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Abstract. In this paper, we propose a variation on the fitness func-
tion in Genetic Programming based on Bias-Variance Genetic Program-
ming (BVGP) [2], called BVGP*. In order to evaluate the effectiveness
of this variation, we compare it with Genetic Programming [1] and Bias-
Variance Genetic Programming (BVGP) [2]. The experimental results
shown that the learned model by BVGP* is better than that of GP and
BVGP in ability to generalize, model complexity and evaluation time.
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1 Introduction

Genetic Programming (GP) is one of evolutionary algorithm-based methodolo-
gies inspired by biological evolution. It uses tree-based structures and a suite
of defined Genetic Algorithm-operators to generate and evolve a population of
solutions to the given problem [3]. GP has produced many novel and outstanding
results in various areas such as optimization, searching, sorting, quantum com-
puting, electronic design, game playing, cyberterrorism prevention [4,6]. One of
main areas of GP is Machine Learning

In Machine Learning, generalization and over-fitting are two central chal-
lenges need to be solved. Generalization error of learners directly relates to
over-fitting and is referred to as the problem of over-fitting [7]. There are many
researches in Machine Learning, including GP, try to improve generalization
ability of learners by reducing over-fitting error as [2,8–12].

Over-fitting can be controlled by Bias-Variance trade-off [2], where bias is
the error on training data set and variance is the error of difference on vari-
ous data sets in the future. Over-fitting will be reduced when bias and variance
are small, simultaneously. Because bias and variance are hidden in the L2-norm
loss function (e.g. RMSE, MSE, ...). So, many researches in Machine Learning
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have used these functions [13–16] for learning. However, the combination of bias
and variance in the error function L2 sometimes causes difficulties in optimizing
them simultaneously because Bias and Variance are two conflicting problems.
So, in GP, Alexandros et al. proposed the method (BVGP) [2] to overcome this
issue. He divided the fitness function into two components: variance and squared
bias which aim at bringing variance component into the evolution process more
directly. However, this method faces to the over-fit issue on limited training
sample. This leads to reducing the ability to generalize of the learned model.
Moreover it can make the model very sensitive to noise.

In this paper, we propose a variation on the fitness function for GP which
aims at improving the limits of BVGP as shown above. It is called BVGP*.
Through experiments, we demonstrate that the use of BVGP* has some advan-
tages: (1) It can help to reduce over-fitting on the problems that GP was over-
fitted; (2) the program runs faster and finds the simpler solution. So, the main
contribution of this paper is the variation on the fitness function for improving
the effectiveness of GP based on bias-variance decomposition of training errors.

The remainder of this paper is organized as follows: In Sect. 2, we briefly
present some background knowledge and related work. A variation on the fitness
function is presented in Sect. 3. Section 4 are some experimental settings and
problems for testing. Next, experimental results are given in Sect. 5. Finally,
Sect. 6, we summarize achieved research results and present some future works.

2 Background and Related Work

2.1 Bias-Variance Decomposition

In this section we introduce the background on the statistical concept of loss
function and Bias-Variance Decomposition for regression. The material is based
on the book of Trevor Hastie [17].

If we assume that Y = f(x) + ε, where ε is prediction error; E(ε) = 0 and
V ar(ε) = σ2

ε , we can derive an expression for the expected prediction error of
̂f(x) at an input point X = x0, using L2-loss function as follows:

Err(x0) = E[(Y − ̂f(x))2|X = x0]

= σ2
ε + [E ̂f(x0) − f(x0)]2 + E[ ̂f(x0) − E ̂f(x0)]2

= σ2
ε + Bias2( ̂f(x0)) + V ar( ̂f(x0))

= Irreducible Error + Bias2 + V ariance (1)

The first term is the variance of the target around its true mean f(x0); the
second term is the squared bias, the amount by which the average of our estimate
differs from the true mean; the last term is the variance; the expected squared
deviation of ̂f(x0) around its mean. The last two terms need to be addressed for
a good performance of the prediction model.
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Generalization error is the prediction error over an independent test sample:

Err(T ) = E[L(Y, ̂f(x))|T ] (2)

where both X and Y are drawn randomly from their joint distribution (popula-
tion). Here, the training set T is fixed, and test error refers to the error for this
specific training set. A related quantity is the expected prediction error:

Err = E[L(Y, ̂f(x))] = E[ErrT ] (3)

Such decomposition is known as the Bias Variance Decomposition.

2.2 Bias-Variance Genetic Programming (BVGP)

The Bias-Variance Genetic Programming proposed by Alexandros et al. is a
new method for over-fitting issue based on Bias/Variance Error Decomposition
which aims at relaxing the sensitivity of an evolved model to a particular training
dataset. This method used the fitness function that is the combination of bias
and variance as follows:

fitness = wbBias(D) + wvV ar(D∗) (4)

where wb, wv are the coefficients for error and variance respectively; D is the
training data set of size n; D∗ includes B bootstrap datasets randomly drawn
from D by the bootstrap re-sampling method; Bias(D) is the mean error on
the original dataset (bias); V ar(D∗) is variance of the error on the bootstrap
datasets.

He separated regression error into two components: bias and variance to put
variant error in the evolution process more directly.

3 The Improved Method: BVGP*

In this section, we propose a variation on the fitness function for GP which aims
at overcoming the disadvantage of the BVGP. This function is based on BVGP
and defined as follows:

fitness = wbBias(D∗) + wvV ar(D∗) (5)

where bias and variance are calculated using the bootstrap re-sampling method.
We consider f(x) as the model trained on a dataset D = {(x1, t1), ..., (xN , tN )}
and use the bootstrap re-sampling method to randomly draw B datasets with
replacement from D, each sample the same size as D. We denote D∗ to include
B the bootstrap sample sets: D∗ = {D∗b, b : 1..B}. The estimated bias (μ) and
variance (σ2) of stochastic fitness are computed as follows:

Bias(D∗) =
B

∑

b=1

Bias∗b/B (6)
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where Bias∗b is the bias of bootstrap sample D∗b is calculated using the error
function RMSE:

Bias∗b =

√

√

√

√

1
N

N
∑

i=1

(f(xi) − ti)2 (7)

So, here we use Bias(D∗) rather than the mean error on the original dataset
Bias(D).

σ2 =
1

B − 1

B
∑

b=1

(Bias∗b − Bias(D∗))2 (8)

As shown in [5], given a data sample, statistical inference is the process to
assess how systems will behave in untested situations. It permits generalizations
of conclusions beyond the sample, about an unseen population from which the
sample is drawn. This process is inference from statistics to parameters, where
statistics are functions on samples and parameters are functions on populations.
It is noted that, Bias(D) is a statistic on D while Bias(D∗) is a parameter
inferred from this statistic. The bootstrap re-sampling method is used to con-
struct empirical sampling distributions for parameter estimation Bias(D∗) with-
out making any troubling assumptions about sampling models and population
distributions. BVGP* learns to optimize the fitness function based on Bias(D∗)
while the fitness function of BVGP is based on Bias(D). Therefore, we believe
that the generalization ability of BVGP* is better than that of BVGP. The
experimental results have confirmed this is true with most of the problems to be
tested.

4 Experimental Setting

4.1 Problems

In this paper, we used benchmarks in [2] as shown in Table 1. Besides, we also
used three more UCI data sets as shown in Table 2 to test the generalization
ability of BVGP*. With UCI data sets, we divide an original dataset into two
parts randomly: 〈Train sample:Test sample〉 = 〈1 : 2〉.

4.2 GP System Setup

Evolutionary parameter values for GP systems are shown in Table 3. These typ-
ical settings are often used by GP researchers and practitioners [1].

5 Results and Discussion

In this section we present results of comparing the performance of BVGP* in
comparison with GP, BVGP. We evaluate the effectiveness of BVGP* on three
aspects: (1) Generalization ability; (2) Model complexity; and (3) Time com-
plexity.
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Table 1. GP benchmark regression problems

ID Name Definition Training data Testing data

BEN 1 F4 30
(x1−1)(x3−1)

x2
2(x1−10)

x1 : U[0.05, 2, 200]

x2 : U[1, 2, 200]

x3 : U[0.05, 2, 200]

x1 : E[-0.05, 2.1, 0.15]

x2 : E[0.95, 2.05, 0.1]

x3 : E[-0.05, 2.1, 0.15]

BEN 2 F5 6 sin(x1) cos(x2) U[0.1, 5.9, 200] E[−0.05, 6.05, 0.02]

BEN 3 F7 e(x1−1)2

1.2+(x2−2.5)2
U[0.3, 4, 200] E[−0.2, 4.2, 0.01]

BEN 4 F8 x1x2 + sin((x1 − 10)(x2 − 1)) U[−3, 3, 200] E[−3, 3, 0.01]

BEN 5 F9 x4
1 − x3

1 +
x2
2
2

− x2 U[−3, 3, 200] E[−3, 3, 0.01]

BEN 6 F10 8
2+x2

1+x2
2

U[−3, 3, 200] E[−3, 3, 0.01]

BEN 7 F11
x3
1
5

+
x3
2
2

− x2 − x1 U[−3, 3, 200] E[−3, 3, 0.01]

Table 2. UCI data sets

ID Name No. of attributes #train samples #testing samples

UCI 1 Census6 6 133 267

UCI 2 No2 7 167 333

UCI 3 SkillCraft1 Dataset 19 1114 2224

Table 3. GP systems setup

Paramaters GP BVGP BVGP*

Problems See Tables 1 and 2

EA used in GP systems Elitist, generational,

expression tree representation

Function set +, −, *, / (PD)

Terminal set Regression variables and

one random constant in [0.0, 1.0]

No. of generations 151

Population size 500

Tournament size 4

Tree creation Ramped half-and-half

(depths of 2 to 6)

Max. tree depth 15

Sub tree crossover rate 0.9

Sub tree mutation rate 0.1

No. of Runs 100

Fitness function RMSE

No. of bootstrap datasets 30 30

wb, wv 0.7, 0.3 0.7, 0.3
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5.1 Generalization Error (Fittest)

In this section, we repeated one hundred runs independently for each GP system.
Generalization error is the median of testing error of the best individual from all
these runs. The Table 4 shows the generalization error or testing error (fittest)
GP, BVGP and BVGP*, bold values indicate that the corresponding method
is the best result. We see that with most of problems (BEN 1, BEN 2, BEN 3,
BEN 4, BEN 5, BEN 7, UCI 1) fittest error of BVGP* is smaller than that of
GP and BVGP or generalization ability of BVGP* is better than that of GP
and BVGP. However, with UCI 2, generalization ability of BVGP* is much worse
than that of GP and BVGP. The cause can be the learned model by BVGP is
under-fit on this problem.

It is noted that both the GP and BVGP use the bias on the original training
dataset (Bias(D)) as the optimal goal, this lead to over-fitting when the size of
the training sample is limited or there is noise in the train data or the sampling
process is bad. BVGP* rather than using Bias(D), it uses the mean of the
empirical bootstrap error distribution (Bias(D∗)) as one of the optimal goals.
So, it can avoid the sampling bias issues that lead to over-fitting solution as
showed above. This explains why the results by BVGP* are better than those
of GP and BVGP in most of problems.

5.2 Model Complexity and Evaluation Time

In this section, we repeated one hundred runs independently for each GP sys-
tem. Generalization error is the median of testing error of the best individual
from these runs. The Table 5 shows the evaluation time and model complexity
of the best individual by GP, BVGP, BVGP*. Bold values indicate that the
corresponding method is the best.

Table 4. Summary of fittest error (median). Statistics based on 100 independent runs.
Bold values indicate that the method is the best.

Problem GP BVGP BVGP*

BEN 1 1.404 1.6015 1.347

BEN 2 387.5605 425.2415 262.844

BEN 3 10.054 9.0615 3.7185

BEN 4 134.748 87.4175 0.7

BEN 5 486.8505 458.1465 450.7025

BEN 6 2.788 0.8295 0.85

BEN 7 623.178 854.623 580.851

UCI 1 0.1955 0.1952 0.195

UCI 2 1.5175 1.248 580.851

UCI 3 15.002 15 22
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Table 5. Evaluation time (median), model complexity (median) is the average number
of nodes on the best individual. Statistics based on 100 independent runs. Bold values
indicate the method is the best.

Problem Evaluation time Model complexity

GP BVGP BVGP* GP BVGP BVGP*

BEN 1 372.50 269.50 262.50 204.89 197.44 198.49

BEN 2 112.50 68.00 65.50 293.57 292.53 252.92

BEN 3 70.00 34.00 3.50 155.76 151.95 4.56

BEN 4 53.00 14.00 2.00 218.64 192.74 4.91

BEN 5 59.50 17.00 18.50 244.66 240.60 239.26

BEN 6 44.00 2.00 4.00 21.60 3.21 91.15

BEN 7 52.50 15.02 15.00 207.94 209.42 208.10

UCI 1 64.00 4.50 4.00 13.71 3.32 1.40

UCI 2 162.50 129.00 17.00 251.90 267.11 208.10

UCI 3 140.00 47.21 47.00 37.89 17.89 17.39

Here, the evaluation time is measured in milliseconds. It is effected mainly
by model complexity. Similar to fittest error, in all problems (10/10 problems,
see bold lines), BVGP* is faster than GP since it leaned the smaller model
(see corresponding lines at the column Evaluation time). Comparing to BVGP,
BVGP* also learned the model with smaller complexity with most of problems
(7/10 problems, see bold lines), so it is faster than BVGP or evaluation time is
smaller. It is noted that, on BEN 6, the model complexity of BVGP* is larger

Fig. 1. The evaluation time of genotype (a) is similar to that of genotype (b), but their
different model complexities are different.
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while the its evaluation time is smaller than that of other methods. It can be
caused by genotype of the learned model by BVGP* contains various operators
that effect to evaluation time, i.e., considering two genotypes as shown in Fig. 1,
although the model complexities of them are different, the evaluation time of
them are similar.

6 Conclusion and Future Work

In this paper, we proposed the variation on the fitness function (BVGP*). It is
based on the bias-variance decomposition and the method BVGP. Analyses of
empirical results show that this approach has some advantages: (1) BVGP* can
help reduce over-fitting on the problems that GP and BVGP were over-fitted;
(2) It runs faster with simpler solution.

There are several future research directions arisen from this paper. First
we need a more natural fitness representation way in bringing two components
directly into the process of evolution. Second, we need a new selection mechanism
corresponding to this fitness representation.
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