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Abstract. This paper proposes an outlier robust geodesic K-mean algo-
rithm for high dimensional data. The proposed algorithm features three
novel contributions. First, it employs a shared nearest neighbour (SNN)
based distance metric to construct the nearest neighbour data model.
Second, it combines the notion of geodesic distance to the well-known
local outlier factor (LOF) model to distinguish outliers from inlier data.
Third, it introduces a new ad-hoc strategy to integrate outlier scores
into geodesic distances. Numerical experiments with synthetic and real
world remote sensing spectral data show the efficiency of the proposed
algorithm in clustering of high-dimensional data in terms of the overall
clustering accuracy and the average precision.

Keywords: Clustering · K-means · High-dimensional data · Geodesic
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1 Introduction

The K-means algorithm is one of the widely used clustering algorithms in the
area of cluster analysis and it has been integrated into various image process-
ing, data mining and pattern recognition applications. K-means is basically an
objective function based optimization scheme that iteratively assigns data to
K clusters while attempting to minimize intra-cluster variation. The K-means
algorithm is simple and scalable to a wide range of data types. K-means assumes
Euclidean distance as the dissimilarity metric and thus tends to produce clus-
ters of spherical shape. Although this assumption has been shown to be reason-
able for many applications [10,11], it is not universally true with data clusters
of non-spherical and complex shapes, such as spatial data and hyperspectral
remote sensing imaging. Moreover, the classic K-means algorithm can adversely
be affected by outliers and thus is not able to achieve realistic results if the
clusters are contaminated by outlying data.
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Several variants of K-means algorithm have been introduced to address these
shortcomings [4,7,11]. The density sensitive geodesic K-means algorithm, hence-
forth DGK-means, proposed by [1] is an approach that tries to address the issues
of non-spherical clusters and outlying data. The DGK-means algorithm replaces
the Euclidean distance with a manifold based geodesic distance metric which is
resistant to outliers. This algorithm suffers from two main difficulties: first, it
can easily be affected by the curse of dimensionality, and second it may fail if
the data clusters come from different density patterns.

This paper investigates the DGK-means and proposes an outlier robust geo-
desic distance based K-means algorithm, called ORGK-means. The proposed
algorithm is similar to the DGK-means but utilizes a new geodesic distance
metric. By this means, the ORGK-means algorithm attempts to address the
issues of high-dimensionality, data of varying cluster densities and data with
outliers.

The proposed ORGK-means algorithm includes three main contributions.
First, an alternative distance measure based on the notion of shared nearest
neigbor (SNN) is proposed for pairwise distance estimation. SNN, originally
introduced as a similarity measure based on nearest neighbours [6], is considered
an efficient method for problems involving high-dimensional data, clustering of
data of varying size and distribution and data contaminated with outliers [5].
Its utilization has been reported in several applications with high-dimensional
data [3,8,9,12] and outlier-scoring algorithms [13]. Second, the well-known local
outlier factor (LOF) based on the notion of geodesic distance is used to rank
outlierness of data. By using geodesic distance based LOF, the ORGK-means
algorithm is expected to be more robust to density fluctuations. Third, to provide
more flexibility in modelling and improved usability, a double sigmoid function
with adaptive parameter estimation is proposed to integrate outlier scores into
the distances.

The remainder of the paper is organized as follows. Section 2 briefly reviews
the DGK-means algorithm, presenting the main steps involved. Section 3 intro-
duces the new elements proposed to address the shortcomings in the DGK-means
algorithm. Section 4 presents experimental results and evaluations. Section 5 con-
cludes the paper.

2 Density Sensitive Geodesic K-means Algorithm

There are three main features in the DGK-means algorithm: general distance
K-means, density sensitive geodesic distance, and geodesic K-means.

2.1 General Distance K-means

The DGK-means reformulates the whole update process in the classic K-means
to a generative procedure, called general distance K-means, that can utilize
any distance metric. Let X = {xi}n

i=1
be the set of n real-valued data points of

dimension p to be clustered onto m data clusters C = {Cl}ml=1. Given the distance
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metric d : X × X → R
+, the general K-means algorithm aims to minimize the

objective loss function:

WGD(X) =
m∑

l=1

∑

xi∈Cl

∑

xj∈Cl

d2(xi,xj). (1)

Let (X, d) be the metric space. Provided that X can be mapped onto Euclid-
ean space, the minimization of the objective function in Eq. 1 can be per-
formed iteratively without explicitly calculating the cluster centroids. Denoting
γt+1(xi) : X → {l}ml=1 as the cluster membership function at iteration t + 1, the
update cluster assignment for every data instance xi is given as follows:

γ
t+1(xi) = arg min

1≤l≤m

(
2

nl(t)

∑

xr∈Cl(t)

d2(xi,xr) − 1
n2
l (t)

∑

xr,xr′∈Cl(t)

d2(xr,xr′)
)

.

(2)

2.2 Density Sensitive Geodesic Distance

The geodesic distance is the fundamental element in the DGK-means algorithm
imposing the global structure of the data. Through the sparse k-neighbourhood
graph representation of the data, denoting the data points as the graph nodes and
the corresponding pairwise distances as the edge-weights, the geodesic distance
between two data points is given by the sum of the edge weights of the shortest
path connecting them. By this means, the geodesic distance of points residing
on different geometrical structures is of higher values compared to those from
similar geometrical structures.

Geodesic distance based on pure Euclidean distance may be inaccurate in the
presence of outliers. In order to reduce the effects of outliers, the DGK-means
algorithm incorporates the outlierness profile of data into geodesic distance esti-
mation. It achieves this by defining the graph edge weights through combining
the pairwise distances of the data points with their local densities. In particular,
DGK-means uses an exponential transfer model to compute graph edge weights
ωij that adjusts the pairwise Euclidean distances based on the local densities of
their end points:

ωij = exp
( 1
σ2

max
(
f̂(xi), f̂(xj)

))‖xi − xj‖, (3)

Here f̂(xi) is the local density estimate of point xi with respect to its local
neigborhood and is computed using the multivariate k-NN density estimator:

f̂(xi) =
k − 1

n vol(xi)
(4)

This formulation produces robust geodesic distances in low dimensions, but
it does not perform well in high dimensions. First, the geodesic distances on the
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k-nearest neighbour graph based on Euclidean distance suffer from concentration
problem in high dimensions and can not capture thoroughly the similarity of data
points [4]. Second, the k-NN density estimator in the DGK-means algorithm can
easily be affected by the curse of dimensionality. k-NN density estimator relies
on the computation of the volume of the sphere to represent the far-end local
neighbourhood of data which is numerically intractable with a low number of
data samples in high dimensions.

2.3 Geodesic K-means

The DGK-means as per the general distance approach requires all intra-cluster
distances to be computed and is computationally expensive. The DGK-means
algorithm may be reformulated within a randomized baseline that eliminates the
multiple invocation of intra-cluster pairwise distance computations. The DGK-
means achieves this through a randomized process in which virtual cluster cen-
troids are estimated over a random sample set of each data cluster at each
iteration.

3 Outlier Robust Geodesic K-means Algorithm

The ORGK-means follows the same outline as that of DGK-means algorithm
but introduces three particular improvements in the formulations of the pairwise
distances, the density estimation and the weighting transform model.

3.1 Distance Metric Based on SNN

The proposed ORGK-means algorithm adopts an alternative strategy based on
the concept of SNN similarity to compute pairwise distances. Distance measure
based on SNN, also referred to as the secondary SNN-distance measure, have
been shown efficient in high dimensional data space [5,9] that can perform well
with data of different size, shape and varying distributions [3]. SNN-based simi-
larity of two data points is the degree by which their underlying patterns overlap
with one another. In terms of the sparse k-neighbourhood graph as described in
Sect. 2.2, the SNN-similarity of two data points is seen as the number of points
shared by the k-nearest neighbour lists of those points.

Given the set of k-nearest neighbours Nk(xi) and Nk(xj) of the points xi

and xj , the SNN similarity is given by the number of their common neighbours:

simSSNk
(xi,xj) = |Nk(xi) ∩ Nk(xj)|. (5)

The normalized SNN similarity measure simcosk is defined as follows:

simcosk(xi,xj) =
simSSNk

(xi,xj)
k

. (6)

Several SSN-based distance measures can be constructed based on the simcosk
metric [5]. In this work, the SNN based inverse distance dinvk is utilized.

dinvk(xi,xj) = 1 − simcosk(xi,xj) (7)
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3.2 Geodesic Based Local Outlier Factor

The ORGK-means algorithm utilizes a geodesic based local outlier factor
(gLOF ) to rank the outlierness of data. LOF , originally introduced by Breunig
et al. [2], is an outlier scoring algorithm that relies on the k-nearest neighbour
model and the notion of local reachability density. gLOF enhances LOF with
the geodesic distance.

As the same way in LOF , gLOF benefits from several advantages. It is
a non-parametric and model-free approach that does not make any assumption
regarding the distribution of data. It is resistant to changes in density of data dis-
tribution patterns. In addition, gLOF compared to LOF incorporates both local
and global structure of the data and it provides richer outlier scoring scheme.

To compute the outlier score of an individual point, gLOF compares its
local density with the points in its neighbourhood. It takes the ratio of the local
reachability density of the data point to the median local reachability density of
its surrounding neighbours. This is different from the original LOF where the
arithmetic mean is utilized to approximate the local neighbourhood reachability
density. The idea in utilizing the median is to make the density estimator more
robust to the outlying points. When an outlying point or a point belonging to
other clusters is located in the neighbourhood, the mean is likely to misrepre-
sent (underestimate) the dispersion of neighbouring local densities as they are
dominated by the local density of that outlying point. In such cases, the median
is considered a reasonable choice that is more robust to outliers.

Formally, the gLOF score of a point xi is given by:

gLOFk(xi) =
median {lrdk(xj)}xj∈Nk(xi)

lrdk(xi)
, (8)

where lrd(xi) describes the local reachability density of the point xi over its
local neighbourhood.

The local reachability density is loosely estimated as the inverse of the median
of the reachability geodeisc distances to the point xi from its neighbours. The
local reachability density at point xi is defined as follows:

lrdk(xi) =
(
median

{
rdk(xi,xj)

}

xj∈Nk(xi)

)−1

, (9)

where rdk(xi,xj) refers to the reachability geodesic distance from xi to xj given
by:

rdk(xi,xj) = max(R(Nk(xi)), dG,W (xi,xj)). (10)

Here, R(Nk(xi)) is the geodesic distance from xi to its k-th nearest neighbour
and dG,W (xi,xj) is the geodesic distance from xi to xj . The geodesic distance
is defined by the shortest path over the k shared nearest neighbourhood graph
representation with the SNN based inverse distance metric dinvk. The reacha-
bility distance rdk(xi,xj) is asymmetric and its role is to enhance the stability
of results. It is defined to smooth out the statistical fluctuations in dG,W (., .)
when it is small compared to the distance of k-th neighbouring point. The larger
the value of k, the higher smoothing is applied.
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The gLOF value of a point xi located in a region of homogeneous density
(inlier) is approximately 1, but it is of higher value if the density of the local
neighbourhood of its neighbours is higher that the density of the local neigh-
bourhood of the point itself (outlier).

3.3 Weighting Transform Model

The first-order exponential weighting model used in the DGK-means algorithm
is designed to map density values within [0 1) interval onto [1 ∞). Such weight-
ing model does not suit to the ORGK-mean algorithm where the outlierness of
the data is ranked by gLOF scores not limited to the range [0 1], and either the
normalization is not straightforward. In addition, the model used in DGK-means
strongly depends on the scaling parameter σ whose selection is not well defined [1].

The ORGK-means algorithm relies on a sigmoid function model to transform
the outlier scores to the geodesic distances where the extreme outlier scores are
eliminated. Specifically, the weighting transform model is built upon the double
sigmoid function whose parameters can be adaptively tuned by the statistics of
outlier score distribution in an ad hoc manner.

Denote the outlier scores of the points xi and xj , obtained from gLOF model,
by si and sj respectively. The proposed weighting function is given by:

ωij =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
1 + β exp

[ − 2
max(si, sj) − τ

α1

])−1

if s < τ,

(
1 + β exp

[ − 2
max(si, sj) − τ

α2

])−1

otherwise

(11)

where β is a scaling parameter and τ is the threshold parameter beyond which
a data point is considered as an outlier. α1 and α2 are edge parameters that
define the region [τ −α1 τ +α2] at which the weighing function is approximately
linear.

Choosing a proper value for the threshold parameter τ is highly dependent on
the data as gLOF produces a varying range of scores relative to the underlying
local and global structures of data. However, since the scores obtained by gLOF
are typically positively skewed, the value of parameter τ can be set to the mean
of the score distribution. In positively skewed distribution, the mean pulls toward
the direction of skew (the direction of the outliers) and therefore can provide an
approximate basis for the decision about the outlierness of data.

The mean of the score distribution can reasonably approximate the maximal
inlier score value but it can be of too large values if there are erratic deviations
in score values or the distribution is extremely skewed. To address this issue, the
mean is estimated over truncated data such that a certain percentage of data,
op, corresponding to the largest scores is discarded. The mean obtained in this
manner resembles the truncated mean estimator that is less sensitive to extreme
outliers.

Inspired by the definition of skewness as the measure of asymmetry about
the mean, the value of α1 can be set to truncmeanop(s) − mode(s) and the
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value of α2, not as critical as τ and α1, can be set to any value lower than
max(s) − truncmeanop(s).

4 Experimental Results

Evaluation of the proposed ORGK-means algorithm for clustering in high dimen-
sions was carried using synthetic and real remote sensing hyperspectral data.

4.1 Test Data

Synthetic Data: To investigate the ability of the proposed ORGK-means algo-
rithm several datasets of different dimensionality were generated. The datasets
were constructed to generate unbiased data sampled from the Gaussian dis-
tribution over an increasing range of dimensions that share certain attributes,
[2, 4, 8, 16, 32, 64, 128, 256, 512]. Outliers were uniformly scattered to the
space with the ratio of 5% and 10% of the total number of samples. Inspired by
[5], data series were generated from three classes of 8-Relevant, Half-Relevant and
All-Relevant each differing in the portion of informative variables that are rele-
vant to clusters. Each dataset contained 500 samples that are uniformly divided
into 7 clusters whose mean and variance were uniformly randomized ensuring
data comes from well separated clusters of various distributions and that every
pair of cluster has 10% overlap at most.

Real Data: Two different benchmark hyperspectral image datasets were used
for experiments: Botswana and SalinasA. The Botswana dataset was acquired
by NASA EO-1 satellite over the Okavango Delta, and the corrected version
of the data includes 145 bands. 7 out of the 14 classes with an equal number
of samples were chosen in the experiment. 1575 data samples of dimension 145
are distributed to 7 classes. The SalinasA dataset was collected by AVIRIS over
Salinas Valley in southern California, USA. The test hypercube consists of 7138
samples of dimension 204 comprising of 6 different classes1.

4.2 Results and Discussion

The performance of the proposed ORGK-means was compared to a number of
methods including classic K-means, k-NN based geodesic K-means, SNN based
geodesic K-means and density based geodesic K-means, respectively denoted
as K-mean, GK-means/kNN, GK-means/SNN and DGK-means. To ensure fair
evaluation, all the algorithms were experimented with the pre-known number
of clusters and identical randomly initialized data-to-cluster assignments. Given
the number of clusters as well as the initial data-to-cluster assignments, the
proposed ORGK-means algorithm requires the parameters the top percentage
of outliers op and the number of nearest neighbours k to be specified.

1 These datasets are available at http://www.ehu.eus/ccwintco/index.php?
title=Hyperspectral Remote Sensing Scenes.

http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
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The top outlier percentage op defines the percentage of data points that are
considered as the extreme outliers to be excluded. It can be set empirically by
a domain expert or can be approximated by the analysis of the outlier score
distribution. Here, in the case of the synthetic datasets, the value for op was
chosen based on the original percentage of added outliers and in the case of the
real datasets, it was chosen empirically by searching the range from 1% to 10%.

The number of nearest neighbours k defines the neighbourhood size in the
NN-model and significantly affects the performance of computing geodesic dis-
tances and outlier scores. The number of nearest neighbour versus overall accu-
racy was searched within the range form 5 to 150 and the best cases were only
reported for the methods used.

Performance comparisons of the proposed ORGK-means algorithm and
the other methods applied to synthetic data are shown in Fig. 1, giving the

Fig. 1. Clustering performance comparison on the synthetic dataset over increasing
dimensionality; (a–b) All-Relevant (%), (c–d) Half-Relevant, (e–f) 8-Relevant.
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overall accuracy versus the scaling dimension. Simulation results on All-Relevant
and Half-Relevant data series show the improvement introduced by ORGK-
means over the other competing methods, specifically GK-means/kNN, GK-
means/SNN and DGK-means. However, there are a few exceptions in which the
K-median stands as the out-performer. This observation can be explained by the
synthetic data having been generated from an isotropic Gaussian mixture model
residing on linear space where K-means equipped with geodesic distance does
not necessarily yield higher separability power.

The results on 8-Relevant as expected show that the performance of all com-
pared clustering algorithms affected as dimension grows. This is to confirm the
hampering effects of irrelevant attributes on the distinguishability of data clus-
ters present in high dimensions. This observation also indicates that the ORGK-
means algorithm, similarly to the other compared methods, is not able to handle
high dimensional data when the feature space is dominated by irrelevant vari-
ables.

Figures 2 and 3 show the clustering maps obtained by the competing methods
on real hyperspectral test data, Botswana and SalinasA, respectively. Overall, in
both cases, but notably in SalinasA, the proposed ORGK-means gave the best
results among the competitors, reaching a higher separation rate, though some
data points are assigned as outliers.

Table 1 summarises the clustering accuracies, in terms of overall accuracy
(ACC) and macro average Positive Predictive Value (PPVm), achieved by the
proposed ORGK-means algorithm and the other methods. The results confirm
the superior performance of ORGK-means over other the methods in terms of
both ACC and PPVm.

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 2. Clustering performance comparison on Botswana test data; (a) RGB rending,
(b) ground truth (c) K-means, (d) K-median, (e) GK-means/kNN, (f) GK-means/SNN
(g) DGK-means and (h) ORGK-means.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. Clustering performance comparison on SalinasA test data; (a) RGB rending,
(b) ground truth (c) K-means, (d) K-median, (e) GK-means/kNN, (f) GK-means/SNN
(g) DGK-means and (h) ORGK-means.

Table 1. Highest overall clustering ACC and macro averaged PPV (in percentage)
obtained by the considered clustering algorithms.

Botswana SalinasA

Methods k ACC [%] PPVm [%] k ACC [%] PPVm [%]

K-means - 77.8 71.5 - 61.8 46.0

K-median - 86.2 87.7 - 52.7 58.7

GK-means/kNN 75 84.2 87.1 10 59.4 45.5

GK-means/SNN 125 81.5 73.2 10 59.0 57.5

DGK-means 15 74.2 73.1 10 32.4 45.5

ORGK-means 125 89.3 90.9 50 83.8 91.3

5 Conclusion

In this paper, an outlier robust geodesic K-means (ORGK-means) algorithm is
proposed for clustering of high dimensional data. The proposed ORGK-means
extends the standard K-means algorithm by using an outlier-adjusted geodesic
distance. In the proposed ORGK-means algorithm, SNN based distance metric
is utilized as the pairwise dissimilarity measure. Geodesic based LOF, exploiting
both local and global structural information, is introduced to rank the degree
of outlierness, and an adaptive weighting transform model based on the double
sigmoid function is proposed to adjust geodesic distances. The efficiency of the
proposed ORGK-means algorithm in clustering high-dimensional data was eval-
uated using synthetic and real world remote sensing spectral data. The numerical
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results on the overall clustering accuracy and the average precision showed the
utility of the proposed algorithm.
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