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Abstract. Traditionally, 3-D overhead crane systems are widely used in
industry and automatic operation would reduce the risk. It is difficult to
precisely position the payload in overhead crane due to the lack of actu-
ators in this system. This paper develops an adaptive robust ability of
high – order sliding mode controller (HOSMC). The finite time stability
of the closed-loop system is proved without traditional Lyapunov theory.
The results based on suitable second-order sliding surface and super –
twisting controller. Simulation studies are performed to demonstrate the
validity of the proposed control scheme.

1 Introduction

Over the past three decades, extensive research has been performed toward high
performance load transportation of the overhead cranes operation. The crane is
naturally an under-actuated mechanical system, in which the number of inde-
pendent actuators (inputs) is less than the degree of freedom (outputs) to be
controlled. So that in order to meet high performance control requirements is
difficult task, naming the suitable motion speed with accurate load position-
ing and maintaining small low swings [1]. A number of control approaches have
been suggested and mainly based on nonlinear dynamic models developed for 3D
overhead cranes in adaptive – robust control [2–6]. In [4], a complete nonlinear
dynamic model of an overhead crane has been proposed, and the backstepping
technique that achieves 3D position control and anti-sway control simultaneously
is derived in a unified control scheme under parameter variations. In [6], a non-
linear controller for payload positioning and swing suppression of overhead crane
systems has been proposed and the stability analysis was performed under much
less strict assumptions. Although the numerical complexity of model predictive
control (MPC), a new control approach for anti-swing tracking control of a 3D
overhead crane based on MPC and computed torque control is pointed out in
[3], including external disturbances on the actuators driving the crane. In [13],
a novel adaptive control scheme with the use of the tuning function, including
both the cart motion and the swing angle dynamics is designed to ensure the
stability of the closed-loop system. Some researchers implemented image sensing
to measure the swing angle of an overhead crane. This work proposes the use of
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visual tracking technology create the rapid and smooth load motion [8]. Sliding
mode control (SMC) is capable of controlling nonlinear system with parameter
uncertainties (such as weight, moment of inertial of payload, . . .) and external
disturbances (such as winds), and fuzzy logic control (FLC) is independent of
system model. Park et al. [7] proposed an adaptive fuzzy sliding-mode control
(AFSMC) law for the trajectory tracking of 2-D overhead crane systems, sub-
ject not only to system uncertainties but also to actuator nonlinearity of the
dead-zone type. In [11], an adaptive sliding mode fuzzy control algorithm based
on combining SMC’s robustness and FLC’s independence of system model is
derived. However, it is difficult to apply SMC for mechanical systems because of
the sensitivity of these systems to chattering. Higher-order sliding mode control
(HOSMC) can overcome this phenomenon by confining the switching control
to the higher derivatives of the control variable. Bartolini et al. [9] proposed a
control scheme guarantees a fast and precise load transfer and the swing sup-
pression, based on second-order sliding surface. In [12], 2nd-order and 3rd-order
sliding mode differentiators are used and actuator fault diagnosis schemes are
derived to achieve fault detection and isolation. In [15], super-twisting algorithm
is one of the development of high-order sliding mode control with attractive
properties: finite convergence time, disturbance rejection. In [13], an separation
principle output feedback controller for a class of MIMO nonlinear systems has
been implemented based on HOSMC. Pisano et al. [16] proposed an anti-swing
control law, which is based on the super-twisting approach for the 3-dimensional
overhead crane. Le Anh Tuan et al. [2] developed an adaptive version of slid-
ing mode controller for 3D overhead cranes. However, the Barbalat’s Lemma -
based proof presented in that paper was incorrect because of the lack of uni-
formly continuous property of. Moreover, the condition of matrices and α in
sliding surface’s expression was not pointed out clearly. In this paper, we pro-
pose a solution for the above problems based on uncertain model and the finite
convergence time of super - twisting controller is estimated (Fig. 1).

Heading level

l The adjustable rope length (m)

x, z The displacements of trolley and bridge, respectively (m)

φ, θ The cargo swing angles (rad)

mc, mb, mt.ml Equivalent masses of the cargo, trolley, bridge and hoist,
respectively (kg)

g Gravity acceleration (m/s2)

ub, ut, ul The external forces driving bridge, trolley and cargo hoist,
respectively (N)
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Fig. 1. 3D crane physical model [16].

2 Main Contents

2.1 3D Crane Model

The motion equations of 3D overhead crane system are created by using
Lagrange’s equation and can be represented in the following matrix form [2]:

M(q,Θ)q̈ + C(q, q̇, Θ) + g(q,Θ) = u
′

(1)

where M(q,Θ) is the inertia matrix, C(q, q̇, Θ) is the Centripetal-Coriolis term,
g(q,Θ) is vector due to gravity, and u

′ ∈ R
n×n is the input vector. The details of

the above dynamics are given in the following expressions: q =
[
z x l ϕ θ

]T
u

′
=

[
ub ut ul 0 0

]T .

M =

⎡
⎢⎢⎢⎢⎣

m11 0 m13 m14 m15
0 m22 m23 0 m25

m31 m32 m33 0 0

m41 0 0 m44 0

m51 m52 0 0 m55

⎤
⎥⎥⎥⎥⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m11 = mt + mb + mc,

m13 = m31 = mc sin ϕ cos θ,

m14 = m41 = mcl cos ϕ cos θ,

m15 = m51 = −mcl sin ϕ sin θ,

m22 = mt + mc,

m23 = m32 = mc sin θ,

m25 = m52 = mcl cos θ,

m33 = ml + mc,

m44 = mcl2 cos2 θ,

m55 = mcl2

(2)
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C =

⎡
⎢⎢⎢⎢⎣

0 0 c13 c14 c15
0 0 c23 0 c25
0 0 0 c34 c35
0 0 c43 c44 c45
0 0 c53 c54 c55

⎤
⎥⎥⎥⎥⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c13 = mc cos ϕ cos θϕ̇ − mc sin ϕ sin θθ̇,

c14 = mc cos ϕ cos θl̇ − mcl cos ϕ sin θθ̇ − mcl sin ϕ cos θϕ̇,

c15 = −mcl cos ϕ sin θϕ̇ − mc sin ϕ sin θl̇ − mcl sin ϕ cos θθ̇,

c23 = mc cos θθ̇,

c25 = mc cos θl̇ − mcl sin θθ̇,

c34 = −mcl cos2 θϕ̇,

c35 = −mclθ̇,

c43 = mcl cos2 θϕ̇,

c44 = mcl cos2 θl̇,

c45 = −mcl2 cos θ sin θϕ̇,

c53 = mclθ̇,

c54 = mcl2 cos θ sin θϕ̇,

c55 = mcll̇.

(3)

g =
[
0 0 g3 g4 g5

]T
⎧⎪⎪⎨
⎪⎪⎩

g3 = −mcg cos ϕ cos θ,

g4 = mcgl sin ϕ cos θ,

g5 = mcgl cos ϕ cos θ.

(4)

In this paper, the dynamic Eq. (5) is presented to account for the parameter
uncertainties and external disturbances:

M(q, d)q̈ + C(q, q̇, d) + g(q, d) =
[
u + ξ(q, q̇, q̈, t)

0

]
(5)

Where Θ is the vector of unknown constant parameters, d is the estimates
for Θ and ξ(q, q̇, q̈) = n(t) + Λ: n(t) is the vector of external disturbances;
Λ = (M(q,Θ)q̈ + C(q, q̇, Θ)q̇ + g(q,Θ)) − (M(q, d)q̈ + C(q, q̇, d)q̇ + q(q, d)) is
estimation error vector of this model.

2.2 High-Order Sliding Mode Controller Design

The dynamic equation of an overhead crane (5) can be rewritten in following
form by separating the model into actuated and un-actuated part 1:

M(q)q̈1 + C1(q, q̇)q̇1 + C2(q, q̇)q̇2 + g(q) = u + ξ (6)

where: q1 = qa =
[
z x l

]T (actuated states) q2 = qu =
[
ϕ θ

]T (unactuated states)

u =
[
ub ut ul

]T .
The tracking control structure is designed through hign-order sliding mode

control based on second-order sliding surface as follows:
{

s = q̇1 + λ + q̃1 + αq2 = 0
ṡ = q̈1 + λq̇1 + αq̇2 = 0

(7)

where q̃1 = q1 − q1d; q̃2 = q2 − q2d;

λ =

⎡

⎣
λ1 0 0
0 λ2 0
0 0 λ3

⎤

⎦ ;α =

⎡

⎣
α1 0
0 α2

0 0

⎤

⎦ .
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Let us now find the control input uN = ueq + Λ to stabilize sliding surface in
finite time. The equivalent input ueq is obtained from ṡ + λs = 0 :

ueq = C1(q, q̇)q̇1 + C2(q, q̇)q̇2 + g(q) − M(q)(2λq̇1 + λ2q̃1 + αq̇2 + λαq2) (8)

So that, the control input uN = ueq + Λ obtain the following result:

ṡ + λs = M(q)−1Λ (9)

If Λ = −K.sgn(s) with K = diag(k1, k2, k3) and ki > δ(∀i = 1, 2, 3) are suffi-
ciantly large constants with δ = sup ξ(q, q̇, q̈, t) then it is found that s converge
to 0 faster than the root of following equation:

ṡ + M(q)−1Ksgn(s) = 0 (10)

Therefore s converge to 0 in finite time and combine with (9), we obtain s, ṡ
converge to 0 in finite time.

Remark 1: The stability of high order sliding surface is established in [2].
However, in order to achieve a tracking performance based on sliding mode
control, we need to guarantee s, ṡ converge to 0 in finite time even with parameter
uncertainties and external disturbances.

The indentification of two metrices λ, α to make q̃1, q̃2 converge to 0 are
implemented by considering the stability of following nonliner system:

ẋ =

⎡

⎣
−λx1 − αx2

x3

h(x)

⎤

⎦ = f(x) (11)

x =
[
x1 x2 x3

]T =
[
q̃1 q2 q̇3

]T

h1(x) = − cos ϕ

l cos θ
λ2
1z̃ +

ϕ̇

l
λ3 l̃ − cos ϕ

l cos θ
λ1α1ϕ +

(
cos ϕ

l cos θ
α − l̇

l
+ tan θθ̇

)

ϕ̇

+ tan θϕ̇θ̇ − g sin ϕ

l cos θ

h2(x) =
sin ϕ sin θ

l
λ2
1z̃ − cos θ

l
λ2
2x̃ +

θ̇

l
λ3λ̃ − cos θ

l
λ2α2θ − sin ϕ sin θ

l
α1ϕ̇

− cos θ sin θϕ̇2 +
cos θα2 − l̇

l
θ̇ − q cos ϕ sin θ

l

The linearization of (11) around the equilibrium 0 is given by (12):

ẋ = Ax (12)

where

A =
∂f

∂x

∣
∣
∣
∣
x=0

=

⎡

⎣
−λ −a 03×2

02×3 02×2 I2×2

A31 A32 A33

⎤

⎦ (13)
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In [14], the system (10) is local stable if this equivalent nonlinear system is
also stable. After some manipulations, we get:

|sI7 − A| = (s + λ3)

(
s3 +

(
λ1 − α1

ld

)
s2 +

g

ld
s +

λ1g

ld

)(
s3 +

(
λ2 − α2

ld

)
s2 +

g

ld
s +

λ2g

ld

)

Let:

P (s) =
(

s3 +
(

λ1 − α1

ld

)
s2 +

g

ld
s +

λ1g

ld

)

Q(s) =
(

s3 +
(

λ2 − α2

ld

)
s2 +

g

ld
s +

λ2g

ld

)

P (s) and Q(s) are Hurwitz polynomials if the following conditions are satisfied
using Routh–Hurwitz criteria:

λ1 − α1

ld
> 0;

g

ld
> 0;

λ1g

ld
> 0;

(
λ1 − α1

ld

)
g

ld
>

λ1g

ld

λ2 − α2

ld
> 0;

g

ld
> 0;

λ2g

ld
> 0;

(
λ2 − α2

ld

)
g

ld
>

λ2g

ld

(14)

For a general result, the proposed control law parameters satisfying (15) will
guarantee the stability of the 3D Crane system.

λ1 > 0, λ2 > 0, λ3 > 0, α1 < 0, α2 < 0 (15)

Remark 2: Note that the control input uN = ueq + Δ (8, 9) is not enough for
complete control signal. It is necessary to choose two suitable matrices λ, α (14,
15) and it has not been pointed out in [2].

2.3 Super-Twisting Controller Design

The motion of the 3-D overhead crane (1) can be simplified by assuming that
the load swing angles φ, θ are small enough, it can be simplified as:

ẍ = − Dx

Mx
ẋ +

1
Mx

ub; θ̈ =
Dx

Mx

ẋ

l
− 1

Mx

ub

l
(16)

ÿ = − Dy

My
ẏ +

1
My

ut; φ̈ =
Dy

My

ẏ

l
− 1

My

ut

l
; l̈ = g − Dl

m
l̇ +

1
m

ul (17)

In [16], the tracking control structure is designed through the following three
dimensional sliding variable:

s =

⎡

⎣
sx
sy
sl

⎤

⎦ =

⎡

⎣
ẋ − ẋr + cx(x − xr) − kxθx
ẏ − ẏr + cy(y − yr) − kyθy

l̇ − l̇r + cl(l − lr)

⎤

⎦ (18)
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where cx, cy, cl, kx, ky positive constants. So that, the sliding dynamics along the
model (16, 17) is:

d

dt
s =

⎡

⎣
a1(x, ẋ, t) + b1(x, ẋ, t)ub

a2(y, ẏ, t) + b2(y, ẏ, t)ut

a3(l, l̇, t) + b3(l, l̇, t)ul

⎤

⎦ (19)

The control inputs ub, ut, ul can be obtained as follows [16]:

ub,t,l = −λi

√
|si|sign(si) + ωi

ω̇i = −αisign(si)
(i ∈ x, y, l)

(20)

where λi and αi are sufficiently large constants.
From (19) and combine with the results (Levant 2005), the convergence time

is estimated as follows:

T ≤
∑ |ẋi|

Kmα − C(
xi = x, y, l; |ȧ| + Um

∣
∣
∣ḃ

∣
∣
∣ ≤ C; 0 ≤ Km ≤ b(t, x) ≤ KM ;

∣
∣
∣
a

b

∣
∣
∣ < qUM ; 0 < q < 1

)

(21)

Remark 3: The estimation of convergence time has not been pointed out in
[16] and (21) is the additional result in finite time stability.

2.4 Verification by Simulation

In this section, simulations via MATLAB/Simulink are performed to verify the
validity of controller (8, 9) and (20) with 2 suitable matrices λ, α satisfying
(14, 15):

λ1 = λ2 = 0.75;λ3 = 1;α1 = α2 = −4

The matrix K is chosen big enough for a fast convergence to sliding surface :

K =

⎡

⎣
0.5 0 0
0 0.5 0
0 0 1

⎤

⎦

The simulation results are shown in Figs. 2, 3 and 4. All components of sliding
surface variable are controlled to converge to 0 in a finite time (Figs. 2 and 4).
Hence, it is not only rapid to track with short settling time and no overshoot
of the actuated states (Figs. 2, 3 and 4), but also two unactuated cargo-swing
angles are also maintained small (Figs. 2, 3 and 4).

Besides, there is a small difference between parameters used for controller
and plant to prove the robustness of the proposed sliding mode control law.
These parameters are listed in the following table:
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Fig. 2. Sliding surface s, Actuated states and Un-actuated states.

Fig. 3. Actuated states and Un-actuated states (Super – Twisting Controller).

Fig. 4. Un-actuated states, sliding surface s, time derivative of the sliding surface s
(Super – Twisting Controller).
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Parameters Unit Controller Plant

mc Kg 0.85 0.85

mb Kg 7 6.9

mt Kg 5 4.8

ml Kg 2 2.1

bt Kg/s 20 21

bb Kg/s 30 31.5

br Kg/s 50 46.5

3 Conclusion

In this paper, tracking ability and finite time stability is analyzed, refer to dif-
ferential equation without traditional Lyapunov theory and the use of two suit-
able matrices in the second-order sliding surface is proposed. It is theoretically
proved that asymptotic tracking of the payload position and regulation of the
swing angle can be achieved robustly despite the parameter uncertainties, exter-
nal disturbance. Good results in offline simulation showed the effectiveness of
the proposed theoretical development in this work.
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