
A FPGA Based Two Level Optimized Local
Filter Design for High Speed Image

Processing Applications

Majida Kazmi(B), Arshad Aziz, Pervez Akhtar, and Nassar Ikram

Department of Electrical Engineering (PNEC), National University of Sciences
and Technology (NUST), H-12, Islamabad, Pakistan

majida.kazmi@pnec.nust.edu.pk

Abstract. This work presents an efficient Feild Programmable Gate
Array (FPGA) based local filter design for portable and high speed
image processing applications. It is highly optimized by using two level
optimization. The first level optimization at design-level exploits tempo-
spatial parallelism of filters by developing parallel/pipelined architecture.
For exploiting spatial-parallelism, design computes partial results of mul-
tiple MACs in parallel and accumulates them via adder-tree for final
result. Though it bears good performance aptitude but adder-tree incurs
long critical path (4.713 ns) thus limits design performance. The critical
path was reduced to 2.489 ns with temporal parallelism by pipelining
the adder-tree. Design performance is further enhanced by deploying
the second level optimization at post-implementation level where device
aware floor-planning fine tunes the design. It aligns all utilized embed-
ded resources of design on Xilinx Virtex-5 device and confines slice based
logic across them. It results in packing the design within small area with
reduced slice count and critical path (2.32 ns). After applying two levels
of optimization, the design occupies 89 Slices, 3 DSP-Slices, 2 BRAM18
and achieves high frequency of 431.03 MHz.

Keywords: Local filters · Real time image processing · FPGA · XSG
tool · Floor planning

1 Introduction

Digital image processing becomes a subject of common interest in emerging
areas such as computer vision, medical, surveillance and industrial to name a
few. In all of these applications, image processing operations help to improve
the quality of images for its correct interpretation and analysis without human
interference [1]. Most of these image processing operations are local by nature, in
which calculation of an output pixel depends on a local neighborhood of input
pixels. These operations are computationally expensive and time-consuming.
Software based sequential architectures for such operations are relatively slow,
thus not able to meet time constraints associated with real time systems [17].
c© Springer International Publishing AG 2017
M. Akagi et al. (eds.), Advances in Information and Communication Technology,
Advances in Intelligent Systems and Computing 538, DOI 10.1007/978-3-319-49073-1 5



20 M. Kazmi et al.

Therefore to accelerate computation of these image processing operations, hard-
ware such as Field Programmable Gate Array (FPGA) based parallel architec-
tures have been explored [1,6,17].

Among different local image processing operations, one of the most frequently
used operation is two dimensional convolution in local filters [4]. In the convo-
lution operation, output pixel Pout is obtained by convolving a N×N window
of input pixels with the N×N Filter Kernel which generally requires N2 mul-
tiplications and N2-1 additions. The quadratic growth of N factor implies that
it is a computationally expensive and time consuming operation [6,13,17,20].
The FPGA based parallel architectures exploit tempo-spatial parallelism of
local filtering operation to accelerate its computation for real time applications
[1,6,13,16,17,20]. At the same time, due to its inherent re-configurability, it is
also possible to modify the filter design at any stage to incorporate requirements
of any specific application. For these reasons, the FPGA platform is viable for
modeling the filter designs from its development phase till its final design.

Xilinx System Generator (XSG) is a tool for modeling and rapid prototyping
of the image processing systems onto FPGA. It represents image processing sys-
tem on Simulink/MATLAB platform and uses High Level Descriptions (HLD) to
generate Verilog Hardware Description Language (HDL) code for FPGA imple-
mentation [16]. It also provides Hardware/Software co-simulation within its envi-
ronment to check validity of hardware design on actual device at initial design
stage. Ethernet and JTAG is been supported to communicate between hard-
ware and Simulink for performing Hardware/Software co-simulation. Thus XSG
provides an ideal user friendly environment for modeling of emerging image
processing algorithms on FPGA [10,11].

This paper focuses on an efficient implementation of local filters on FPGA by
using XSG tool. Performance optimization of filter-design is achieved at two lev-
els. At first level, Design space is explored on DSP friendly XSG environment to
perform design-level optimization. It results in an efficient parallel and pipelined
filter design that exploits tempo-spatial parallelism of local filters. Also compu-
tationally and memory intense portion of the design is efficiently implemented
with DSP Slices and BRAM18 respectively. These powerful embedded FPGA
resources [7,8] perform their dedicated functions efficiently for filter design.
At second level, optimization efforts are extended to post-implementation level
where efficient floor-planning fine-tunes the design. It aligns utilized embedded
resources on target FPGA device i.e. Virtex5 and packs associated Slices across
them. It results in a compact design with high level performance gain. The pro-
posed two level optimized local filter design is suitable for potable, high-speed
real time image processing applications.

Rest of the paper is organized as follows. Section 2 discusses related work. In
Sect. 3 explains our local filter design. Section 4 declares results and comparison.
Conclusion is included in Sect. 5.



A FPGA Based Two Level Optimized Local Filter Design 21

2 Related Work

We have gone through a brief literature review on FPGA based local filters for
image processing using XSG. In [5] a parallel architecture of local filters is designed
for MRI image filtering by using Xilinx Block Sets. They implemented nine basic
filters of size 5× 5 by using Configurable Logic Blocks (CLBs). This architecture
works at 228 MHz to process a 64× 64 image on Virtex-6 FPGA. Also in [18] local
filters (3× 3 Sobel, 3× 3 Prewitt and 2× 2 Robert) were designed for edge detec-
tion by using Xilinx Block Sets and implemented them on FPGA by using CLBs
for a 720× 480 images. For a 3× 3 Sobel filter, their design works at 154.9 MHz
and occupies 954 Slices and 5 BRAMs on Spartan 3A DSP XCSD3400A FPGA.
Similarly, [3] has also designed different local filters and declared results for edge
enhancement. Their design occupies 436 Slices on Virtex-6 FPGA. Instead of
using Xilinx Block Sets, [14] used Black Box to design 3× 3 Sobel filter on XSG.
The Black Box is used to incorporate HDL models into XSG. In their design, Black
Box contains VHDL description for a 3× 3 Sobel filter. They implemented Sobel
filter for edge detection on Spartan 3 A and Virtex-5 FPGA by using CLBs. Their
design occupies 117 Slices at the working frequency of 54.5 MHz on Spartan 3 A
and 103.4 MHz on Virtex-5 FPGA.

Instead of implementing local filters on FPGA by using only CLBs (i.e.
Slices), it is also possible to exploit powerful embedded resource of FPGA i.e.
DSP Slices in combination with CLBs. DSP Slice is dedicated to efficiently per-
form computationally intense arithmetic operations at high operating frequency
as compared to the conventional CLBs based logic. In [15] Sobel filter is imple-
mented for video processing by using combination of DSP Slices and CLBs. It
occupies 1284 Slices and 4 DSP Slices on Spartan 3A DSP FPGA. Their design
works at 68.4 MHz. However, [19] implemented Sobel and Gaussian filters by
using only DSP Slices on Virtex-4 FPGA. For 3× 3 and 5×5 filters, their design
occupies 11 and 26 DSP Slices respectively at the working frequency of 100 MHz.

All of the above discussed reported works [3,5,14,18] have implemented
FPGA based local filters and performed design level optimizations. They imple-
mented parallel architectures of local filters to accelerate their performance on
FPGA. After design level optimization, [3,14,18] were not able to achieve sig-
nificantly high operating frequencies for their design on low performance FPGA
Spartan device. While [3,5,14,18] selected high performance FPGA device (Vir-
tex5 and Virtex6) for implementing local filters with design level optimization
but still not achieved significant performance gain. In [15], powerful dedicated
DSP Slices were utilized to perform computationally intense multiplication oper-
ation of filter at a high operating frequency, but the rest of their design logic
occupied large number of logic Slices. Consequently the inefficiently mapped big-
ger design with long routing delays limits overall design performance. In [19] DSP
Slices were used for implementing overall filter design with the aim of increasing
speed and accuracy of design but not shown significant performance gain.

The above discussed implementations attempted to accelerate performance
of local filters on FPGA by performing design level optimizations but none of
them has shown any optimization effort at post-implementation level that would



22 M. Kazmi et al.

result in a compact local filter design with high performance gain. Therefor there
is a need of an efficient design strategy which not only optimizes it at design
level but also at post implementation level for portable and high speed image
processing applications.

3 Our Work

In this work, we present an efficient implementation of local filters on FPGA
by using XSG tool. A 3× 3 Gaussian filter (coefficients are 1,2,1;2,4,2;1,2,1) and
a 512× 512 grey scale image of 8 bit precision has been chosen to explain our
design concept. Figure 1 shows our design for a 3× 3 Gaussian filter. It comprises
of Row Buffers (RBs), Shift Registers (SRs), Coefficients ROM, Multiply and
Accumulate unit (MACs), down sampler, adder tree, absolute conversion unit
(abs) and convert unit (cvrt).

The RBs temporarily store consecutive input image rows to provide the
MACs a seamless flow of pixels per clock cycle via SRs. The MACs multiplies
these input pixels with pre-stored filter coefficients and accumulate them to yield
partial results. These partial results are down sampled and summed up by using
down sampler and adder tree respectively. Absolute value is computed by abs,
and then final result narrows down to the required level by cvrt.

The proposed filter design performs two levels of optimization i.e. design
level and post implementation level which results in a compact filter design with
high degree of performance gain. The functionality of design is also validated by
using Hardware/Software co-simulation method to increase design productivity.
Detailed implementation of filter design along with two levels optimization is
explained in following sub sections.

Fig. 1. Our proposed 3× 3 filter design



A FPGA Based Two Level Optimized Local Filter Design 23

3.1 Modeling of Local Filter Design Using XSG

We have used XSG for modeling of our filter design onto FPGA. The complete
XSG model of our filter design is shown in Fig. 2. It comprises of four main
units i.e. Input Unit, Internal Memory Unit, Arithmetic Unit and Output Unit.
The Input Unit acquires a 512× 512 input image and delivers pixels array to
Internal Memory Unit. The Internal Memory Unit stores 2 consecutive rows
of input image on FPGA by using 2 RBs. These RBs provide multiple pixels
per clock cycle to Arithmetic Unit for parallel computation. The Arithmetic
Unit performs convolution operation on input pixels and outputs filtered image
pixels. The array of filtered pixels is converted back into 512× 512 image matrix
by using Output Unit. Detailed working of each unit is discussed separately in
next sub-sections.

Fig. 2. Filter design modeled on Xilinx system generator

Input Unit. The Input Unit acquires a 512× 512 grey scale image and behav-
iorally reshapes it from (row× column) matrix into (time× sample) matrix. The
reshaped input image data has the time steps in first column and the pixels
stream in second column. Since the XSG is a time based tool, thus the time step
variable is implicitly considered by the input image. The Gateway In block of
Input Unit converts double precision input image pixel data into a fixed point
type and serves as an input port for the top level module of our HDL design.

Internal Memory Unit. Input image data via Input Unit is buffered in Inter-
nal Memory Unit. The 2 RBs in this unit are implemented with 2 BRAM18
primitives in simple dual port configuration. Each BRAM18 stores one complete
row of 512× 512 input image. With intake of single input pixel per clock cycle
from external memory, the Internal Memory Unit provides multiple pixels per



24 M. Kazmi et al.

clock cycle to parallel filter design for output pixels calculation at the throughput
rate of 1clock/pixel.

Arithmetic Unit. Arithmetic unit is the main unit of our design which per-
forms filtering operation (i.e. 2D convolution) on input image pixels. It is a
parallel and pipelined architecture which exploits tempo-spatial parallelism of
local filters. It comprises of three parallel connected 3tap MAC units, adders,
absolute conversion unit (abs), convert unit and pipeline registers as shown in
Fig. 2. Each MAC unit performs 1D convolution operation. It consists of DSP
Slice, Op-mode, Addressable Shift Register (ASR), Distributed RAM (DRAM),
Comparator, Counter, Capture Registers, Down Sampler and pipeline registers
as shown in Fig. 3. The ASR implements SRs to shift input pixels over filter win-
dow (coefficients) for convolution operation. The filter coefficients are pre-stored
in a DRAM implemented with FPGA Slices. A Comparator and a counter are
required to implement address logic for ASR and DRAM. Counter generates
addresses and Comparator creates the reset and enables signals for ASR and
DRAM. The signal is asserted at 0 addresses and is delayed for pipeline stages.
The DSP Slice is utilized to perform multiplication and accumulation operation
upon getting instruction (P=P+(A*B)) by Op-mode. Output of DSP Slice is
fed to a capture register that captures its final result after accumulating full
set of filter samples. As sampling period of MAC is higher than desired output
sampling period, so output from capture register is fed to a down sampler. It’s
down sampling rate is equal to the length of filter’s coefficient array. For our
case study i.e. a 3× 3 filter, coefficient array length is 3 so the down sampling
rate is also equal to 3.

Down sampled partial result from MAC units are then added to get a final
output value. This is done by using a 2 stage adder tree structure. The absolute
value of output is computed by using abs which is comprised of slice, negate and
multiplexer (mux) blocks. Due to additions of partial results of parallel connected
MAC units, the output value of adder tree is a larger bit number as compared to
input. These results are rounded and quantized back to desired level. We used
bit width convertor (convert) to narrow down final output to desired bit width.
As we used 8 bit gray scale images at input, so our desired output level is set to 8

Fig. 3. MAC unit of our filter design



A FPGA Based Two Level Optimized Local Filter Design 25

bit. The 8 bit filtered pixel of Arithmetic Unit in fixed point format is delivered
to Output Unit of design.

Output Unit. The Output Unit acquires filtered output pixels from Arithmetic
Unit. Its Gateway Out block converts fixed point output data to Simulink double
precision value and serve as an output port for the top level module of the HDL
design. The 1D output data stream then needs to convert back into 2D image
matrix for display. A buffer is employed to convert scalar samples to frame
at lower sampling rate, then conversion of 1D data into 2D image matrix is
performed by using 1D to 2D conversion block in order to acquire output filtered
image.

3.2 First Level Design Optimization

In first level of optimization, we explore design space of chosen local filter to
exploit its inherent tempo-spatial parallelism. Firstly, for exploiting spatial par-
allelism, we design a parallel filter architecture in which the 2D filter operation
(2D convolution) is partitioned into 3 parallel 1D filter operations (1D convolu-
tion). The 1D filter operation is performed simultaneously on input pixels of 3
rows to compute partial results. These partial results are then added up to the
computation of final result.

As shown in Fig. 1, the input image pixels data from an external memory
enters into RBs. For a 3× 3 filter, 2 consecutive rows of input image are stored
in 2 RBs implemented with 2 BRAM18 primitives (18 Kb BRAM). The use of
RBs provide multiple pixels per clock cycle required by parallel filter design to
exploit its spatial parallelism [9]. The RBs introduces an initial delay to our
design which is equal to the time needed until the first 2 rows of the image are
stored in RB. Subsequently, they provide required pixels per clock cycle to our
filter design without any further delays. Pixels from RBs enter in SRs which are
used to shift them over filter windows.

Input pixels via RBs and SRs, goes into 3 parallel connected 1D filters. The
MAC units perform 1D filtering operation. Each MAC multiplies 3 pixels with 3
filter coefficients and accumulates them to give a single output pixel (i.e. partial
result). Since MAC is the most computational intense unit of overall design, it is
implemented with embedded DSP Slice which is a dedicated FPGA resource for
performing high-speed arithmetic operations. The DSP Slice efficiently performs
MAC operation at high operating frequency, low power consumption and high
accuracy as compared to conventional Slice based MAC unit.

The output of MAC is sent to a down sampler unit (with down sampling
rate equal to the length of filter’s coefficient array i.e. 3 for said case study).
Down sampled data of MAC units is accumulated by a (N−1) stage adder tree
(i.e. 3− 1 = 2 for said case study). It accumulates all inputs and gives a filtered
output pixel (i.e. final result). Absolute value is computed by abs, and then final
result narrows down to required level by cvrt.

This parallel filter design bears a good performance aptitude however, the
deployed adder tree structure incurs long critical path of 4.30 ns thus limiting



26 M. Kazmi et al.

the overall design performance. To cater this bottleneck, we exploit temporal
parallelism of adder tree structure in which its long combinational path is divided
into smaller paths by inserting pipeline registers. These pipeline registers break
long critical path associated with a combinational path of adder structure into
small critical paths.

Critical paths associated with inputs and outputs of utilized embedded
resources i.e. BRAM18 and DSP Slices in our design are also reduced by using
their embedded primitive registers. These primitive registers hold the data of
BRAM/DSP Slice in sub-pipeline manner to break longer critical path into
shorter critical paths. We used output primitive registers of the BRAM and
also multiplier primitive register of the DSP Slice. As these registers are embed-
ded within these resources, they enhance overall performance of our design at
no overhead hardware cost. By inserting pipeline and sub-pipeline stages in the
design, its critical path is reduced to 2.48 ns thus increasing the overall perfor-
mance (operating frequency) of design.

3.3 Second Level Design Optimization

The first level optimized design was modeled on XSG and then imported onto
Xilinx ISE Environment. From here, we extend our optimization efforts for sec-
ond level of optimization, in which we fine-tune the design by its device aware
floor planning. Xilinx Synthesis Tool (XST) place and route our design on target
Virtex5 device by using conventional Computer-Aided Design (CAD) mapping
algorithms. These mapping algorithms are heuristic in nature that shows good
results but not guarantee the optimal solution [12]. Therefore for optimal solu-
tion, besides using XST efficiently by choosing optimal mapping strategy for our
design, we perform device aware manual floor planning of our design on target
Xilinx Virtex5 device.

Our design is comprised of dedicated resources (BRAM18 and DSP Slice) in
combination with CLBs (i.e. logic Slices). Both of the dedicated resources are
available on target Virtex5 FPGA device in separate columns adjacent to each
other as shown in Fig. 4. Also, pitch of BRAM tile (comprising two BRAM18
primitives) matches the DSP tile (comprising two DSP Slices i.e. DSP48E) [8].
We manually map both embedded resources of our design on FPGA such that
the design creates a natural alignment due to alike tile pitches. Afterwards we
pack the associated Slice based logic across utilized dedicated resources as shown
in Fig. 5. This alignment of dedicated resources on device and placement of logic
closely across these dedicated resources confined the overall design to a small
device area. It not only results in further reducing critical path of confined
design to 2.32 ns but also reduces occupied Slices of our design with reduced
interconnect usage.

3.4 Design Validation

The functionality of our filter design is validated to improve its productivity
for real time systems. We use Hardware/Software co-simulation to provide the



A FPGA Based Two Level Optimized Local Filter Design 27

Fig. 4. Xilinx Virtex5 architecture

Fig. 5. Placement of our filter design on Virtex5

hardware version of design in flexible simulink environment. This hardware ver-
sion interacts with the underlying FPGA device during simulation, performs
necessary device configuration, data transfer and clocking. The JTAG cable is
used to communicate between FPGA device and Simulink. The bit stream gen-
erated is verified by downloading it onto the FPGA board and ensuring that it
runs successfully.

4 Results and Discussion

This work efficiently implements local filters on FPGA device using XSG. A
512× 512 grey scale image and a 3× 3 Gaussian filter were considered as a case
study. The design was tested and evaluated on Virtex-5 (Xc5vfx100tff1738-3)
FPGA device within the ISE 13.1 development Suite. The test case filtration on
a standard Lena image by using our design is shown in Fig. 6.

Table 1 shows implementation results of our filter design in terms of device
utilization and operating frequency. The design after first levels optimization
utilizes 2 BRAM18, 3 DSP Slices and 145 Slices at operating frequency of 411.18
MHz. The results are improved by performing second level optimization. After
second level optimization, Slice count of design is reduced by 38.6 % with a 5 %
performance gain. The design after two level of optimization fits in just 89 Slices,
2 BRAM18 and 3 DSP Slices and achieves high operating frequency of 431.03
MHz. Since the filter is implemented in a parallel and pipelined way, after an
initial latency it produces an output at every clock cycle. Therefore the design at
this frequency is capable to sustain a throughput rate of 431.03 Mega Operations



28 M. Kazmi et al.

Fig. 6. Test case Gaussian Filtering on a standard Lena input image

Table 1. Implementation results for said case study on Virtex5 (Xc5vfx100tff1738-3).

FPGA resources First level optimization Second level optimization % Improvement

Slices 145 89 38.6 %

DSP Slice 3 3 0

BRAM18 2 2 0

Frequency (MHz) 411.18 431.13 5 %

per Second (MOS). With this throughput, for high definition image resolution
1920× 1080, the architecture performs at 208 frames per second far exceeds the
real time image processing requirements.

Comparison of our results with other reported results [15,18,19] is shown in
Table 2. Since these results were available on different FPGA devices, therefore
for a fair comparison we provide results in terms of equivalent slice count and
equivalent frequency which is calculated by multiplying reported results with a
normalizing factor. Firstly, the normalizing factor for slice count is calculated on
basis of the equivalent logic which can be synthesized by the logic resources of
different Xilinx FPGA devices. One Slice of Virtex-4 and below families is com-
prised of two LUT4 to perform 32 lookup operations while One Slice of Virtex-5
and above families is comprised of four LUT-6 to perform 256 lookup operations
therefore a factor of 8 (256/32) is applied as normalizing factor for their com-
parison [2] i.e. 1 Slice of Virtex-5 families or above is equivalent to 8 Slices of
Virtex-4 or below families. Secondly the normalizing factor for frequency is also
calculated by taking ratio of maximum achievable frequency of two dissimilar
FPGA devices under comparison. The maximum achievable frequency of these
designs on Spartan 3, Virtex-4, Virtex-5, and Virtex-6 are 320 MHz, 500 MHz,
550 MHz and 600 MHz therefore the frequency normalizing factors with respect
to target Virtex-5 device are 1.71, 1.1 and 0.9 respectively. Moreover, besides
considering the equivalent slice count and equivalent frequency for eliminating
the impact of technology difference on results, the size of all reported designs
are also scaled to a 3× 3 size for eliminating difference in results due to differ-
ent design sizes. The results of scaled design in terms of equivalent Slice count



A FPGA Based Two Level Optimized Local Filter Design 29

Table 2. Results comparison.

Work Device Equivalent frequency (MHz) Equivalent slices DSP slices

[15] Spartan3 117.5 81 4

[18] Spartan3A DSP 266.2 60 b

[19] Virtex4 110 a 11

[5] Virtex6 210.8 a b

Proposed Virtex5 431.13 89 3
aNot Given; bNot Used

and equivalent frequency is compared in Table 2. It is evident that our design
outperforms all other implemented designs in terms of operating frequency and
at the same time occupies reduced FPGA resources.

5 Conclusion

This paper presented an efficient implementation of local filters on FPGA.
Performance optimization of filter-design is achieved at two levels. Firstly at
the design level by exploiting tempo-spatial parallelism and secondly at post-
implementation level by efficient device aware floor-planning which further fine-
tunes the design and confine the design across dedicated embedded resources.
The proposed two level optimized local filter design with low resource consump-
tion and high operating frequency is a suitable solution for portable, high-speed
(1920× 1080@208) real time applications in the field of computer vision, medi-
cine, military and industry to name a few.

References

1. Bailey, D.G.: Design for Embedded Image Processing on FPGAs. John Wiley &
Sons, Singapore (2011)

2. Betz, V., Rose, J., Marquardt, A.: Architecture and CAD for Deep-Submicron
FPGAs, vol. 497. Springer Science & Business Media, New York (2012)

3. Elamaran, V., Praveen, A., Reddy, M.S., Aditya, L.V., Suman, K.: FPGA imple-
mentation of spatial image filters using Xilinx system generator. Proc. Eng. 38,
2244–2249 (2012)

4. Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Prentice Hall, Upper Sad-
dle River (2002)

5. Hasan, S., Yakovlev, A., Boussakta, S.: Performance efficient FPGA implementa-
tion of parallel 2-D MRI image filtering algorithms using Xilinx system generator.
In: 2010 7th International Symposium on Communication Systems Networks and
Digital Signal Processing (CSNDSP), pp. 765–769. IEEE (2010)

6. Hedberg, H.: Image processing architectures for binary morphology and labeling.
Lund University (2008)

7. Xilinx Inc.: Virtex-5 FPGA xtremedsp design considerations user guide, January
2009



30 M. Kazmi et al.

8. Xilinx Inc.: Virtex-5 FPGA User Guide v5.4 (2012)
9. Kazmi, M., Aziz, A., Akhtar, P., Kundi, D.E.S.: FPGA based compact and efficient

full image buffering for neighborhood operations. Adv. Electr. Comput. Eng. 15(1),
95–104 (2015)

10. Kiran, M., War, K.M., Kuan, L.M., Meng, L.K., Kin, L.W.: Implementing image
processing algorithms using hardware in the loop approach for Xilinx FPGA. In:
International Conference on Electronic Design, ICED 2008, pp. 1–6. IEEE (2008)

11. Moreo, A.T., Lorente, P.N., Valles, F.S., Muro, J.S., Andrs, C.F.: Experiences on
developing computer vision hardware algorithms using Xilinx system generator.
Microprocess. Microsyst. 29(8), 411–419 (2005)

12. Oklobdzija, V.G.: The Computer Engineering Handbook. CRC Press, Boca Raton
(2001)

13. Perri, S., Lanuzza, M., Corsonello, P., Cocorullo, G.: A high-performance fully
reconfigurable FPGA-based 2D convolution processor. Microprocess. Microsyst.
29(8), 381–391 (2005)

14. Said, Y., Saidani, T., Smach, F., Atri, M.: Real time hardware co-simulation of
edge detection for video processing system. In: 2012 16th IEEE Mediterranean
Electrotechnical Conference (MELECON), pp. 852–855. IEEE (2012)

15. Said, Y., Saidani, T., Smach, F., Atri, M., Snoussi, H.: Embedded real-time
video processing system on FPGA. In: Elmoataz, A., Mammass, D., Lezoray, O.,
Nouboud, F., Aboutajdine, D. (eds.) ICISP 2012. LNCS, vol. 7340, pp. 85–92.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-31254-0 10

16. Saidani, T., Atri, M., Dia, D., Tourki, R.: Using Xilinx system generator for real
time hardware co-simulation of video processing system. In: Ao, S.-L., Gelman,
L. (eds.) Electronic Engineering and Computing Technology. LNEE, vol. 60, pp.
227–236. Springer, Netherlands (2010)

17. Samarawickrama, M.G.: Performance Evaluation of Vision Algorithms on FPGA.
Universal-Publishers (2010)

18. Sudeep, K., Majumdar, J.: A novel architecture for real time implementation of
edge detectors on FPGA. Int. J. Comput. Sci. Issues 8(1), 193–202 (2011)

19. Wasfy, W., Zheng, H.: General structure design for fast image processing algorithms
based upon FPGA DSP slice. Phys. Proc. 33, 690–697 (2012)

20. Woods, R., McAllister, J., Lightbody, G., Yi, Y.: FPGA-Based Implementation of
Signal Processing Systems. Wiley Online Library (2008)

http://dx.doi.org/10.1007/978-3-642-31254-0_10

	A FPGA Based Two Level Optimized Local Filter Design for High Speed Image Processing Applications
	1 Introduction
	2 Related Work 
	3 Our Work
	3.1 Modeling of Local Filter Design Using XSG
	3.2 First Level Design Optimization
	3.3 Second Level Design Optimization
	3.4 Design Validation

	4 Results and Discussion
	5 Conclusion 
	References


