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Abstract. In the study of complex networks, vertex centrality measures
are used to identify the most important vertices within a graph. A related
problem is that of measuring the centrality of an edge. In this paper, we
propose a novel edge centrality index rooted in quantum information.
More specifically, we measure the importance of an edge in terms of the
contribution that it gives to the Von Neumann entropy of the graph. We
show that this can be computed in terms of the Holevo quantity, a well
known quantum information theoretical measure. While computing the
Von Neumann entropy and hence the Holevo quantity requires computing
the spectrum of the graph Laplacian, we show how to obtain a simplified
measure through a quadratic approximation of the Shannon entropy.
This in turns shows that the proposed centrality measure is strongly
correlated with the negative degree centrality on the line graph. We
evaluate our centrality measure through an extensive set of experiments
on real-world as well as synthetic networks, and we compare it against
commonly used alternative measures.

Keywords: Edge centrality · Complex networks · Holevo quantity ·
Quantum information

1 Introduction

The study of complex networks has recently attracted increasing interest in the
scientific community, as it allows to model and understand a large number of
real-world systems [4]. This is particularly relevant given the growing amount of
available data describing the interactions and dynamics of real-world systems.
Typical examples of complex networks include metabolic networks [8], protein
interactions [7], brain networks [17] and scientific collaboration networks [11].

One of the key problems in network science is that of identifying the most
relevant nodes in a network. This importance measure is usually called the cen-
trality of a vertex [9]. A number of centrality indices have been introduced in
the literature [2,4–6,10,14], each of them capturing different but equally sig-
nificant aspects of vertex importance. Commonly encountered examples are the
degree, closeness and betweenness centrality [5,6,10]. A closely related problem
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is that of measuring the centrality of an edge [3,9]. Most edge centrality indices
are developed as a variant of vertex centrality ones. A common way to define
an edge centrality index is to apply the corresponding vertex centrality to the
line graph of the network being studied. Recall that, given a graph G = (V,E),
the line graph L(G) = (V ′, E′) is a dual representation of G where each node
uv ∈ V ′ corresponds to an edge (u, v) ∈ E, and there exists and edge between
two nodes of L(G) if and only if the corresponding edges of G share a vertex.
By measuring the vertex centrality on L(G), one can map it back to the edges
of G to obtain a measure of edge centrality. However, as observed by Koschützki
et al. [9], this approach does not yield the same result as the direct definition of
the edge centrality on G. Moreover, the size of the line graph is quadratic in the
size of the original graph, thus making it hard to scale to large networks when
the chosen centrality measure is computationally demanding.

In this paper, we introduce a novel edge centrality measure rooted in quantum
information theory. More specifically, we propose to measure the importance
of an edge in terms of its contribution to the Von Neumann entropy of the
network [13]. This can be measured in terms of the Holevo quantity, a well
known quantum information theoretical measure that has recently been applied
to the analysis of graph structure [15,16]. We also show how to approximate
this quantity in the case of large networks, where computing the exact value
of the Von Neumann entropy is not feasible. This in turns highlights a strong
connection between the Holevo edge centrality and the negative degree centrality
on the line graph. Finally, we perform a series of experiments to evaluate the
proposed edge centrality measure on real-world as well as synthetic graphs, and
we compare it against a number of widely used alternative measures.

The remainder of the paper is organised as follows: Sect. 2 reviews the nec-
essary quantum information theoretical background and Sect. 3 introduces the
proposed edge centrality measure. The experimental evaluation is presented in
Sect. 4 and Sect. 5 concludes the paper.

2 Quantum Information Theoretical Background

2.1 Quantum States and Von Neumann Entropy

In quantum mechanics, a system can be either in a pure state or a mixed state.
Using the Dirac notation, a pure state is represented as a column vector |ψi〉.
A mixed state, on the other hand, is an ensemble of pure quantum states |ψi〉,
each with probability pi. The density operator of such a system is a positive
unit-trace matrix defined as

ρ =
∑

i

pi |ψi〉 〈ψi| . (1)

The Von Neumann entropy [12] S of a mixed state is defined in terms of the
trace and logarithm of the density operator ρ

S(ρ) = − tr(ρ ln ρ) = −
∑

i

λi ln(λi) (2)
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where λ1, . . . , λn are the eigenvalues of ρ. If 〈ψi| ρ |ψi〉 = 1, i.e., the quantum
system is a pure state |ψi〉 with probability pi = 1, then the Von Neumann
entropy S(ρ) = − tr(ρ ln ρ) is zero. On other hand, a mixed state always has a
non-zero Von Neumann entropy associated with it.

2.2 A Mixed State from the Graph Laplacian

Let G = (V,E) be a simple graph with n vertices and m edges. We assign
the vertices of G to the elements of the standard basis of an Hilbert space HG,
{|1〉 , |2〉 , ..., |n〉}. Here |i〉 denotes a column vector where 1 is at the i-th position.
The graph Laplacian of G is the matrix L = D − A, where A is the adjacency
matrix of G and D is the diagonal matrix with elements d(u) =

∑n
v=1 A(u, v).

For each edge ei,j , we define a pure state

|ei,j〉 :=
1√
2
(|i〉 − |j〉). (3)

Then we can define the mixed state { 1
m , |ei,j〉} with density matrix

ρ(G) :=
1
m

∑

{i,j}∈E

|ei,j〉 〈ei,j | =
1

2m
L(G). (4)

Let us define the Hilbert spaces HV
∼= C

V , with orthonormal basis av, where
v ∈ V , and HE

∼= C
E , with orthonormal basis bu,v, where {u, v} ∈ E. It can

be shown that the graph Laplacian corresponds to the partial trace of a rank-
1 operator on HV ⊗ HE which is determined by the graph structure [1]. As a
consequence, the Von Neumann entropy of ρ(G) can be interpreted as a measure
of the amount of entanglement between a system corresponding to the vertices
and a system corresponding to the edges of the graph [1].

2.3 Holevo Quantity of a Graph Decomposition

Given a graph G, we can define an ensemble in terms of its subgraphs. Recall that
a decomposition of a graph G is a set of subgraphs H1,H2, ...,Hk that partition
the edges of G, i.e., for all i, j,

⋃k
i=1 Hi = G and E(Hi)∩E(Hj) = ∅, where E(G)

denotes the edge set of G. Notice that isolated vertices do not contribute to a
decomposition, so each Hi can always be seen a subgraph that contains all the
vertices. If we let ρ(H1), ρ(H2), ..., ρ(Hk) be the mixed states of the subgraphs,
the probability of Hi in the mixture ρ(G) is given by |E(Hi)|/|E(G)|. Thus, we
can generalise Eq. 4 and write

ρ(G) =
k∑

i=1

|E(Hi)|
|E(G)| ρ(Hi). (5)

Consider a graph G and its decomposition H1,H2, ...,Hk with corresponding
states ρ(H1), ρ(H2), ..., ρ(Hk). Let us assign ρ(H1), ρ(H2), ..., ρ(Hk) to the ele-
ments of an alphabet {a1, a2, ..., ak}. In quantum information theory, the classical
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concepts of uncertainty and entropy are extended to deal with quantum states,
where uncertainty about the state of a quantum system can be expressed using
the density matrix formalism. Assume a source emits letters from the alpha-
bet and that the letter ai is emitted with probability pi = |E(Hi)|/|E(G)|. An
upper bound to the accessible information is given by the Holevo quantity of the
ensemble {pi, ρ(Hi)}:

χ({pi, ρ(Hi)}) = S

(
k∑

i=1

piρ(Hi)

)
−

k∑

i=1

piS(ρ(Hi)) (6)

3 Holevo Edge Centrality

We propose to measure the centrality of an edge as follows. Let G = (V,E) be
a graph with |E| = m, and let He and He denote the subgraphs over edge sets
{e} and E \ {e}, respectively. Note that S(ρ(He)) = 0 and

m − 1
m

ρ(He) +
1
m

ρ(He) = ρ(G). (7)

Then the Holevo quantity of the ensemble {(m − 1/m,He), (1/m,He)} is

χ

({(
m − 1

m
,He

)
,

(
1
m

,He

)})
= S (ρ(G)) − m − 1

m
S (ρ(He)) (8)

Definition 1. For a graph G = (V,E), the Holevo edge centrality of e ∈ E is

HC(e) = χ

({(
m − 1

m
,He

)
,

(
1
m

,He

)})
(9)

When ranking the edges of a graph G, the scaling factor (m − 1)/m is constant
for all the edges and thus can be safely ignored. The Holevo edge centrality of an
edge e is then a measure of the difference in Von Neumann entropy between the
original graph and the graph where e has been removed. In other words, it can
be seen as a measure of the contribution of e to the Von Neumann entropy of
G. From a physical perspective, this can also be interpreted as the variation of
the entanglement between between a system corresponding to the vertices and
a system corresponding to the edges of the graph (see the interpretation of the
graph Laplacian in Sect. 2).

3.1 Relation with Degree Centrality

In this subsection we investigate the nature of the structural characteristics
encapsulated by the Holevo edge centrality. Let G = (V,E) be a graph with n
nodes, and let In be the identity matrix of size n. We rewrite the Shannon entropy
−∑

i λi ln(λi) using the second order polynomial approximation k
∑

i λi(1−λi),
where the value of k depends on the dimension of the simplex. We obtain

S(ρ(G)) = − tr (ρ(G) ln ρ(G)) ≈ |V | ln(|V |)
|V | − 1

tr (ρ(G)(In − ρ(G))) (10)
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By noting that ρ(G) = L(G)/(2m) and using some simple algebra, we can rewrite
Eq. 10 as

S(ρ(G)) ≈ |V | ln(|V |)
|V | − 1

(
1 − 1

4m2

∑

v∈V

(
d2(v) + d(v)

)
)

(11)

where d(v) denotes the degree of the vertex v. This in turn allows us to approx-
imate Eq. 9 as

HC(e) = S(ρ(G)) − S(ρ(He)) ≈ −|V | ln(|V |)
|V | − 1

d(u) + d(w)
2m2

(12)

where e = (u,w), we omitted the scaling factor (m − 1)/m and we made use of
the fact that 1/(4m2) ≈ 1/(4(m − 1)2).

Equation 12 shows that the quadratic approximation of the Holevo central-
ity is (almost) linearly correlated with the negative edge degree centrality (see
Sect. 4). This in turn gives us an important insight into the nature of the Holevo
edge centrality. However, the quadratic approximation captures only part of
the structural information encapsulated by the exact centrality measure. In
particular, Passerini and Severini [13] suggested that those edges that create
longer paths, nontrivial symmetries and connected components result in a larger
increase of the Von Neumann entropy. Therefore, such edges should have a high
centrality value, higher than what the degree information alone would suggest.

Figure 1 shows an example of such a graph, where the central bridge has
a high value of the exact Holevo edge centrality, but a relatively low value of
the approximated edge centrality. In Fig. 1(b), the blue edges have all the same
degree centrality, i.e., they are all adjacent to four other edges. However, from a
structural point of view, the removal of the edges connecting the two cliques at
the ends of the barbell graph would have a higher impact, as it would disconnect
the graph. As shown in Fig. 1(a), the Holevo centrality captures this structural
difference, i.e., the weight assigned to the two bridges (blue) is higher than that
assigned to the edges in the cliques (red).

(a) Exact (b) Approximated

Fig. 1. The Holevo edge centrality and its quadratic approximation on a barbell graph.
Here the edge thickness is proportional to the value of the centrality. In (a) the blue
edges have a higher centrality than the red edges, but in (b) all these edges (blue) have
the same degree centrality. (Color figure online)
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4 Experimental Evaluation

In the previous sections we have derived an expression for the Holevo edge cen-
trality, both exact and approximated. Here, we first evaluate this measure on a
number of standard networks, and we compare it against other well known edge
centralities. We also analyse the behaviour of the proposed centrality measure
when graphs endure structural changes.

4.1 Experimental Setup

We perform our experiments on two well known real-world networks, the
Florentine families graph and the Karate club network. We then consider the
following edge centrality measures:

Degree Centrality: The centrality of an edge e is computed as the degree of
the corresponding vertex in the line graph. The idea underpinning the vertex
degree centrality is that the importance of a node is proportional to the number
of connections it has to other nodes. This is the simplest edge centrality measure,
but also the one with the lowest computational complexity.

Betweenness Centrality: The centrality of an edge e is the sum of the fraction
of all-pairs shortest paths that pass through e, i.e., EBC(e) =

∑
u,v∈V

σ(u,v|e)
σ(u,v)

where V is the set of nodes, σ(u, v) and σ(u, v|e) denote the number of shortest
paths between u and v and the number of shortest paths between u and v that
pass through e, respectively [3]. An edge with a high betweenness centrality has
a large influence on the transfer of information through the network and thus
it can be seen as an important bridge-like connector between two parts of a
network. Note that the implementation we use does not rely on the line graph,
but measure the centrality of an edge directly on the original graph.

Flow Centrality: This centrality measure is also known as random-walk
betweenness centrality [10]. While the betweenness centrality measures the
importance of an edge e in terms of shortest-paths between pairs of nodes that
pass through e, the flow centrality is proportional to the expected number of
times a random walk passes through the edge e when going from u to v. Simi-
larly to the betweenness centrality, here we measure the flow centrality directly
on the original graph.

4.2 Edge Centrality in Real-World Networks

In order to compare the Holevo edge centrality with the measures described in
the previous subsection, we compute, for each network, the correlation between
the Holevo quantity and the alternative measures. Figure 2 shows the value of
these centralities on the Florentine families graph and the Karate club network.
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(a) Degree (b) Betweenness (c) Flow (d) Holevo

(e) Degree (f) Betweenness (g) Flow (h) Holevo

Fig. 2. Edge centralities on the Florentine families network (a–d) and the Karate club
network (e–h). A thicker edge indicates a higher value of the centrality.

(a) Florentine Families (b) Karate Club

Fig. 3. Correlation matrices for the centrality measure on the Florentine family network
and the karate club network. DC, BC, FC, and HC denote the degree, betweenness,
flow and Holevo centralities, respectively.

In these plots, the thickness of an edge is proportional to the magnitude of
the centrality index. Figure 3, on the other hand, shows the correlation matrix
between the different centralities. Here DC, BC, FC and HC denote the degree,
betweenness, flow and Holevo centrality, respectively.

The Holevo centrality is always strongly negatively correlated with the degree
centrality. This is in accordance with the properties discussed in Sect. 3. However,
there are some significant differences. In general, the Holevo centrality is higher
on edges that connect low degree nodes. In this sense, it can be seen as a measure
of peripherality, rather than centrality. However, when two edges have the same
degree centrality, edges that would disconnect the network or break structural
symmetries are assigned a higher weight, as Fig. 1 shows. Similarly, in Fig. 4(a)
the three edges highlighted in blue have the same degree centrality, but the same
edges in Fig. 4(b) have different Holevo centralities. In fact, the removal of the
red edge does not result in significant structural changes, while the removal of
one of the blue edges increases the length of the tail.



150 J. Lockhart et al.

(a) Degree (b) Holevo

Fig. 4. Toy example showing the difference in the structural information captured by
the degree and Holevo centralities. (Color figure online)

4.3 Robustness Analysis

We then investigate the behaviour of the Holevo edge centrality when the graph
undergoes structural perturbations. To this end, given an initial graph, we grad-
ually add or delete edges according to an increasing probability p. Figure 5 shows
an instance of the noise addition process. Starting from a randomly generated
graph, we compute the Holevo edge centrality for all its edges. Then, we per-
turb the graph structure with a given probability p and again we recompute
the Holevo edge centrality for all the graph edges. We compute the correlation
between the Holevo centrality of the edges of the original graph and its noisy
counterpart. More specifically, we measure the correlation between the central-
ities of the edges that belong to the intersection of their edge sets. In other
words, we analyse how the centrality changes during the perturbation process,
with respect to the starting state.

Since we are interested in the variation of the Holevo centrality as the graph
structure changes, we use three different random graph models to generate the
initial graph: (1) the Erdös-Rényi model, (2) the Watts-Strogatz model and

Fig. 5. Perturbation process: on the left, adjacency matrix and plot of the starting
graph; in the middle, the edited graph; on the right, the differences between initial and
modified graph are highlighted. (Color figure online)
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(b) WattsStrogatz
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(c) Preferential Attach-
ment

Fig. 6. Average correlation between the centrality of the edges of the original graph
and those of increasingly noisy version of it. The different columns refer to different
starting graphs: (a) Erdös-Rényi, (b) WattsStrogatz and (c) Preferential Attachment.

(3) the Preferential Attachment model. For each model, we generate a starting
graph with the same number of nodes n and we create 100 noisy instances as p
varies from 0.01 to 0.3. We perform the same experiment for both the Holevo
centrality and the betweenness centrality.

Figure 6 shows the average correlation as we perturb the graph structure,
for both the Holevo and betweenness centrality. As expected, in both cases the
correlation decreases as the similarity between the original graph and the edited
one decreases. However, while the correlation for centrality measures decreases
rapidly in the case of ErdösRényi graphs, on scale-free graphs our centrality
measure decreases linearly with the value of p, while the betweenness centrality
drops significantly more quickly. On the other hand, we observe the opposite
behaviour on small-world graphs. This can be explained by noting that in small-
world graphs there exist multiple alternative paths between every pair of nodes,
and thus the betweenness centrality is less affected by structural modifications.
On the other hand, in scale-free graphs most shortest-paths pass through a
hub, and thus adding a random edge can create shortcuts that greatly affect the
value of the betweenness centrality. The Holevo centrality, however, assigns large
weights to long tails and leaves, which are less affected by the structural noise.

5 Conclusion

In this paper we have introduced a novel edge centrality measure based on
the quantum information theoretical concept of Holevo quantity. We measured
the importance of an edge in terms of the difference in Von Neumann entropy
between the original graph and the graph where that edge has been remove. We
showed that by taking a quadratic approximation of the Von Neumann entropy
we obtain an approximated value of the Holevo centrality that is proportional
to the negative degree centrality. We performed a series of experiments on both
real-world and synthetic networks and we compared the proposed centrality
measure to widely used alternatives. Future work will investigate higher order
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approximations of this centrality measure as well as the possibility of defining
network growth models based on the Holevo quantity.
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