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Abstract. Graph Edit Distance has been intensively used since its appearance
in 1983. This distance is very appropriate if we want to compare a pair of
attributed graphs from any domain and obtain not only a distance, but also the
best correspondence between nodes of the involved graphs. In this paper, we
want to analyse if the Graph Edit Distance can be really considered a distance or
a pseudo-distance, since some restrictions of the distance function are not ful-
filled. Distinguishing between both cases is important because the use of a
distance is a restriction in some methods to return exact instead of approximate
results. This occurs, for instance, in some graph retrieval techniques. Experi-
mental validation shows that in most of the cases, it is not appropriate to
denominate the Graph Edit Distance as a distance, but a pseudo-distance instead,
since the triangle inequality is not fulfilled. Therefore, in these cases, the graph
retrieval techniques not always return the optimal graph.
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1 Introduction

Attributed graphs have been of crucial importance in pattern recognition throughout
more than four decades [1, 2] since they have been used to model several kinds of
problems. Interesting reviews of techniques and applications are [3–5]. If elements in
pattern recognition are modelled through attributed graphs, error-tolerant graph-
matching algorithms are needed that aim to compute a matching between nodes of two
attributed graphs that minimizes some kind of objective function. To that aim, one of
the most widely used methods to evaluate an error correcting graph isomorphism is the
Graph Edit Distance [1, 2, 6].

Graph Edit Distance needs two main input parameters, which are the pair of
attributed graphs to be compared and also other calibration parameters. These
parameters have to be tuned in order to maximise a recognition ratio in a classification
scenario or simply to minimise the Hamming distance between a ground-truth corre-
spondence between nodes of both graphs and the obtained correspondence.

This research is supported by projects DPI2013-42458-P, TIN2013-47245-C2-2-R, and by Consejo
Nacional de Ciencia y Tecnología (CONACyT México).

© Springer International Publishing AG 2016
A. Robles-Kelly et al. (Eds.): S+SSPR 2016, LNCS 10029, pp. 530–540, 2016.
DOI: 10.1007/978-3-319-49055-7_47



Unfortunately, little research has been done to analyse if really the Graph Edit Distance
is a distance or simply a dissimilarity function that could be classified as a
pseudo-distance, since some distance restrictions are not fulfilled. Reference [7] is the
only paper related on this idea, and it shows in which conditions of these calibration
parameters the Graph Edit Distance is really a distance.

The importance of Graph Edit Distance being indeed a distance has an influence on
some applications. As an example, in [8–10], authors present methods to retrieve
graphs in a database. They suppose that given three graphs, the triangle inequality is
fulfilled and thanks to this assumption, some comparisons are not needed to be per-
formed. It turns out that if the Graph Edit Distance is not a distance, then the triangle
inequality is not guaranteed, and then some graphs that would have to be explored are
not considered, making the methods sub-optimal.

The aim of this paper is to empirically analyse if the distance definition is hold
when the recognition ratio is maximised or the obtained correspondence is close to the
ground truth. The outline of the paper is as follows; in Sect. 2, we define the attributed
graphs and the Graph Edit Distance. In Sects. 3 and 4, we explain the restrictions that a
distance needs to fulfil and we relate these restrictions on the specific case of the Graph
Edit Distance. In Sects. 5 and 6, we show the experimental validation and conclude the
paper.

2 Graphs and Graph Edit Distance

Let Dv and De denote the domains of possible values for attributed vertices and arcs,
respectively. An attributed graph (over Dv and De) is defined by a tuple
G ¼ ðRm;Re; cv; ceÞ, where Rv ¼ fvk j k ¼ 1; . . .;Rg is the set of vertices (or nodes),
Re ¼ eij i; j 2 1; . . .;Rf gj� �

is the set of edges (or arcs), cv : Rv ! Dv assigns attri-
bute values to vertices and ce : Re ! De assigns attribute values to edges.

Let Gp ¼ ðRp
v;R

p
e ; c

p
v; c

p
eÞ and Gq ¼ ðRq

v;R
q
e ; c

q
v; c

q
eÞ be two attributed graphs of

order Rp and Rq. To allow maximum flexibility in the matching process, graphs can be
extended with null nodes [1] to be of order Rp þRq. We refer to null nodes of Gp and
Gq by R̂p

v�Rp
v and R̂q

v�Rq
v respectively. Let T be a set of all possible correspondences

between two node sets Rp
v and Rq

v. Correspondence f
p;q : Rp

v ! Rq
v, assigns each node

of Gp to only one node of Gq. The correspondence between edges, denoted by f p;qe , is
defined accordingly to the correspondence of their terminal nodes.

f p;qe epab
� � ¼ eqij ) f p;q vpa

� � ¼ vqi ^ f p;q vpb
� � ¼ vqj

vpa; v
p
b 2 Rp

v � R̂p
v and vqi ; v

q
j 2 Rq

v � R̂q
v

ð1Þ

The basic idea behind the Graph Edit Distance is to define a dissimilarity measure
between two graphs. This dissimilarity is defined as the minimum amount of distortion
required to transform a graph into another. To this end, a number of distortion or edit
operations, consisting of insertion, deletion and substitution of both nodes and edges
are defined. Then, for every pair of graphs (Gp and Gq), there is a sequence of edit
operations that transforms Gp into Gq. In general, several edit paths may exist between
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two given graphs and to evaluate which edit path is the best, edit cost functions are
introduced. The basic idea is to assign a penalty cost to each edit operation according to
the amount of distortion that it introduces into the transformation.

Each edit path can be related to an univocal correspondence f p;q 2 T between the
involved graphs. This way, each edit operation assigns a node of the first graph to a
node of the second graph. Deletion and insertion operations are transformed to
assignations of a non-null node of the first or second graph to a null node of the second
or first graph. Substitutions simply indicate node-to-node assignations. Using this
transformation, given two graphs, Gp and Gq; and a correspondence between their
nodes, f p;q, the graph edit cost is given by [1]:

EditCost Gp;Gq; f p;qð Þ ¼
X

vpa 2 Rp
v � R̂p

v

vqi 2 Rq
v � R̂q

v

Cns vpa; v
q
i

� �þ
X

epab 2 Rp
e � R̂p

e

eqij 2 Rq
e � R̂q

e

Ces epab; e
q
ij

� �
þ

X

vpa 2 Rp
v � R̂p

v

vqi 2 R̂q
v

Cnd vpa; v
q
i

� �þ

X

vpa 2 R̂p
v

vqi 2 Rq
v � R̂q

v

Cni v
p
a; v

q
i

� �þ
X

epab 2 Rp
e � R̂p

e

eqij 2 R̂q
e

Ced epab; e
q
ij

� �
þ

X

epab 2 R̂p
e

eqij 2 Rq
e � R̂q

e

Cei epab; e
q
ij

� �

being f p;q vpa
� � ¼ vqi and f p;qe epaið Þ ¼ eqij

ð2Þ

where Cns is the cost of substituting node vpa of Gp by node fp;q vpa
� �

of Gq, Cnd is the
cost of deleting node vpa of Gp and Cni is the cost of inserting node vqi of Gq. Equiv-
alently for edges, Ces is the cost of substituting edge epab of graph Gp by edge fp;qe epab

� �
of Gq, Ced is the cost of assigning edge e

p
ab of G

p to a non-existing edge of Gq and Cei is
the cost of assigning edge eqab of Gq to a non-existing edge of Gp.

Finally, the Graph Edit Distance is defined as the minimum cost under any cor-
respondence in T:

GED Gp;Gqð Þ ¼ min
f p;q2T

EditCost Gp;Gq; f p;qð Þ ð3Þ

Using this definition, the Graph Edit Distance essentially depends on
Cns;Cnd;Cni;Ces;Ced and Cei functions. Several definitions of these functions exist.
Table 1 summarises the five different configurations that have been presented so far.

The first options [11–16] are the ones where the whole costs are defined as func-
tions that depend on the involved attributes and also on either learned or general
knowledge. Attributes are density functions instead of vectors of attributes. The second
option makes the Graph Edit Distance to be directly related to the maximal common
sub-graph. That is, in [17], authors demonstrate that computing the Graph Edit Dis-
tance is exactly the same than deducting the maximal common sub-graph. In the third
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option, [18], authors assume that the graphs are complete, and a non-existing edge is an
edge with a “null” attribute. In this case, the cost of deleting and inserting an edge is
encoded in the edge substitution cost. Inserting and deleting nodes have a constant cost,
Kn. With this definition, authors describe several classes of costs that Eq. 3 deducts the
same correspondence. The fourth option might be the most used one [1, 19, 20].
Substitution costs are defined as distances between vectors of attributes, usually the
Euclidean distance. Insertion and deletion costs are constants, Kn and Ke, that have
been manually tested or automatically learned [21, 22]. Finally, the last option is used
in fingerprint recognition [23]. It is similar to the previous option, except from the
substitution costs that are constants. Nodes represent minutiae and edges are the
relations between them. If a specific distance between minutiae is lower than a
threshold, then a zero is imposed as a substitution cost. Otherwise, this cost takes a
constant value Kns. The same happens with the edges that take a constant value Kes.

It is worth noting that for all of the cases except for the first one, the insertion and
deletion costs on nodes are considered to be the same, Kn. The same happens for edges,
Ke. Nevertheless, in the string edit distance, also known as Levenshtein distance [24],
insertion and deletion costs might be considered different depending on the application.
The most usual application is an automatic writing correction scenario, in which the
possibility of missing a character is different than accidentally adding an extra
character [25].

The optimal computation of the Graph Edit Distance is usually carried out by
means of a tree search algorithm, which explores the space of all possible mappings of
the nodes and edges of the first graph to the nodes and edges of the second graph.
A widely used method is based on the A* algorithm, for instance [18]. Unfortunately,
the computational complexity of this algorithm is exponential in the number of nodes
of the involved graphs. This means that the running time may be non-admissible in
some applications, even for reasonably small graphs. This is why bipartite graph
matching [26–29] has appeared.

3 Restrictions on the Graph Edit Distance

A distance, also called a metric, is a function that defines a dissimilarity between
elements of a set, such as x, y or z. The domain is ½0;1Þ and it holds the following
restrictions for all elements in the set [30]:

Table 1. Examples of Graph Edit Costs in the literature.

Reference Cns Cnd Cni Ces Ced Cei

[11–13, 15] dnðvpa; vqi Þ fndðvpaÞ fndðvqi Þ deðepab; eqijÞ fedðepabÞ feiðeqijÞ
[17] 0;1 1 1 0;1 0 0
[18] dnðvpa; vqi Þ Kn Kn deðepab; eqijÞ 0 0

[1, 19, 20] dnðvpa; vqi Þ Kn Kn deðepab; eqijÞ Ke Ke

[23] 0;Kns Kn Kn 0;Kes Ke Ke
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ð1Þ Non-negativity: dist x; yð Þ� 0:

ð2Þ Identity of indiscernible elements: dist x; yð Þ ¼ 0 , x ¼ y:

ð3Þ Symmetry: dist x; yð Þ ¼ dist y; xð Þ
ð4Þ Triangle inequality: dist x; yð Þ� dist x; zð Þþ dist z; yð Þ

ð4Þ

In some cases, there is a need to relax these restrictions and thus the resulting
functions are not called distance but pseudo-distance, quasi-distance, meta-distance or
semi-distance, depending on which restriction is violated and how it is violated [30]. In
the case of the Graph Edit Distance, this relaxation comes from the imposition of a
ground truth correspondence. This ground truth is deducted from an independent
method and it is not related on the edit costs.

If we wish the Graph Edit Distance to be defined as a true distance function, it is
needed to assure the whole edit operations in the ground truth correspondence fulfil the
four properties in the following Eq. 5. In these equations, we suppose that the ground
truth correspondence is f p;q such that f p;q vpa

� � ¼ vqi and f p;q vpb
� � ¼ vqj .

1ð Þ Non-negativity: Cns � 0 and Ces � 0:

2ð Þ Identity of indiscernible elements:

Cns vpa; v
q
i

� � ¼ 0 , cv vpa
� � ¼ cv vqið Þ

Ces epab; e
q
ij

� �
¼ 0 , ce epab

� � ¼ ce eqij
� �

3ð Þ Symmetry:

Cnd vpa; v
q
i

� � ¼ Cni v
p
a0 ; v

q
i0

� � , cv vpa
� � ¼ cv vqi0

� �

where vpa 2 Rp
v � R̂p

v ; v
q
i 2 R̂q

v ; v
p
a0 2 R̂p

v and vqi0 2 Rq
v � R̂q

v

Ced epab; e
q
ij

� �
¼ Cei epa0b0 ; e

q
i0j0

� �
, ce epab

� � ¼ ce eqi0j0
� �

where epab 2 Rp
e � R̂p

e ; e
q
ij 2 R̂q

e ; e
p
a0b0 2 R̂p

e and eqi0j0 2 Rq
e � R̂q

e

4ð Þ Triangle inequality:

Cns vpa; v
q
i

� ��Cnd vpa; v
q
i0

� �þCni v
p
a0 ; v

q
i

� �

where vpa 2 Rp
v � R̂p

v ; v
q
i 2 Rq

v � R̂q
v v

q
i0 2 R̂q

v and vpa0 2 R̂p
v

Ces epab; e
q
ij

� �
�Ced epab; e

q
i0j0

� �
þCei epa0b0 ; e

q
ij

� �

where epab 2 Rp
e � R̂p

e ; e
q
ij 2 Rq

e � R̂q
e e

q
i0j0 2 R̂q

e and epa0b0 2 R̂p
e

ð5Þ

For all cited references, functions in Table 1 are defined as distances, and constants
as real positive numbers. For this reason, if the Graph Edit Distance cannot be defined
as a true distance, it is due to the relations between these functions and constants.
Considering the five options proposed in Table 1, it is really difficult to analyse the first
option since being a distance or not depends on the specific distance values. We realise
that the second and third ones do not hold the triangle inequality and therefore cannot
be considered as distances. The fourth option is a distance only if it is guaranteed that
the whole substitution operations in the edit path hold:
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dn vpa; v
q
i

� �� 2 � Kn and deðepab; eqijÞ� 2 � Ke ð6Þ

That is, we only have to analyse if the triangle inequality of Eq. 5 is fulfilled.
Finally, the last option is almost the same than the third one and it is a true distance if
constant costs are defined such that,

Kns � 2 � Kn and Kes � 2 � Ke ð7Þ

Since the fourth option is both the most used and the one that can be defined as
distance or not, depending on the costs, from now on, we concretise on this specific
case.

4 Defining the Graph Edit Distance as a True Distance

Note that given a pair of graphs and an optimal correspondence (the one that minimise
EditCost in Eq. 3), we can analyse if the used edit costs make the Graph Edit Distance
to be a true distance or not. Moreover, each combination of edit costs generates a
different optimal correspondence and a Graph Edit Distance value. For this reason, the
problem of knowing which are the edit costs that make the Graph Edit Distance to be a
true distance is a chicken egg problem. Given some edit costs, we need to compute the
optimal correspondence to deduct if the four distance restrictions are violated (Eq. 5),
but to deduct the proper edit costs, we need the optimal correspondence.

To solve this problem, we propose to use a ground truth correspondence. That is,
given a pair of attributed graphs, and independently of the edit costs, a human or
another method deducts which is the “best” correspondence. Thus, we consider that the
Graph Edit Distance is a true distance if the four properties in Eq. 5 are fulfilled
assuming f p;q is the ground truth correspondence.

Given an application that involves an attributed graph database of M graphs in
which the computation of the Graph Edit Distance is needed, the same edit costs have
to be used in the whole process and graphs. Thus, we generalise Eq. 6 considering that
we have several graphs and also introducing the ground truth concept. We conclude
that the Graph Edit Distance is a true distance given some specific insertion and
deletion costs for nodes if the following equation holds,

8 vpa 2 Rp
v � R̂

p
v given p : 1::M and a : 1::ðRp þRqÞ

such that f p;q vpa
� � ¼ vqi & vqi 2 Rq

v � R̂
q
v

leads to dn vpa; v
q
i

� �� 2 � Kn

being f p;q the ground-truth correspondence

ð8Þ

Similarly for the edges,
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8 epab 2 Rp
e � R̂

p
e given p : 1::M and a; b : 1::ðRp þRqÞ

such that f p;qe epab
� � ¼ eqij & ejqi 2 Rq

e � R̂
q
e

leads to de epab; e
q
ij

� �
� 2 � Ke

being f p;qe the edge correspondence deducted from the

ground-truth correspondence f p;q:

ð9Þ

5 Experimental Validation

We used four graph databases that are organised in registers such that each register is
composed of a pair of graphs and a ground truth correspondence between their nodes.
These databases were initially used to automatically learn insertion and deletion edit
costs in [21, 22], and are publically available in [31]. These databases do not have
attributes on the edges and therefore, we only analyse the insertion and deletion costs
on nodes. Nonetheless, what can be deducted on nodes could be easily extrapolated to
edges. Graphs in the first two databases, Letter Low and Letter High, represent hand
written characters, which nodes have as only attribute the (x,y) position of the junctions
of strokes in the character, and edges being the strokes. Graphs in House Hotel data-
base and Tarragona Rotation Zoom database have been extracted from images. Their
nodes represent salient points in the images with their attributes being the features
obtained by the point extractor. Edges have been deducted by the Delaunay
triangulation.

Table 2 shows the position of the quartiles, the mean and also half of the maximum
values of the node substitution costs dn vpa; v

q
i

� �
given the whole correspondences.

Clearly, if we want Eq. 8 to hold, the insertion and deletion costs have to be defined
such that Kn � 1

2Max:

For the sake of clarification, Fig. 1 shows the histograms of dn vpa; v
q
i

� �
given all

databases with the quartiles and the mean values.
We have used an error-tolerant graph-matching algorithm called Fast Bipartite [27]

available in [32] to compute the automatically-deducted correspondence and the dis-
tance between the attributed graphs.

Table 2. Average node substitution costs given the ground truth correspondences.

Q1 Q2 Q3 Mean ½ Max

Letter low 0.08 0.12 0.17 0.20 1.68
Letter high 0.28 0.48 0.71 0.55 1.98
House-Hotel 2.82 4.00 5.29 4.08 5.75
Rotation Zoom 0 0 0.002 0.014 0.5
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Table 3 shows the average Hamming distance between the ground-truth corre-
spondence and the automatically obtained correspondence when Kn ¼ Q1, Kn ¼ Q2,
Kn ¼ Q3, Kn ¼ Mean, and Kn ¼ 1

2Max. Specific values are shown in Table 2. The
Hamming distance is computed as the number of node mappings that are different
between both correspondences. Therefore, the lower these values, the better the
performance.

We realise that the lowest Hamming distances are achieved in the positions of the
insertion and deletion edit costs such that the triangle inequality is not hold, since these
lowest Hamming distances are achieved in the first three quartiles, which are always
smaller than 1

2Max.

Fig. 1. Histogram of node substitution costs given the ground truth correspondences in the four
databases. In green: the first three quartiles. In red: the mean values. (Color figure online)

Table 3. Average Hamming distance.

Q1 Q2 Q3 Mean ½ Max

Letter low 0.6 0.6 0.6 0.6 0.7
Letter high 0.9 0.8 0.9 0.9 1.2
House Hotel 0.61 0.71 0.78 0.72 0.80
Rotation Zoom 0.46 0.46 0.27 0.34 0.39
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Table 4 shows the classification ratio using the same conditions than the previous
experiments. To compute the classification ratio, we have used the reference and test
set of each database and the 1-Nearest Neighbour classification algorithm. Recall that
the House Hotel database does not have classes. It seems as the classification ratio
performs similar to the Hamming distance. That is, the best values are achieved when
the insertion and deletion edit costs are smaller than 1

2Max.
The relation of the recognition ratio with the Hamming distance between the

ground truth and the obtained correspondences was explored in [22] while learning the
edit costs. In that paper, it was empirically demonstrated that decreasing the Hamming
distance leads to the recognition ratio to increase. We have validated this dependence
again. Moreover, the experimental validation in that paper shows that the presented
optimisation method converged to some negative insertion and deletion costs. Again,
these values make the Graph Edit Distance not to be a truly defined distance.

Finally, in Table 5 we show the average runtime (in milliseconds) to compute one
graph-to-graph comparison. We have used a Windows, I7 and Matlab. We appreciate
there is no relation, in general, between the insertion and deletion edit costs and the
runtime.

6 Conclusions

Graph Edit Distance is nowadays the most widely used function to compare two graphs
and to obtain both a distance and a graph correspondence. This function does not only
depend on a pair of graphs, but also on the definition of the insertion and deletion edit
costs on nodes and edges. These costs are usually defined as constants, and depending
on their definition, we can consider the Graph Edit Distance to be a true distance or not.
The fact of not being a true distance can influence on the performance in some appli-
cations. Experimental validation has shown that the insertion and deletion costs that

Table 5. Average runtime to match a pair of graphs.

Q1 Q2 Q3 Mean ½ Max

Letter low 0.61 0.60 0.59 0.58 0.60
Letter high 0.63 0.59 0.59 0.59 0.64
House Hotel 4.8 5.1 5.4 5.1 5.5
Rotation Zoom 15 15 10 8 7

Table 4. Classification ratio.

Q1 Q2 Q3 Mean ½ Max

Letter low 0.97 0.97 0.97 0.97 0.93
Letter high 0.74 0.82 0.83 0.82 0.74
House Hotel - - - - -
Rotation Zoom 0.2 0.2 0.35 0.3 0.1
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obtain the lowest Hamming distances between the ground truth correspondence and the
optimal correspondence and also the highest classification ratios are the ones where the
triangle inequality does not hold when considering the ground truth correspondence. For
instance, the assumption that EditCost Gp;Gq; f p;qð Þ�GED Gp;Gtð ÞþGED Gt;Gqð Þ,
where f p;q is the ground truth correspondence, a fact which is commonly assumed on
some applications such as graph retrieval or learning processes. This is because in a
properly tuned system, EditCost Gp;Gq; f p;qð Þ ¼ GED Gp;Gqð Þ.
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