
Improving Priority Promotion for Parity Games

Massimo Benerecetti1, Daniele Dell’Erba1, and Fabio Mogavero2(B)
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Abstract. Parity games are two-player infinite-duration games on
graphs that play a crucial role in various fields of theoretical computer
science. Finding efficient algorithms to solve these games in practice is
widely acknowledged as a core problem in formal verification, as it leads
to efficient solutions of the model-checking and satisfiability problems
of expressive temporal logics, e.g., the modal µCalculus. Their solu-
tion can be reduced to the problem of identifying sets of positions of
the game, called dominions, in each of which a player can force a win
by remaining in the set forever. Recently, a novel technique to compute
dominions, called priority promotion, has been proposed, which is based
on the notions of quasi dominion, a relaxed form of dominion, and domin-
ion space. The underlying framework is general enough to accommodate
different instantiations of the solution procedure, whose correctness is
ensured by the nature of the space itself. In this paper we propose a
new such instantiation, called region recovery, that tries to reduce the
possible exponential behaviours exhibited by the original method in the
worst case. The resulting procedure not only often outperforms the orig-
inal priority promotion approach, but so far no exponential worst case
is known.

1 Introduction

The abstract concept of game has proved to be a fruitful metaphor in theoretical
computer science [1]. Several decision problems can, indeed, be encoded as path-
forming games on graph, where a player willing to achieve a certain goal, usually
the verification of some property on the plays derived from the original prob-
lem, has to face an opponent whose aim is to pursue the exact opposite task.
One of the most prominent instances of this connection is represented by the
notion of parity game [18], a simple two-player turn-based perfect-information
game played on directed graphs, whose nodes are labelled with natural numbers
called priorities. The goal of the first (resp., second) player, a.k.a., even (resp.,
odd) player, is to force a play π, whose maximal priority occurring infinitely
often along π is of even (resp., odd) parity. The importance of these games is
due to the numerous applications in the area of system specification, verifica-
tion, and synthesis, where it is used as algorithmic back-end of satisfiability and
model-checking procedures for temporal logics [6,8,16], and as a core for several
techniques employed in automata theory [7,10,15,17]. In particular, it has been
proved to be linear-time interreducible with the model-checking problem for the
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modal μCalculus [8] and it is closely related to other games of infinite dura-
tion, such as mean payoff [5,11], discounted payoff [24], simple stochastic [4],
and energy [3] games. Besides the practical importance, parity games are also
interesting from a computational complexity point of view, since their solution
problem is one of the few inhabitants of the UPTime ∩ CoUPTime class [12].
That result improves the NPTime ∩ CoNPTime membership [8], which easily
follows from the property of memoryless determinacy [7,18]. Still open is the
question about the membership in PTime. The literature on the topic is reach
of algorithms for solving parity games, which can be mainly classified into two
families. The first one contains the algorithms that, by employing a divide et
impera approach, recursively decompose the problem into subproblems, whose
solutions are then suitably assembled to obtain the desired result. In this cat-
egory fall, for example, Zielonka’s recursive algorithm [23] and its dominion
decomposition [14] and big step [19] improvements. The second family, instead,
groups together those algorithms that try to compute a winning strategy for
the two players on the entire game. The principal members of this category
are represented by Jurdziński’s progress measure algorithm [13] and the strategy
improvement approaches [20–22].

Recently, a new divide et impera solution algorithm, called priority promo-
tion (PP, for short), has been proposed in [2], which is fully based on the decom-
position of the winning regions into dominions. The idea is to find a domin-
ion for some of the two players and then remove it from the game, thereby
allowing for a recursive solution. The important difference w.r.t. the other two
approaches [14,19] based on the same notion is that these procedures only look
for dominions of a certain size in order to speed up classic Zielonka’s algorithm in
the worst case. Consequently, they strongly rely on this algorithm for their com-
pleteness. On the contrary, the PP procedure autonomously computes dominions
of any size, by suitably composing quasi dominions, a weaker notion of domin-
ion. Intuitively, a quasi dominion Q for player α ∈ {0, 1} is a set of vertices
from each of which player α can enforce a winning play that never leaves the
region, unless one of the following two conditions holds: (i) the opponent α can
escape from Q (i.e., there is an edge from a vertex of α exiting from Q) or (ii)
the only choice for player α itself is to exit from Q (i.e., no edge from a ver-
tex of α remains in Q). A crucial feature of quasi dominion is that they can
be ordered by assigning to each of them a priority corresponding to an under-
approximation of the best value for α the opponent α can be forced to visit
along any play exiting from it. Indeed, under suitable and easy to check assump-
tions, a higher priority quasi α-dominion Q1 and a lower priority one Q2, can
be merged into a single quasi α-dominion of the higher priority, thus improving
the approximation for Q2. This merging operation is called a priority promotion
of Q2 to Q1. The PP solution procedure has been shown to be very effective in
practice and to often significantly outperform all other solvers. Moreover, it also
improves the space complexity of the best know algorithm by an exponential fac-
tor, since it only needs O(n · log k) space against the O(k · n · log n) required by
Jurdziński’s approach [13], where n and k are, respectively, the numbers of ver-
texes and priorities of the game. Unfortunately, the PP algorithm also exhibits
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exponential behaviours on a simple family of games. This is due to the fact that,
in general, promotions to higher priorities requires resetting previously computed
quasi dominions at lower ones.

In order to mitigate the problem, we propose in this paper a new algorithm,
called RR for region recovery, which is built on top of PP and is based on a form
of conservation property of quasi dominions. This property provides sufficient
conditions for a subset a quasi α-dominion to be still a quasi α-dominion. By
exploiting this property, the RR algorithm can significantly reduce the execution
of the resetting phase, which is now limited to the cases when the conservation
property is not guaranteed to hold. For the resulting procedure no exponential
worst case has been found yet. Experiments on randomly generated games also
show that the new approach performs significantly better than PP in practice,
while still preserving the same space complexity.

2 Preliminaries

Let us first briefly recall the notation and basic definitions concerning parity
games that expert readers can simply skip. We refer to [1,23] for a comprehensive
presentation of the subject.

Given a partial function f : A ⇀ B, by dom(f) ⊆ A and rng(f) ⊆ B we denote
the domain and range of f, respectively. In addition, � denotes the completion
operator that, taken f and another partial function g : A ⇀ B, returns the partial
function f � g � (f \ dom(g)) ∪ g : A ⇀ B, which is equal to g on its domain and
assumes the same values of f on the remaining part of A.

A two-player turn-based arena is a tuple A = 〈Ps0,Ps1,Mv〉, with Ps0 ∩
Ps1 = ∅ and Ps � Ps0 ∪ Ps1, such that 〈Ps,Mv〉 is a finite directed graph. Ps0

(resp., Ps1) is the set of positions of player 0 (resp., 1) and Mv ⊆ Ps × Ps is a
left-total relation describing all possible moves. A path in V ⊆ Ps is a finite or
infinite sequence π ∈ Pth(V) of positions in V compatible with the move rela-
tion, i.e., (πi, πi+1) ∈ Mv , for all i ∈ [0, |π| − 1[. For a finite path π, with lst(π)
we denote the last position of π. A positional strategy for player α ∈ {0, 1} on
V ⊆ Ps is a partial function σα ∈ Strα(V) ⊆ (V ∩ Psα) ⇀ V, mapping each
α-position v ∈ dom(σα) to position σα(v) compatible with the move relation,
i.e., (v, σα(v)) ∈ Mv . With Strα(V) we denote the set of all α-strategies on V.
A play in V ⊆ Ps from a position v ∈ V w.r.t. a pair of strategies (σ0, σ1) ∈
Str0(V)×Str1(V), called ((σ0, σ1), v)-play, is a path π ∈ Pth(V) such that π0 = v
and, for all i ∈ [0, |π| − 1[, if πi ∈ Ps0 then πi+1 = σ0(πi) else πi+1 = σ1(πi).
The play function play : (Str0(V) × Str1(V)) × V → Pth(V) returns, for each
position v ∈ V and pair of strategies (σ0, σ1) ∈ Str0(V) × Str1(V), the maximal
((σ0, σ1), v)-play play((σ0, σ1), v).

A parity game is a tuple � = 〈A,Pr, pr〉, where A is an arena, Pr ⊂ N is
a finite set of priorities, and pr : Ps → Pr is a priority function assigning a
priority to each position. We denote with PG the class of parity games. The
priority function can be naturally extended to games, sets of positions, and
paths as follows: pr(�) � maxv∈Ps pr(v); for a set of positions V ⊆ Ps, we set
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pr(V) � maxv∈V pr(v); for a path π ∈ Pth, we set pr(π) � maxi∈[0,|π|[ pr(πi), if π

is finite, and pr(π) � lim supi∈N pr(πi), otherwise. A set of positions V ⊆ Ps is
an α-dominion, with α ∈ {0, 1}, if there exists an α-strategy σα ∈ Strα(V) such
that, for all α-strategies σα ∈ Strα(V) and positions v ∈ V, the induced play
π = play((σ0, σ1), v) is infinite and pr(π) ≡2 α. In other words, σα only induces
on V infinite plays whose maximal priority visited infinitely often has parity α.
The maximal α-dominion in a game, denoted Wnα, is called winning region of
player α. By �\V we denote the maximal subgame of � with set of positions Ps′

contained in Ps\V and move relation Mv ′ equal to the restriction of Mv to Ps′.
The α-predecessor of V, in symbols preα(V) � {v ∈ Psα : Mv(v) ∩ V =

∅} ∪ {v ∈ Psα : Mv(v) ⊆ V}, collects the positions from which player α can
force the game to reach some position in V with a single move. The α-attractor
atrα(V) generalises the notion of α-predecessor preα(V) to an arbitrary number
of moves. Thus, it corresponds to the least fix-point of that operator. When
V = atrα(V), we say that V is α-maximal. Intuitively, V is α-maximal if player
α cannot force any position outside V to enter this set. For such a V, the set of
positions of the subgame � \ V is precisely Ps \ V. Finally, the α-escape of V,
formally escα(V) � preα(Ps \ V) ∩ V, contains the positions in V from which α
can leave V in one move. The dual notion of α-interior, defined as intα(V) �
(V∩Psα)\ escα(V), contains the α-positions from which α cannot escape with a
single move, while the notion of α-stay, defined as stayα(V) � (V∩Psα)\escα(V),
denotes the α-positions from which α has a move to remain in V.

3 Quasi Dominion Approach

The priority promotion algorithm proposed in [2] attacks the problem of solving
a parity game � by computing one of its dominions D, for some player α ∈ {0, 1},
at a time. Indeed, once the α-attractor D� of D is removed from �, the smaller
game � \ D� is obtained, whose positions are winning for one player iff they are
winning for the same player in the original game. This allows for decomposing the
problem of solving a parity game to that of iteratively finding its dominions [14].

In order to solve the dominion problem, the idea described in [2] is to
introduce a much weaker notion than that of dominion, called quasi dominion,
which satisfies, under suitable conditions, a composition property that eventu-
ally brings to the construction of a dominion. Intuitively, a quasi α-dominion Q
is a set of positions on which player α has a witness strategy σα, whose induced
plays either remain inside Q forever and are winning for α or can exit from Q
passing through a specific set of escape positions.

Definition 1 (Quasi Dominion [2]). Let � ∈ PG be a game and α ∈ {0, 1}
a player. A non-empty set of positions Q ⊆ Ps is a quasi α-dominion in � if
there exists an α-strategy σα ∈ Strα(Q), called α-witness for Q, such that, for
all α-strategies σα ∈ Strα(Q), with intα(Q) ⊆ dom(σα), and positions v ∈ Q,
the induced play π = play((σ0, σ1), v) satisfies pr(π) ≡2 α, if π is infinite, and
lst(π) ∈ escα(Q), otherwise.
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Observe that, if all the plays induced by the witness σα remain in the set Q
forever, this is actually an α-dominion and, therefore, a subset of the winning
region Wnα of α, with σα the projection over Q of some α-winning strategy on
the entire game. In this case, the escape set of Q is empty, i.e., escα(Q) = ∅,
and Q is said to be α-closed. In general, however, a quasi α-dominion Q that is
not an α-dominion, i.e., such that escα(Q) = ∅, need not be a subset of Wnα

and it is called α-open. Indeed, in this case, some induced play may not satisfy
the winning condition for that player once exited from Q, e.g., by visiting a
cycle containing a position with maximal priority of parity α. The set of triples
(Q, σ, α) ∈ 2Ps × Str × {0, 1}, where Q is a quasi α-dominion having σ as one
of its α-witnesses, is denoted by QD, and is partitioned into the sets QD− and
QD+ of open and closed quasi α-dominion triples, respectively.

Similarly to the other divide et impera techniques proposed in the literature,
the one reported in [2], called PP, does not make any algorithmic use of the
witness strategy σα associated with a quasi dominion Q, as this notion is only
employed in the correctness proof. In this work, instead, we strongly exploit the
effective computability of such a witness in order to considerably alleviate the
collateral effects of a reset operation required by PP to ensure the soundness of
the approach, which is also responsible for the exponential worst cases. Indeed,
this algorithm needs to forget previously computed partial results after each
compositions of two quasi-dominions, since the information computed during
the entire process cannot ensure that these results can be still correctly used
in the search for a dominion. In this work, instead, we exploit the following
simple observation on the witness strategies, formally reported in Lemma 1, to
determine which partial results can be safely preserved.

Fig. 1. Witness strategy

In general, quasi α-dominions are not closed
under restriction. For example, consider the quasi
1-dominion Q� = {a, c, d} of Fig. 1 with unique 1-
witness strategy σ� = {c �→ a, d �→ c} and its subset
Q = {d}. It is quite immediate to see that Q is not
a quasi 1-dominion, since esc0(Q) = ∅, but player
1 does not have a strategy that induces infinite 1-
winning plays that remain in Q. Indeed, σ� requires
player 1 to exit from Q by going from d to c. On the
contrary, the subset Q = {c, d} is still a 1-dominion
with 1-witness strategy σ = {d �→ c} = σ��stay1(Q), since esc0(Q) = {c}. Hence,
the restriction σ of σ� to stay1(Q) = {d} is still a well-defined strategy on Q.
Inspired by this observation, we provide the following sufficient criterion for a
subset Q of a quasi α-dominion Q� to be still a quasi α-dominion.

Lemma 1 (Witness Strategy). Given a quasi α-dominion Q� having σ� ∈
Strα(Q�) as α-witness and a subset of positions Q ⊆ Q�, the restriction
σ � σ��stayα(Q) is an α-witness for Q iff σ ∈ Strα(Q).

The proof-idea behind this lemma is very simple. Any infinite play induced
by the restriction of σ on Q is necessarily winning for player α, since it is coherent



122 M. Benerecetti et al.

with the original α-witness σ� of Q� as well. Now, if σ ∈ Strα(Q), we are also
sure that any finite play ends in escα(Q), as required by the definition of quasi
dominion. Therefore, σ is an α-witness for Q, which is, then, a quasi α-dominion.
On the other hand, if σ ∈ Strα(Q), there exists a finite play induced by σ that
does not terminate in escα(Q). Hence, σ is not an α-witness. In this case, we
cannot ensure that Q is a quasi α-dominion.

Algorithm 1: The Searcher.

signature srcD : SD → QD+
�D

function srcD(s)
1 (Q, σ, α) ← �D(s)
2 if (Q, σ, α) ∈ QD+

�D then
3 return (Q, σ, α)

else
4 return srcD(s ↓D(Q, σ, α))

The priority promotion algorithm
explores a partial order, whose ele-
ments, called states, record informa-
tion about the open quasi dominions
computed along the way. The initial
state of the search is the top element of
the order, where the quasi dominions
are initialised to the sets of positions
with the same priority. At each step, a
new quasi α-dominion Q together with
one of its possible α-witnesses σ is extracted from the current state, by means
of a query operator �, and used to compute a successor state, by means of a
successor operator ↓, if Q is open. If, on the other hand, it is closed, the search
is over. Algorithm 1 implements the dominion search procedure srcD. A compat-
ibility relation � connects the query and the successor operators. The relation
holds between states of the partial order and the qua si dominions triples that
can be extracted by the query operator. Such a relation defines the domain of
the successor operator. The partial order, together with the query and successor
operator and the compatibility relation, forms what is called a dominion space.

Definition 2 (Dominion Space). A dominion space for a game � ∈ PG is a
tuple D�〈�,S,�,�, ↓〉, where (1) S �〈S,�,≺〉 is a well-founded partial order w.r.t.
≺ ⊂ S×S with distinguished element � ∈ S, (2) � ⊆ S ×QD−

�
is the compatibil-

ity relation, (3) � : S → QD� is the query operator mapping each element s ∈ S
to a quasi dominion triple (Q, σ, α)��(s)∈QD� such that, if (Q, σ, α) ∈ QD−

�

then s�(Q, α, σ), and (4) ↓ : � → S is the successor operator mapping each pair
(s, (Q, σ, α)) ∈ � to the element s� � s ↓(Q, σ, α) ∈ S with s�≺s.

The notion of dominion space is quite general and can be instantiated in
different ways, by providing specific query and successor operators. In [2], indeed,
it is shown that the search procedure srcD is sound and complete on any dominion
space D. In addition, its time complexity is linear in the execution depth of
the dominion space, namely the length of the longest chain in the underlying
partial order compatible with the successor operator, while its space complexity
is only logarithmic in the space size, since only one state at the time needs to
be maintained. A specific instantiation of dominion space, called PP dominion
space, is the one proposed and studied in [2]. In the next section, we propose
a different one, called RR dominion space, which crucially exploits Lemma 1 in
order to prevent a considerable amount of useless reset operations after each
quasi dominion composition, to the point that it does not seem obvious whether
an exponential lower bound even exists for this new approach.
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4 Priority Promotion with Region Recovery

In order to instantiate a dominion space, we need to define a suitable query func-
tion to compute quasi dominions and a successor operator to ensure progress in
the search for a closed dominion. The priority promotion algorithm proceeds
as follows. The input game is processed in descending order of priority. At each
step, a subgame of the entire game, obtained by removing the quasi domains pre-
viously computed at higher priorities, is considered. At each priority of parity
α, a quasi α-domain Q is extracted by the query operator from the current sub-
game. If Q is closed in the entire game, the search stops and returns Q as result.
Otherwise, a successor state in the underlying partial order is computed by the
successor operator, depending on whether Q is open in the current subgame or
not. In the first case, the quasi α-dominion is removed from the current subgame
and the search restarts on the new subgame that can only contain positions with
lower priorities. In the second case, Q is merged together with some previously
computed quasi α-dominion with higher priority. Being a dominion space well-
ordered, the search is guaranteed to eventually terminate and return a closed
quasi dominion. The procedure requires the solution of two crucial problems: (a)
extracting a quasi dominion from a subgame and (b) merging together two quasi
α-dominions to obtain a bigger, possibly closed, quasi α-dominion.

Fig. 2. Quasi dominions.

Solving problem (b) is not trivial, since quasi α-
dominions are not, in general, closed under union.
Consider the example in Fig. 2. Both Q1 = {a, c}
and Q2 = {b, d} are quasi 0-dominions. Indeed, σ1 =
{c �→ c} and σ2 = {d �→ d} are the corresponding 0-
witnesses. However, their union Q � Q1 ∪ Q2 is not
a quasi 0-dominion, since the 1-strategy σ = {a �→
b, b �→ a} forces player 0 to lose along any infinite
play starting from either a or b.

A solution to both problems relies on the defin-
ition of a specific class of quasi dominions, called regions. An α-region R of a
game � is a special form of quasi α-dominion of � with the additional require-
ment that all the positions in escα(R) have the maximal priority p � pr(�) ≡2 α
in �. In this case, we say that α-region R has priority p. As a consequence, if
the opponent α can escape from the α-region R, it must visit a position with
the highest priority in it, which is of parity α.

Definition 3 (Region [2]). A quasi α-dominion R is an α-region in � if
pr(�) ≡2 α and all the positions in escα(R) have priority pr(�), i.e., escα(R) ⊆
pr−1(pr(�)).

Observe that, in any parity game, an α-region always exists, for some
α ∈ {0, 1}. In particular, the set of positions of maximal priority in the game
always forms an α-region, with α equal to the parity of that maximal priority.
In addition, the α-attractor of an α-region is always an (α-maximal) α-region.
A closed α-region in a game is clearly an α-dominion in that game. These obser-
vations give us an easy and efficient way to extract a quasi dominion from every
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subgame: collect the α-attractor of the positions with maximal priority p in the
subgame, where p ≡2 α, and assign p as priority of the resulting region R. This
priority, called measure of R, intuitively corresponds to an under-approximation
of the best priority player α can force the opponent α to visit along any play
exiting from R.

Proposition 1 (Region Extension [2]). Let � ∈ PG be a game and R ⊆ Ps
an α-region in �. Then, R� � atrα(R) is an α-maximal α-region in �.

A solution to the second problem, the merging operation, is obtained as
follows. Given an α-region R in some game � and an α-dominion D in a subgame
of � that does not contain R itself, the two sets are merged together, if the only
moves exiting from α-positions of D in the entire game lead to higher priority
α-regions and R has the lowest priority among them. The priority of R is called
the best escape priority of D for α. The correctness of this merging operation is
established by the following proposition.

Proposition 2 (Region Merging [2]). Let � ∈ PG be a game, R ⊆ Ps an α-
region, and D ⊆ Ps�\R an α-dominion in the subgame � \ R. Then, R� � R ∪ D
is an α-region in �. Moreover, if both R and D are α-maximal in � and � \ R,
respectively, then R� is α-maximal in � as well.

1 2 3 4 5

8 a↓ = = a,b,c,d,h,i,j↓ =

7 j,k↓ = =

5 b↓ = b,c,e,f,g,h↓
4 c,d↓ = k↓ =

3 e,f↓ e,f,g,h↑5 d↓ e,f↓ e,f,g

1 g,h↑3 g↑3

0 i↑8

Fig. 3. Running example.

The merging operation is
implemented by promoting all
the positions of α-dominion D to
the measure of R, thus improv-
ing the measure of D. For this
reason, it is called a priority pro-
motion. In [2] it is shown that,
after a promotion to some mea-
sure p, the regions with mea-
sure lower than p might need
to be destroyed, by resetting
all the contained positions to
their original priority. This neces-
sity derives from the fact that
the new promoted region may
attract positions from lower ones,
thereby potentially invalidating
their status as regions. Indeed, in
some cases, the player that wins
by remaining in the region may
even change from α to α. As a
consequence, the reset operation
is, in general, unavoidable. The original priority promotion algorithm applies
the reset operation to all the lower priority regions. As shown in [2], the reset
operation is the main source of the exponential behaviours of the approach. We
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shall propose here a different approach that, based on the result of Lemma 1,
can drastically reduce the number of resets needed.

Figure 3 illustrates the dominion search procedure on an example game. Dia-
mond shaped positions belong to player 0 and square shaped ones to opponent 1.
Each cell of the table contains a computed region. The downward arrow denotes
that the region is open in the subgame where is computed, while the upward
arrow means that the region gets to be promoted to the priority in the subscript.
The measure of the region correspond to the index of the row in which the region
is contained. Empty slots in the table represent empty regions, while a slot with
symbol = in it means that the it contains the same region as the corresponding
slot in the previous column.

Assume the dashed move (g,k) is not present in the game. Then, following
the idea sketched above, the first region obtained is the single-position 0-region
{a} at priority 8, which is open because of the two moves leading to e and i. At
priority 7, the open 1-region {j,k} is formed, by attracting k to j according to
Proposition 1, which is open in the subgame where {a} is removed. The proce-
dures proceeds similarly, processing all the priorities down to 1 and extracting
the regions reported in the first column of the table of Fig. 3. Those are all open
regions in their corresponding subgames, except for the 1-region {g,h} at pri-
ority 1, which is closed in its subgames but not in the entire game. This region
has a move (g,f) leading to region 3 and Proposition 2 is then applied, which
promotes this region to 3, obtaining a new 1-region {e,f,g,h} with measure 3.
This one is again closed in its subgames and, due to move (h,b), triggers another
application of Proposition 2, which promotes all of its positions to region 5 and
resets the positions in region 4 to their original priority. The search resumes at
priority 5 and the maximization of that region attracts position c as well, forming
region {b,c,e,f,g,h} with measure 5. In the resulting subgame, the procedure
now extracts the open 1-region {d} at priority 3. The residual game only contains
position i, that forms a closed 0-region with a move leading to region 8. This
triggers a new promotion that resets the position of all the regions with measure
lower than 8, namely the regions with measures 7 and 5. After maximization of
the target region, positions b, c, d, h, and j are all attracted to form the 0-region
in the first row of column 4. The reset of previous region 7 releases position k
which now forms an open 0-region of priority 4. Similarly, positions e and f, reset
by the last promotion, form an open 1-region at priority 3. Finally, at priority
1 the closed 1-region {g} is extracted and promoted, by move (g,f), to region
3, forming the set {e,f,g}. Since no move from 0-positions lead outside the set,
this region is closed in the entire game and a 1-dominion has been found.

During the simulation above, three resets have been performed. The first
one resets 0-region {c, d} with measure 4 in column 2, after promotion of
region {e, f, g, h} to priority 5. Indeed, the maximization of the resulting region
{b, e, f, g, h} attracts position c, leaving the set {d} with measure 4. However,
according to Definition 1, this is not a quasi 0-dominion, since its 1-escape is
empty and player 1 can win by remaining in the set forever. After the promotion
of region {i} to 8 in column 3, both the regions in rows 7 and 5 get reset. The
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maximization of the target region of the promotion, i.e., {a, i}, attracts posi-
tions b, c, d, h, and j. As a consequence, for similar reasons described above
for position d, the residual position k at priority 7 must be reset to its original
priority. Notice that, in both the considered cases, Lemma 1 does not apply.
Indeed, the 0-witness strategy for region {c, d} is σ = {d �→ c}, the 0-stay set
of the residual region {d} is the set itself, and the restriction of σ to {d} leads
outside {d}, hence, it does not belong to Str0({d}). A similar argument applies
to set {k} as well.

As opposed to this case, however, the reset of region 5 can be avoided, thanks
to Lemma 1. Indeed, a 1-witness for that region is σ = {e �→ g, f �→ e} and, in
this case, the residual set after the promotion and the maximization of the target
region 8 is {e, f, g}, whose 1-stay set is {e, f}. The restriction of σ to that set is,
however, contained in Str1({e, f}) and the lemma applies. Note that, avoiding
the reset of region with measure 5, containing {e, f, g} in column 4, would also
avoid the computation of regions 4, 3, and 1, and the promotion of region 1 to 3
that leads to column 5. Indeed, the residual region 5 is a 1-region, according to
the lemma, and is also closed in the entire game.

If, however, the dashed move (g, k) was added to the game, the reset of
region 5 would be necessary. The reason is that, in this case, the 0-escape set
{e, f, g} would contain position g, which can escape to position k. As a conse-
quence, {e, f, g} would not be a 1-region as the escape set contains a position
with priority non-maximal in the subgame, contrary to what is required by Def-
inition 3.

In summary, we can exploit Lemma 1 and Definition 3 to avoid resetting
regions after a promotion whenever (i) the witness strategy of the residual region
satisfies the condition of the lemma, and (ii) its escape set only contains positions
of maximal priorities in the subgame. This is the core observation that allows
the definition of the RR approach, which is formally defined in the following.

The RR Dominion Space. We can now provide the formal account of the RR
dominion space. We shall denote with Rg the set of region triples in � and with
Rg− and Rg+ the sets of open and closed region triples, respectively.

Similarly to the PP algorithm, during the search for a dominion, the com-
puted regions, together with their current measure, are kept track of by means
of an auxiliary priority function r ∈ Δ � Ps → Pr, called region function. Given
a priority p ∈ Pr, we denote by r(≥p) (resp., r(>p), r(<p), and r( �=p)) the
function obtained by restricting the domain of r to the positions with mea-
sure greater than or equal to p (resp., greater than, lower than, and differ-
ent from p). Formally, r(∼p) � r�{v ∈ Ps : r(v) ∼ p}, for ∼∈ {≥, >,<, =}. By
�≤p
r � �\dom(

r(>p)
)
, we denote the largest subgame obtained by removing from

� all the positions in the domain of r(>p). In order for the RR procedure to exploit
Lemma 1, it also needs to keep track of witness strategies of the computed region.
To this end, we introduce the notion of witness core. A strategy σ ∈ Strα(Q) is
an α-witness core for an α-region R if (i) it is defined on all positions having
priority lower than pr(R), i.e., {v ∈ R : pr(v) < pr(R)} ⊆ dom(σ), and (ii) it is
a restriction of some α-witness ς ∈ Strα for R, i.e., σ ⊆ ς. Intuitively, a witness
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core only maintains the essential part of a witness and can be easily transformed
into a complete witness by associating every position v ∈ stayα(R) \ dom(σ)
with an arbitrary successor in R. The result of any such completion is an actual
witness, since any infinite path passing through v is forced to visit a maximal
priority of parity α.

Definition 4 (Region-Witness Pair). Let r∈Δ be a priority function, τ ∈Str
a strategy, and p ∈ Pr a priority. The pair (r, τ) is a region-witness pair w.r.t.
p if, for all q ∈ rng(r) with α � q mod 2,R � r−1(q) ∩ Ps

�
≤q
r

= ∅, and σ � τ�R,
the following two conditions hold:

1. if q ≥ p, then R is an α-region in the subgame �≤q
r with α-witness core σ;

2. if q < p, there exists a quasi α-dominion Q� ⊇ R with α-witness σ� such that
(i) pr(Q�) = q, (ii) σ ⊆ σ�, and (iii) (R ∩ Psα) \ dom(σ) ⊆ pr−1(q).

In addition, r is maximal above p ∈ Pr iff, whenever q > p, it holds that R is
α-maximal in �≤q

r as well.

As opposed to the PP approach, where a promotion to a priority p resets all
the regions of measure lower than p, the RR algorithm resets lower regions only
when it cannot ensure their validity. This is done one region at a time, during
the descend phase. If, while reading a set r−1(q) at a certain priority q < p,
the conditions of Lemma 1 are not met by r−1(q) or the escape of that region
contains positions of priority lower than q, then r−1(q) is reset.

Contrary to PP, for which the set contained in r at each measure q must be
an α-region, RR requires such a property only for those regions with measure
q ≥ p, as expressed by Item 1 of the previous definition. For each q < p, instead,
we simply require the set of positions contained in r at that measure to be a
subset of some previously computed quasi dominions of the same player. This
is done by requiring that the strategies recorded in τ be subsets of witnesses of
these dominions, as described in Item 2. In this way, to verify that r−1(q) is still
a quasi α-dominion, RR can apply the property stated in Lemma 1.

The status of the search of a dominion is encoded by the notion of state
s of the dominion space, which contains the current region-witness pair (r, τ)
and the current priority p reached by the search in �. Initially, r coincides with
the priority function pr of the entire game �, τ is the empty strategy, and p is
set to the maximal priority pr(�) available in the game. To each of such states
s � (r, , p), we then associate the subgame at s defined as �s � �≤p

r , representing
the portion of the original game that still has to be processed.

The following state space specifies the configurations in which the RR proce-
dure can reside and the relative order that the successor function must satisfy.

Definition 5 (State Space). A state space is a tuple S �〈S,�,≺〉, where:

1. S ⊆ Δ×Str×Pr is the set of triples s � (r, τ, p), called states, where (a) (r, τ)
is a region-witness pair w.r.t. p, (b) r is maximal above p, and (c) p ∈ rng(r).
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2. � � (pr, ∅, pr(�));
3. for any two states s1 � (r1, , p1), s2 � (r2, , p2) ∈ S, it holds that s1≺s2

iff either (a) there exists a priority q ∈ rng(r1) with q ≥ p1 such that
(a.i) r1

(>q)= r2
(>q) and (a.ii) r−1

2 (q)⊂ r−1
1 (q), or (b) both (b.i) r

(≥p2)
1 = r

(≥p2)
2

and (b.ii) p1 < p2 hold.

Condition 1 requires every region r−1(q) with measure q > p to be α-maximal,
where α = q mod 2. This implies that r−1(q) ⊆ Ps

�
≤q
r

. Moreover, the current
priority p must be one of the measures recorded in r. Condition 2 specifies the
initial state. Finally, Condition 3 defines the ordering relation among states,
which the successor operation has to comply with. It asserts that a state s1 is
strictly smaller than another state s2 if either there is a region recorded in s1

with some higher measure q that strictly contains the corresponding one in s2

and all regions with measure grater than q are equal in the two states, or state
s1 is currently processing a lower priority than the one of s2.

As reported in Definition 2, the compatibility relation describes which regions
are compatibles with a state, i.e., which region triples can be returned by the
query operator and used by the successor function. A region triple (R, σ, α) is
compatible with a state s � (r, τ, p) if R is an α-region in the current subgame
�s. Moreover, if such a region is α-open in that game, it has to be α-maximal
and needs to necessarily contain the current region r−1(p) of priority p in r.

Definition 6 (Compatibility Relation). An open quasi dominion triple
(R, σ, α) ∈ QD− is compatible with a state s � (r, τ, p) ∈ S, in symbols
s�(R, σ, α), iff (1) (R, σ, α) ∈ Rg�s

and (2) if R is α-open in �s then (2.a) R
is α-maximal in �s and (2.b) r−1(p) ⊆ R.

Algorithm 2: Query Function.
signature � : S→2Ps×Str×{0, 1}
function �(s)

let (r, τ, p) = s in
1 α ← p mod 2
2 R� ← r−1(p)
3 (R, σ) ← atrα

�s
(R�, τ�R�)

4 return (R, σ, α)

Algorithm 2 provides a possible
implementation for the query function
compatible with the region-recovery
mechanism. Given the current state
s � (r, τ, p), Line 1 simply computes
the parity α of the priority p to process
at s. Line 3, instead, computes the
attractor w.r.t. player α in subgame
�s of the region R� contained in r at p,
as determined by Line 2. Observe that
here we employ a version of the α-attractor that, given an α-witness core for R�,
also computes the α-witness for R. This can easily be done by first extending
τ�R� with the attraction strategy on the α-positions in R \ R� and, then, by
choosing, for any α-positions in R \ dom(τ�R�) with a successor in R \ R�, any
one of those successors. The resulting set R is, according to Proposition 1, an
α-maximal α-region of �s containing r−1(p) with α-witness σ.
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Algorithm 3: Successor Function.
signature ↓ : � → Δ × Str × Pr
function s ↓ (R, σ, α)

let (r, τ, p) = s in
1 if (R, σ, α) ∈ Rg−

�s
then

2 return N(r[R �→ p], τ � σ, p)
else

3 p� ← bepα(R, r)
4 return (r[R �→ p�], τ � σ, p�)

The promotion operation
is based on the notion of
best escape priority mentioned
above, namely the priority of
the lowest α-region in r that
has an incident move coming
from the α-region, closed in the
current subgame, that needs to
be promoted. This concept is
formally defined as follows. Let
I � Mv ∩ ((R ∩ Psα)×
(dom(r)\R)) be the interface relation between R and r, i.e., the set of α-moves
exiting from R and reaching some position within a region recorded in r. Then,
bepα(R, r) is set to the minimal measure of those regions that contain positions
reachable by a move in I. Formally, bepα(R, r) � min(rng(r�rng(I ))). Such a value
represents the best priority associated with an α-region contained in r and reach-
able by α when escaping from R. Note that, if R is a closed α-region in �s, then
bepα(R, r) is necessarily of parity α and greater than the measure p of R. This
property immediately follows from the maximality of r above p. Indeed, no move
of an α-position can lead to a α-maximal α-region. For instance, for 1-region
R = {g, h} with measure 1 in Column 1 of Fig. 3, we have that I = {(g, f), (h, b)}
and r�rng(I ) = {(b, 5), (f, 3)}. Hence, bep0(R, r) = 3.

Algorithm 3 implements the successor function. Given the state s � (r, τ, p)
and one of its possible compatible region triples (R, σ, α) open in the original
game �, it produces a successor state s�≺s. Line 1 checks if R is open in the
subgame �s as well. If this is the case, at Line 2, the next state s� is generated
by the auxiliary function, called next state function, described below, which
also applies the required resets. On the other hand, if R is closed in �s, the
procedure performs the promotion of R, by exploiting Proposition 2. Indeed,
Line 3 computes the best escape priority p� to which R needs to be promoted,
while Line 4 sets the measure of R to p� and merges the strategies contained in
τ with the α-witness σ of R. Observe that, unlike in the PP successor function,
no reset operation is applied to r at this stage.

Algorithm 4: Next State Function.
signature N : S → Δ × Str × Pr
function N(s)

let (r, τ, p) = s in
1 p� ← max(rng

(
r(<p)

)
)

2 if φ(r, τ, p�) then
3 return (r, τ, p�)

else
4 r� ← pr � r( �=p�)

5 τ� ← σ \ r−1(p�)
6 return N(r�, τ�, p)

Finally, Algorithm4 reports the
pseudo code of the next state func-
tion, the essential core of the RR
approach. At a state s � (r, σ, p),
Line 1 computes the priority p�

of the successive set of positions
r−1(p�) occurring in r starting from
p in descending order of priority.
Then, Line 2 verifies whether this
set is actually a region, by comput-
ing the truth value of the formula
φ described below applied to the
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triple (r, τ, p�). If this is the case, the successor state (r, τ, p�) of s is returned at
Line 3. On the other hand, if the check fails, the algorithm resets, at Line 4, the
positions in r−1(p�) to their original priority stored in the priority function pr of
the game, and deletes, at Line 5, the associated strategy contained in τ . Finally,
at Line 6, the next state function is recursively applied to the newly obtained
state.

To check whether a set of positions R � r−1(p) at a certain priority
q < p is an α-region with α � q mod 2, we make use of the formula
φ(r, τ, q) � φi(r, τ, q) ∧ φii(r, q), which verifies that (i) σ � τ�R is a witness core
for R and (ii) the escape only contains positions of maximal priorities in the
subgame. The two predicates are formally defined as follows.

φi(r, τ, q) � ∀v ∈ Psα
�� ∩ dom(σ) . σ(v) ∈ R

φii(r, q) � escα
��(R) ⊆ pr−1

�� (pr(��))
with

{
�� � �≤q

r , α � q mod 2,

R � r−1(q), σ � τ�R.

Intuitively, if φi(r, τ, q) holds, we are sure that σ ∈ Strα(R). Moreover, due to
Item 2 of Definition 4, R is a subset of a quasi α-dominion having a witness
containing σ. Therefore, by Lemma 1, we immediately derives that σ is a wit-
ness core for R. Additionally, the formula φii(r, q) just checks that the second
condition of the definition of region is also met.

The following theorem establishes the correctness of the RR approach.

Theorem 1 (Dominion Space). For a game �, the structure D �〈�,S,�,�,
↓〉, where S is given in Definition 5, � is the relation of Definition 6, and � and
↓ are the functions computed by Algorithms 2 and 3 is a dominion space.

The RR procedure drastically reduces the number of resets needed to solve a
game w.r.t. PP. In particular, the exponential worst-case game presented in [2]
does not work any more, since the execution depth of the associated RR dominion
space is only quadratic in the parameter of game family. Unfortunately, at the
present time, we are not able to provide a better asymptotic upper bound for
the time complexity w.r.t. the PP one.

5 Experimental Evaluation

The technique proposed in the paper has been implemented in the tool
PGSolver [9], which collects implementations of several parity game solvers
proposed in the literature and provides benchmarking tools that can be used to
evaluate the solver performances.1

1 All the experiments were carried out on a 64-bit 3.1 GHz Intel R©quad-core machine,
with i5-2400 processor and 8GB of RAM, running Ubuntu 12.04 with Linux kernel
version 3.2.0. PGSolver was compiled with OCaml version 2.12.1.
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Fig. 4. Comparative results on 2000 random games
with up to 20000 positions (from [2]).

Figure 4 compares the
running times of the new
algorithm RR against the
original version PP and
the well-known solvers Rec
and Str, implementing the
recursive algorithm [23] and
the strategy improvement
technique [22], respectively.
This first pool of bench-
marks is taken from [2]
and involves 2000 random
games of size ranging from
1000 to 20000 positions and
2 outgoing moves per posi-
tion. Interestingly, random
games with very few moves
prove to be much more challenging for the priority promotion based approaches
than those with a higher number of moves per position, and often require a
much higher number of promotions. Since the behaviour of the solvers is typi-
cally highly variable, even on games of the same size and priorities, to summarise
the results we took the average running time on clusters of games.

Therefore, each point in the graph shows the average time over a cluster of
100 different games of the same size: for each size value n, we chose the numbers
k = n·i/10 of priorities, with i ∈ [1, 10], and 10 random games were generated for
each pair n and k. We set a time-out to 180 s (3 min). The new solver RR shows
a significant improvement on all the benchmarks. All the other solvers provided
in PGSolver, including the Dominion Decomposition [14] and the Big Step [19]
algorithms, perform quite poorly on those games, hitting the time-out already
for very small instances. Figure 4 shows only the best performing ones on the
considered games, namely Rec and Str.
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Fig. 5. Comparison between PP and RR on random
games with 50000 positions on a logarithmic scale.

Similar experiments were
also conducted on random
games with a higher num-
ber of moves per position
and up to 100000 positions.
The resulting games turn
out to be very easy to solve
by all the priority promo-
tion based approaches. The
reason seems to be that
the higher number of moves
significantly increases the
dimension of the computed
regions and, consequently,
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also the chances to find a closed one. Indeed, the number of promotions required
by PP and RR on all those games is typically zero, and the whole solution time
is due exclusively to a very limited number of attractors needed to compute the
few regions contained in the games. We reserve the presentation of the results
for the extended version.

To further stress the RR technique in comparison with PP, we also generated
a second pool of much harder benchmarks, containing more than 500 games, each
with 50000 positions, 12000 priorities and 2 moves per positions. We selected
as benchmarks only random games whose solution requires PP between 30 and
6000 s. The results comparing PP and RR are reported in Fig. 5 on a logarithmic
scale. The figure shows that in three cases PP performs better than RR. This
is due to the fact that the two algorithms may follow different solution paths
within the dominion space and that following the new technique may, in some
cases, defer the discovery of a closed dominion. Nonetheless, the RR algorithm
does pay off significantly on the vast majority of the benchmarks, often solving
a game between two to sixteen times faster than PP.

In [2] it is shown that PP solves all the known exponential worst cases for
the other solvers without promotions and, clearly, the same holds of RR as well.
As a consequence, RR only requires polynomial time on those games and the
experimental results coincide with the ones for PP.
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