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Abstract. Efficient fault localisation is becoming increasingly impor-
tant as software grows in size and complexity. In this paper we present
a new formal framework, denoted probabilistic fault localisation (pfl),
and compare it to the established framework of spectrum based fault
localisation (sbfl). We formally prove that pfl satisfies some desirable
properties which sbfl does not, empirically demonstrate that pfl is sig-
nificantly more effective at finding faults than all known sbfl measures
in large scale experimentation, and show pfl has comparable efficiency.
Results show that the user investigates 37 % more code (and finds a fault
immediately in 27 % fewer cases) when using the best performing sbfl
measures, compared to the pfl framework. Furthermore, we show that it
is theoretically impossible to design strictly rational sbfl measures that
outperform pfl techniques on a large set of benchmarks.
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1 Introduction

Faulty software is estimated to cost 60 billion dollars to the US economy per
year [1] and has been single-handedly responsible for major newsworthy catastro-
phes1. This problem is exacerbated by the fact that debugging (defined as the
process of finding and fixing a fault) is complex and time consuming – estimated
to consume 50–60 % of the time a programmer spends in the maintenance and
development cycle [2]. Consequently, the development of effective and efficient
methods for software fault localisation has the potential to greatly reduce costs,
wasted programmer time and the possibility of catastrophe.

In this paper we advance the state of the art in lightweight fault localisation
by building on research in spectrum-based fault localisation (sbfl). In sbfl, a
measure is used to determine the degree of suspiciousness each line of code is
with respect to being faulty, where this degree is defined as a function of the
number of passing/failing traces that do/do not cover that code. sbfl is one
of the most prominent areas of software fault localisation research, has recently

1 https://www.newscientist.com/gallery/software-faults/.
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been estimated to make up 35 % of published work in the field [3] and has been
consistently demonstrated to be effective and efficient at finding faults [4–21].

However, so far there have not been many formal properties about the general
problem of fault localisation which sbfl measures have been shown to satisfy,
representing a potential theoretical shortcoming of the approach. Although prop-
erties that measures should satisfy a priori (such as strict rationality [22]) have
been discussed, and measures that solve fault localisation sub-problems have
been presented (such as single bug optimal measures [15]), there is not yet a sbfl
measure that solves the problem of fault localisation for all benchmarks. Indeed,
recently Yoo et al. have established theoretical results which show that a “best”
performing suspicious measure does not exist [23]. In light of this, the sbfl liter-
ature has favoured developing measures with good experimental performance as
opposed to developing them according to a priori requirements. This has facili-
tated a culture of borrowing measures from other domains [11,15,16], manually
tweaking measures [13,17], or using machine learning methods [19,20,24]. Thus,
there remains the challenge of developing new, better performing and compa-
rably efficient methods that can satisfy key properties of fault localisation. Our
contributions in this paper are as follows:

– We introduce and motivate a new formal framework denoted Probabilistic
Fault Localisation (pfl), which can leverage any sbfl measure.

– We formally prove that pfl satisfies desirable formal properties which sbfl
does not.

– We demonstrate that pfl techniques are substantially and statistically signif-
icantly more effective (using p = 0.01) than all known (200) sbfl measures
at finding faults on what, to our knowledge, is the largest scale experimental
comparison in software fault localisation to date.

– We show that it is theoretically impossible to define strictly rational sbfl
measures that can outperform given pfl techniques on many of our bench-
marks.

– We demonstrate that pfl maintains efficiency comparable to sbfl.

The rest of the paper is organised as follows. In Sect. 2 we present the for-
mal preliminaries common to the approaches discussed in this paper and in
Sect. 3 introduce a small illustrative example of sbfl. In Sect. 4, we introduce
and motivate the formal theory underlying the pfl approach and formally prove
it satisfies desirable fault localisation properties which sbfl does not. Section 5
presents our experimental comparison of pfl techniques against sbfl measures.
Finally, we present related work and general conclusions.

2 Preliminaries

In this section we summarise the formal apparatus common to the approaches
in this paper.

We model each program as an ordered set P= 〈C1, . . . , Cn〉. Intuitively, each
Ci can be thought of as a program entity, event, or proposition, which is exe-
cuted, occurs, or is true if a corresponding program entity is covered in a given
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execution. A program entity (or component) can be thought of as a program
statement, branch, path, or block of code [7,25]. A component is called complex
if it is the union of other components, and atomic otherwise. In practice, P is
modelled as a set of atomic components in order to reduce overhead [4–21].

We model each test suite as an ordered set of test cases T = 〈t1, . . . , tm〉.
Each test case ti is a Boolean vector of length |P | such that tk = 〈ck1 , . . . , ck|P|〉,
and where we have cki = � if Ci is covered/occurs/is true in tk and ⊥ otherwise.
We also use 1 and 0 for � and ⊥ respectively. C|P| can be thought of as the
event of the error (denoted by E), where ck|P| = ek = � if the test case fails
and ⊥ if it passes. Intuitively, each test case records the coverage details of a
given execution, and is failing/passing if that execution violates/satisfies a given
specification, where a specification is a logically contingent proposition stated in
some formal language.

Each test suite may be partitioned T = F ∪ P, where F and P are the
set of failing and passing test cases respectively. By convention each test suite
is ordered such that the failing traces appear before the passing. In general, we
assume that every failing test case covers at least one component, and that every
component is covered by at least one failing test case. We may represent a test
suite with an m × n coverage matrix, in which the k-th row of the i-th column
represents whether Ci occurred in tk. An example of a coverage matrix is given
in Fig. 2.

For each Ci ∈ P we can construct its program spectrum using a test suite.
A program spectrum is defined as a vector of four elements 〈aief , ainf , aiep , ainp〉,
where aief is the number of failing test cases in T that cover Ci, ainf is the
number of failing test cases in T that do not cover Ci, aiep is the number of
passing test cases in T that cover Ci and ainp is the number of passing test
cases in T that do not cover Ci. Probabilistic expressions may be defined as
a function of program spectra as follows. We identify P (Ci ∩ E), P (Ci ∩ E),

P (Ci ∩E) and P (Ci ∩E) with ai
ef

|T| ,
ai
nf

|T| ,
ai
ep

|T| and ai
np

|T| respectively. Using definitions
from probabilistic calculus [26], we may then identify many measures with a
probabilistic expression.

A suspiciousness measure w maps a program entity to a real number as a
function of its spectrum [15], where this number is called the program entity’s
degree of suspiciousness. The higher the degree the more suspicious the program
entity Ci is assumed to be with respect to being a fault. In practical sbfl the
components in the program are investigated in descending order of suspiciousness

until a fault is found. Prominent measures include Zoltar = ai
ef

ai
ef +ai

nf +ai
ep+k

where

k = 10000ai
nfa

i
ep

ai
ef

[15], Kulczynski2 = 1
2 (P (E|Ci) + P (Ci|E)) [15], Ochiai =

P (Ci ∩ E)/
√

P (Ci)P (E) [4], and Positive predictive power (ppv) = P (E|Ci) [6].
ppv is equivalent to the Tarantula measure [27].

Some suspiciousness measures are informally known as measures of causal
strength [11]. Measures of causal strength are designed to measure the propen-
sity of an event in causing a given effect. Any measure can be proposed as
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a measure of causal strength. Historically such measures have been developed
around the premise that causes raise the probability of their effects. Prominent
measures include Lewis = P (E|Ci)/P (E|¬Ci), Fitelson = P (E|Ci)/P (E), Sup-
pes = P (E|Ci) − P (E|¬Ci), and Eels = P (E|Ci)/P (E) (see [11]).

Formally, a suspiciousness measure w is rational if and only if for all c > 0
(1) w(aef , anf , aep , anp) ≤ w(aef + c, anf − c, aep , anp), and (2) w(aef , anf , aep +
c, anp −c) ≤ w(aef , anf , aep , anp). The property of strict rationality is defined by
replacing ≤ with < in the latter two conditions. Roughly speaking, a measure
is rational/strictly-rational if more failing traces covering a component make it
more suspicious, and more passing traces maek it less suspicious – conforming to
our intuition of suspiciousness. Many suspiciousness measures have been shown
to satisfy strict rationality, at least when aef , aep > 1 [15,22]. Naish et al. argue
that it is reasonable to restrict the sbfl approach to rational measures [28].

We now discuss established methods for evaluating the performance of a
suspiciousness measure. First, there are wasted effort scores (or W-scores).
W-scores estimate the percentage of non-faulty components a user will look
through until a fault is found. Best case, worst case, and average case W-
scores have been defined [4,11,13,15]. Where w is a measure, b is a fault with
the highest degree of suspiciousness, and f is the number of faults which are
equally suspicious to the most suspicious fault, we use the following definitions:
best(w) = |{x|w(x)>w(b)}|

|P|−1 100, worst(w) = |{x|m(x)≥w(b)}−1|
|P|−1 100, average(w) =

best(w)+ worst(w)−best(w)
f+1 . We use avg W-scores. Second, there are absolute scores

(or A-scores) [29]. A-scores measure whether a given measure found a fault after
inspecting n non-faulty components [29]. Thus, for a given n a suspiciousness
measure receives 100 % if the user found a fault after investigating n non-faulty
components, otherwise it received 0 %. We use n = 0. A suspiciousness measure
performs well if it has have low mean W-scores and a high mean A-scores.

Finally, Naish et al. define the unavoidable costs of any strictly rational mea-
sure. These are the scores that the best performing strictly rational measure can
possibly receive [28]. To determine this score, one constructs an ordered list with
the property that for every component, Ci is ranked higher than a given fault Cj

just in case every strictly rational measure would rank Ci higher than Cj . The
W/A-scores of this list are the unavoidable cost W/A-scores. Unavoidable cost
scores estimate the upper bound limit for the performance of the sbfl approach
in general (see [28] for details).

3 Example

We present a small example to illustrate sbfl. Consider the C program min-
max.c in Fig. 1 (from [30]). The program is formally modelled as the following
set of program entities P = 〈C1, C2, C3, C4, E〉, where E models the event in
which the specification assert(least <= most) is violated. The program fails
to always satisfy this specification. The explanation for the failure is the fault
at C3, which should be an assignment to least instead of most. We collected
coverage data from ten test cases to form our test suite T = 〈t1, . . . , t10〉. The
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Fig. 1. minmax.c Fig. 2. Coverage matrix

coverage matrix for these test cases is given in Fig. 2. Three of the test cases fail
and seven pass. We compute the program spectrum for each component using
the coverage matrix. For example, the program spectrum for C3 is 〈3, 0, 1, 6〉.

To illustrate an instance of sbfl we use the suspiciousness measure Wong-2 =
aief −aiep [13]. The user inspects the program in decreasing order of suspiciousness
until a fault is found. C3 is inspected first with a suspiciousness of 2 and thereby
a fault is found immediately. The example illustrates that sbfl measures can
be successfully employed as heuristics for fault localisation, but that the formal
connection to fault localisation could potentially be improved.

4 Estimating Fault Probability

In this section, we introduce assumptions to generate our estimation of fault
probability and then prove this estimation satisfies important properties that
are not satisfied by any sbfl measure.

We begin as follows. We introduce a probability function P the domain of
which is a set of propositions. To define the set of propositions, we first define two
sets of atomic propositions H = {hi|Ci ∈ P} and C = {hk

i |Ci ∈ P ∧ tk ∈ T}.
Intuitively, H is a set of fault hypotheses, where hi expresses the hypothesis
that Ci is faulty, and C is a set of causal hypotheses, where hk

i expresses the
hypothesis that Ci was the cause of the error E in execution tk. The set of
propositions is then defined inductively as follows. For each p, q ∈ H ∪ C, p and
q are propositions. If p and q are propositions, then p∧q, p∨q, ¬p are propositions.
We also assume the following standard properties of probability [26]. For each
proposition p and q: P (p) = 1 if p = �. P (p) = 0 if p = ⊥. P (p ∨ q) = P (p) +
P (q) − P (p ∧ q). P (¬p) = 1 − P (p). P (p|q) = P (p ∧ q)/P (q).
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We now present assumptions A1-7 which are designed to be plausible in any
probability space induced by a test suite T for a faulty program P .

A1. For all hi ∈ H, hi =
∨|T|

k=1 h
k
i .

This states that Ci is faulty just in case Ci was the cause of the error E in
some execution of the program.

A2. For all tk ∈ F,
∨|P|

i=1 h
k
i = �.

This states that for every failing trace, there is some component Ci ∈ P
which caused the error E in that trace. In other words, if an error occurred then
something must have caused it. For all hk

i ∈ C we also have the following

A3. if hk
i = � then Ci �= E.

A4. if hk
i = � then cki = � and ek = �.

These assumptions state that if Ci was the cause of E in tk, then Ci must have
been a different event to E (A3), and Ci and E must have actually occurred
(A4). These two assumptions have been described as fundamental properties
about causation [31]. For all hk

i , h
k
j ∈ C

A5. if Ci �= Cj then hk
i ∧ hk

j = ⊥.

This states that no two events could have both been the cause of the error in
a given trace. In other words, different causal hypotheses for the same trace are
mutually exclusive. The rationale for this is that the intended meaning of hk

i is
Ci was the cause of E in tk, and as the implies uniqueness, no two events could
have been the cause. In general, any union of events may be said to be the cause
so long as that union is in P . For all hk

i ∈ C and every sample S ⊆ T − {tk}

A6. P (hk
i |

∨
tn∈S hn

i ) = P (hk
i ).

This states that the probability that Ci was the cause in one trace is not
affected by whether it was in some others. In other words, whether it was the
cause in one is statistically independent of whether it was in others. Here, we
assume that our probabilities describe objective chance, and that the causal
properties of each execution is determined by the properties of the events in that
execution alone, and therefore cannot affect the causal properties of other exe-
cutions. Independence principles are well established in probability theory [26].

In light of the above assumptions we may define c(tk) = {Ci|Ci ∈ P ∧ cki =
ek = � ∧ Ci �= E} as the set of candidate causes of E in tk. Following this, for
some measure w, and all Ci, Cj ∈ c(tk), we assume

A7. P (hk
i )/P (hk

j ) = w(Ci)/w(Cj).
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Here, we assume w measures the propensity of a given event to cause the
error (and is thus motivated as a measure of causal strength as described in the
preliminaries). Accordingly, the assumption states that the relative likelihood
that one event caused the error over another, is directly proportional to their
propensities to do so. In general, any suspiciousness measure w from the sbfl
literature may be proposed as a measure of causal strength, and thus there is
great room for experimentation over the definition of w. One formal proviso is
that measures be re-scaled so w(Ci) > 0 if aief > 0 (this avoids divisions by
zero). We use the notation pfl-w when measure w is being used.

We now show that the assumptions A1-7 (henceforth pfl assumptions)
imply Eqs. (1), (2) and (3) (henceforth pfl equations). The pfl equations can
be used to determine the probability that a given component Ci is faulty. For
all hk

i ∈ C

P (hi) = P (
|T|∨

n=1

hn
i ) (1)

P (
|T|∨

j=n

hj
i ) = P (hn

i ) + P (
|T|∨

j=n+1

hj
i ) − P (hn

i )P (
|T|∨

j=n+1

hj
i ) (2)

P (hk
i ) =

⎧
⎨

⎩

w(Ci)∑

Cj∈c(tk)
w(Cj)

ifCi ∈ c(tk)

0 otherwise
(3)

Proposition 1. The pfl assumptions imply the pfl equations.

Proof. We first show Eq. (1). hi =
∨|T|

k=1 h
k
i (by A1). Thus P (hi) = P (

∨|T|
k=1 h

k
i )

(by Leibniz’s law). We now show Eq. (2). The definition of disjunction states
P (

∨|T|
j=n h

j
i ) = P (hn

i ) + P (
∨|T|

j=n+1 h
j
i ) − P (hn

i ∧ ∨|T|
j=n+1 h

j
i ). It remains to

show P (hn
i ∧ ∨|T|

j=n+1 h
j
i ) = P (hn

i )P (
∨|T|

j=n+1 h
j
i ). P (hn

i ∧ ∨|T|
j=n+1 h

j
i ) is equal

to P (hn
i |∨|T|

j=n+1 h
j
i )P (

∨|T|
j=n+1 h

j
i ) (by probabilistic calculus). This is equal to

P (hn
i )P (

∨|T|
j=n+1 h

j
i ) (by A6).

We now show Eq. (3). We have two cases to consider: Ci ∈ c(tk) and Ci /∈
c(tk). Assume Ci ∈ c(tk). We may assume tk is ordered such that

∧n
i=1 c

k
i = �,

∧|P|−1
i=n+1 c

k
i = ⊥ and ck|P| = ek = � (such that c(tk) = {C1, . . . , Cn}). Now, for all

Ci, Cj ∈ c(tk) P (hk
i )/P (hk

j ) = w(Ci)/w(Cj) (by A7). Thus, for Ci, Cj ∈ c(tk)
w(Ci)/P (hk

i ) = w(Cj)/P (hk
j ) (as x/y = w/z ≡ z/y = w/x). So, w(C1)/P (hk

1)
= w(C2)/P (hk

2) = . . . = w(Cn)/P (hk
n). Thus, there is some c such that for all

Ci ∈ c(tk), c = w(Ci)/P (hk
i ) (by the last result). Equivalently, there is some c

such that for all Ci ∈ c(tk), P (hk
i ) = w(Ci)/c. To complete the proof it remains to

prove c =
∑

Cj∈c(tk)
w(Cj).

∨|P|
i=1 h

k
i = � (by A2). But,

∨|P|−1
i=n+1 h

k
i = ⊥ (by A4),

and hk
|P| = ⊥ (by A3). Thus,

∨n
i=1 h

k
i = � (by ∨-elimination). So, P (

∨n
i=1 h

k
i ) =

1 (by probabilistic calculus). Thus,
∑n

i=1 P (hk
i ) = 1 (by probabilistic calculus
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and A5). So,
∑n

i=1(w(Ci)/c) = 1. Thus, (
∑n

i=1 w(Ci))/c = 1. Equivalently,∑n
i=1 w(Ci) = c. So,

∑
Ci∈c(tk)

w(Ci) = c (by def. of c(tk) above). We now do
the second condition. Assume Ci /∈ c(tk). Then ¬(cki = ek = � ∧ Ci �= E) (by
def. of c(tk)). Thus cki = ⊥ or ek = ⊥ or Ci = E. If Ci �= E, then P (hk

i ) = 0 (by
A3). If cki = ⊥, then P (hk

i ) = 0 (by A4). If ek = ⊥, then P (hk
i ) = 0 (by A4).

Thus, if Ci /∈ c(tk), then P (hk
i ) = 0.

To use the pfl equations, it remains for the user to choose a measure w for
A7. One proposal is w(Ci) = P (E|Ci) (the ppv measure [11]) or P (E|Ci)/P (E)
(the Fitelson measure of causal strength [32]). For the purposes of defining P (hk

i )
both proposals are equivalent (observe P (hk

i )/P (hk
j ) = P (E/Ci)/P (E/Ci) =

(P (E/Ci)/P (E))/(P (E/Cj)/P (E)) using A7).
The proposal captures three potentially plausible intuitions about causal like-

lihood. Firstly, it captures an intuition that the more something raises the prob-
ability of the error, the more likely it is to be the cause of it (to see this, observe
we have P (hk

i )/P (hk
j ) = P (E|Ci)/P (E|Cj) using A7). Secondly, it captures

an intuition that events which do not affect the error’s likelihood are equally
unlikely to have caused it (to see this, assume both Ci and Cj are independent
of E i.e. P (E) = P (E|Ci) and P (E) = P (E|Cj), then it follows P (hk

i ) = P (hk
j )

using A7). Thirdly, a plausible estimate of w(Ci) as a measure of Ci’s causal
strength is the probability that Ci causes E given Ci, and P (E|Ci) accordingly
provides an upper bound for this estimate. In our running example pfl-ppv
returns P (h2) = 0.00, P (h2) = 0.31, P (h3) = 1.00, and P (h4) = 0.25, which
correctly identifies the correct hypothesis with the most probable one.

Finally, given a test suite T and measure w, an algorithm to find a single
fault in a program P is as follows. Step one, find maxhi∈H(P (hi)) by computing
the value of P (hi) for each hi ∈ H using the pfl equations. If the most probable
hypothesis represents a fault in the program, the procedure stops. Otherwise,
hj is removed from the set of candidates by setting ckj = ⊥ for each tk, and
return to step one. We call this the pfl algorithm. A property of this algorithm
is that yet to be investigated components can change in fault likelihood at each
iteration.

We now identify desirable formal properties which we prove the pfl equations
satisfies, but no sbfl suspiciousness measure can.

Definition 1. Fault Likelihood Properties. For all Ci, Cj ∈ P, where Ci �= Cj,
we define the following:

1. Base case. If there is some failing trace which only covers Ci, but this property
does not hold of Cj, then Ci is more suspicious than Cj.

2. Extended case. Let T1 be a test suite in which all failing traces cover more
than one component, and let T2 be identical to T1 except cki = 1 and ckj = 1
in T1 and cki = 1 and ckj = 0 in T2, then the suspiciousness of Ci in T2 is
more than its suspiciousness in T2.

These properties capture the intuition that the fewer covered entities there
are in a failing trace, the fewer places there are for the fault to”hide”, and so



Probabilistic Fault Localisation 73

the a priori likelihood that a given covered entity is faulty must increase. Upper
bounds for this increase is established by the base case – if a failing trace only
covers a single component then that component must be faulty. We now formally
establish that the pfl equations, but no sbfl measure, satisfies these properties.

Proposition 2. The pfl equations satisfies the fault likelihood properties.

Proof. We first prove the base property. We first show that if there is some failing
trace tk which only covers Ci, then nothing is more suspicious than it. Let t1
be a failing trace which only covers Ci. Then P (h1

i ) = w(Ci)
w(Ci)

= 1 (by Eq. (3)).

Letting n abbreviate P (
∨|T|

j=2 h
j
i ), we then have P (

∨|T|
k=1 h

k
i ) = (1+n)−(1n) = 1

(by Eq. (2)). So P (hi) = 1 (by Eq. (1)). Thus, nothing can be more suspicious
than Ci. We now show that if there is no failing trace which only covers Cj ,
then Cj must be less suspicious than Ci. Assume the antecedent, then for each
tk we have P (hk

i ) = w(Ci)
w(Ci)+···+w(Ck)

< 1 (by Eq. (3)). Thus P (
∨|T|

k=1 h
k
i ) < 1

(by Eqs. (2) and (3)). Thus P (hj) < 1 (by Eq. (1)). Thus P (hj) < P (hi), which
means Ci is more suspicious than Cj .

We now prove the extended property. Let T1 be a test suite in which all failing
traces cover more than one component, and let T2 be identical to T1 except c1i =
1 and c1j = 1 in T1 and c1i = 1 and c1j = 0 in T2. Let n abbreviate P (

∨|T|
m=2 h

m
i )

P (hi) = P (h1
i )+n−(P (h1

i )n) (by Eqs. (1) and (2)). It remains to first show that
P (h1

i ) is greater in T2, and secondly show n has the same value for both test
suites where n < 1. For the former, let P (h1

i ) = w(Ci)
w(C1)+···+x+···+w(C|c(tk)|)

for both
test suites (using Eq. (3)), where we let x = w(Cj) for T1 (where w(Cj) > 0),
and x = 0 for T2 (as ckj /∈ c(tk) for T2). So, the equation for P (h1

i ) is greater in
T2. To show the latter, we observe that for all 1 < m ≤ |T1| we have P (hm

i ) < 1
(by assumption each tm ∈ F ⊆ T1 covers at least 2 components) and that P (hm

i )
is the same in both T1,T2, thus n < 1 (by Eq. (2)) and n has the same value
for both.

Proposition 3. No sbfl measure satisfies either property.

Proof. To show that no suspiciousness measure w satisfies the base property,
we show that for any w we can construct a test suite in which (1) there is a
failing trace which only covers Ci, (2) there is some Cj such that there is no
failing trace which only covers it, and (3) w(Ci) = w(Cj). A simple example is
as follows. Let P = 〈C1, C2, C3, E〉 and T = 〈〈1, 1, 1, 1〉, 〈0, 1, 1, 1〉, 〈1, 0, 0, 1〉〉.
Thus the spectrum for C1 and C2 is 〈2, 0, 0, 0〉, and so w(Ci) = w(Cj).

To show that no suspiciousness measure w satisfies the extended property,
we show that for any w we can construct a pair of test suites T1 and T2 which
are otherwise identical except (1) cki = 1 and ckj = 1 in T1 (2) cki = 1 and ckj = 0
in T2, and (3) w(Ci) = w(Cj). The simplest example is as follows. Let P =
〈C1, C2, E〉 and T1 = 〈〈1, 1, 1〉〉 and T2 = 〈〈1, 0, 1〉〉. Thus the spectrum for C1

is 〈1, 0, 0, 0〉 in both cases, and so w(Ci) = w(Cj).

The proof of the last proposition suggests that there are large classes of test
suites in which sbfl measures violate the properties. sbfl measures do not have
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the resources to satisfy the properties because each Ci’s suspiciousness is only
a function of its program spectrum, which itself is only a function of the i-th
column of a coverage matrix.

5 Experimentation

In this section we discuss our experimental setup and our results. The aim of
the experiment is to compare the performance of the pfl algorithm against sbfl
measures at the practical task of finding a fault in large faulty programs.

5.1 Setup

We use the Steimann test suite in our experiments, described in Table 1 [33].
M is the number of methods, UUT the number of units under test, b the num-
ber of blocks of code, UUT/b the mean number of UUT s per block, t the
number of test cases. The last column gives the number of program versions
with 1/2/4/8/16/32 faults respectively. The average number of covered compo-
nents that were faulty for all 1/2/4/8/16/32 fault benchmarks was found to be
1.00/1.92/3.63/6.71/11.81/20.02 respectively (7.52 on average). Steimann’s test
suite is the only test suite found to represent large programs with a large range of
faults and a large number of program versions. For more about the suite see [33].
The suite came with a program that generated the coverage matrices (see [33]).

We used blocks as our atomic program entity, and only considered atomic
blocks for all methods compared. A block corresponds to a maximal set of exe-
cutable statements with the same traces covering them. This correspondence
provides a natural grouping, as the degree of suspiciousness of lines of code is
the same as the block to which they belong, and does not effect the fault local-
isation process from the user’s point of view. In the majority of cases blocks
represented a continuous chunk of the program and were similar in size – the
average size of these blocks are reported in the UUT/b column of Table 1, and
can often be quite large.

Table 1. Benchmarks

Benchmark M UUT b UUT/b t 1/2/4/8/16/32v

Daikon 4.6.4 14387 1936 48 40 157 353/1000/1000/...

Eventbus 1.4 859 338 68 5 91 577/1000/1000/...

Jaxen 1.1.5 1689 961 228 4 695 600/1000/1000/...

Jester 1.37b 378 152 25 6 64 411/1000/1000/...

Jexel 1.0.0b13 242 150 48 3 335 537/1000/1000/...

JParsec 2.0 1011 893 240 4 510 598/1000/1000/...

AC Codec 1.3 265 229 57 4 188 543/1000/1000/...

AC Lang 3.0 5373 2075 78 27 1666 599/1000/1000/...

Eclipse.Draw2d 3.4.2 3231 878 74 12 89 570/1000/1000/...

HTML Parser 1.6 1925 785 148 5 600 599/1000/1000/
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We now discuss techniques compared. We include all known sbfl techniques;
which includes the 157 measures in [11], which itself includes 30 measures from
the studies of Naish [15] and the 40 measures Lo [16]. We include the 30 genetic
measures of Yoo [20], the Dstar measures [17] and the 6 “combination” measures
of Kim et al. [21]. This brings the number of sbfl measures to almost 200, which
to our knowledge is the largest comparison of sbfl measures to date. We now
discuss the pfl techniques. We used the weighted model pfl-w, and used the
ppv, Ochiai, Kulczynski2, and Suppes measures (see preliminaries) as values for
w. Not all measures could be tested because pfl techniques take slightly longer
to run. To our knowledge sbfl and pfl techniques are the only ones which can
feasibly scale to our experiments. Techniques which take 10 min on average to
localise a fault in one program version would take almost a year to complete the
experiment.

We evaluated the effectiveness of a technique using avg W-scores and A-
scores (see preliminaries). We define higher level W/A-scores as follows. For each
n ∈ {1, 2, 4, 8, 16, 32} a basic score for the n-fault versions of a given benchmark
is the mean of the scores for all versions of that benchmark with n-faults. The
score for the n-fault versions is the mean of the ten basic scores for the n-fault
versions. The Avg score is the mean of the 60 basic scores. We used Wilcoxon
rank-sum tests to determine to whether a technique’s 60 W/A basic scores were
statistically significantly better than another (using p = 0.01). To provide a
lower bound for sbfl performance, we included scores for the Random measure
(defined as a measure which outputs a random number). To provide an upper
bound, we computed the unavoidable costs for W/A-scores (discussed in Sect. 2).

5.2 Results

We begin with overall results. Zoltar was the sbfl measure with the highest Avg
W-score of 2.59. pfl-ppv improved on this score with a Avg W-score of 1.88.
Thus, the user has to investigate 37.77 % more code when using the best sbfl
measure. Klosgen was the sbfl measure with the highest Avg A-score of 55.2.
(pfl-ppv) improved on this score with a Avg A-score of 76.2. Thus, the user finds
a fault immediately 27.56 % less frequently using the next best sbfl measure.
Both pfl-ppv’s W/A 60 scores were a statistically significant improvement over
the next best performing sbfl measures using p = 0.01. Thus, the pfl approach
was a substantial and significant improvement at localising faults.

We now discuss unavoidable cost (UC) scores. UC’s Avg W/A-scores were
76.45 and 1.38 respectively. pfl-ppv outperformed UC’s W-scores at 30/60
benchmarks, and UC’s A-scores at 24/60 benchmarks. It is thus theoretically
impossible to design a strictly rational sbfl measure that can outperform pfl-
ppv on many benchmarks.

To get an impression for the overall range of performance, we present the
following additional Avg scores. Kulkzynski2, Ochiai, Suppes, ppv (Tarantula),
Random had Avg W-scores of 2.69, 2.97, 3.60, 3.88, 19.77, and Avg A-scores
of 52.65, 52,47, 52.47, 49.73, 12.97 respectively. When pfl-w was used in con-
junction with the first three measures (scaled [0,1]), the techniques had Avg
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W-scores of 2.31, 2.05, 2.09 and Avg A-scores of 70.57, 72.55, 72.30. Thus, all
our pfl-w approaches outperformed all sbfl measures regardless of choice of w.
This suggests that the pfl-w framework is more responsible for the improvement
of fault localisation effectiveness than the choice of weight w.

We now discuss how measures behave as more faults are introduced into
a program. In Figs. 3 and 4 we graphically compare a range of techniques.
Firstly, we represented the unavoidable cost scores to show how pfl-ppv approx-
imates (and in some cases exceeds) the idealised upper bounds for performance
of strictly rational sbfl measures. Secondly, we represented Zoltar as it was
the sbfl measure which the best W-scores. Thirdly, we represented Tarantula
(equivalent to ppv) to show how using pfl-ppv improves performance. Each
column represents a technique’s score for the n-fault versions of that suite, with
the key shade representing the value of n (for example, the W-score for pfl-ppv
at the 2-fault benchmarks is 1.94).

We observed the following trends: In general, the more faults there were in a
program the better an sbfl measure’s W-scores, but the worse that measure’s
A-scores. A proposed explanation for this is that the more faults there were in

Fig. 3. W-scores for selected techniques

Fig. 4. A-scores for selected techniques
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Fig. 5. pfl-ppv performance

a program, the more likely it was to find a fault early (due to increased luck –
thus improving W-scores), but the less likely to find a fault immediately (due to
increased noise – thus worsening A-scores). These trends were noticed in all of
our sbfl measures, of which Zoltar and Tarantula are examples. By contrast, a
negative trend for the A-scores was not noticed for our variants of pfl-w, which
demonstrated a superior ability to deal with noise introduced by multiple faults.

We now discuss Fig. 5. For each set of n-fault benchmarks, if y% of the
program versions received a W-score of ≤ x%, a point was plotted on that
graph at (x, y). The mean (Avg) of the 6 graphs is also plotted. The figure
demonstrates that if we limit fault localisation to only 10 % of the blocks, on
Avg we would expect to find a fault 95 % of the time using pfl-ppv. An outlier
is that pfl-ppv does slightly worse on the 16-fault benchmarks. In general, the
graph confirms the conclusion that pfl-ppv’s performance is not substantially
worsened by the number of faults in the program.

We now discuss time efficiency. In our implementation it took under a second
to find the most suspicious component in sbfl/pfl procedures. The complete
pfl procedure (as per the algorithm in Sect. 4), took an average of 6.16 s (with
potential for optimisation) – thus establishing pfl’s negligible overhead.

In summary, pfl approaches substantially, and statistically significantly
improve over the best performing sbfl approaches in our large multiple fault
programs, and are comparably efficient. Furthermore, they outperform theoret-
ically optimum performance of sbfl measures on a large class of benchmarks.

We briefly report results (Avg scores) in additional experiments which were
of much lower quality and size. We generated 500+ 1/2/3/4 fault versions using
the methodology and 10 SIR benchmarks of [34]. 80 % of the faults were covered
by all failing traces which made it less challenging for our techniques in terms of
noise. The highest scoring sbfl measure was Kulczynski2 (K2) (W-score 8.76,
A-score 33.75). pfl-Suppes, pfl-K2, pfl-Ochiai came second (W-scores 9.66,
10.27, 10.40, and A-scores 25.73, 24.43, 28.43 respectively). K2’s scores were not
statistically significantly better. The Barinel tool (see [34]) came 43rd overall
and was not competitive. pfl-ppv came 6th after sbfl measures (W-score 11.39,
A-score 29.15). The experiments confirm pfl as high performing.
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6 Related Work

The most prominent lightweight approach to software fault localisation is
sbfl [3], and provides the theoretical groundwork for the pfl approach. Research
is driven by the development of new measures and experimentally comparing
them on benchmarks [4–21]. Causal measures were introduced to sbfl in [11].
Threats to the value of empirical studies of sbfl is studied in [33]. Theoreti-
cal results include proving potentially desirable formal properties of measures
and finding equivalence proofs for classes of measures [10,11,15,22,35]. Yoo
et al. have established theoretical results that show that a “best” performing
suspicious measure for sbfl does not exist [23], and thus there remains the
problem of finding formal properties for lightweight techniques to exploit. We
have tried to address this problem in this paper.

A prominent probabilistic approach is Barinel, which differs to pfl insofar
as it uses Bayesian methods to generate likelihoods of given hypotheses [34],
and a minimal hitting set algorithm Staccato to generate hypotheses. Their
approach is designed for the simultaneous fault localisation of sets of multiple
faults, and were only scalable to our additional experiments. Other heavyweight
techniques are similarly unscalable [30,36–41], which emphasises the importance
of developing lightweight techniques such as pfl/sbfl.

In general, sbfl methods have been successfully used in the following appli-
cations. Firstly, in semi-automated fault localisation in which users inspect code
in descending order of suspiciousness [29]. Secondly, in fully-automated fault
localisation subroutines within algorithms which inductively synthesise (such as
Cegis [42]) or repair programs (such as GenProg [43]). Thirdly, as a substi-
tute for heavyweight methods which cannot scale to large programs [30,36,37].
Fourthly, as a technique combined with other methods [21,24,44–50]. In general,
pfl may be used as a substitute for sbfl measures in all these applications. For
a major recent survey we defer to Wong et al. [3].

7 Conclusions

In this paper we have presented a new formal framework which we call pfl,
and compared it to sbfl in terms of (1) desirable theoretical properties, (2) its
effectiveness at fault localisation and (3) its efficiency. Regarding (1), the pfl
equations were formally proven to satisfy desirable fault likelihood properties
which sbfl measures could not. Regarding (2), pfl-ppv was shown to sub-
stantially and statistically significantly (using p = 0.01) outperform all known
sbfl measures at W and A-scores in what is to our knowledge the largest scale
experimental comparison in software fault localisation to date. We found that
the user has to investigate over 37.77 % more blocks of code (and finds a fault
immediately 27.56 % less frequently) than pfl-ppv when using the best sbfl
measures. Furthermore, we show that for a third/quarter of our benchmarks it
is theoretically impossible to design strictly rational sbfl measures which out-
performs pfl-ppv’s W/A-scores respectively. Regarding (3), we found that the
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pfl approach maintains a comparably negligible overhead to sbfl. Thus, our
results suggest the pfl framework has theoretical and practical advantages over
sbfl.

For future work, we would like to find additional suspiciousness measures for
use with pfl-w. Secondly, we would like find a method to determine upper bound
scores for pfl performance (similar to Naish’s unavoidable costs). Thirdly, we
would like to implement pfl in an easy to use tool for engineers.
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