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Abstract. We develop numerically rigorous Monte Carlo approaches for
computing probabilistic reachability in hybrid systems subject to ran-
dom and nondeterministic parameters. Instead of standard simulation
we use δ-complete SMT procedures, which enable formal reasoning for
nonlinear systems up to a user-definable numeric precision. Monte Carlo
approaches for probability estimation assume that sampling is possible
for the real system at hand. However, when using δ-complete simula-
tion one instead samples from an overapproximation of the real random
variable. In this paper, we introduce a Monte Carlo-SMT approach for
computing probabilistic reachability confidence intervals that are both
statistically and numerically rigorous. We apply our technique to hybrid
systems involving nonlinear differential equations.

1 Introduction

In this paper we combine statistical (Monte Carlo) techniques and numerically
sound decision procedures to reason about hybrid systems with random and non-
deterministic parameters. In particular, we devise confidence-interval techniques
for bounded probabilistic reachability, i.e., we aim at computing statistically valid
enclosures for the probability that a hybrid system reaches a given set of states
within a given time bound and number of discrete transitions. When nondeter-
ministic parameters are present, a hybrid system will in general feature a range of
reachability probabilities, depending on the value of the nondeterministic para-
meters. Reachability is an important class of behavioural properties, as many
verification problems (e.g., proving system safety) can be reduced to reachabil-
ity questions. A statistical approach to probabilistic reachability is important
because statistical techniques trade correctness guarantees with efficiency, and
so can scale much better with system size than other rigorous approaches. For
example, statistical model checking [15] can be faster than probabilistic model
checking, which is based on exhaustive state space search [14]. Also, statistical
model checking can handle models for which no efficient verification tools exist,
such as cyber-physical systems [2].

Monte Carlo techniques for probability estimation assume that one can
sample the random variable representing the true system behaviour. However,
while this is possible for certain finite-state systems, for nonlinear systems (e.g.,
ordinary differential equations (ODEs) with trigonometric functions) it is not.
c© Springer International Publishing AG 2016
R. Bloem and E. Arbel (Eds.): HVC 2016, LNCS 10028, pp. 152–168, 2016.
DOI: 10.1007/978-3-319-49052-6 10



Probabilistic Hybrid Systems Verification 153

In fact, sampling the random variable representing the true system behaviour
can be as hard as reachability, which is undecidable even for very simple systems
(e.g., linear hybrid automata [1]). Thus, one has to deal with numerical impreci-
sions that could lead to missing important events in the true system evolution.
For example, zero-crossings can be indistinguishable from “safe” trajectories [8].

A novel aspect of our work is that we explicitly take into account unde-
cidability and numerical precision by employing δ-complete decision procedures
[4], which enable formal reasoning up to a user-defined numerical precision over
bounded domains. In this way it is possible to handle in a sound and safe man-
ner complex dynamical systems, such as nonlinear ODEs [6]. Given any δ > 0
and an arbitrary first-order formula φ over the reals, a δ-complete decision pro-
cedure returns unsat if φ is false and δ-sat if φδ (a weaker version of formula
φ) is true. Note that the latter result does not imply satisfiability of the initial
formula. Also, the value of δ affects the precision of the result, and large values
of δ can cause false alarms (i.e., δ-sat is returned for a formula which is in fact
false). Statistical techniques must therefore take into account that samples are
only approximation of the real random variable corresponding to the system
evolution. In particular, we introduce an approach for computing statistically
and numerically rigorous confidence intervals for probabilistic reachability. We
exemplify our techniques to hybrid systems with random and/or nondeterminis-
tic parameters. For systems with both random and nondeterministic parameters
we estimate the (nondeterministic) parameter values that result in the mini-
mal and maximal reachability probabilities. Our algorithms can in principle be
applied to other stochastic models (e.g., continuous-time Markov chains) should
the corresponding δ-complete decision procedure be available.

Related Work. We focus on works that combine statistical techniques with
SMT procedures, which are the main subject areas of the paper. The tool
SReach [13] combines statistical estimation with δ-complete simulation proce-
dures. However, SReach only considers overapproximations of the reachability
probability, and thus can offer one-sided confidence intervals only. We instead
compute confidence intervals that are guaranteed to contain both the under- and
overapproximation of the reachability probability. Also, SReach does not handle
nondeterministic parameters, while we do. In [3] the authors present a statis-
tical model checking approach combined with SMT decision procedures, but it
is restricted to fixed-sample size techniques, while we develop a more efficient
sequential Bayesian approach and consider δ-complete decision procedures.

2 Bounded Reachability in Hybrid Systems

Hybrid systems provide a framework for modelling real-world systems that com-
bine continuous and discrete dynamics [1]. We consider parametric hybrid sys-
tems as a variant of hybrid systems featuring continuous and discrete parameters
whose values are set in the initial state and do not change during the system’s
evolution. Such parameters can be random when there is a probability measure
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associated with them, and nondeterministic otherwise. We now formally define
the systems we consider in this paper.

Definition 1 (PHS). A Parametric Hybrid System is a tuple

H =< Q,Υ,X, P, Y,R, jump, goal >

where

– Q = {q0, · · · , qm} a set of modes (discrete components of the system),
– Υ = {(q, q′) : q, q′ ∈ Q} a set of transitions between modes,
– X = [u1, v1] × · · · × [un, vn] ⊂ R

n a domain of continuous variables,
– P = [a1, b1] × · · · × [ak, bk] ⊂ R

k the parameter space of the system,
– Y = {yq(p, t) : q ∈ Q,p ∈ X × P, t ∈ [0, T ]} the continuous system dynamics

where yq : X × P × [0, T ] → X,
– R = {g(q,q′)(p, t) : (q, q′) ∈ Υ,p ∈ X × P, t ∈ [0, T ]} ‘reset’ functions g(q,q′) :

X × P × [0, T ] → X × P defining the continuous state at time t = 0 in mode
q′ after taking the transition from mode q.

and predicates (or relations)

– jump(q,q′)(x) defines a discrete transition (q, q′) ∈ Υ which may (but does not
have to) occur upon reaching the jump condition in state (x, q) ∈ X × P × Q,

– goalq(x) defines the goal state x in mode q.

The continuous system dynamics Y is represented by initial value problems
with Lipschitz-continuous ODEs, which by the well-known Picard-Lindelöf the-
orem have a unique solution for any given initial condition p ∈ X × P and
t0 ∈ [0, T ]. We treat system parameters as any other variable, except that their
derivatives are zero. Thus, the parameters are part of the initial conditions.

Bounded reachability in PHSs aims to decide whether, for given initial con-
ditions, the system reaches a goal state in a finite number of discrete transitions.
Given a PHS and a reachability depth l we can derive the set Path(l) of all paths
π of length |π| = l + 1 whose first (π(0)) and last (π(l)) elements are the initial
and the goal mode, respectively. The bounded reachability property for a path
π ∈ Path(l) and initial condition p can be checked by evaluating the formula:

φ(π,p) := ∃[0,T ]t0, · · · ,∃[0,T ]t|π|−1 :
(
xt

π(0) = yπ(0)(p, t0)
)∧

|π|−2∧

i=0

[
jump(π(i),π(i+1))(x

t
π(i)) ∧ (

xt
π(i+1) = yπ(i)(g(π(i),π(i+1))(xt

π(i), ti), ti+1)
)]

∧ goalπ(|π|−1)(x
t
π(|π|−1)) .

(1)
where ∃[0,T ]ti is a shorthand for ∃ti ∈ [0, T ].

Note that the terms xt
π(i+1) = yπ(i)(g(π(i),π(i+1))(xt

π(i), ti), ti+1) and xt
π(0) =

yπ(0)(p, t0) are purely syntactic substitutions. Formulas over the reals like (1)
are undecidable in general [9], but a relaxed version (δ-weakening [4]) is instead
decidable.
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Definition 2 (δ-Weakening [4]). Given a bounded Σ1 sentence and an
arbitrarily small positive δ

∃Xx :
m∧

i=1

(
ki∨

j=1

(fi,j(x) = 0))

(where the fi,j are Type-2 real computable functions) its δ-weakening is

∃Xx :
m∧

i=1

(
ki∨

j=1

(|fi,j(x)| ≤ δ))

It is easy to see that the bounded reachability property (1) can be rewritten in
the format of Definition 2 (see [4]). A δ-complete decision procedure [4] correctly
decides whether an arbitrary bounded Σ1 (existentially quantified) sentence is
false (unsat answer) or its δ-weakening is true (δ-sat answer). Note that with a
δ-complete decision procedure unsat can always be trusted, while δ-sat might
in fact be a false alarm due to a coarse overapproximation characterised by δ.

Evaluating (1) by a δ-complete decision procedure returns unsat only if
for the given parameter value p the path does not reach a goal state. If δ-sat is
returned, we may try to sharpen the answer by checking an appropriate formula.
For example, an unsat answer to formula φ∀(π,p) below implies reachability:

φ∀(π,p) := ∀[0,T ]t0, · · · ,∀[0,T ]t|π|−1 :
(
xt

π(0) 	= yπ(0)(p, t0)
)∨

|π|−2∨

i=0

[
¬jump(π(i),π(i+1))(x

t
π(i)) ∨ (

xt
π(i+1) 	= yπ(i)(g(π(i),π(i+1))(xt

π(i), ti), ti+1)
)]

∨ ¬goalπ(|π|−1)(x
t
π(|π|−1))

In the previous formula the time variables are quantified universally. Current
implementations of δ-complete decision procedures [5] can only handle formulas
where the universal quantification is introduced over a single time variable. The
goal predicate in φ∀(π,p) depends on |π| variables and thus cannot be handled
directly. To resolve this issue we instead evaluate a series of formulas ψj :

ψj(π,p) := ∃[0,T ]t0, · · · ,∀[0,T ]tj :
(
xt

π(0) = yπ(0)(p, t0)
)∧

j−1∧

i=0

[
xt

π(i+1) = yπ(i)(g(π(i),π(i+1))(xt
π(i), ti), ti+1)

]
∧ ¬jump(π(j),π(j+1))(x

t
π(j))

(2)
if j < |π| − 1 and

ψj(π,p) := ∃[0,T ]t0, · · · ,∀[0,T ]tj :
(
xt

π(0) = yπ(0)(p, t0)
)∧

j−1∧

i=0

[
xt

π(i+1) = yπ(i)(g(π(i),π(i+1))(xt
π(i), ti), ti+1)

]
∧ ¬goalπ(j)(x

t
π(j))

(3)

if j = |π|−1. The next proposition establishes a stronger formula for reachability.
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Proposition 1. With the definitions in (1), (2) and (3) we have

|π|−1∧

j=0

¬ψj(π,p) ⇒ φ(π,p)

Proof. Consider the case |π| = 1. It can be seen that ¬ψ0(π,p) ⇔ φ(π,p) as

¬ψ0(π,p) := ∃[0,T ]t0 : goalπ(0)(x
t
π(0)) ⇔ φ(π,p)

Consider now the case |π| > 1.

|π|−1∧

j=0

¬ψj(π,p) :=

|π|−2∧

j=0

[
∀[0,T ]t0, · · · , ∀[0,T ]tj−1, ∃[0,T ]tj :

(
xt

π(0) �= yπ(0)(p, t0)
)∨

j−1∨

i=0

(
xt

π(i+1) �= yπ(i)(g(π(i),π(i+1))(x
t
π(i), ti), ti+1)

)
∨ jump(π(j),π(j+1))(x

t
π(i))

]
∧

[
∀[0,T ]t0, · · · , ∀[0,T ]t|π|−2, ∃[0,T ]t|π|−1 :

(
xt

π(0) �= yπ(0)(p, t0)
)∨

|π|−2∨

i=0

(
xt

π(i+1) �= yπ(i)(g(π(i),π(i+1))(x
t
π(i), ti), ti+1)

)
∨ goalπ(|π|−1)(x

t
π(|π|−1))

]

We recall that terms xt
π(0) = yπ(0) and xt

π(i+1) = yπ(i)(g(π(i),π(i+1))(xt
π(i), ti),

ti+1) are just a syntactic substitution which cannot be falsified as the system
dynamics always exist (by the Picard-Lindelöf theorem). Hence, the formula
above implies the following:

|π|−2∧

j=0

[
∀[0,T ]t0, · · · , ∀[0,T ]tj−1, ∃[0,T ]tj :

(
xt

π(0) = yπ(0)(p, t0)
)∧

j−1∧

i=0

(
xt

π(i+1) = yπ(i)(g(π(i),π(i+1),ti)(x
t
π(i), ti), ti+1)

)
∧ jump(π(j),π(j+1))(x

t
π(i))

]
∧

[
∀[0,T ]t0, · · · , ∀[0,T ]t|π|−2, ∃[0,T ]t|π|−1 :

(
xt

π(0) = yπ(0)(p, t0)
)∧

|π|−2∧

i=0

(
xt

π(i+1) = yπ(i)(g(π(i),π(i+1),ti)(x
t
π(i), ti), ti+1)

)
∧ goalπ(|π|−1)(x

t
π(|π|−1))

]

The next step can be equivalently derived by moving universal quantifiers from
the second part of the formula (square brackets containing the goal predicate)
outside the entire formula:
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∀[0,T ]t0, · · · ,∀[0,T ]t|π|−2 :
|π|−2∧

j=0

[

∃[0,T ]tj :
(
xt

π(0) = yπ(0)(p, t0)
)∧

j−1∧

i=0

(
xt

π(i+1) = yπ(i)(g(π(i),π(i+1))(xt
π(i), ti), ti+1)

)
∧ jump(π(j),π(j+1))(x

t
π(i))

]

∧
[

∃[0,T ]t|π|−1 :
(
xt

π(0) = yπ(0)(p, t0)
)∧

|π|−2∧

i=0

(
xt

π(i+1) = yπ(i)(g(π(i),π(i+1))(xt
π(i), ti), ti+1)

)
∧ goalπ(|π|−1)(x

t
π(|π|−1))

]

The existential quantifiers ∃[0,T ]tj can be eliminated as variables tj are already
quantified universally. Also ∃[0,T ]t|π|−1 can be moved in front of the formula as
its first part (square brackets containing jump predicates) does not depend of
t|π|−1. Hence, the formula above can be written as:

∀[0,T ]t0, · · · , ∀[0,T ]t|π|−2, ∃[0,T ]t|π|−1 :

|π|−2∧

j=0

[
(
xt

π(0) = yπ(0)(p, t0)
)∧

j−1∧

i=0

(
xt

π(i+1) = yπ(i)(g(π(i),π(i+1))(x
t
π(i), ti), ti+1)

)
∧ jump(π(j),π(j+1))(x

t
π(i))

]
∧

[
(
xt

π(0) = yπ(0)(p, t0)
)∧

|π|−2∧

i=0

(
xt

π(i+1) = yπ(i)(g(π(i),π(i+1))(x
t
π(i), ti), ti+1)

)
∧ goalπ(|π|−1)(x

t
π(|π|−1))

]
⇔

By idempotency of conjunction (A ∧ A = A) terms xt
π(0) = yπ(0) and

xt
π(i+1) = yπ(i)(g(π(i),π(i+1))(xt

π(i), ti), ti+1) can be merged:

∀[0,T ]t0, · · · , ∀[0,T ]t|π|−2, ∃[0,T ]t|π|−1 :
(
xt

π(0) = yπ(0)(p, t0)
)∧

|π|−2∧

j=0

[(
xt

π(j+1) = yπ(j)(g(π(j),π(j+1))(x
t
π(j), tj), tj+1)

)
∧ jump(π(j),π(j+1))(x

t
π(i))

]
∧

goalπ(|π|−1)(x
t
π(|π|−1))

Finally, the following is implied:

∃[0,T ]t0, · · · , ∃[0,T ]t|π|−2, ∃[0,T ]t|π|−1 :
(
xt

π(0) = yπ(0)(p, t0)
)∧

|π|−2∧

j=0

[(
xt

π(j+1) = yπ(j)(g(π(j),π(j+1))(x
t
π(j), tj), tj+1)

)
∧ jump(π(j),π(j+1))(x

t
π(i))

]
∧

goalπ(|π|−1)(x
t
π(|π|−1)) ⇔ φ(π,p)

�
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Proposition 1 enables us to define an evaluate procedure (Algorithm 1)
which, given a parametric hybrid system H, reachability depth l, a parame-
ter value p ∈ X × P and a precision δ for the δ-complete decision procedure,
returns sat if ∃π ∈ Path(l) : φ(π,p), unsat if ∀π ∈ Path(l) : ¬φ(π,p) and
undet if neither of the above two can be concluded. In general, the undet out-
come suggests that either the chosen precision δ is not sufficient to decide the
satisfiability of φ(π,p), or that φ(π,p) is undecidable (i.e., non-robust [4]).

The evaluate procedure is crucial for building the random variables that
under- and over-approximate the true system behaviour on the reachability ques-
tion, as we show in the next section.

Algorithm 1. evaluate(H, l,p, δ)
1 input: H - PHS, l - reachability depth, p - parameter value, δ - precision;
2 output: sat / unsat / undet;
3 Path(l) = get all paths(H, l) ; // compute all paths of length l for H
4 for π ∈ Path(l) do
5 if φ(π,p) - δ-sat then
6 for i ∈ [0, l] do
7 if ψi(π,p) - δ-sat then
8 return undet;

9 return sat ; // all ψi(π,p) are unsat for the current π

10 return unsat ; // all φ(π,p) are unsat

3 Monte Carlo Probability Estimation

In this section we consider hybrid systems with random parameters only, so that
the reachability probability is well-defined. We add nondeterministic parameters
in the next section. For any given δ > 0 and any p from the parameter(s)
distribution we introduce the Bernoulli random variables:

X =

{
1 if system H reaches the goal in l steps for a given p
0 otherwise

(4)

Xsat =

{
1 if evaluate(H, l,p, δ) = sat
0 otherwise

(5)

Xusat =

{
0 if evaluate(H, l,p, δ) = unsat
1 otherwise.

(6)

Thus, for a given parameter p, Xsat is 1 if we can correctly decide that system
H reaches the goal, while Xusat is 0 if we can correctly decide that H does not
reach the goal. If no decision can be made (because of the precision δ being
used or of the nature of the reachability question), Xsat and Xusat take 0 and
1, respectively. From the definition of evaluate it follows directly that:

Xsat ≤ X ≤ Xusat. (7)



Probabilistic Hybrid Systems Verification 159

We now introduce a Bayesian technique for calculating confidence intervals
for the reachability probability p = E[X] without sampling X, which is not
possible in general, but instead sampling Xsat and Xusat. For n random variables
iid (independent and identically distributed) as Xsat and Xusat, we define the
random variables:

Ŝn =
Σn

i=1Xsat,i

n
Ûn =

Σn
i=1Xusat,i

n
.

The Bayesian approach assumes that the (unknown) reachability probability
p is itself a random quantity (here we give a brief overview only, more details can
be found in [17]). Bayes’ theorem enables computing the posterior distribution
of the unknown quantity given its prior distribution and the likelihood of the
data (i.e., samples of X). The posterior distribution of p can be directly used to
build confidence (credibility) intervals. In our setting we cannot sample X, so we
aim at bounding the posterior of p by the posteriors built from Xsat and Xusat,
as we show below. We use Beta distribution priors since they are conjugate to
the Bernoulli likelihood; the cumulative distribution function (CDF) of a Beta
with parameters α, β > 0 is denoted F(α,β)(·). We first need a technical lemma
about the Beta CDF.

Lemma 1. For any n > 0, s ≤ x ≤ u ≤ n, α, β > 0 (n, s, x, u ∈ N), t ∈ [0, 1]
the following holds:

F(u+α,n−u+β)(t) ≤ F(x+α,n−x+β)(t) ≤ F(s+α,n−s+β)(t) (8)

Proof. We prove the LHS inequality of (8); the proof of the RHS follows similar
steps. When s = x the inequality holds trivially.

Consider the case s < x. By definition of the Beta distribution function:

F(s+α,n−s+β)(t) =
∫ t

0

vs+α−1(1 − v)n−s+β−1

B(s + α, n − s + β)
dv (9)

In the proof below we refer to the following formulas from [7]:

By(a, b) =
∫ y

0

ta−1(1 − t)b−1 dt 8.17.1

Iy(a, b) =
By(a, b)
B(a, b)

8.17.2

Iy(a + 1, b − 1) = Iy(a, b) − ya(1 − y)b−1

aB(a, b)
8.17.18

By 8.17.1 and 8.17.2 the Beta distribution function (9) can be presented as
an incomplete Beta function It(s+α, n− s+β) (the Beta distribution functions
for the variables x and u can be written in the same form). Now we show by
induction that the following holds:

It(s + α, n − s + β) ≥ It(x + α, n − x + β) (10)
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As s < x, s, x ∈ N and s, x > 0 the base case is s = 0 and x = 1. Thus, we need
to prove that It(α, n + β) ≥ It(α + 1, (n + β) − 1). By 8.17.18:

It((α) + 1, (n + β) − 1) = It(α, n + β) − tα(1 − t)n+β−1

αB(α, n + β)

It is easy to see that tα(1−t)n+β−1

αB(α,n+β) ≥ 0, and therefore, the base case holds.
Suppose now that x = s + 1. By the same formula 8.17.18 [7]:

It((s + α) + 1, (n − s + β) − 1) = It(s + α, n − s + β)−
ts+α(1 − t)n−s+β−1

(s + α)B(s + α, n − s + β)

As ts+α(1−t)n−s+β−1

(s+α)B(s+α,n−s+β) ≥ 0 the induction step holds as well. Hence, for any s ≤ x

and s, x > 0 (10) holds, and the proof is complete. �
Now, Proposition 2 below tells us how to bound the posterior distribution of

the unknown probability p, by using the posteriors built from Xsat and Xusat.
Given n samples of Xsat,Xusat and a Beta prior with parameters α, β > 0 it is
easy to show that the posterior means are:

p̂sat =
s + α

n + α + β
p̂usat =

u + α

n + α + β
(11)

where s =
∑n

i=1 Xsat,i and u =
∑n

i=1 Xusat,i.

Proposition 2. Given ξ > 0, the posterior probability with respect to n samples
of X of the interval [p̂sat − ξ, p̂usat + ξ] is bounded below as follows

Pr(P ∈ [p̂sat − ξ, p̂usat+ξ]|X1, . . . , Xn) ≥
F(u+α,n−u+β)(p̂usat + ξ) − F(s+α,n−s+β)(p̂sat − ξ)

where X1, . . . , Xn are iid as X, and p̂sat and p̂usat are the posterior means (11).

Proof. By definition of posterior CDF and Lemma1:

Pr(P ≤ p̂sat − ξ|X1, . . . , Xn) ≤ F(s+α,n−s+β)(p̂sat − ξ)
Pr(P ≥ p̂usat + ξ|X1, . . . , Xn) ≤ 1 − F(u+α,n−u+β)(p̂usat + ξ)

and therefore

Pr(P ∈ [p̂sat − ξ, p̂usat + ξ]|X1, . . . , Xn) =
1 − Pr(P ≤ p̂sat − ξ|X1, . . . , Xn) − Pr(P ≥ p̂usat + ξ|X1, . . . , Xn) ≥
1 − F(s+α,n−s+β)(p̂sat − ξ) − 1 + F(u+α,n−u+β)(p̂usat + ξ) =
F(u+α,n−u+β)(p̂usat + ξ) − F(s+α,n−s+β)(p̂sat − ξ)

�
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Our algorithm is shown in Algorithm2. Differently from SReach [13], our
algorithm first uses procedure evaluate to compute under- and overapproxima-
tions of the system behaviour (line 7), and then builds upper and lower posterior
probability estimates (lines 13, 14). The posterior probability of the computed
interval (line 15) is guaranteed not to exceed the true posterior by Proposition 2,
so when the algorithm terminates we know that the returned interval contains
the true probability with the required (or a larger) confidence. Our algorithm
is sequential as SReach [13], since it only stops when the desired confidence is
achieved. We show its (probabilistic) termination in the next proposition.

Proposition 3. Algorithm2 terminates almost surely.

Proof. Recall that Algorithm 2 generates two sequences of random variables
{Xsat,n}n∈N and {Xusat,n}n∈N. From [17, Theorem 1] we get that Xsat,n

(Xusat,n) converges a.s., for n → ∞, to the constant random variable
E[Xsat] (E[Xusat]). In particular, the posterior probability of any open interval
containing the posterior mean (11) must converge to 1. Therefore, the posterior
probability of any interval not including the posterior mean must converge to 0.

Now, the interval (0, p̂usat +ξ) contains the posterior mean (p̂usat) of Xusat,n

and therefore the posterior probability F(u+α,n−u+β)(p̂usat + ξ) converges to 1.
Also, the interval (0, p̂sat − ξ) does not contain the mean (p̂sat) of Xsat,n, so
F(s+α,n−s+β)(p̂sat − ξ) tends to 0, and this concludes the proof. �

Algorithm 2. Bayesian Estimation Algorithm
1 input: system H, δ - solver precision, l-reachability depth, c - confidence, ξ -

accuracy, α, β - Beta distribution parameters;
2 output: confidence interval with posterior probability not smaller than c;
3 n = 0; s = 0; u = 0; v = 0;
4 repeat
5 p = get random sample(); // sample the initial parameters

6 n = n + 1;
7 switch evaluate(H, l,p, δ) do // δ-complete evaluation

8 case sat do
9 s = s + 1;

10 case unsat do
11 v = v + 1;

12 u = n − v;
13 p̂sat = s+α

n+α+β
; p̂usat = u+α

n+α+β
; // posterior means for Xsat,n, Xusat,n

// calculate confidence

14 p̂sat = max(ξ, p̂sat); p̂usat = min(1 − ξ, p̂usat);
15 p = F(u+α,n−u+β)(p̂usat + ξ) − F(s+α,n−s+β)(p̂sat − ξ);

16 until p ≥ c;
17 return [p̂sat − ξ, p̂usat + ξ];

In the next section we extend our technique to hybrid systems that feature
both nondeterministic and random parameters.
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4 Cross-Entropy Algorithm

We perform probabilistic reachability analysis for hybrid systems featuring both
random and nondeterministic parameters by solving an optimisation problem
aimed at finding parameter values for which the system achieves maximum (min-
imum) reachability probability. We present an algorithm (Algorithm3) based
on the cross-entropy (CE) method [10], a powerful stochastic technique for
solving estimation and optimisation problems. The main idea behind the CE
method is obtaining the optimal parameter distribution by minimizing the dis-
tance between two probability density functions. The cross-entropy (or Kullback-
Leibler divergence) between two probability density functions g and f is:

Θ(g, f) =
∫

g(λ) ln
g(λ)
f(λ)

dλ.

The CE is nonnegative and Θ(g, f) = 0 iff g = f , but it is not symmetric
(Θ(g, f) 	= Θ(f, g)), so it is not a distance in the formal sense.

The optimisation problem solved by the CE method can be formulated as
the following: given a family of densities {f(·;v)}v∈V find the value v∗ ∈ V that
minimizes Θ(g∗, f(·;v)) (where g∗ is the optimal density). The CE method com-
prises two general steps: (1) generating random samples from some initial distri-
bution; (2) updating the distribution based on the obtained samples in order to
obtain better samples in the next iteration. Note that for solving optimisation
problems it is necessary that the family {f(·;v)}v∈V contains distributions that
can approximate arbitrarily well single-point distributions.

In Algorithm 3 we use a parametrized family of normal distributions f(λ;v)
(the first element of v is the mean and the second element is the standard
deviation). Initially the standard deviation should be relatively large in order
to sample a larger space on the first iteration of the algorithm. Let D be the
definition domain of the nondeterministic parameters (obtained by projecting the
hybrid system parameter space P over the nondeterministic parameters only).
Starting with v0 = {μ0, σ0} such that μ0 is the center of D and each element of
σ0 is half-size the corresponding interval from D the algorithm draws s samples
from f(λ|μ0, σ0) and evaluates them using the sample performance function:

P (λ) =

{
probability that H(λ) reaches the goal if λ ∈ D

−∞ otherwise.

To compute P (·) we run Algorithm 2 and take the mid point of the returned
interval. Note that when solving probability minimization problems the second
option in the definition of P (·) should be changed to ∞.

Given a number of samples, it is easy to see that as the number of nonde-
terministic parameters increases, the more difficult it becomes to draw samples
lying inside of D. In fact, given n nondeterministic parameters the probability
that a sample λ belongs to D is equal to:

Pr(λ ∈ D) =
n∏

j=1

∫

Dj

f(λj |μj , σj)dλj (12)
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where Dj is the domain of the j-th parameter, and we assumed that the
parameters are sampled independently. Hence, in order to increase the likeli-
hood that s samples lie in D it is sufficient to generate s∗ = � s

η � samples, where
η = Pr(λ ∈ D) is obtained using (12). The performance of each sample is then
evaluated, and the samples are sorted in descending order (ascending in the case
of probability minimization) according to their performance value. We label a
number k = �ρs∗� of them as elite samples, where ρ ∈ [10−2, 10−1] is a positive
constant chosen by the user. The set of elite samples E is then used for updating
the distribution parameters μi and σi on the i-th iteration of the algorithm using
the formulas from [10, Chapter 8.7]:

μi =

∑
j∈[1,k] Ej

k

σi =

√∑
j∈[1,k](Ej − μi)2

k

(13)

The algorithm terminates when the largest element of vector σ reaches a user-
defined precision σ̂, and it outputs the estimated maximum reachability proba-
bility P and a (nondeterministic) parameter value λ for which P (λ) = P.

5 Experiments

We apply our algorithms to three models (two of which are hybrid), a model
of irradiation therapy for psoriasis [16], a car collision scenario and a model of
human starvation [12]. The algorithms have been implemented in C++, and the
experiments have been carried out on a 32-core (2.9 GHz) Linux machine.

UVB Irradiation Therapy. We consider a simplified version of a hybrid UVB
irradiation therapy model [16] used for treating psoriasis, an immune system-
mediated chronic skin condition which is characterised by overproduction of
keratinocytes. The simplified model comprises of three (six in the original model)
categories of normal and three (five in the original model) categories of psoriatic
keratinocytes whose dynamics is presented by nonlinear ODEs. The therapy
consists of several episodes of UVB irradiation, which is simulated in the model
by increasing the apoptosis rate constants (β1 and β2) for stem cells (SC) and
transit amplifying (TA) cells by InA times. Every such episode lasts for 48 h
and is followed by 8 h of rest (InA = 1) before starting the next irradiation.
The efficiency of the therapy depends on the number of alternations between
the irradiation and rest stages. An insufficient number of treatment episodes can
result into early psoriasis relapse: The deterministic version of this model predicts
psoriasis relapse for the number of therapy episodes less than seven [16]. We
consider the parameter InA characterising the therapy strength to be normally
distributed with mean value 6 ·104 and standard deviation 104 and λ ∈ [0.2, 0.5]
characterising the strength of psoriatic stem cells to be nondeterministic, and we
calculate the maximum and the minimum probabilities of psoriasis relapse within
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Table 1. UVB irradiation therapy: results with ξ = 10−1, c = 0.99, δ = 10−3, ρ = 10−1,
s = 10 and σ̂ = 10−2, where λ – estimated value of nondeterministic parameter, μλ

and σλ – mean and standard deviation of the resulting distribution, CI – confidence
interval returned, sR – total number of random samples used during s∗

N executions of
Algorithm 2, sN – total number of nondeterministic samples, s∗

N – number of nonde-
terministic samples drawn from D, i – number of iterations of Algorithm 3, Time –
CPU time in seconds.

λ μλ σλ CI sR sN (s∗
N ) Time

0.4953 0.4878 0.0089 [0.8268,1] 3,118 26(24) 13,492

0.1303 0.1347 0.0079 [0,0.1086] 2,880 26(23) 12,550

2,000 days after the last therapy episode for nine alternations (l = 9) between
the ‘on’ and ‘off’ therapy modes (five therapy cycles). The results (Table 1)
show that the estimated maximum probability lies in the interval [0.8268, 1]
for λ = 0.4953 and the minimum probability is in the interval [0, 0.1086] for
λ = 0.1303. Algorithm 3 required two iterations in both cases and generated 24
(out of total 26) and 23 (out of 26) samples from the domain of nondeterministic
parameters D.

Cars Collision Scenario. We consider a taking over and deceleration sce-
nario modelled as a hybrid system. Initially two cars are moving with speed
υA0 = υB0 = 11.12 m/s at a distance υA · τsafe from each other, where
τsafe ∈ [1, 2] s is nondeterministic. In the initial mode CarA changes the
lane and starts accelerating until it gets ahead of CarB by υB · τsafe meters.
After that CarA changes the lane back and starts decelerating with normally-
distributed acceleration adA ∼ N(−2, 0.2). The driver in CarB reacts within
τreact ∈ [0.5, 1.5] s and starts decelerating with acceleration adB ∼ N(−1.35, 0.1)
until both cars stop completely.

The model contains three modes: CarA overtakes CarB, CarA decelerates
while CarB keeps moving for τreact second, and both cars decelerate until they
stop. There are two nondeterministic (τsafe and τreact) and two random (ad1

and ad2) parameters in the system. We aim at determining whether there is a
non-zero probability of the cars colliding (l = 2).

We apply Algorithm3 to this model with different values of s, the CE sam-
ple size. The obtained results (Table 2) confirm that choosing smaller values of
τreact and larger values of τsafe decreases the probability value. Also, choosing
a larger s increases the accuracy of the obtained result from P (0.609, 1.791) =
[0.0252, 0.0352] for s = 10 to P (0.522, 1.953) = [0.0121, 0.0221] for s = 20. The
execution of the algorithm took three iterations in both cases drawing 32 (out
of 43) and 57 (out of 90) samples lying in D for s = 10 and s = 20 respectively.

Human Starvation. The human starvation model [12] tracks the amount of
fat (F ), protein in muscle mass (M), and ketone bodies (K) in the human body
after glucose reserves have been depleted from three to four days of fasting.
These three variables are modelled using material and energy balances to ensure
that the behaviour of the model tracks what is observed in actual experiments
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Algorithm 3. Cross-Entropy Algorithm
1 input: hybrid system H, δ - solver precision, l - reachability depth, α, β - Beta

distribution parameters, c - confidence, ξ - accuracy, s - sample size, ρ - elite
samples ratio, σ̂ - maximum variance ;

2 output: (parameter value, maximum probability) ;

3 μ = {min(D1)+max(D1)
2

, · · · , min(Dn)+max(Dn)
2

} ;

4 σ = { |D1|
2

, · · · , |Dn|
2

}; σ′ = σ;
5 while (max1≤j≤n σ′

j) > σ̂ do
6 η =

∏n
j=1

∫
Dj

f(xj |μj , σj)dxj ;

7 m = 
 s
η
�; k = 
ρ s

η
� ; // adjusting sample size

8 for i = 1 : m do
9 λ = get random normal sample();

10 if λ �∈ D then
11 P = [−∞, −∞];

12 else
13 P = mid(bayes(H(λ), δ, l, α, β, ξ, c)) ; // applying Algorithm 2

14 Q.push(λ,P);

15 sort(Q) ; // sorting in descending order by the probability value

16 res = Q[1] ; // updating the result

17 μ =
∑

i∈[1,k] Q[i]

k
; // updating the mean

18 σ′ = σ ; // saving current value of standard deviation

19 σ =

√∑
i∈[1,k](Q[i]−μ)2

k
; // updating the standard deviation

20 clear(Q);

21 return res;

Table 2. The minimum probability for the cars collision scenario with ξ = 5 · 10−3,
c = 0.99, δ = 10−3, ρ = 10−1 and σ̂ = 10−1, where τreact – CarB driver reaction
time, τsafe – time interval between the cars, μτreact and στreact – mean and standard
deviation of the resulting distribution for τreact, μτsafe and στsafe – mean and standard
deviation of the resulting distribution for τsafe, CI – confidence interval returned, sR –
total number of random samples used during s∗

N executions of Algorithm 2, sN – total
number of nondeterministic samples, s∗

N – number of nondeterministic samples drawn
from D, Time – CPU time in seconds.

τreact μτreact στreact τsafe μτsafe
στsafe

CI sR s sN (s∗
N ) Time

0.609 0.619 0.011 1.791 1.753 0.019 [0.0252,0.0352] 658,528 10 43(32) 18,005

0.522 0.583 0.077 1.953 1.795 0.079 [0.0121,0.0221] 952,057 20 90(57) 27,126

involving fasting. Randomising two model parameters we evaluate the proba-
bility of a 40 % decrease in the muscle mass by the τg’s day of fasting where
τg ∈ [20, 27] is a nondeterministic parameter. The reachability depth value l is
0. The results (Table 3) demonstrate that the maximum probability of losing
40 % of the muscle mass is within the interval [0.99131, 1] for τg = 26.47 and
the minimum probability is inside [0, 0.0057] for τg = 20.22. The execution of
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Table 3. The minimum and the maximum reachability probabilities for the human
starvation model with ξ = 5 · 10−3, c = 0.99, δ = 10−3, ρ = 10−1, s = 10 and
σ̂ = 10−1, where τg – time (days) from the beginning of fasting, μτg and στg – mean
and standard deviation of the resulting distribution, CI – confidence interval returned,
sR – total number of random samples used during s∗

N executions of Algorithm 2, sN –
total number of nondeterministic samples, s∗

N – number of nondeterministic samples
drawn from D, Time – CPU time in seconds.

τg μτg στg CI sR sN (s∗
N ) Time

20.2264 20.2125 0.068 [0,0.0057] 408,061 37(31) 2,703

26.4713 26.5146 0.033 [0.99131,1] 485,721 36(34) 4,360

the algorithm took three iterations in both cases drawing 31 (out of 37) and
34 (out of 36) samples from D for calculating the minimum and the maximum
probabilities respectively.

Discussion. From our results we see that the chosen value of δ did not affect the
length (2ξ) of the returned confidence intervals in any experiment. Also choos-
ing a larger number of samples per iteration (s) in Algorithm 3 and a higher
precision (ξ) for Algorithm 2 increases the accuracy of the obtained result. The
sample size adjustment in Algorithm 3 increases the likelihood of drawing the
desired number of samples from the domain of nondeterministic parameters. For
example, in the cars collision scenario featuring two nondeterministic parameters
almost a third of all drawn samples were outliers. However, the desired number
of samples belonging to the domain of nondeterministic parameters was still
provided. Finally, the performance of Algorithms 2 and 3 significantly depends
of the complexity of the system’s dynamics. For example, the UVB irradiation
therapy model is more complex in comparison to other two models. As a result,
Algorithm 1 required more CPU time for evaluating each pair (random and non-
deterministic) of samples.

Implementation. All algorithms presented in this paper were implemented in
our tool ProbReach [11], which can be downloaded from https://github.com/
dreal/probreach. We also used dReal [5] as an SMT solver (δ-complete decision
procedure). The models used in this section can be found at https://github.com/
dreal/probreach/tree/master/model/hvc2016.

6 Conclusions and Future Work

We introduce novel Monte Carlo (i.e., statistical) techniques for computing both
numerically and statistically rigorous confidence intervals for bounded reacha-
bility probability in hybrid systems with random and nondeterministic parame-
ters. To enable formal numerical reasoning we employ δ-complete SMT decision
procedures, and we combine them with sequential Bayesian estimation and the
cross-entropy method. We exploit δ-complete procedures to build under- and
over-approximations of the reachability probability. We prove the correctness of

https://github.com/dreal/probreach
https://github.com/dreal/probreach
https://github.com/dreal/probreach/tree/master/model/hvc2016
https://github.com/dreal/probreach/tree/master/model/hvc2016
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such approximations, the statistical validity of our techniques, and termination
of our Bayesian algorithm. Our techniques compute confidence intervals that
are formally and statistically correct independently of the numeric precision (δ)
used. This offers users the choice of trading accuracy of the returned interval for
computational cost, thereby enabling faster verification. Our experiments with
highly nonlinear hybrid systems show that our techniques are useful in practice.

For future work, understanding the relation between the numerical precision
(δ) and the returned interval size is an important avenue of research. Also, we
plan to extend the range of models analysable (e.g., probabilistic jumps and
stochastic differential equations).
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