlapping brain areas should be activated jointly. Thereby, 
the systematic association of physical space and number magnitude (following the 
neural recycling hypothesis) and/or the systematic involvement of bodily move-
ments (following the massive redeployment hypothesis) should provide an addi-
tional access to the relevant representation of numerical magnitude.

Taken together, we have come full circle from embodied interaction beneficial 
for numerical learning to the neural correlates of numerical cognition and its inte-
gration into brain circuits originally subserving spatial and motor-related processes, 
which substantiate the idea of systematically training spatial-numerical associations 
in an embodied way.
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