Secured-OFS: A Novel OpenFlow Switch
Architecture with Integrated Security Functions

Bao Ho®™ | Quoc Nguyen, Cuong Pham-Quoc, and Tran Ngoc Thinh

Ho Chi Minh City University of Technology, Vietnam National University - HCMC,
Ho Chi Minh City, Vietnam
{7140219 ,51102795, cuongpham, tnthinh}@hcmut .edu.vn

Abstract. Although OpenFlow network protocol is a promising net-
work approach with many advantages compared to traditional network
approaches, it still suffers from network attacks. In this paper, we propose
a novel architecture for an OpenFlow-based switch with associated mul-
tiple network security techniques, so-called Secured-OFS. The proposed
Secured-OFS can not only function as a switch following the OpenFlow
protocol but also help protect a network against many attack types.
We implement the first FPGA-based prototype version of our proposed
Secured-OFS using a Xilinx Virtex 5 xcbvtx240t device. In this first
prototype version, we integrate two different DDoS defense techniques,
Hop-Count Filtering and Port Ingress/Egress Filtering. The experimen-
tal results show that the switch not only fulfills the OpenFlow protocol
but also be able to defense against DDoS attacks. The system achieves a
maximum throughput at 19.729 Gbps while a 100 % DDoS attack detec-
tion rate is obtained.

Keywords: Software defined networking - OpenFlow network - Net-
work security

1 Introduction

In the last decades, SDN [1] has been considered as a promising paradigm to
manage and configure computer networks through a high-level abstraction. Com-
pared to the traditional approach where computer networks are configured man-
ually, the SDN approach has many benefits such as centralization control and
monitoring, simple hardware devices, and high virtualization. The SDN archi-
tecture decouples network control from forwarding functions so that network
control becomes programmable. The network control includes controllers pro-
grammed by network administrators through software interfaces. Each controller
is responsible for handling several forwarding devices behaving forwarding func-
tions. Those forwarding devices route network packets from a source node to a
particular destination node according to network configuration.

As the most well-known instance of SDN, OpenFlow [2] is not only a quite
popular implementation in academia but also an industry standard of SDN [3].

© Springer International Publishing AG 2017
M. Akagi et al. (eds.), Advances in Information and Communication Technology,
Advances in Intelligent Systems and Computing 538, DOI 10.1007/978-3-319-49073-1_57

Secured-OFS: A Novel OpenFlow Switch Architecture 531

Based on the architecture of SDN, the OpenFlow network architecture also
decouples network control function from the forwarding functions. Therefore,
the OpenFlow network takes all the advantages of the SDN paradigm. More-
over, by optimizing elements such as controllers and forwarding devices, the
OpenFlow network can be implemented as a software program or used as hard-
ware platforms.

However, many security issues exist in both the SDN and OpenFlow network
architectures. Research in [4] presents seven different threats in a SDN net-
work which attackers can exploit to attack the network. OpenFlow networks also
have some security threats that should be considered carefully. In the literature,
there are some proposals to defend against possible attacks [5-7]. However, these
approaches are only deployed as software programs. Moreover, research in the
literature mainly focuses on optimizing controllers in OpenFlow networks [8,9].
There are still many open issues with forwarding devices. With the rapid progress
in network services and network speed, high-performance and secure forwarding
devices in OpenFlows networks is an essential demand.

With the fast increasing in the number of network attacks, hardware-based
network defense plays an important role of a successful cyber-security strategy. In
this paper, we propose a Secured-OpenFlow switch (Secured-OFS) with associ-
ated security functions. These Secured-OFSes can operate as forwarding devices
in OpenFlow networks. We implement the first prototype version of Secured-OFS
on the NetFGPA-10G [10] board which contains a Xilinx Virtex 5 xchvtx240t
FPGA device. The experimental results show that the system achieves high accu-
racy forwarding with nearly 100 % while the detection rate reaches to 100 % for
two cases of IP Spoofing. Besides, the forwarding services time is 0.36 us and
9.36 us for the minimum and maximum packet respectively. That leads to the
performance of total system reaching 9.859 Gbps in half-duplex and 19.718 Gbps
in full-duplex mode. The main contributions of our paper can be summarized as
follow.

— We propose a Secured-OFS with integrated security functions. To the best
of our knowledge, this is the first OpenFlow switch that can not only route
network packets according to the OpenFlow protocol but also defend against
network attacks.

— We present our first prototype Secured-OFS using the NetFPGA-10G board
which integrates two different DDoS defense mechanisms including Hop-Count
Filtering and Port Ingress/Egress Filtering. The first prototype can work at
up to 108.711 MHz and achieves a 99.1 % detection rate.

The rest of the paper is organized as follow. Section 2 presents the proposed
architecture of Secured-OFS. Section 3 introduces our FPGA-based first pro-
totype version of the proposed Secured-OFS. We analyze our experiments in
Sect. 4. Finally, Sect. 5 concludes the paper and introduces future work.

532 B. Ho et al.

2 Secured-OFS Architecture

In this section, we present our proposed Secured-OFS architecture. Our Secured-
OFS can not only operate as an OpenFlow protocol-based switch but also a
security device to defense against network attacks.

Figure1 illustrates our proposed Secured-OFS architecture. The proposed
Secured-OFS consists of three different components named Ingress, Egress, and
Engine. The Ingress component is responsible for receiving incoming packets
from input ports and forwarding to the Engine component for processing. Finally,
those packets are routed to corresponding output ports of the Egress component.

Egress

Ingress

Engine
OpenFlow Processor (OP)

Host genl K Flo\ Table |

OpenFlow Processor Interface
Processor FIFO Processor lo o
o . i e
Secured Processor Interface
g

Secured Processor (SP)

Incoming Packet Outgoing

Input Queue
Output Queue

=)
g
5
S

2
Y

E) Flow of data packets =) Flow of extracted features > Flow of instructions

$2C: Switeh-to-Controller < Flow of module interconnecting - SC: Secured Core

Fig. 1. Secured-OFS architecture

2.1 Ingress Component

The Ingress component includes one input queue, multiple data input ports
(InPort i), and one control input port (S2C-InPort). All incoming packets from
these input ports are collected and stored into buffers. Input Queue sequentially
selects a packet from the buffer and forwards to the Engine component for
processing. Input Queue can be configured on the fly so that packets from buffers
are selected based on a specific strategy such as Round Robin or input port
priorities. Configuration data is sent to Input Queue through the S2C-InPort.

S2C-InPort is the means of communication between a controller and the
Secured-OFS. In other words, the corresponding controller sends configuration
data through this port to handle the Secured-OFS according to the OpenFlow
protocol. Compared to data input ports, this S2C-InPort has a higher priority,
i.e., Input Queue selects packets coming from this port to send to the Engine
component whenever there is any existence packet in the buffer of S2C-InPort
regardless strategies used to select packets at Input Queue.

2.2 Egress Component

In contrast to the Ingress component, Egress consists of an output queue, several
data output ports (OutPort i), and one control output port (S2C-OutPort).
A packet after being processed by the Engine component is forwarded to the
Output Queue. Regarding to routing information of the packet, Output Queue

Secured-OFS: A Novel OpenFlow Switch Architecture 533

sends it to a corresponding data output port. However, following the OpenFlow
protocol, there are some cases in which a packet cannot be routed to any data
output port due to the lack of information. In those cases, the packet is forwarded
to the controller associating with the Secured-OFS through the S2C-OutPort so
that the controller can update the Secured-OFS.

2.3 Engine Component

In our proposed architecture, the Engine component plays the most important
role. It has much functionality than the works in [11-13]. The component processes
an incoming packet that comes from the Ingress component following both Open-
Flow protocol and the implementation of network security mechanisms. After
processing a packet, the Engine component sends it to the Egress component
so that the packet is forwarded to specific destination or the corresponding con-
troller. This component consists of three different processors. Those are OpenFlow
Processor (OP), Packet Processor (PP), and Secured Processor (SP).

OpenFlow Processor. The OP consists of a Host Agent module, a Flow Table,
and an interface to communicate with PP. A packet can come to the Secured-
OFS through two different port types, the data ports and the control port (S2C-
InPort). A packet coming to the Secured-OFS through the control port is a
packet generated by the associated controller. This packet contains an instruction
that the controller uses to handle the Secured-OFS such as updating Flow Table
or modifying a packet header. The Host Agent module is responsible for receiving
control packets, executing instructions, and sending feedback to the controller if
required when a control packet comes to the Secured-OFS. When a data packet
is arriving at the Secured-OFS, it should be scanned by SP to defend against
network attacks and processed by this OP following the OpenFlow protocol. The
Host Agent module analyzes the data packet and retrieves the Flow Table to
extract the corresponding actions associated with the packet. If an action for the
packet is found, it will be sent to the PP. Otherwise, OP requests PP to send the
packet to the associated controller. To support the OpenFlow protocol, the Flow
Table module is needed to store OpenFlow-based actions [14] such as dropping,
updating the header fields, or forwarding a packet to a destination output port.
Figure 2 illustrates a segment of Flow Table.

‘Host [FlowTable

Agent "I Matching Field| Action
Entry 1 Set
Entry 2 Output |

¥
Action Out

Processor (ICP)

Incoming

Entry n QoS

Fig. 2. The Flow Table architecture

534 B. Ho et al.

Packet Processor. PP consists of three different modules the Incoming Packet
Processing, the Packet FIFO, and the Outgoing Packet Processing. It is used to
decode an incoming packet into different fields such as header field, and payload
field at first. Depending on input port types, PP processes incoming packets in
two different scenarios. In the first scenario, a coming packet through the control
port is forwarded to the Host Agent module of OP without any processing by
Incoming Packet Processing module.

In the second scenario, a packet coming through a data input port is ana-
lyzed by the Incoming Packet Processing module first. After that both OP and
SP are activated simultaneously to process the packet. The header field of the
packet is forwarded to the Host Agent module so that corresponding actions of
this packet can be found. Depending on which network security mechanisms are
used in SP, different fields of the packet are forwarded to SP for scanning. SP
guarantees that the packet is a legitimate network packet. The whole packet is
stored in the Packet FIFO to wait for decisions from both OP and SP. The Out-
going Packet Processing module starts processing the waiting packet in Packet
FIFO immediately after receiving the final decisions from both SP and OP. If
SP recognizes that the packet does not belong to a network attack, the taken
actions from Flow Table are applied to the packet. Otherwise, the packet is
destroyed immediately. In the case of OpenFlow-based actions for a particular
packet cannot be found in Flow Table, i.e., the OP requests to send the packet
to the associated controller, the Outgoing Packet Processing module forwards
this packet to the S2C-OutPort.

Secured Processor. The SP is responsible for guaranteeing that incoming
packets do not belong to network attacks. SP includes a number of Secured
Cores (SCs) and an interface for communication between the cores and PP. Each
Secured Core implements a particular network defense mechanism to defend
against a specific type of network attacks such as Anti-DDoS or Anti-Virus.
Depending on characteristics of a network where the Secured-OFS is deployed,
different security functions are chosen to implement in Secured Cores. Because
each Secured Core performs one specific security function, a packet is considered
as an illegal packet if there is at least one core alerts the packet is illegal. In this
case, a drop signal is issued to PP. Otherwise, when all Secured Cores vote that
the packet is legal, a pass signal is sent to the PP.

3 FPGA-Based Secured-OFS Prototype

The previous section shows our proposed Secured-OFS architecture. The archi-
tecture can be developed by using many different technologies such as FPGA
or ASIC. The proposed architecture also can be deployed using multicore sys-
tems where each processor in the Engine component can be implemented by a
computing core. In this section, we present our first FPGA-based Secured-OFS
prototype using the proposed architecture in the previous section.

Secured-OFS: A Novel OpenFlow Switch Architecture 535

In this first prototype version, we decide to build two well-known DDoS coun-
tering mechanisms, the Hop-Count Filtering (HCF) and the Port Ingress-Egress
Filtering (PIEF), in SP because DDoS attacks have become one of the primary
cyber-security threats [15,16]. These kinds of attack are attempts to make a
computer resource (i.e. website, e-mail, VoIP, or a whole network) unavailable
to its intended users. In the final quarter of 2015, the number of DDoS attacks
has hit a new record [17].

The Hop-Count Filtering core comprises four main modules called Hop-Count
Calculating, Hop-Count Records, IP Add Records, and Comparing. Figure 3a
presents the architecture of the HCF secured core in this work. When the core
receives a source IP address and its final Time-to-Live (TTL) value from PP
through Secured Processor Interface, Hop-Count Calculating computes the Hop-
Count value for the packet. Then the Comparing module look-ups IP address
and stored Hop-Count value of the packet using both the Hop-Count Records
and IP Addr Record module. If the calculated Hop-Count value is matched to
the stored Hop-Count value, the packet is considered as the legitimate packet.
In this case, a bypass signal is returned to PP. In the case of the calculated
Hop-Count value is different from the stored Hop-Count value, the packet is
classified to a DDoS attack. A drop signal is issued to alert PP. If this is the
first time of a packet coming from this source IP address that has come to the
switch, both IP address and TTL value of the packet are stored into Hop-Count
Records and the IP Addr Record module. However, this is the main drawback
of the Hop-Count defense mechanisms because IP address and TTL value of a
packet can be modified while it is traveling in over networks. Therefore, in this
work, we consider integrating multiple DDoS countermeasure techniques into a
hardware system to improve both protection efficiency and system performance.

Secured Processor Interface
IPTTL

Hop-Count Action Out
Caculating

Hop-Count
Records
IP Addr Records| HCF Core Register Table

(a) HCF Core Architecture (b) PIEF Core Architecture

Secured Processor Interface

C

Comparing

PIEF Core

Fig. 3. The Secured Cores in our first prototype

Figure 3b depicts the architecture for the PIEF core in this paper. As shown
in the figure, the PIEF core contains a Register Table module and a Comparing
module. Register Table stores special IP address blocks that are not allowed
to appear in networks [18]. The Comparing module compares IP addresses of
incoming packets with stored IP addresses in Register Table. When the source
IP address of the packet is sent to PIEF, PIEF searches the address in Register
Table. If a miss signal is returned (i.e., no record was found in Register Table),

536 B. Ho et al.

the packet is legitimate. Otherwise, the packet is illegitimate (i.e., a hit signal is
returned). Based on this hit or miss signal, the PIEF core send bypass or drop
signal to PP.

In this first FPGA-based prototype Secured-OF'S, the proposed architecture
with two DDoS countermeasure mechanisms is built in a single FPGA chip.
Therefore, all the inter-components, as well as intra-component interconnects
are implemented as on-chip point-to-point and bus-based interconnects. The
point-to-point interconnect is very suitable for FPGA implementation because
FPGA includes many wires for interconnect. Moreover, the most advantage of the
point-to-point interconnect is high-performance because there is no any competi-
tion for communication through the point-to-point interconnect. The bus-based
interconnect is low latency and area-efficiency. However, bus-based interconnect
suffers from low overall communication performance.

We use embedded on-chip memory (Block RAM - BRAM) to build Flow
Table, Register Table in the PIEF secure core, and both IP Addr Records and
Hop-Count Records in the HCF secure core. BRAM allows memory accessing
within exactly one cycle so that it helps improve the system performance because
of frequent Flow Table accessing. However, BRAM still comprises a disadvantage
that is the limitation of usable resources and interconnects. To overcome this
disadvantage, external memory chip can be addressed for the prototype of next
version.

4 Experiments

In this section, we present our experiments with the first FPGA-based prototype
Secured-OFS. We also analyze the hardware resources usage as well as system
performance of the proposed Secured-OFS.

4.1 Experimental Setup

In order to validate and estimate the system performance of the first prototype
version of our Secured-OFS; we employ two NetFPGA-10G [10] boards to build
a testing system. Figure 4 illustrates our testing model. The first NetFPGA-10G
board is configured as our FPGA-based Secured-OFS with four data ports using
SFP + (Small Form-Factor Pluggable) interface. The PCI Express connector of
the board is used as control ports (S2CInPort and S2COutPort) to communicate
with OpenFlow Controller software running on the host. The second NetFPGA-
10G board is configured as a Test Agent in which we port the framework of Open
Source Network Test (OSNT) [19]. OSNT including a Generator and a Monitor
can be used to generate packets under some parameters and monitor incoming
network packets. The Generator is used to generate not only legitimate packets
but also attacking packets at the line-rate (= 10Gbps/port) to send testing
data to the input ports of our Secured-OFS system. All legitimate packets are
switched to one of three output ports of Secured-OFS from SFP+Port0-Out to
SEP+Port2-Out depending on the handling of the controller. Instead of dropping

Secured-OFS: A Novel OpenFlow Switch Architecture 537

- NetFPGA-10G
SFP+ Port0-Out SFP+ Port0-In

2

EEEEY
——|SFP+ Port2-Out OSNT SFP+ Port2-In (€= .
S

Generator :

SEP+ Portl-Out Monitor
. Core .
SFP+ Port3-Out
: PCI Express
OSNT User Interface

NetFPGA-10G
[o]
—>’ SFP+‘ Port0-In Secured-OFS SFP+ Por‘m-om }- --- J:

"""""""" PCI Express [~
—>> Attacked packets
_OpenFlow Controller | .. 3 1 egitimate packets

—3> Generated packets

SFP+ Port3-In

SFP+ Port3-Out

Fig. 4. The testing model of Secured-OFS

attacking packets as presented above, we configure the Secured-OFS to forward
those packets to SFP+Port3-Out for doing statistic.

In our experiments, we conduct several test cases with different packets in
term of size, header, and payload data. We measure and calculate the interval
to process the first-packet coming from a specific source and the switching time
of non-first-packet to validate the OpenFlow operation of the proposed Secured-
OFS. When the first packet comes from a specific source, switching information
of this packet does not exist in Flow Table. Following the OpenFlow protocol,
the switch needs to forward it to the associated controller. We also collect data
from the report of OSNT Monitor in which all packets are classified to check
the capacity of DDoS protection of the secured cores such as detection rate,
false positive rate, and false negative rate. Finally, we use several packet sizes to
evaluate overall throughput of the proposed Secured-OFS.

4.2 Experiment Results

Table 1 summarizes hardware resources usage and synthesis frequency of the
prototype Secured-OFS. Due to the fact that we use BRAM to implement Flow
Table in OpenFlow Processor, IP Addr Records and Hop-Count Records in the
HCF core, and Register Table in the PIEF core, the Secured-OFS consumes
much more BRAM resource than other types. The first prototype version of our
Secured-OFS can work at up to 108.711 MHz.

In performance evaluation experiment, generated packets belong to one of six
types 64 bytes, 128 bytes, 256 bytes, 512 bytes, 1024 bytes, and 1500 bytes. The
range from 64 bytes to 1500 bytes is valid for an Ethernet packet. We use these
packet to test the OpenFlow protocol function of the switch in both half-duplex
and full-duplex mode. The results of this performance evaluation experiment is
shown in Fig.5. In this chart, the horizontal axis indicates the Packet size in
bytes while the vertical axis shows Throughput in in Gbps responding to each

538 B. Ho et al.

Table 1. The hardware resource utilization of the system

Resources Amount | Percentage
Look Up Tables (LUTs) | 54770 |36 %
Registers (FFs) 57424 38%
Block RAM 204 62 %

[0 Half-duplex [0 Full-duplex [l 0 Trafic

Ve | 3
— D B N 98 93
0 — e = = =
84 A 2 = = =t

B~ ~
(@) —
N
= 10 -
o) I~
[} o9
& ~ -
0

64 128 256 512 1024 1500
Packet size (bytes)

Fig. 5. Performance testing of Secured-OFS

packet types. In each packet type, the first column shows system throughput
in the half-duplex mode. The second column depicts throughput in full-duplex
mode. Finally, the last column presents OSNT packet generator speed. According
to these experimental results, our first prototype system can achieve throughput
by up to 9.859 Gbps in half-duplex mode and up to 19.729 Gbps in full-duplex
mode.

In the switching time experiments, each flits in a packet (a packet is divided
into a number of fixed-size flits) requires 15 cycles to be processed. Therefore,
total forwarding time for a packet depends on the packet size. Table 2 presents
processing time for each packet type. A 64-byte packet consumes 0.36 us while a
1500-byte packet requires 9.1 us to be processed. The proposed Secured-OFS is
also validated in the case of first packet coming from a specific source arriving
the switch. The experiments show that the functionality of our Secured-OFS is
fully satisfied. Table 3 shows the detection rates, false positive rates, and false
negative rates according to the packet sizes. The detection rates, false negative
rates, and false positive rates are almost stable when the sizes of packets are
changed. According to the table, the system can recognize all attacking packets
although a 2.9 % false negative rate (legitimate packets are classified as attacking
packets) occurs during the test.

Secured-OFS: A Novel OpenFlow Switch Architecture 539

Table 2. Timing testing of Secured-OFS

Packet size (bytes) | Forwarding time (us) | First packet delay Time (us)
64 0.36 0.08
128 0.7 0.14
256 1.38 0.26
512 2.76 0.51
1024 5.36 0.98
1500 9.36 1.78

Table 3. Detection rate of Secured-OFS (in %)

Type <64 | 64-128 | 128-256 | 256512 | >512
Detection rate |97.1|97.6 98.4 98.6 99.1
False negative | 0.0| 0.0 0.0 0.0 0.0
False positive | 2.9| 2.4 1.6 14 0.9

5 Conclusion

In this paper, we propose a novel architecture for an OpenFlow switch which can
defend against vulnerabilities from the network. This research contributes the
novel framework which has high expansibility due to the Secured-OFS system
based-on the combination with many secured functions. This architecture con-
tains a processor able to merge many different secured core results into a final
decision to against network intrusions. In the implementation, we integrate the
HCF core and the PIEF core into Secured-OFS to achieve the high detection
rate with DDoS attack. We have the plan to extend our Secured-OFS by inte-
grating a dynamic reconfiguration module to this system. That helps the system
become more flexible and efficient because the system could change secured cores
to adapt to network attack types.

Acknowledgement. This research is funded by Ho Chi Minh City University of
Technology (HCMUT) under grant number TSDH-2015-KHMT-52.

References

1. Goransson, P., Black, C.: Software Defined Networks: A Comprehensive Approach.
Morgan Kaufmann, San Francisco (2014)

2. McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, P., Peterson, L., Rexford,
J., Shenker, S., Turner, J.: OpenFlow: enabling innovation in campus networks,
vol. 38, pp. 69-74. ACM, New York (2008)

3. Gelberger, A., Yemini, N., Giladi, R.: Performance analysis of software-defined net-
working (SDN). In: 2013 IEEE 21st International Symposium on Modelling, Analy-
sis and Simulation of Computer and Telecommunication Systems. IEEE Press,
San Francisco (2013)

540

4.

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

B. Ho et al.

Kreutz, D., Ramos, F., Verissimo, P.: Towards secure and dependable software-
defined networks. In: Proceedings of the Second ACM SIGCOMM Workshop on
Hot Topics in Software Defined Networking, pp. 55-60. ACM, New York (2013)
Tootoonchian, A., Ganjali, Y.: HyperFlow: a distributed control plane for Open-
Flow. In: Proceedings of the 2010 Internet Network Management Conference on
Research on Enterprise Networking. USENIX Association, Berkeley (2010)
Braga, R., Mota, E., Passito, A.: Lightweight DDoS flooding attack detection using
NOX/OpenFlow. In: 2010 IEEE 35th Conference on Local Computer Networks
(LCN), pp. 408—415. IEEE, Denver (2010)

Shin, S., Song, Y., Lee, T., Lee, S., Chung, J., Porras, P., Yegneswaran, V., Noh, J.,
Kang, B.B.: Rosemary: a robust, secure, and high-performance network operating
system. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, pp. 78-89. ACM, New York (2014)

Hu, Y., Wang, W., Gong, X., Que, X., Cheng, S.: Balanceflow: controller load
balancing for openflow networks. In: 2012 IEEE 2nd International Conference
on Cloud Computing and Intelligent Systems (CCIS), vol. 2, pp. 780-785. IEEE,
New York (2012)

Chen, X., Zheo, B., Ma, S., Chen, C., Hu, D., Zhou, W., Zhu, Z.: Leveraging
master-slave OpenFlow controller arrangement to improve control plane resiliency
in SD-EONSs. In: Optics Express, vol. 23, no. 6, pp. 7550-7558. Optical Society of
America (2015)

NetFPGA 10G. http://netfpga.org/site/# /systems/3netfpga-10g/details/

Naous, J., Erickson, D., Covington, G.A., Yang, S., Appenzeller, G., McKeown,
N.: Implementing an OpenFlow switch on the NetFPGA platform. In: Proceedings
of the 4th ACM/IEEE Symposium on Architectures for Networking and Commu-
nications Systems, pp. 1-9. ACM, New York (2008)

OpenFlow Implementation on NetFPGA-10G. https://docs.google.com/
document /d/1ZwHXQZocKwQls6Ted8VZO8hIMjBtuIWxV2{AY44eOgE/edit
Naous, J., Erickson, D., Covington, G.A., Yang, S., Appenzeller, G., McKeown,
N.: From 1G to 10G: code reuse in action. In: Proceedings of High performance
and programmable networking, pp. 31-38. ACM, New York (2013)

Suh, M., Park, S.H., Lee, B., Yang, S.: Building firewall over the software-defined
network controller. In: 16th International Conference on Advanced Communication
Technology, pp. 744-748. IEEE, Pyeongchang (2014)

Zargar, S.T., Joshi, J., Tipper, D.: A survey of defense mechanisms against distrib-
uted denial of service (DDoS) flooding attacks. In: IEEE Communications Surveys
& Tutorials, vol. 15, no. 4, pp. 2046-2069. IEEE (2013)

Yan, Q., Yu, F.R., Gong, Q., Li, J.: Software-defined networking (SDN) and dis-
tributed denial of service (DDoS) attacks in cloud computing environments: a
survey, some research issues, and challenges. In: IEEE Communications Surveys &
Tutorials, vol. 18, pp. 602-622. IEEE (2016)

State of the Internet Report (2016). https://www.stateoftheinternet.com/
resources-cloud-security-2015- Q4-web-security-report.html

Cotton, M., Vegoda, L.: Special Use IPv4 Addresses. Technical report, RFC-57
(2010)

The open source network tester. http://osnt.org/

http://netfpga.org/site/#/systems/3netfpga-10g/details/
https://docs.google.com/document/d/1ZwHXQZocKwQls6Ted8VZO8h9MjBtu9WxV2fAY44eOgE/edit
https://docs.google.com/document/d/1ZwHXQZocKwQls6Ted8VZO8h9MjBtu9WxV2fAY44eOgE/edit
https://www.stateoftheinternet.com/resources-cloud-security-2015-Q4-web-security-report.html
https://www.stateoftheinternet.com/resources-cloud-security-2015-Q4-web-security-report.html
http://osnt.org/

	Secured-OFS: A Novel OpenFlow Switch Architecture with Integrated Security Functions
	1 Introduction
	2 Secured-OFS Architecture
	2.1 Ingress Component
	2.2 Egress Component
	2.3 Engine Component

	3 FPGA-Based Secured-OFS Prototype
	4 Experiments
	4.1 Experimental Setup
	4.2 Experiment Results

	5 Conclusion
	References

