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Abstract. The amount of handwritten documents that is digitally avail-
able is rapidly increasing. However, we observe a certain lack of accessi-
bility to these documents especially with respect to searching and brows-
ing. This paper aims at closing this gap by means of a novel method for
keyword spotting in ancient handwritten documents. The proposed sys-
tem relies on a keypoint-based graph representation for individual words.
Keypoints are characteristic points in a word image that are represented
by nodes, while edges are employed to represent strokes between two key-
points. The basic task of keyword spotting is then conducted by a recent
approximation algorithm for graph edit distance. The novel framework
for graph-based keyword spotting is tested on the George Washington
dataset on which a state-of-the-art reference system is clearly outper-
formed.
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1 Introduction

Keyword Spotting (KWS) is the task of retrieving any instance of a given query
word in speech recordings or text images [1-3]. Textual KWS can be roughly
divided into online and offline KWS. For online KWS temporal information of
the handwriting is available recorded by an electronic input device such as, for
instance, a digital pen or a tablet computer. On the other hand side, offline KWS
is based on scanned image only, and thus, offline KWS is regarded as the more
difficult task than its online counterpart. The focus of this paper is on KWS in
historical handwritten documents. Therefore, offline KWS, referred to as KWS
from now on, can be applied only.

Most of the KWS methodologies available are either based on template-
based or learning-based matching algorithms. Early approaches of template-
based KWS are based on a pixel-by-pixel matching of word images [1]. More elab-
orated approaches to template-based KWS are based on the matching of feature

© Springer International Publishing AG 2016
A. Robles-Kelly et al. (Eds.): S+SSPR 2016, LNCS 10029, pp. 564-573, 2016.
DOI: 10.1007/978-3-319-49055-7_50



Graph-Based Keyword Spotting in Historical Handwritten Documents 565

vectors by means of Dynamic Time Warping (DTW) [4]. A recent and promising
approach to template-based KWS is given by the matching of Local Binary Pat-
tern (LBP) histograms [5]. One of the main advantages of template-based KWS
is its independence from the actual representation formalism as well as the under-
lying language (and alphabet) of the document. However, template-based KWS
does not generalise well to different writing styles. Learning-based KWS on the
other side is based on statistical models like Hidden Markov Models (HMM) [6,7],
Neural Networks (NN) [3] or Support Vector Machines (SVM) [8]. These models
have to be trained a priori on a (relatively large) set of training words. An advan-
tage of the learning-based approach, when compared with the template-based
approach, is its higher generalisability. Yet, this advantage is accompanied by
a loss of flexibility, which is due to the need for learning the parameters of the
actual model on a specific training set.

The vast majority of KWS algorithms available are based on statistical rep-
resentations of word images by certain numerical features. To the best of our
knowledge only few graph-based KWS approaches have been proposed so far [9-
12]. However, a graph-based representation is particularly interesting for KWS as
graphs, in contrast with feature vectors, offer a more natural and comprehensive
formalism for the representation of word images.

A first approach for graph-based KWS has been proposed in [10]. The nodes
of the employed graphs represent keypoints that are extracted on connected com-
ponents of the skeletonised word images, while the edges are used to represent
the strokes between the keypoints. The majority of the words consists of more
than only one connected component, and thus, a word is in general represented
by more than one graph. The matching of words is thus based on two separate
procedures. First, the individual costs of assignments of all pairs of connected
components (represented by graphs) are computed via bipartite graph match-
ing [13]. Second, an optimal assignment between the connected components has
to be found. To this end, a DTW algorithm is employed that operates on the
costs produced in the first step. This matching procedure is further improved by
a so-called coarse-to-fine approach in [11].

Another idea for graph-based KWS has been introduced in [12]. In this paper
a graph represents a set of prototype strokes (called invariants). First, a word
image is segmented into strokes. Eventually, the most similar invariant is defined
for every stroke in the word. The nodes of the graph are used to represent these
invariants, while edges are inserted between all pairs of nodes. Edges are labelled
with the information whether or not strokes of the corresponding nodes are
stemming from the same connected component. Finally, for KWS the graph edit
distance is computed by means of the bipartite graph matching algorithm [13].

A third approach for graph-based KWS has been proposed in [9] where com-
plete text lines are represented by a grapheme graph. Graphemes are sets of
prototype convexity paths, similar to invariants, that are defined a priori in a
codebook. The nodes of the particular graphs represent the individual graphemes
of the text line, while edges are inserted into the graph whenever two graphemes
are directly connected to each other. The matching itself is based on a coarse-to-
fine approach. Formally, potential subgraphs of the query graph are determined
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first. These subgraphs are subsequently matched against a query graph by means
of the bipartite graph matching algorithm [13].

In the present paper we introduce a novel approach for graph representa-
tion of individual words that is based on the detection of keypoints. In contrast
with [10] our approach results in a single graph per word. Hence, no additional
assignment between graphs of different connected components is necessary dur-
ing the matching process. Furthermore, in our approach the edges are detected
by a novel method based on both the skeleton of connected components and
their connected subcomponents. Last but not least, also the graph matching
procedure actually employed for KWS has been substantially extended when
compared to the previous contributions in the field. In particular, we introduce
different types of linear and non-linear cost functions for the edit operations used
in [13].

The remainder of this paper is organised as follows. In Sect.2, the basic
concept of graph edit distance is briefly reviewed. In Sect. 3, the proposed graph-
based KWS approach is introduced. An experimental evaluation of the proposed
framework is given in Sect. 4. Section 5 concludes the paper and outlines possible
further research activities.

2 Graph Edit Distance

A graph g is formally defined as a four-tuple ¢ = (V, E, u,v) where V and FE
are finite sets of nodes and edges, and y: V — Ly as well as v : F — Lg are
labelling functions for nodes and edges, respectively. Graphs can be divided into
undirected and directed graphs, where pairs of nodes are either connected by
undirected or directed edges, respectively. Additionally, graphs are often distin-
guished into unlabelled and labelled graphs. In the latter case, both nodes and
edges can be labelled with an arbitrary numerical, vectorial, or symbolic label
from L, or L., respectively. In the former case we assume empty label alphabets,
ie. L, =L, ={}.

Graphs can be matched with exact and inexact methods [14,15]. Inex-
act graph matching, in contrast to exact graph matching, allows matchings
between two non-identical graphs by endowing the matching with a certain error-
tolerance with respect to labelling and structure. Several approaches for inexact
graph matching have been proposed. Yet, Graph Edit Distance (GED) is widely
accepted as one of the most flexible and powerful paradigms available [16]. The
GED between two graphs ¢g; and g5 is defined as the least costly series of edit
operations to be applied to g; in order to make it isomorphic to go. Formally,

k
GED (g1, = min c(e;
(gl 92) (61,44-7€k)€’7(91192); ( Z)
where e; denotes an edit operation, (e1,...,ex) an edit path, v(g1,g2) the set

of all edit paths that transform g¢; into go, and c(e;) the cost for a certain edit
operation e;. Different types of edit operations are allowed such as substitutions,



Graph-Based Keyword Spotting in Historical Handwritten Documents 567

insertions, deletions, splittings, and mergings of both nodes and edges. Com-
monly, the cost function c¢(e;) considers domain-specific knowledge and reflects
the strength of edit operation e;.

The computation of the exact GED is commonly based on an A*-algorithm
that explores all possible edit paths (g1, g2) [17]. However, this exhaustive
search is exponential with respect to the number of nodes of the involved graphs.

In order to make the concept of GED applicable to large graphs and/or large
graph sets, several fast but approximative algorithms have been proposed [13,18].
In the present paper we make use of the well-known bipartite graph matching
algorithm for approximating the GED in cubic time complexity [13]. This algo-
rithm is based on an optimal match between nodes and their local structure
(i.e. their adjacent edges). That is, the suboptimal computation of the GED is
based on a reduction of the GED problem to a Linear Sum Assignment Prob-
lem (LSAP), which can be optimally solved by, for instance, Munkres’ algo-
rithm [19]. In case of scalability limitations, one could also make use of the
graph matching algorithm for approximating the GED in quadratic, rather than
cubic, time complexity [18].

3 Graph-Based Keyword Spotting

The proposed graph-based KWS solution is based on four different processing
steps as shown in Fig. 1. First, document images are preprocessed and segmented
into words (1). Based on the segmented word images, graphs are extracted by
means of a novel keypoint-based method (2) and eventually normalised (3).
Finally, the graphs of query words are matched against graphs from the docu-
ment to create a retrieval index (4). In the following four subsections these four
steps are described in greater detail.
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Fig. 1. Process of graph-based keyword spotting of the word “October”

3.1 Image Preprocessing

Image preprocessing aims at reducing variations on document images that are
caused, for instance, by noisy background, skewed scanning, or document degra-
dation. In our particular framework, document images are first filtered by a
Difference of Gaussian (DoG) and binarised by a global threshold [20]. Single
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word images are then manually segmented. That is, we build our framework on
perfectly segmented words in order to focus on the task of KWS. The skew,
i.e. the inclination of the document, is removed by a hierarchical rotation of the
complete document image such that the horizontal projection profile is step-wise
maximised [21]. Note that the skew angle is estimated on complete document
images first and then corrected on single word images. Finally, each word image
is skeletonised by a 3 x 3 thinning operator [22].

3.2 Graph Representation

For a graph-based KWS system to succeed, the variations among graphs of the
same word have to be minimised, while variations of graphs of different words
should remain large. Hence, a graph representation has to represent the inherent
characteristic of a word. In the present paper the graph extraction algorithm is
based on the detection of keypoints. Keypoints are characteristic points in a word
image, such as for instance end- and intersection-points of strokes. The proposed
approach is inspired by [7]. However, in contrast with [7] the proposed graph
representation makes use of both nodes and edges. Additionally, the keypoint
detection is further refined by a local search algorithm.

Graphs are created on the basis of filtered, binarised, and skeletonised word
images S (see Algorithm 1). First, end points and junction points are identified
for each Connected Component (CC') of the skeleton image (see line 2 of Algo-
rithm 1). For circular structures, such as for instance the letter ‘O’ the upper
left point is selected as junction point. Note that the skeletons based on [22] may
contain several neighbouring end- or junction points. We apply a local search
procedure to select only one point at each ending and junction (this step is not
explicitly formalised in Algorithm 1). Both end points and junction points are
added to the graph as nodes, labelled with their image coordinates (z,y) (see
line 3).

Next, junction points are removed from the skeleton, dividing it into Con-
nected Subcomponents (CCgyup) (see line 4). Afterwards, for each connected

Algorithm 1. Graph Extraction Based on Keypoints
Input: Skeleton image S, Distance threshold D
Output: Graph g = (V, FE) with nodes V and edges F
1: function KEYPOINT(S,D)
2: for Each connected component CC € S do
V=V U{(z,y) € CC | (z,y) are end- or junction points}
Remove junction points from CC
for Each connected subcomponent CCs,p € CC do
V=V U{(z,y) € CCsus | (z,y) are points in equidistant intervals D}
for Each pair of nodes (u,v) € V x V do
E = E U (u,v) if the corresponding points are connected in S

return g
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subcomponent intermediate points (z,y) € CCsyp are converted to nodes and
added to the graph in equidistant intervals of size D (see line 5 and 6).

Finally, an undirected edge (u,v) between w € V and v € V is inserted
into the graph for each pair of nodes that is directly connected by a chain of
foreground pixels in the skeleton image S (see line 7 and 8).

3.3 Graph Normalisation

In order to improve the comparability between graphs of the same word class, the
labels p(v) of the nodes v € V are normalised. In our case the node label alphabet
is defined by L, = R2. A first graph normalisation is based on a centralisation
of each node label u(v) = (z,y) € R? by

T=x—py and § =y — fiy, (1)

where & and ¢ denote the new node coordinates,  and y the original node
position, p,, and p, represent the mean values of all (z,y)-coordinates in the
graph under consideration.

The second graph normalisation centralises the node labels and reduces vari-
ations of node positions that might occur due to different word image sizes.
Formally,

Tl and g =4ty (2)

where o, and o, denote the standard deviation of all node coordinates in the
current graph.

3.4 Pairwise Matching

The actual KWS is based on a pairwise matching of a query graph g against all
graphs of a set of word graphs G = {¢1,...,9n} stemming from the underlying
document. We make use of the bipartite graph matching algorithm [13]. In our
system the resulting GED between g and g; € G is normalised by using the cost
of the maximum cost edit path between g and g;, viz. the edit path that results
from deleting all nodes and edges of g and inserting all nodes and edges of g;.
We refer to this maximum cost as Maz-GED from now on. By means of this
procedure a retrieval index 7;(g) € [0,1] can be created for every word graph
gi € G given a certain query graph g. Formally,

! Maz-GED(g, g;)

The effectiveness of edit distance based KWS relies on an adequate defini-
tion of cost functions for the basic edit operations. In general, the cost ¢(e) of a
particular edit operation e is defined with respect to the underlying label alpha-
bets Ly and Lg. In our framework the nodes are labelled with two-dimensional
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numerical labels while edges remain unlabelled, i.e. Ly = R? and L = {}. In
the present section four cost functions are defined for this particular labelling.

For all of our cost models a constant cost 7, € Rt for node deletion and
insertion is used. Formally, the cost for the node deletions and insertions is
defined by c¢(u — &) = ¢(e — v) = 7,. For edges a similar cost with another
constant cost 7. € Rt is defined. The cost models to be used in our framework
differ in the definition of the cost for node substitutions. The basic intuition
behind all approaches is that the more dissimilar two labels are, the stronger is
the distortion associated with the corresponding substitution.

The first cost model is based on a weighted Euclidean distance of the two
corresponding labels. Formally, given two graphs g1 = (V1, E1, p11,v1) and go =
(Va, Eo, pia, v2), where 1, o @ Vi,Va — R2 the cost for a node substitution
(u — v) with pq(u) = (z,9:) and pe(v) = (z;,y;) is defined by

ep(u — v) = yJalz — 2;)2 + (1 - a) (i — )2,

where a € [0,1] is a weighting parameter to define whether the z- or the y-
coordinate is more important for the resulting substitution cost.

For graphs with scaled node labels (see Sect.3.3) the standard deviation o
of the node labels of a query graph might be additionally included in the cost
model by defining

ep, (= v) = \Jao (@ — 25)2 + (- a)oy (v — )2,

where 0, and o, denote the standard deviation of all node coordinates in the
query graph.

The third and fourth cost function are based on the weighted Euclidean
distance that is additionally scaled by means of a Sigmoidal function to [0, 27,].
Formally,

2Ty
1 + elker, (u—=v)—7)

2Ty
1 + elkcp(u—v)—)

cs(u—v) = and ¢g, (u — v) = ,
where k is the steepness and « the threshold of the Sigmoidal function. For both
cost functions cs and cg, the maximal substitution cost is equal to the sum of

cost of a node deletion and node insertion.

4 Experimental Evaluation

The experimental evaluation of the proposed KWS system is carried out on the
George Washington (GW) dataset, which consists of twenty pages of handwritten
letters with only minor variations in the writing style'. The same dataset has

! George Washington Papers at the Library of Congress, 1741-1799: Series 2, Letter-
book 1, pp. 270-279 & 300-309, http://memory.loc.gov/ammem /gwhtml/gwseries2.
html.
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already been used in [6,23,24]. For our KWS framework individual graphs are
created for each of the 4893 words of the dataset by means of the keypoint-
based graph representation algorithm described in Sect. 3.2. We use a threshold
of D =5 for all of our evaluations.

The performance of KWS is measured by the mean Average Precision (mAP)
in two subsequent experiments. First, the meta-parameters and the different
image and graph normalisations are optimised for all cost functions. To this
end, the mAP is computed on a small validation set, consisting of ten different
query words with a frequency of at least 10 as well as a reduced training set
based on 1000 different words including all instances of the query word.

In Table1 the results of this validation phase are shown. We distinguish
between graphs that are based on word images where the skew is corrected
or not. For both variants we use graphs where the node labels remain unnor-
malised (denoted by U in Table 1), and graphs where the labels are normalised
by using (1) and (2) (denoted by N7 and Na, respectively). Note that the cost
models cg and cg can be applied to graph normalisation with Ns only.

Table 1. mAP of Euclidean and Sigmoidal cost functions for different preprocessing

Preprocessing | Skew not corrected | Skew corrected

Cost function | U N1 No U N No
CE 50.17 | 72.87 | - 47.08 | 72.24 | -
cE, - : 76.53 | - § 75.59
cs 49.71 | 72.72 | - 50.60 | 73.53 | -
CS, - - 76.24 | - - 75.24

We observe that graphs based on not skew corrected word images in com-
bination with scaled and centralised node labels (N3) is optimal for both the
Euclidean and the Sigmoidal cost functions. These two models are further opti-
mised by means of the node label weighting factor «. By using this weighting
parameter, the mAP can be increased from 76.53 to 80.94 and from 76.24 to
79.32 with cg, and cg,, respectively.

Using this optimal parameter settings, the proposed KWS system is com-
pared with a reference system based on DTW [23,24] with optimised Sakoe-
Chiba band. This evaluation is conducted in a four-fold cross-validation, where
each fold consists of a test set (avg. 2447 words) that is tested with a training
set (avg. 1223.5 words).

In Table 2 the results of our novel graph-based KWS system (using both cg,
and cg,) and the reference DTW system are given. Our graph-based system
outperforms the DTW-based KWS system in both cases. The Euclidean and
Sigmoidal cost models improve the mAP of the reference system by 2.31 % and
5.62 %, respectively.
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Table 2. Graph-based vs. DTW-based KWS

System mAP | Improvement
DTW 54.08
Proposed cg, | 55.33 | +2.31%
Proposed cs, | 57.12| +5.62%

5 Conclusion and Outlook

The novel KWS system proposed in this paper is based on a keypoint-based
graph representation of individual words. Keypoints are characteristic points
in a word image that are represented by nodes, while edges are represented
by strokes between two keypoints. The actual KWS is based on a bipartite
matching of pairs of graphs. Four different cost functions have been introduced
to quantify the substitution cost of nodes that are matched. These cost functions
in combination with different image and graph normalisations are optimised on
the George Washington dataset. The optimal system clearly outperforms the
reference DTW algorithm.

In future work, we aim at extending our word-based approach to a line-based
approach. The actual KWS would therefore be based on finding a subgraph
isomorphism of a query graph in the larger line graph. Moreover, other graph
representation formalisms as well as more powerful labelling functions could be
a rewarding avenue to be pursued. Thus, we will be able to conduct a more
thorough comparison against other state-of-the-art systems using further graph
representations and documents.
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