
Advancing Software Model Checking Beyond
Linear Arithmetic Theories

Ahmed Mahdi1(B), Karsten Scheibler2, Felix Neubauer2, Martin Fränzle1,
and Bernd Becker2

1 Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
{mahdi,fraenzle}@informatik.uni-oldenburg.de

2 Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau, Germany
{scheibler,neubauef,becker}@informatik.uni-freiburg.de

Abstract. Motivated by the practical need for verifying embedded con-
trol programs involving linear, polynomial, and transcendental arith-
metics, we demonstrate in this paper a CEGAR technique addressing
reachability checking over that rich fragment of arithmetics. In contrast
to previous approaches, it is neither based on bit-blasting of floating-
point implementations nor confined to decidable fragments of real arith-
metic, namely linear or polynomial arithmetic. Its CEGAR loop is based
on Craig interpolation within the iSAT3 SMT solver, which employs
(abstract) conflict-driven clause learning (CDCL) over interval domains
together with interval constraint propagation. As usual, the interpolants
thus obtained on spurious counterexamples are used to subsequently
refine the abstraction, yet in contrast to manipulating and refining the
state set of a discrete-state abstraction, we propose a novel technique for
refining the abstraction, where we annotate the abstract model’s transi-
tions with side-conditions summarizing their effect. We exploit this for
implementing case-based reasoning based on assumption-commitment
predicates extracted from the stepwise interpolants in a lazy abstraction
mechanism. We implemented our approach within iSAT3 and demon-
strate its effectiveness by verifying several benchmarks.

1 Introduction

The wide-spread use of embedded control programs involving linear, polynomial,
and transcendental arithmetic provokes a quest for corresponding verification
methods. A crucial technique here is the automatic verification of reachability
properties in such programs, as many problems can be reduced to it and as it
in particular provides a method for detecting unreachable code fragments, a.k.a.
dead code, in such programs. The latter is an industrial requirement, as various
pertinent standards for embedded system development either demand adequate
handling of dead code during testing or even bar it altogether, like DO-178C,
DO-278A, or ISO/IEC PDTR 24772.

This work was supported by the German Research Council (DFG) as part of SFB/TR
14 AVACS (http://www.avacs.org).

c© Springer International Publishing AG 2016
R. Bloem and E. Arbel (Eds.): HVC 2016, LNCS 10028, pp. 186–201, 2016.
DOI: 10.1007/978-3-319-49052-6 12

http://www.avacs.org

Advancing Software Model Checking Beyond Linear Arithmetic Theories 187

The set of verification tools being able to address reachability properties
in arithmetic programs involving such a rich fragment of arithmetic is con-
fined. Tools manipulating real-valued rather than machine arithmetic tend to
be limited to linear or at most polynomial arithmetic due to the obvious decid-
ability issues arising in richer fragments of real arithmetic; tools resorting to
bit-blasting, like C Bounded Model Checking (CBMC) [1], tend to adopt the
very same restrictions for complexity reasons. Abstract interpretation [2] could
in principle easily go beyond, but then suffers from inexactness since the geom-
etry of sets of numbers representable by its usual lattices and the graphs of the
monotonic functions over these can only provide coarse overapproximations.

Our Contributions: Within this paper, (1) we are trying to overcome this defi-
ciency by a combination of techniques forming a viable counterexample guided
abstraction refinement (CEGAR) loop: we exploit Craig interpolation [3] in the
interval constraint-propagation based satisfiability modulo theory (SMT) solving
algorithm iSAT [4,5] in order to extract reasons for an abstract counterexample
being spurious, leading to goal-directed abstraction refinement as in CEGAR [6].
(2) In contrast to the usual scheme manipulating and refining the state set of a
discrete-state abstraction by splitting cases [7,8] or splitting paths depending on
automata [9], we annotate the abstract model’s transitions with side-conditions
summarizing their effect. Due to a tight integration of checking the abstraction
into the SMT solver iSAT3, we can exploit these annotations for implement-
ing case-based reasoning based on assumption-commitment predicates extracted
from the stepwise interpolants in a lazy abstraction mechanism, thereby elimi-
nating all spurious counterexamples that share a local reason of being spurious
at one transition by using one predicative expression.

We implemented our approach within iSAT3 and demonstrate its effective-
ness by verifying several benchmarks. We do in particular compare our app-
roach to a model-checking technique exploiting Craig interpolants over the same
fragment of arithmetics as an overapproximation of reachable state sets [5], as
originally suggested for the finite-state case by McMillan [10], i.e., implement-
ing approximate reach-set computation rather than CEGAR. The benchmarks
indicate superior performance of the new CEGAR approach on non-linear bench-
marks.

Related Work: To the authors’ best knowledge, this is the first attempt to
verify programs which may involve transcendental functions by using CEGAR.
Most previous work is confined only to linear arithmetics or polynomials [8,11–
15], where our work supports richer arithmetic theories, namely transcendental
functions. Although our approach is similar with IMPACT [8], WHALE [16] and
Ultimate Automizer [17] solvers regarding the usage of interpolants as necessary
predicates in refining the abstraction, there are fundamental differences in the
learning procedure. While IMPACT and WHALE explicitly split the states after
each learning, Ultimate Automizer which is based on ω−automata in learning
reasons of spurious counterexamples [18], applies trace abstraction where inter-
polants are used to construct an automaton that accepts a whole set of infeasible
traces and on the same time overapproximates the set of possible traces of the

188 A. Mahdi et al.

safe program. In contrast to that, our refinement procedure adds neither tran-
sitions nor states to the abstraction, but we do annotate the abstract program
transitions with necessary assumption-commitment conditions that eliminate the
spurious counterexamples.

2 Preliminaries

We use and suitably adapt several existing concepts. A control flow graph (CFG)
is a cyclic graph representation of all paths that might be traversed during
program execution. In our context, we attach code effect to edges rather than
nodes of the CFG. i.e., each edge comes with a set of constraints and assignments
pertaining to execution of the edge. Formally, constraints and assignments are
defined as follows:

Definition 1 (Assignments and constraints). Let V be a set of integer and
real variables, with typical element v, B be a set of boolean variables, with typical
element b, and C be a set of constants over rationals, with typical element c.

– The set Ψ(V,B) of assignments over integer, real, and boolean variables with
typical element ψ is defined by the following syntax:

ψ ::= v := aterm | b := bterm

aterm ::= uaop v | v baop v | v baop c | c | v

bterm ::= ubop b | b bbop b | b

uaop ::= − | sin | cos | exp | abs | ...

baop ::= + | − | · | ...

ubop ::= ¬
bbop ::= ∧ | ∨ | ⊕ | ...

By ψ we denote a finite list of assignments on integer, real, and boolean
variables, ψ = 〈ψ1, ..., ψn〉 where n ∈ N≥0. We use Ψ(V,B)∗ to denote the
set of lists of assignments and 〈 〉 to denote the empty list of assignments.

– The set Φ(V,B) of constraints over integer, real, and boolean variables with
typical element φ is defined by the following syntax:

φ ::= atom | ubop atom | atom bbop atom

atom ::= theory atom| bool

theory atom ::= comp | simple bound

comp ::= term lop c | term lop v

simple bound ::= v lop c

bool ::= b | ubop b | b bbop b

term ::= uaop v | v baop v | v baop c

lop ::= < | ≤ | = | > | ≥

where uaop, baop, ubop and bbop are defined above.

Advancing Software Model Checking Beyond Linear Arithmetic Theories 189

We assume that there is a well-defined valuation mapping ν : V ∪ B →
D(V) ∪ D(B) that assigns to each assigned variable a value from its associated
domain. Also, we assume that there is a satisfaction relation |=⊆ (V ∪ B →
D(V) ∪ D(B)) × Φ(V,B) and in case of arithmetic or boolean variables we
write ν |= φ iff ν|V ∪B |= φ. The modification of a valuation ν under a finite
list of assignment ψ = 〈ψ1, ..., ψn〉 denoted by ν[ψ] = ν[ψ1]...ν[ψn], where
ν[v := aterm](v′) = ν[aterm] if v′ = v, otherwise ν[v := aterm](v′) = ν(v′).
The same concept of modification is applied in case of boolean assignments.

Definition 2 (Control Flow Graph (CFG)). A control flow graph γ =
(N,E, i) consists of a finite set of nodes N , a set E ⊆ N × Φ × Ψ × N of
directed edges, and an initial node i ∈ N which has no incoming edges. Each edge
(n, φ,ψ, n′) ∈ E has a source node n, a constraint φ, a list ψ of assignments
and a destination node n′.

CFG’s operational semantics interprets the edge constraints and assignments:

Definition 3 (Operational Semantics). The operational semantics T
assigns to each control flow graph γ = (N,E, i) a labelled transition system
T (γ) = (Conf(γ), { e−→ | e ∈ E}, Cinit) where Conf(γ) = {〈n, ν〉 | n ∈ N ∧ ν :
V ∪ B → D(V) ∪ D(B)} is the set of configurations of γ, e−→⊆ Conf(γ) ×
Conf(γ) are transition relations where 〈n, ν〉 e−→ 〈n′, ν′〉 occurs if there is an
edge e = (n, φ,ψ, n′), ν |= φ and ν′ = ν[ψ], and Cinit = {〈i, νinit〉} ∩ Conf(γ) is
the set of initial configurations of γ.

A path σ of control flow graph γ is an infinite or finite sequence 〈n0, ν0〉 e1−→
〈n1, ν1〉 e2−→ 〈n2, ν2〉 . . . of consecutive transitions in the transition system T (γ),
which furthermore has to be anchored in the sense of starting in an initial state
〈n0, ν0〉 ∈ Cinit. We denote by Σ(γ) the set of paths of γ and by ↓ σ the set
{〈n0, ν0〉, 〈n1, ν1〉, ...} of configurations visited along a path σ.

As we are interested in determining reachability in control flow graphs, we
formally define reachability properties as follows:

Definition 4 (Reachability Property(RP)). The set Θ(N,Φ) of reacha-
bility properties (RP) over a control flow graph γ = (N,E, i) is given by the
syntax

θ ::= n

Given an RP θ and a path σ, we say that σ satisfies θ and write σ |= θ iff σ
traverses a configuration 〈n, ν〉 that satisfies θ, i.e., σ |= θ iff ∃ν : 〈n, ν〉 ∈↓ σ.
We say that γ satisfies a reachability property θ iff some path σ ∈ Σ(γ) satisfies
θ. By Σ(γ, θ), we denote the set of all paths of γ that satisfy θ.

We analyze CFGs by a counterexample-guided abstraction refinement
(CEGAR) scheme [6] employing lazy abstraction [11]. As usual, that refinement
is based on identifying reasons for an abstract counterexample by means of con-
structing a Craig interpolant [3].

190 A. Mahdi et al.

Definition 5 (Craig Interpolation). Given two propositional logic formulae
A and B in an interpreted logics L such that |= LA → ¬B, a Craig interpolant
for (A,B) is a quantifier-free L-formula I such that |= LA → I, |= LI → ¬B,
and the set of variables of I is a subset of the set of the free variables shared
between A and B, i.e., Var(I) ⊆ V ar(A) ∩ V ar(B).

Depending on the logics L, such a Craig interpolant can be computed by
various mechanisms. If L admits quantifier elimination then this can in principle
be used; various more efficient schemes have been devised for propositional logic
and SAT-modulo theory by exploiting the connection between resolution and
variable elimination [13,19].

3 Description of the SMT Solver iSAT3

We build our CEGAR loop on the iSAT3 solver, which is an SMT solver accept-
ing formulas containing arbitrary boolean combinations of theory atoms involv-
ing linear, polynomial and transcendental functions (as explained in Defini-
tion 1). In classical SMT solving a given SMT formula is split into a boolean
skeleton and a set of theory atoms. The boolean skeleton (which represents the
truth values of the theory atoms) is processed by a SAT solver in order to search
for a satisfying assignment. If such an assignment is found, a separate theory
solver is used to check the consistency of the theory atoms under the truth val-
ues determined by the SAT solver. In case of an inconsistency the theory solver
determines an infeasible sub-set of the theory-atoms which is then encoded into
a clause and added to the boolean skeleton. This scheme is called CDCL(T).

In contrast to CDCL(T), there is no such separation between the SAT and
the theory part in the family of iSAT solvers [4]; instead interval constraint
propagation (ICP) [20] is tightly integrated into the CDCL framework in order
to dynamically build the boolean abstraction by deriving new facts from theory
atoms. Similarly to SAT solvers, which usually operate on a conjunctive nor-
mal form (CNF), iSAT3 operates on a CNF as well, but a CNF additionally
containing the decomposed theory atoms (so-called primitive constraints). We
apply a definitional translation akin to the Tseitin-transformation [21] in order
to rewrite a given formula into a CNF with primitive constraints.

iSAT3 solves the resulting CNF through a tight integration of the Davis-
Putnam-Logemann-Loveland (DPLL) algorithm [22] in its conflict-driven clause
learning (CDCL) variant and interval constraint propagation [20]. Details of the
algorithm, which operates on interval valuations for both the boolean and the
numeric variables and alternates between choice steps splitting such intervals and
deduction steps narrowing them based on logical deductions computed through
ICP or boolean constraint propagation (BCP), can be found in [4]. Implementing
branch-and-prune search in interval lattices and conflict-driven clause learning
of clauses comprising irreducible atoms in those lattices, it can be classified as an
early implementation of abstract conflict-driven clause learning (ACDCL) [15].

iSAT3 is also able to generate Craig interpolants. Here we exploit the sim-
ilarities between iSAT3 and a CDCL SAT solver with respect to the conflict

Advancing Software Model Checking Beyond Linear Arithmetic Theories 191

resolution. As atoms occurring as pivot variables in resolution steps are always
simple bounds mentioning a single variable only, we are able to straightforwardly
generalize the technique employed in propositional SAT solvers to generate par-
tial interpolants [5].

Fig. 1. Left: an arithmetic program, middle: corresponding control flow graph, right:
encoding in iSAT3 CFG format.

3.1 Encoding Control Flow Graphs in iSAT3

In order to encode control flow graphs in the iSAT3 input language, we extend
the syntax of iSAT3 as shown in Fig. 1. A control flow graph file in iSAT3 (iSAT3-
CFG) contains five parts, namely the declaration, nodes, initialization, edges, and
specification sections, which are all started by the respective keywords.

As in iSAT3, the declaration part defines all variables and constants to be
used subsequently. Non-boolean variables must have an assigned initial range
over which a solution is sought. The second part is the newly introduced nodes
part, which defines the set of control flow graph nodes to be used as source or
destination locations of transitions. The initialization part then defines both the
initial edge of the CFG and the permissible initial values of all program variables.
The latter is achieved by stating a predicate confining the possible values. Its
counterpart is the reachability specification, which may name the destination
node or define a set of variable valuations to be reached.

The edges part, introduced by the keyword EDGES, represents the control
flows in the graph. This part contains a list of edges as defined in Definition 2,
each defined by a source node, a list of guards, a list of assigned variables that
are changed, a list of assignments where the assigned variable has to be primed,
and a destination node which has to be primed as well. In case that the list of

192 A. Mahdi et al.

assigned variables is empty, it means all previous values of variables are propa-
gated. In contrast to the iSAT3 tradition, a framing rule is applied such that all
unspecified assignments and behaviors during unrolling are not considered to be
nondeterministic choices, but values are maintained by implicit equations x′ = x
for all unassigned variables.

4 Interpolation-Based Abstraction Refinement in iSAT3

The basic steps in counterexample guided abstraction refinement (CEGAR) are
to, first, compute an initial abstraction, then model-check it, thereafter termi-
nating if no counterexample is found or trying to concretize the counterexample
otherwise. If concretization succeeds then the counterexample is real, else spuri-
ous. In the latter case, a reason for the occurrence of the spurious counterexam-
ple is extracted and subsequently used for refining the abstraction, after which
model checking is repeated.

As concretization of the abstract counterexample involves solving its concrete
path condition, which is a conjunctive constraint system in the logical theory
corresponding to the data domain of the program analyzed, SAT-modulo-theory
solving often is the method of choice for concretization and Craig interpolation
consequently a natural candidate for the extraction of reasons. It has been sug-
gested by Henzinger et al. [12]. Of these classical approaches, we do in particular
adopt lazy abstraction [8,11] and inductive interpolants in [14], yet lift them
to the analysis of programs featuring arithmetic beyond decidable fragments.
While CEGAR on such rich fragments of arithmetic has been pursued within
the field of hybrid-system verification, in particular by Ratschan et al. [23], refine-
ment there has not been directed by Craig interpolation and, using explicit-state
techniques, the targets where relatively small control skeletons rather possibly
unwieldy CFGs. By a tight integration of checking the abstraction and SMT
including CI, we are trying to overcome such limitations.

4.1 The Algorithm

This section presents the four main steps of CEGAR in iSAT3; namely abstrac-
tion, abstract model verification, predicate extraction during counterexample
validation, and refinement.

Initial Abstraction. The first step of applying CEGAR is to extract an initial
abstraction from the concrete model by a well-defined abstraction function. The
first abstraction represents just the graph structure of the CFG without consid-
ering edge interpretations by assignments and guards. It is introduced as follows:

Definition 6 (Initial Abstraction Function). Given a control flow graph
γ = (N,E, i) ∈ Γ , its initial abstraction mediated by the abstraction function α
is the CFG α(γ) = (N,E′, i), where E′ = {(n, true, 〈〉, n′) | (n, φ,ψ, n′) ∈ E}.

Advancing Software Model Checking Beyond Linear Arithmetic Theories 193

Verifying the Abstraction. In the model checking community it is common to
verify reachability problems in the abstract model by using finite-state model-
checkers, like BDD-based approaches [24]. In this work, we verify reachability
properties in the abstract models by SMT solving together with interpolation [10]
in order to verify reachability for unbounded depths. The individual runs of thus
unbounded SMT-based model-checking are bound to terminate, as the initial
abstraction is equivalent to a finite-state problem and as the predicates that are
added to enrich the abstraction during refinement are just logical formula over
simple bounds x ∼ c which are bounds on boolean propositions; i.e., literals, thus
keeping the model finite-state. By this idea, we can pursue model-checking of
the abstraction and the concretizability test of abstract counterexamples within
the same tool, thus avoiding back and forth translation between different tools
and checking technologies.

Path-Condition Generation and Extraction of Reasons. Given that the abstract
model α(γ) is a CFG, it induces a set of paths. We call any path σabs ∈ Σ(α(γ))
an abstract path. As the abstraction function just relaxes edge conditions, we
can build a corresponding concrete path—if existent—by just reintroducing the
missing constraints and assignments as follows.

Definition 7 (Path-Conditions Generation Function). Given a control
flow graph γ = (N,E, i) and its abstraction α(γ) = (N,E′, i) ∈ Γ and a finite

abstract path σabs : 〈i, ν′
init〉

e′
1−→ 〈n1, ν

′
1〉

e′
2−→ ...

e′
m−−→ 〈nm, ν′

m〉 ∈ Σ(α(γ)), the
path-conditions generation function κ : Γ × Σ → Σ that builds a concrete path
semantically by completing its conditions, is defined as follows:

κ(γ, σabs) = σ where, σ : 〈i, νinit〉 e1−→ 〈n1, ν1〉 e2−→ ...
em−−→ 〈nm, νm〉,

{e1, ..., em} ⊆ E and {n1, ..., nm} ⊆ N

We say that σ is a real path if and only if its generated path condition, i.e.,
νini ∧

∧m
i=1 φi ∧ ψi is satisfiable, else it is spurious.

The crucial step in the CEGAR loop is to extract a reason for counterexam-
ples being spurious such that case splitting on that reason would exclude the
particular (and similar) counterexamples. Several previous works used differ-
ent approaches and schemes to capture such reasons, like state splitting [23],
word matching by using ω-automata [18], or interpolants [8,11–14]. In our
work, we exploit stepwise interpolants as in [13,14] in order to obtain predi-
cates capturing the reasons, where the first and last interpolants during refin-
ing any spurious counterexample are always true and false respectively [13].
This can be carried out as follows: When encountering a spurious counterex-

ample σsp = 〈i, ν′
init〉

e′
1−→ ...

e′
m−−→ 〈nm, ν′

m〉 ∈ Σ(γ′), where γ′ is an abstraction,
{e′

1, .., e
′
m} ⊆ E′ – primed edges denote abstract ones –, m > 0 and θ = nm is

the goal to be reached,

– we complete the abstract path σsp in the original model γ semantically by
using the path-conditions generation function κ as in Definition 7.

194 A. Mahdi et al.

– as σsp is spurious, we obtain an unsatisfiable path formula κ(γ, σsp) /∈ Σ(γ),
i.e., νinit ∧

∧m
i=1 φi ∧ ψi |= False.

– by using CI in order to extract reasonable predicates as in lazy abstrac-
tion [12], one computes a reason of unsatisfiability at each control point
(node) of γ. For example, consider that κ(γ, σsp) = A ∧ B, where A =
νinit ∧

∧k
j=1 φj ∧ ψj , B =

∧m
j=k+1 φj ∧ ψj and 0 ≤ k ≤ m. If we run the

iSAT3 solver iteratively for all possible values of k, we obtain m + 1 inter-
polants, where interpolant Ik is an adequate reason at edge ek justifying the
spuriousness of σsp.

– in case of using inductive interpolants, one uses the interpolant of iteration
k, i.e., Ik as A-formula while interpolating against the above formula B in
order to obtain interpolant Ik+1. As Ik overapproximates the prefix path
formula till k, we compute the next interpolant Ik+1 that overapproximates
Ik ∧φk+1 ∧ψk+1. This step assures that the interpolant at step k implies the
interpolant at step k + 1.

This guarantees that the interpolants at the different locations achieve the goal of
providing a reason eliminating the infeasible error path from further exploration.

Abstraction Refinement. After finding a spurious counterexample and extracting
adequate predicates from the path, we need to refine the abstract model in a
way such that at least this counterexample is excluded from the abstract model
behavior. This refinement step can be performed in different ways. The first
way is a global refinement procedure which is the earliest traditional approach,
where the whole abstract model is refined after adding a new predicate [25]. The
second way is a lazy abstraction [8,11,26] where instead of iteratively refining
an abstraction, it refines the abstract model on demand, as it is constructed.
This refinement has been based on predicate abstraction [11] or on interpolants
derived from refuting program paths [8]. The common theme, however, has been
to refine and thus generally enlarge the discrete state-space of the abstraction
on demand such that the abstract transition relation could locally disambiguate
post-states (or pre-states) in a way eliminating the spurious counterexample.

Our approach of checking the abstraction within an SMT solver (by using
interpolation based model checking) rather than a finite-state model-checker
facilitates a subtly different solution. Instead of explicitly splitting states
in the abstraction, i.e., refining the nodes of the initial abstraction, we stay
with the initial abstraction and just add adequate pre-post-relations to
its edges. These pre-post-relations are akin to the ones analyzed when locally
determining the transitions in a classical abstraction refinement, yet play a dif-
ferent role here in that they are not mapped to transition arcs in a state-enriched
finite-state model, but rather added merely syntactically to the existing edges,
whereby they only refine the transition effect on an unaltered state space. It is
only during path search on the (refined) abstraction that the SMT solver may
actually pursue an implicit state refinement by means of case splitting; being
a tool for proof search, it would, however, only do so on demand, i.e., only
when the particular case distinction happens to be instrumental to reasoning.

Advancing Software Model Checking Beyond Linear Arithmetic Theories 195

Fig. 2. CEGAR iterations where bold paths and cyan predicates represent the current
counterexample and added constraints in each iteration after refinement. (Color figure
online)

We support this implicit refinement technique for both lazy abstraction (with
inductive interpolants as optional configuration) and global refinement.

In the following we concisely state how the (novel) implicit refinement is
performed by attaching pre-post-conditions to edges. Given a spurious coun-

terexample σsp = 〈i, νinit〉
e′
1−→ ...

e′
m−−→ 〈nm, νm〉 ∈ Σ(γ′) with θ = nm as shown

in the previous subsection, we obtain m + 1 (optionally inductive) interpolants,
where Ik and Ik+1 are consecutive interpolants at edges ek and ek+1, respectively,
and 0 < k < m. We continue as follows:
1. if Ik ∧ φk+1 ∧ ψk+1 → Ik+1 holds, then we add I → I ′ to e′

k+1,
2. if Ik ∧ φk+1 ∧ ψk+1 → ¬Ik+1 holds, then we add I → ¬I ′ to e′

k+1,
3. if ¬Ik ∧ φk+1 ∧ ψk+1 → ¬Ik+1 holds, then we add ¬I → ¬I ′ to e′

k+1,
4. if ¬Ik ∧ φk+1 ∧ ψk+1 → Ik+1 holds, then we add ¬I → I ′ to e′

k+1,

where I is Ik with all its indexed variable instances xk replaced by undeco-
rated base names x and I ′ is Ik+1 with all its indexed variable instances xk+1

196 A. Mahdi et al.

replaced by primed base names x′. These checks capture all possible sound rela-
tions between the predecessor and successor interpolants. For example, consider
the abstract model in the first iteration as in Fig. 2. Interpolation on the path
condition of the spurious counterexample yields I1 := true and I2 := x ≥ 0.0002.
By performing the previous four checks, we obtain only one valid check, namely

true︸︷︷︸
I1

∧ true︸︷︷︸
φ1

∧x2 = sin(y1) + 1.0002 ∧ y2 = y1
︸ ︷︷ ︸

ψ1

→ x2 ≥ 0.0002
︸ ︷︷ ︸

I2

We consequently construct the pre-post-predicate true → x′ ≥ 0.0002 as shown
on the arc from n3 to n4 of Image 1 of Fig. 2. We can derive that the pre-post-
predicate thus obtained is a sufficient predicate to refine not only the abstract
model at edge e′

k+1 for eliminating the current spurious counterexample, but
also for any other spurious counterexample that (1) has a stronger or the same
precondition before traversing edge e′

k+1 and (2) has a stronger or the same
postcondition after traversing edge e′

k+1.

Lemma 1. Given a control flow graph γ ∈ Γ , its abstraction α(γ) and a spu-
rious counterexample σsp ∈ Σ(α(γ) over the sequence of edges e1, ...em, adding
side-conditions is sufficient to eliminate the spurious counterexample.

Proof. (sketch): by using stepwise interpolants, we get a sequence of interpolants
I0, ..., Im attributing the previous (spurious) abstract counterexample with the
path condition

∧m−1
i=0 (Ii → Ii+1),1 where “Ii → Ii+1” is obtained since Ii∧φi+1∧

ψi+1 → Ii+1 is a tautology. As the first and – at least – the last interpolants
are true and false respectively, the path formula (

∧m−1
i=0 Ii → Ii+1) becomes

contradictory. Thus the current spurious counterexample is eliminated. ��

Due to their implicational pre-post-style, we can simply conjoin all discovered
predicates at an edge, regardless on which path and after how many refine-
ment steps they are discovered. Such incremental refinement of the symbolically
represented pre-post-relation attached to edges by means of successively con-
joining new cases proceeds until finally we can prove the safety of the model
by proving that the bad state is disconnected from all reachable states of the
abstract model, or until an eventual counterexample gets real in the sense of its
concretization succeeding. To prove unreachability of a node in the new abstrac-
tion, we use Craig interpolation for computing a safe overapproximation of the
reachable state space as proposed by McMillan [10]. The computation of the
overapproximating CI exploits the pre-post conditions added.

In the following, we illustrate how the program in Fig. 1 is proven to be safe;
i.e., that location error is unreachable. The arithmetic program, the correspond-
ing control flow graph, and the encoding of the control flow graph in iSAT3 are
stated in the Fig. 1. In the first iteration, we get the initial coarse abstraction
according to Definition 6. In case of finding spurious counterexample, which is
the case in the first four iterations, we refine the model as shown in Fig. 2. After

1 The proof considers the first type of implication check, the others hold analogously.

Advancing Software Model Checking Beyond Linear Arithmetic Theories 197

that, the solver proves that the error is not reachable in the abstract model.
Additionally, the third and fourth counterexamples have a common suffix, but
differ in the prefix formula, therefore both are needed for refining the abstrac-
tion in the third and fourth iterations. However, as all following paths from loop
unwinding share the prefix formula with the previous two counterexamples, yet
have stronger suffix formulas, the already added pre-post predicates are sufficient
to eliminate all further counterexamples.

5 Experiments

We have implemented our approach, in particular the control flow graph encod-
ing and the interpolation-based CEGAR verification, within the iSAT3 solver.
We verified reachability in several linear and non-linear arithmetic programs and
CFG encodings of hybrid systems. The following tests are mostly C-programs
modified from [25] or hybrid models discussed in [5,27]. As automatic trans-
lation into CFG format is not yet implemented, the C benchmarks are cur-
rently mostly of moderate size (as encoding of problems is done manually), but
challenging; e.g., hénon map and logistic map [5]. We compared our approach
with interpolant-based model checking implemented in both CPAchecker [28]
(IMPACT configuration [8]), version 1.6.1, and iSAT3,2 where the interpolants
are used as overapproximations of reachable state sets [5]. Also, we compared
with CBMC [1] as it can verify linear and polynomial arithmetic programs. Com-
parison on programs involving transcendental functions could, however, only be
performed with interpolant-based model checking in iSAT3 as CBMC does not
support these functions and CPAchecker treats them as uninterpreted functions.

CBMC, version 4.9, was used in its native bounded model-checking mode with
an adequate unwinding depth, which represents a logically simpler problem, as
the k-inductor [34] built on top of CBMC requires different parameters to be
given in advance for each benchmark, in particular for loops, such that it offers
a different level of automation. We limited solving time for each problem to
five minutes and memory to 4 GB. The benchmarks were run on an Intel(R)
Core(TM) i7 M 620@2.67GHz with 8 GB RAM.

5.1 Verifying Reachability in Arithmetic Programs

Table 1 summaries the results of our experimental evaluation. It comprises five
groups of columns. The first includes the name of the benchmark, type of the
problem (whether it includes non-linear constraints or loops), number of control
points, and number of edges. The second group shows the result of verifying the
benchmarks when using iSAT3 CEGAR (lazy abstraction), thereby stating the
verification time in seconds, memory usage in kilobytes, number of abstraction
refinements, and the final verdict. The third group has the same structure, yet
2 Although we contacted the authors of dReal [29] which supports unbounded model

checking for non-linear constraints [30], they referred us to the latest version which
does not support unbounded model checking, thus it is excluded.

198 A. Mahdi et al.

Table 1. Verification results of linear/non-linear hybrid models. Bold lines refer to
best results w.r.t. best verification time.

reports results for using iSAT3 with interpolation-based reach-set overapproxi-
mation used for model checking.

Fig. 3. Accumulated verification times for the
first n benchmarks

The fourth part provides fig-
ures for CBMC with a maximum
unwinding depth of 250. CBMC
could not address the benchmarks
7 and 10 as they contain unsup-
ported transcendental functions.
The fifth part provides the fig-
ures for CPAchecker while using
the default IMPACT configura-
tion where the red lines refer
to false alarms (for comparison,
CPAchecker was run with differ-
ent configurations, yet this didn’t
affect the presence of false alarms.)
reported by IMPACT due to non-linearity or non-deterministic behaviour of the
program. For each benchmark, we mark in boldface the best results in terms of
time. iSAT3-based CEGAR outperforms the others in 18 cases, interpolation-
based MC in iSAT3 outperforms the others in 2 cases, and CBMC outperforms
the others in 3 cases. Figures 3 and 4 summarize the main findings. The tests
demonstrate the efficacy of the new CEGAR approach in comparison to other
competitor tools. Concerning verification time, we observe that iSAT3 with
CEGAR scores the best results. Namely, iSAT3-based CEGAR needs about 27 s
for processing the full set of benchmarks, equivalent to an average verification

Advancing Software Model Checking Beyond Linear Arithmetic Theories 199

time of 1.2 s, iSAT3 with the interpolation-based approach needs 2809 s total
and 122 s on average, CBMC needs 168 s total and 8 s on average, and IMPACT
needs 64 s total and 2.7 s on average.

Fig. 4. Memory usage (#benchmarks
processed within given memory limit)

Concerning memory, we observe
that iSAT3 with CEGAR needs
about 15 MB on average, iSAT3 with
interpolation 906 MB on average,
CBMC needs 66 MB on average, and
IMPACT needs 141 MB on average.
The findings confirm that at least on
the current set of benchmarks, the
CEGAR approach is by a fair mar-
gin the most efficient one.

The only weakness of both iSAT3-
based approaches is that they some-
times report a candidate solution, i.e.,
a very narrow interval box that is hull
consistent, rather than a firm satisfia-
bility verdict. This effect is due to the incompleteness of interval reasoning, which
here is employed in its outward rounding variant providing safe overapproxima-
tion of real arithmetic rather than floating-point arithmetic. It is expected that
these deficiencies vanish once floating-point support in iSAT3 is complete, which
currently is under development as an alternative theory to real arithmetic. It
should, however, be noted that CEGAR with its preoccupation to generating
conjunctive constraint systems (the path conditions) already alleviates most of
the incompleteness, which arises particularly upon disjunctive reasoning.

6 Conclusion and Future Work

In this paper, we tightly integrated interpolation-based CEGAR with SMT solv-
ing based on interval constraint propagation. The use of the very same tool,
namely iSAT3, for verifying the abstraction and for concretizing abstract error
paths facilitated a novel implicit abstraction-refinement scheme based on attach-
ing symbolic pre-post relations to edges in a structurally fixed abstraction. The
resulting tool is able to verify reachability properties in arithmetic programs
which may involve transcendental functions, like sin, cos, and exp. With our
prototype implementation, we verified several benchmarks and demonstrated
the feasibility of interpolation-based CEGAR for non-linear arithmetic programs
well beyond the polynomial fragment.

Minimizing the size of interpolants (and thus pre-post relations generated)
and finding adequate summaries of loops in case of monotonic functions will be
subject of future work.

200 A. Mahdi et al.

References

1. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-24730-2 15

2. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Conference
Record of the Fourth ACM Symposium on Principles of Programming Languages,
Los Angeles, California, USA, pp. 238–252 (1977)

3. Craig, W.: Three uses of the Herbrand-Gentzen theorem in relating model theory
and proof theory. J. Symb. Logic 22(3), 269–285 (1957)

4. Fränzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient solving of
large non-linear arithmetic constraint systems with complex Boolean structure.
JSAT 1(3–4), 209–236 (2007)

5. Kupferschmid, S., Becker, B.: Craig interpolation in the presence of non-linear con-
straints. In: Fahrenberg, U., Tripakis, S. (eds.) FORMATS 2011. LNCS, vol. 6919,
pp. 240–255. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24310-3 17

6. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000). doi:10.1007/10722167 15

7. Clarke, E.M.: SAT-based counterexample guided abstraction refinement in model
checking. In: Baader, F. (ed.) CADE 2003. LNCS (LNAI), vol. 2741, pp. 1–1.
Springer, Heidelberg (2003). doi:10.1007/978-3-540-45085-6 1

8. McMillan, K.L.: Lazy abstraction with interpolants. In: Ball, T., Jones, R.B. (eds.)
CAV 2006. LNCS, vol. 4144, pp. 123–136. Springer, Heidelberg (2006). doi:10.1007/
11817963 14

9. Heizmann, M., Hoenicke, J., Podelski, A.: Refinement of trace abstraction. In: Pals-
berg, J., Su, Z. (eds.) SAS 2009. LNCS, vol. 5673, pp. 69–85. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-03237-0 7

10. McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt, W.A.,
Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg
(2003). doi:10.1007/978-3-540-45069-6 1

11. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: Con-
ference Record of POPL 2002: The 29th SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, Portland, OR, USA, January 16–18, pp. 58–70
(2002)

12. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from
proofs. In: POPL, pp. 232–244 (2004)

13. Esparza, J., Kiefer, S., Schwoon, S.: Abstraction refinement with Craig interpola-
tion and symbolic pushdown systems. JSAT 5(1–4), 27–56 (2008)

14. Beyer, D., Löwe, S.: Explicit-value analysis based on CEGAR and interpolation.
CoRR abs/1212.6542 (2012)

15. Brain, M., D’Silva, V., Griggio, A., Haller, L., Kroening, D.: Interpolation-based
verification of floating-point programs with abstract CDCL. In: Logozzo, F.,
Fähndrich, M. (eds.) SAS 2013. LNCS, vol. 7935, pp. 412–432. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-38856-9 22

16. Albarghouthi, A., Gurfinkel, A., Chechik, M.: Whale: an interpolation-based algo-
rithm for inter-procedural verification. In: Kuncak, V., Rybalchenko, A. (eds.)
VMCAI 2012. LNCS, vol. 7148, pp. 39–55. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-27940-9 4

http://dx.doi.org/10.1007/978-3-540-24730-2_15
http://dx.doi.org/10.1007/978-3-642-24310-3_17
http://dx.doi.org/10.1007/10722167_15
http://dx.doi.org/10.1007/978-3-540-45085-6_1
http://dx.doi.org/10.1007/11817963_14
http://dx.doi.org/10.1007/11817963_14
http://dx.doi.org/10.1007/978-3-642-03237-0_7
http://dx.doi.org/10.1007/978-3-540-45069-6_1
http://dx.doi.org/10.1007/978-3-642-38856-9_22
http://dx.doi.org/10.1007/978-3-642-27940-9_4
http://dx.doi.org/10.1007/978-3-642-27940-9_4

Advancing Software Model Checking Beyond Linear Arithmetic Theories 201

17. Heizmann, M., Hoenicke, J., Podelski, A.: Software model checking for people who
love automata. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044,
pp. 36–52. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39799-8 2

18. Segelken, M.: Abstraction and counterexample-guided construction of ω-automata
for model checking of step-discrete linear hybrid models. In: Damm, W.,
Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 433–448. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-73368-3 46

19. Pudlák, P.: Lower bounds for resolution and cutting plane proofs and monotone
computations. J. Symb. Logic 62(3), 981–998 (1997)

20. Benhamou, F., Granvilliers, L.: Combining local consistency, symbolic rewriting
and interval methods. In: Calmet, J., Campbell, J.A., Pfalzgraf, J. (eds.) AISMC
1996. LNCS, vol. 1138, pp. 144–159. Springer, Heidelberg (1996). doi:10.1007/
3-540-61732-9 55

21. Tseitin, G.S.: On the complexity of derivations in the propositional calculus. Stud.
Math. Math. Logic Part II, 115–125 (1968)

22. Davis, M., Logemann, G., Loveland, D.W.: A machine program for theorem-
proving. Commun. ACM 5(7), 394–397 (1962)

23. Ratschan, S., She, Z.: Safety verification of hybrid systems by constraint
propagation-based abstraction refinement. ACM Trans. Embedded Comput. Syst.
6(1), 8 (2007)

24. Ball, T., Rajamani, S.K.: Bebop: a symbolic model checker for boolean pro-
grams. In: Havelund, K., Penix, J., Visser, W. (eds.) SPIN 2000. LNCS, vol. 1885,
pp. 113–130. Springer, Heidelberg (2000). doi:10.1007/10722468 7

25. Dinh, N.T.: Dead code analysis using satisfiability checking. Master’s thesis, Carl
von Ossietzky Universität Oldenburg (2013)

26. Jha, S.K.: Numerical simulation guided lazy abstraction refinement for nonlinear
hybrid automata. CoRR abs/cs/0611051 (2006)

27. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P., Nicollin, X.,
Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems.
Theor. Comput. Sci. 138(1), 3–34 (1995)

28. Beyer, D., Henzinger, T.A., Théoduloz, G.: Configurable software verification: con-
cretizing the convergence of model checking and program analysis. In: Damm, W.,
Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 504–518. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-73368-3 51

29. Gao, S., Kong, S., Clarke, E.M.: dReal: an SMT solver for nonlinear theories
over the reals. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898,
pp. 208–214. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38574-2 14

30. Gao, S., Zufferey, D.: Interpolants in nonlinear theories over the reals. In:
Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 625–641.
Springer, Heidelberg (2016). doi:10.1007/978-3-662-49674-9 41

31. D’Silva, V., Haller, L., Kroening, D., Tautschnig, M.: Numeric bounds analysis with
conflict-driven learning. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS,
vol. 7214, pp. 48–63. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28756-5 5

32. Kupferschmid, S.: Über Craigsche Interpolation und deren Anwendung in der for-
malen Modellprüfung. Ph.D. thesis, Albert-Ludwigs-Universität Freiburg im Breis-
gau (2013)

33. Seghir, M.N.: Abstraction refinement techniques for software model checking.
Ph.D. thesis, Albert-Ludwigs-Universität Freiburg im Breisgau (2010)

34. Donaldson, A.F., Haller, L., Kroening, D., Rümmer, P.: Software verification using
k -induction. In: Yahav, E. (ed.) SAS 2011. LNCS, vol. 6887, pp. 351–368. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-23702-7 26

http://dx.doi.org/10.1007/978-3-642-39799-8_2
http://dx.doi.org/10.1007/978-3-540-73368-3_46
http://dx.doi.org/10.1007/3-540-61732-9_55
http://dx.doi.org/10.1007/3-540-61732-9_55
http://dx.doi.org/10.1007/10722468_7
http://dx.doi.org/10.1007/978-3-540-73368-3_51
http://dx.doi.org/10.1007/978-3-642-38574-2_14
http://dx.doi.org/10.1007/978-3-662-49674-9_41
http://dx.doi.org/10.1007/978-3-642-28756-5_5
http://dx.doi.org/10.1007/978-3-642-23702-7_26

	Advancing Software Model Checking Beyond Linear Arithmetic Theories
	1 Introduction
	2 Preliminaries
	3 Description of the SMT Solver iSAT3
	3.1 Encoding Control Flow Graphs in iSAT3

	4 Interpolation-Based Abstraction Refinement in iSAT3
	4.1 The Algorithm

	5 Experiments
	5.1 Verifying Reachability in Arithmetic Programs

	6 Conclusion and Future Work
	References

