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Preface

This volume contains the proceedings of the 12th Haifa Verification Conference (HVC
2016). The conference was hosted by IBM Research Haifa Laboratory and took place
during November 14–17, 2016. It was the 12th event in this series of annual confer-
ences dedicated to advancing the state of the art and state of the practice in verification
and testing. The conference provided a forum for researchers and practitioners from
academia and industry to share their work, exchange ideas, and discuss the future
directions of testing and verification for hardware, software, and complex hybrid
systems.

Overall, HVC 2016 attracted 26 submissions in response to the call for papers. Each
submission was assigned to at least three members of the Program Committee and in
some cases additional reviews were solicited from external experts. The Program
Committee selected 13 papers for presentation. In addition to the contributed papers,
the program included four invited talks, by Swarat Chaudhuri (Rice University),
Markulf Kohlweiss (Microsoft Research), Rajeev Ranjan (Cadence), and Andreas
Veneris (University of Toronto). On the last day of the conference, the HVC award was
presented to Marta Kwiatkowska (University of Oxford), Gethin Norman (University
of Glasgow), and Dave Parker (University of Birmingham), for the invention, devel-
opment and maintenance of the PRISM probabilistic model checker. A special session
about verification and testing challenges of autonomous systems was held on the first
day of the conference. Thanks to Yoav Hollander (Foretellix LTD) for presenting in
this session. On November 13, one day before the conference, we held a tutorial day
with tutorials by Sanjit A. Seshia (University of California, Berkeley) on formal
inductive synthesis, by Hari Mony (IBM) on sequential equivalence checking for
hardware design and verification, by Amir Rahat (Optima Design Automation) on
design reliability, and by Cristian Cadar (Imperial College) on dynamic symbolic
execution and the KLEE infrastructure.

We would like to extend our appreciation and sincere thanks to the local organi-
zation team from IBM Research Haifa Laboratory: Tali Rabetti, the publicity chair,
Revivit Yankovich, the local coordinator, Yair Harry, the Web master, and the
Organizing Committee, which consisted of Laurent Fournier, Sharon Keidar-Barner,
Moshe Levinger, Michael Vinov, Karen Yorav, and Avi Ziv. We would also like to
thank the tutorial chair Natasha Sharygina (University of Lugano), and the HVC Award
Committee, consisting of Armin Biere (Johannes Kepler University), Hana Chockler
(King’s College London), Kerstin Eder (University of Bristol), Andrey Rybalchenko
(Microsoft Research), Ofer Strichman (Technion), and particularly its energetic chair,
Leonardo Mariani (University of Milano Bicocca).

HVC 2016 received sponsorships from IBM, Cadence Design Systems, Mellanox
Technologies, Mentor Graphics, Qualcomm, and Intel. (Thanks!)



Submission and evaluation of papers, as well as the preparation of this proceedings
volume, were handled by the EasyChair conference management system. (Thanks,
Andrei!)

It was a pleasure to organize this conference with so many old friends!

Graz Eli Arbel
September 2016 Roderick Bloem
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Abstracts



Current Trends and Future Direction
in Eco-system of Hardware Formal

Verification: A Technical
and Business Perspective

Rajeev K. Ranjan

Cadence, San Jose, USA

Hardware formal verification is increasingly being adopted in the modern SoC
design and verification flow for architectural specification and verification
through RTL development and debugging through SoC integration – all the way
up to post-silicon debugging. The productivity and quality benefits of adopting
this technology for a gamut of verification tasks are well established. In this talk,
we will cover the current trends and future directions in this area that is shaped
by the technical feasibility of the solutions and the business RoI seen by dif-
ferent stakeholders V- chip companies, design/verification engineers, formal
EDA vendors, and formal solution development engineers.



Guiding Formal Methods
with Discovered Knowledge

Swarat Chaudhuri

Rice University, Houston, USA

Systems for automated formal reasoning about programs depend on human
specification at multiple levels. Users of such a system must write full specifi-
cations of the tasks that they want performed. The designer of the system is
expected to formalize the domain-specific language in which tasks are descri-
bed, and specify the domain-dependent heuristics that guide automated rea-
soning. The assumption of specifications reflects a common expectation in
formal methods research: that humans hold deep knowledge about problem
domains and instances. In practice, this expectation can be violated and lead to
hard-to-use or brittle tools. In this talk, we describe a new class of formal
methods that address this difficulty through automatic discovery of knowledge
from corpora of pre-existing code, execution traces, and proofs.
The starting point of this work is the observation that a human who describes

or solves a reasoning task does not do so in a vacuum, but using insights
established through prior experiences of their own or others. The thesis is that
such insights can be algorithmically learned from datasets of existing formal
artifacts, and can lead to systems for automated reasoning that demand less
human intervention than traditional tools. The talk will describe multiple
instantiations of this thesis, including a statistical notion of program correctness,
a program synthesis algorithm guided by a “neural” model of program syntax
and semantics, and an approach to program verification that uses pre-existing
formal proofs.



Bug Wars: Automation Awakens

Andreas Veneris

Department of Electrical and Computer Engineering, and Department of
Computer Science, University of Toronto, Toronto, Canada

Verification is the undisputed bottleneck in the design cycle consuming two
thirds of the total chip development effort. This is in part because of the com-
plexity of modern designs, the impact of geographical dispersed teams inte-
grating new components with third-party/legacy IP under tight time-to-market
goals, the evolving role of verification engineers to not only discover bugs but
also aid correct them and the ever-evolving nature of the task itself. Today
verification has stretched itself beyond its traditional boundaries into validation
as most of silicon re-spins are not due to physical defects but because of
functional errors not discovered or fixed earlier in the design cycle. Although
parts of verification have been automated the core issue driving this gap remains
debugging as it consumes more than half of the overall effort being a pre-
dominantly manual task.
In this talk, we revisit automation efforts in functional debug from late 1980s,

when it was first introduced, to recent formal advances placing it into context as
we recount new directions. In more detail, we will first outline early method-
ologies stemming from test and fault diagnosis to more recent techniques based
on Boolean satisfiability. We will examine different angles of the debug problem
and respective solutions for its various manifestations in the verification cycle.
This will allow us to appraise theoretical and practical parallels in the founda-
tions of those two tasks. As we evaluate the progress in debug automation, we
will point out emerging deficiencies of existing methodologies more notably
during regression verification. To that end, we will present novel techniques in
debugging triage where statistical solutions, a radical departure from existing
debug efforts, need complement traditional simulation/formal methods to not
only take into account the design response but also the human factor. We will
conclude with a mantra that research in debugging in the past 30 years points to
a direction where verification and test prove once again to be fields deeply
intertwined, and we will provide guidance for methodologies in silicon debug
rooted on existing functional debug procedures.



miTLS: Can Cryptography, Formal Methods,
and Applied Security be Friends?

Markulf Kohlweiss

Microsoft Research, Cambridge, UK

TLS was designed as a transparent channel abstraction to allow developers with
no cryptographic expertise to protect their application against attackers that may
control some clients, some servers, and may have the capability to tamper with
network connections. However, the security guarantees of TLS fall short of
those of a secure channel, leading to a variety of attacks. The Triple Handshake
attack exploits combinations of RSA and Diffie-Hellman key exchange, session
resumption, and renegotiation to bypass many recent countermeasures.
At the same time we study the provable security of TLS, as it is implemented

and deployed. To capture the details of the standard and its main extensions, we
rely on miTLS, a verified reference implementation of the protocol. miTLS
inter-operates with mainstream browsers and servers for many protocol versions,
configurations, and ciphersuites; and it provides application-level, provable
security for some. This leads to the strange case of how something provable
secure can be insecure.
In this talk I will play Dr Jekyll and Mr Hyde by playing off our CRYPTO

proof and our S&P attack against each other.
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SAT-Based Combinational and Sequential
Dependency Computation

Mathias Soeken1(B), Pascal Raiola2, Baruch Sterin3, Bernd Becker2,
Giovanni De Micheli1, and Matthias Sauer2

1 EPFL, Lausanne, Switzerland
mathias.soeken@epfl.ch

2 University of Freiburg, Freiburg im Breisgau, Germany
3 UC Berkeley, Berkeley, CA, USA

Abstract. We present an algorithm for computing both functional
dependency and unateness of combinational and sequential Boolean func-
tions represented as logic networks. The algorithm uses SAT-based tech-
niques from Combinational Equivalence Checking (CEC) and Automatic
Test Pattern Generation (ATPG) to compute the dependency matrix of
multi-output Boolean functions. Additionally, the classical dependency
definitions are extended to sequential functions and a fast approximation
is presented to efficiently yield a sequential dependency matrix. Exten-
sive experiments show the applicability of the methods and the improved
robustness compared to existing approaches.

1 Introduction

In this paper we present an algorithm to compute the dependency matrix D(f)
for a given combinational or sequential multi-output function f . For every input-
output pair, the combinational dependency matrix indicates whether the output
depends on the input, and whether the output is positive or negative unate in
that input [21].

Several algorithms in logic design use the dependency matrix as a signa-
ture [23] to speed up computation, e.g., Boolean matching [14], functional veri-
fication [11,12], or reverse engineering [29]. Although most of these algorithms
make implicit use of the dependency matrix, the name has been used in this paper
for the first time. The name is inspired by the output format of functional depen-
dence and unateness properties in the state-of-the-art academic logic synthesis
tool ABC [4]. Functional dependency is also related to transparent logic [19,24].
Given a set of inputs Xd and a set of outputs Yd, the problem is to find a set
of inputs Xc that is disjoint from Xd and that distinguishes the output values
at Yd for different input assignments to Xd. In contrast, we consider functional
dependence without constraints for all input-output pairs.

Existing algorithms for computing the dependency matrix are based on
Binary Decision Diagrams (BDDs, [5]) and have been implemented in ABC [4].
It is important to point out that the term functional dependence is used
c© Springer International Publishing AG 2016
R. Bloem and E. Arbel (Eds.): HVC 2016, LNCS 10028, pp. 1–17, 2016.
DOI: 10.1007/978-3-319-49052-6 1



2 M. Soeken et al.

to describe a different property in a related context: In [12,13,16], the
authors refer to functional dependence as the question whether given a set
of Boolean functions {f1, . . . , fn}, there exists an fi, that can be written as
h(f1, . . . , fi−1, fi+1, . . . , fn). In other words, functional dependence is defined as
a Boolean function w.r.t. to a set of Boolean functions. In contrast, we con-
sider the functional dependence of a Boolean function w.r.t. a single variable as
functional dependence.

Our algorithm uses techniques from Combinational Equivalence Checking
(CEC, e.g., [22]) and Automatic Test Pattern Generation (ATPG, e.g., [15,26,
27]). We employ efficient incremental SAT-based solving techniques and extract
incidental information from solved instances to reduce runtime consumption on
complex functions.

We furthermore present an extension of the combinational dependency defi-
nition to sequential functions. We account the sequential counterpart of a func-
tional dependence relation to an input-output pair if the given relation constantly
holds after some finite number of steps. As an example, some output f may be
always positive unate in some input x after a certain number of iteration steps
of the circuit. In this case, we call f sequential positive unate in x, even if this
relation is not guaranteed in the first steps.

An established method to prove properties on sequential circuits is bounded
model checking (BMC) as first introduced in [1], used, e.g., in [8,25]. In BMC
a circuit is modelled iteratively for k steps as a combinational circuit. With
approaches such as k-induction [18] and Craig interpolation [20] BMC becomes
a complete model checking method. However, as such complete methods are
rather computationally expensive, we rely on an iterative approximation to com-
pute the sequential dependency matrix solely based on the combinational depen-
dency matrix. By iteratively analyzing the combinational dependency until a
fixed point is derived, we can accurately conclude structural dependency and
unateness.

In an extensive experimental evaluation we demonstrate the applicability of
our methods to various combinational and sequential benchmark sets. Within
reasonable amounts of computing time we are able to accurately compute the
combinational dependency matrix as well as an approximation of our sequential
dependency matrix with a small number of iterations. We further show the
robustness of our proposed algorithm compared to a previous state-of-the-art
algorithm that times out or suffers from memory explosion on complex functions.
Finally, we present a case study in which the dependency matrix is used as
a signature in reverse engineering to effectively reduce the search space and
improve the performance of the underlying application.

The rest of the paper is organized as follows. Section 2 presents the fundamen-
tals of the work. In Sect. 3 we introduce our SAT-based approach to compute
the dependency matrix of combinational circuits, and extend it in Sect. 4 to
sequential circuits. The experimental results are presented in Sect. 5 and Sect. 6
concludes the work.
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2 Background

2.1 Functional Dependencies

A Boolean function f(x1, . . . , xn) is functionally dependent in xi if fx̄i
�= fxi

where the co-factors fxi
or fx̄i

are obtained by setting xi to 1 or 0 in f , respec-
tively. We call fxi

the positive co-factor and fx̄i
the negative co-factor. The

function f is said to be positive unate in xi, if

fx̄i
≤ fxi

(1)

and negative unate in xi, if
fx̄i

≥ fxi
, (2)

where the comparisons ‘≤’ and ‘≥’ are applied to the binary strings that rep-
resent the truth tables of fx̄i

and fxi
. f is said to be unate in xi if it is either

positive or negative unate in xi. Clearly, a function f is both positive and neg-
ative unate in xi, if f does not depend on xi. Hence, we call f strictly positive
(negative) unate in xi, if f is positive (negative) unate in xi and depends on xi.
If f is neither positive nor negative unate in xi, we say that f is binate in xi.

Example 1. The functions x1 ∧x2 and x1 ∨x2 are positive unate in both x1 and
x2. The function x1 → x2 is negative unate in x1 and positive unate in x2. The
function x1 ⊕ x2 is binate in both variables.

Let f : Bn → Bm be a multi-output Boolean function where each output is
represented by a Boolean function fj(x1, . . . , xn). The dependency matrix D(f)
is an m × n matrix with entries dj,i where

dj,i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

p if fj is strictly positive unate in xi,

n if fj is strictly negative unate in xi,

d if fj depends on, but is not unate in xi,

• otherwise.

(3)

Example 2. Let f : B5 → B3 with f1 = x1 ∧ x2, f2 = x3 → x5, and f3 =
x1 ⊕ x2 ⊕ x5. Then

D(f) =

⎡

⎣
p p • • •
• • n • p
d d • • d

⎤

⎦ .

2.2 Boolean Satisfiability

In our algorithm we translate decision problems into instances of the SAT prob-
lem [3]. SAT is the problem of deciding whether a function f , has an assignment
x for which f(x) = 1. Such an assignment is called a satisfying assignment. If f
has a satisfying assignment it is said to be satisfiable. Otherwise, f is said to be
unsatisfiable.
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In general, SAT is NP-complete [6,17]. SAT solvers are algorithms that can
solve SAT problems and, while worst-case exponential, are nonetheless very effi-
cient for many practical problems. SAT solvers also return a satisfying assign-
ment if the instance is satisfiable. Most of the state-of-the-art SAT solvers are
conflict-driven and employ clause-learning techniques [10]. In incremental SAT
one asks whether f is satisfiable under the assumption of some variable assign-
ments. These assignments are only temporarily assumed, making it possible to
reuse the SAT instance and learned information when solving a sequence of sim-
ilar SAT problems. In the remainder of the paper, we refer to instances of SAT
as if they were calls to an incremental SAT solver. SAT?(f, α) is true if f is sat-
isfiable under the assumptions α, and UNSAT?(f, α) is true if f is unsatisfiable
under the assumptions α.

3 SAT-Based Dependency Computation

This section presents the SAT-based algorithm to compute the functional depen-
dencies of a function. We first describe the encoding into SAT, then an imple-
mentation of the algorithm, and finally possible optimizations.

3.1 SAT Encoding

We encode the test for functional dependence and unateness as an instance of
the SAT problem using the following theorem.

Theorem 1. Let f(x1, . . . , xn) be a Boolean function. Then

1. f is functionally dependent in xi, if and only if fx̄i
⊕ fxi

is satisfiable,
2. f is positive unate in xi, if and only if fx̄i

∧ f̄xi
is unsatisfiable, and

3. f is negative unate in xi, if and only if fxi
∧ f̄x̄i

is unsatisfiable.

Proof. We only show the direction of “if”; the “only if” direction follows imme-
diately from the definition of functional dependency and unateness.

1. Let x be a satisfying assignment to fx̄i
⊕ fxi

. Then, we have fx̄i
(x) �= fxi

(x).
2. Assume the function was satisfiable and let x be a satisfying assignment.

Then fx̄i
(x) = 1 while fxi

(x) = 0 which contradicts Eq. (1).
3. Analogously to (2). �

In the implementation, we make use of the following immediate consequence of
the theorem.

Corollary 1. f is functionally independent in xi, if and only if fx̄i
⊕ fxi

is
unsatisfiable.

In the following we consider multi-output functions f : Bn → Bm, where each
output is a function fj . In order to compute the full dependency matrix which
contains the dependency for each input-output pair, we transform the problem
to a sequence of SAT instances as illustrated by the generic miter in Fig. 1. The
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fx̄i

fxi

d1

p1

n1

dm

pm

nm

1

m

1

m

...

...

e1

en

x1

xn

x′
1

x′
n

...

...

...

Fig. 1. Generic miter to encode functional dependency as SAT instance

two boxes represent two copies of f . The upper copy, with inputs x1, . . . , xn,
is used as the negative co-factor, while the lower copy, with inputs x′

1, . . . , x
′
n,

is used as the positive co-factor of f . The groups of three gates on the lower
right hand side realize the XOR operation which connect the outputs of the two
copies. The signals of the AND gates are exposed as outputs and will be used
to encode the unateness problems. The XNOR gates in the upper right of the
figure are used to force all but one of the inputs, to have equal values.

Let Π(fj) be the characteristic Boolean function which is obtained by encod-
ing the miter in Fig. 1 for the function fj using encodings such as Tseytin [32]
or EMS [9]. Also let Ei = {xi = 0, x′

i = 1} ∪ {ek = 1 | k �= i} be assignments
that lead to a correct interpretation of the miter for input xi, i.e., xi is set to 0,
x′

i is set to 1 and all the other inputs need to have the same value. We define
three problems on top of the incremental SAT interface:

DEP(fj , xi) = SAT?(Π(fj), Ei ∪ {dj = 1}) (4)
POS UNATE(fj , xi) = UNSAT?(Π(fj), Ei ∪ {pj = 1}) (5)
NEG UNATE(fj , xi) = UNSAT?(Π(fj), Ei ∪ {nj = 1}) (6)

Then the problems described in Theorem 1 and Corollary 1 can be solved
as follows. The function fj functionally depends on xi, if DEP(fj , xi) holds.
And the function fj is positive (negative) unate in xi, if POS UNATE(fj , xi)
(NEG UNATE(fj , xi)) holds.

3.2 Algorithm

Figure 2 displays the general flow of the algorithm. For each pair of an input
x = xi and an output y = fj the algorithm starts with a simple structural
dependency check. If x is outside of y’s structural cone of influence, it can be
concluded that y is independent of x. This is a very efficient check. Otherwise,
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Fig. 2. Functional dependency and unateness computation flow

the algorithm proceeds with a functional dependency check DEP(y, x) as defined
in Eq. (4). We omit the arguments from the boxes.

If the instance is unsatisfiable, y is independent from x as no assignment exists
that results in different logic values for y under the side constraint of yx̄ ⊕ yx.
In case the instance is satisfiable, x and y are at least functionally dependent.
Additionally, the SAT solver returns a satisfying assignment which is analyzed
for the logic value of y. In case yx̄ is 1 (and therefore yx is 0), y cannot be
positive unate in x as a counter example for Eq. (1) is found. Likewise, negative
unateness can be falsified if yx̄ is 0. Note that one of the two cases must hold as
the original instance requires a difference between yx̄ and yx.

In a last step, the algorithm specifically checks for unateness with an addi-
tional call to the SAT solver, unless it has been ruled out previously. If this SAT
call is unsatisfiable, unateness can be concluded, otherwise the algorithm returns
functional dependence.

3.3 Optimizations

As discussed above, we use incremental SAT solving because many of the calls to
the SAT solver are very similar. Hence, instead of encoding a miter-like structure
as illustrated in Fig. 1 for each input-output pair in an individual instance, we
encode the complete output cone of a target input xi in a single instance to profit
from incremental SAT solving. We enforce the co-factors of xi as unit clauses in
this instance. As we target combinational circuits, the direction of the co-factors
does not influence the satisfiability of the instance. Hence, we can restrict the
search space by enforcing xi to logic 1 and x′

i to logic 0 without loss of generality.
Furthermore, XOR gates are encoded for output pairs to enforce them to differ
using assumptions in the SAT solver.



SAT-Based Combinational and Sequential Dependency Computation 7

On the output side, we iteratively run through each output in x’s cone of
influence and enforce a difference between fx̄i

and fxi
using an assumption. If

the resulting instance is UNSAT we can conclude independence. Otherwise, the
input-output pair is at least functionally dependent. By observing the direction
of the difference at the output, we consider the pair either as a candidate for
positive or negative unateness and run the respective check as described earlier.1

Additionally, we perform a forward looking logic analysis of each satisfiable
SAT instance to extract incidental information for future solver calls. In our
experiments we found quite often, that the difference not only propagates to
the target output, but also to multiple other outputs. Hence, we check the logic
values of all following outputs as well. Additionally, an output may incidentally
show differences in both directions and hence unateness can be ruled out without
additional SAT calls.

The described SAT instances are very similar to detecting a stuck-at-1 fault
at the input x. Hence, we employ encoding based speed-up techniques that are
known from solving such ATPG problems. By adding D-chains [31] that add
redundant information to the instance, the SAT solver can propagate the dif-
ferences more easily. Additionally, we tuned the SAT solver’s internal settings
towards the characteristics of the circuit-based SAT instances which are domi-
nated by a large number of rather simple SAT calls. For instance, we do not use
preprocessing techniques on the SAT instances.

4 Sequential Functional Dependency

While the prior definitions and algorithms are specified for combinational cir-
cuits, we also investigate the definition of dependency in sequential circuits.

To translate the properties from Sect. 2.1 to sequential circuits, we use a
similar approach as used in (un)bounded model checking: An output yj is called
sequential functionally dependent in an input xi if and only if there exists a num-
ber k ∈ N, such that f

(k)
j is functionally dependent in xi, where f

(k)
j represents

the Boolean function of the output modelled over k steps.
For f

(1)
j the sequential circuit can be treated as a combinational one. For f

(k)
j

with k > 1, the definition of sequential dependence follows the combinational one
if the sequential circuit is considered as an iterative logic array with an unlimited
number of time frames. Hence, such a definition allows to extend combinational
dependency in a natural way to sequential dependency.

In contrast to the complexity of the combinational dependency computa-
tion of a single input-output pair (which is NP-complete since it is an ATPG
problem), sequential dependency computation is identical to invariant check-
ing which can be expressed by an unbounded model checking approach and is
PSPACE-complete.
1 We also performed a structural check for each input-output pair if there potentially

exists an inverting path between them. If this is not the case, the additionally SAT-
call to check for unateness may be skipped. However, the performance impact was
insignificant and hence we did not employ this optimization.
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A C

B

Fig. 3. Example circuit

Sequential independence is defined as the contrary of sequential dependence.
An output yj is called (strictly) sequential positive/negative unate in xi, if there
exists a k0, such that for every number k ∈ N with k > k0, f

(k)
j is (strictly)

positive/negative unate in xi.

Example 3. Let f (k) be the Boolean function corresponding to the flip flop C in
the circuit in Fig. 3 in the kth step. Then C is alternating strictly positive and
negative unate in A. Thus, C is neither sequential positive nor negative unate
in A. However, C is sequential dependent in A.

4.1 Approximative Algorithm

We use the methods from Sect. 3 to compute the combinational dependency
matrix D(f) for f (0) and then initialize the sequential dependency Matrix Ds(f)
as D(f). For clarity, to refer to an entry of the dependency matrix with output
yj and input xi we write dyj ,xi

instead of dj,i. Respective entries of the sequential
dependency matrix are denoted as ds

j,i.
For each output y = fj and input x we check, if there exist xk and yl, such

that

– xk and yl correspond to the same flip flop ϕ,
– ds

y,xk
�= • and

– ds
yl,x

�= •.

The path-dependence of y in x over ϕ is defined with the equation

pdϕ(y, x) =

⎧
⎪⎨

⎪⎩

p if dy,xk
, dyl,x unate and dy,xk

= dyl,x,

n if dy,xk
, dyl,x unate and dy,xk

�= dyl,x,

d otherwise.
(7)

If pdϕ(y, x) �= ds
y,x, we may need to update the dependence value of the

sequential dependency matrix ds
y,x:

ds
y,x ←

{
pdϕ(y, x) if pdϕ(y, x) = ds

y,x ∨ ds
y,x = •,

d otherwise.
(8)

Now we choose different yl, xk, y and/or x and start from the top until
we reach a fixed point. Our algorithm focuses on positive unateness (p) and
negative unateness (n), in contrast to strict positive unateness (p) and strict
negative unateness (n).
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A C

B

D

E
x1

y2

y4

x2

x4

x3 y6

Fig. 4. Example circuit (2)

According to the definitions in the previous section, all dependencies marked
as seq. positive unate (p), seq. negative unate (n) or seq. independent (•) by our
approximation are correctly classified as we will show in Sect. 4.2.

However, the dependencies marked as seq. functionally dependent (d) may
be inaccurate as ds

j,i = d is an over-approximation. Hence, the algorithm allows
an accurate classification for three dependency conditions, while avoiding the
computational complexity of a completely accurate algorithm (that still can be
applied if completeness is needed).

To see that ds
j,i = d does not generally imply sequential dependence, see

Fig. 4, where ds
6,2 = d, ds

2,1 = p, ds
6,4 = d and ds

4,1 = p. Therefore ds
6,1 = d, but

because of the partly inverse reconvergence, y6 is sequentially independent in x1.
If the XNOR-Gate in Fig. 4 was replaced by an XOR-Gate, y6 would be

sequentially dependent in x1, while no values of its combinational dependency
matrix would differ from the combinational dependency matrix of the original
circuit. Since these two circuits have the same combinational dependency matrix,
but different sequential dependency matrices, it is not possible to build an exact
algorithm for sequential dependency, solely based on the combinational depen-
dency matrix.

4.2 Proof of Correctness for p, n and •
The correctness of the classification of an input-output pair as either p, n or •
can be shown as follows:

p: Proof by contradiction: For the correctness of the return value p, let the
algorithm return p for output (or flip flop) y and input (or flip flop) x, but
y is not sequential positive unate in x. Then there exists an (arbitrary high)
k ∈ N, such that f (k), the Boolean function of y, is not positive unate in
x. Following from the definition of unateness (cf. Sect. 2.1), there exists an
input sequence x̂, such that f

(k)
x (x̂) = 1 and f

(k)
x (x̂) = 0. For clarity, we use

the abbreviations x[x] = 0, y[x] = 1 and x[x] = 1, y[x] = 0 where [x] and
[x] indicate the logic value for the respective case. There must exist a path
from x to y, where the path follows x = p0, p1, . . . , pm−1, pm = y, all pi with
0 < i < m represent flip flops and ∀i ≤ m : p

[x]
i �= p

[x]
i .

For any i < m, pi+1 combinationally depends on pi, therefore the entry in
the combinational dependency matrix for pi+1 on pi (dpi+1,pi

) is not •, thus
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d, p or n. As seen in Eq. 8, no dependency value gets overwritten by •, which
leads to ds

pi+1,pi
∈ {d, n, p} for all i. If ds

pi+1,pi
in any calculation step was

d, ds
pi+1,pi

would be d in the sequential dependency matrix, as d can not get
overwritten. Then, by Eq. 7, pdϕ(x, y) would be step-wise calculated as d,
which would result in ds

y,x = d in contradiction to the algorithm returning p.
Thus, for any i < m, it holds that ds

pi+1,pi
∈ {n, p}.

Let ISame = {i < m : p
[x]
i = p

[x]
i+1} and IDiff = {i < m : p

[x]
i �= p

[x]
i+1},

then IDiff contains an odd number of elements, because p
[x]
0 �= p

[x]
m . For any

i ∈ ISame, it holds that ds
pi+1,pi

�= n resp. ds
pi+1,pi

= p in every calculation
step and similarly for any i ∈ IDiff , always ds

pi+1,pi
= n. The calculated

dependency pd for the given path along p0, . . . , pm will then be calculated
based on an odd number of n and otherwise only p, which will by Eq. 7 result
in path dependence n. Therefore, by Eq. 8, the algorithm does not return p,
a contradiction.

n: The proof of the correctness of the return value n is analogous to the proof
of the correctness of p. The major difference is that IDiff contains an even
number of elements. This will force a path calculation to result in p, making
impossible, that the algorithm returns n.

•: Proof by contradiction: For the correctness of the return value •, let the algo-
rithm return • for output y and input x, but y is not sequential independent
in x, i.e. sequential dependent in x. Following from a similar argument as for
p, there must exist a path, which follows x = p0, p1, . . . , pm−1, pm = y, all pi

with 0 < i < m represent flip flops and ∀i ≤ m : p
[x]
i �= p

[x]
i . By Eq. 8, every

ds
pi+1,pi

in any calculation step is not •. Then pdϕ(x, y) would by Eq. 7 be
step-wise calculated not as •, which would by Eq. 8 result in ds

pi+1,pi
�= •

in the sequential dependency matrix, in contradiction to the algorithm
returning •. �

5 Experimental Results

We implemented the proposed approach in C++ on top of the ATPG framework
PHAETON [26] and the SAT solver antom [28]. All experiments were carried out
on a single core of an Intel Xeon machine running at 3.3 GHz, 64 GB main mem-
ory running Linux 3.13. For the evaluations, we used combinational arithmetic
benchmarks from EPFL2 as well as sequential benchmarks from the ITC’99 [7]
benchmark suite and industrial benchmarks provided by NXP (starting with ‘b’
and ‘p’ followed by a number, respectively). Finally, we applied the method to
the OpenCore benchmarks from the IWLS’05 [2] family. In order to keep the
section compact, we skipped the benchmarks that had either negligible runtime
or that could not be solved within a timeout of 2 h.

2 lsi.epfl.ch/benchmarks.

http://lsi.epfl.ch/benchmarks
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Table 1. Combinational experiments

Circuit IO Dependencies Statistics Runtimes

Struct. Func. Pos. Neg. Incidental Instances Solves Unateness Total

adder 256129 0 16512 256 0 16512 256 17024 4.07 4.40

bar 135128 0 896 16384 0 777 135 33670 1.08 17.70

divisor 128128 0 12220 66 2082 13026 128 9519 4502.32 4871.53

log2 3232 0 1022 0 2 979 32 686 3746.98 3750.90

max 512130 32512 32512 1024 512 15271 512 82241 37.13 110.24

sin 2425 0 577 22 0 441 24 472 17.86 31.23

square 64128 0 6041 68 3 5956 64 3926 447.34 450.51

b14 277299 11 21803 705 68 18403 277 22368 20.74 27.71

b15 485519 19504 40704 3338 292 33017 485 57931 77.33 231.29

b17 14511511 44054 135906 11271 1225 109432 1451 177747 234.55 637.20

b18 33073293 1084 331223 22367 2250 266523 3307 326342 439.45 690.52

b20 522512 5298 51508 1212 370 42795 522 52742 120.06 232.61

b21 522512 5310 51508 1238 136 42171 522 53808 94.69 203.93

b22 735725 5313 78254 1740 359 65388 735 76254 163.15 280.46

p35k s 28612229 0 140676 10802 10697 123321 2861 147727 628.73 1090.66

p45k s 37392550 409 24910 13638 860 14256 3739 62307 20.84 59.95

p78k s 31483484 377 52338 6032 0 48970 3148 50197 47.34 73.73

p81k s 40293952 1380 387839 11724 18737 324849 4029 308638 419.38 897.82

p100k s 55575489 756 77829 24347 3406 51415 5557 147954 4959.58 5236.16

des area 367192 0 11328 288 0 9756 367 5623 2.78 6.16

spi 272273 16256 4205 982 117 1977 272 24649 1.54 10.03

systemcdes 312255 592 2341 590 8 1580 312 4222 0.61 1.57

wb dma 747748 1195 10880 2364 842 6674 747 19879 2.25 4.54

tv80 372391 9452 15265 1917 218 11906 372 28468 9.71 21.49

systemcaes 928799 14613 17158 939 44 13273 928 29743 7.43 19.21

ac97 ctrl 22532247 10 7940 7083 831 5315 2253 25510 0.87 2.67

pci bridge32 35173559 9906 59360 12179 2512 38839 3517 108600 57.35 106.20

aes core 788659 0 7290 541 29 6285 788 5636 2.17 4.43

wb conmax 18992186 1976 46132 23968 16346 37884 1899 125420 39.40 98.11

des perf 90418872 0 29344 7448 0 18627 9041 51718 16.63 68.60

All times are in seconds.

5.1 Combinational Dependency

Table 1 lists the results of the evaluation. The first three columns list the name
of the circuit as well as the number of inputs and outputs. The following four
columns list the identified dependencies. The number of only structural depen-
dencies (that are found to be independent) are given first followed by the number
of dependent classifications (excluding unateness) and finally the number of pos-
itive or negative unate classifications, respectively. The next three columns list
statistics of the proposed SAT-based approach: The number of functional depen-
dencies that were found incidentally followed by the number of generated SAT
instances and calls to the SAT solver. The final two columns list the runtime for
unateness checking and the total runtime in seconds.

As can be seen, our approach is able to completely compute the depen-
dency matrix on a wide range of mid-sized circuits taken from various academic
and industrial benchmark circuits within a maximum computation time of 2 h
(7200 s).
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Interestingly, the number of input-output pairs that are positive unate are
roughly an order of magnitude higher than those that are negative unate. This
is most prominent for the barrelshifter circuit ‘bar’ from the EPFL benchmarks
that contains mostly positive unate pairs but no negative one.

The effect of the optimizations described in Sect. 3.3 can be witnessed by
the high number of dependencies identified incidentally as well the high ratio
between the number of instances as well as the calls to the SAT solvers. Hence,
these methods effectively keep the runtimes in check.

5.2 Comparison to Existing Approach

We compared our approach to the BDD-based implementation in ABC [4] where
identical circuit definitions readable for both tools were available. We listed the
results in Table 2.

The proposed SAT-based approach shows superior performance for the rather
complex benchmark sets of the EPFL as well as the ITC’99 benchmarks where
the approach does not suffer from excessive memory usage. For complex func-
tions, the BDD-based approach did not terminate due to insufficient memory
requirements.

For the EPFL benchmarks, the BDD-based approach did not terminate due
to a timeout which we set to 7200 s. 7 of the 10 arithmetic EPFL benchmarks
can be solved using the SAT-based approach, and for 6 of them the SAT-based

Table 2. Comparison to the BDD-based approach from ABC [4]

Runtimes ABC [4]

Circuit In/Out Unate. Total Unate. Total

adder 256/129 4.07 4.40 0.01 0.54

bar 135/128 1.08 17.70 18.96 19.05

divisor 128/128 4502.32 4871.53 TO TO

log2 32/32 3746.98 3750.90 TO TO

max 512/130 37.13 110.24 TO TO

sin 24/25 17.86 31.23 0.15 866.99

square 64/128 447.34 450.51 TO TO

b14 277/299 20.74 27.71 74.17 120.07

b15 485/519 77.33 231.29 199.45 368.25

b17 1451/1511 234.55 637.20 MO MO

b18 3307/3293 439.45 690.52 MO MO

b20 522/512 120.06 232.61 MO MO

b21 522/512 94.69 203.93 MO MO

b22 735/725 163.15 280.46 MO MO

All times are in seconds; MO: memory out; TO: timeout
(≥7200 s).
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approach found the solution faster. The three remaining benchmarks cannot be
solved within 7200 s by both approaches. It is worth noting that for benchmarks
that are rather small or structurally simple (such as the adder) the BDD-based
approach performs faster than the SAT-based approach.

5.3 Sequential Dependency

Table 3 shows the results of the sequential dependency computation algorithm
as presented in Sect. 4 that was executed on the sequential versions of the bench-
mark circuits from the previous experiment where possible. At first, the name of
the circuit, the number of flip flops as well as the number of inputs and outputs
are given. Following, as in the previous section we list the different dependen-
cies as well as the number of iterations through the combinational dependency
matrix. Finally, the runtimes for the generation of the combinational dependency
matrix, the extension to the sequential matrix as well as the total runtime (all
in seconds) are given.

As can be seen, the sequential algorithm needs only a few iterations to con-
clude the sequential dependency for all benchmarks. Hence, the overall impact
on the runtime is limited and for most of the circuits less than the runtime of
the combinational method. When comparing the results of the dependencies, one

Table 3. Sequential experiments

Circuit FFs IO Sequential dependencies Runtime SAT-based

Struct. Func. Pos. Neg. Iterations Comb. Sequential Total

b14 245 3254 62 60702 108 1 3 27.71 0.06 27.77

b15 449 3670 18112 161327 282 4 3 231.29 0.40 231.69

b17 1414 3797 3020 1680385 217 0 3 637.20 17.27 654.47

b18 3270 3723 0 10575260 87 2 3 690.52 362.10 1052.62

b20 490 3222 0 246240 38 2 3 232.61 0.85 233.46

b21 490 3222 0 246240 38 2 2 203.93 0.57 204.50

b22 703 3222 0 487257 59 3 3 280.46 5.21 285.68

p35k s 2173 68856 0 243835 10786 10712 3 1090.66 2.39 1093.05

p45k s 2331 1408219 90 1826005 1093874 3253 5 59.95 208.98 268.94

p78k s 2977 171507 0 616075 26788 0 5 73.73 28.76 102.50

p81k s 3877 15275 1566 2974664 6693 8024 3 897.82 85.70 983.51

p100k s 5395 16294 92 4797360 1091341 5894 5 5236.16 301.64 5537.80

des area 128 23964 0 70464 0 0 3 6.16 0.03 6.19

spi 229 4344 27456 21010 1050 11 3 10.03 0.05 10.08

systemcdes 190 12265 0 47603 3202 2 4 1.57 0.04 1.61

wb dma 533 214215 0 128209 1268 79 4 4.54 0.89 5.43

tv80 359 1332 0 132696 59 2 3 21.49 0.23 21.72

systemcaes 670 258129 0 716373 1 0 3 19.21 2.32 21.53

ac97 ctrl 2199 5448 5 132290 155065 658 3 2.67 7.11 9.79

pci bridge32 3358 159201 20030 3825065 12332 155 3 106.20 138.70 244.90

aes core 530 258129 0 285777 390 4 3 4.43 2.00 6.43

wb conmax 770 11291416 0 647425 13152 512 3 98.11 5.39 103.50

des perf 8808 23364 0 13852506 116088 0 3 68.60 1129.18 1197.78
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can note that the number of functional dependencies increases at the cost of the
other classifications. This is expected as many structural dependencies get func-
tional when considering multiple timeframes. Additionally, the requirements for
sequential positive as well as sequential negative unateness are much harder to
meet than their combinational counterparts and hence such classifications tend
to be changed to a functional dependency.

5.4 Application to Reverse Engineering

We show the applicability of functional dependency and unateness information
in a small case study of reverse engineering. We consider the Permutation-
Independent Subset Equivalence Checking (SPIEC) problem [29]: Given a block
fb : Bn → Bm and a component fc : Br → Bs with n ≥ r and m ≥ s, SPIEC
asks whether there exists a mapping from all primary inputs and primary out-
puts of fc to primary inputs and primary outputs in fb such that the block
realizes the same function as the component w.r.t. this mapping.

The algorithm presented in [29] solves this problem by finding subgraph iso-
morphisms of simulation graphs for the block and the component. A simulation
graph has input vertices, output vertices, and vertices for some characteristic
simulation vectors. A subgraph isomorphism in these graphs provides a candidate
mapping that can be verified using combinational equivalence checking [22]. Sub-
graph isomorphism is translated into a constraint satisfaction problem according
to [30] while additionally considering application-specific information extracted
from the circuits, e.g., functional dependency and unateness properties.

The constraint satisfaction implementation starts by creating a domain for
each vertex in the component’s simulation graph. The domain is a set of possible
candidate vertices in the block’s simulation graph. Filtering methods then try
to reduce the size of the domains such that eventually either (i) some domain
is empty and therefore no matching exists, or (ii) all domains contain a single
element from which the mapping can directly be extracted. If the filtering tech-
niques cannot advance to any of these two cases, one has to start branching
using a backtracking algorithm. The aim is to avoid backtracking, which can be
achieved by effective filtering methods.

In our experiment we considered the impact of the dependency matrix by
comparing three different scenarios: (i) no information is provided, (ii) the depen-
dency matrix is provided for the component which allows the use of structural
dependency information as a signature, and (iii) the dependency matrix is pro-
vided for both the block and the component allowing the use of functional depen-
dency and unateness properties as signatures for filtering. We measure the qual-
ity by comparing the accumulated domain sizes after all filtering methods are
exhausted right before backtracking is initiated.

Table 4 shows the results of our experiments. The circuits for blocks (c1–
c10) and components (adder, multi, shift,3 and subtract) are the same that were
3 In [29] shift-left and shift-right are considered separately. Since these operations are

equivalent under permutation, the measured numbers in the experiment also do not
differ.
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Table 4. Reverse engineering experiment

adder multi shift subtract

c1-8 0/0/0 730/661/609 44/44/44 0/0/0
c2-8 890/770/482 1753/706/612 1217/595/578 860/639/428
c3-8 489/24/24 797/455/425 577/256/240 0/0/0
c4-8 712/0/0 1280/0/0 1024/421/421 26/26/26
c5-8 690/462/24 1405/423/401 1089/44/44 26/26/26
c6-8 1234/1140/273 1820/0/0 1600/930/930 719/989/422
c7-8 141/25/25 796/0/0 576/401/401 27/27/27
c8-8 368/0/0 576/0/0 427/44/44 0/0/0
c9-8 1291/984/24 1885/566/476 1665/645/636 951/881/388
c10-8 131/24/24 1596/0/0 456/253/253 0/0/0

evaluated in [29] in their 8-bit variant. Each cell in the matrix represents the
application of SPIEC to the block and component of the respective row and
column, respectively. Each cell shows three numbers. These numbers are the
accumulated domain sizes of primary inputs and outputs for each of the three
considered scenarios. The cell is shaded gray if the component is contained in the
block. As can be seen in the table, the dependency matrix has a strong influence
on the results since the domain sizes can be significantly reduced, often resulting
in a matching that provides a solution. For example, in the case of c9 and the
adder a mapping has been found only if the dependency matrices for both the
block and the component are provided. In the case of c4 and the adder one needs
to compute at least the component’s dependency matrix to conclude that it is
not contained in that block without backtracking.

6 Conclusions

We presented a SAT-based algorithm to compute functional dependence proper-
ties of combinational as well as sequential Boolean functions. We inspect which
outputs in a multi-output function are functionally dependent on which inputs.
Furthermore, the algorithms checks whether the input-output pair is unate if it
is dependent, which is a stronger property. Furthermore, incremental encoding
techniques known from ATPG problems are employed to speed up the algorithm.
Additionally, we extended the classical dependency classifications to sequential
circuits and presented an iterative approximative algorithm to compute such
sequential dependencies.

In extensive experimental studies on different benchmarks suites we detailed
the robustness of the algorithms especially for hard combinational as well as
sequential benchmarks. Additionally, our methods show better performance com-
pared to previously presented BDD-based approaches with which many of the
instances cannot be solved due to memory limitations or timeouts.
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Abstract. We investigate and improve the scalability of multi-core LTL
model checking. Our algorithm, based on parallel DFS-like SCC decom-
position, is able to efficiently decompose large SCCs on-the-fly, which is
a difficult problem to solve in parallel.

To validate the algorithm we performed experiments on a 64-core
machine. We used an extensive set of well-known benchmark collections
obtained from the BEEM database and the Model Checking Contest.
We show that the algorithm is competitive with the current state-of-
the-art model checking algorithms. For larger models we observe that
our algorithm outperforms the competitors. We investigate how graph
characteristics relate to and pose limitations on the achieved speedups.

1 Introduction

The automata theoretic approach to LTL model checking involves taking the syn-
chronized product of the negated property and the state space of the system. The
resulting product is checked for emptiness by searching for an accepting cycle,
i.e. a reachable cycle that satisfies the accepting condition [35]. If an accepting
cycle is found the system is able to perform behavior that is not allowed by the
original property, hence we say that a counterexample has been found.

In order to fully utilize modern hardware systems, the design of parallel algo-
rithms has become an urgent issue. Model checking is a particularly demanding
task (in both memory and time), which makes it a well-suited candidate for
parallelization. On-the-fly model checking makes it possible to find a counterex-
ample while only having to search through part of the state space. However, the
on-the-fly restriction makes it especially difficult to design a correct and efficient
parallel algorithm. In practice, this causes the algorithms to rely on depth-first
search (DFS) exploration [32].

General Idea of the Algorithm. We present a multi-core solution for finding
accepting cycles on-the-fly. It improves recent work [30] by communicating par-
tially found strongly connected components (SCCs) [2]. The general idea of our
algorithm is best explained using the example from Fig. 1. In Fig. 1a, two threads
(or workers), which we call ‘red’ and ‘blue’, start their search from the initial
state, a. Here, state f is an accepting state, and the goal is to find a reachable
cycle that contains an accepting state. We assume that the workers have no prior

c© Springer International Publishing AG 2016
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Fig. 1. Example where two workers cooperate to find a counterexample. (Color figure
online)

knowledge of any other state (on-the-fly). Using a successor function suc(), the
successor states of a can be computed (thus, suc(a)={b}).

In Fig. 1b we observe a situation where the red worker has explored the path
a → b → c → f. Suppose that the red worker halts and the blue worker starts
exploring the path a → b → e → d and observes suc(d)={b} (Fig. 1c). The
blue worker then finds a cycle that contains the states {b,d,e} and stores this
information globally.

Now consider what happens in Fig. 1d. Here, the red worker continues its
search and explores the edge f → e. Since the states {b,d,e} are part of a
known cycle, and the red worker has explored the path b → c → f → e, we can
thus implicitly assume that states c and f are part of the same SCC and form
{b,c,d,e,f}. Remarkably, the algorithm can detect an accepting cycle while
neither the red nor the blue worker explored the cycle f → e → d → b → c → f.

We make the following contributions in this paper.

– We provide an SCC-based on-the-fly LTL model checking algorithm by extend-
ing on previous work [2] and the work from Renault et al. [30].

– We empirically compare our algorithm with state-of-the-art algorithms (all
implemented in the same toolset), using an extensive set of well-known bench-
mark models. We show that our algorithm is competitive and even outperforms
the competitors for larger models.

– We observe and discuss relations between the algorithms and scalability for
models containing large SCCs.

In order to carry out the necessary experiments, we have extended the LTSmin
toolset [17] to connect with the Spot v2.0 library [7] for generating Büchi
Automata.

Overview. The remainder of the paper is structured as follows. In Sect. 2 we
provide preliminaries on model checking. Section 3 discusses related work on
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parallel model checking. We present our algorithm in Sect. 4. The experiments
are discussed in Sect. 5 and we conclude our work in Sect. 6.

2 Preliminaries

Directed Graph. A directed graph is a tuple G := 〈V,E〉, where V is a finite set
of states, and E ⊆ V ×V is a set of transitions. We denote a transition (or edge)
〈v, w〉 ∈ E by v → w. A path v0 →∗ vn is a sequence of states v0, . . . , vn ∈ V ∗

s.t. ∀0≤i<n : vi → vi+1, v0 →+ vn denotes a path that contains at least one
transition. A cycle is a non-empty path where v0 = vn. We say that two states
v and w are strongly connected iff v →∗ w and w →∗ v, written as v ↔ w.
A strongly connected component (SCC) is defined as a maximal set C ⊆ V s.t.
∀v, w ∈ C : v ↔ w. We call an SCC C trivial if ∃v ∈ V : C = {v} and v 
→ v.
We call C a partial SCC if all states in C are strongly connected, but C is not
necessarily maximal.

Automaton Graph. The synchronized product of the negated LTL property and
the state space of the system is usually represented with an automaton graph.
There are different ways to represent an automaton graph. In practice, two
common ways to describe an automaton graph is by using a Büchi Automaton
(BA) or a Transition-based Generalized Büchi Automaton (TGBA).

Definition 1 (BA). A BA is a tuple B := 〈V,E,A, v0〉, where V is a finite set
of states, E ⊆ V ×V is a set of transitions, A ⊆ V is the set of accepting states,
and v0 ∈ V is the initial state. An accepting cycle C on B is defined as a cycle,
reachable from v0, where C ∩ A 
= ∅.
Definition 2 (TGBA). A TGBA is a tuple K := 〈V, δ, F, v0〉, where V is a
finite set of states, δ ⊆ V × 2F × V is a set of transitions where each transition
is labeled by a subset of acceptance marks, F is a finite set of acceptance marks,
and v0 ∈ V is the initial state. An accepting cycle C on K is defined as a cycle
〈w0, a0, w1〉, . . . , 〈wn, an, w0〉, reachable from v0, where a0 ∪ . . . ∪ an = F . Any
BA can be represented with a TGBA using the same number or fewer states and
transitions [13].

For the remainder of the paper, unless stated otherwise, we consider the
automaton graph to be represented as a BA. We make the assumption that
an automaton graph is computed on-the-fly. This implies that an algorithm
initially only has access to the initial state v0, and can compute successor states:
suc(v) := {w ∈ V | v → w}.

3 Related Work

Sequential algorithms for explicit-state on-the-fly LTL model checking can be
distinguished in two classes, Nested DFS (NDFS) and SCC-based algorithms.
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For an excellent overview on sequential NDFS and SCC-based algorithms, we
would like to refer the reader to the work of Schwoon and Esparza [32]. Both
NDFS- and SCC-based algorithms can perform in linear time complexity on the
number of edges in the graph.

NDFS Based Algorithms. NDFS, originally proposed by Courcoubetis et al. [3],
performs two interleaved searches. An outer DFS to find accepting states and
an inner DFS that checks for cycles around accepting states. Since its inception,
several improvements have been made [11,15,32].

Multi-core NDFS. A number of multi-core variants on NDFS have been designed
that scale on parallel hardware in practice [8,9,20,21]. These algorithms are
based on swarm verification [14]. The idea is that all workers initially start from
the initial state, but the list of successor states is permuted for each worker.
This way, distinct workers will explore different parts of the graph with a high
probability.

We consider CNDFS [8] to be the state-of-the-art NDFS-based algorithm.
Independent NDFS-like instances are launched and global information is shared
between the workers during (and after) the backtrack procedure. The algorithm
performs in linear time.

We note that NDFS-based algorithms are explicitly based on using BA accep-
tance. To the best of our knowledge, no parallel NDFS-like algorithm exists for
checking TGBAs.

SCC-Based Algorithms. SCC-based model checking consists of finding SCCs and
detecting if the accepting criteria is met in one of these components. Tarjan’s
algorithm [34] is generally favored for the SCC detection procedure due to its lin-
ear time complexity and ability to perform on-the-fly. Couvreur [4], and Gelden-
huys and Valmari [12] proposed modifications to more quickly recognize accept-
ing cycles. Notably, an SCC-based model checking algorithm can be used to
check for emptiness on generalized Büchi automata [5,32].

Multi-core SCC-Based Algorithms. There are a number of parallel algorithms
that can detect SCCs in an explicitly given graph, e.g. [10,16,25,31,33]. However,
none of these are applicable in the on-the-fly context since they require knowledge
about a state’s predecessors and/or depend on random access to the state space.
There has been a lot of recent activity in finding SCCs on-the-fly. This pursuit
has resulted in three new algorithms [2,23,29,30].

The algorithm by Lowe [23] is based on spawning multiple synchronized
instances of Tarjan’s algorithm. Here, each state may only be visited by one
worker and a work-stealing-like procedure is used to handle conflicts that arise.
Experimental evaluation shows that Lowe’s algorithm performs well if the graph
contains many small SCCs, but this seems to deteriorate quickly when the SCC
sizes grow. Lowe’s algorithm has a quadratic worst-case complexity.

The algorithm by Renault et al. [29,30] is also based on spawning multiple
instances of Tarjan’s (and/or Dijkstra’s [6]) algorithm, but here a state may
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be visited by multiple workers. The approach is based on swarmed verification,
where individual searches globally communicate fully explored SCCs – which are
avoided by other workers from then on. To improve LTL checking, acceptance
conditions are globally updated per partial SCC whenever a worker detects a
cycle, making it possible to find a counterexample in a similar fashion as we
present in Fig. 1. We consider this algorithm the current state-of-the-art of SCC-
based parallel on-the-fly model checking and it performs in quasi-linear time
complexity.

In this paper, we applied the UFSCC algorithm by Bloemen et al. [2] for
LTL model checking. We discuss the algorithm extensively in Sect. 4 and show
how this improves the scalability for graphs containing large SCCs.

4 Multi-core SCC Algorithm for LTL Model Checking

The main idea of the UFSCC algorithm is that it globally communicates partially
found SCCs while maintaining a quasi-linear time complexity. This means that
when a worker has locally found a cycle, it merges all states on that cycle in a
global structure (implemented with concurrent union-find). In order to make effi-
cient use of this information, the structure also tracks which workers have visited
the partial SCCs to support a more lenient form of detecting back-edges. The
structure also tracks which states have been fully explored and allows workers
to concurrently select states that still require exploration.

A collection of disjoint sets is used for globally tracking partially discovered
SCCs. This collection, π : V → 2V , satisfies the following invariant: ∀v, w ∈ V :
w ∈ π(v) ⇔ π(v) = π(w). In other words, the set for a specific state can be
obtained from any member of the set. This also implies that every state must
belong to exactly one set. A Unite function is used to combine two disjoint sets,
while maintaining the invariant. As an example, let π(v) := {v} and π(w) :=
{w, x} (note π(w) = π(x)) , then Unite(π, v, w) combines π(v) and π(w),
resulting in π(v) = π(w) = π(x) = {v, w, x} while not modifying any other
mappings. These properties follow directly from an implementation with union-
find.

The Algorithm. The algorithm can be found in Fig. 2. We assume that every line
is executed atomically1. Each worker p has its own local search stack, Rp. The
global collection π and global sets Dead and Done are initialized in Lines 2–3.
Dead implies that an SCC is fully explored and Done implies that a state is fully
explored. Every worker starts exploring from the initial state v0. Disregarding
Line 7 for the moment, Lines 8–15 describe the procedure to fully explore a
state. For every successor w of v′ there are three cases to be distinguished:

1. w ∈ Dead (Line 9): State w is part of an already completed SCC, it may be
ignored since no new information can be obtained.

1 In practice this is not exactly true, however all necessary conditions are preserved
by using a fine-grained locking structure.
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Fig. 2. Multi-core UFSCC algorithm for LTL model checking of BAs.

2. w /∈ Dead ∧ �w’ ∈ R p: w ∈ π(w’) (Line 10): State w is not part of the local
search stack and it is also not in a partial SCC that contains a state from the
local search stack (assuming that π correctly tracks partially found SCCs).
Since the current worker has not visited w before, nor any state in π(w), it
regards w as an undiscovered state and recursively explores it.

3. w /∈ Dead ∧ ∃w’∈ Rp : w ∈ π(w’) (Lines 11–15): Here, the worker’s stack
does contain a state w′ that is in the same partial SCC as w (the stack may
also contain w itself). This forms a cycle and thus all states on said cycle
are united. We assume that partial SCCs adhere to the strong connectivity
property and that the search stack sufficiently maintains a DFS order.2

In case a cycle is detected, Line 15 checks whether the partial SCC contains an
accepting state. If this is true, we can be sure that an accepting cycle is found.

We now discuss lines 7 and 16. We maintain a mechanism to globally mark
states as being fully explored. A state v is fully explored if all its outgoing
transitions direct to states in already completed SCCs (the successor is part of
the Dead set) or to states in the same partial SCC, π(v). In both these cases,
no new information can be obtained from the successors. At Line 16, state v’ is
fully explored and is marked as such. Fully explored states are included in the
Done set and are disregarded for exploration. Line 7 picks a state out of π(v)
for exploration that is not fully explored. This is possible since all states in π(v)
are strongly connected, thus no condition is violated. In case every state in π(v)
2 With sufficiently maintaining a DFS order we mean that for any two successive states

v and w on the local search stack, we have v →+ w; i.e. we do not require a direct
edge from v to w, but w must be reachable from v.
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is marked Done, the while loop ends and we conclude that the entire (partial)
SCC has been fully explored and can be marked as complete. This is achieved
by merging π(v) with the Dead set at Line 17.

For a proof of correctness, we refer the reader to Bloemen et al. [2].

Global Data Structure. The underlying global data structure satisfies the follow-
ing conditions:

– Provide means to check if the current worker has previously visited a state
inside the partial SCC (successor cases 2 and 3).

– Provide means to globally mark states as being fully explored, and a selection
mechanism for states in a partial SCC that have not yet been fully explored.

The union-find structure uses parent pointers that direct to the representa-
tive or root of the set. The structure is extended to track worker IDs in the partial
SCCs. The worker ID is added to the root of the set when the worker enters a
(locally) new state. The set of worker IDs is updated during the Unite opera-
tions. This ensures that if a worker ID is set for a particular state, it remains
being set if the partial SCC containing that state gets updated.

Fig. 3. Cyclic list structure.

In order to mark states as being fully explored
(inside a partial SCC), the structure is extended
with a cyclic list which is depicted in Fig. 3 for a
partial SCC. It tracks states that have not yet been
marked Done, which we call Busy states, (depicted
white) and removes Done (depicted gray) states
from this list. Workers can then use the list pointers
to find remaining Busy states of the partial SCC. At
a certain point in time, the list becomes empty, i.e.
every state in the partial SCC is marked Done. We
thus conclude that all states in the partial SCC have
been fully explored, which implies that the entire
SCC has been fully explored and can be marked as being complete.

Figure 4 depicts a consequence of using the abovementioned cyclic list for
selecting states to fully explore. A worker starts from state a with the edge
a → c. It could then detect that state c is already marked Done and the worker
picks a new state, d. From state d, the worker resumes its exploration. State e
might also be marked Done, and the worker continues searching from state h.

Fig. 4. Example showing a possible state traversal for one worker.
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Note that this search order maintains the depth-first search order sufficiently for
detecting cycles (See foot note 2).

For more details regarding the implementation of the algorithm and global
data structure we refer the reader to Bloemen et al. [2].

Finding Accepting Cycles on TGBAs. The algorithm is extended to track accep-
tance marks in each SCC. A counterexample is then found when every acceptance
mark is present in an SCC. In the algorithm from Fig. 2 this implies storing a set
of acceptance marks alongside the partial SCCs and update this set with every
Unite operation. In the implementation this is achieved by ensuring that the
root of the union-find structure contains the most up-to-date acceptance set. If
the acceptance set of the root contains all acceptance marks, a counterexample
has been detected.

In summary, for each node we maintain a pointer towards the union-find
root, and pointers to the successors in the list. For the root nodes we maitain
a set of bits for the involved workers, and in case TGBAs are used also a set of
bits for the acceptance marks that have been found.

5 Experiments

Experimental Setup. All experiments were performed on a machine with 4 AMD
Opterontm 6376 processors, each with 16 cores, forming a total of 64 cores. There
is a total of 512 GB memory available.

Implementation. The extended UFSCC algorithm is implemented in the LTSmin
toolset [17]. We furthermore extended LTSmin to use the Spot v2.0 library [7]
for generating Büchi automata (both BA and TGBA) from LTL formulas.

We compare the UFSCC algorithm (implemented for BA and TGBA accep-
tance) with (sequential) NDFS [3], CNDFS [8] and the SCC-based algorithm
by Renault et al. [29] which we further refer to as Renault. We attempt to
minimize performance differences caused by effects other than those resulting
from the algorithmic differences, hence each algorithm is implemented in the
LTSmin toolset. All multi-core algorithms make use of LTSmin’s internal shared
hash tables [22], and the same randomized successor distribution method is used
throughout. The shared hash table is initialized to store up to 228 states.

Models and Formulas. We used models and LTL formulas from three existing
benchmark sets and describe these as follows.

– BEEM-orig3: This consists of the complete collection of original (DVE) models
and formulas from the BEEM database [26]. Additionally, a number of realistic
formulas were added for several parameterized models (see Blahoudek et al. [1]
for details), forming a total of over 807 formulas.

3 Available at http://fi.muni.cz/∼xstrejc/publications/spin2014.tar.gz.

http://fi.muni.cz/~xstrejc/publications/spin2014.tar.gz
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– BEEM-gen4: These are the same models and LTL formulas as used by Renault
et al. [29,30]. The (DVE) models are a subset of the BEEM database [26] such
that every type of model from the classification of Pelánek [27] is represented.
A total of 3,268 randomly generated formulas were selected such that the num-
ber of states, transitions and number of SCCs were high in the synchronized
cross products.

– MCC5: We used a selection of the 2015 Model Checking Contest problems [19].
This consists of Petri net instances (specified in PNML) of both academic and
industrial models, forming a total of 928 models. For each model, 48 different
LTL formulas were provided that check for fireability (propositions on firing
a transition) and cardinality (comparing the number of tokens in places),
forming a total of 928 × 48 = 44, 544 experiments. We performed an initial
selection using UFSCC with 64 cores and selected instances taking between
one second and one minute to check.6 This resulted in 1,107 experiments.

We combined all datasets for the experiments, totaling 5,128 experiments
and 2,950 contain a counterexample. Each configuration was performed at least
5 times and we computed all results by using the averages. The algorithms
were not always able to successfully perform an experiment in the maximum
allowed time of 10 min. When comparing two configurations, we only consider
experiments where both algorithms performed successfully and within the time
limit.

All results and means to reproduce the results are publicly available online
at https://github.com/utwente-fmt/LTL-HVC16. We compare UFSCC with
respectively NDFS, CNDFS, and Renault (all performed on BAs) in the upcom-
ing sections. Some additional experiments follow and the results are summarized
in Tables 1 and 2. In the context of validation, we are pleased to note that we
won in the LTL category of the 2016 Model Checking Contest [18], where we
employed the UFSCC algorithm.

5.1 Comparison with NDFS

We first compare the results of UFSCC with the sequential NDFS algorithm.
Figure 5 shows the speedup of UFSCC (using 64 workers) compared to NDFS.
Here, the point (x = 10, y = 20) implies that the NDFS algorithm took 10 s to
complete and UFSCC is 20× faster (thus taking only 0.5 s). We first consider
the experiments that do not contain counterexamples (Fig. 5a).

The colored marks depict the ‘origins’ of the models. When relating this
to time and speedup, the different classes are dispersed similarly, though the
BEEM-gen models are more clustered.

Generally, UFSCC performs at least 10× faster than NDFS. In Table 1 we
observe that the average7 speedup is 14.16. For larger models (where NDFS
4 Available at https://www.lrde.epita.fr/∼renault/benchs/TACAS-2015/results.html.
5 Available at http://mcc.lip6.fr/2015/.
6 The reason for this selection is to avoid unrealistic computation times, since the

scalability measurements require a run of a sequential algorithm as well.
7 When we discuss averages over the experiments, we always take the geometric mean.

https://github.com/utwente-fmt/LTL-HVC16
https://www.lrde.epita.fr/~renault/benchs/TACAS-2015/results.html
http://mcc.lip6.fr/2015/
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Fig. 5. Time comparison of UFSCC using 64 workers with sequential NDFS. (Color
figure online)

requires more time), the speedup increases. We observed that the improvement
in time to model check closely relates to the size of the model. This effect is also
visible in Table 1, where the speedup grows from 13.24 to 24.35 when comparing
the smallest and largest class of models.

The results are a bit different for experiments that do contain counterexam-
ples (Fig. 5b). Here, UFSCC is actually slower than NDFS for some ‘smaller’
instances (where NDFS completes within 1 s). This is explained by the extra
setup time required for UFSCC, combined with an additional bookkeeping on
the data structures, which becomes purposeless in trivial cases.

For increasingly larger models, the speedup for UFSCC improves rapidly.
This speedup becomes superlinear (more than 64× faster using 64 workers),
which is explained by the fact that multiple workers are more likely to find a
counterexample due to randomization [8,28].

When relating the results to the origins of the models, we more clearly observe
differences. NDFS performs (on average) the fastest on the BEEM-orig experi-
ments, and the slowest on the MCC experiments. For all benchmarks with coun-
terexamples, UFSCC performs on average 4.87 times faster than NDFS. Note
that when taking the subset of models where NDFS takes more than 10 s, UFSCC
is 30 times faster.

5.2 Comparison with CNDFS

We compare the results of UFSCC with CNDFS, where both algorithms use 64
workers. Results for models without counterexamples are depicted in Fig. 6a.

In most cases, the performance of UFSCC and CNDFS is comparable, and the
time difference rarely exceeds a factor of 2. The figure classifies the experiments
by the number of transitions in the model. From this classification it becomes
clear that UFSCC’s relative performance improves for larger models. In Table 1
we find that the relative speedup of UFSCC versus CNDFS increases from 0.95
to 1.31. One can also observe in this table that UFSCC slightly outperforms
CNDFS in graphs containing large SCCs.
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Fig. 6. Time comparison of UFSCC with CNDFS, both using 64 workers.

Fig. 7. Time comparison of UFSCC with Renault, both using 64 workers.

For models with counterexamples (Fig. 6b) CNDFS clearly performs better
for most of the models. On average, UFSCC is 0.79 times as fast as CNDFS.
However, the techniques do complement each other since UFSCC outperforms
CNDFS in 14% of the instances, in particular the experiments where CNDFS
performs slowest.

5.3 Comparison with Renault

We compare the results of UFSCC with Renault, where both algorithms use
64 workers. Recall that both algorithms are SCC-based. Figure 7a depicts the
results for experiments without counterexamples.

We observe a clear distinction when relating the results with the SCC char-
acteristics. A significant speedup is observed for all models containing a largest
SCC that consists of at least 1% of the total state space. This is explained by
the fact that Renault does not communicate partially found SCCs searches as
explained in Sect. 3, whereas UFSCC does achieve this.
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Fig. 8. Time comparison of UFSCC using BAs with its TGBA variant, both using
64 workers. Here, |Transitions| compares (a) the total number of transitions in the
complete cross-product and (b) the average number of uniquely explored transitions
by the algorithms.

From Table 1 we notice that UFSCC’s speedup increases for larger models
(19.58× speedup for the largest class of models), this can be mainly explained
by the differences in SCC sizes.

For models with counterexamples (Fig. 7b), we observe that Renault performs
similar to UFSCC for most of the models. This is to be expected since accepting
cycles are detected in the same manner. However, the same effect concerning SCC
sizes as in Fig. 7a seems present. We further analyzed some of the experiments
where Renault performs relatively poor and indeed found that these instances
contain large SCCs.

5.4 Experiments Using TGBA

One can consider classifying LTL formulas by using the temporal hierarchy of
Manna and Pnueli [24]. For one of these classes, called persistence, each SCC
in the automaton of the formula either fully consists of accepting states or non-
accepting states. This class of problems can be reduced to a simple DFS [36].
In the dual, called recurrence, the automaton for the formula contains both
accepting and non-accepting cycles in the same SCCs, making it necessary to
perform an accepting cycle search. The combination of multiple recurrence and
persistence formulas is described as a reactive formula, and can benefit from
TGBA-acceptance by using a different accepting mark for each formula.

We made a comparison with two versions of UFSCC, where one is imple-
mented for checking on BAs and the other for TGBAs. We found that only a
few instances could be classified as persistence.

While the results do differ per model, the TGBA and BA implementations
perform equally well on average in Fig. 8a and b. Also, in Fig. 8a one can observe
that in most cases the size of the cross-product is equal for the BA and TGBA
versions. A consequence is that a TGBA should not provide any benefit over a
BA in these cases.
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Table 1. Comparison of geometric mean execution times (in seconds) on models with-
out counterexamples. T denotes the number of transitions in the state space and S
denotes the ratio of the largest SCC size compared to the state space. The numbers
between parentheses denote how many times faster UFSCC-BA is compared to the
other algorithm.

NDFS CNDFS Renault UFSCC-TGBA UFSCC-BA

T 0 .. 1E7 13.55 (13.24) 0.97 (0.95) 2.32 (2.27) 1.02 (0.99) 1.02

1E7 .. 1E8 25.47 (18.71) 1.54 (1.13) 6.30 (4.63) 1.36 (1.00) 1.36

1E8 .. INF 183.37 (24.35) 9.89 (1.31) 147.44 (19.58) 7.76 (1.03) 7.53

S 0 % .. 1 % 14.99 (13.65) 0.99 (0.91) 1.17 (1.06) 1.09 (0.99) 1.10

1 % .. 50 % 18.33 (16.19) 1.38 (1.22) 11.83 (10.46) 1.13 (1.00) 1.13

50 % .. 100 % 15.77 (13.69) 1.20 (1.04) 12.02 (10.44) 1.15 (1.00) 1.15

Total 15.95 (14.16) 1.11 (0.98) 3.01 (2.67) 1.12 (1.00) 1.13

Table 2. Comparison of geometric mean execution times (in seconds) on models with
counterexamples. The numbers between parentheses denote how many times faster
UFSCC-BA is compared to the other.

NDFS CNDFS Renault UFSCC-TGBA UFSCC-BA

Total 1.52 (4.87) 0.25 (0.79) 0.37 (1.17) 0.31 (1.00) 0.31

Perhaps surprisingly, TGBAs do not benefit model checking in the experi-
ments that we performed. Even when the TGBA version does provide a smaller
cross-product, the algorithms still perform similarly. This may be explained by
the additional overhead and bookkeeping for tracking acceptance sets.

5.5 Additional Results

Fig. 9. Successor distribution for
UFSCC using 64 workers.

We compare the relative maximal SCC size
with the classification of transitions accord-
ing to UFSCC, i.e. the number of dead, vis-
ited and new transitions (see Sect. 4).

The results for all experiments without
counterexamples are summarized in Fig. 9.
Here, the small, medium, and large SCC
size cases relate to the respective three SCC
classes in Table 1. The main observation
is that models with large SCCs contain a
high number of interconnectivity. In the
‘large’ class, 57.5% of all explored transi-
tions direct to already visited states (either locally visited or part of a globally
known partial SCC).

Ideally, a multi-core algorithm should perfectly divide all states and transi-
tions equally over all workers with minimal overhead. In practice, we observe
that some transitions are explored by multiple workers. For UFSCC, with 64
workers, we analyzed the ratio of all explored transitions (cumulative for all
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workers) compared to the number of uniquely found transitions. For models
without counterexamples this ratio is 141.0%, meaning that the 64 workers per-
form a combined total of 41.0% redundant explorations. Notably, for models
that contain 1E7..1E8 transitions, the ratio drops to 118.8% and 116.2% for
the largest class of models. SCC sizes do not seem to influence the re-exploration
ratio.

The ratio for models with counterexamples is 182.8%. This higher ratio is
explained by the fact that only a small part of the state space is explored, which
leaves few opportunities for branching the searches.

We observed that while large SCCs are generally highly interconnected in
practice, the work is divided effectively since the re-exploration ratio is limited.

6 Conclusion

We showed that the UFSCC algorithm is well-suited for multi-core on-the-fly
LTL model checking. The algorithm improves on related work by globally com-
municating partially detected SCCs, causing it to achieve good speedups on
models with large SCCs. We also showed that the algorithm scales better com-
pared to existing work when the state space increases.

Although we have considerably improved the scalability of LTL model check-
ing, there is still room for improvement. For large models we observe a 25×
speedup with 64 cores. We consider maintaining the concurrent union-find struc-
ture to be the main bottleneck. A combination with work-stealing queues or
synchronizing the search instances may prove beneficial. Other directions are to
extend this work to support partial-order reduction and fairness checking.
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Abstract. Error injection is one of the most commonly used techniques
for estimating the reliability of a given hardware design. While error
injection in dynamic simulation is widely used in the industry, other
methods exist as well, e.g. hardware error injection and fault-tolerance
analysis using formal verification. As covering the entire space of all
possible fault injections is impractical, nearly all workload-based error
injection methods (e.g. simulation or emulation techniques) use a sta-
tistical approach for error injection, i.e. they only inject a fraction of
all possible faults. As a result, the statistical fault injection approach is
much more efficient in characterizing the overall reliability of the design
than in finding particular reliability-related bugs. On the other hand,
the formal-based approach guarantees full coverage of the design space,
including under all possible faults, granted the formal analysis can be
completed. However, performing formal verification on design hierarchies
with error detection and recovery logic is usually unfeasible. To address
the challenge of effectively finding reliability-related bugs on large indus-
trial designs, this paper proposes a novel approach which is aimed at find-
ing a particular kind of design bugs related to gating conditions which
correspond to error detection logic. We present an automated method for
identifying those gating conditions and generating a gating-aware fault
injection module. Experimental results on a real microprocessor arith-
metical unit demonstrates the effectiveness of our method in finding real
design bugs using relatively small amount of error injection tests.

1 Introduction

Reliability has become one of the major concerns in modern VLSI design. Var-
ious applications require high design reliability, ranging from chips embedded
in automotive and avionic systems to general purpose microprocessors deployed
in mass-scale or required to provide long periods of availability while perform-
ing mission- and business-critical computations [5,9,17,25]. As a consequence,
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data integrity in the digital level introduces various challenges for logic designers
and verification engineers. A substantial amount of effort may be required for
properly designing and verifying a highly reliable chip.

Design reliability may be influenced by different factors. Needless to say,
functional correctness is a prime factor affecting reliability. Hence, a large amount
of effort is devoted to verifying the functional correctness of a given design before
it is taped-out and delivered [11]. However, even a totally bug-free design is
still susceptible to failures occurring during its normal operation. These failures
may originate from various sources, for example, aging effects which essentially
degrade the silicon reliability and negatively affect signal and data integrity [3].
Additionally, a prominent source for design failures is related to soft-errors, which
are attributed to various phenomena in the environment which may change the
design behavior. Soft errors can occur due to the emission of alpha particles
from the silicon and packaging materials [16]. An even more dominant source
for soft-errors in current technology nodes are particles arriving to earth from
outer-space [21]. Generally speaking, those particles may carry enough energy
to cause an electrical disturbance in the design which may eventually lead to
a bit-flip in one of the design signals or memory elements. Such bit-flips are
hazardous to data integrity if not mitigated and may lead to machine hangs or -
even worse - to a silent data corruption [10].

In order to ensure a reliable operation of a given design in the presence
of the various environmental effects, i.e. soft-errors, various design techniques
are employed. Assuming the single event upset (SEU) and single event tran-
sient (SET) models [19], a common approach is to introduce redundancy in the
logic which enables detecting bit-flips, allowing for automatic design level recov-
ery while maintaining data integrity. Examples for commonly used error detec-
tion and correction techniques include parity protection, double/triple modular
redundancy, CRC and residue checking [2,13]. These protection methods are
implemented in hardware and intended to operate during the normal execution
of the hardware. As such, these structures need to be verified to ensure they
are implemented correctly and provide the required fault coverage while not
compromising mainline functionality.

Several approaches for verifying error detection and correction logic exist.
One of the most commonly used approaches is to perform error injection. In
this approach faults are deliberately introduced during the verification process,
usually using simulation-based methods. In general, the goal here is to observe
that the design can gracefully recover from various faulty scenarios or at least
detect the presence of faults and notify the upper layers of the system (e.g.
firmware or software). Numerous error injection techniques have been suggested
by researchers, including proton beam experiments [6], error injection using emu-
lation [22] and simulation based error injection [14]. In most cases these tech-
niques rely on statistical fault injection, i.e. the error location and time is ran-
domly chosen during the error injection process. In order to increase the error
injection efficiency, a stuck-at fault model can be used as a way to overcome
various fault masking effects and increase the overall fault coverage [24].
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Another approach for verifying reliability aspects is based on formal verifi-
cation. Several works have proposed to use model checking to analyze the relia-
bility of the design w.r.t soft and hard errors. The works described in [12,15,23]
run formal verification on the entire design aiming at checking safety reliability
properties. While this approach may unlock reliability related problems, its main
disadvantage comes from the limited capacity of formal verification. The authors
of [1] describe a method which alleviates the formal verification capacity issue by
verifying protection structures locally. This method is helpful in identifying that
a certain area of the logic is protected by a certain protection scheme, however,
it may miss bugs related to control and gating conditions derived from a higher
level context.

While the verification of an individual reliability mechanism, like parity pro-
tection, is fairly easy, the verification of such mechanisms from a higher level
perspective, like a logic unit or a processor core, is much more complex. This
is because power and other non-functional requirements necessitates gating the
result of these checks. In particular, clock gating is used in high performance
designs to turn off reliability checks when certain parts of the logic are not
used. These gates, however, create a significant verification challenge because
it is necessary to consider much larger parts of the logic to verify the reliabil-
ity feature and to consider all gating conditions. To the best of our knowledge,
existing error injection methods do not explicitly address the challenges related
to gating conditions of error detection logic, thus making them less efficient
in discovering gating-related bugs. In this paper we present a novel approach
for performing error injection while considering existing gating conditions and
steering the injection efforts accordingly. In the heart of this approach lies a
methodology which uses structural analysis to find all error detection signals
and their corresponding gating conditions automatically. Given a design RTL,
our method extracts existing error detection structures in the design and per-
forms functional analysis using formal methods to extract any related gating
conditions of these structures. Based on this analysis, we synthesize an injection
module which controls the location and time in which an error injection should
occur in correspondence with the existing gating logic. This module is then
incorporated into the verification environment and executed against standard
functional verification tests.

The main benefit of our suggested approach is that the error injection occurs
on particular memory elements and at particular cycles in which a certain prob-
lem is likely to occur, thus maximizing the probability of discovering reliability-
related bugs in a given test. In addition, due to the local spatial and temporal
nature of the error injection, the debuggability of failures discovered by our
method is relatively simple, compared to other error injection methods which
are based on stuck-at faults models. Finally, the error injection module created
by our method is synthesized automatically and can seamlessly be incorporated
in existing simulation and formal verification environments.

The rest of the paper is structured as follows. In Sect. 2 we provide required
preliminaries for the paper. Section 3 provides a comprehensive description of the
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suggested methodology together with implementation details of its various steps.
A discussion about the applicability of this methodology to both simulation-
based and formal verification methods is also provided. Experimental results
and conclusions are given in Sects. 4 and 5, respectively.

2 Preliminaries

In this section we briefly describe some of the concepts used in the paper. A
netlist C = 〈V,E〉 is a graph representation of the logic which consists of gates
(V ) and wires (E). A netlist may describe a combinatorial circuit, in which case
V consists of Boolean gates only (AND, OR, XOR etc.), or it can describe a
sequential circuit where V also includes sequential elements. We use the term
latch to describe a memory element (e.g. flip flop). The edges E of the graph
represent wires and can be classified as internal (gate to gate), primary inputs
or primary outputs. The single-event-upset (SEU) model assumes a single bit
flip can occur in one memory element (e.g. one flip-flop) at one clock cycle.

An error checker c is a latch which fires, or outputs the logical value 1, in case
of an error. Otherwise, the value of the checker is 0, indicating that no error has
occurred. An error detection signal is a Boolean expression affecting a checker
that becomes True if and only if an error has occurred. Each error detection
signal has a corresponding gating condition. A blocking gating condition will
prevent the error detection signal from affecting the checker. The input of a
checker is a set of error detection signals and their gating conditions. The error
checker will fire if at least one of the error detection signals is active and its
corresponding gating condition is not blocking. Formally, let {c1, . . . cn} denote
error detection signals, with gating conditions {g1, . . . gn}, and let I denote the
checker’s input. Then

I =
∨

1≤i≤n

(ci ∧ gi)

A latch is potentially protected by an error checker if a single bit flip inside the
latch will activate an error detection signal of the checker. It is protected if any
bit-flip that may affect the functionality of the relevant circuit will result in
the checker firing. For the sake of simplicity, we will sometimes refer to a gating
condition of a latch instead of referring to the gating condition of the error signal
that will become active when the latch flips.

For example, in Fig. 1 a bit-flip in each of the encircled latches will result in
an erroneous parity check of the error signal e1, but if the gating condition is
blocking (c enable is low) then the checker will not fire. Thus, all the encircled
latches are potentially protected by the checker. Error injection is the process of
simulating the presence of faults following a given fault model (e.g. bit flips), in
order to verify the behavior of the design in such scenarios. Finally, a unit is a
sub component of a chip that usually defines a particular hardware functionality
and for which a dedicated verification environment exists. Examples of such units
are the load-store unit and the arithmetical operation unit.
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Fig. 1. Potentially protected latches

3 Gating Aware Error Injection Methodology

3.1 Approach

We attempt to detect the tricky scenario in which a specific latch is potentially
protected, but due to over gating of the relevant error detection signal a bit flip
in the latch will not cause the error checker to fire and will propagate to the
interface and cause silent data corruption. This scenario can be very difficult to
catch with existing reliability verification methodologies.

However, using static analysis this scenario can be tackled. If the error detec-
tion signal protecting a given latch is gated then the latch value should not prop-
agate to the interface and should not affect the functionality of the unit. Now
assume there is an oracle that tells us which are the potentially protected latches
and for each such latch what is the relevant gate on the error detection signal.
Inverting the value of a single potentially protected latch, each time the relevant
gate is blocking, should not affect the normal functionality. For example, in Fig. 1
an inverted value of one of the encircled latches should not affect the normal oper-
ation of the unit when the corresponding error detection signal is gated, namely
c enable is low. If, however, the latch is over gated, then there exists a scenario
in which inverting the value of this latch will result in a wrong value propagat-
ing to the interface and affecting the functionality of the design. An exhaustive
functional verification flow should detect such a scenario. The inverse is also true.
Namely, if an exhaustive functional verification flow has detected no fails when
inverting the value of a latch as above, then this latch is indeed protected.

Two infinite execution sequences S and S′ are equivalent if in each and every
cycle they agree on the values of the interface. The proof of the following lemma
is straightforward.

Lemma 1. Let L be a potentially protected latch and let g be the gating condition
of the latch. Let S be a legal execution scenario and let SIL be the scenario obtained
from S by inverting the value of L in any cycle g is blocking. If for all legal execution
scenarios S, the scenario SIL is equivalent to S, then L is indeed protected.
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Fig. 2. High-level flow of our proposed methodology

Our gating aware methodology is based on the above Lemma. Following is
an overview of the methodology (consider Fig. 2):

1. A static analysis algorithm which finds potentially protected latches and their
gating conditions is executed on the design RTL.

2. A driver that randomly chooses a latch from the list provided by the previous
stage and corrupts it whenever it is gated is synthesized. This driver is then
automatically integrated with RTL which is also being automatically modified
to support error injection by the synthesized driver.

3. The modified RTL is then merged with the standard simulation testbench
(e.g. for unit level verification) or the formal verification environment, depend-
ing on the type of verification the methodology is being used with.

4. Verification is commenced.

Step 1 is described in Subsect. 3.2; Step 2 is described in Subsect. 3.3 and
Step 3 is described in Subsects. 3.4 and 3.5.

3.2 Static Analysis Algorithm

As mentioned, our methodology uses a static analysis algorithm which identifies
error detection signals and the following information per signal:

1. The list of latches potentially protected by it
2. The relevant gating condition

The identification of the error detection signal and the potentially protected
latches can be done for parity based error detection signals as described in [1];
this is extendable to other types of error detection logic, e.g. CRC and residue.
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In this section we describe our algorithm for extracting the gating condition
between a given error detection signal and its checker. This algorithm is oblivious
to the error detection mechanism being used.

Extracting the Gating Conditions for a Given Error Detection Signal.
Given an input to an error checker and a set of error detection signals, we
need to extract the gating condition of each error detection signal. For each
error detection signal, we do not only want to extract an expression logically
equivalent to its gating condition, but also to generate a compact human readable
expression, since this expression will later be used to assist designers in debugging
the fails.

This extraction is done using manipulation on Binary Decision Diagrams
(BDDs) [4]. The following Boolean operators on BDDs will be used. Given a
Boolean function f(x1, . . . , xn) the restrict operator [7] is defined as follows:

f |xi
= f(x1, . . . , xi−1, 1, xi+1, . . . xn)

similarly

f |¬xi
= f(x1, . . . , xi−1, 0, xi+1, . . . xn)

The restrict operation is extended from variables to any function g as follows
[8,18]. Let f(x̄), g(x̄) be Boolean functions.

f |g(x̄) =
{
f(x̄) if g(x̄) = 1
arbitrary otherwise

When applying the restrict operations on functions, there is freedom to deviate
from f when g(x̄) = 0 and herein lies the opportunity to optimization and
reduction in the size of the BDD. The last operator we will use is the Existential
quantification applied on variables and defined as follows.

∃xif(x1 . . . xn) = f |xi
∨ f |¬xi

Let e be a checker’s input net, let p be an error detection signal for which we
want to extract the gating condition and let c1, . . . cn be other error detection
signals. The nets of e, p and each ci are given. Formally, e can be written as

e = (p ∧ g) ∨ f

where g and f are Boolean functions, g is the gating condition we seek, and f
represents the other (than p) error detection signals along with their gating1.
The algorithm to extract g is as follows.

1 We assume that e can be written as above with a single appearance of p. Intuitively,
this assumption implies that if p implies an erroneous condition then ¬p does not
imply one; clearly, this is a very reasonable assumption. If this fails to hold for some
reason we skip this error detection net.
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1. BDD construction. Construct a BDD from e in which p and each ci are
terminal vertices.

2. Extracting g ∨ f . Let ep = e|p.
3. Extracting f . Let e¬p = e|¬p.
4. Extracting g. Let h′ = ep|¬(e¬p).
5. Syntactic optimization. Let h′′ = ∃cn(∃cn−1(. . . (∃c1(h)) . . .)).
6. Final gating computation

h =
{
h′ if h′′ ≡ 1
h′′ otherwise

Claim. For all practical purpose h ≡ g. Moreover, in a vast majority of the cases
the expression h will be over the minimal set of variables.

Proof. Clearly, ep ≡ (g ∨ f) and e¬p ≡ f . In fact, using a state of the art BDD
package one could expect to have ep = (g∨ f) and e¬p = f . Intuitively, in step 4
above we have the expressions ep = g∨f and e¬p = f and we want to “eliminate”
f from g ∨ f and be left with g. However, this is not so trivial since f is not a
terminal vertex, and might have common terminal vertices with g. The desired
outcome is to have h′ = g. It is not hard to see that, using a state of the art
BDD package, this is also the most likely outcome. However, following carefully
the definition of the restrict extension, there are three more outcomes which we
must address. These are: h′ = g ∧ ¬f , h′ = g ∨ f and h′ = (g ∧ ¬f) ∨ f . To
understand why these outcomes do not pose a problem, we have to recall that f
represents an erroneous state that would not occur in the normal execution, and
that when it occurs the checker will fire and a recovery action will be initiated.
Hence, during a verification test it is very unlikely that f will be high; but if it
is high then the checker will fire and this test will be aborted, since the interface
corruption is prevented by a recovery action. Hence, for all practical purposes,
we may assume that f is equivalent to False, and we are done with the first part
of the claim.

Consider the second part. There are two possible redundant components
in h′: the “∨f” component and the “∧¬f” component. The semantic of f is
the conjunctions of the error detection signals c1, . . . cn with possible gating
conditions. Hence, existentially quantifying these ci would result in h′ being
equivalent to 1 if the “∨f” component is indeed present; in this case we will be
left with the original h′. However, even though theoretically this “∨f” component
could exist, practically it is highly unlikely, in any reasonable BDD package,
given that the restrict operations optimizes the “arbitrary” part to minimize
BDD. Now consider the “∧¬f” component; recalling again the semantic of f ,
existential quantification of these cis would eliminate ∧¬f from the final h.

3.3 Driver Synthesis

The error injection is done by synthesizing a driver that performs the actual
corruption of latches based on the provided knowledge of latches and their gating
conditions. Hence, as a preliminary step we execute the algorithm described in
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Fig. 3. Synthesized code example

the previous subsection, upon completion of which we receive a set of latches and
corresponding gating conditions. Let CorruptionPull = {L1, . . . , Ln} be the set
of latches, and for each latch Li let GLi

be the corresponding gating condition. In
the first cycle of the test a latch from the corruption pool is randomly chosen and
throughout the test the value of this latch (and only of this latch) is inverted
each time the relevant gating condition is blocking the relevant checker from
firing. The values of the other latches, as well as the value of the chosen latch in
cycles the gating condition is not blocking, remains untouched.

The above is implemented by a synthesized driver that will then be integrated
into the verification flow. For each latch Li, a new signal LiCorrupt is synthe-
sized; this signal is high in cycle i if and only if this latch was the one randomly
chosen andGLi

is blocking in cycle i. Figure 3 presents synthesized example of two
such signals; corrupted index is the latch determining which latch to corrupt - it
is randomized in the first cycle of the test and is kept constant. Then, each latch
Li from the corruption pool is being inverted if and only if LiCorrupt is high;
otherwise its value remains untouched. In addition, in order to assist fails’ debug-
ging, new signals are introduced. For example, the signal CorruptedInCycle hold-
ing the conjunction of all the LiCorrupt is synthesized. Following this signal and
using advanced trace viewer options, the designer can track the signal that was
corrupted and the cycles in which the signal was corrupted.

3.4 Driver Integration - Dynamic Simulation Approach

We integrate the above driver in a unit verification environment, using the stan-
dard environment testbench for dynamic simulation. The unit which we used
for this case study performs arithmetic operations in the next IBM mainframe.
The above testbench is generated using deep hardware knowledge and dedicated
tools which ensure exhaustive coverage per instruction. During the project cycle
the testbench is frequently enhanced based on the analysis of previous runs to
increase coverage. This integration enables low cost error injection and reliabil-
ity verification in the sense that it is not required to construct a new dynamic
simulation verification environment or a new testbench.

After the DUT is stable and detecting new functional bugs becomes rare, the
driver is integrated into the simulation environment. This stability is achieved
after around 2/3 of the project cycles. The driver introduces a variety of new
tests - the Cartesian product of the standard tests and the latches from the
corruption pool. The fails we are after are the usual testbench functional fails,
with one exception: if a checker fires and a recovery process is initiated, the test
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is aborted. Since redundant checks may exist, another checker having a different
gating condition may fire, after we corrupt a latch. Since in a normal operation
checkers should not fire, this abortion is justified.

3.5 Driver Integration - Formal Verification Approach

We integrate our driver also in the unit level formal verification environment.
This is done in order to achieve higher coverage on a per instruction basis, com-
pared to simulation and also to generate shorter, easier to debug traces when
fails are detected. We assume an environment that specifies all the constraints
and rules to properly stimulate the DUT’s interface already exists. We further-
more assume a set of properties that specifies the proper output behavior already
exists as well.

We extended our testbench to cover the fault detection output more pre-
cisely. In particular we modify the property about the fault detection signals of
the DUT. Previously we checked that no fault was detected when running the
testbench without any error injection. A driver that always injects a fault would
require a modification of the above property. Using the modified property we
want to prove that outputs behave as expected if no fault is detected, or to find
a counter-example showing that some outputs don’t behave as expected while
no fault is signaled.

The gating aware driver is synthesized automatically and compiled into the
testbench together with the standard interface driver and the modified set of
properties. The formal analysis considers all possible injections at once but the
result trace would contain a single injection only.

4 Experimental Results

4.1 Dynamic Simulation

We will present two types of experimental results. First, a qualitative measure
of the results will be presented: a few failed traces will be analyzed in order to
demonstrate the quality of the findings of the new methodology and to show it
would have been very difficult to detect these fails with other methods. Then, a
quantitative measure will be presented, making a quantity comparison between
relevant existing verification methodologies and our new methodology. This will
show that the new methodology is very effective.

We start with analyzing a few of the failed traces detected by our new
methodology. The fails are presented in Table 1. They were produced with the
methodology described in Subsect. 3.4. Namely, each of these fails is a result of a
test from the dynamic simulation testbench that failed when a randomly chosen
latch was corrupted whenever it was gated. The gate related data in the table
refers to the gating condition of the latch that was corrupted in the relevant test.
All tests below were executed for additional 100 cycles after the failed cycle. A
few points come up when looking at the table:
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Table 1. A few failed traces detected by the gating aware methodology

Test number Test length First non Number of Maximal window of

(in cycles) gated cycle gated cycles Gated cycles Non gated

cycles

1 23, 726 91 23, 212(98%) 2, 864 6

2 626 83 602(96%) 314 2

3 1, 002 125 922(92%) 732 42

4 478 127 468(98%) 232 2

5 6, 948 123 4, 128(59%) 674 740

6 2, 562 451 1, 878(73%) 398 250

7 1, 248 945 1, 246(98%) 946 2

8 1, 320 81 1, 178(89%) 342 8

9 1, 556 111 1, 230(79%) 396 38

– There is a decent variety of failed tests; they vary in length (from less than
500 cycles and up to almost 24 k cycles), in the percentage of cycles in which
the relevant error detection signal is gated (from 59 % to 98 %) and in the
maximal window size with non-gated cycles (from 2 and up to 740).

– In all the tests the relevant error detection signal is gated in a vast majority
of the cycles; moreover, it is gated for more than 95 % of the cycles in 45 % of
the tests. This implies that the gating mechanism is essential in our systems
and how crucial it is to verify that we are not over gating.

– It is interesting to mention that in 1/3 of the fails the gate was off (non-
blocking) only for a single full clock cycle each time (a full clock cycle contains
2 ticks.)

– Clearly, finding these fails by just randomizing the corrupted cycle would be
equivalent to finding a needle in a haystack. Moreover, these fails would also
be very hard to detect using the stuck at [24] error injection method in which
the randomly chosen latch is being stuck high or low throughout the entire
test. In all tests the relevant gate is not blocking for some cycles before the
corruption that caused the fail. Hence, in a stuck at error injection method
it is almost certain the relevant error detection signal will be active in a non
gated cycle and as a result the checker will fire (initiating a recovery process)
and the test will be aborted prior to the failed cycle.

As mentioned earlier, we tested our new methodology by integrating it into
existing functional verification methodology of a unit of the next IBM main-
frame core. We now show that our methodology is an efficient and effective
enhancement to the existing reliability verification methodology as well as to
the existing functional verification methodology it is integrated with. We show
that the additional required computation power is minor and that the amount
of the new detected coverage bugs is significant.

Considering the functional verification flow our new method is integrated
with, the addition of computation cycles is around 1 %: our new methodology
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consumes 3 % of the tests in the period it is executed. As mentioned in Sub-
sect. 3.4, the new methodology is executed for about 33 % of the life time of the
project. Clearly, this is a minor overhead. And each and every test we are per-
forming here increases coverage since this specific reliability coverage has never
been targeted in the unit functional verification efforts.

Considering the existing error injection methodology [24], it is worth men-
tioning that while our methodology is only targeting coverage bugs the existing
methodology addresses a variety of reliability issues in addition to coverage, such
as verification of proper recovery process. Also, while our methodology is exe-
cuted on a sub component of the core, the other methodology is executed on the
core.

The existing error injection methodology is an order of magnitude larger
than our methodology, executed on the arithmetic operation unit, almost in all
aspects: size, number of tests and the test length (in cycles). This makes sense,
since our methodology was integrated with the functional verification of a unit
while the error injection methodology is executed on the entire core. However, the
number of design bugs we found in our test case is the same order of magnitude
as the number of coverage bugs detected by the existing methodology for the
entire core. Hence, when our methodology will be integrated into all units of
the core, one would expect an order of magnitude more coverage than with the
existing methodology.

To summarize, our methodology, integrated with the existing functional unit
verification, requires a small amount of additional resources, compared both to
the unit functional verification and to existing error injection methodology. Yet,
the additional number of coverage bugs is significant and moreover these bugs are
very difficult to detect with other methods. This implies that our methodology
provides an efficient and significant coverage enhancement.

4.2 Formal Verification

Similar to the dynamic simulation we integrate our approach into the formal
verification unit environment. This is done without any alteration of the original
environment targeting arithmetical correctness and interface protocol properties.
Our experiments consider scenarios in which one instruction is executed in the
unit’s pipeline at a time. This enables easier debug and shorter runtime for our
proofs. We compare the runtime for proving the correctness of arithmetic instruc-
tions in two cases: with injecting faults into gated checkers and without doing
so. We show that the runtime in the former case is not significantly increased
unless much more complex reliability logic gets into the cone of influence of our
properties, e.g. for instructions that are additionally protected by residue [20]
checks. Residue checks compute several multiplications, causing a large increase
in runtime or memory consumption for our FV tool. Note that the differences in
runtime and memory consumption can also be attributed to different heuristics
chosen by our FV tool (Table 2).
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Table 2. Comparison of proofs for arithmetic only vs arithmetic w/ Injection

Instruction Arithmetic only Arithmetic w/ Injection

Runtime (s) Memory (MB) Runtime (s) Memory (MB)

vtp 2946.65 934.65 2068.95 946.90

kdb 2001.61 2206.63 10420.12 1308.19

lxer 395.64 1991.49 968.62 9688.33

rrxtr 2773.44 2312.71 1241.25 3285.54

5 Conclusion and Future Work

We have presented a new method for reliability coverage verification. This
method has several advantages: it detects reliability coverage holes that are very
difficult to detect with other methods; its overhead is small; and finally, it is
executed on the standard verification environment (either dynamic simulation
or formal). We have tested the new methodology on a unit of the next IBM
mainframe that implements arithmetic operations and the results were satisfac-
tory.

This method can be further expanded, and along with structural identifi-
cation of protected latches [1], provide a complete scalable method for reliabil-
ity coverage verification. Using structural identification, potentially protected
latches can be identified; this implies the set of latches for which no protection
exist. However, a latch that is potentially protected could have various gating
conditions on the way to the checkers. In this work we only consider the gating
condition between the error detecting signal to the checker. The natural exten-
sion would be to use similar techniques to verify all the gating conditions in each
path from a potentially protected latch to the relevant checker.
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Abstract. Network Verification is emerging as a critical enabler to man-
age large complex networks. In order to scale to data-center networks
found in Microsoft Azure we developed a new data structure called ddNF,
disjoint difference Normal Form, that serves as an efficient container for
a small set of equivalence classes over header spaces. Our experiments
show that ddNFs outperform representations proposed in previous work,
in particular representations based on BDDs, and is especially suited for
incremental verification. The advantage is observed empirically; in the
worst case ddNFs are exponentially inferior than using BDDs to repre-
sent equivalence classes. We analyze main characteristics of ddNFs to
explain the advantages we are observing.

1 Introduction

Just as design rule checkers statically verify hardware circuits and type checkers
flag type violations in a program before execution, the emerging field of network
verification seeks to proactively catch network bugs before they occur in prac-
tice by reading router tables and configuration files and checking for properties
such as reachability, isolation, and loops. When compared to hardware design
automation and software analysis, formal tooling around networks, is at an infant
state. Networks are commonly managed using tools developed by network ven-
dors using proprietary formats. Bare bones network tools, such as traceroute,
may be the only and best option for debugging networks. Modern large scale
public cloud services crave more powerful tools, including static analysis tools
that can answer reachability properties in large networks.

This challenge has been recognized relatively recently: The seminal work of
Xie [16] focused on reachability in IP networks and Anteater [10] provided a
more abstract framework using a SAT solver to compute reachability bugs, and
Header Space Analysis (HSA) [7] used a compact representation to compute
all reachable headers. Later, Veriflow [8] and NetPlumber [6] found a way to do
faster, incremental verification, and Network Optimized Datalog [9] implemented
efficient header space verification in an expressive Datalog framework, thereby
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allowing higher level properties called beliefs [9] to be expressed. Properties
verified include more complex path predicates (e.g., traffic between two hosts
flows through a middlebox) and differential reachability (e.g., is reachability
same in all load balanced paths).

Yang and Lam [17] made a crucial observation that most headers are treated
the same when analyzing any given network. It is therefore much more efficient
to find the relatively small set of equivalence classes of headers and then per-
form reachability queries based on these classes instead of integrating header
computation while checking reachability. Yang and Lam base their equivalence
class computation on BDDs, which succinctly represent sets of headers. Each
equivalence class is a BDD (covering a disjoint set). Whenever inserting a new
set, their algorithm requires examining all previous sets and performing BDD
operations. While elegant and easy to implement, the overall quadratic number
of BDD calls and the fact that BDDs require an overhead per bit struck us as
an over fit for the networking domain.

In this paper we introduce the ddNF (disjoint difference Normal Form) data-
structure and algorithms that handles the partition of headers in a particularly
efficient way. In essence, our new ddNF data structure pre-computes a com-
pressed representation of the relevant header spaces instead of the “run-time”
compression employed by say HSA [7] while answering reachability queries. This
transformation turns large graphs into small tractable sizes for quantitative
analyses and allows faster incremental verification than the BDD based app-
roach used in [17].

2 An Overview of ddNFs

We first provide a quick overview of ddNFs. Consider a very tiny network as
an example with 3 data centers A, B, and C in Fig. 1. Assume that the set of
prefixes represented by B is 0� and the set of prefixes of C is 1�. There are two
routers: the leftmost router forwards every packet to its rightmost port p1, and
the rightmost router splits traffic to B and C via the ports p2 and p3 respectively.

To compute the reachability from data center A, regular header space meth-
ods such as HSA [7] will start with the wild-card expression �� (which represents
all packets with two bits) which flows to the second router. This set of packets
“splits” into two pieces. The first piece is the packets representing 1� which flow
down to C. The upper piece is the set of packets covered by the rule �. But
since the router does longest match semantics, this rule only applies to packets
that do not match 1�, in other words to �� − 1�. While this is indeed 0� in
this simple example, Header Space methods [7] keep headers in this difference of
cubes representation and (to avoid state explosion) only lazily extract solutions
when a symbolic packet reaches a destination.

While lazy differencing keeps the size of the header space representation
manageable, it does require an intersection of an incoming header space with
each set of matching rules at a router, an expensive operation that grows with
the number of bits in each header and the number of matching rules. Yang and
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Fig. 1. Run-time vs. pre-computed header space compression

Lam [17] suggest a different technique that we refer to as pre-computed compres-
sion that has some analogies with first computing labels for each set of headers
as in MPLS [13]. The idea (shown at the bottom of Fig. 1 is to rewrite each
header expression in a matching rule as a union of disjoint header expressions
(called “atomic predicates” in [17]) which are then replaced by integers.

For example, �� is the union of 1� and 0�, which we represent by the integers
2 and 3 respectively (we avoided integer 1 to avoid confusion with the bit value
1) and the forwarding table is rewritten as shown. Now the same process is used
to compute reachability, but this time we use lists of integers instead of wild-
card matching and intersection. While it is unclear that this method works for
all reachability queries, it does work very fast for basic reachability, yielding 1-2
orders of speedup compared to even the fastest run-time methods [7].

Yang and Lam [17] calculate the pre-computed set of forward equivalence
classes (atomic predicates on headers) using BDDs. We use a dedicated data struc-
ture called a ddNF that we found experimentally outperforms BDDs on our bench-
marks. Similar to BDDs, ddNFs are also generalized tries, but in contrast to BDDs
that branch on one bit at a time, ddNFs branch based on a subsumption relation
between entire wild-card expressions. Our approach comes with another twist: the
ddNF data-structure simply indexes a partition all wild-card expressions and does
not rely on aggregating these expressions for output ports as in [17].

3 Firewalls, Routers and Ternary Bit-Vectors

We model an IP router as a set of rules. Firewalls are modeled as special routers
that route packets either onward or to a sink that drops packets.
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Fig. 2. A forwarding table snippet.

Each router contains a forwarding table that describes how IP packets are
forwarded to another router or end-point. For example, Fig. 2 shows a snippet
of a forwarding table from an Arista network switch: It says that by default
addresses are routed to either neighbor n1 (with address 100.91.176.0) or to n2,
unless the destination address matches one of the rules below. For example, if
the first 25 bits of the address match the same 25 bits of 10.91.114.0, then the
packet is forwarded to either n3, n4, n5 or n6.

Ternary bit-vectors (TBVs)1 succinctly encode matching conditions using 1, 0
and � (the latter denoting “don’t care”). A TBV models a range of IP addresses
by concatenating the bytes corresponding to each integer separated by dots,
and then adding don’t-cares for the last 32 − n bits if the prefix is of the form
A/n. Thus, 10.91.114.0/25 corresponds to the TBV 00001010 01011011 01110010
0������� and 10.91.114.128/25 corresponds to the TBV 00001010 01011011
01110010 1�������; note that these TBVs are incompatible in that there is a
bit position where one has a 1 while the other has a 0. We use tbv , tbv1, . . . to
denote ternary bit-vectors in {1, 0, �}k of the same fixed length k. For example
10��00 is a TBV of length k = 6.

Ternary bit-vectors denote a set of (concrete) bit-vectors. For example 10��00
denotes the set {100000, 100100, 101000, 101100}. We use ternary bit-vectors and
the sets they denote interchangeably. For example, we write 1 � 0 ⊂ ��0.

Definition 1 (Routers). A router, R, is an ordered list of rules ρ1, ρ2,
ρ3, . . . , ρn where ρj = 〈tbv j , pj〉 is a pair comprising a ternary bit-vector tbv j

and an output port pj. The rules have the following semantics: a packet header
h, which is a bit-vector, matches rule ρj = 〈tbv j , pj〉 (and is forwarded to ports
pj) if each of the vectors tbv1, . . . , tbv j−1 contain a conflicting bit (a 0 where h
has a 1, or vice versa), whereas tbv j has no such conflicting bit.

The matching condition for rule ρj = 〈tbv j , pj〉 is the Boolean function represent-
ing the set of bit-vectors tbv j\{tbv1, tbv2, . . . , tbv j−1}. We denote this Boolean
function by MC j . Note that our definition of a router does not let the router
rewrite headers.
1 Also called “cubes” in the VLSI CAD literature.
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We note that router matching conditions have a special syntactic form, which
we formally define below.

Definition 2 (Difference of Cubes). A difference of cubes (DOC) is an
expression of the form tbv\{tbv1, tbv2, . . . , tbvm} for ternary bit-vectors tbv ,
tbv1, tbv2, . . . , tbvm.

For example, the DOC 1��\{110, 101} encodes the set {111, 100}.
A network consists of a set of connected routers. That is, a network, Nw, is

a set of routers {R1,R2, . . . ,Rn} along with, for each router Ri, a map Li from
output ports of Ri to adjacent (“next hop”) routers. In real networks, routers
send traffic to non-routers that are end-points of traffic flow. It is a bit simpler,
though, to pretend that end-points are routers that either have no incoming or
no outgoing links.

A predicate is a Boolean function over the header bits. We adapt the definition
of atomic predicate from Yang and Lam [17] as below.

Definition 3 (Atomic Predicates). Given a network, a set of predicates
P1, . . . , Pn are atomic if they are mutually disjoint, their union is equivalent
to true, and in a given network Nw, every matching condition in any router
rule for is equivalent to a union of predicates from {P1, . . . , Pn}.
Note that for every set of routers there is a coarsest set of atomic predicates.

4 Pre-computed Compression via ddNFs

We wish to perform pre-computed compression by rewriting each router rule (as
in [17]) using a set of integers that represent the disjoint matching conditions
in order to speed up reachability checking. Instead of using BDDs to enumerate
mutually disjoint matching conditions, we propose a new data structure called
a ddNF that we show is more efficient for the networking domain.

As recognized in Veriflow [8] and NetPlumber [6] efficiency is important to
enable real-time incremental analysis as router rule changes occur at high speed
(for instance, to accommodate rapid virtual machine migration). For these envi-
ronments, ddNFs reduce the phase of creating disjoint matching conditions from
tens of seconds to a few milliseconds. Further, if rules change, but reuse exist-
ing prefixes (for example, a route change), then the ddNF requires no updates.
However, in [17] because rules are aggregated on ports before computing disjoint
reasons, a routing change that switches a prefixes to a new port can cause label
changes.

4.1 Representing Disjoint Sets of Bit-Vectors as DdNFs

Given a set of routers and rules from each router, we seek to enumerate all
overlapping segments, such that each rule can be written as a set of mutually
disjoint matching conditions potentially shared with other rules. For example,
if one rule matches on 10�� and a different rule matches on 1�0�, then the
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first set is decomposed into two disjoint sets: 100�, 10��\{100�}, and the second
set is decomposed into 100�, 1�0�\{100�}. The three sets are mutually disjoint.
Any member of the set 100� (the members are 1001, 1000) matches both rules,
whereas members of 1�0�\{100�} (the members are 1101, 1100) match only the
second rule.

The disjoint decomposed normal form, ddNF, data structure is used to create
and maintain a disjoint decomposition from DOCs. Recall that DOCs such as
100�, 1�0�\{100�} are differences of (sets of) ternary bit vectors.

Definition 4 (ddNF). A ddNF is a directed acyclic graph (DAG) data struc-
ture, represented as a four-tuple

〈N , E, �, root〉

where N is a set of nodes, E ⊆ N × N are edges, and � is a labeling function
mapping every node to a ternary bit-vector, and root ∈ N is a designated root
node such that all nodes are reachable from it and �(root) = ����︸︷︷︸

k

. In addition,

the ddNF data structure must satisfy the following properties:

• Whenever E(n,m) for two nodes n,m ∈ N , then �(m) ⊂ �(n).
• Conversely, if n,m ∈ N and �(m) ⊂ �(n), then either E(n,m) or there is a
node, m′ ∈ N , such that �(m) ⊂ �(m′) ⊂ �(n).

• No two nodes are labeled by the same ternary bit-vector.
• The range of � (i.e., the set of ternary bit-vectors labeling all nodes in N ) is
closed under intersection. ��

Fig. 3 shows an example ddNF.

���

1�� �1�

11�

Fig. 3. Example ddNF. The root (top most node) denotes the DOC ���\{1��, �1�},
the left-most node 1��\{11�}, right-most node �1�\{11�}, and the bottom node
denotes 11�.

The conditions for a ddNF ensure that the data structure is canonical up to
isomorphism. Thus, we have

Proposition 1 (ddNFs are unique up to isomorphism). Given a set S
of ternary bit-vectors closed under intersection and containing the ternary bit-
vector comprising of all � there is a unique ddNF labeled by S.
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Proof Sketch: Take the bit-vectors from S, then create the root node from the
all-� bit-vector and for each of the other TBVs create an associated node. Two
nodes are connected if their labels are strict subsets and there is no intermediary
node labeled by a TBV that is subset-wise between them. ��

We can reconstruct a DOC from a ddNF node n in the following way:

doc(n) = �(n)\{�(m) | m ∈ children(n)}
In this way, each node represents a set disjoint from all other nodes. Con-
versely, we can retrieve the set of nodes that denote a difference of cube
tbv0\{tbv1, . . . , tbvm} expression by taking

DC(n0) \ (DC(n1) ∪ . . . ∪ DC(nm))

assuming the ddNF has nodes labeled �(n0) = tbv0, . . . , �(nm) = tbvm, and the
downward closure DC(n) is defined recursively as

DC(n) = {n} ∪
⋃

{DC(m) | m ∈ N , (n,m) ∈ E}
Note that not all nodes are necessarily representing non-empty sets. This is

the case when the set of TBVs labeling children covers the TBV of the par-
ent. Checking non-emptiness of a node amounts to checking satisfiability of the
formula

fml(tbv) ∧
∧

i

¬fml(tbv i)

where

fml(tbv) =
∧

i|tbv [i]=1

pi ∧
∧

i|tbv [i]=0

¬pi

It is however often easy to quickly determine non-emptiness in a greedy way by
creating a sample bit-vector that is contained in the positive component, but
different from negative components by swapping the first bit where the positive
has a � and the negative has a non-� value.

4.2 Inserting into and Using ddNFs

We will now describe how to update and query the ddNF data structure
described in the previous section. The main operation is insertion of ternary
bit-vectors. Insertion of a ternary bit-vector t can be described as follows: First
of all, we insert a node n labeled by new ternary bit-vector t above the nodes
closest to the root node that are strict subsets of t. In these positions, the new
node n inherits the parents the less general node. Second, if t has a non-empty
intersection with a node n′, that is neither a subset or a super-set of t, then we
have to create a node corresponding to �(n′)∩ t and insert this to the ddNF and
ensure that t is inserted above this new node. Algorithm1 shows pseudo-code
that implements the informally described insertion algorithm. Figures 4 and 5
show two main uses of the algorithm.

The effect of inserting ternary bit-vectors into a ddNF is characterized by
the following proposition:
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Algorithm 1. Insert(n,r): Insertion of node n labeled by ternary bit-vector
t under a ddNF node r
Input: n - node labeled by ternary bit-vector t

Input: r - node in ddNF
Output: a node in the ddNF labeled by t

1 if �(r) = t then
2 return r;
3 end if
4 inserted ← ⊥;

5 foreach (r, child) ∈ E do
6 if t ⊆ �(child) then

7 inserted ← �;
8 n ← Insert(n, child);

9 end if

10 end foreach
11 if inserted then

12 return n;

13 end if
14 foreach (r, child) ∈ E do

15 if �(child) ⊂ t then

16 E ← {(n, child)} ∪ E \ {(r, child)}
17 end if

18 end foreach

19 E ← E ∪ {(r, n)};
20 foreach (r, child) ∈ E, t′ = �(child) do
21 if t 	⊆ t′ ∧ t ∩ t′ 	= ∅ then

22 m ← fresh node labeled by t ∩ t′;
23 Insert(m, r); // Ensure child and n share m as common descendant

24 end if

25 end foreach

26 return n

insert(n : �10, r : ���)

n1 : �1� n2 : ��0 n3 : �01

r : ���

insert(n : �10, n1 : �1�) insert(n : �10, n2 : ��0) n3 : �01

r : ���

n1 : �1� n2 : ��0 n3 : �01

n : �10

Fig. 4. Insertion below children. In the top left we insert node n labeled by �10 into a
root r, which is labeled by ���. Both nodes n1 and n2 generalize n, while n3 is disjoint
from n. Insertion therefore proceeds as in the bottom of the figure by recursively
inserting n into n1 and n2. After insertion completes, we obtain the ddNF given top
right.
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insert(n : �1�, r : ���)

n1 : �10 n2 : 1��

r : ���

n : �1� n2 : 1��

n1 : �10 n3 : �11

Fig. 5. Insertion with subsumption. When inserting n : �1� into r we detect that n
is more general than n1, so n is inserted above n1. On the other hand, n and n2 are
compatible, but neither generalize the other, so we create a fresh node n3 labeled by
the intersection �11 and it is inserted in a way that is illustrated in Fig. 4.

Proposition 2 (Disjoint Decomposition). The resulting ddNF obtained
after inserting the ternary bit-vectors tbv1, tbv2, . . . , tbvn has one node corre-
sponding to every possible distinct non-empty set obtained by intersecting some
k of the n TBVs while excluding the remaining n − k.

Another way of viewing the above result is that the ddNF has precisely one node
for every disjoint region in the Venn-diagram of the sets denoted by the inserted
TBVs. This property follows from the conditions in Definition 4.

Algorithm 2 shows the extraction of a ddNF from a set of routers. It also
extracts a map from TBVs to labels in the extracted ddNF.

Algorithm 2. Extract a ddNF for a set of routers
Input: Routers a set of routers with routing rules from TBVs to ports
Output: A ddNF representing the TBVs used in Routers
Output: tbv2node a map from TBVs to labels

1 ddNF ← a ddNF with a single root node;
2 tbv2node ← [� · · · � �→ root ];
3 foreach R ∈ Routers do
4 foreach 〈tbv , p〉 ∈ R do
5 n ← Fresh node labeled by tbv ;
6 n ← Insert(n, root);
7 tbv2node[tbv ] ← n;

8 end foreach

9 end foreach
10 return ddNF, tbv2node

Algorithm 3 shows how we reach our goal for pre-computed header space
compression to convert each router to a small lookup table from labels to output
ports. The algorithm uses the ddNF extracted from Algorithm2. It traverses
the rules, using the ddNF to extract a set of labels corresponding to each rule.
It assumes that the rules are prioritized on a first-applicable basis, such that
earlier rules have precedence over later rules. Thus, labels used for earlier rules
cannot be used for later rules. The algorithm subtracts previously used labels
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by computing DC(tbv2node(tbv)) \ seen, where seen are the nodes that have
been used so far. To compute DC(tbv2node(tbv)) \ seen efficiently we maintain
a tag on each node. The tag is initially clear and gets set when the node is first
traversed. This has the side-effect of inserting it into seen and also ensures that
each node is traversed at most once because one can skip all nodes below an
already marked node.

Algorithm 3. Convert each router R into a map R′ from labels to output
ports.
Input: Routers a set of routers with routing rules from TBVs to ports
Input: a ddNF for the TBVs used in Routers
Input: a map tbv2node from TBVs to nodes in the ddNF
Output: Routers ′ a set of routers whose routing rules map labels to ports

1 Routers ′ ← ∅;
2 foreach R ∈ Routers do
3 R′ ← the empty map from ddNF nodes to ports;
4 foreach 〈tbv , p〉 ∈ R in order of appearance do
5 seen ← ∅
6 labels ← DC(tbv2node[tbv ]) \ seen
7 foreach � ∈ labels do
8 R′[�] ← p
9 end foreach

10 seen ← seen ∪ DC(tbv2node[tbv ])

11 end foreach
12 Routers ′ ← Routers ′ ∪ {R′}
13 end foreach
14 return Routers ′

We can further optimize the labeling obtained from Algorithm3 by using
a post-processing pruning step. Define the equivalence relation � between two
labels as follows:

� � �′ :=
∧

R′∈Routers′
R′[�] = R′[�′]

That is, two labels are equivalent if the forwarding behavior is the same for each
router. We can then remove all but one equivalence class representative from
each � class and still compute reachability. In [14], we extended this reduction
by taking a transitive congruence closure. We describe this approach in more
detail in Sect. 5.

Finally, when we check reachability for a set of headers (given by a DOC),
we compute the set of labels associated with the DOC and check reachability
for each of the labels.

4.3 Comparing ddNFs with BDDs

First of all let us notice that the conversion of a set of TBVs into ddNF can be
exponential.
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Example 1. Suppose we have a routing table with the following rules:
1 1.*.* via port1
2 *.1.* via port2
3 *.*.1 via port3

The rules use the ternary bit-vectors 1��, �1�, ��1. They decompose into 8
disjoint subsets and the corresponding ddNF is shown in Fig. 6.

���

1�� �1� ��1

11� 1�1 �11

111

Fig. 6. Maximal ddNF

As we will later observe, the structure of real routing tables makes this worst
case very unlikely; ddNFs perform very well in practice.

Yang and Lam [17] use BDDs [4] to represent header spaces and leverage
BDD operations to compute a coarsest partition refinement, such that every set
in the resulting partition has the same forwarding behavior across all routers.
Algorithm 4 sketches how the approach from [17] creates one predicate per output
port that summarizes the set of headers that are forwarded to the given port.
Recall that we assume that a router is an ordered list of rules of the form 〈tbv , p〉,
where tbv is a matching condition and p is the name of an output port. The result
of Algorithm 4 is a disjoint partition of sets over the header space of a router.

Algorithm 4. Extracting predicates for a router
1 Ps ← [p �→ ∅ | p ∈ Ports]
2 seen ← ∅
3 foreach 〈tbv , p〉 ∈ Router in order of appearance do
4 Ps[p] ← Ps[p] ∪ (tbv \ seen)
5 seen ← tbv ∪ seen

6 end foreach
7 Ps[sink ] ← Ps[sink ] ∪ seen

The partitions created for each router are then combined into a maximally
coarse partition as follows: Let Ps1, . . . ,Psn be the partitions extracted from
routers 1, . . . , n. Then the final partition can be computed using Algorithm5.
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Algorithm 5. Partition refinement
1 R ← {
}
2 foreach i = 1, . . . , n; p ∈ Ports do

3 R ← {P ∩ R, P ∩ R | P = Psi[p], R ∈ R} \ {∅}
4 end foreach
5 return R

This algorithm requires an asymptotically quadratic number of BDD opera-
tions during partition refinement, a cost that is avoided with ddNFs.

First, note that each union or intersection operation (line 4 in Algorithm4,
line 5 in Algorithm 5) creates a result of size that is potentially the sum of the
size of the arguments. When iterated a linear number of times, this may produce
potentially quadratic space overhead. Furthermore, the number of operations in
Algorithm 5 is also quadratic in the size of the result. The ddNF data-structure
may likewise increase in size during an insertion. However, the overall space
overhead of the ddNF structure is bounded by the number of disjoint partitions,
and the number of operations for an insertion is bounded by the bit-width of
the header space multiplied by the number of resulting classes (the longest path
of a ddNF is at most the bit-width of the header space). There is an important
constant factor that differentiates BDDs and ddNFs as well: The ternary bit-
vectors in the ddNF tree can be represented using machine words. A ternary bit
can be represented using two bits in the usual way: 01 for true, 10 for false, 11
for � and 00 for undefined. The intersection of two TBVs is defined if it does not
contain a sequence of 00s. Then if a machine has word size w (which is typically
64 these days) one can represent a k-bit ternary bit using 2 ·k/w� words. BDDs,
in contrast allocate a separate node per bit, each node has a field for the current
variable and pointers to left and right children. Typical implementations use also
fields for reference counts. As we show in the next section, the evaluation also
shows that the ddNFs behave very well on our benchmark sets.

Atomic predicates always correspond to a union of nodes in the ddNF built
from routers. This is because each atomic predicate is an intersection of DOCs
corresponding to rules and each such intersection corresponds to a union of nodes
in a ddNF. Thus, the number of ddNF nodes is always at least the number of
atomic predicates. Our experiments show that in practice this number is pretty
small, even though the worst case is prohibitive. The ddNFs originating from
rules from example 1 grow exponentially. The ddNF for that example contained 8
nodes, while there are only three atomic predicates: 1��, 01�, 001, but the ddNF
grows exponentially with the bit-width. More generally, rules for a single router
create only one atomic predicate per output port, while the number of nodes
in a ddNF is potentially exponential for a fixed router. The number of atomic
predicates collected for a set of routers can of course be exponential for the same
reasons that ddNFs can be of exponential size.
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4.4 ddNFs and DOCs and Multi-dimensional Prefix Tries

The HSA [7] tool uses linear search over DOCs to process symbolic headers rep-
resented as TBVs and figure out the forwarding behavior for a set of packets. It
does not use any specific indexing techniques to speed up matching. The Veri-
flow tool [8] integrates some indexing. It uses multi-dimensional prefix tries to
represent rules. It is inspired by traditional packet classification data structures.
Each dimension corresponds to a header field, and each trie branches on one
bit at a time. The approach suggested with ddNF here would correspond to a
single dimension of such a trie, or a collapsed multi-dimensional trie. One can of
course create multi-dimensional structures from ddNFs, but we have not found
a use for it yet. On the other hand, Veriflow uses the tries to compute the set of
ports based on symbolic headers represented as TBVs. It does not pre-compute
labels.

4.5 Handling Rules that Update Packets

Let us briefly describe one way to extend using ddNFs for analysis of networks
where rules can update packet headers. We limit the discussion to header trans-
formations that have match-action rules of the form 〈pin, tbv , upd , pout〉, where
tbv is the matching condition and upd is a ternary bit-vector, and pin, pout are
input and output ports. A packet header t matches the rule if t∩tbv = t, and it is
transformed to a header t ↓ upd , such that (t ↓ upd)[i] = (upd [i] = �)?t[i] : upd [i],
for each bit-position i in t. The relevant question is how to efficiently com-
pute updates for sets of headers given by a difference of cube. If we attempt
to apply rewrites on difference of cubes we quickly realize that the operations
require in general to eliminate existential variables: since symbolic execution of
a set of states (regardless of their representation) corresponds to working with
strongest post-conditions. On the other hand, pre-conditions of guarded assign-
ments correspond to basic substitutions with the assignment and intersections
with the guard. It is therefore more convenient to close ddNFs under pre-images.
The procedure for closing ddNFs under pre-images over a set of configurations
〈doc1, p1〉, . . . , 〈docn, pn〉 of DOCs and ports p1, . . . , pn is obtained by computing
the fixedpoint under

wpc(〈pin, tbv , upd , pout〉, 〈docout, pout〉) := 〈docin ∪ tbv ∩ (docout ↓ upd), pin〉
Note that the operations on the resulting DOCs can be performed directly over
ddNFs.

5 Experiments

We measured the efficiency of the ddNF data structure in comparison with [17]
using benchmarks from the Stanford Campus Network [7] and IP forwarding
tables provided from selected Azure data-centers. We used a modest laptop run-
ning Intel Core i5-3317U 1.70 GHz, 8 GB Ram, running 64 bit Windows 8.1. Our
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implementation of [17] uses the BuDDy BDD library [15] and otherwise follows
almost verbatim the presentation of [17] with one minor change. The algorithm
suggested in [17] for inserting a set P into an existing set of partitions R1, . . . , Rn

is to compute {P ∩ Ri, P ∩ Ri | i = 1, . . . , n} and remove empty sets from the
result. Our approach is, for each i, to first compute P ∩Ri. If the result is empty
then we produce Ri, otherwise compute also P ∩ Ri and set P to P ∩ Ri. We
found this approach to be crucial to make the BDD based approach work.

Table 1 summarizes the comparison. We note that the ddNF-based imple-
mentation runs at least one order of magnitude faster, with the runtime being
a fraction of a second even for the largest benchmark. This makes the ddNF-
based approach well-suited for use with real-time updates of router rules. We
also noticed that (perhaps unsurprisingly) the BDD based approach is sensitive
to the initial variable order. For instance, for the Stanford benchmark set, the
BDD approach is 10x faster if the initial variable order is reversed from least to
most significant digit (this remains slower than ddNF, nonetheless).

Table 1. Measurements from five different network topologies. The Stanford bench-
mark is obtained from [7] and is used as a standard benchmark. We extracted only the
forwarding rules from these benchmarks for our measurements. The networks DC 1–4
represent different snapshots from Azure data-centers of different size from around the
globe. The numbers in the BDD and ddNF columns are time in seconds and number
of generated labels. The ddNF for the Stanford network contains 5149 labels before
compression and only 17 labels after line 11 of Algorithm 3. For the other networks,
compression has no effect.

# Rules BDD ddNF

sec. #labels sec. #labels

Stanford 8137 3.4 178 0.19 5149/17

DC 1 9060 2.0 829 0.05 1005

DC 2 7446 2.3 979 0.04 1157

DC 3 89871 17.7 2627 0.49 3058

DC 4 113131 29.8 3272 0.66 4077

We also applied the ddNF data-structure in [14] as an integral part of a set
of network surgeries aimed to speed up reachability queries on networks. Let
us here recall main elements of our experiments there. Our experimental setup
there used a Microsoft production data center located in Singapore, similar to
DC 4. In more detail, the it is a fairly large switching network, with 52 core
routers, each with about 800 forwarding rules (but no ACLs), and with 90 ToRs
with about 800 rules and 100 ACLs each. In total, this network has about 820 K
forwarding and ACL rules and is a reasonable example of a complex data center.

After reducing the network with respect to the header equivalences we split
forwaring rules so that each rule operates on a single header equivalence class.
Then, for each such class h we compute a forwarding equivalence relation as a
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congruence closure relation: it is computed bottom up from reachable nodes: two
nodes are equivalent with respect to a header equivalence class h if they forward
h the same way. In particular, two nodes that have no forwarding rules for h are
equivalent. Then, inductively, two nodes become equivalent with respect to h, if
the successors are pairwise equivalent. We could have opted for a stronger equiv-
alence relation that considers two nodes forwarding equivalent with respect to h
using a (co-inductive) bisimulation relation, but in the case of packet forwarding,
we may expect most forwarding paths to be acyclic. Luckily, in the acyclic case,
there is no difference between inductive congruence closure and co-inductive bi-
simulation relations. In this way, we transformed a network with nearly a million
rules to a new network with just over 10,000 rules and obtained a corresponding
two-orders of magnitude speedup over analyzing the original network.

6 Conclusions

This paper developed ddNFs to quickly and incrementally decompose the header
space into a much smaller set of equivalence classes. We found ddNFs an order
of magnitude faster than previous approaches [17] on our benchmarks, making
ddNFs especially suitable for incremental verification when router rules change
rapidly.
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Abstract. Efficient fault localisation is becoming increasingly impor-
tant as software grows in size and complexity. In this paper we present
a new formal framework, denoted probabilistic fault localisation (pfl),
and compare it to the established framework of spectrum based fault
localisation (sbfl). We formally prove that pfl satisfies some desirable
properties which sbfl does not, empirically demonstrate that pfl is sig-
nificantly more effective at finding faults than all known sbfl measures
in large scale experimentation, and show pfl has comparable efficiency.
Results show that the user investigates 37 % more code (and finds a fault
immediately in 27 % fewer cases) when using the best performing sbfl
measures, compared to the pfl framework. Furthermore, we show that it
is theoretically impossible to design strictly rational sbfl measures that
outperform pfl techniques on a large set of benchmarks.

Keywords: Fault localisation · Spectrum based fault localisation ·
Triage and debug technologies

1 Introduction

Faulty software is estimated to cost 60 billion dollars to the US economy per
year [1] and has been single-handedly responsible for major newsworthy catastro-
phes1. This problem is exacerbated by the fact that debugging (defined as the
process of finding and fixing a fault) is complex and time consuming – estimated
to consume 50–60 % of the time a programmer spends in the maintenance and
development cycle [2]. Consequently, the development of effective and efficient
methods for software fault localisation has the potential to greatly reduce costs,
wasted programmer time and the possibility of catastrophe.

In this paper we advance the state of the art in lightweight fault localisation
by building on research in spectrum-based fault localisation (sbfl). In sbfl, a
measure is used to determine the degree of suspiciousness each line of code is
with respect to being faulty, where this degree is defined as a function of the
number of passing/failing traces that do/do not cover that code. sbfl is one
of the most prominent areas of software fault localisation research, has recently

1 https://www.newscientist.com/gallery/software-faults/.
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been estimated to make up 35 % of published work in the field [3] and has been
consistently demonstrated to be effective and efficient at finding faults [4–21].

However, so far there have not been many formal properties about the general
problem of fault localisation which sbfl measures have been shown to satisfy,
representing a potential theoretical shortcoming of the approach. Although prop-
erties that measures should satisfy a priori (such as strict rationality [22]) have
been discussed, and measures that solve fault localisation sub-problems have
been presented (such as single bug optimal measures [15]), there is not yet a sbfl
measure that solves the problem of fault localisation for all benchmarks. Indeed,
recently Yoo et al. have established theoretical results which show that a “best”
performing suspicious measure does not exist [23]. In light of this, the sbfl liter-
ature has favoured developing measures with good experimental performance as
opposed to developing them according to a priori requirements. This has facili-
tated a culture of borrowing measures from other domains [11,15,16], manually
tweaking measures [13,17], or using machine learning methods [19,20,24]. Thus,
there remains the challenge of developing new, better performing and compa-
rably efficient methods that can satisfy key properties of fault localisation. Our
contributions in this paper are as follows:

– We introduce and motivate a new formal framework denoted Probabilistic
Fault Localisation (pfl), which can leverage any sbfl measure.

– We formally prove that pfl satisfies desirable formal properties which sbfl
does not.

– We demonstrate that pfl techniques are substantially and statistically signif-
icantly more effective (using p = 0.01) than all known (200) sbfl measures
at finding faults on what, to our knowledge, is the largest scale experimental
comparison in software fault localisation to date.

– We show that it is theoretically impossible to define strictly rational sbfl
measures that can outperform given pfl techniques on many of our bench-
marks.

– We demonstrate that pfl maintains efficiency comparable to sbfl.

The rest of the paper is organised as follows. In Sect. 2 we present the for-
mal preliminaries common to the approaches discussed in this paper and in
Sect. 3 introduce a small illustrative example of sbfl. In Sect. 4, we introduce
and motivate the formal theory underlying the pfl approach and formally prove
it satisfies desirable fault localisation properties which sbfl does not. Section 5
presents our experimental comparison of pfl techniques against sbfl measures.
Finally, we present related work and general conclusions.

2 Preliminaries

In this section we summarise the formal apparatus common to the approaches
in this paper.

We model each program as an ordered set P= 〈C1, . . . , Cn〉. Intuitively, each
Ci can be thought of as a program entity, event, or proposition, which is exe-
cuted, occurs, or is true if a corresponding program entity is covered in a given
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execution. A program entity (or component) can be thought of as a program
statement, branch, path, or block of code [7,25]. A component is called complex
if it is the union of other components, and atomic otherwise. In practice, P is
modelled as a set of atomic components in order to reduce overhead [4–21].

We model each test suite as an ordered set of test cases T = 〈t1, . . . , tm〉.
Each test case ti is a Boolean vector of length |P | such that tk = 〈ck1 , . . . , ck|P|〉,
and where we have cki = � if Ci is covered/occurs/is true in tk and ⊥ otherwise.
We also use 1 and 0 for � and ⊥ respectively. C|P| can be thought of as the
event of the error (denoted by E), where ck|P| = ek = � if the test case fails
and ⊥ if it passes. Intuitively, each test case records the coverage details of a
given execution, and is failing/passing if that execution violates/satisfies a given
specification, where a specification is a logically contingent proposition stated in
some formal language.

Each test suite may be partitioned T = F ∪ P, where F and P are the
set of failing and passing test cases respectively. By convention each test suite
is ordered such that the failing traces appear before the passing. In general, we
assume that every failing test case covers at least one component, and that every
component is covered by at least one failing test case. We may represent a test
suite with an m × n coverage matrix, in which the k-th row of the i-th column
represents whether Ci occurred in tk. An example of a coverage matrix is given
in Fig. 2.

For each Ci ∈ P we can construct its program spectrum using a test suite.
A program spectrum is defined as a vector of four elements 〈aief , ainf , aiep , ainp〉,
where aief is the number of failing test cases in T that cover Ci, ainf is the
number of failing test cases in T that do not cover Ci, aiep is the number of
passing test cases in T that cover Ci and ainp is the number of passing test
cases in T that do not cover Ci. Probabilistic expressions may be defined as
a function of program spectra as follows. We identify P (Ci ∩ E), P (Ci ∩ E),

P (Ci ∩E) and P (Ci ∩E) with ai
ef

|T| ,
ai
nf

|T| ,
ai
ep

|T| and ai
np

|T| respectively. Using definitions
from probabilistic calculus [26], we may then identify many measures with a
probabilistic expression.

A suspiciousness measure w maps a program entity to a real number as a
function of its spectrum [15], where this number is called the program entity’s
degree of suspiciousness. The higher the degree the more suspicious the program
entity Ci is assumed to be with respect to being a fault. In practical sbfl the
components in the program are investigated in descending order of suspiciousness

until a fault is found. Prominent measures include Zoltar = ai
ef

ai
ef +ai

nf +ai
ep+k

where

k = 10000ai
nfa

i
ep

ai
ef

[15], Kulczynski2 = 1
2 (P (E|Ci) + P (Ci|E)) [15], Ochiai =

P (Ci ∩ E)/
√

P (Ci)P (E) [4], and Positive predictive power (ppv) = P (E|Ci) [6].
ppv is equivalent to the Tarantula measure [27].

Some suspiciousness measures are informally known as measures of causal
strength [11]. Measures of causal strength are designed to measure the propen-
sity of an event in causing a given effect. Any measure can be proposed as
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a measure of causal strength. Historically such measures have been developed
around the premise that causes raise the probability of their effects. Prominent
measures include Lewis = P (E|Ci)/P (E|¬Ci), Fitelson = P (E|Ci)/P (E), Sup-
pes = P (E|Ci) − P (E|¬Ci), and Eels = P (E|Ci)/P (E) (see [11]).

Formally, a suspiciousness measure w is rational if and only if for all c > 0
(1) w(aef , anf , aep , anp) ≤ w(aef + c, anf − c, aep , anp), and (2) w(aef , anf , aep +
c, anp −c) ≤ w(aef , anf , aep , anp). The property of strict rationality is defined by
replacing ≤ with < in the latter two conditions. Roughly speaking, a measure
is rational/strictly-rational if more failing traces covering a component make it
more suspicious, and more passing traces maek it less suspicious – conforming to
our intuition of suspiciousness. Many suspiciousness measures have been shown
to satisfy strict rationality, at least when aef , aep > 1 [15,22]. Naish et al. argue
that it is reasonable to restrict the sbfl approach to rational measures [28].

We now discuss established methods for evaluating the performance of a
suspiciousness measure. First, there are wasted effort scores (or W-scores).
W-scores estimate the percentage of non-faulty components a user will look
through until a fault is found. Best case, worst case, and average case W-
scores have been defined [4,11,13,15]. Where w is a measure, b is a fault with
the highest degree of suspiciousness, and f is the number of faults which are
equally suspicious to the most suspicious fault, we use the following definitions:
best(w) = |{x|w(x)>w(b)}|

|P|−1 100, worst(w) = |{x|m(x)≥w(b)}−1|
|P|−1 100, average(w) =

best(w)+ worst(w)−best(w)
f+1 . We use avg W-scores. Second, there are absolute scores

(or A-scores) [29]. A-scores measure whether a given measure found a fault after
inspecting n non-faulty components [29]. Thus, for a given n a suspiciousness
measure receives 100 % if the user found a fault after investigating n non-faulty
components, otherwise it received 0 %. We use n = 0. A suspiciousness measure
performs well if it has have low mean W-scores and a high mean A-scores.

Finally, Naish et al. define the unavoidable costs of any strictly rational mea-
sure. These are the scores that the best performing strictly rational measure can
possibly receive [28]. To determine this score, one constructs an ordered list with
the property that for every component, Ci is ranked higher than a given fault Cj

just in case every strictly rational measure would rank Ci higher than Cj . The
W/A-scores of this list are the unavoidable cost W/A-scores. Unavoidable cost
scores estimate the upper bound limit for the performance of the sbfl approach
in general (see [28] for details).

3 Example

We present a small example to illustrate sbfl. Consider the C program min-
max.c in Fig. 1 (from [30]). The program is formally modelled as the following
set of program entities P = 〈C1, C2, C3, C4, E〉, where E models the event in
which the specification assert(least <= most) is violated. The program fails
to always satisfy this specification. The explanation for the failure is the fault
at C3, which should be an assignment to least instead of most. We collected
coverage data from ten test cases to form our test suite T = 〈t1, . . . , t10〉. The
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Fig. 1. minmax.c Fig. 2. Coverage matrix

coverage matrix for these test cases is given in Fig. 2. Three of the test cases fail
and seven pass. We compute the program spectrum for each component using
the coverage matrix. For example, the program spectrum for C3 is 〈3, 0, 1, 6〉.

To illustrate an instance of sbfl we use the suspiciousness measure Wong-2 =
aief −aiep [13]. The user inspects the program in decreasing order of suspiciousness
until a fault is found. C3 is inspected first with a suspiciousness of 2 and thereby
a fault is found immediately. The example illustrates that sbfl measures can
be successfully employed as heuristics for fault localisation, but that the formal
connection to fault localisation could potentially be improved.

4 Estimating Fault Probability

In this section, we introduce assumptions to generate our estimation of fault
probability and then prove this estimation satisfies important properties that
are not satisfied by any sbfl measure.

We begin as follows. We introduce a probability function P the domain of
which is a set of propositions. To define the set of propositions, we first define two
sets of atomic propositions H = {hi|Ci ∈ P} and C = {hk

i |Ci ∈ P ∧ tk ∈ T}.
Intuitively, H is a set of fault hypotheses, where hi expresses the hypothesis
that Ci is faulty, and C is a set of causal hypotheses, where hk

i expresses the
hypothesis that Ci was the cause of the error E in execution tk. The set of
propositions is then defined inductively as follows. For each p, q ∈ H ∪ C, p and
q are propositions. If p and q are propositions, then p∧q, p∨q, ¬p are propositions.
We also assume the following standard properties of probability [26]. For each
proposition p and q: P (p) = 1 if p = �. P (p) = 0 if p = ⊥. P (p ∨ q) = P (p) +
P (q) − P (p ∧ q). P (¬p) = 1 − P (p). P (p|q) = P (p ∧ q)/P (q).
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We now present assumptions A1-7 which are designed to be plausible in any
probability space induced by a test suite T for a faulty program P .

A1. For all hi ∈ H, hi =
∨|T|

k=1 h
k
i .

This states that Ci is faulty just in case Ci was the cause of the error E in
some execution of the program.

A2. For all tk ∈ F,
∨|P|

i=1 h
k
i = �.

This states that for every failing trace, there is some component Ci ∈ P
which caused the error E in that trace. In other words, if an error occurred then
something must have caused it. For all hk

i ∈ C we also have the following

A3. if hk
i = � then Ci �= E.

A4. if hk
i = � then cki = � and ek = �.

These assumptions state that if Ci was the cause of E in tk, then Ci must have
been a different event to E (A3), and Ci and E must have actually occurred
(A4). These two assumptions have been described as fundamental properties
about causation [31]. For all hk

i , h
k
j ∈ C

A5. if Ci �= Cj then hk
i ∧ hk

j = ⊥.

This states that no two events could have both been the cause of the error in
a given trace. In other words, different causal hypotheses for the same trace are
mutually exclusive. The rationale for this is that the intended meaning of hk

i is
Ci was the cause of E in tk, and as the implies uniqueness, no two events could
have been the cause. In general, any union of events may be said to be the cause
so long as that union is in P . For all hk

i ∈ C and every sample S ⊆ T − {tk}

A6. P (hk
i |

∨
tn∈S hn

i ) = P (hk
i ).

This states that the probability that Ci was the cause in one trace is not
affected by whether it was in some others. In other words, whether it was the
cause in one is statistically independent of whether it was in others. Here, we
assume that our probabilities describe objective chance, and that the causal
properties of each execution is determined by the properties of the events in that
execution alone, and therefore cannot affect the causal properties of other exe-
cutions. Independence principles are well established in probability theory [26].

In light of the above assumptions we may define c(tk) = {Ci|Ci ∈ P ∧ cki =
ek = � ∧ Ci �= E} as the set of candidate causes of E in tk. Following this, for
some measure w, and all Ci, Cj ∈ c(tk), we assume

A7. P (hk
i )/P (hk

j ) = w(Ci)/w(Cj).
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Here, we assume w measures the propensity of a given event to cause the
error (and is thus motivated as a measure of causal strength as described in the
preliminaries). Accordingly, the assumption states that the relative likelihood
that one event caused the error over another, is directly proportional to their
propensities to do so. In general, any suspiciousness measure w from the sbfl
literature may be proposed as a measure of causal strength, and thus there is
great room for experimentation over the definition of w. One formal proviso is
that measures be re-scaled so w(Ci) > 0 if aief > 0 (this avoids divisions by
zero). We use the notation pfl-w when measure w is being used.

We now show that the assumptions A1-7 (henceforth pfl assumptions)
imply Eqs. (1), (2) and (3) (henceforth pfl equations). The pfl equations can
be used to determine the probability that a given component Ci is faulty. For
all hk

i ∈ C

P (hi) = P (
|T|∨

n=1

hn
i ) (1)

P (
|T|∨

j=n

hj
i ) = P (hn

i ) + P (
|T|∨

j=n+1

hj
i ) − P (hn

i )P (
|T|∨

j=n+1

hj
i ) (2)

P (hk
i ) =

⎧
⎨

⎩

w(Ci)∑

Cj∈c(tk)
w(Cj)

ifCi ∈ c(tk)

0 otherwise
(3)

Proposition 1. The pfl assumptions imply the pfl equations.

Proof. We first show Eq. (1). hi =
∨|T|

k=1 h
k
i (by A1). Thus P (hi) = P (

∨|T|
k=1 h

k
i )

(by Leibniz’s law). We now show Eq. (2). The definition of disjunction states
P (

∨|T|
j=n h

j
i ) = P (hn

i ) + P (
∨|T|

j=n+1 h
j
i ) − P (hn

i ∧ ∨|T|
j=n+1 h

j
i ). It remains to

show P (hn
i ∧ ∨|T|

j=n+1 h
j
i ) = P (hn

i )P (
∨|T|

j=n+1 h
j
i ). P (hn

i ∧ ∨|T|
j=n+1 h

j
i ) is equal

to P (hn
i |∨|T|

j=n+1 h
j
i )P (

∨|T|
j=n+1 h

j
i ) (by probabilistic calculus). This is equal to

P (hn
i )P (

∨|T|
j=n+1 h

j
i ) (by A6).

We now show Eq. (3). We have two cases to consider: Ci ∈ c(tk) and Ci /∈
c(tk). Assume Ci ∈ c(tk). We may assume tk is ordered such that

∧n
i=1 c

k
i = �,

∧|P|−1
i=n+1 c

k
i = ⊥ and ck|P| = ek = � (such that c(tk) = {C1, . . . , Cn}). Now, for all

Ci, Cj ∈ c(tk) P (hk
i )/P (hk

j ) = w(Ci)/w(Cj) (by A7). Thus, for Ci, Cj ∈ c(tk)
w(Ci)/P (hk

i ) = w(Cj)/P (hk
j ) (as x/y = w/z ≡ z/y = w/x). So, w(C1)/P (hk

1)
= w(C2)/P (hk

2) = . . . = w(Cn)/P (hk
n). Thus, there is some c such that for all

Ci ∈ c(tk), c = w(Ci)/P (hk
i ) (by the last result). Equivalently, there is some c

such that for all Ci ∈ c(tk), P (hk
i ) = w(Ci)/c. To complete the proof it remains to

prove c =
∑

Cj∈c(tk)
w(Cj).

∨|P|
i=1 h

k
i = � (by A2). But,

∨|P|−1
i=n+1 h

k
i = ⊥ (by A4),

and hk
|P| = ⊥ (by A3). Thus,

∨n
i=1 h

k
i = � (by ∨-elimination). So, P (

∨n
i=1 h

k
i ) =

1 (by probabilistic calculus). Thus,
∑n

i=1 P (hk
i ) = 1 (by probabilistic calculus
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and A5). So,
∑n

i=1(w(Ci)/c) = 1. Thus, (
∑n

i=1 w(Ci))/c = 1. Equivalently,∑n
i=1 w(Ci) = c. So,

∑
Ci∈c(tk)

w(Ci) = c (by def. of c(tk) above). We now do
the second condition. Assume Ci /∈ c(tk). Then ¬(cki = ek = � ∧ Ci �= E) (by
def. of c(tk)). Thus cki = ⊥ or ek = ⊥ or Ci = E. If Ci �= E, then P (hk

i ) = 0 (by
A3). If cki = ⊥, then P (hk

i ) = 0 (by A4). If ek = ⊥, then P (hk
i ) = 0 (by A4).

Thus, if Ci /∈ c(tk), then P (hk
i ) = 0.

To use the pfl equations, it remains for the user to choose a measure w for
A7. One proposal is w(Ci) = P (E|Ci) (the ppv measure [11]) or P (E|Ci)/P (E)
(the Fitelson measure of causal strength [32]). For the purposes of defining P (hk

i )
both proposals are equivalent (observe P (hk

i )/P (hk
j ) = P (E/Ci)/P (E/Ci) =

(P (E/Ci)/P (E))/(P (E/Cj)/P (E)) using A7).
The proposal captures three potentially plausible intuitions about causal like-

lihood. Firstly, it captures an intuition that the more something raises the prob-
ability of the error, the more likely it is to be the cause of it (to see this, observe
we have P (hk

i )/P (hk
j ) = P (E|Ci)/P (E|Cj) using A7). Secondly, it captures

an intuition that events which do not affect the error’s likelihood are equally
unlikely to have caused it (to see this, assume both Ci and Cj are independent
of E i.e. P (E) = P (E|Ci) and P (E) = P (E|Cj), then it follows P (hk

i ) = P (hk
j )

using A7). Thirdly, a plausible estimate of w(Ci) as a measure of Ci’s causal
strength is the probability that Ci causes E given Ci, and P (E|Ci) accordingly
provides an upper bound for this estimate. In our running example pfl-ppv
returns P (h2) = 0.00, P (h2) = 0.31, P (h3) = 1.00, and P (h4) = 0.25, which
correctly identifies the correct hypothesis with the most probable one.

Finally, given a test suite T and measure w, an algorithm to find a single
fault in a program P is as follows. Step one, find maxhi∈H(P (hi)) by computing
the value of P (hi) for each hi ∈ H using the pfl equations. If the most probable
hypothesis represents a fault in the program, the procedure stops. Otherwise,
hj is removed from the set of candidates by setting ckj = ⊥ for each tk, and
return to step one. We call this the pfl algorithm. A property of this algorithm
is that yet to be investigated components can change in fault likelihood at each
iteration.

We now identify desirable formal properties which we prove the pfl equations
satisfies, but no sbfl suspiciousness measure can.

Definition 1. Fault Likelihood Properties. For all Ci, Cj ∈ P, where Ci �= Cj,
we define the following:

1. Base case. If there is some failing trace which only covers Ci, but this property
does not hold of Cj, then Ci is more suspicious than Cj.

2. Extended case. Let T1 be a test suite in which all failing traces cover more
than one component, and let T2 be identical to T1 except cki = 1 and ckj = 1
in T1 and cki = 1 and ckj = 0 in T2, then the suspiciousness of Ci in T2 is
more than its suspiciousness in T2.

These properties capture the intuition that the fewer covered entities there
are in a failing trace, the fewer places there are for the fault to”hide”, and so
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the a priori likelihood that a given covered entity is faulty must increase. Upper
bounds for this increase is established by the base case – if a failing trace only
covers a single component then that component must be faulty. We now formally
establish that the pfl equations, but no sbfl measure, satisfies these properties.

Proposition 2. The pfl equations satisfies the fault likelihood properties.

Proof. We first prove the base property. We first show that if there is some failing
trace tk which only covers Ci, then nothing is more suspicious than it. Let t1
be a failing trace which only covers Ci. Then P (h1

i ) = w(Ci)
w(Ci)

= 1 (by Eq. (3)).

Letting n abbreviate P (
∨|T|

j=2 h
j
i ), we then have P (

∨|T|
k=1 h

k
i ) = (1+n)−(1n) = 1

(by Eq. (2)). So P (hi) = 1 (by Eq. (1)). Thus, nothing can be more suspicious
than Ci. We now show that if there is no failing trace which only covers Cj ,
then Cj must be less suspicious than Ci. Assume the antecedent, then for each
tk we have P (hk

i ) = w(Ci)
w(Ci)+···+w(Ck)

< 1 (by Eq. (3)). Thus P (
∨|T|

k=1 h
k
i ) < 1

(by Eqs. (2) and (3)). Thus P (hj) < 1 (by Eq. (1)). Thus P (hj) < P (hi), which
means Ci is more suspicious than Cj .

We now prove the extended property. Let T1 be a test suite in which all failing
traces cover more than one component, and let T2 be identical to T1 except c1i =
1 and c1j = 1 in T1 and c1i = 1 and c1j = 0 in T2. Let n abbreviate P (

∨|T|
m=2 h

m
i )

P (hi) = P (h1
i )+n−(P (h1

i )n) (by Eqs. (1) and (2)). It remains to first show that
P (h1

i ) is greater in T2, and secondly show n has the same value for both test
suites where n < 1. For the former, let P (h1

i ) = w(Ci)
w(C1)+···+x+···+w(C|c(tk)|)

for both
test suites (using Eq. (3)), where we let x = w(Cj) for T1 (where w(Cj) > 0),
and x = 0 for T2 (as ckj /∈ c(tk) for T2). So, the equation for P (h1

i ) is greater in
T2. To show the latter, we observe that for all 1 < m ≤ |T1| we have P (hm

i ) < 1
(by assumption each tm ∈ F ⊆ T1 covers at least 2 components) and that P (hm

i )
is the same in both T1,T2, thus n < 1 (by Eq. (2)) and n has the same value
for both.

Proposition 3. No sbfl measure satisfies either property.

Proof. To show that no suspiciousness measure w satisfies the base property,
we show that for any w we can construct a test suite in which (1) there is a
failing trace which only covers Ci, (2) there is some Cj such that there is no
failing trace which only covers it, and (3) w(Ci) = w(Cj). A simple example is
as follows. Let P = 〈C1, C2, C3, E〉 and T = 〈〈1, 1, 1, 1〉, 〈0, 1, 1, 1〉, 〈1, 0, 0, 1〉〉.
Thus the spectrum for C1 and C2 is 〈2, 0, 0, 0〉, and so w(Ci) = w(Cj).

To show that no suspiciousness measure w satisfies the extended property,
we show that for any w we can construct a pair of test suites T1 and T2 which
are otherwise identical except (1) cki = 1 and ckj = 1 in T1 (2) cki = 1 and ckj = 0
in T2, and (3) w(Ci) = w(Cj). The simplest example is as follows. Let P =
〈C1, C2, E〉 and T1 = 〈〈1, 1, 1〉〉 and T2 = 〈〈1, 0, 1〉〉. Thus the spectrum for C1

is 〈1, 0, 0, 0〉 in both cases, and so w(Ci) = w(Cj).

The proof of the last proposition suggests that there are large classes of test
suites in which sbfl measures violate the properties. sbfl measures do not have



74 D. Landsberg et al.

the resources to satisfy the properties because each Ci’s suspiciousness is only
a function of its program spectrum, which itself is only a function of the i-th
column of a coverage matrix.

5 Experimentation

In this section we discuss our experimental setup and our results. The aim of
the experiment is to compare the performance of the pfl algorithm against sbfl
measures at the practical task of finding a fault in large faulty programs.

5.1 Setup

We use the Steimann test suite in our experiments, described in Table 1 [33].
M is the number of methods, UUT the number of units under test, b the num-
ber of blocks of code, UUT/b the mean number of UUT s per block, t the
number of test cases. The last column gives the number of program versions
with 1/2/4/8/16/32 faults respectively. The average number of covered compo-
nents that were faulty for all 1/2/4/8/16/32 fault benchmarks was found to be
1.00/1.92/3.63/6.71/11.81/20.02 respectively (7.52 on average). Steimann’s test
suite is the only test suite found to represent large programs with a large range of
faults and a large number of program versions. For more about the suite see [33].
The suite came with a program that generated the coverage matrices (see [33]).

We used blocks as our atomic program entity, and only considered atomic
blocks for all methods compared. A block corresponds to a maximal set of exe-
cutable statements with the same traces covering them. This correspondence
provides a natural grouping, as the degree of suspiciousness of lines of code is
the same as the block to which they belong, and does not effect the fault local-
isation process from the user’s point of view. In the majority of cases blocks
represented a continuous chunk of the program and were similar in size – the
average size of these blocks are reported in the UUT/b column of Table 1, and
can often be quite large.

Table 1. Benchmarks

Benchmark M UUT b UUT/b t 1/2/4/8/16/32v

Daikon 4.6.4 14387 1936 48 40 157 353/1000/1000/...

Eventbus 1.4 859 338 68 5 91 577/1000/1000/...

Jaxen 1.1.5 1689 961 228 4 695 600/1000/1000/...

Jester 1.37b 378 152 25 6 64 411/1000/1000/...

Jexel 1.0.0b13 242 150 48 3 335 537/1000/1000/...

JParsec 2.0 1011 893 240 4 510 598/1000/1000/...

AC Codec 1.3 265 229 57 4 188 543/1000/1000/...

AC Lang 3.0 5373 2075 78 27 1666 599/1000/1000/...

Eclipse.Draw2d 3.4.2 3231 878 74 12 89 570/1000/1000/...

HTML Parser 1.6 1925 785 148 5 600 599/1000/1000/
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We now discuss techniques compared. We include all known sbfl techniques;
which includes the 157 measures in [11], which itself includes 30 measures from
the studies of Naish [15] and the 40 measures Lo [16]. We include the 30 genetic
measures of Yoo [20], the Dstar measures [17] and the 6 “combination” measures
of Kim et al. [21]. This brings the number of sbfl measures to almost 200, which
to our knowledge is the largest comparison of sbfl measures to date. We now
discuss the pfl techniques. We used the weighted model pfl-w, and used the
ppv, Ochiai, Kulczynski2, and Suppes measures (see preliminaries) as values for
w. Not all measures could be tested because pfl techniques take slightly longer
to run. To our knowledge sbfl and pfl techniques are the only ones which can
feasibly scale to our experiments. Techniques which take 10 min on average to
localise a fault in one program version would take almost a year to complete the
experiment.

We evaluated the effectiveness of a technique using avg W-scores and A-
scores (see preliminaries). We define higher level W/A-scores as follows. For each
n ∈ {1, 2, 4, 8, 16, 32} a basic score for the n-fault versions of a given benchmark
is the mean of the scores for all versions of that benchmark with n-faults. The
score for the n-fault versions is the mean of the ten basic scores for the n-fault
versions. The Avg score is the mean of the 60 basic scores. We used Wilcoxon
rank-sum tests to determine to whether a technique’s 60 W/A basic scores were
statistically significantly better than another (using p = 0.01). To provide a
lower bound for sbfl performance, we included scores for the Random measure
(defined as a measure which outputs a random number). To provide an upper
bound, we computed the unavoidable costs for W/A-scores (discussed in Sect. 2).

5.2 Results

We begin with overall results. Zoltar was the sbfl measure with the highest Avg
W-score of 2.59. pfl-ppv improved on this score with a Avg W-score of 1.88.
Thus, the user has to investigate 37.77 % more code when using the best sbfl
measure. Klosgen was the sbfl measure with the highest Avg A-score of 55.2.
(pfl-ppv) improved on this score with a Avg A-score of 76.2. Thus, the user finds
a fault immediately 27.56 % less frequently using the next best sbfl measure.
Both pfl-ppv’s W/A 60 scores were a statistically significant improvement over
the next best performing sbfl measures using p = 0.01. Thus, the pfl approach
was a substantial and significant improvement at localising faults.

We now discuss unavoidable cost (UC) scores. UC’s Avg W/A-scores were
76.45 and 1.38 respectively. pfl-ppv outperformed UC’s W-scores at 30/60
benchmarks, and UC’s A-scores at 24/60 benchmarks. It is thus theoretically
impossible to design a strictly rational sbfl measure that can outperform pfl-
ppv on many benchmarks.

To get an impression for the overall range of performance, we present the
following additional Avg scores. Kulkzynski2, Ochiai, Suppes, ppv (Tarantula),
Random had Avg W-scores of 2.69, 2.97, 3.60, 3.88, 19.77, and Avg A-scores
of 52.65, 52,47, 52.47, 49.73, 12.97 respectively. When pfl-w was used in con-
junction with the first three measures (scaled [0,1]), the techniques had Avg
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W-scores of 2.31, 2.05, 2.09 and Avg A-scores of 70.57, 72.55, 72.30. Thus, all
our pfl-w approaches outperformed all sbfl measures regardless of choice of w.
This suggests that the pfl-w framework is more responsible for the improvement
of fault localisation effectiveness than the choice of weight w.

We now discuss how measures behave as more faults are introduced into
a program. In Figs. 3 and 4 we graphically compare a range of techniques.
Firstly, we represented the unavoidable cost scores to show how pfl-ppv approx-
imates (and in some cases exceeds) the idealised upper bounds for performance
of strictly rational sbfl measures. Secondly, we represented Zoltar as it was
the sbfl measure which the best W-scores. Thirdly, we represented Tarantula
(equivalent to ppv) to show how using pfl-ppv improves performance. Each
column represents a technique’s score for the n-fault versions of that suite, with
the key shade representing the value of n (for example, the W-score for pfl-ppv
at the 2-fault benchmarks is 1.94).

We observed the following trends: In general, the more faults there were in a
program the better an sbfl measure’s W-scores, but the worse that measure’s
A-scores. A proposed explanation for this is that the more faults there were in

Fig. 3. W-scores for selected techniques

Fig. 4. A-scores for selected techniques
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Fig. 5. pfl-ppv performance

a program, the more likely it was to find a fault early (due to increased luck –
thus improving W-scores), but the less likely to find a fault immediately (due to
increased noise – thus worsening A-scores). These trends were noticed in all of
our sbfl measures, of which Zoltar and Tarantula are examples. By contrast, a
negative trend for the A-scores was not noticed for our variants of pfl-w, which
demonstrated a superior ability to deal with noise introduced by multiple faults.

We now discuss Fig. 5. For each set of n-fault benchmarks, if y% of the
program versions received a W-score of ≤ x%, a point was plotted on that
graph at (x, y). The mean (Avg) of the 6 graphs is also plotted. The figure
demonstrates that if we limit fault localisation to only 10 % of the blocks, on
Avg we would expect to find a fault 95 % of the time using pfl-ppv. An outlier
is that pfl-ppv does slightly worse on the 16-fault benchmarks. In general, the
graph confirms the conclusion that pfl-ppv’s performance is not substantially
worsened by the number of faults in the program.

We now discuss time efficiency. In our implementation it took under a second
to find the most suspicious component in sbfl/pfl procedures. The complete
pfl procedure (as per the algorithm in Sect. 4), took an average of 6.16 s (with
potential for optimisation) – thus establishing pfl’s negligible overhead.

In summary, pfl approaches substantially, and statistically significantly
improve over the best performing sbfl approaches in our large multiple fault
programs, and are comparably efficient. Furthermore, they outperform theoret-
ically optimum performance of sbfl measures on a large class of benchmarks.

We briefly report results (Avg scores) in additional experiments which were
of much lower quality and size. We generated 500+ 1/2/3/4 fault versions using
the methodology and 10 SIR benchmarks of [34]. 80 % of the faults were covered
by all failing traces which made it less challenging for our techniques in terms of
noise. The highest scoring sbfl measure was Kulczynski2 (K2) (W-score 8.76,
A-score 33.75). pfl-Suppes, pfl-K2, pfl-Ochiai came second (W-scores 9.66,
10.27, 10.40, and A-scores 25.73, 24.43, 28.43 respectively). K2’s scores were not
statistically significantly better. The Barinel tool (see [34]) came 43rd overall
and was not competitive. pfl-ppv came 6th after sbfl measures (W-score 11.39,
A-score 29.15). The experiments confirm pfl as high performing.
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6 Related Work

The most prominent lightweight approach to software fault localisation is
sbfl [3], and provides the theoretical groundwork for the pfl approach. Research
is driven by the development of new measures and experimentally comparing
them on benchmarks [4–21]. Causal measures were introduced to sbfl in [11].
Threats to the value of empirical studies of sbfl is studied in [33]. Theoreti-
cal results include proving potentially desirable formal properties of measures
and finding equivalence proofs for classes of measures [10,11,15,22,35]. Yoo
et al. have established theoretical results that show that a “best” performing
suspicious measure for sbfl does not exist [23], and thus there remains the
problem of finding formal properties for lightweight techniques to exploit. We
have tried to address this problem in this paper.

A prominent probabilistic approach is Barinel, which differs to pfl insofar
as it uses Bayesian methods to generate likelihoods of given hypotheses [34],
and a minimal hitting set algorithm Staccato to generate hypotheses. Their
approach is designed for the simultaneous fault localisation of sets of multiple
faults, and were only scalable to our additional experiments. Other heavyweight
techniques are similarly unscalable [30,36–41], which emphasises the importance
of developing lightweight techniques such as pfl/sbfl.

In general, sbfl methods have been successfully used in the following appli-
cations. Firstly, in semi-automated fault localisation in which users inspect code
in descending order of suspiciousness [29]. Secondly, in fully-automated fault
localisation subroutines within algorithms which inductively synthesise (such as
Cegis [42]) or repair programs (such as GenProg [43]). Thirdly, as a substi-
tute for heavyweight methods which cannot scale to large programs [30,36,37].
Fourthly, as a technique combined with other methods [21,24,44–50]. In general,
pfl may be used as a substitute for sbfl measures in all these applications. For
a major recent survey we defer to Wong et al. [3].

7 Conclusions

In this paper we have presented a new formal framework which we call pfl,
and compared it to sbfl in terms of (1) desirable theoretical properties, (2) its
effectiveness at fault localisation and (3) its efficiency. Regarding (1), the pfl
equations were formally proven to satisfy desirable fault likelihood properties
which sbfl measures could not. Regarding (2), pfl-ppv was shown to sub-
stantially and statistically significantly (using p = 0.01) outperform all known
sbfl measures at W and A-scores in what is to our knowledge the largest scale
experimental comparison in software fault localisation to date. We found that
the user has to investigate over 37.77 % more blocks of code (and finds a fault
immediately 27.56 % less frequently) than pfl-ppv when using the best sbfl
measures. Furthermore, we show that for a third/quarter of our benchmarks it
is theoretically impossible to design strictly rational sbfl measures which out-
performs pfl-ppv’s W/A-scores respectively. Regarding (3), we found that the
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pfl approach maintains a comparably negligible overhead to sbfl. Thus, our
results suggest the pfl framework has theoretical and practical advantages over
sbfl.

For future work, we would like to find additional suspiciousness measures for
use with pfl-w. Secondly, we would like find a method to determine upper bound
scores for pfl performance (similar to Naish’s unavoidable costs). Thirdly, we
would like to implement pfl in an easy to use tool for engineers.
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Abstract. Because debugging is a notoriously expensive activity,
numerous automated debugging techniques have been proposed in the
literature. In the last ten years, statistical fault localization emerged
as the most popular approach to automated debugging. One problem
with statistical fault localization techniques is that they tend to make
strong assumptions on how developers behave during debugging. These
assumptions are often unrealistic, which considerably limits the practical
applicability and effectiveness of these techniques. To mitigate this issue,
we propose Swift, an iterative user-driven technique designed to support
developers during debugging. Swift (1) leverages statistical fault local-
ization to identify suspicious methods, (2) generates high-level queries
to the developer about the correctness of specific executions of the most
suspicious methods, (3) uses the feedback from the developer to improve
the localization results, and (4) repeats this cycle until the fault has been
localized. Our empirical evaluation of Swift, performed on 26 faults in
5 programs, produced promising results; on average, Swift required less
than 10 user queries to identify the fault. Most importantly, these queries
were only about input/output relationships for specific executions of the
methods, which developers should be able to answer quickly and with-
out having to look at the code. We believe that Swift is a first important
step towards defining fault localization techniques that account for the
presence of humans in the loop and are practically applicable.

1 Introduction

Debugging contributes greatly to software development costs [25]. It is therefore
not surprising that researchers and practitioners alike invested much effort in
defining techniques that can help developers in this task. Statistical fault local-
ization (SFL) techniques, in particular, became extremely popular in recent years
(e.g., [4,6–8,14,15,18,22,27,28]). These techniques compute suspiciousness val-
ues for various program entities using coverage information of passing and failing
test cases and use theses values to produce a ranked list of program entities in
decreasing order of suspiciousness. While significant progress has been made in
this field, there is evidence that (1) asking developers to examine a possibly long
list of suspicious program entities in order and (2) expecting developers to recog-
nize faulty lines by simply looking at them are both unrealistic expectations. In
c© Springer International Publishing AG 2016
R. Bloem and E. Arbel (Eds.): HVC 2016, LNCS 10028, pp. 82–98, 2016.
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fact, even when provided with SFL tools, developers tend not to use them and
rely on traditional manual debugging approaches instead [21].

There is thus a disconnect between research and practice in the area of soft-
ware debugging and, in particular, fault localization. In standard practice, a
debugging task typically proceeds as follows. Developers observe that a program
execution exhibits some unintended behavior, make hypotheses on what pro-
gram entities caused that behavior, and confirm or reject these hypotheses by
examining the execution at specific points. They then incorporate the additional
knowledge acquired in the process to refine their hypotheses, possibly observing
the faulty execution at different points and continuing this feedback loop until
they identify the fault responsible for the observed unintended behavior. In this
setting, debugging is an art that mainly relies on developers’ knowledge and
their familiarity with the software system being debugged.

Fig. 1. Swift’s interaction with
the user (SUT stands for System
Under Test).

To support the above process, while try-
ing to automate it as much as possible, we
present Swift, an iterative user-driven technique
designed to help developers during debugging in
a natural way. Figure 1 provides a high-level view
of Swift, which performs SFL with humans in the
loop as follows. First, it leverages traditional SFL
techniques to identify and rank suspicious meth-
ods. Second, it generates queries to the developer
about the correctness of specific executions of
the most suspicious method. A query consists of
the inputs to that method and the corresponding outputs, possibly including
relevant program states. The developer answers a query by asserting whether
the outputs are correct for those inputs. Third, Swift uses the response provided
by the developer by incorporating it in the form of a “virtual” test case and
using this additional information to improve localization results. Swift reiterates
these steps until the SFL results become precise enough that the fault can be
localized by the developer.

A key aspect of Swift is the use of high-level abstractions to gather input from
the developer. Unlike traditional SFL, in which developers are simply provided
with a list of statements and must follow the list with no guidance and no addi-
tional context, Swift guides the developers towards the fault through an iterative
process that only requires them to check high-level input-output relationships
at the method level.

To assess the effectiveness of Swift, we implemented it in a prototype tool and
performed an empirical study on 5 programs and 26 faults for these programs,
while simulating the developers’ answers using an automated oracle. The results
of our study, albeit preliminary, are promising and provide support for further
research in this direction. On average, for the faults considered, Swift required
less than 10 user queries to identify the fault, which is an initial indication of
the practical applicability and potential usefulness of our approach.
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The main contributions of this paper are: (1) a novel technique that over-
comes some of the limitations of existing SFL approaches by leveraging user
feedback in a natural way; (2) an implementation of our approach for Java pro-
grams that is publicly available at http://www.cc.gatech.edu/∼orso/software/
swift/, together with our experimental infrastructure; and (3) an empirical eval-
uation that provides initial evidence of the potential usefulness of our approach
and identifies several directions for future work.

2 Running Example

Fig. 2. Faulty BoundedStack [24].

Figure 2 shows class BoundedStack and its
test suite with two test cases, t1 and
t2. In this example, test t2 fails with
an ArrayIndexOutOfBoundsException when
calling bs.peek(). That happens because
of a fault at line 11. The method pop()

is expected to have no effect when the
stack is empty, but it incorrectly sub-
tracts numElems even when numElems == 0,
resulting in a negative stack size. A check
on the size of the stack would fix the prob-
lem in this case.

For this example, SFL would rank
line 18 as the most suspicious because the
line is executed in the failing test case,
but not in the passing test case. All other
statements, except the one at line 15 have
the same suspiciousness values. Thus, in
this case, fault localization alone does not
help the developer to diagnose the fault.

3 Approach

Figure 3 shows the workflow of Swift,
which takes as input the system under test
(SUT) and a test suite for the SUT with
at least one failing test case.

In Step 1, Swift executes the provided test suite and collects runtime data
about each test, including (1) coverage and pass/fail information, for perform-
ing fault localization, and (2) dynamic call information, for suitably incorpo-
rating developers’ feedback. In Step 2, Swift leverages existing fault localiza-
tion techniques to compute the suspiciousness of program entities based on
the collected runtime information. Initially, only the executions of the exist-
ing test cases are considered. As developers interact with Swift while debugging,
their knowledge regarding the examined parts of the executions is incorporated
as additional runtime data, providing extra information for fault localization.

http://www.cc.gatech.edu/~orso/software/swift/
http://www.cc.gatech.edu/~orso/software/swift/
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Fig. 3. Workflow overview

In Step 3, Swift guides the developer to
examine the parts of a failing test exe-
cution where highly suspicious program
entities are being executed, by means
of debugging queries. In this setup, the
developer is expected to check correct-
ness of the method execution based on
the provided input and output, with pos-
sibly partial state information, and give
the answer back to Swift. Step 4 incorpo-
rates the developer’s answer to the debug-
ging query by modifying and augmenting
the runtime data. The interactive debug-
ging process then loops back to Step 2.
Swift refines fault localization results with
the additional knowledge from the developer and generates another debugging
query using the refined suspiciousness values. This process continues until either
the fault is found or the developer gives up and stops Swift.

3.1 Technical Details

We now discuss the steps of Swift in detail. For each step, we first describe the
step and then illustrate it on the example faulty program from Sect. 2.

Test Execution. In this initial step, Swift executes the test suite for the SUT
and collects an execution tree for each test. Figure 4 shows the execution tree that
corresponds to test case t2 in the BoundedStack example of Fig. 2. In the figure,
each box represents a method invocation node. The labels of the nodes show the
method name on the first line and the direct statement coverage information
on the second line. The set of numbers inside the brackets indicates the covered
statements, corresponding to the line numbers in Fig. 2.

Fig. 4. Execution tree corresponding
to test t2 (see Fig. 2).

Fault Localization. Any fault localiza-
tion technique that uses coverage infor-
mation to rank program entities accord-
ing to their fault suspiciousness can be
used in our approach. Swift currently uses
Ochiai, as it has been shown to perform
well in practice [3,20]. In its first itera-
tion, Swift uses the input test suite to per-
form traditional fault localization. In later
iterations, it also includes virtual tests. These additional tests model developer
answers to queries in the form of synthetic execution trees and have the effect
of fine tuning the fault suspiciousness values based on developer’s input.
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Table 1. Example of coverage and
suspiciousness information for the
BoundedStack example.

✓ ✗ ✓

t1 t2 vt susp.

5 1 1 0 0.7

9 1 1 1 0.6

11 1 1 0 0.7

14 1 1 0 0.7

15 0 0 0 0.0

16 1 1 0 0.7

18 0 1 0 1.0

20 1 1 1 0.6

Consider the BoundedStack example.
Assume that Swift generated a query involv-
ing method invocation bs.push(7) from
Fig. 2 (line 35) and that the developer has
examined the corresponding execution tree
and determined that it is correct. This inter-
action produced the virtual test vt. Table 1
shows fault localization results for this sce-
nario. Row numbers to the left of the
table indicate line numbers from Fig. 2.
Columns t1, t2, and vt show coverage for
each statement in the corresponding test
case. Tests t1 and t2 belong to the original
test suite whereas test vt is the virtual test corresponding to the execution tree
rooted at the bs.push(7) invocation. It reflects the developer’s feedback that this
method invocation produces a correct result. The symbol “✓” above the name of
the test indicates that the test is passing whereas “✗” indicates a failure. Column
susp. shows the suspiciousness of a statement as computed by the Ochiai formula.
Lines 9 and 20 have lower suspiciousness because of the additional test vt.

Query Generation. Swift asks developers for feedback through debugging
queries, which basically consist of the input and output of a method invoca-
tion. Developers are expected to assess the correctness of the computation for
that invocation. The rationale for this choice is that we expect the semantics of
methods to be relatively well understood by developers who are familiar with
the program being debugged.

Swift determines which method invocation to select for generating a debug-
ging query from the fault localization results computed in Step 2. Swift picks,
from the failing executions, a method invocation that directly covers the most
suspicious statement. In case multiple statements are ranked at the top, one
is chosen randomly. And if there are multiple failing executions that cover the
most suspicious statement, Swift picks the invocation from the test that executes
the smallest number of instances of the suspicious statement. The rationale for
this heuristic is that the number of queries is a reasonable proxy for human
effort, which Swift tries to minimize. Intuitively, the heuristic we presented above
enables one to diagnose highly-suspicious statements more quickly, as it eagerly
chooses cases that require fewer number of queries for the user to answer.

Feedback Incorporation. Developers’ answers to debugging queries provide
Swift with additional knowledge about the correctness of partial program exe-
cutions. This section discusses how Swift uses this information to update the
execution trees and thus incorporate developers’ feedback. Figure 5 shows the
pseudo-code of the algorithm for this part of our technique.

The algorithm takes as input the user feedback, represented by class Feedback
(lines 1–5). Type Invocation represents a method invocation node in the
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Fig. 5. Algorithm for incorporating user feedback into execution profiles.

execution tree. Field invocation references the method invocation selected for
this debugging query. Field fromProfile refers to the root of the incorrect execu-
tion profile from which invocation is selected. Finally, field isCorrect indicates
developer’s answer to the correctness of the invocation. Lines 7 to 8 correspond to
the two sets of execution trees whose correctness is known. They are maintained
by Swift throughout the debugging process and used by the fault localization
component for suspiciousness computation.

For a particular debugging query, if the developer determines that the corre-
sponding method execution is correct, Swift can conclude that this method invo-
cation instance is not responsible for the failure (under the simplifying assump-
tion that the developer is correct). In these situations, Swift removes the exe-
cution tree rooted at this method invocation node from its parent and marks
this execution tree as a correct execution. Swift then checks whether the modi-
fied fromProfile no longer covers some statements it originally covered. Because
these statements cannot be the cause of the failure at hand, they are excluded
from consideration. Lines 12 to 19 show the pseudo-code for this case. Note that
it is not necessarily true that the method invocation that is determined as cor-
rect does not exercise the faulty statement. The issue of coincidental correctness,
which is considered to negatively affect the precision of fault localization tech-
niques [4,26], could also happen for method invocations. However, we conjecture
that this issue is less likely to occur for these shorter executions.

We show an example of how positive feedback is incorporated using the
BoundedStack program. For illustration purpose, we assume that, at the ini-
tial state, the first debugging query generated is about the method invocation
bs.push(7) on line 35 in failing test t2. The developer determines that this
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method invocation is correct. Figure 6a shows the execution profiles before and
after this feedback is incorporated. The structure and the coverage information
of the execution tree for test t1 is irrelevant and thus omitted.

A negative answer to a query corresponds to the case of a developer indicat-
ing that the method invocation in the query should have produced a different
result. Swift incorporates a negative answer by reducing the set of statements
potentially faulty. Specifically, Swift limits the suspicious set of statements to
those that are executed by the method invocation in this debugging query by
removing the coverage of all the other statements from the execution profiles
(lines 21 to 26 in the pseudo-code).

Fig. 6. Incorporating feedback.

Continuing the previous exam-
ple on the BoundedStack pro-
gram, we assume that the sec-
ond debugging query generated
is about the method invocation
bs.pop() on line 35. This is
the actual faulty method invo-
cation, and the developer would
determine that it is incorrect.
Figure 6b shows the execution
profiles after this negative feed-
back is incorporated.

3.2 Complete Debugging
Session

This section applies Swift to our
faulty program BoundedStack to
illustrate a complete debugging
session, including how Swift gen-
erates each debug query and
incorporates developer feedback
to update the fault localization
results.

The tables in Fig. 8 show,
for each iteration of Swift’s
debugging-query loop, the coverage matrix used for fault localization compu-
tation and the suspiciousness of each statement. Row numbers to the left of the
tables correspond to the lines of code in Fig. 2. Columns tx show the coverage
of each statement in the corresponding test case. As before, tests t1 and t2 are
in the original test suite in the code, whereas t3 and t4 are additional “virtual
tests” created from the answers to debugging queries. Column s in each table
shows the suspiciousness of the statements as computed by the Ochiai formula.
Table cells with a blue background contain values that are changed with respect
to the previous iteration. Due to space limit, the execution trees from which the
coverage matrices are derived are not shown.
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Fig. 7. Debugging query Q1.

The initial fault localization compu-
tation ranks line 18 at the top because it
is executed only in the failing test case
t2, while the actual fault (i.e., line 11) is
ranked lower since it is executed in both
passing and failing tests. Swift gener-
ates the first debugging query Q1, ask-
ing the developer to examine the method invocation bs.clear() called on line 36.
Figure 7 shows the details of the debugging query. Based on the information pro-
vided, the developer determines that this method invocation actually executed
correctly. Swift removes the sub-tree that represents this method invocation from
the execution tree of the failing test case t2 and marks the sub-tree as a correct
execution. The effect of this operation on the fault localization computation is
shown in the second table from the left in Fig. 8. Since line 18 is executed only
once in the invocation of clear(), its coverage flag in t2 is removed. A “virtual
test” t3, which corresponds to the new correct execution of the clear() invo-
cation, is also added to the coverage matrix. The suspiciousness of line 18 is
changed to 0, as it is no longer covered by failing executions.

Fig. 8. Complete debugging session.

After the answer to the debugging query Q1 is incorporated, lines 5, 9, 11, 14,
16 and 20 are ranked at the top and have the same suspiciousness value. Swift
randomly picks one of them to generate the next debugging query. Assume that
Swift picks line 9 and selects the method invocation bs.push(8) called on line 35
to generate debugging query Q2. The developer determines that the execution
of this method invocation is also correct. Swift modifies the execution profiles in
the same way as before. Another passing “virtual test” t4 that covers lines 9 and
20 is added to the coverage matrix and, as a result, the suspiciousness values of
these 2 lines are reduced.

Fig. 9. Debugging query Q3.

For the third debugging query, Q3,
assume that Swift picks line 11, which
is the actual fault. Method invoca-
tion bs.pop() on line 37 is selected.
Figure 9 shows the details of the query.
The developer determines that this
method invocation is incorrect by spot-
ting numElems == -1 in its output data. In a realistic debugging session, the
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developer would have found the fault at this point and concluded the debugging
activity, as the faulty program state is infected in the current method invocation
by a statement in its method body. For the purpose of illustration, we assume
that the developer answers this debugging query instead and continues. Swift
incorporates the feedback by removing the coverage flag of all the statements,
except for the ones covered by the incorrect pop() invocation, from the failing
executions. Consequently, after this debugging query is considered, the cover-
age of t2 contains only line 11, which is also ranked at the top by Swift’s fault
localization component.

4 Empirical Evaluation

In our evaluation, we investigate the following two main research questions:

R1 – Can Swift locate the fault with a small number of debugging queries?
R2 – How does user feedback affect fault ranking?

The rest of this section describes the subject programs and faults we used
(Sect. 4.1), explains the experimental setup we used (Sect. 4.2), and discusses
experimental results to answer these questions (Sect. 4.3).

4.1 Subjects and Faults Table 2. Characterization of subjects and faults.
Subject Repo. Fault ID P-F #Cls. #Meths. kLOC

jtopas [2] FAULT 2 123-3 25 251 7

FAULT 6 125-1 25 251 7

commons-math [2] C AK 1 1162-1 236 1723 43

EDI AK 1 1162-1 236 1723 43

F AK 1 1162-1 236 1723 43

M AK 1 1162-1 236 1723 43

VS AK 1 1162-1 236 1723 43

CDI AK 1 2048-2 477 3899 83

MU AK 1 2048-2 477 3899 83

MU AK 4 2049-1 477 3899 83

URSU AK 1 2048-2 477 3899 83

xml-security [2] CN2 AK 2 89-2 198 1278 40

C2E AK 1 92-2 198 1275 41

jsoup [1] 1 3 4 b3 225-1 75 611 8

1 4 2 b2 295-1 89 698 9

1 5 2 b2 236-4 86 682 9

1 5 2 b5 243-1 86 682 9

1 6 1 b1 290-2 198 979 13

1 6 3 b3 323-1 206 1032 14

commons-lang [16] b6 2125-3 169 2281 57

b9 2057-8 170 2224 54

b10 2055-8 170 2224 54

b16 1913-1 160 2142 53

b24 1698-1 143 2022 50

b26 1677-1 139 2000 50

b39 1566-1 123 1835 45

To empirically assess the
effectiveness of Swift, we
implemented the technique
in a prototype tool that
works on Java programs. We
evaluated the effectiveness
of Swift on a benchmark
with 26 faults distributed
across 5 open-source appli-
cations from three reposito-
ries: SIR [2], Defects4J [16],
and SAEG [1]. Each subject
program contains multiple
faulty versions. We selected
versions that contain single
non-concurrent faults that
can be revealed by at least
one failing test case in
the original test suite. Fur-
thermore, to better iden-
tify the benefits of Swift in
the debugging process, we
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excluded cases where the initial fault localization results ranked the faulty state-
ment alone at the top. The cases where the fault is initially ranked at the top
together with a large number of other statements are included in the experiment
because in this situation the fault is still difficult to identify and Swift can reduce
the suspiciousness of non-faulty statements. Table 2 characterizes the faults we
considered. Column “Repo.” shows the repository from which we obtained the
subject. Column “Fault ID” shows the identifier of a given fault, as documented
in their source repository. Column “P-F” shows the number of passing (P) and
failing (F) tests for that fault. The last three columns show the number of classes,
methods, and lines of code in the faulty version.

4.2 Experimental Setup

For each of the faults that we considered in the experiment, we applied Swift
and recorded the number of debugging queries needed to locate the fault. We
consider the fault to be located if the currently selected method invocation is
the one that directly infected the state. To track how fault localization results
change during the debugging process, we record the debugging query, its answer,
and the updated ranking at each iteration step of Swift’s main loop.

In this study, we used an automated oracle, instead of a human developer,
to answer queries. For each of the faults in our experiment, we obtained the
fixed version of the program and confirmed that all the tests pass. We also made
sure that all code changes between the two versions involved faulty statements.
Therefore, any difference in their execution must be caused by the fault. The
automated oracle answers debugging queries by executing the fixed program to
get the expected output of the invocation in the query, and compare it with the
observed output.

One limitation of our current implementation of the automated oracle is
that it does not handle infected program states in external resources (e.g., files,
and network communications). The subject programs we used do not have cases
where the faulty state is manifested only in external resources.

There are cases in which the oracle is unable to find the corresponding method
invocation that has the same input in the execution of the fixed program. This
happens when the input of the method invocation in the debugging query has
already been infected by the fault, and thus does not exist in the execution of the
fixed version. In these cases, the oracle reports to Swift that it cannot answer the
query, which is considered inconclusive and does not result in the generation of
a virtual test. However, to be conservative in assessing the effectiveness of Swift,
we still count these queries (i.e.,we add the query to the set of queries needed
to locate the fault). It is important to note that, in our benchmark, these cases
happen infrequently.

4.3 Results

Table 3 summarizes our results. Column “#Queries” shows the number of
queries that Swift requires to locate the fault. Columns “Stmt Initial Rank”
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Table 3. Summary of results.

Subject Fault ID #Queries Stmt. Stmt. Methods Invocations

Initial Rank Final Rank Initial Rank Initial Rank

jtopas FAULT 2 1 1/11 1/10 1/2 1/4

FAULT 6 52 69/71 1/2 20/21 1231/1238

commons-math C AK 1 1 3/5 1/1 2/3 2/3

EDI AK 1 7 7/37 4/15 3/7 5/15

F AK 1 2 11/38 4/8 4/4 5/5

M AK 1 14 94/105 1/3 23/24 15,541/15,542

VS AK 1 4 2/16 2/9 1/4 1/8

CDI AK 1 1 12/26 11/25 2/2 2/2

MU AK 1 11 27/29 3/5 2/2 11/11

MU AK 4 11 12/36 1/6 3/6 6,065/16,971

URSU AK 1 1 28/37 4/13 10/10 16/16

xml-security CN2 AK 2 1 2/9 1/2 1/1 3/5

C2E AK 1 26 300/456 36/67 35/49 211/348

jsoup 1 3 4 b3 5 232/248 1/1 46/52 789/795

1 4 2 b2 8 45/49 3/7 10/10 20/20

1 5 2 b2 10 51/60 2/8 16/18 27/29

1 5 2 b5 1 4/20 2/4 3/6 15/25

1 6 1 b1 19 54/59 1/6 14/14 33/33

1 6 3 b3 4 167/176 7/14 111/112 353/359

commons-lang b6 3 120/121 1/2 34/34 126/126

b9 15 46/73 2/24 14/17 26/34

b10 7 61/63 1/3 15/15 73/73

b16 3 24/53 4/15 1/5 1/20

b24 39 1/65 1/1 1/3 1/71

b26 4 112/114 1/3 17/17 20/20

b39 5 4/53 2/11 2/2 15/15

and “Stmt Final Rank” show the statement-level ranking of the fault before and
after running Swift. Column “Methods Initial Rank” shows the method-level
ranking of the fault in the initial state. We report rankings in the format “best-
case rank/worst-case rank”, as the faulty program entities can share the same
suspiciousness values as other program entities. Note that we omitted the final
method-level ranking. This is because the faulty methods are always ranked at
the top after running Swift. It is also important to note that, in the final state
of the debugging process, the statements ranked as high as (or higher than) the
actual faulty statement are all in the same method that contains the fault. Col-
umn “Invocations Initial Rank” shows the number of method invocations to be
examined before reaching the first faulty method invocation when the answers
to debugging queries are not incorporated. We also refer to these numbers as
the initial method-invocation ranking. These numbers are also shown in “best
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case/worst case” format, depending on the position of the fault in the ranking
among the statements that have the same suspiciousness value.

Overall Effectiveness. For 23 out of the 26 faulty program versions that
we considered, the fault is found with less than 20 debugging queries (column
“#Queries”). The average number of queries across all versions is about 10.
Overall, these results indicate that a relatively small number of queries suffice
to guide developers to the places where the fault infects the program state.

Note that, for this study, there are no obvious baselines to directly com-
pare Swift against, beside a vanilla statistical fault localization approach. As
the results show, inspecting code according to the output of statistical fault
localization alone would be challenging (see column “Stmt. Initial Rank”). For
xml-security’s fault C2E AK 1, for example, a statistical fault localization approach
would require the developer to inspect 300 statements in the best case and 456
statements in the worst case. In contrast, Swift only needs 26 queries to isolate
the faulty method invocation (see column “#Queries”).

We note that the faulty statement is not always ranked among the most
suspicious statements, even after the faulty method invocation has been isolated.
This could happen if (1) executing the faulty code does not always infect the
state and (2) other statements in the same method are executed more often than
the number of times the state is infected. In this case, the faulty statement is
covered by a relatively higher number of correct execution profiles, which reduces
its suspiciousness score. Note, however, that this is not central to Swift as the
technique focuses on isolating the faulty method invocation, not on optimizing
the ranking of statements.

Progress of Fault Rankings. We elaborate on the effects of incorporating
answers of debugging queries in Swift.

Figure 10 shows the progress of fault localization ranking as Swift incorpo-
rates answers on 2 representative faulty subject versions. We considered worst-
case statement-level ranking in the plots. The x-axis denotes the number of
queries answered over time and the y-axis denotes the ranking of the fault.

Fig. 10. Progress of stmt.-level suspiciousness.

The plot of joup 1 4 2 b2 rep-
resents the case of the majority
of the faults from the experiment
(22 out of 26 cases). In this case,
the ranking of the faulty state-
ment monotonically decreases (i.e.,
the faulty statement becomes more
suspicious) from 49 down to 7
as 8 debugging queries are answered. In contrast, the fault ranking of
xml-security C2E AK 1 first increases, when incorporating the first 12 answers,
and decreases afterwards. The reason for this type of progress pattern is that
the execution of the faulty statement does not always infect the state. The first
12 queries are all classified as correct, for instance; although some of these queries
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indeed cover the faulty statement, they do not infect the state. For this reason,
in the beginning of the debugging process, the faulty statement appears rela-
tively more often associated with correct execution profiles, leading to an initial
increase in the ranking.

Considering all the faults we analyzed in this experiment, xml-security C2E AK 1

and commons-lang b24 are the only ones where the fault ranking increases by
a significant amount at some stage during the debugging process. We found
that, for these cases, the number of queries needed to locate the fault was also
larger compared to the other versions. Intuitively, these scenarios can be further
explained by considering that the basic assumption of statistical fault localization
is that the execution of faulty code is more correlated with failing than passing
runs. However, if faulty statements infect the state infrequently when executed,
this assumption becomes invalid. Swift handles these situations by calibrating
suspiciousness scores of highly suspicious but non-faulty program entities.

Effect of Feedback Incorporation. In addition to looking at how Swift
improves fault localization rankings, we also assessed how effective the updates
to the ranking list are for guiding the search of the faulty method invocation
(column “Invocations Initial Rank”). To that end, for each faulty version, we
measured the number of queries that would be generated if Swift did not update
the fault localization results using the answers to debugging queries. In this
setup, Swift would start from the beginning of the initial ranking list of state-
ments and would present all method invocations that covered the most suspicious
statement to the developer. It would then go to the next statement of the ranking
list when all method invocations of the current statement are answered.

By comparing this number with the number of queries needed to locate the
faulty method invocation (column “#Queries”), we can observe a significant
reduction in the number of methods to examine when query answers are consid-
ered. Furthermore, in 4 of the 26 faults, the number of method invocations to
examine without feedback incorporation is larger than 500, making the task of
examining all of them prohibitive. This result highlights the important role that
feedback incorporation can play in the iterative debugging process.

4.4 Discussion

Although we used the ranking of statistical fault localization in our evalua-
tion, this ranking is only used internally in Swift. The technique uses high-level
abstractions to communicate results to users, who do not have to deal with the
low-level abstractions used within the tool.

It is important to recall that to facilitate automation of our experiments we
stop the debugging session when Swift is able to generate a query associated to
a method invocation that injects the fault (see Sect. 4.2). In practice, however,
users can stop (and later continue) using Swift at any point in time. This could
be triggered, for instance, by the desire to check a debugging hypothesis from a
suspicious fault manifestation.
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The important problem of deciding how to present queries to users is outside
the scope of this paper, which mainly focuses on the feasibility of the general
approach. In future work, we will explore this aspect in depth and investigate
different approaches, such as highlighting/obfuscating (ir)relevant fields, using
program slicing, and using suitable visualization techniques. In a continuous soft-
ware development environment, the users’ effort of answering debugging queries
can be further reduced by caching previous answers.

Our preliminary empirical evaluation shows that Swift is promising, as it
provides initial evidence that Swift can locate faults by generating a relatively
small number of user queries (Sect. 4.3). The evaluation also shows that our
results do not seem to be coincidental, as the systematic incorporation of answers
to queries improves the overall diagnosis (Sects. 4.3 and 4.3).

4.5 Threats to Validity

The main threats to validity are as follows. External Validity: The selection
of subjects and faults we used may not generalize to other cases. To mitigate
this threat, we used subjects from a variety of sources and selected according
to a documented criteria, described in detail in Sect. 4.1. Another threat is that
using automated oracles to simulate real users might have produced results that
are not representative of a typical developer’s performance. However, for an
initial study that is meant to assess the feasibility of our new approach, we
believe that this approximation is justified. Internal Validity: Errors in our
implementation could affect the validity of our results. To mitigate this threat,
we thoroughly checked our implementation and our experimental results, looking
for discrepancies that would signal potential errors.

5 Related Work

There is an enormous body of related work on statistical fault localization
and debugging in general (e.g., [3,7,13,14,18,28]). In the interest of space, and
because our work builds on and extends traditional fault localization, we do not
discuss this work here and focus instead on techniques that share our specific
goals and general approach.

Ko and Myers proposed Whyline [17], an interactive debugger that allows
developers to ask high-level questions about how values in the state came to be.
Similar in spirit to dynamic backward slicing, developers can use Whyline to
localize faults by iteratively asking “why” questions involving parts of the state
that seem suspicious. In our approach, the tool asks questions to the developer
instead, and does so by focusing on suspicious parts of the computation.

Several existing techniques use developer feedback to improve fault localiza-
tion. Algorithmic Debugging (AD) [23] is a debugging technique that is popular
in the functional programming community. It asks questions to testers based on
the structure of the execution tree induced from one failing test and systemati-
cally prunes the tree based on the answers to get to a point where the fault can be
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isolated. In contrast to Swift, AD does not take coverage profiles of multiple test
runs into account to guide the debugging process. The work presented in [5,10]
incorporates developer answers about the correctness of statements to refine a
ranked list of suspicious statements. Swift differs from these techniques in that
it asks questions about concrete input-output pairs during execution and does
not rely on developers’ ability to assess the correctness of individual program
statements. The techniques in [11,12] suggest breakpoints using fault localiza-
tion techniques and refine the suggestions based on developers’ feedback on the
correctness of program states. At each breakpoint, they ask the developers to
examine the program states using a debugger and determine whether the state
has been infected, and then increase or decrease the suspiciousness of related
statements by a fixed ratio based on the feedback. In contrast, Swift generates
user queries at the level of abstraction of methods in the program, whose seman-
tics is more likely to be understood by developers than that of program states
considered in isolation.

At a high-level, Swift employs a form of supervised learning to solve a pro-
gram analysis problem. Recently, user supervision has been explored to solve
undecidable problems in program analysis. Dillig et al. [9] and Mangal et al. [19]
independently explored the feedback given by domain specialists to improve
precision and recall in static analyses. In their context, user feedback indicates
whether or not a warning is correct, and feedback is restricted to the output of
the analysis. Swift, conversely requests user feedback on partial executions and
is a dynamic (rather than static) analysis that supports debugging (rather than
bug finding).

6 Conclusions

We presented Swift, a technique that aims to mitigate the existing disconnect
between research and practice in the area of software debugging, and in particular
in fault localization. Swift operates in an iterative and user-driven fashion. At
each iteration, developers are provided with queries about the correctness of a
specific method execution; Swift then processes the answers to these question and
suitably increases or decreases the suspiciousness of the program entities involved
in the computation. This process allows Swift to improve the localization results
and guide the developer increasingly closer to the fault at hand.

We implemented Swift in a prototype that is publicly available, together
with our experimental infrastructure. We used our implementation to perform
an empirical evaluation of Swift on 5 programs and 26 faults for these programs.
Our results show that Swift can, in most of the cases we considered, converge to
the fault using only a small number of queries (less than 10, on average).

Our first goal for future work is to investigate ways to encode and visualize
the queries so that they are as easy to consume and answer as possible for
the developers. We will then perform a user study to assess how our approach
performs in a real-world scenario, in which actual developers are answering the
queries produced by Swift and performing debugging tasks.
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Abstract. Formula-based debugging techniques are extremely appeal-
ing, as they provide a principled way to identify potentially faulty state-
ments together with information that can help fix such statements. These
approaches are however computationally expensive, which limits their
practical applicability. Moreover, they tend to focus on failing test cases
and ignore the information provided by passing tests. To mitigate these
issues, we propose on-demand formula computation (OFC) and clause
weighting (CW). OFC improves the overall efficiency of formula-based
debugging by exploring all and only the parts of a program that are rele-
vant to a failure. CW improves the accuracy of formula-based debugging
by leveraging statistical fault-localization information that accounts for
passing tests. Although OFC and CW are only a first step towards mak-
ing formula-based debugging more applicable, our empirical results show
that they are effective and improve the state of the art.

1 Introduction

Because debugging is expensive and time consuming, there has been a great
deal of research on automated techniques for supporting various debugging tasks
(e.g., [3,5,14,17,24,25]). Recently, in particular, we have witnessed a consider-
able interest in techniques that can perform fault localization in a more princi-
pled way (e.g., [7,11,15,21]). These techniques, collectively called formula-based
debugging [20], model faulty programs and failing executions as formulas and per-
form fault localization by manipulating and solving these formulas. As a result,
they can provide developers with the possible location of the fault, together
with a mathematical explanation of the failure (e.g., the fact that an expression
should have produced a different value or that a different branch should have
been taken at a conditional statement).

BugAssist [15] is a technique of particular interest in this arena. Given a
faulty program, a failing input, and a corresponding (violated) assertion, BugAs-
sist performs fault localization by constructing an unsatisfiable Boolean formula
that encodes (1) the input values, (2) the semantics of (a bounded version of)
the faulty program, and (3) the assertion. It then uses a pMAX-SAT solver
to find maximal sets of clauses in this formula that can be satisfied together

c© Springer International Publishing AG 2016
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and outputs the complement sets of clauses (CoMSS) as potential causes of the
error. Intuitively, each set of clauses in CoMSS indicates a corresponding set of
statements that, if suitably modified (e.g., replacing the statements with angelic
values [6]), would make the program behave correctly for the considered input.

Although effective, BugAssist is computationally expensive, as it builds a for-
mula for (a bounded unrolling of) all possible paths in a program. Moreover, like
most formula-based debugging approaches, BugAssist does not take into account
passing test cases, thus missing two important opportunities. First, passing exe-
cutions can help identify statements, and thus parts of the formulas, that are
less likely to be related to the fault, which can help optimize the search for a
solution. Second, passing executions can help filter out locations that may be
potential fixes for the failing executions considered but could break previously
passing test cases if modified [6].

We propose two possible ways of addressing these issues: on-demand formula
computation (OFC) and clause weighting (CW). OFC is an on-demand algorithm
that can dramatically reduce the number of paths encoded in a formula, and thus
the overall complexity of such formula and the cost of computing a pMAX-SAT
solution for it. Intuitively, our algorithm (1) builds a formula for the path in
the original failing trace, (2) analyzes the formula to identify additional relevant
paths to consider, (3) expands the formula by encoding these additional paths,
(4) repeats (2) and (3) until no more relevant paths can be identified, at which
point it (5) reports the computed solution. CW accounts for the information
provided by passing test cases by assigning weights to the different clauses in an
encoded formula based on the suspiciousness values computed by a statistical
fault localization technique. Doing so has the potential to improve the accuracy
of the results by helping the solver compute CoMSSs that are more likely to
correspond to faulty statements.

To evaluate our approach, we performed an empirical study in which we
compared the performance of BugAssist, used as a baseline, with that of a tech-
nique that also uses CW, OFC, or both. In the study, we first applied the tech-
niques considered to 52 versions of two small programs, to assess several tradeoffs
involved in the use of CW and OFC and compare with related work, and then
performed a case study on a real-world bug in a popular open source project.
Our results show that CW and OFC can improve the performance of BugAssist
in several respects. First, the use of CW resulted in more accurate results—in
terms of position of the actual fault in the ranked list of statements reported
to developers—in the majority of the cases considered. Second, CW and OFC
were able to reduce the computational cost of BugAssist by 27 % and 75 % on
average, respectively, with maximum speedups of over 70X for OFC. Overall,
our results show that CW and OFC are promising, albeit initial, steps towards
more practically applicable formula-based debugging techniques.
The main contributions of this paper are:

– The definition of CW and OFC, two approaches for improving the accuracy
and efficiency of formula-based debugging.
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– A prototype implementation of our technique that is available for download,
together with our experimental infrastructure and benchmark programs (see
http://www.cc.gatech.edu/∼orso/software/odin/).

– Initial empirical evidence that CW and OFC are as effective and more efficient
than existing approaches.

2 Improving Formula-Based Debugging

2.1 Clause Weighting (CW)

CW consists of using the information from passing executions to inform a
wpMAX-SAT solver. More precisely, CW leverages the suspiciousness values
computed by a statistical fault localization technique and assigns to each pro-
gram entity en, and thus to the corresponding clause in the program formula, a
weight inversely proportional to its suspiciousness susp(en): weight(en) = 1/susp(en).
If the suspiciousness value of an entity is zero, which means that the entity is
only executed by passing tests, CW assigns to it the largest possible weight.
By assigning different weights to different clauses, CW transforms the original
pMAX-SAT problem in BugAssit into a wpMAX-SAT problem. The rationale
for CW is that, by the definition of wpMAX-SAT, clauses with higher weights
are more likely to be included in an MSS (i.e., less likely to be identified as
causes of the faulty behavior), while clauses with lower weights are less likely to
be included in an MSS (i.e., more likely to be included in a CoMSS and thus be
identified as causes of the faulty behavior).

Formula-based debugging techniques such as BugAssist consider all possible
pMAX-SAT solutions equally and simply report them. Conversely, by leveraging
the heuristics in statistical fault localization, CW is more likely to rank the set
of clauses corresponding to the fault at the top of the list of solutions, thus
reducing developers’ debugging effort. This potential advantage, however, comes
at a cost. Solving wpMAX-SAT problems can be computationally more expensive
than solving a pMAX-SAT problem, which can outweigh CW’s benefits. To
understand this tradeoff, in our empirical evaluation we assess how CW affects
the accuracy and efficiency of formula-based debugging (see Sect. 3.2).

2.2 On-Demand Formula Computation (OFC)

Fig. 1. Overview of OFC.

OFC is our second, and more
substantial, improvement over tra-
ditional formula-based debugging.
Figure 1 shows an overall view of
OFC and its workflow. The inputs
to the algorithm are a faulty pro-
gram, represented as an Inter-
procedural Control Flow Graph
(ICFG), and a test suite that con-
tains a set of passing tests and one

http://www.cc.gatech.edu/~orso/software/odin/
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failing test. As it is common practice for debugging techniques, we assume that
a failure can be expressed as the violation of an assertion in the program. Given
these inputs, OFC produces as output a set of clauses and their corresponding
program entities (i.e., branches and statements). These are entities that, if suit-
ably modified, would make the failing execution pass. The expressions in the
reported clauses provide developers with additional information on the failure,
and can be considered a “mathematical explanation” of the failure. Similar to
other formula-based debugging techniques, OFC is capable of handling failures
that are triggered by multiple faults. In these cases, all faults that affect the
failure would appear in the set of program entities identified by the approach.

As Fig. 1 shows, OFC consists of three main steps. The key idea behind
OFC is to reason about the failure incrementally, by starting with the entities
traversed in a single failing trace, computing CoMSS solutions for the partial
program exercised by the trace, and then expanding the portion of the program
considered in the analysis when such solutions indicate that additional control-
flow paths should be taken into consideration to “explain” the failure. Specifi-
cally, in its first step (Trace Generator and Formula Generator), OFC generates
a new trace (the original failing trace, in the first iteration) and suitably updates
the trace formula, which encodes the semantics of the traces generated so far.
OFC’s second step (Solver) computes the CoMSSs of the (unsatisfiable) formula
built in the previous step. Finally, in OFC’s third step (Result Analyzer), the
algorithm checks whether there is any additional relevant branch to consider in
the program. If so, OFC returns to Step 1. Otherwise, it computes all possible
CoMSSs of the final formula to report to developers the set of relevant clauses
and their corresponding program entities.

Algorithm 1 shows the main algorithm, which takes as inputs the ICFG of
the faulty program and the program’s test suite and performs the three steps we
just described. We discuss each step in detail in the rest of this section.

Trace Generator and Formula Generator. After an initialization phase,
OFC iterates Steps 1, 2, and 3. Step 1 performs two tasks: trace generation and
formula generation.

Trace Generator. In its first part, Step 1 invokes the Trace Generator (Algo-
rithm2). In the first iteration of the algorithm, Trace Generator generates the
trace corresponding to the failing input. In subsequent iterations, it generates
a trace that covers the new program entities identified as relevant by Step 3
(see Result Analyzer), so as to augment the scope of the analysis. The inputs
to TraceGenerator are the failing input, the map that associates each branch
covered so far with the trace in which it was first covered, and the new relevant
branch for which a trace must be generated (by flipping it).

If flip br is null, which only happens in the first iteration of the algorithm,
TraceGenerator generates a trace by simply providing the failing input to the
program and collecting its execution trace (line 3). Otherwise, for subsequent
iterations, TraceGenerator retrieves old trace (line 5), the trace that first reached
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Algorithm 1. OFC
Input : ICFG: ICFG of the faulty program

TestSuite: test suite for the program
Output: faulty statements and their corresponding clauses

1 begin
2 FIN ← GetFailingInput(TestSuite)
3 ASSERT ← GetFailingAssertion(TestSuite)
4 TF ← {}, SP ← {}, clause origin ← {}, visited branches ← {}, flip br ← null

// Step 1

5 new trace ← TraceGenerator(FIN, visited branches, flip br)
6 flip br ← null
7 TF ← FormulaGenerator(new trace, TF, ICFG, SP, clause origin)

// Step 2

8 CoMSSs ← Solver(FIN, ASSERT, TF)
// Step 3

9 foreach CoMSS in CoMSSs do
10 foreach clause in CoMSS do
11 st ← clause origin(clause)
12 if st is a conditional statement then
13 <true br, false br> ← getBranches(st)
14 if visited branches(true br)==null then
15 flip br ← false br
16 go back to Step 1
17 end
18 if visited branches(false br)==null then
19 flip br ← true br
20 go back to Step 1
21 end

22 end

23 end

24 end
25 foreach CoMSS in CoMSSs do
26 foreach clause in CoMSS do
27 report clause and clause origin(clause)
28 end

29 end

30 end

branch flip br and generates a new trace, new trace (line 5). To generate the
trace, the algorithm provides the failing input to the program, forces the program
to follow old trace up to flip br, and flips flip br so that the program follows its
alternative branch (using execution hijacking [22]). The algorithm also updates
map visited branches by adding to it an entry for every branch newly covered
by new trace, including flip br ’s alternative branch (lines 8–12).

Formula Generator. After generating a trace, OFC invokes FormulaGenerator
(Algorithm 3), which constructs a new formula TF, either from scratch (in the
first iteration) or by expanding the current formula based on the program entities
in new trace (in subsequent iterations).

The inputs to FormulaGenerator are the ICFG of the faulty program, the
current trace formula, the portion of the program currently considered (and
encoded in the current trace formula), the trace newly generated by TraceGen-
erator, and a map from clauses to statements that originated them.

In its main loop, FormulaGenerator processes each statement st in the new
trace, new trace, one at a time. If st is not yet part of SP, the portion of the
program currently considered, the algorithm (1) adds st to SP, (2) encodes its
semantics in a new Boolean clause clausest, (3) conjoins clausest and TF, and
(4) updates map clause origin by mapping clausest to st.

Similar to other symbolic analyses (e.g., [8,15,21]), OFC operates on an
static single assignment (SSA) form of the faulty program [9,13]. The formula
generator models three types of statements in the program (and its trace):
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Algorithm 2. TraceGenerator
Input : FIN : failing input

visited branches: map from branches to traces that covered them
flip br: branch for which a new trace must be generated

Output: new trace: newly generated trace
1 begin
2 if flip br==null then
3 new trace ← Execute(Input, null, null)
4 else
5 old trace ← visited branches(flip br)
6 new trace ← Execute(Input, old trace, flip br)
7 end
8 foreach br in new trace do
9 if visited branches(br)==null then

10 visited branches(br) ← new trace
11 end

12 end
13 return new trace

14 end

Algorithm 3. FormulaGenerator
Input : ICFG: ICFG of the faulty program

TF : current trace formula
SP: portion of the program currently considered
new trace: newly generated trace

Output: TF : updated trace formula
SP: updated portion of the program currently considered

1 clause origin: map from clauses to statements that originated them
2 begin
3 foreach st ∈ new trace do
4 if st /∈ SP then
5 SP ← SP + st
6 if st is a conditional statement then
7 predicatest ← GetPredicate(st)
8 clausest ← (guardst = predicatest)
9 else

10 if st is a φ function then
11 phi ← φ function in st
12 cs ← φ’s conditional statement
13 guardcs ← cs’s condition
14 clausest ← ((guardcs ∧ (stLHS = stRHS,t)) ∨ (¬guardcs ∧ (stLHS =

stRHS,f )))

15 else
16 clausest ← (stLHS = stRHS)
17 end

18 end
19 clause origin(clausest) = st
20 TF ← TF ∧clausest
21 end

22 end
23 return TF

24 end

conditional statements, definitions that involve a φ function and definitions that
do not involve a φ function. To perform a correct semantic encoding, when
deriving clausest from st, FormulaGenerator must treat these three types of
statements differently.

If st is a conditional statement with predicate predicatest, the algorithm
retrieves such predicate from st (GetPredicate at line 7) and encodes st as
(guardst=predicatest), where guardst is a Boolean variable that represents st ’s
condition (line 8).

If st involves a φ function phi, the algorithm generates a clause (guardcs ∧
(stLHS = stRHS,t)) ∨ (¬guardcs ∧ (stLHS = stRHS,f )), where (1) cs is phi ’s
conditional and, similar to above, guardcs represents cs’s condition, (2) stLHS is
the variable being defined at st, and (3) stRHS,t and stRHS,f are the definitions
selected by phi along cs’s true and false branches. Basically, this clause explicitly
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represents the semantics of phi and encodes both the data- and the control-flow
aspects of the execution, which allows OFC to handle faults in both. Algorithm3
performs this encoding at lines 10–14.

Finally, if st is a traditional assignment statement, the algorithm encodes st
as stLHS = stRHS , the equivalence relation between the variable on st ’s lefthand
side and the expression on its righthand side (line 16). Because each assignment
in SSA form defines a new variable, clausest can be simply conjoined with the
current formula TF (line 20).

After processing a statement st and generating the corresponding clause
clausest, the algorithm records that clausest was generated from st and suit-
ably updates the trace formula TF (lines 19 and 20). Finally, after processing
all statements in new trace, FormulaGenerator returns TF.

Solver. In its second step, OFC leverages a pMAX-SAT solver to find all pos-
sible causes of the failure being considered. To do so, it invokes function Solver
and passes to it the failing input, the failing assertion, and the trace formula
constructed in Step 1 (line 8 of Algorithm1). Function Solver will first generate
a formula by conjoining the input clauses (i.e., clauses that assert that the input
is the failing input FIN ), the current trace formula TF, and the failing assertion
ASSERT. Because FIN causes the program to fail, that is, to violate ASSERT,
the resulting formula is unsatisfiable.

To suitably define the pMAX-SAT problem, Solver encodes (1) the input
clauses and the failing assertion as hard clauses, (2) the clauses in TF gen-
erated from φ functions as hard clauses, and (3) the other clauses in TF as
soft clauses. The input clauses and the assertion are encoded as hard clauses
because the failure could be trivially eliminated by changing the input or the
assertion, which would not provide any information on where the problem is in
the program. Encoding clauses generated by φ functions as hard clauses, con-
versely, ensures that control-flow related information is kept in the results, which
is necessary to handle control-flow related faults. At this point, function Solver
passes the so defined pMAX-SAT problem to an external solver and retrieves
from it all possible CoMSSs for the problem. If CW were also used, OFC would
generate a wpMAX-SAT problem instead by assigning a weight to each soft
clause based on the suspiciousness of the corresponding program entity (i.e.,
clause origin(clause)), as described in Sect. 2.1.

Result Analyzer. OFC’s third step takes the set of CoMSSs for the failure
being investigated, produced by Step 2, and generates a report with a set of pro-
gram entities (or an ordered list of entities, if we use CW and a wpMAX-SAT
solver) and corresponding clauses. The entities are statements that, if suitably
modified, would make the failing execution pass (i.e., the potential causes of
the failure being investigated). The expressions in the clauses associated with
the statements provide developers with additional information on how the state-
ments contribute to the failure, and as stated above, can thus be seen as a
mathematical explanation of the failure.
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This part of OFC, corresponding to lines 9–23 of Algorithm1, iterates
through each clause of each CoMSS computed in Step 2. For each clause, it
first retrieves the corresponding statement st. If st is a conditional statement,
the predicate in the conditional statement is potentially faulty, and taking a
different branch may fix the program. To account for this possibility, the algo-
rithm checks whether the conditional has one branch that has not been executed
in any previously computed trace and, if so, expands the scope of the analysis
by selecting that branch as a new branch to analyze and going back to Step 1
(lines 12–20). Step 1 would then add such branch to the list of relevant branches,
generate a new trace, constructs a new formula, and perform an additional iter-
ation of the analysis. Conversely, if both branches have already been covered, or
st is not a conditional statement, the algorithm processes the next clause.

If no clause in any CoMSS contains a conditional statement for which one of
the branches has not been covered, it means that the analysis already considered
the portion of the program relevant to the failure, so the algorithm can terminate
and produce a report (lines 25–28). To do so, OFC iterates once more through
the set of CoMSSs computed during its last iteration. For each clause in each
CoMSS, OFC reports it to developers, together with its corresponding statement,
as a possible cause (and partial explanation) of the failure.

3 Empirical Evaluation

To evaluate CW and OFC, we have developed a prototype tool for C programs
that implements four different formula-based debugging techniques: BugAssist
(BA), BugAssist with clause weighting (BA+CW), on-demand formula com-
putation (OFC), and on-demand formula computation with clause weighting
(OFC+CW). We have empirically investigated the following research questions:

RQ1: Does BA+CW produce more accurate results than BA? If so, what is
CW’s effect on efficiency?

RQ2: Does OFC improve the efficiency of all-paths formula-based debugging?
RQ3: Does OFC+CW combine the benefits of OFC and CW? If so, can it

handle programs that an all-paths technique could not handle?

3.1 Evaluation Setup

Implementation. Our implementation leverages the LLVM compiler infrastruc-
ture (http://llvm.org/), the Yices SMT solver (http://yices.csl.sri.com/) and the
Z3 theorem prover (http://z3.codeplex.com/).

Benchmarks. For our evaluation, we selected multiple faulty versions of two
programs (tcas and tot info) from the SIR repository (http://sir.unl.edu/) and a
real faulty version of the Redis open-source project [1]. tcas has 41 versions and
˜200 LOC, and tot info has 11 versions and ˜500 LOC. Both programs come
with test cases and a golden version that can be used as an oracle and were also

http://llvm.org/
http://yices.csl.sri.com/
http://z3.codeplex.com/
http://sir.unl.edu/
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used to evaluate BugAssist [15], which lets us directly compare our results with
an all-paths formula-based technique in terms of accuracy and efficiency. The
third benchmark is a (faulty) module of Redis that processes Lua scripts (www.

lua.org/) and consists of ˜1KLOC. We selected this module because it is a more
realistic piece of software that also comes with a set of test cases. The bug in
the module is a potential buffer overflow.

Study Protocol. For each faulty program version considered, we proceeded as
follows. First, we identified passing and failing test cases for that version. For
tcas and tot info, we did so by defining the assertion for a test using the output
generated by the same test when run against their golden implementation. For
the bug in Redis, we used the bug description [1] and the corresponding test [2].
We then ran all programs instrumented to collect coverage information for all
passing and failing tests at the same time. We used this coverage information
to compute the suspiciousness values for the branches and statements in each
program version using the Ochiai metric [3]. These are the values that BA+CW
and OFC+CW use to assign weights to the clauses in the program formula.
Second, for each failing input, we ran all four techniques on the faulty version.
Because the all-paths techniques timed out or could not build a formula for the
bugs in tot info and Redis (see Sect. 3.2 for details), we could only investigate RQ1
and RQ2 on tcas, whereas we used tcas, tot info, and Redis for RQ3. (For fairness,
we note that Reference [15] reports results for 2 versions of tot info. However, the
authors mention that those results were obtained working on a program slice,
and there are no details on how the slice was computed and on which version, so
we could not replicate them using either our or their implementation of BA.) For
each faulty version and each technique that successfully ran on that version, the
technique generated a report for the developers. To do a complete assessment
of the performance of the techniques, we also recorded the average CPU time
of each technique for each failing input, the number of iterations of the OFC
algorithm, whether the generated report contained the fault, and, if so, the rank
of the fault in the report.

3.2 Results and Discussion

RQ1—BA+CW Versus BA. To answer this research question, we compared
the accuracy and the computational cost of BA+CW and BA. To do so, we ran
both techniques on the 41 faulty versions of tcas and computed the results as
described in Sect. 3.1. Table 1 presents these results. The columns in the table
show the version ID, the number of lines of code a developer would have to
examine before getting to the fault, and the average CPU time consumed by
BA and BA+CW to compute their results. For comparison purposes, in the last
column we also report the results of a traditional fault-localization technique
(Ochiai). Note that, for BA+CW, the number of lines of code to examine corre-
sponds to the actual rank of the faulty line of code in the report produced by the
technique. BA, however, does not rank the potentially faulty lines of code, but
simply reports them as an unordered set to developers. Therefore, the number

www.lua.org/
www.lua.org/
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in the table corresponds to the number of lines of code developers would have to
investigate if we assume they examine the entities in the set in a random order
(i.e., half of the size of the set).

As Table 1 shows, both techniques were able to identify the faulty statements
for all versions considered. We can also observe that both BA and BA+CW
produced overall more accurate results than Ochiai (significance level of 0.05
for both BA and BA+CW for a paired t-test). Although this was not a goal of
the study, it provides evidence that formula-based techniques, by reasoning on
the semantics of a failing execution, can provide more accurate results than a
purely statistical approach. As for the comparison of BA and BA+CW, BA+CW
produced better results than BA, with a significance level of 0.05 for a paired t-
test. On average, a developer would have to examine 4.7 statements per fault for
BA+CW versus 6.5 for BA. By leveraging the suspiciousness values computed
by statistical fault localization, BA+CW can thus outperform BA in most cases
(33 out of 41). For the 8 cases in which BA+CW was slightly outperformed
by BA, manual analysis of the results showed that the weights computed by

Table 1. Results for BA and BA+CW when run on tcas.

Version BA BA+CW Ochiai Version BA BA+CW Ochiai

Rank Time Rank Time Rank Rank Time Rank Time Rank

v1 7.5 26 s 2 27 s 4 v22 4 7 s 5 7 s 22

v2 4 15 s 4 16 s 3 v23 5.5 15 s 10 12 s 23

v3 8.5 292 s 1 183 s 3 v24 7.5 30 s 8 23 s 23

v4 8 11 s 3 11 s 1 v25 5.5 297 s 4 216 s 2

v5 7.5 352 s 3 323 s 18 v26 8 160 s 5 123 s 21

v6 7.5 569 s 5 316 s 4 v27 9.5 443 s 4 393 s 21

v7 8 484 s 8 238 s 8 v28 5 41 s 3 40 s 2

v8 7.5 21 s 13 18 s 48 v29 5 25 s 1 27 s 20

v9 4.5 18 s 10 15 s 23 v30 5 11 s 6 14 s 20

v10 8 125 s 3 96 s 4 v31 8.5 958 s 2 909 s 4

v11 5.5 130 s 1 91 s 21 v32 8.5 171 s 1 145 s 3

v12 8 22 s 11 20 s 49 v33 6 79 s 1 70 s 3

v13 8 24 s 7 21 s 1 v34 7.5 164 s 5 144 s 23

v14 7 28 s 1 28 s 1 v35 5 38 s 3 40 s 2

v15 6.5 14 s 5 14 s 21 v36 2.5 19 s 1 17 s 1

v16 8 331 s 12 228 s 49 v37 7.5 127 s 1 136 s 3

v17 8 626 s 8 285 s 49 v38 6.5 8 s 1 8 s 2

v18 6 378 s 6 245 s 49 v39 6 244 s 4 272 s 2

v19 8 399 s 5 167 s 49 v40 5.5 219 s 3 219 s 4

v20 8 504 s 8 247 s 21 v41 7.5 6 s 2 5 s 6

v21 7.5 252 s 8 194 s 21 Average 6.5 187 s 4.7 137 s 17
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fault localization were too inaccurate and caused the solver to first produce
CoMSSs that did not include the faulty statements. Despite these negative cases,
the results justify the use of statistical fault-localization information: BA+CW
ranked the faulty statement first for 9 out of 41 versions, among the top 3
statements in another 8 cases, and at a position less than 10 in all but 3 cases.

The data in Table 1 also allow us to investigate the second part of RQ1,
that is, the effect of CW on efficiency. As we discussed in Sect. 2.1, solving
wpMAX-SAT problems may be computationally more expensive than solving a
pMAX-SAT problem, so the use of CW may negatively affect the efficiency of
formula-based debugging. As the table shows, on average BA+CW performs sig-
nificantly better than BA (137 s versus 187 s, significance level of 0.05). Although
these results may seem counterintuitive, we discovered that the extra informa-
tion provided by the weights can in many cases unintentionally help the solver
find CoMSSs more efficiently.

In summary, our results provide initial evidence that CW can improve
formula-based debugging, both in terms of accuracy and in terms of efficiency.

RQ2—OFC Versus BA. To investigate RQ2, we compared OFC and BA in
terms of efficiency. As we did for RQ1, we ran the two techniques on the 41
faulty versions of tcas and measured their performance. The results are shown
in Table 2. The table shows the version ID, the average CPU time spent by BA
and OFC, respectively, on each failing input, the average number of iterations
(i.e., path expansions) of the OFC algorithm, and the average CPU time spent
by OFC in each iteration. For example, for a failing input in tcas.v1, it took, on
average, 26 s (BA) and 7 s (OFC) to generate the results, OFC iterated 9 times,
and, for each expansion, it took OFC 0.8 s to find all CoMSS solutions.

Overall, OFC was more efficient than BA in 33 out of 41 cases by looking at
the second and third columns and could achieve almost 4X speed-ups on average
(48 versus 187 s, significance level of 0.05) and over 70X speed-ups in the best
case (7 versus 504 s).

To understand the reason of OFC outperforming BA in terms of efficiency,
we also present the average number of iterations and time spent in each iter-
ation in OFC. The second and fifth columns in the table clearly show that it
took considerably less time for the pMAX-SAT solver to find solutions for for-
mulas generated in one iteration of OFC (4 s) than for formulas generated by
BA (187 s). The statistically significant gain of efficiency (significance level of
0.05) is caused, as expected, by the difference in the complexity of the encoded
formulas—OFC only encodes the subset of the program relevant to the failure
into the formulas passed to the solver, while BA generates a much more complex
formula that encodes the semantics of the entire program.

The results in the fourth column of Table 2 indicate that OFC performed 12
iterations per fault, on average. Therefore, the benefits of generating a simpler
formula were in some cases (e.g., tcas.v2) outweighed by the cost of solving
multiple pMAX-SAT problems during on-demand expansion, thus making OFC
less efficient than BA. In fact, comparing the results in the second and third
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Table 2. Performance results for BA and OFC on tcas.

Version BA OFC #Iteration Time per iteration Version BA OFC #Iteration Time per iteration

v1 26 s 7 s 9 0.8 s v22 7 s 6 s 13.2 0.4 s

v2 15 s 38 s 12 3.2 s v23 15 s 24 s 11 2.1 s

v3 292 s 19 s 14 1.4 s v24 30 s 7 s 10 0.7 s

v4 11 s 6 s 9.2 0.6 s v25 297 s 244 s 12 20.3 s

v5 352 s 15 s 13.4 1.1 s v26 160 s 17 s 13 1.3 s

v6 569 s 17 s 13 1.3 s v27 443 s 15 s 13.4 1.1 s

v7 484 s 104 s 14.8 7.1 s v28 41 s 24 s 11.2 2.2 s

v8 21 s 5 s 10 0.5 s v29 25 s 6 s 9.8 0.6 s

v9 18 s 28 s 12 2.4 s v30 11 s 24 s 11 2.2 s

v10 125 s 22 s 14 1.6 s v31 958 s 33 s 10.8 3 s

v11 130 s 11 s 8.4 1.3 s v32 171 s 14 s 13 1.1 s

v12 22 s 17 s 14.2 1.2 s v33 79 s 178 s 13 13.7 s

v13 24 s 15 s 13.3 1.2 s v34 164 s 21 s 13 1.6 s

v14 28 s 20 s 13.8 1.4 s v35 38 s 22 s 14 1.5 s

v15 14 s 20 s 13.2 1.5 s v36 19 s 11 s 11.2 1 s

v16 331 s 16 s 13 1.2 s v37 127 s 251 s 14 18 s

v17 626 s 73 s 14.2 5.1 s v38 8 s 95 s 16 5.9 s

v18 378 s 96 s 13.4 7.2 s v39 244 s 213 s 12 17.8 s

v19 399 s 17 s 13.2 1.3 s v40 219 s 180 s 10.4 17.3 s

v20 504 s 7 s 9.4 0.8 s v41 6 s 5 s 8.2 0.6 s

v21 252 s 6 s 8.8 0.7 s Average 187 s 48 s 12 4 s

columns of the table, we can observe that there were 8 cases in which OFC
performed worse than BA.

It is also worth noting that our results on the number of iterations performed
by OFC provide some evidence that techniques that operate on a single-trace
formula (e.g., [7,11]) may compute inaccurate results, even when they encode
both data- and control-flow information. Because each expansion adds new con-
straints that must be taken into account in the analysis, limiting the analysis to
a single trace is likely to negatively affect the quality of the results.

Finally, as a sanity check, we examined the sets of suspicious entities reported
by the two techniques. This examination confirmed that OFC reports the same
sets as BA (i.e., the fault-ranking results for OFC were the same as those for
BA, shown in Table 1). That is, it confirmed that OFC is able to build smaller
yet conservative formulas and can thus produce the same result as an approach
that encodes the whole program.

In summary, our results for RQ2 provide initial, but clear evidence that
OFC can considerably improve the efficiency of formula-based debugging without
losing effectiveness with respect to an all-paths technique.

RQ3—OFC+CW Versus BA, BA+CW, and OFC. To answer the first
part of RQ3, we compared the performance of OFC+CW with that of the other
three techniques considered, in terms of both accuracy and efficiency, when run
on the 41 tcas versions. For accuracy, we found that the results for OFC+CW,
not reported here for brevity, were the same as those listed in the “BA+CW”
column of Table 1. This is not surprising, as OFC reports the same sets as BA,
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as we just discussed, and we expect CW to benefit both techniques in the same
way. Therefore, the results show that OFC+CW is as accurate as BA+CW and
more accurate than BA and OFC.

To compare the efficiency of the four techniques considered, we measured the
average CPU time required by the techniques to process one fault in tcas: BA is
187 s, BA+CW is 137 s, OFC is 48 s, and BA+CW is 36 s. As the result shows,
for the cases considered, combining OFC and CW can further reduce the cost of
formula-based debugging by 25 % with respect to OFC and by over 80 % with
respect to our baseline, BA. (Note that, to assess whether our results depended
on the use of a specific solver, we replaced Yices with Z3 and recomputed the
average CPU time. As we further discuss in our companion technical report [13],
we obtained comparable results also with this alternative solver.) Although these
are considerable improvements, it is unclear whether they can actually result in
more practically applicable debugging techniques. This is the focus of the second
part of RQ3, which aims to assess the potential increase in applicability that our
two improvements can provide. To answer this part of RQ3, we ran the techniques
considered on our two additional benchmarks: tot info and Redis.

tot info Results for RQ3. Unlike tcas, tot info contains loops, calls to external
libraries, and complex floating point computations. (We considered all faults
except those directly related to calls to external system libraries, which our
current implementation does not handle.) Because of the presence of loops, we
set an upper bound of 5 to the size of clauses in a CoMSS [13]. (We believe 5 is
a reasonable value, as it means that the technique would be able to handle all
faults that involve up to 5 statements.) As we discussed in Sect. 3.1, for BA and
BA+CW the program formula generated was too large, and the solver was not
able to compute the set of CoMSSs within two hours (the time limit we used for
the study) for the faults considered. Conversely, OFC and OFC+CW were able
to compute a result within the time limit for all faults, which provides initial
evidence that our improvements can indeed result in more scalable formula-
based techniques. By focusing only on the relevant parts of a failing program
and leveraging statistical fault localization, OFC+CW can reduce the complexity
of the analysis and successfully diagnose faults that an all-paths technique may
not be able to handle. To also assess the accuracy of the produced results, in
Table 3 we show the results computed by OFC+CW. The columns in the table
show the program version and the number of lines of code a developer would
have to examine before getting to the fault in that version. As the table shows,
OFC+CW was able to rank all 11 faults within the top 10 statements in the list
reported to the developer, and 4 of them at the top of the list.

Table 3. Ranking results of OFC+CW on tot info.

Version OFC+CW Version OFC+CW Version OFC+CW Version OFC+CW

tot info.v1 2 tot info.v11 3 tot info.v16 2 tot info.v22 6

tot info.v3 1 tot info.v14 1 tot info.v18 3 tot info.v23 8

tot info.v4 1 tot info.v15 1 tot info.v20 3
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Redis Results for RQ3. To further assess the practical applicability of OFC+CW,
we ran the techniques considered on our third benchmark, a real-world bug [1]
in Redis, which is considerably larger and more complex than tcas and tot info.

Figure 2 shows an excerpt of the code that contains the bug. The original
version of the code fails to check whether the size of the script from the command
line is greater than the size of the memory in which it is stored. If the script is
too large, the program generates an out-of-boundary memory access and fails.

Fig. 2. Excerpt of the bug in Redis.

We inserted assertions that are
triggered when a buffer overflow
occurs, and applied OFC+CW to the
faulty code. Our tool generated the
report shown in Fig. 3, which contains
five suspicious statements and pro-
gram locations. The first entry in our
report suggests that a control state-
ment should be changed after line
237 of scripting.c to avoid the out-of-
boundary access in the next statement.
This is also the location where the
developers of Redis fixed the bug [1].
Also in this case, we tried to run the
all-paths techniques on the module,
but they were not successful. Because BA relies on a static model checker that
unrolls loops based on a predetermined (low) bound, whereas the loop in the
code needs to be executed a large number of times for the bug to be triggered,
BA is unable to build a formula for the failure at hand. Unfortunately, increasing
the number of times loops are unrolled is not a viable solution, as it causes the
number of encoded paths to explode and results in the solver timing out.

Fig. 3. OFC+CW results on Redis.

Although this is just one bug in one
program, we find the results very encour-
aging. They provide evidence that our
approach can improve the applicability
of formula-based debugging.

4 Related Work

Our work is closely related to other formula-based debugging techniques [20]. In
particular, OFC builds on BugAssist [15], which encodes a faulty program as an
unsatisfiable Boolean formula, uses a MAX-SAT solver to find maximal sets of
satisfiable clauses in this formula, and reports the complement sets of clauses
as potential causes of the error. The dual of MAX-SAT, that is the problem
of computing minimal unsatisfiable subsets (or unsatisfiable cores), can also be
leveraged in a similar way to identify potentially faulty statements, as done
by Torlak, Vaziri, and Dolby [21]. This kind of techniques have the advantage
of performing debugging in a principled way, but tend to rely on exhaustive
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exploration of (a bounded version of) the program state, which can dramatically
limit their scalability. OFC, by operating on demand, can produce results that
are at least as good as those produced by these techniques at a fraction of
the cost. Moreover, by working on a single path at a time, OFC can directly
benefit from various dynamic optimizations. Finally, CW leverages the additional
information provided by passing test cases, which are not considered by most
existing techniques in this arena.

Another related approach, called Error Invariants, transforms program enti-
ties on a single failing execution into a path formula [11]. This technique lever-
ages Craig interpolants to find the points in the failing trace where the state
is modified in a way that affects the final outcome of the execution. The state-
ments in these points are then reported as potential causes of the failure. This
technique cannot handle control-flow related faults because, as also recognized
by the authors, it does not encode control-flow information in its formula. To
address this limitation, in followup work the authors developed a version of their
approach that encodes partial control-flow information into the path formula [7];
with this extension, their approach can identify conditional statements that may
be the cause of a failure. Their approach, however, computes preconditions as the
conjunction of all predicates on which a statement is control dependent, which
in most cases results in much more complex preconditions than those computed
by our OFC technique. In fact, our algorithm only needs to encode the predicate
on which the φ function is directly dependent. In addition, the two approaches
handle potentially faulty conditional statements very differently. OFC considers
additional paths induced by a possible modification of the faulty conditionals,
and can therefore safely identify additional faulty statements along these paths.
Their technique simply reports the identified conditionals to developers, who may
thus miss important information and produce a partial, or even incorrect, fix.
Because of these substantial (both conceptual and practical) differences between
the two techniques, which would make it difficult to perform an apple-to-apple
comparison, we did not perform a direct comparison between OFC and their
approach in our empirical study.

Our work is also related to statistical fault localization techniques (e.g.,
[3,5,14,17,18]). Although efficient, these techniques often produce long lists
of program entities with no context information, which can limit their useful-
ness [19]. In CW, we use the results of statistical fault localization as a starting
point to inform formula-based debugging and guide the analysis. As our results
show, these can result in considerably more accurate (and more informative)
fault-localization results.

Other approaches for identifying potentially faulty statements are static and
dynamic slicing [4,23] and delta debugging [24]. These approaches are orthogo-
nal to ours and to formula-based debugging techniques in general, and can be
leveraged to achieve further improvements.

Finally, automated repair techniques (e.g., [10,12,16]) are related to our
work. However, these techniques are mostly orthogonal to fault-localization
approaches, as they require some form of fault localization as a starting point.
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(One exception is Angelic Debugging, by Chandra and colleagues [6], which com-
bines fault localization and a limited form of repair.) In this sense, we believe
that the information produced by our approach could be used to guide the auto-
mated repair generation performed by these techniques, which is something that
we plan to investigate in future work.

5 Conclusion and Future Work

We presented clause weighting (CW) and on-demand formula computation
(OFC), two ways to improve existing formula-based debugging techniques and
mitigate some of their limitations. CW incorporates the (previously ignored)
information provided by passing test cases into formula-based debugging tech-
niques to improve their accuracy. OFC is a novel formula-based debugging algo-
rithm that, by operating on demand, can analyze a small fraction of a faulty
program and yet compute the same results that would be computed analyzing
all paths of the program, at a much higher cost.

To evaluate CW and OFC, we empirically assessed the improvements that
they can achieve over a formula-based debugging approach. Our results show that
formula-based debugging remains an expensive approach with limited scalability
(mostly because of the cost of solving MAX-SAT problems). Nevertheless, the
fact that CW and OFC can considerably improve the accuracy and efficiency of
this approach motivate further research in this area.

In future work, we will perform additional studies, including user studies,
to further show the usefulness of our approach. We will also apply our on-
demand algorithm to other types of formula-based techniques, such as those
based on single-trace analysis (e.g., [7,11]), to assess whether we can achieve
similar, or even better improvements for these techniques. We will investigate
approaches that can further address the inherently limited scalability of formula-
based debugging. In particular, we will consider two research directions: (1) fur-
ther simplifying the constructed MAX-SAT problems to decrease the cost of
solving them and (2) trying to decompose the debugging problem into several
subproblems (e.g., at the procedure level) that can be solved modularly. Finally,
we will investigate whether formula-based debugging techniques can help auto-
mated program repair. Intuitively, the clauses in the CoMSSs produced by the
former should be able to inform and guide the latter in finding or synthesizing
suitable repairs.
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7. Christ, J., Ermis, E., Schäf, M., Wies, T.: Flow-sensitive fault localization. In:
Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737,
pp. 189–208. Springer, Heidelberg (2013). doi:10.1007/978-3-642-35873-9 13

8. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-24730-2 15

9. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently
computing static single assignment form and the control dependence graph. ACM
Trans. Program. Lang. Syst. 13(4), 451–490 (1991)

10. Dallmeier, V., Zeller, A., Meyer, B.: Generating fixes from object behavior anom-
alies. In: Proceedings of the 24th IEEE International Conference on Automated
Software Engineering, pp. 550–554. IEEE Computer Society (2009)
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Abstract. Parity games are two-player infinite-duration games on
graphs that play a crucial role in various fields of theoretical computer
science. Finding efficient algorithms to solve these games in practice is
widely acknowledged as a core problem in formal verification, as it leads
to efficient solutions of the model-checking and satisfiability problems
of expressive temporal logics, e.g., the modal µCalculus. Their solu-
tion can be reduced to the problem of identifying sets of positions of
the game, called dominions, in each of which a player can force a win
by remaining in the set forever. Recently, a novel technique to compute
dominions, called priority promotion, has been proposed, which is based
on the notions of quasi dominion, a relaxed form of dominion, and domin-
ion space. The underlying framework is general enough to accommodate
different instantiations of the solution procedure, whose correctness is
ensured by the nature of the space itself. In this paper we propose a
new such instantiation, called region recovery, that tries to reduce the
possible exponential behaviours exhibited by the original method in the
worst case. The resulting procedure not only often outperforms the orig-
inal priority promotion approach, but so far no exponential worst case
is known.

1 Introduction

The abstract concept of game has proved to be a fruitful metaphor in theoretical
computer science [1]. Several decision problems can, indeed, be encoded as path-
forming games on graph, where a player willing to achieve a certain goal, usually
the verification of some property on the plays derived from the original prob-
lem, has to face an opponent whose aim is to pursue the exact opposite task.
One of the most prominent instances of this connection is represented by the
notion of parity game [18], a simple two-player turn-based perfect-information
game played on directed graphs, whose nodes are labelled with natural numbers
called priorities. The goal of the first (resp., second) player, a.k.a., even (resp.,
odd) player, is to force a play π, whose maximal priority occurring infinitely
often along π is of even (resp., odd) parity. The importance of these games is
due to the numerous applications in the area of system specification, verifica-
tion, and synthesis, where it is used as algorithmic back-end of satisfiability and
model-checking procedures for temporal logics [6,8,16], and as a core for several
techniques employed in automata theory [7,10,15,17]. In particular, it has been
proved to be linear-time interreducible with the model-checking problem for the
c© Springer International Publishing AG 2016
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modal μCalculus [8] and it is closely related to other games of infinite dura-
tion, such as mean payoff [5,11], discounted payoff [24], simple stochastic [4],
and energy [3] games. Besides the practical importance, parity games are also
interesting from a computational complexity point of view, since their solution
problem is one of the few inhabitants of the UPTime ∩ CoUPTime class [12].
That result improves the NPTime ∩ CoNPTime membership [8], which easily
follows from the property of memoryless determinacy [7,18]. Still open is the
question about the membership in PTime. The literature on the topic is reach
of algorithms for solving parity games, which can be mainly classified into two
families. The first one contains the algorithms that, by employing a divide et
impera approach, recursively decompose the problem into subproblems, whose
solutions are then suitably assembled to obtain the desired result. In this cat-
egory fall, for example, Zielonka’s recursive algorithm [23] and its dominion
decomposition [14] and big step [19] improvements. The second family, instead,
groups together those algorithms that try to compute a winning strategy for
the two players on the entire game. The principal members of this category
are represented by Jurdziński’s progress measure algorithm [13] and the strategy
improvement approaches [20–22].

Recently, a new divide et impera solution algorithm, called priority promo-
tion (PP, for short), has been proposed in [2], which is fully based on the decom-
position of the winning regions into dominions. The idea is to find a domin-
ion for some of the two players and then remove it from the game, thereby
allowing for a recursive solution. The important difference w.r.t. the other two
approaches [14,19] based on the same notion is that these procedures only look
for dominions of a certain size in order to speed up classic Zielonka’s algorithm in
the worst case. Consequently, they strongly rely on this algorithm for their com-
pleteness. On the contrary, the PP procedure autonomously computes dominions
of any size, by suitably composing quasi dominions, a weaker notion of domin-
ion. Intuitively, a quasi dominion Q for player α ∈ {0, 1} is a set of vertices
from each of which player α can enforce a winning play that never leaves the
region, unless one of the following two conditions holds: (i) the opponent α can
escape from Q (i.e., there is an edge from a vertex of α exiting from Q) or (ii)
the only choice for player α itself is to exit from Q (i.e., no edge from a ver-
tex of α remains in Q). A crucial feature of quasi dominion is that they can
be ordered by assigning to each of them a priority corresponding to an under-
approximation of the best value for α the opponent α can be forced to visit
along any play exiting from it. Indeed, under suitable and easy to check assump-
tions, a higher priority quasi α-dominion Q1 and a lower priority one Q2, can
be merged into a single quasi α-dominion of the higher priority, thus improving
the approximation for Q2. This merging operation is called a priority promotion
of Q2 to Q1. The PP solution procedure has been shown to be very effective in
practice and to often significantly outperform all other solvers. Moreover, it also
improves the space complexity of the best know algorithm by an exponential fac-
tor, since it only needs O(n · log k) space against the O(k · n · log n) required by
Jurdziński’s approach [13], where n and k are, respectively, the numbers of ver-
texes and priorities of the game. Unfortunately, the PP algorithm also exhibits
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exponential behaviours on a simple family of games. This is due to the fact that,
in general, promotions to higher priorities requires resetting previously computed
quasi dominions at lower ones.

In order to mitigate the problem, we propose in this paper a new algorithm,
called RR for region recovery, which is built on top of PP and is based on a form
of conservation property of quasi dominions. This property provides sufficient
conditions for a subset a quasi α-dominion to be still a quasi α-dominion. By
exploiting this property, the RR algorithm can significantly reduce the execution
of the resetting phase, which is now limited to the cases when the conservation
property is not guaranteed to hold. For the resulting procedure no exponential
worst case has been found yet. Experiments on randomly generated games also
show that the new approach performs significantly better than PP in practice,
while still preserving the same space complexity.

2 Preliminaries

Let us first briefly recall the notation and basic definitions concerning parity
games that expert readers can simply skip. We refer to [1,23] for a comprehensive
presentation of the subject.

Given a partial function f : A ⇀ B, by dom(f) ⊆ A and rng(f) ⊆ B we denote
the domain and range of f, respectively. In addition, � denotes the completion
operator that, taken f and another partial function g : A ⇀ B, returns the partial
function f � g � (f \ dom(g)) ∪ g : A ⇀ B, which is equal to g on its domain and
assumes the same values of f on the remaining part of A.

A two-player turn-based arena is a tuple A = 〈Ps0,Ps1,Mv〉, with Ps0 ∩
Ps1 = ∅ and Ps � Ps0 ∪ Ps1, such that 〈Ps,Mv〉 is a finite directed graph. Ps0

(resp., Ps1) is the set of positions of player 0 (resp., 1) and Mv ⊆ Ps × Ps is a
left-total relation describing all possible moves. A path in V ⊆ Ps is a finite or
infinite sequence π ∈ Pth(V) of positions in V compatible with the move rela-
tion, i.e., (πi, πi+1) ∈ Mv , for all i ∈ [0, |π| − 1[. For a finite path π, with lst(π)
we denote the last position of π. A positional strategy for player α ∈ {0, 1} on
V ⊆ Ps is a partial function σα ∈ Strα(V) ⊆ (V ∩ Psα) ⇀ V, mapping each
α-position v ∈ dom(σα) to position σα(v) compatible with the move relation,
i.e., (v, σα(v)) ∈ Mv . With Strα(V) we denote the set of all α-strategies on V.
A play in V ⊆ Ps from a position v ∈ V w.r.t. a pair of strategies (σ0, σ1) ∈
Str0(V)×Str1(V), called ((σ0, σ1), v)-play, is a path π ∈ Pth(V) such that π0 = v
and, for all i ∈ [0, |π| − 1[, if πi ∈ Ps0 then πi+1 = σ0(πi) else πi+1 = σ1(πi).
The play function play : (Str0(V) × Str1(V)) × V → Pth(V) returns, for each
position v ∈ V and pair of strategies (σ0, σ1) ∈ Str0(V) × Str1(V), the maximal
((σ0, σ1), v)-play play((σ0, σ1), v).

A parity game is a tuple � = 〈A,Pr, pr〉, where A is an arena, Pr ⊂ N is
a finite set of priorities, and pr : Ps → Pr is a priority function assigning a
priority to each position. We denote with PG the class of parity games. The
priority function can be naturally extended to games, sets of positions, and
paths as follows: pr(�) � maxv∈Ps pr(v); for a set of positions V ⊆ Ps, we set
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pr(V) � maxv∈V pr(v); for a path π ∈ Pth, we set pr(π) � maxi∈[0,|π|[ pr(πi), if π

is finite, and pr(π) � lim supi∈N pr(πi), otherwise. A set of positions V ⊆ Ps is
an α-dominion, with α ∈ {0, 1}, if there exists an α-strategy σα ∈ Strα(V) such
that, for all α-strategies σα ∈ Strα(V) and positions v ∈ V, the induced play
π = play((σ0, σ1), v) is infinite and pr(π) ≡2 α. In other words, σα only induces
on V infinite plays whose maximal priority visited infinitely often has parity α.
The maximal α-dominion in a game, denoted Wnα, is called winning region of
player α. By �\V we denote the maximal subgame of � with set of positions Ps′

contained in Ps\V and move relation Mv ′ equal to the restriction of Mv to Ps′.
The α-predecessor of V, in symbols preα(V) � {v ∈ Psα : Mv(v) ∩ V =

∅} ∪ {v ∈ Psα : Mv(v) ⊆ V}, collects the positions from which player α can
force the game to reach some position in V with a single move. The α-attractor
atrα(V) generalises the notion of α-predecessor preα(V) to an arbitrary number
of moves. Thus, it corresponds to the least fix-point of that operator. When
V = atrα(V), we say that V is α-maximal. Intuitively, V is α-maximal if player
α cannot force any position outside V to enter this set. For such a V, the set of
positions of the subgame � \ V is precisely Ps \ V. Finally, the α-escape of V,
formally escα(V) � preα(Ps \ V) ∩ V, contains the positions in V from which α
can leave V in one move. The dual notion of α-interior, defined as intα(V) �
(V∩Psα)\ escα(V), contains the α-positions from which α cannot escape with a
single move, while the notion of α-stay, defined as stayα(V) � (V∩Psα)\escα(V),
denotes the α-positions from which α has a move to remain in V.

3 Quasi Dominion Approach

The priority promotion algorithm proposed in [2] attacks the problem of solving
a parity game � by computing one of its dominions D, for some player α ∈ {0, 1},
at a time. Indeed, once the α-attractor D� of D is removed from �, the smaller
game � \ D� is obtained, whose positions are winning for one player iff they are
winning for the same player in the original game. This allows for decomposing the
problem of solving a parity game to that of iteratively finding its dominions [14].

In order to solve the dominion problem, the idea described in [2] is to
introduce a much weaker notion than that of dominion, called quasi dominion,
which satisfies, under suitable conditions, a composition property that eventu-
ally brings to the construction of a dominion. Intuitively, a quasi α-dominion Q
is a set of positions on which player α has a witness strategy σα, whose induced
plays either remain inside Q forever and are winning for α or can exit from Q
passing through a specific set of escape positions.

Definition 1 (Quasi Dominion [2]). Let � ∈ PG be a game and α ∈ {0, 1}
a player. A non-empty set of positions Q ⊆ Ps is a quasi α-dominion in � if
there exists an α-strategy σα ∈ Strα(Q), called α-witness for Q, such that, for
all α-strategies σα ∈ Strα(Q), with intα(Q) ⊆ dom(σα), and positions v ∈ Q,
the induced play π = play((σ0, σ1), v) satisfies pr(π) ≡2 α, if π is infinite, and
lst(π) ∈ escα(Q), otherwise.
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Observe that, if all the plays induced by the witness σα remain in the set Q
forever, this is actually an α-dominion and, therefore, a subset of the winning
region Wnα of α, with σα the projection over Q of some α-winning strategy on
the entire game. In this case, the escape set of Q is empty, i.e., escα(Q) = ∅,
and Q is said to be α-closed. In general, however, a quasi α-dominion Q that is
not an α-dominion, i.e., such that escα(Q) = ∅, need not be a subset of Wnα

and it is called α-open. Indeed, in this case, some induced play may not satisfy
the winning condition for that player once exited from Q, e.g., by visiting a
cycle containing a position with maximal priority of parity α. The set of triples
(Q, σ, α) ∈ 2Ps × Str × {0, 1}, where Q is a quasi α-dominion having σ as one
of its α-witnesses, is denoted by QD, and is partitioned into the sets QD− and
QD+ of open and closed quasi α-dominion triples, respectively.

Similarly to the other divide et impera techniques proposed in the literature,
the one reported in [2], called PP, does not make any algorithmic use of the
witness strategy σα associated with a quasi dominion Q, as this notion is only
employed in the correctness proof. In this work, instead, we strongly exploit the
effective computability of such a witness in order to considerably alleviate the
collateral effects of a reset operation required by PP to ensure the soundness of
the approach, which is also responsible for the exponential worst cases. Indeed,
this algorithm needs to forget previously computed partial results after each
compositions of two quasi-dominions, since the information computed during
the entire process cannot ensure that these results can be still correctly used
in the search for a dominion. In this work, instead, we exploit the following
simple observation on the witness strategies, formally reported in Lemma 1, to
determine which partial results can be safely preserved.

Fig. 1. Witness strategy

In general, quasi α-dominions are not closed
under restriction. For example, consider the quasi
1-dominion Q� = {a, c, d} of Fig. 1 with unique 1-
witness strategy σ� = {c �→ a, d �→ c} and its subset
Q = {d}. It is quite immediate to see that Q is not
a quasi 1-dominion, since esc0(Q) = ∅, but player
1 does not have a strategy that induces infinite 1-
winning plays that remain in Q. Indeed, σ� requires
player 1 to exit from Q by going from d to c. On the
contrary, the subset Q = {c, d} is still a 1-dominion
with 1-witness strategy σ = {d �→ c} = σ��stay1(Q), since esc0(Q) = {c}. Hence,
the restriction σ of σ� to stay1(Q) = {d} is still a well-defined strategy on Q.
Inspired by this observation, we provide the following sufficient criterion for a
subset Q of a quasi α-dominion Q� to be still a quasi α-dominion.

Lemma 1 (Witness Strategy). Given a quasi α-dominion Q� having σ� ∈
Strα(Q�) as α-witness and a subset of positions Q ⊆ Q�, the restriction
σ � σ��stayα(Q) is an α-witness for Q iff σ ∈ Strα(Q).

The proof-idea behind this lemma is very simple. Any infinite play induced
by the restriction of σ on Q is necessarily winning for player α, since it is coherent
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with the original α-witness σ� of Q� as well. Now, if σ ∈ Strα(Q), we are also
sure that any finite play ends in escα(Q), as required by the definition of quasi
dominion. Therefore, σ is an α-witness for Q, which is, then, a quasi α-dominion.
On the other hand, if σ ∈ Strα(Q), there exists a finite play induced by σ that
does not terminate in escα(Q). Hence, σ is not an α-witness. In this case, we
cannot ensure that Q is a quasi α-dominion.

Algorithm 1: The Searcher.

signature srcD : SD → QD+
�D

function srcD(s)
1 (Q, σ, α) ← �D(s)
2 if (Q, σ, α) ∈ QD+

�D then
3 return (Q, σ, α)

else
4 return srcD(s ↓D(Q, σ, α))

The priority promotion algorithm
explores a partial order, whose ele-
ments, called states, record informa-
tion about the open quasi dominions
computed along the way. The initial
state of the search is the top element of
the order, where the quasi dominions
are initialised to the sets of positions
with the same priority. At each step, a
new quasi α-dominion Q together with
one of its possible α-witnesses σ is extracted from the current state, by means
of a query operator �, and used to compute a successor state, by means of a
successor operator ↓, if Q is open. If, on the other hand, it is closed, the search
is over. Algorithm 1 implements the dominion search procedure srcD. A compat-
ibility relation � connects the query and the successor operators. The relation
holds between states of the partial order and the qua si dominions triples that
can be extracted by the query operator. Such a relation defines the domain of
the successor operator. The partial order, together with the query and successor
operator and the compatibility relation, forms what is called a dominion space.

Definition 2 (Dominion Space). A dominion space for a game � ∈ PG is a
tuple D�〈�,S,�,�, ↓〉, where (1) S �〈S,�,≺〉 is a well-founded partial order w.r.t.
≺ ⊂ S×S with distinguished element � ∈ S, (2) � ⊆ S ×QD−

�
is the compatibil-

ity relation, (3) � : S → QD� is the query operator mapping each element s ∈ S
to a quasi dominion triple (Q, σ, α)��(s)∈QD� such that, if (Q, σ, α) ∈ QD−

�

then s�(Q, α, σ), and (4) ↓ : � → S is the successor operator mapping each pair
(s, (Q, σ, α)) ∈ � to the element s� � s ↓(Q, σ, α) ∈ S with s�≺s.

The notion of dominion space is quite general and can be instantiated in
different ways, by providing specific query and successor operators. In [2], indeed,
it is shown that the search procedure srcD is sound and complete on any dominion
space D. In addition, its time complexity is linear in the execution depth of
the dominion space, namely the length of the longest chain in the underlying
partial order compatible with the successor operator, while its space complexity
is only logarithmic in the space size, since only one state at the time needs to
be maintained. A specific instantiation of dominion space, called PP dominion
space, is the one proposed and studied in [2]. In the next section, we propose
a different one, called RR dominion space, which crucially exploits Lemma 1 in
order to prevent a considerable amount of useless reset operations after each
quasi dominion composition, to the point that it does not seem obvious whether
an exponential lower bound even exists for this new approach.
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4 Priority Promotion with Region Recovery

In order to instantiate a dominion space, we need to define a suitable query func-
tion to compute quasi dominions and a successor operator to ensure progress in
the search for a closed dominion. The priority promotion algorithm proceeds
as follows. The input game is processed in descending order of priority. At each
step, a subgame of the entire game, obtained by removing the quasi domains pre-
viously computed at higher priorities, is considered. At each priority of parity
α, a quasi α-domain Q is extracted by the query operator from the current sub-
game. If Q is closed in the entire game, the search stops and returns Q as result.
Otherwise, a successor state in the underlying partial order is computed by the
successor operator, depending on whether Q is open in the current subgame or
not. In the first case, the quasi α-dominion is removed from the current subgame
and the search restarts on the new subgame that can only contain positions with
lower priorities. In the second case, Q is merged together with some previously
computed quasi α-dominion with higher priority. Being a dominion space well-
ordered, the search is guaranteed to eventually terminate and return a closed
quasi dominion. The procedure requires the solution of two crucial problems: (a)
extracting a quasi dominion from a subgame and (b) merging together two quasi
α-dominions to obtain a bigger, possibly closed, quasi α-dominion.

Fig. 2. Quasi dominions.

Solving problem (b) is not trivial, since quasi α-
dominions are not, in general, closed under union.
Consider the example in Fig. 2. Both Q1 = {a, c}
and Q2 = {b, d} are quasi 0-dominions. Indeed, σ1 =
{c �→ c} and σ2 = {d �→ d} are the corresponding 0-
witnesses. However, their union Q � Q1 ∪ Q2 is not
a quasi 0-dominion, since the 1-strategy σ = {a �→
b, b �→ a} forces player 0 to lose along any infinite
play starting from either a or b.

A solution to both problems relies on the defin-
ition of a specific class of quasi dominions, called regions. An α-region R of a
game � is a special form of quasi α-dominion of � with the additional require-
ment that all the positions in escα(R) have the maximal priority p � pr(�) ≡2 α
in �. In this case, we say that α-region R has priority p. As a consequence, if
the opponent α can escape from the α-region R, it must visit a position with
the highest priority in it, which is of parity α.

Definition 3 (Region [2]). A quasi α-dominion R is an α-region in � if
pr(�) ≡2 α and all the positions in escα(R) have priority pr(�), i.e., escα(R) ⊆
pr−1(pr(�)).

Observe that, in any parity game, an α-region always exists, for some
α ∈ {0, 1}. In particular, the set of positions of maximal priority in the game
always forms an α-region, with α equal to the parity of that maximal priority.
In addition, the α-attractor of an α-region is always an (α-maximal) α-region.
A closed α-region in a game is clearly an α-dominion in that game. These obser-
vations give us an easy and efficient way to extract a quasi dominion from every
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subgame: collect the α-attractor of the positions with maximal priority p in the
subgame, where p ≡2 α, and assign p as priority of the resulting region R. This
priority, called measure of R, intuitively corresponds to an under-approximation
of the best priority player α can force the opponent α to visit along any play
exiting from R.

Proposition 1 (Region Extension [2]). Let � ∈ PG be a game and R ⊆ Ps
an α-region in �. Then, R� � atrα(R) is an α-maximal α-region in �.

A solution to the second problem, the merging operation, is obtained as
follows. Given an α-region R in some game � and an α-dominion D in a subgame
of � that does not contain R itself, the two sets are merged together, if the only
moves exiting from α-positions of D in the entire game lead to higher priority
α-regions and R has the lowest priority among them. The priority of R is called
the best escape priority of D for α. The correctness of this merging operation is
established by the following proposition.

Proposition 2 (Region Merging [2]). Let � ∈ PG be a game, R ⊆ Ps an α-
region, and D ⊆ Ps�\R an α-dominion in the subgame � \ R. Then, R� � R ∪ D
is an α-region in �. Moreover, if both R and D are α-maximal in � and � \ R,
respectively, then R� is α-maximal in � as well.

1 2 3 4 5

8 a↓ = = a,b,c,d,h,i,j↓ =

7 j,k↓ = =

5 b↓ = b,c,e,f,g,h↓
4 c,d↓ = k↓ =

3 e,f↓ e,f,g,h↑5 d↓ e,f↓ e,f,g

1 g,h↑3 g↑3

0 i↑8

Fig. 3. Running example.

The merging operation is
implemented by promoting all
the positions of α-dominion D to
the measure of R, thus improv-
ing the measure of D. For this
reason, it is called a priority pro-
motion. In [2] it is shown that,
after a promotion to some mea-
sure p, the regions with mea-
sure lower than p might need
to be destroyed, by resetting
all the contained positions to
their original priority. This neces-
sity derives from the fact that
the new promoted region may
attract positions from lower ones,
thereby potentially invalidating
their status as regions. Indeed, in
some cases, the player that wins
by remaining in the region may
even change from α to α. As a
consequence, the reset operation
is, in general, unavoidable. The original priority promotion algorithm applies
the reset operation to all the lower priority regions. As shown in [2], the reset
operation is the main source of the exponential behaviours of the approach. We
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shall propose here a different approach that, based on the result of Lemma 1,
can drastically reduce the number of resets needed.

Figure 3 illustrates the dominion search procedure on an example game. Dia-
mond shaped positions belong to player 0 and square shaped ones to opponent 1.
Each cell of the table contains a computed region. The downward arrow denotes
that the region is open in the subgame where is computed, while the upward
arrow means that the region gets to be promoted to the priority in the subscript.
The measure of the region correspond to the index of the row in which the region
is contained. Empty slots in the table represent empty regions, while a slot with
symbol = in it means that the it contains the same region as the corresponding
slot in the previous column.

Assume the dashed move (g,k) is not present in the game. Then, following
the idea sketched above, the first region obtained is the single-position 0-region
{a} at priority 8, which is open because of the two moves leading to e and i. At
priority 7, the open 1-region {j,k} is formed, by attracting k to j according to
Proposition 1, which is open in the subgame where {a} is removed. The proce-
dures proceeds similarly, processing all the priorities down to 1 and extracting
the regions reported in the first column of the table of Fig. 3. Those are all open
regions in their corresponding subgames, except for the 1-region {g,h} at pri-
ority 1, which is closed in its subgames but not in the entire game. This region
has a move (g,f) leading to region 3 and Proposition 2 is then applied, which
promotes this region to 3, obtaining a new 1-region {e,f,g,h} with measure 3.
This one is again closed in its subgames and, due to move (h,b), triggers another
application of Proposition 2, which promotes all of its positions to region 5 and
resets the positions in region 4 to their original priority. The search resumes at
priority 5 and the maximization of that region attracts position c as well, forming
region {b,c,e,f,g,h} with measure 5. In the resulting subgame, the procedure
now extracts the open 1-region {d} at priority 3. The residual game only contains
position i, that forms a closed 0-region with a move leading to region 8. This
triggers a new promotion that resets the position of all the regions with measure
lower than 8, namely the regions with measures 7 and 5. After maximization of
the target region, positions b, c, d, h, and j are all attracted to form the 0-region
in the first row of column 4. The reset of previous region 7 releases position k
which now forms an open 0-region of priority 4. Similarly, positions e and f, reset
by the last promotion, form an open 1-region at priority 3. Finally, at priority
1 the closed 1-region {g} is extracted and promoted, by move (g,f), to region
3, forming the set {e,f,g}. Since no move from 0-positions lead outside the set,
this region is closed in the entire game and a 1-dominion has been found.

During the simulation above, three resets have been performed. The first
one resets 0-region {c, d} with measure 4 in column 2, after promotion of
region {e, f, g, h} to priority 5. Indeed, the maximization of the resulting region
{b, e, f, g, h} attracts position c, leaving the set {d} with measure 4. However,
according to Definition 1, this is not a quasi 0-dominion, since its 1-escape is
empty and player 1 can win by remaining in the set forever. After the promotion
of region {i} to 8 in column 3, both the regions in rows 7 and 5 get reset. The
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maximization of the target region of the promotion, i.e., {a, i}, attracts posi-
tions b, c, d, h, and j. As a consequence, for similar reasons described above
for position d, the residual position k at priority 7 must be reset to its original
priority. Notice that, in both the considered cases, Lemma 1 does not apply.
Indeed, the 0-witness strategy for region {c, d} is σ = {d �→ c}, the 0-stay set
of the residual region {d} is the set itself, and the restriction of σ to {d} leads
outside {d}, hence, it does not belong to Str0({d}). A similar argument applies
to set {k} as well.

As opposed to this case, however, the reset of region 5 can be avoided, thanks
to Lemma 1. Indeed, a 1-witness for that region is σ = {e �→ g, f �→ e} and, in
this case, the residual set after the promotion and the maximization of the target
region 8 is {e, f, g}, whose 1-stay set is {e, f}. The restriction of σ to that set is,
however, contained in Str1({e, f}) and the lemma applies. Note that, avoiding
the reset of region with measure 5, containing {e, f, g} in column 4, would also
avoid the computation of regions 4, 3, and 1, and the promotion of region 1 to 3
that leads to column 5. Indeed, the residual region 5 is a 1-region, according to
the lemma, and is also closed in the entire game.

If, however, the dashed move (g, k) was added to the game, the reset of
region 5 would be necessary. The reason is that, in this case, the 0-escape set
{e, f, g} would contain position g, which can escape to position k. As a conse-
quence, {e, f, g} would not be a 1-region as the escape set contains a position
with priority non-maximal in the subgame, contrary to what is required by Def-
inition 3.

In summary, we can exploit Lemma 1 and Definition 3 to avoid resetting
regions after a promotion whenever (i) the witness strategy of the residual region
satisfies the condition of the lemma, and (ii) its escape set only contains positions
of maximal priorities in the subgame. This is the core observation that allows
the definition of the RR approach, which is formally defined in the following.

The RR Dominion Space. We can now provide the formal account of the RR
dominion space. We shall denote with Rg the set of region triples in � and with
Rg− and Rg+ the sets of open and closed region triples, respectively.

Similarly to the PP algorithm, during the search for a dominion, the com-
puted regions, together with their current measure, are kept track of by means
of an auxiliary priority function r ∈ Δ � Ps → Pr, called region function. Given
a priority p ∈ Pr, we denote by r(≥p) (resp., r(>p), r(<p), and r( �=p)) the
function obtained by restricting the domain of r to the positions with mea-
sure greater than or equal to p (resp., greater than, lower than, and differ-
ent from p). Formally, r(∼p) � r�{v ∈ Ps : r(v) ∼ p}, for ∼∈ {≥, >,<, =}. By
�≤p
r � �\dom(

r(>p)
)
, we denote the largest subgame obtained by removing from

� all the positions in the domain of r(>p). In order for the RR procedure to exploit
Lemma 1, it also needs to keep track of witness strategies of the computed region.
To this end, we introduce the notion of witness core. A strategy σ ∈ Strα(Q) is
an α-witness core for an α-region R if (i) it is defined on all positions having
priority lower than pr(R), i.e., {v ∈ R : pr(v) < pr(R)} ⊆ dom(σ), and (ii) it is
a restriction of some α-witness ς ∈ Strα for R, i.e., σ ⊆ ς. Intuitively, a witness
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core only maintains the essential part of a witness and can be easily transformed
into a complete witness by associating every position v ∈ stayα(R) \ dom(σ)
with an arbitrary successor in R. The result of any such completion is an actual
witness, since any infinite path passing through v is forced to visit a maximal
priority of parity α.

Definition 4 (Region-Witness Pair). Let r∈Δ be a priority function, τ ∈Str
a strategy, and p ∈ Pr a priority. The pair (r, τ) is a region-witness pair w.r.t.
p if, for all q ∈ rng(r) with α � q mod 2,R � r−1(q) ∩ Ps

�
≤q
r

= ∅, and σ � τ�R,
the following two conditions hold:

1. if q ≥ p, then R is an α-region in the subgame �≤q
r with α-witness core σ;

2. if q < p, there exists a quasi α-dominion Q� ⊇ R with α-witness σ� such that
(i) pr(Q�) = q, (ii) σ ⊆ σ�, and (iii) (R ∩ Psα) \ dom(σ) ⊆ pr−1(q).

In addition, r is maximal above p ∈ Pr iff, whenever q > p, it holds that R is
α-maximal in �≤q

r as well.

As opposed to the PP approach, where a promotion to a priority p resets all
the regions of measure lower than p, the RR algorithm resets lower regions only
when it cannot ensure their validity. This is done one region at a time, during
the descend phase. If, while reading a set r−1(q) at a certain priority q < p,
the conditions of Lemma 1 are not met by r−1(q) or the escape of that region
contains positions of priority lower than q, then r−1(q) is reset.

Contrary to PP, for which the set contained in r at each measure q must be
an α-region, RR requires such a property only for those regions with measure
q ≥ p, as expressed by Item 1 of the previous definition. For each q < p, instead,
we simply require the set of positions contained in r at that measure to be a
subset of some previously computed quasi dominions of the same player. This
is done by requiring that the strategies recorded in τ be subsets of witnesses of
these dominions, as described in Item 2. In this way, to verify that r−1(q) is still
a quasi α-dominion, RR can apply the property stated in Lemma 1.

The status of the search of a dominion is encoded by the notion of state
s of the dominion space, which contains the current region-witness pair (r, τ)
and the current priority p reached by the search in �. Initially, r coincides with
the priority function pr of the entire game �, τ is the empty strategy, and p is
set to the maximal priority pr(�) available in the game. To each of such states
s � (r, , p), we then associate the subgame at s defined as �s � �≤p

r , representing
the portion of the original game that still has to be processed.

The following state space specifies the configurations in which the RR proce-
dure can reside and the relative order that the successor function must satisfy.

Definition 5 (State Space). A state space is a tuple S �〈S,�,≺〉, where:

1. S ⊆ Δ×Str×Pr is the set of triples s � (r, τ, p), called states, where (a) (r, τ)
is a region-witness pair w.r.t. p, (b) r is maximal above p, and (c) p ∈ rng(r).
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2. � � (pr, ∅, pr(�));
3. for any two states s1 � (r1, , p1), s2 � (r2, , p2) ∈ S, it holds that s1≺s2

iff either (a) there exists a priority q ∈ rng(r1) with q ≥ p1 such that
(a.i) r1

(>q)= r2
(>q) and (a.ii) r−1

2 (q)⊂ r−1
1 (q), or (b) both (b.i) r

(≥p2)
1 = r

(≥p2)
2

and (b.ii) p1 < p2 hold.

Condition 1 requires every region r−1(q) with measure q > p to be α-maximal,
where α = q mod 2. This implies that r−1(q) ⊆ Ps

�
≤q
r

. Moreover, the current
priority p must be one of the measures recorded in r. Condition 2 specifies the
initial state. Finally, Condition 3 defines the ordering relation among states,
which the successor operation has to comply with. It asserts that a state s1 is
strictly smaller than another state s2 if either there is a region recorded in s1

with some higher measure q that strictly contains the corresponding one in s2

and all regions with measure grater than q are equal in the two states, or state
s1 is currently processing a lower priority than the one of s2.

As reported in Definition 2, the compatibility relation describes which regions
are compatibles with a state, i.e., which region triples can be returned by the
query operator and used by the successor function. A region triple (R, σ, α) is
compatible with a state s � (r, τ, p) if R is an α-region in the current subgame
�s. Moreover, if such a region is α-open in that game, it has to be α-maximal
and needs to necessarily contain the current region r−1(p) of priority p in r.

Definition 6 (Compatibility Relation). An open quasi dominion triple
(R, σ, α) ∈ QD− is compatible with a state s � (r, τ, p) ∈ S, in symbols
s�(R, σ, α), iff (1) (R, σ, α) ∈ Rg�s

and (2) if R is α-open in �s then (2.a) R
is α-maximal in �s and (2.b) r−1(p) ⊆ R.

Algorithm 2: Query Function.
signature � : S→2Ps×Str×{0, 1}
function �(s)

let (r, τ, p) = s in
1 α ← p mod 2
2 R� ← r−1(p)
3 (R, σ) ← atrα

�s
(R�, τ�R�)

4 return (R, σ, α)

Algorithm 2 provides a possible
implementation for the query function
compatible with the region-recovery
mechanism. Given the current state
s � (r, τ, p), Line 1 simply computes
the parity α of the priority p to process
at s. Line 3, instead, computes the
attractor w.r.t. player α in subgame
�s of the region R� contained in r at p,
as determined by Line 2. Observe that
here we employ a version of the α-attractor that, given an α-witness core for R�,
also computes the α-witness for R. This can easily be done by first extending
τ�R� with the attraction strategy on the α-positions in R \ R� and, then, by
choosing, for any α-positions in R \ dom(τ�R�) with a successor in R \ R�, any
one of those successors. The resulting set R is, according to Proposition 1, an
α-maximal α-region of �s containing r−1(p) with α-witness σ.
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Algorithm 3: Successor Function.
signature ↓ : � → Δ × Str × Pr
function s ↓ (R, σ, α)

let (r, τ, p) = s in
1 if (R, σ, α) ∈ Rg−

�s
then

2 return N(r[R �→ p], τ � σ, p)
else

3 p� ← bepα(R, r)
4 return (r[R �→ p�], τ � σ, p�)

The promotion operation
is based on the notion of
best escape priority mentioned
above, namely the priority of
the lowest α-region in r that
has an incident move coming
from the α-region, closed in the
current subgame, that needs to
be promoted. This concept is
formally defined as follows. Let
I � Mv ∩ ((R ∩ Psα)×
(dom(r)\R)) be the interface relation between R and r, i.e., the set of α-moves
exiting from R and reaching some position within a region recorded in r. Then,
bepα(R, r) is set to the minimal measure of those regions that contain positions
reachable by a move in I. Formally, bepα(R, r) � min(rng(r�rng(I ))). Such a value
represents the best priority associated with an α-region contained in r and reach-
able by α when escaping from R. Note that, if R is a closed α-region in �s, then
bepα(R, r) is necessarily of parity α and greater than the measure p of R. This
property immediately follows from the maximality of r above p. Indeed, no move
of an α-position can lead to a α-maximal α-region. For instance, for 1-region
R = {g, h} with measure 1 in Column 1 of Fig. 3, we have that I = {(g, f), (h, b)}
and r�rng(I ) = {(b, 5), (f, 3)}. Hence, bep0(R, r) = 3.

Algorithm 3 implements the successor function. Given the state s � (r, τ, p)
and one of its possible compatible region triples (R, σ, α) open in the original
game �, it produces a successor state s�≺s. Line 1 checks if R is open in the
subgame �s as well. If this is the case, at Line 2, the next state s� is generated
by the auxiliary function, called next state function, described below, which
also applies the required resets. On the other hand, if R is closed in �s, the
procedure performs the promotion of R, by exploiting Proposition 2. Indeed,
Line 3 computes the best escape priority p� to which R needs to be promoted,
while Line 4 sets the measure of R to p� and merges the strategies contained in
τ with the α-witness σ of R. Observe that, unlike in the PP successor function,
no reset operation is applied to r at this stage.

Algorithm 4: Next State Function.
signature N : S → Δ × Str × Pr
function N(s)

let (r, τ, p) = s in
1 p� ← max(rng

(
r(<p)

)
)

2 if φ(r, τ, p�) then
3 return (r, τ, p�)

else
4 r� ← pr � r( �=p�)

5 τ� ← σ \ r−1(p�)
6 return N(r�, τ�, p)

Finally, Algorithm4 reports the
pseudo code of the next state func-
tion, the essential core of the RR
approach. At a state s � (r, σ, p),
Line 1 computes the priority p�

of the successive set of positions
r−1(p�) occurring in r starting from
p in descending order of priority.
Then, Line 2 verifies whether this
set is actually a region, by comput-
ing the truth value of the formula
φ described below applied to the
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triple (r, τ, p�). If this is the case, the successor state (r, τ, p�) of s is returned at
Line 3. On the other hand, if the check fails, the algorithm resets, at Line 4, the
positions in r−1(p�) to their original priority stored in the priority function pr of
the game, and deletes, at Line 5, the associated strategy contained in τ . Finally,
at Line 6, the next state function is recursively applied to the newly obtained
state.

To check whether a set of positions R � r−1(p) at a certain priority
q < p is an α-region with α � q mod 2, we make use of the formula
φ(r, τ, q) � φi(r, τ, q) ∧ φii(r, q), which verifies that (i) σ � τ�R is a witness core
for R and (ii) the escape only contains positions of maximal priorities in the
subgame. The two predicates are formally defined as follows.

φi(r, τ, q) � ∀v ∈ Psα
�� ∩ dom(σ) . σ(v) ∈ R

φii(r, q) � escα
��(R) ⊆ pr−1

�� (pr(��))
with

{
�� � �≤q

r , α � q mod 2,

R � r−1(q), σ � τ�R.

Intuitively, if φi(r, τ, q) holds, we are sure that σ ∈ Strα(R). Moreover, due to
Item 2 of Definition 4, R is a subset of a quasi α-dominion having a witness
containing σ. Therefore, by Lemma 1, we immediately derives that σ is a wit-
ness core for R. Additionally, the formula φii(r, q) just checks that the second
condition of the definition of region is also met.

The following theorem establishes the correctness of the RR approach.

Theorem 1 (Dominion Space). For a game �, the structure D �〈�,S,�,�,
↓〉, where S is given in Definition 5, � is the relation of Definition 6, and � and
↓ are the functions computed by Algorithms 2 and 3 is a dominion space.

The RR procedure drastically reduces the number of resets needed to solve a
game w.r.t. PP. In particular, the exponential worst-case game presented in [2]
does not work any more, since the execution depth of the associated RR dominion
space is only quadratic in the parameter of game family. Unfortunately, at the
present time, we are not able to provide a better asymptotic upper bound for
the time complexity w.r.t. the PP one.

5 Experimental Evaluation

The technique proposed in the paper has been implemented in the tool
PGSolver [9], which collects implementations of several parity game solvers
proposed in the literature and provides benchmarking tools that can be used to
evaluate the solver performances.1

1 All the experiments were carried out on a 64-bit 3.1 GHz Intel R©quad-core machine,
with i5-2400 processor and 8GB of RAM, running Ubuntu 12.04 with Linux kernel
version 3.2.0. PGSolver was compiled with OCaml version 2.12.1.
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Fig. 4. Comparative results on 2000 random games
with up to 20000 positions (from [2]).

Figure 4 compares the
running times of the new
algorithm RR against the
original version PP and
the well-known solvers Rec
and Str, implementing the
recursive algorithm [23] and
the strategy improvement
technique [22], respectively.
This first pool of bench-
marks is taken from [2]
and involves 2000 random
games of size ranging from
1000 to 20000 positions and
2 outgoing moves per posi-
tion. Interestingly, random
games with very few moves
prove to be much more challenging for the priority promotion based approaches
than those with a higher number of moves per position, and often require a
much higher number of promotions. Since the behaviour of the solvers is typi-
cally highly variable, even on games of the same size and priorities, to summarise
the results we took the average running time on clusters of games.

Therefore, each point in the graph shows the average time over a cluster of
100 different games of the same size: for each size value n, we chose the numbers
k = n·i/10 of priorities, with i ∈ [1, 10], and 10 random games were generated for
each pair n and k. We set a time-out to 180 s (3 min). The new solver RR shows
a significant improvement on all the benchmarks. All the other solvers provided
in PGSolver, including the Dominion Decomposition [14] and the Big Step [19]
algorithms, perform quite poorly on those games, hitting the time-out already
for very small instances. Figure 4 shows only the best performing ones on the
considered games, namely Rec and Str.
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Fig. 5. Comparison between PP and RR on random
games with 50000 positions on a logarithmic scale.

Similar experiments were
also conducted on random
games with a higher num-
ber of moves per position
and up to 100000 positions.
The resulting games turn
out to be very easy to solve
by all the priority promo-
tion based approaches. The
reason seems to be that
the higher number of moves
significantly increases the
dimension of the computed
regions and, consequently,
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also the chances to find a closed one. Indeed, the number of promotions required
by PP and RR on all those games is typically zero, and the whole solution time
is due exclusively to a very limited number of attractors needed to compute the
few regions contained in the games. We reserve the presentation of the results
for the extended version.

To further stress the RR technique in comparison with PP, we also generated
a second pool of much harder benchmarks, containing more than 500 games, each
with 50000 positions, 12000 priorities and 2 moves per positions. We selected
as benchmarks only random games whose solution requires PP between 30 and
6000 s. The results comparing PP and RR are reported in Fig. 5 on a logarithmic
scale. The figure shows that in three cases PP performs better than RR. This
is due to the fact that the two algorithms may follow different solution paths
within the dominion space and that following the new technique may, in some
cases, defer the discovery of a closed dominion. Nonetheless, the RR algorithm
does pay off significantly on the vast majority of the benchmarks, often solving
a game between two to sixteen times faster than PP.

In [2] it is shown that PP solves all the known exponential worst cases for
the other solvers without promotions and, clearly, the same holds of RR as well.
As a consequence, RR only requires polynomial time on those games and the
experimental results coincide with the ones for PP.
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14. Jurdziński, M., Paterson, M., Zwick, U.: A deterministic subexponential algorithm
for solving parity games. SJM 38(4), 1519–1532 (2008)

15. Kupferman, O., Vardi, M.: Weak alternating automata and tree automata empti-
ness. In: STOC 1998, pp. 224–233. Association for Computing Machinery (1998)

16. Kupferman, O., Vardi, M., Wolper, P.: An automata theoretic approach to
branching-time model checking. JACM 47(2), 312–360 (2000)

17. Mostowski, A.W.: Regular expressions for infinite trees and a standard form of
automata. In: Skowron, A. (ed.) SCT 1984. LNCS, vol. 208, pp. 157–168. Springer,
Heidelberg (1985). doi:10.1007/3-540-16066-3 15

18. Mostowski, A.: Games with forbidden positions. University of Gdańsk, Gdańsk,
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Abstract. Shield synthesis is an approach to enforce a set of safety-
critical properties of a reactive system at runtime. A shield monitors the
system and corrects any erroneous output values instantaneously. The
shield deviates from the given outputs as little as it can and recovers to
hand back control to the system as soon as possible. This paper takes its
inspiration from a case study on mission planning for unmanned aerial
vehicles (UAVs) in which k-stabilizing shields, which guarantee recovery
in a finite time, could not be constructed. We introduce the notion of
admissible shields, which improves k-stabilizing shields in two ways: (1)
whereas k-stabilizing shields take an adversarial view on the system,
admissible shields take a collaborative view. That is, if there is no shield
that guarantees recovery within k steps regardless of system behavior,
the admissible shield will attempt to work with the system to recover as
soon as possible. (2) Admissible shields can handle system failures during
the recovery phase. In our experimental results we show that for UAVs,
we can generate admissible shields, even when k-stabilizing shields do
not exist.

1 Introduction

Technological advances enable the development of increasingly sophisticated sys-
tems. Smaller and faster microprocessors, wireless networking, and new theoret-
ical results in areas such as machine learning and intelligent control are paving
the way for transformative technologies across a variety of domains – self-driving
cars that have the potential to reduce accidents, traffic, energy consumption, and
pollution; and unmanned systems that can safely and efficiently operate on land,
under water, in the air, and in space. However, in each of these domains, con-
cerns about safety are being raised [7,16]. Specifically, there is a concern that
due to the complexity of such systems, traditional test and evaluation approaches
will not be sufficient for finding errors, and alternative approaches such as those
provided by formal methods are needed [17].
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Formal methods are often used to verify systems at design time, but this is
not always realistic. Some systems are simply too large to be fully verified. Oth-
ers, especially systems that operate in rich dynamic environments or those that
continuously adapt their behavior through methods such as machine learning,
cannot be fully modeled at design time. Still others may incorporate components
that have not been previously verified and cannot be modeled, e.g., proprietary
components or pre-compiled code libraries.

Also, even systems that have been fully verified at design time may be subject
to external faults such as those introduced by unexpected hardware failures
or human inputs. One way to address this issue is to model nondeterministic
behaviours (such as faults) as disturbances, and verify the system with respect
to this disturbance model [18]. However, it is impossible to model all potential
unexpected behavior at design time.

An alternative in such cases is to perform runtime verification to detect
violations of a set of specified properties while a system is executing [14]. An
extension of this idea is to perform runtime enforcement of specified properties,
in which violations are not only detected but also overwritten in a way that
specified properties are maintained.

A general approach for runtime enforcement of specified properties is shield
synthesis, in which a shield monitors the system and instantaneously overwrites
incorrect outputs. A shield must ensure both correctness, i.e., it corrects sys-
tem outputs such that all properties are always satisfied, as well as minimum
deviation, i.e., it deviates from system outputs only if necessary and as rarely
as possible. The latter requirement is important because the system may satisfy
additional noncritical properties that are not considered by the shield but should
be retained as much as possible.

Bloem et al. [4] proposed the notion of k-stabilizing shields. Since we are
given a safety specification, we can identify wrong outputs, that is, outputs after
which the specification is violated (more precisely: after which the environment
can force the specification to be violated). A wrong trace is then a trace that
ends in a wrong output. The idea of shields is that they may modify the outputs
so that the specification always holds, but that such deviations last for at most k
consecutive steps after a wrong output. If a second violation happens during the
k-step recovery phase, the shield enters a mode where it only enforces correct-
ness, but no longer minimizes the deviation. This proposed approach has two
limitations with significant impact in practice. (1) The k-stabilizing shield syn-
thesis problem is unrealizable for many safety-critical systems, because a finite
number of deviations cannot be guaranteed. (2) k-stabilizing shields make the
assumption that there are no further system errors during the recovery phase.

In this paper, we introduce admissible shields, which overcome the two issues
of k-stabilizing shields. To address shortcoming (1), we guarantee the following:
(a) Admissible shields are subgame optimal. That is, for any wrong trace, if there
is a finite number k of steps within which the recovery phase can be guaranteed
to end, the shield will always achieve this. (b) The shield is admissible, that
is, if there is no such number k, it always picks a deviation that is optimal
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in that it ends the recovery phase as soon as possible for some possible future
inputs. (This is defined in more detail below.) As a result, admissible shields
work well in settings in which finite recovery can not be guaranteed, because
they guarantee correctness and may well end the recovery period if the system
does not pick adversarial outputs. To address shortcoming (2), admissible shields
allow arbitrary failure frequencies and in particular failures that arrive during
recovery, without losing the ability to recover.

As a second contribution, we demonstrate the use of admissible shields
through a case study involving mission planning for an unmanned aerial vehicle
(UAV). Manually creating and executing mission plans that meet mission objec-
tives while addressing all possible contingencies is a complex and error-prone
task. Therefore, having a shield that changes the mission only if absolutely nec-
essary to enforce certain safety properties has the potential to lower the burden
on human operators, and ensures safety during mission execution. We show that
admissible shields are applicable in this setting, whereas k-stabilizing shields are
not.

Related Work: Our work builds on synthesis of reactive systems [3,20] and
reactive mission plans [9] from formal specifications, and our method is related
to synthesis of robust [1] and error-resilient [10] systems. However, our approach
differs in that we do not synthesize an entire system, but rather a shield that
considers only a small set of properties and corrects the output of the system at
runtime. Li et al. [15] focused on the problem of synthesizing a semi-autonomous
controller that expects occasional human intervention for correct operation. A
human-in-the-loop controller monitors past and current information about the
system and its environment. The controller invokes the human operator only
when it is necessary, but as soon as a specification is violated ahead of time, such
that the human operator has sufficient time to respond. Similarly, our shields
monitor the behavior of systems at run time, and interfere as little as possible.
Our work relates to more general work on runtime enforcement of properties [12],
but shield synthesis [4] is the first appropriative work for reactive systems, since
shields act on erroneous system outputs immediately without delay. While [4]
focuses on shield synthesis for systems assumed to make no more than one error
every k steps, this work assumes only that systems generally have cooperative
behavior with respect to the shield, i.e., the shield ensures a finite number of
deviations if the system chooses certain outputs. This is similar in concept to
cooperative synthesis as considered in [2], in which a synthesized system has
to satisfy a set of properties (called guarantees) only if certain environment
assumptions hold. The authors present a synthesis procedure that maximizes
the cooperation between system and environment for satisfying both guarantees
and assumptions as far as possible.

Outline: In what follows, we begin in Sect. 2 by motivating the need for admis-
sible shields through a case study involving mission planning for a UAV. In
Sects. 3, 4 and 5, we define preliminary concepts, review the general shield syn-
thesis framework, and describe our approach for synthesizing admissible shields.
Section 6 provides experimental results, and Sect. 7 concludes.
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2 Motivating Example

In this section, we apply shields on a scenario in which a UAV must maintain
certain properties while performing a surveillance mission in a dynamic envi-
ronment. We show how a shield can be used to enforce the desired properties,
where a human operator in conjunction with a lower-level autonomous planner is
considered as the reactive system that sends commands to the UAV’s autopilot.
We discuss how we would intuitively want a shield to behave in such a situation.
We show that the admissible shields provide the desired behaviors and address
the limitations of k-stabilizing shields.

To begin, note that a common UAV control architecture consists of a ground
control station that communicates with an autopilot onboard the UAV [5]. The
ground control station receives and displays updates from the autopilot on the
UAV’s state, including position, heading, airspeed, battery level, and sensor
imagery. It can also send commands to the UAV’s autopilot, such as waypoints
to fly to. A human operator can then use the ground control station to plan
waypoint-based routes for the UAV, possibly making modifications during mis-
sion execution to respond to events observed through the UAV’s sensors. How-
ever, mission planning and execution can be very workload intensive, especially
when operators are expected to control multiple UAVs simultaneously [8]. To
address this issue, methods for UAV command and control have been explored
in which operators issue high-level commands, and automation carries out low-
level execution details.

Several errors can occur in this type of human-automation paradigm [6].
For instance, in issuing high-level commands to the low-level planner, a human
operator might neglect required safety properties due to high workload, fatigue,
or an incomplete understanding of exactly how the autonomous planner might
execute the command. The planner might also neglect these safety properties
either because of software errors or by design. Waypoint commands issued by
the operator or planner could also be corrupted by software that translates
waypoint messages between ground station and autopilot specific formats or
during transmission over the communication link.

As the mission unfolds, waypoint commands will be sent periodically to the
autopilot. If a waypoint that violates the properties is received, a shield that
monitors the system inputs and can overwrite the waypoint outputs to the
autopilot would be able to make corrections to ensure the satisfaction of the
desired properties.

Consider the mission map in Fig. 1 [13], which contains three tall buildings
(illustrated as blue blocks), over which a UAV should not attempt to fly. It also
includes two unattended ground sensors (UGS) that provide data on possible
nearby targets, one at location loc1 and one at locx, as well as two locations of inter-
est, locy and locz. The UAV can monitor locx, locy, and locz from several nearby
vantage points. The map also contains a restricted operating zone (ROZ), illus-
trated with a red box, in which flight might be dangerous, and the path of a possible
adversary that should be avoided (the pink dashed line). Inside the communication
relay region (large green area), communication links are highly reliable. Outside
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Fig. 1. A map for UAV mission planning. (Color figure online)

this region, communication relies on relay points with lower reliability. Given this
scenario, properties of interest include:

1. Connected waypoints. The UAV is only allowed to fly to directly connected
waypoints.

2. No communication. The UAV is not allowed to stay in a location with
reduced communication reliability.

3. Restricted operating zones. The UAV has to leave a ROZ within 2 time
steps.

4. Detected by an adversary. Locations on the adversary’s path cannot be
visited more than once over any window of 3 time steps.

5. UGS. If a UGS reports a possible nearby target, the UAV should visit a
respective waypoint within 7 steps (for UGS1 visit loc1, for UGS2 visit loc5,
loc6, loc7, or loc8).

6. Go home. Once the UAV’s battery is low, it should return to a designated
landing site at loc14 within 10 time steps.

The task of the shield is to ensure these properties during operation. In this
setting, the operator in conjunction with a lower-level planner acts as a reac-
tive system that responds to mission-relevant inputs; in this case data from the
UGSs and a signal indicating whether the battery is low. In each step, the next
waypoint is sent to the autopilot, which is encoded in a bit representation via
outputs l4, l3, l2, and l1. We attach the shield as shown in Fig. 2. The shield
monitors mission inputs and waypoint outputs, correcting outputs immediately
if a violation of the safety properties becomes unavoidable.

We represent each of the properties by a safety automaton, the product of
which serves as the shield specification. Figure 3 models the “connected way-
points” property, where each state represents a waypoint with the same number.
Edges are labeled by the values of the variables l4 . . . l1. For example, the edge
leading from state s5 to state s6 is labeled by ¬l4l3l2¬l1. For clarity, we drop the
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Fig. 2. The interaction between the
operator/planner (acting as a reactive
system) and the shield.

Fig. 3. Safety automaton of Property 1
over the map in Fig. 1.

labels of edges in Fig. 3. The automaton also includes an error state, which is
not shown. Missing edges lead to this error state, denoting forbidden situations.

How should a shield behave in this scenario? If the human operator wants to
monitor a location in a ROZ, he or she would like to simply command the UAV
to “monitor the location in the ROZ and stay there”, with the planner handling
the execution details. If the planner cannot do this while meeting all the safety
properties, it is appropriate for the shield to revise its outputs. Yet, the oper-
ator would still expect his or her commands to be followed to the maximum
extent possible, leaving the ROZ when necessary and returning whenever possi-
ble. Thus, the shield should minimize deviations from the operator’s directives
as executed by the planner.

Using a k-stabilizing shield. As a concrete example, assume the UAV is
currently at loc3, and the operator commands it to monitor loc12. The planner
then sends commands to fly to loc11 then loc12, which are accepted by the
shield. The planner then sends a command to loiter at loc12, but the shield
must overwrite it to maintain Property 3, which requires the UAV to leave the
ROZ within two time steps. The shield instead commands the UAV to go to
loc15. Suppose the operator then commands the UAV to fly to loc13, while the
planner is still issuing commands as if the UAV is at loc12. The planner then
commands the UAV to fly to loc13, but since the actual UAV cannot fly from
loc15 to loc13 directly, the shield directs the UAV to loc14 on its way to loc15.
The operator might then respond to a change in the mission and command the
UAV fly back to loc12, and the shield again deviates from the route assumed by
the planner, and directs the UAV back to loc15, and so on. Therefore, a single
specification violation can lead to an infinitely long deviation between the UAV’s
actual position and the UAV’s assumed position. A k-stabilizing shield is allowed
to deviate from the planner’s commands for at most k consecutive time steps.
Hence, no k-stabilizing shield exists.
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Using an admissible shield. Recall the situation in which the shield caused the
actual position of the UAV to “fall behind” the position assumed by the planner,
so that the next waypoint the planner issues is two or more steps away from the
UAV’s current waypoint position. The shield should then implement a best-effort
strategy to “synchronize” the UAV’s actual position with that assumed by the
planner. Though this cannot be guaranteed, the operator and planner are not
adversarial towards the shield, so it will likely be possible to achieve this re-
synchronization, for instance when the UAV goes back to a previous waypoint
or remains at the current waypoint for several steps. This possibility motivates
the concept of an admissible shield. Assume that the actual position of the UAV
is loc14 and the its assumed position is loc13. If the operator commands the UAV
to loiter at loc13, the shield will be able to catch up with the state assumed by
the planner and to end the deviation by the next specification violation.

3 Preliminaries

We denote the Boolean domain by B = {true, false}, the set of natural numbers
by N, and abbreviate N ∪ {∞} by N

∞. We consider a reactive system with a
finite set I = {i1, . . . , im} of Boolean inputs and a finite set O = {o1, . . . , on}
of Boolean outputs. The input alphabet is ΣI = 2I , the output alphabet is
ΣO = 2O, and Σ = ΣI ×ΣO. The set of finite (infinite) words over Σ is denoted
by Σ∗ (Σω), and Σ∞ = Σ∗ ∪ Σω. We will also refer to words as (execution)
traces. We write |σ| for the length of a trace σ ∈ Σ∗. For σI = x0x1 . . . ∈ Σ∞

I and
σO = y0y1 . . . ∈ Σ∞

O , we write σI ||σO for the composition (x0, y0)(x1, y1) . . . ∈
Σ∞. A set L ⊆ Σ∞ of words is called a language. We denote the set of all
languages as L = 2Σ∞

.

Reactive Systems. A Mealy machine (reactive system, design) is a 6-tuple
D = (Q, q0, ΣI , ΣO, δ, λ), where Q is a finite set of states, q0 ∈ Q is the initial
state, δ : Q × ΣI → Q is a complete transition function, and λ : Q × ΣI → ΣO

is a complete output function. Given the input trace σI = x0x1 . . . ∈ Σ∞
I , the

system D produces the output trace σO = D(σI) = λ(q0, x0)λ(q1, x1) . . . ∈ Σ∞
O ,

where qi+1 = δ(qi, xi) for all i ≥ 0. The set of words produced by D is denoted
L(D) = {σI ||σO ∈ Σ∞ | D(σI) = σO}.

Let D = (Q, q0, ΣI , ΣO, δ, λ) and D′ = (Q′, q′
0, Σ,ΣO, δ′, λ′) be reactive sys-

tems. A serial composition of D and D′ is realized if the input and output of
D are fed to D′. We denote such composition as D ◦ D′ = (Q̂, q̂0, ΣI , ΣO, δ̂, λ̂),
where Q̂ = Q × Q′, q̂0 = (q0, q′

0), δ̂((q, q′), σI) = (δ(q, σI), δ′(q′, (σI , λ(q, σI)))),
and λ̂((q, q′), σI) = λ′(q′, (σI , λ(q, σI))).

Specifications. A specification ϕ is a set L(ϕ) ⊆ Σ∞ of allowed traces. D
realizes ϕ, denoted by D |= ϕ, iff L(D) ⊆ L(ϕ). A specification ϕ is realizable if
there exists a design D that realizes it. A safety specification ϕs is represented
by an automaton ϕs = (Q, q0, Σ, δ, F ), where Σ = ΣI ∪ ΣO, δ : Q × Σ → Q,
and F ⊆ Q is a set of safe states. The run induced by trace σ = σ0σ1 . . . ∈ Σ∞

is the state sequence q = q0q1 . . . such that qi+1 = δ(qi, σi); the run is accepting
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if ∀i ≥ 0 . qi ∈ F . Trace σ (of a design D) satisfies ϕs if the induced run is
accepting. The language L(ϕs) is the set of all traces satisfying ϕs.

Games. A (2-player, alternating) game is a tuple G = (G, g0, ΣI , ΣO, δ,win),
where G is a finite set of game states, g0 ∈ G is the initial state, δ : G×ΣI×ΣO →
G is a complete transition function, and win : Gω → B is a winning condition.
The game is played by two players: the system and the environment. In every
state g ∈ G (starting with g0), the environment first chooses an input letter
σI ∈ ΣI , and then the system chooses some output letter σO ∈ ΣO. This defines
the next state g′ = δ(g, σI , σO), and so on. Thus, a (finite or infinite) word over
Σ results in a (finite or infinite) play, a sequence g = g0g1 . . . of game states. A
play is won by the system iff win(g) is true. A safety game defines win via a set
F s ⊆ G of safe states: win(g0g1 . . .) is true iff ∀i ≥ 0 . gi ∈ F s, i.e., if only safe
states are visited. Let inf(g) denote the states that occur infinitely often in g. A
Büchi game defines win via a set F b ⊆ G of accepting states: win(g) is true iff
inf(g) ∩ F b �= ∅.

It is easy to transform a safety specification into a safety game such that a
trace satisfies the specification iff the corresponding play is won. Given a safety
specification ϕs. A finite trace σ ∈ Σ∗ is wrong, if the corresponding play is not
won, i.e., if there is no way for the system to guarantee that any extension of
the trace satisfies the specification. An output is called wrong, if it makes a trace
wrong; i.e., given ϕs, a trace σ ∈ Σ∗ an input σI ∈ ΣI , and an output σO ∈ ΣO,
σO is wrong iff σ is not wrong, but σ · (σI , σO) is.

A deterministic (memoryless) strategy for the environment is a function ρe :
G → ΣI . A deterministic (memoryless) strategy for the system is a function
ρs : G × ΣI → ΣO. A strategy ρs is winning for the system, if for all strategies
ρe of the environment the play g that is constructed when defining the outputs
using ρe and ρs satisfies win(g). The winning region W is the set of states from
which a winning strategy exists. A strategy is cooperatively winning if there
exists a strategy ρe and ρs, such that the play g constructed by ρe and ρs

satisfies win(g).
For a Büchi game G with accepting states F b, consider a strategy ρe of the

environment, a strategy ρs of the system, and a state g ∈ G. We set the distance
dist(g, ρe, ρs) = k, if the play g defined by ρe and ρs reaches from g an accepting
state that occurs infinitely often in g in k steps. If no such state is visited, we set
dist(g, ρe, ρs) = ∞. Given two strategies ρs and ρ′

s of the system, we say that ρ′
s

dominates ρs if: (i) for all ρe and all g ∈ G, dist(g, ρe, ρ
′
s) ≤ dist(g, ρe, ρs), and

(ii) there exists ρe and g ∈ G such that dist(g, ρe, ρ
′
s) < dist(g, ρe, ρs).

A strategy is admissible if there is no strategy that dominates it.

4 Admissible Shields

Bloem et al. [4] presented the general framework for shield synthesis. A shield
has two main properties: (i) For any design, a shield ensures correctness with
respect to a specification. (ii) A shield ensures minimal deviation. We revisit
these properties in Sect. 4.1. The definition of minimum deviation is designed
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to be flexible and different notions of minimum deviation can be realized.
k-stabilizing shields represent one concrete realization. In Sect. 4.2, we present
a new realization of the minimum deviation property resulting in admissible
shields.

4.1 Definition of Shields

A shield reads the input and output of a design as shown in Fig. 2. We then
address the two properties, correctness and minimum deviation, to be ensured
by a shield.

The Correctness Property. With correctness we refer to the property that
the shield corrects any design’s output such that a given safety specification is
satisfied. Formally, let ϕ be a safety specification and S = (Q′, q′

0, Σ,ΣO, δ′, λ′)
be a Mealy machine. We say that S ensures correctness if for any design D =
(Q, q0, ΣI , ΣO, δ, λ), it holds that (D ◦ S) |= ϕ.

Since a shield must work for any design, the synthesis procedure does not
need to consider the design’s implementation. This property is crucial because
the design may be unknown or too complex to analyze. On the other hand, the
design may satisfy additional (noncritical) specifications that are not specified
in ϕ but should be retained as much as possible.

The Minimum Deviation Property. Minimum deviation requires a shield
to deviate only if necessary, and as infrequently as possible. To ensure mini-
mum deviation, a shield can only deviate from the design if a property violation
becomes unavoidable. Given a safety specification ϕ, a Mealy machine S does
not deviate unnecessarily if for any design D and any trace σI ||σO that is not
wrong, we have that S(σI ||σO) = σO. In other words, if D does not violate ϕ, S
keeps the output of D intact.

A Mealy machine S is a shield if S ensures correctness and does not deviate
unnecessarily.

Ideally, shields end phases of deviations as soon as possible, recovering
quickly. This property leaves room for interpretation. Different types of shields
differentiate on how this property is realized.

4.2 Defining Admissible Shields

In this section we define admissible shields using their speed of recovery. We
distinguish between two situations. In states of the design in which a finite num-
ber k of deviations can be guaranteed, an admissible shield takes an adversarial
view on the design: it guarantees recovery within k steps regardless of system
behavior, for the smallest k possible. In these states, the strategy of an admis-
sible shield conforms to the strategy of k-stabilizing shield. In all other states,
admissible shields take a collaborative view: the admissible shield will attempt to
work with the design to recover as soon as possible. In particular, an admissible
shield plays an admissible strategy, that is, a strategy that cannot be beaten in
recovery speed if the design acts cooperatively.
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We will now define admissible shields. For failures of the system that are
corrected by the shield, we consider four phases:

1. The innocent phase consisting of inputs σI and outputs σO, in which no
failure occurs; i.e., (σI ||σO) |= ϕ.

2. The misstep phase consisting of a input σI and a wrong output σO
f ; i.e.,

(σI ||σO) · (σI , σO
f ) � |= ϕ.

3. The deviation phase consisting of inputs σI
′ and outputs σO

′ in which the
shield is allowed to deviate, and for a correct output σO

c we have (σI ||σO) ·
(σI , σO

c) · (σI
′||σO

′) |= ϕ.
4. The final phase consisting σI

′′ and σO
′′ in which the shield does not deviate,

and (σI ||σO) · (σI , σO
c) · (σI

′||σO
′) · (σI

′′||σO
′′) |= ϕ.

Adversely k-stabilizing shields have a deviation phase of length at most k.

Definition 1. A shield S adversely k-stabilizes a trace σ = σI ||σO ∈ Σ∗,
if for any input σI ∈ ΣI and any wrong output σO

f ∈ ΣO, for any cor-
rect output σO

c ∈ ΣO and for any correct trace σI
′||σO

′ ∈ Σk there exists
a trace σO

#σO
# ∈ Σk+1

O such that for any trace σI
′′||σO

′′ ∈ Σω such that
(σI ||σO) · (σI , σO

c) · (σI
′||σO

′) · (σI
′′||σO

′′) |= ϕ, we have

S(σ · (σI , σO
f ) · (σI

′||σO
′) · (σI

′′||σO
′′)) = σO · σO

# · σO
# · σO

′′

and
(σI ||σO) · (σI , σO

#) · (σI
′||σO

#) · (σI
′′||σO

′′) |= ϕ.

Note that it is not always possible to adversely k-stabilize a shield for a given
k or even for any k.

Definition 2 (Adversely k-Stabilizing Shields [4]). A shield S is adversely
k-stabilizing if it adversely k-stabilies any finite trace.

An adversely k-stabilizing shield guarantees to end deviations after at most
k steps and produces a correct trace under the assumption that the failure of
the design consists of a transmission error in the sense that the wrong letter
is substituted for a correct one. We use the term adversely to emphasize that
finitely long deviations are guaranteed for any future inputs and outputs of the
design.

Definition 3 (Adversely Subgame Optimal Shield). A shield S is adver-
sely subgame optimal if for any trace σ ∈ Σ∗, S adversely k−stabilizes σ and
there exists no shield that adversely l-stabilizes σ for any l < k.

An adversely subgame optimal shield S guarantees to deviate in response to an
error for at most k time steps, for the smallest k possible.

Definition 4. A shield S collaboratively k-stabilizes a trace σ = σI ||σO ∈ Σ∗, if
for any input σI ∈ ΣI and any wrong output σO

f ∈ ΣO, there exists a correct
output σO

c ∈ ΣO, a correct trace σI
′||σO

′ ∈ Σk, and a trace σO
#σO

# ∈ Σk+1
O
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such that for any trace σI
′′||σO

′′ ∈ Σω such that (σI ||σO) · (σI , σO
c) · (σI

′||σO
′) ·

(σI
′′||σO

′′) |= ϕ, we have

S(σ · (σI , σO
f ) · (σI

′||σO
′) · (σI

′′||σO
′′)) = σO · σO

# · σO
# · σO

′′

and
(σI ||σO) · (σI , σO

#) · (σI
′||σO

#) · (σI
′′||σO

′′) |= ϕ.

Definition 5 (Collaborative k-Stabilizing Shield). A shield S is collabora-
tively k-stabilizing if it collaboratively k-stabilizes any finite trace.

A collaborative k-stabilizing shield requires that it must be possible to end
deviations after k steps, for some future input and output of D. It is not necessary
that this is possible for all future behavior of D allowing infinitely long deviations.

Definition 6 (Collaborative Subgame Optimal Shield). A shield S is
collaborative subgame optimal if for any trace σ ∈ Σ∗, S collaboratively
k−stabilizes σ and there exists no shield that adversely l-stabilizes σ for any
l < k.

Definition 7 (Admissible Shield). A shield S is admissible if for any trace
σ, whenever there exists a k and a shield S ′ such that S ′ adversely k-stabilizes
σ, then S adversely k-stabilizes σ. If such a k does not exist for trace σ, then S
collaboratively k-stabilizes σ for a minimal k.

An admissible shield ends deviations whenever possible. In all states of the
design D where a finite number of deviations can be guaranteed, an admissible
shield deviates for each violation for at most k steps, for the smallest k possible.
In all other states, the shield corrects the output in such a way that there exists
design’s inputs and outputs such that deviations end after l steps, for the smallest
l possible.

5 Synthesizing Admissible Shields

The flow of the synthesis procedure is illustrated in Fig. 4. Starting from a safety
specification ϕ = (Q, q0, Σ, δ, F ) with Σ = ΣI × ΣO, the admissible shield syn-
thesis procedure consists of five steps.

Fig. 4. Outline of our admissible shield synthesis procedure.
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Step 1. Constructing the Violation Monitor U . From ϕ we build the
automaton U = (U, u0, Σ, δu) to monitor property violations by the design. The
goal is to identify the latest point in time from which a specification violation
can still be corrected with a deviation by the shield. This constitutes the start
of the recovery period, in which the shield is allowed to deviate from the design.
In this phase the shield monitors the design from all states that the design could
reach under the current input and a correct output. A second violation occurs
only if the next design’s output is inconsistent with all states that are currently
monitored. In case of a second violation, the shield monitors the set of all input-
enabled states that are reachable from the current set of monitored states.

The first phase of the construction of the violation monitor U considers ϕ =
(Q, q0, Σ, δ, F ) as a safety game and computes its winning region W ⊆ F so that
every reactive system D |= ϕ must produce outputs such that the next state of
ϕ stays in W . Only in cases in which the next state of ϕ is outside of W the
shield is allowed to interfere.

The second phase expands the state space Q to 2Q via a subset construction,
with the following rationale. If the design makes a mistake (i.e., picks outputs
such that ϕ enters a state q �∈ W ), we have to “guess” what the design actually
meant to do and we consider all output letters that would have avoided leaving W
and continue monitoring the design from all the corresponding successor states
in parallel. Thus, U is essentially a subset construction of ϕ, where a state u ∈ U
of U represents a set of states in ϕ.

The third phase expands the state space of U by adding a counter d ∈ {0, 1, 2}
and a output variable z. Initially d is 0. Whenever a property is violated d is
set to 2. If d > 0, the shield is in the recovery phase and can deviate. If d = 1
and there is no other violation, d is decremented to 0. In order to decide when
to decrement d from 2 to 1, we add an output z to the shield. If this output is
set to true and d = 2, then d is set to 1.

The final violation monitor is U = (U, u0, Σ
u, δu), with the set of states

U = (2Q × {0, 1, 2}), the initial state u0 = ({q0}, 0), the input/output alphabet
Σu = ΣI × Σu

O with Σu
O = ΣO ∪ z, and the next-state function δu, which obeys

the following rules:

1. δu((u, d), (σI , σO)) =
({q′ ∈W | ∃q ∈ u, σO

′ ∈ Σu
O . δ(q, (σI , σO

′)) = q′}, 2
)

if ∀q ∈ u . δ(q, (σI , σO)) �∈ W , and
2. δu((u, d), σ) =

({q′ ∈ W | ∃q ∈ u . δ(q, σ) = q′}, dec(d)
)

if ∃q ∈ u . δ(q, σ) ∈ W ,
and dec(0) = dec(1) = 0, and if z is true then dec(2) = 1, else dec(2) = 2.

Our construction sets d = 2 whenever the design leaves the winning region, and
not when it enters an unsafe state. Hence, the shield S can take a remedial action
as soon as “the crime is committed”, before the damage is detected, which would
have been too late to correct the erroneous outputs of the design.

Example 1. We illustrate the construction of U using the specification ϕ from
Fig. 5 over the outputs o1 and o2. (Figure 5 represents a safety automaton if we
make all missing edges point to an (additional) unsafe state.) The winning region
consists of all safe states, i.e., W = {F, S, T}. The resulting violation monitor
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Fig. 5. Safety automaton of Exam-
ple 1.

Fig. 6. The deviation monitor T .

Table 1. δu of U of Example 1.

¬o1¬o2 ¬o1o2 or o1¬o2 o1o2

{F} {F} {F,S}� {S}
{S} {T}� {T}� {T}
{T} {F}� {F}� {F}
{F,S} {F} {F,S,T}� {S,T}
{S,T} {F,T}� {F,T}� {F,T}
{F,T} {F} {F,S,T}� {F,S}
{F,S,T} {F} {F,S,T}� {F,S,T}

is U = ({F,S,T,FS,ST,FT,FST}×{0, 1, 2}, (F, 0), Σu, δu). The transition rela-
tion δu is illustrated in Table 1 and lists the next states for all possible present
states and outputs. Lightning bolts denote specification violations. The update
of counter d, which is not included in Table 1, is as follows: Whenever the design
commits a violation d is set to 2. If no violation exists, d is decremented in the
following way: if d = 1 or d = 0, d is set to 0. If d = 2 and z is true, d is set to
1, else d remains 2. In this example, z is set to true, whenever we are positive
about the current state of the design (i.e. in ({F}, d), ({S}, d), and ({T}, d)).

Let us take a closer look at some entries of Table 1. If the current state is
({F}, 0) and we observe the output ¬o2o1, a specification violation occurs. We
assume that D meant to give an allowed output, either o2o1 or ¬o2¬o1. The
shield continues to monitor both F and S; thus, U enters the state ({F, S}, 2). If
the next observation is o2o1, which is allowed from both possible current states,
the possible next states are S and T , therefore U traverses to state ({S, T}, 2).
However, if the next observation is again ¬o2o1, which is neither allowed in F
nor in S, we know that a second violation occurs. Therefore, the shield monitors
the design from all three states and U enters the state ({F, S, T}, 2).

Step 2. Constructing the Deviation Monitor T . We build T = (T, t0, ΣO×
ΣO, δt) to monitor deviations between the shield and design outputs. Here, T =
{t0, t1} and δt(t, (σO, σO

′)) = t0 iff σO = σO
′. That is, if there is a deviation in

the current time step, then T will be in t1 in the next time step. Otherwise, it
will be in t0. This deviation monitor is shown in Fig. 6.
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Step 3. Constructing and Solving the Safety Game Gs. Given the
automata U and T and the safety automaton ϕ, we construct a safety game
Gs = (Gs, gs

0, Σ
s
I , Σs

O δs, F s), which is the synchronous product of U , T , and ϕ,
such that Gs = U × T × Q is the state space, gs

0 = (u0, t0, q0) is the initial state,
Σs

I = ΣI × ΣO is the input of the shield, Σs
O = ΣO ∪ {z} is the output of the

shield, δs is the next-state function, and F s is the set of safe states such that
δs

(
(u, t, q), (σI , σO), (σO

′, z)
)

=
(
δu[u, (σI , (σO, z))], δt[t, (σO, σO

′)], δ[q, (σI , σO
′)]

)
,

and F s = {(u, t, q) ∈ Gs | q ∈ F ∧ u = (w, 0) → t = t0}.
We require q ∈ F , which ensures that the output of the shield satisfies ϕ,

and that the shield can only deviate in the recovery period (i.e., if d = 0, no
deviation is allowed). We use standard algorithms for safety games (cf. [11])
to compute the winning region W s and the most permissive non-deterministic
winning strategy ρs : G × ΣI → 2ΣO that is not only winning for the system,
but also contains all deterministic winning strategies.

Step 4. Constructing the Büchi Game Gb. Implementing the safety game
ensures correctness (D ◦ S |= ϕ) and that the shield S keeps the output of the
design D intact, if D does not violate ϕ. The shield still has to keep the number
of deviations per violation to a minimum. Therefore, we would like the recovery
period to be over infinitely often. This can be formalized as a Büchi winning
condition. We construct the Büchi game Gb by applying the non-deterministic
safety strategy ρs to the game graph Gs.

Given the safety game Gs = (Gs, gs
0, Σ

s
I , Σs

O, δs, F s) with the non-
deterministic winning strategy ρs and the winning region W s, we construct
a Büchi game Gb = (Gb, gb

0, Σ
s
I , Σs

O, δb, F b) such that Gb = W s is the state
space, the initial state gb

0 = gs
0 and the input/output alphabet Σb

I = Σs
I and

Σb
O = Σs

O remain unchanged, δb = δs ∩ ρs is the transition function, and
F b = {(u, t, q) ∈ W s | (u = (w, 0) ∨ u = (w, 1))} is the set of accepting states. A
play is winning if d ≤ 1 infinitely often.

Step 5. Solving the Büchi Game Gb. Most likely, the Büchi game Gb con-
tains reachable states, for which d ≤ 1 cannot be enforced infinitely often. We
implement an admissible strategy that enforces to visit d ≤ 1 infinitely often
whenever possible. This criterion essentially asks for a strategy that is winning
with the help of the design.

The admissible strategy ρb for a Büchi game Gb = (Gb, gb
0, Σ

b
I , Σ

b
O, δb, F b)

can be computed as follows [11]:

1. Compute the winning region W b and a winning strategy ρb
w for Gb (cf. [19]).

2. Remove all transitions that start in W b and do not belong to ρb
w from

Gb. This results in a new Büchi game Gb
1 = (Gb, gb

0, Σ
b
I , Σ

b
O, δb

1, F
b) with

(g, (σI , σO), g′) ∈ δb
1 if (g, σI , σO) ∈ ρb

w or if ∀σO
′ ∈ Σb

O .(g, σI , σO
′) /∈

ρb
w ∧ (g, (σI , σO), g′) ∈ δb.

3. In the resulting game Gb
1, compute a cooperatively winning strategy ρb. In

order to compute ρb, one first has to transform all input variables to output
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variables. This results in the Büchi game Gb
2 = (Gb, gb

0, ∅, Σb
I × Σb

O, δb
1, F

b).
Afterwards, ρb can be computed with the standard algorithm for the winning
strategy on Gb

2.

The strategy ρb is an admissible strategy of the game Gb, since it is winning
and cooperatively winning [11]. Whenever the game Gb starts in a state of the
winning region W b, any play created by ρb

w is winning. Since ρb coincides with
ρb

w in all states of the winning region W b, ρb is winning. We know that ρb is
cooperatively winning in the game Gb

1. A proof that ρb is also cooperatively
winning in the original game Gb can be found in [11].

Theorem 1. A shield that implements the admissible strategy ρb in the
Büchi game Gb = (Gb, gb

0, Σ
b
I , Σ

b
O, δb, F b) in a new reactive system S =

(Gb, gb
0, Σ

b
I , Σ

b
O, δ′, ρb) with δ′(g, σI) = δb(g, σI , ρ

b(g, σI)) is an admissible shield.

Proof 1. First, the admissible strategy ρb is winning for all winning states of the
Büchi game Gb. Since winning strategies for Büchi games are subgame optimal,
a shield that implements ρb ends deviations after the smallest number of steps
possible, for all states of the design in which a finite number of deviations can be
guaranteed. Second, ρb is cooperatively winning in the Büchi game Gb. Therefore,
in all states in which a finite number of deviation cannot be guaranteed, a shield
that implements the strategy ρb recovers with the help of the design as soon as
possible.

The standard algorithm for solving Büchi games contains the computation
of attractors; the i-th attractor for the system contains all states from which the
system can “force” a visit of an accepting state in i steps. For all states g ∈ Gb

of the game Gb, the attractor number of g corresponds to the smallest number
of steps within which the recovery phase can be guaranteed to end, or can end
with the help of the design if a finite number of deviation cannot be guaranteed.

Theorem 2. Let ϕ = {Q, q0, Σ, δ, F} be a safety specification and |Q| be the
cardinality of the state space of ϕ. An admissible shield with respect to ϕ can be
synthesized in O(2|Q|) time, if it exists.

Proof 2. Our safety game Gs and our Büchi game Gb have at most m = (2 ·
2|Q| + |Q|) · 2 · |Q| states and at most n = m2 edges. Safety games can be solved
in O(m + n) time and Büchi games in O(m · n) time [19].

6 Experimental Results

We implemented our admissible shield synthesis procedure in Python, which
takes a set of safety automata defined in a textual representation as input.
The first step in our synthesis procedure is to build the product of all safety
automata and construct the violation monitor 5. This step is performed on an
explicit representation. For the remaining steps we use Binary Decision Dia-
grams (BDDs) for symbolic representation. The synthesized shields are encoded
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Table 2. Results of map8 and map31.

Example Property |Q| |I| |O| l Time [sec]

Map8 1 9 0 3 3 0.52

1+4 12 0 3 3 1.2

1+5a 46 1 3 4 6.2

1+5b 32 1 3 3 7

1+4+5a 55 1 3 4 17

1+4+5b 36 1 3 3 12

Map31 1 32 0 5 6 122

Map31 1+2 32 0 5 6 143

Map31 1+2+3 34 0 5 6 183

Map31 1+2+3+4 38 0 5 6 238

Table 3. Results of map15.

Example Property |Q| |I| |O| l Time [sec]

Map15 1 16 0 4 5 12

1+2 16 0 4 5 14

1+2+3 19 0 4 5 19

1+2+3+4 23 0 4 5 28

1+5a 84 1 4 6 173

1+5a+2 84 1 4 6 205

1+5a+2+3 100 1 4 6 307

1+5b 64 1 4 6 169

1+5b+2 64 1 4 6 195

1+6 115 1 4 7 690

in Verilog format. To evaluate the performance of our tool, we constructed three
sets of experiments, the basis of which is the safety specification of Fig. 1. This
example represents a map with 15 waypoints and the six safety properties 1–6.
First, we reduced the complexity of the example by only considering 8 out of
15 waypoints. This new example, called Map8, consists of the waypoints loc1
to loc8 with their corresponding properties. The second series of experiments,
called Map15, considers the original specification of Fig. 1 over all 15 waypoints.
The synthesized shields behave as described in Sect. 2. The third series of exper-
iments, called Map31, considers a map with 31 waypoints, essentially adding
a duplicate of the map in Fig. 1. All results are summarized in Table 2 and in
Table 3. For both tables, the first columns list the set of specification automata
and the number of states, inputs, and outputs of their product automata. The
next column lists the smallest number of steps l under which the shield is able
to recover with the help of the design. The last column lists the synthesis time
in seconds. All computation times are for a computer with a 2.6 GHz Intel i5-
3320M CPU with 8 GB RAM running an 64-bit distribution of Linux. Source
code, input files, and instructions to reproduce our experiments are available for
download1.

7 Conclusion

We have proposed a new shield synthesis procedure to synthesize admissible
shields. We have shown that admissible shields overcome the limitations of pre-
viously developed k-stabilizing shields. We believe our approach and first exper-
imental results over our case study involving UAV mission planning open sev-
eral directions for future research. At the moment, shields only attend to safety
properties and disregard liveness properties. Integrating liveness is therefore a
preferable next step. Furthermore, we plan to further develop our prototype tool
and apply shields in other domains such as in the distributed settings or for Safe
Reinforcement Learning, in which safety constraints must be enforced during the
learning processes. We plan to investigate how a shield might be most beneficial
in such settings.
1 http://www.iaik.tugraz.at/content/research/design verification/others/.

http://www.iaik.tugraz.at/content/research/design_verification/others/
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Abstract. We develop numerically rigorous Monte Carlo approaches for
computing probabilistic reachability in hybrid systems subject to ran-
dom and nondeterministic parameters. Instead of standard simulation
we use δ-complete SMT procedures, which enable formal reasoning for
nonlinear systems up to a user-definable numeric precision. Monte Carlo
approaches for probability estimation assume that sampling is possible
for the real system at hand. However, when using δ-complete simula-
tion one instead samples from an overapproximation of the real random
variable. In this paper, we introduce a Monte Carlo-SMT approach for
computing probabilistic reachability confidence intervals that are both
statistically and numerically rigorous. We apply our technique to hybrid
systems involving nonlinear differential equations.

1 Introduction

In this paper we combine statistical (Monte Carlo) techniques and numerically
sound decision procedures to reason about hybrid systems with random and non-
deterministic parameters. In particular, we devise confidence-interval techniques
for bounded probabilistic reachability, i.e., we aim at computing statistically valid
enclosures for the probability that a hybrid system reaches a given set of states
within a given time bound and number of discrete transitions. When nondeter-
ministic parameters are present, a hybrid system will in general feature a range of
reachability probabilities, depending on the value of the nondeterministic para-
meters. Reachability is an important class of behavioural properties, as many
verification problems (e.g., proving system safety) can be reduced to reachabil-
ity questions. A statistical approach to probabilistic reachability is important
because statistical techniques trade correctness guarantees with efficiency, and
so can scale much better with system size than other rigorous approaches. For
example, statistical model checking [15] can be faster than probabilistic model
checking, which is based on exhaustive state space search [14]. Also, statistical
model checking can handle models for which no efficient verification tools exist,
such as cyber-physical systems [2].

Monte Carlo techniques for probability estimation assume that one can
sample the random variable representing the true system behaviour. However,
while this is possible for certain finite-state systems, for nonlinear systems (e.g.,
ordinary differential equations (ODEs) with trigonometric functions) it is not.
c© Springer International Publishing AG 2016
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DOI: 10.1007/978-3-319-49052-6 10
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In fact, sampling the random variable representing the true system behaviour
can be as hard as reachability, which is undecidable even for very simple systems
(e.g., linear hybrid automata [1]). Thus, one has to deal with numerical impreci-
sions that could lead to missing important events in the true system evolution.
For example, zero-crossings can be indistinguishable from “safe” trajectories [8].

A novel aspect of our work is that we explicitly take into account unde-
cidability and numerical precision by employing δ-complete decision procedures
[4], which enable formal reasoning up to a user-defined numerical precision over
bounded domains. In this way it is possible to handle in a sound and safe man-
ner complex dynamical systems, such as nonlinear ODEs [6]. Given any δ > 0
and an arbitrary first-order formula φ over the reals, a δ-complete decision pro-
cedure returns unsat if φ is false and δ-sat if φδ (a weaker version of formula
φ) is true. Note that the latter result does not imply satisfiability of the initial
formula. Also, the value of δ affects the precision of the result, and large values
of δ can cause false alarms (i.e., δ-sat is returned for a formula which is in fact
false). Statistical techniques must therefore take into account that samples are
only approximation of the real random variable corresponding to the system
evolution. In particular, we introduce an approach for computing statistically
and numerically rigorous confidence intervals for probabilistic reachability. We
exemplify our techniques to hybrid systems with random and/or nondeterminis-
tic parameters. For systems with both random and nondeterministic parameters
we estimate the (nondeterministic) parameter values that result in the mini-
mal and maximal reachability probabilities. Our algorithms can in principle be
applied to other stochastic models (e.g., continuous-time Markov chains) should
the corresponding δ-complete decision procedure be available.

Related Work. We focus on works that combine statistical techniques with
SMT procedures, which are the main subject areas of the paper. The tool
SReach [13] combines statistical estimation with δ-complete simulation proce-
dures. However, SReach only considers overapproximations of the reachability
probability, and thus can offer one-sided confidence intervals only. We instead
compute confidence intervals that are guaranteed to contain both the under- and
overapproximation of the reachability probability. Also, SReach does not handle
nondeterministic parameters, while we do. In [3] the authors present a statis-
tical model checking approach combined with SMT decision procedures, but it
is restricted to fixed-sample size techniques, while we develop a more efficient
sequential Bayesian approach and consider δ-complete decision procedures.

2 Bounded Reachability in Hybrid Systems

Hybrid systems provide a framework for modelling real-world systems that com-
bine continuous and discrete dynamics [1]. We consider parametric hybrid sys-
tems as a variant of hybrid systems featuring continuous and discrete parameters
whose values are set in the initial state and do not change during the system’s
evolution. Such parameters can be random when there is a probability measure
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associated with them, and nondeterministic otherwise. We now formally define
the systems we consider in this paper.

Definition 1 (PHS). A Parametric Hybrid System is a tuple

H =< Q,Υ,X, P, Y,R, jump, goal >

where

– Q = {q0, · · · , qm} a set of modes (discrete components of the system),
– Υ = {(q, q′) : q, q′ ∈ Q} a set of transitions between modes,
– X = [u1, v1] × · · · × [un, vn] ⊂ R

n a domain of continuous variables,
– P = [a1, b1] × · · · × [ak, bk] ⊂ R

k the parameter space of the system,
– Y = {yq(p, t) : q ∈ Q,p ∈ X × P, t ∈ [0, T ]} the continuous system dynamics

where yq : X × P × [0, T ] → X,
– R = {g(q,q′)(p, t) : (q, q′) ∈ Υ,p ∈ X × P, t ∈ [0, T ]} ‘reset’ functions g(q,q′) :

X × P × [0, T ] → X × P defining the continuous state at time t = 0 in mode
q′ after taking the transition from mode q.

and predicates (or relations)

– jump(q,q′)(x) defines a discrete transition (q, q′) ∈ Υ which may (but does not
have to) occur upon reaching the jump condition in state (x, q) ∈ X × P × Q,

– goalq(x) defines the goal state x in mode q.

The continuous system dynamics Y is represented by initial value problems
with Lipschitz-continuous ODEs, which by the well-known Picard-Lindelöf the-
orem have a unique solution for any given initial condition p ∈ X × P and
t0 ∈ [0, T ]. We treat system parameters as any other variable, except that their
derivatives are zero. Thus, the parameters are part of the initial conditions.

Bounded reachability in PHSs aims to decide whether, for given initial con-
ditions, the system reaches a goal state in a finite number of discrete transitions.
Given a PHS and a reachability depth l we can derive the set Path(l) of all paths
π of length |π| = l + 1 whose first (π(0)) and last (π(l)) elements are the initial
and the goal mode, respectively. The bounded reachability property for a path
π ∈ Path(l) and initial condition p can be checked by evaluating the formula:

φ(π,p) := ∃[0,T ]t0, · · · ,∃[0,T ]t|π|−1 :
(
xt

π(0) = yπ(0)(p, t0)
)∧

|π|−2∧

i=0

[
jump(π(i),π(i+1))(x

t
π(i)) ∧ (

xt
π(i+1) = yπ(i)(g(π(i),π(i+1))(xt

π(i), ti), ti+1)
)]

∧ goalπ(|π|−1)(x
t
π(|π|−1)) .

(1)
where ∃[0,T ]ti is a shorthand for ∃ti ∈ [0, T ].

Note that the terms xt
π(i+1) = yπ(i)(g(π(i),π(i+1))(xt

π(i), ti), ti+1) and xt
π(0) =

yπ(0)(p, t0) are purely syntactic substitutions. Formulas over the reals like (1)
are undecidable in general [9], but a relaxed version (δ-weakening [4]) is instead
decidable.
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Definition 2 (δ-Weakening [4]). Given a bounded Σ1 sentence and an
arbitrarily small positive δ

∃Xx :
m∧

i=1

(
ki∨

j=1

(fi,j(x) = 0))

(where the fi,j are Type-2 real computable functions) its δ-weakening is

∃Xx :
m∧

i=1

(
ki∨

j=1

(|fi,j(x)| ≤ δ))

It is easy to see that the bounded reachability property (1) can be rewritten in
the format of Definition 2 (see [4]). A δ-complete decision procedure [4] correctly
decides whether an arbitrary bounded Σ1 (existentially quantified) sentence is
false (unsat answer) or its δ-weakening is true (δ-sat answer). Note that with a
δ-complete decision procedure unsat can always be trusted, while δ-sat might
in fact be a false alarm due to a coarse overapproximation characterised by δ.

Evaluating (1) by a δ-complete decision procedure returns unsat only if
for the given parameter value p the path does not reach a goal state. If δ-sat is
returned, we may try to sharpen the answer by checking an appropriate formula.
For example, an unsat answer to formula φ∀(π,p) below implies reachability:

φ∀(π,p) := ∀[0,T ]t0, · · · ,∀[0,T ]t|π|−1 :
(
xt

π(0) 	= yπ(0)(p, t0)
)∨

|π|−2∨

i=0

[
¬jump(π(i),π(i+1))(x

t
π(i)) ∨ (

xt
π(i+1) 	= yπ(i)(g(π(i),π(i+1))(xt

π(i), ti), ti+1)
)]

∨ ¬goalπ(|π|−1)(x
t
π(|π|−1))

In the previous formula the time variables are quantified universally. Current
implementations of δ-complete decision procedures [5] can only handle formulas
where the universal quantification is introduced over a single time variable. The
goal predicate in φ∀(π,p) depends on |π| variables and thus cannot be handled
directly. To resolve this issue we instead evaluate a series of formulas ψj :

ψj(π,p) := ∃[0,T ]t0, · · · ,∀[0,T ]tj :
(
xt

π(0) = yπ(0)(p, t0)
)∧

j−1∧

i=0

[
xt

π(i+1) = yπ(i)(g(π(i),π(i+1))(xt
π(i), ti), ti+1)

]
∧ ¬jump(π(j),π(j+1))(x

t
π(j))

(2)
if j < |π| − 1 and

ψj(π,p) := ∃[0,T ]t0, · · · ,∀[0,T ]tj :
(
xt

π(0) = yπ(0)(p, t0)
)∧

j−1∧

i=0

[
xt

π(i+1) = yπ(i)(g(π(i),π(i+1))(xt
π(i), ti), ti+1)

]
∧ ¬goalπ(j)(x

t
π(j))

(3)

if j = |π|−1. The next proposition establishes a stronger formula for reachability.
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Proposition 1. With the definitions in (1), (2) and (3) we have

|π|−1∧

j=0

¬ψj(π,p) ⇒ φ(π,p)

Proof. Consider the case |π| = 1. It can be seen that ¬ψ0(π,p) ⇔ φ(π,p) as

¬ψ0(π,p) := ∃[0,T ]t0 : goalπ(0)(x
t
π(0)) ⇔ φ(π,p)

Consider now the case |π| > 1.

|π|−1∧

j=0

¬ψj(π,p) :=

|π|−2∧

j=0

[
∀[0,T ]t0, · · · , ∀[0,T ]tj−1, ∃[0,T ]tj :

(
xt

π(0) �= yπ(0)(p, t0)
)∨

j−1∨

i=0

(
xt

π(i+1) �= yπ(i)(g(π(i),π(i+1))(x
t
π(i), ti), ti+1)

)
∨ jump(π(j),π(j+1))(x

t
π(i))

]
∧

[
∀[0,T ]t0, · · · , ∀[0,T ]t|π|−2, ∃[0,T ]t|π|−1 :

(
xt

π(0) �= yπ(0)(p, t0)
)∨

|π|−2∨

i=0

(
xt

π(i+1) �= yπ(i)(g(π(i),π(i+1))(x
t
π(i), ti), ti+1)

)
∨ goalπ(|π|−1)(x

t
π(|π|−1))

]

We recall that terms xt
π(0) = yπ(0) and xt

π(i+1) = yπ(i)(g(π(i),π(i+1))(xt
π(i), ti),

ti+1) are just a syntactic substitution which cannot be falsified as the system
dynamics always exist (by the Picard-Lindelöf theorem). Hence, the formula
above implies the following:

|π|−2∧

j=0

[
∀[0,T ]t0, · · · , ∀[0,T ]tj−1, ∃[0,T ]tj :

(
xt

π(0) = yπ(0)(p, t0)
)∧

j−1∧

i=0

(
xt

π(i+1) = yπ(i)(g(π(i),π(i+1),ti)(x
t
π(i), ti), ti+1)

)
∧ jump(π(j),π(j+1))(x

t
π(i))

]
∧

[
∀[0,T ]t0, · · · , ∀[0,T ]t|π|−2, ∃[0,T ]t|π|−1 :

(
xt

π(0) = yπ(0)(p, t0)
)∧

|π|−2∧

i=0

(
xt

π(i+1) = yπ(i)(g(π(i),π(i+1),ti)(x
t
π(i), ti), ti+1)

)
∧ goalπ(|π|−1)(x

t
π(|π|−1))

]

The next step can be equivalently derived by moving universal quantifiers from
the second part of the formula (square brackets containing the goal predicate)
outside the entire formula:
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∀[0,T ]t0, · · · ,∀[0,T ]t|π|−2 :
|π|−2∧

j=0

[

∃[0,T ]tj :
(
xt

π(0) = yπ(0)(p, t0)
)∧

j−1∧

i=0

(
xt

π(i+1) = yπ(i)(g(π(i),π(i+1))(xt
π(i), ti), ti+1)

)
∧ jump(π(j),π(j+1))(x

t
π(i))

]

∧
[

∃[0,T ]t|π|−1 :
(
xt

π(0) = yπ(0)(p, t0)
)∧

|π|−2∧

i=0

(
xt

π(i+1) = yπ(i)(g(π(i),π(i+1))(xt
π(i), ti), ti+1)

)
∧ goalπ(|π|−1)(x

t
π(|π|−1))

]

The existential quantifiers ∃[0,T ]tj can be eliminated as variables tj are already
quantified universally. Also ∃[0,T ]t|π|−1 can be moved in front of the formula as
its first part (square brackets containing jump predicates) does not depend of
t|π|−1. Hence, the formula above can be written as:

∀[0,T ]t0, · · · , ∀[0,T ]t|π|−2, ∃[0,T ]t|π|−1 :

|π|−2∧

j=0

[
(
xt

π(0) = yπ(0)(p, t0)
)∧

j−1∧

i=0

(
xt

π(i+1) = yπ(i)(g(π(i),π(i+1))(x
t
π(i), ti), ti+1)

)
∧ jump(π(j),π(j+1))(x

t
π(i))

]
∧

[
(
xt

π(0) = yπ(0)(p, t0)
)∧

|π|−2∧

i=0

(
xt

π(i+1) = yπ(i)(g(π(i),π(i+1))(x
t
π(i), ti), ti+1)

)
∧ goalπ(|π|−1)(x

t
π(|π|−1))

]
⇔

By idempotency of conjunction (A ∧ A = A) terms xt
π(0) = yπ(0) and

xt
π(i+1) = yπ(i)(g(π(i),π(i+1))(xt

π(i), ti), ti+1) can be merged:

∀[0,T ]t0, · · · , ∀[0,T ]t|π|−2, ∃[0,T ]t|π|−1 :
(
xt

π(0) = yπ(0)(p, t0)
)∧

|π|−2∧

j=0

[(
xt

π(j+1) = yπ(j)(g(π(j),π(j+1))(x
t
π(j), tj), tj+1)

)
∧ jump(π(j),π(j+1))(x

t
π(i))

]
∧

goalπ(|π|−1)(x
t
π(|π|−1))

Finally, the following is implied:

∃[0,T ]t0, · · · , ∃[0,T ]t|π|−2, ∃[0,T ]t|π|−1 :
(
xt

π(0) = yπ(0)(p, t0)
)∧

|π|−2∧

j=0

[(
xt

π(j+1) = yπ(j)(g(π(j),π(j+1))(x
t
π(j), tj), tj+1)

)
∧ jump(π(j),π(j+1))(x

t
π(i))

]
∧

goalπ(|π|−1)(x
t
π(|π|−1)) ⇔ φ(π,p)

�
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Proposition 1 enables us to define an evaluate procedure (Algorithm 1)
which, given a parametric hybrid system H, reachability depth l, a parame-
ter value p ∈ X × P and a precision δ for the δ-complete decision procedure,
returns sat if ∃π ∈ Path(l) : φ(π,p), unsat if ∀π ∈ Path(l) : ¬φ(π,p) and
undet if neither of the above two can be concluded. In general, the undet out-
come suggests that either the chosen precision δ is not sufficient to decide the
satisfiability of φ(π,p), or that φ(π,p) is undecidable (i.e., non-robust [4]).

The evaluate procedure is crucial for building the random variables that
under- and over-approximate the true system behaviour on the reachability ques-
tion, as we show in the next section.

Algorithm 1. evaluate(H, l,p, δ)
1 input: H - PHS, l - reachability depth, p - parameter value, δ - precision;
2 output: sat / unsat / undet;
3 Path(l) = get all paths(H, l) ; // compute all paths of length l for H
4 for π ∈ Path(l) do
5 if φ(π,p) - δ-sat then
6 for i ∈ [0, l] do
7 if ψi(π,p) - δ-sat then
8 return undet;

9 return sat ; // all ψi(π,p) are unsat for the current π

10 return unsat ; // all φ(π,p) are unsat

3 Monte Carlo Probability Estimation

In this section we consider hybrid systems with random parameters only, so that
the reachability probability is well-defined. We add nondeterministic parameters
in the next section. For any given δ > 0 and any p from the parameter(s)
distribution we introduce the Bernoulli random variables:

X =

{
1 if system H reaches the goal in l steps for a given p
0 otherwise

(4)

Xsat =

{
1 if evaluate(H, l,p, δ) = sat
0 otherwise

(5)

Xusat =

{
0 if evaluate(H, l,p, δ) = unsat
1 otherwise.

(6)

Thus, for a given parameter p, Xsat is 1 if we can correctly decide that system
H reaches the goal, while Xusat is 0 if we can correctly decide that H does not
reach the goal. If no decision can be made (because of the precision δ being
used or of the nature of the reachability question), Xsat and Xusat take 0 and
1, respectively. From the definition of evaluate it follows directly that:

Xsat ≤ X ≤ Xusat. (7)
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We now introduce a Bayesian technique for calculating confidence intervals
for the reachability probability p = E[X] without sampling X, which is not
possible in general, but instead sampling Xsat and Xusat. For n random variables
iid (independent and identically distributed) as Xsat and Xusat, we define the
random variables:

Ŝn =
Σn

i=1Xsat,i

n
Ûn =

Σn
i=1Xusat,i

n
.

The Bayesian approach assumes that the (unknown) reachability probability
p is itself a random quantity (here we give a brief overview only, more details can
be found in [17]). Bayes’ theorem enables computing the posterior distribution
of the unknown quantity given its prior distribution and the likelihood of the
data (i.e., samples of X). The posterior distribution of p can be directly used to
build confidence (credibility) intervals. In our setting we cannot sample X, so we
aim at bounding the posterior of p by the posteriors built from Xsat and Xusat,
as we show below. We use Beta distribution priors since they are conjugate to
the Bernoulli likelihood; the cumulative distribution function (CDF) of a Beta
with parameters α, β > 0 is denoted F(α,β)(·). We first need a technical lemma
about the Beta CDF.

Lemma 1. For any n > 0, s ≤ x ≤ u ≤ n, α, β > 0 (n, s, x, u ∈ N), t ∈ [0, 1]
the following holds:

F(u+α,n−u+β)(t) ≤ F(x+α,n−x+β)(t) ≤ F(s+α,n−s+β)(t) (8)

Proof. We prove the LHS inequality of (8); the proof of the RHS follows similar
steps. When s = x the inequality holds trivially.

Consider the case s < x. By definition of the Beta distribution function:

F(s+α,n−s+β)(t) =
∫ t

0

vs+α−1(1 − v)n−s+β−1

B(s + α, n − s + β)
dv (9)

In the proof below we refer to the following formulas from [7]:

By(a, b) =
∫ y

0

ta−1(1 − t)b−1 dt 8.17.1

Iy(a, b) =
By(a, b)
B(a, b)

8.17.2

Iy(a + 1, b − 1) = Iy(a, b) − ya(1 − y)b−1

aB(a, b)
8.17.18

By 8.17.1 and 8.17.2 the Beta distribution function (9) can be presented as
an incomplete Beta function It(s+α, n− s+β) (the Beta distribution functions
for the variables x and u can be written in the same form). Now we show by
induction that the following holds:

It(s + α, n − s + β) ≥ It(x + α, n − x + β) (10)
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As s < x, s, x ∈ N and s, x > 0 the base case is s = 0 and x = 1. Thus, we need
to prove that It(α, n + β) ≥ It(α + 1, (n + β) − 1). By 8.17.18:

It((α) + 1, (n + β) − 1) = It(α, n + β) − tα(1 − t)n+β−1

αB(α, n + β)

It is easy to see that tα(1−t)n+β−1

αB(α,n+β) ≥ 0, and therefore, the base case holds.
Suppose now that x = s + 1. By the same formula 8.17.18 [7]:

It((s + α) + 1, (n − s + β) − 1) = It(s + α, n − s + β)−
ts+α(1 − t)n−s+β−1

(s + α)B(s + α, n − s + β)

As ts+α(1−t)n−s+β−1

(s+α)B(s+α,n−s+β) ≥ 0 the induction step holds as well. Hence, for any s ≤ x

and s, x > 0 (10) holds, and the proof is complete. �
Now, Proposition 2 below tells us how to bound the posterior distribution of

the unknown probability p, by using the posteriors built from Xsat and Xusat.
Given n samples of Xsat,Xusat and a Beta prior with parameters α, β > 0 it is
easy to show that the posterior means are:

p̂sat =
s + α

n + α + β
p̂usat =

u + α

n + α + β
(11)

where s =
∑n

i=1 Xsat,i and u =
∑n

i=1 Xusat,i.

Proposition 2. Given ξ > 0, the posterior probability with respect to n samples
of X of the interval [p̂sat − ξ, p̂usat + ξ] is bounded below as follows

Pr(P ∈ [p̂sat − ξ, p̂usat+ξ]|X1, . . . , Xn) ≥
F(u+α,n−u+β)(p̂usat + ξ) − F(s+α,n−s+β)(p̂sat − ξ)

where X1, . . . , Xn are iid as X, and p̂sat and p̂usat are the posterior means (11).

Proof. By definition of posterior CDF and Lemma1:

Pr(P ≤ p̂sat − ξ|X1, . . . , Xn) ≤ F(s+α,n−s+β)(p̂sat − ξ)
Pr(P ≥ p̂usat + ξ|X1, . . . , Xn) ≤ 1 − F(u+α,n−u+β)(p̂usat + ξ)

and therefore

Pr(P ∈ [p̂sat − ξ, p̂usat + ξ]|X1, . . . , Xn) =
1 − Pr(P ≤ p̂sat − ξ|X1, . . . , Xn) − Pr(P ≥ p̂usat + ξ|X1, . . . , Xn) ≥
1 − F(s+α,n−s+β)(p̂sat − ξ) − 1 + F(u+α,n−u+β)(p̂usat + ξ) =
F(u+α,n−u+β)(p̂usat + ξ) − F(s+α,n−s+β)(p̂sat − ξ)

�
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Our algorithm is shown in Algorithm2. Differently from SReach [13], our
algorithm first uses procedure evaluate to compute under- and overapproxima-
tions of the system behaviour (line 7), and then builds upper and lower posterior
probability estimates (lines 13, 14). The posterior probability of the computed
interval (line 15) is guaranteed not to exceed the true posterior by Proposition 2,
so when the algorithm terminates we know that the returned interval contains
the true probability with the required (or a larger) confidence. Our algorithm
is sequential as SReach [13], since it only stops when the desired confidence is
achieved. We show its (probabilistic) termination in the next proposition.

Proposition 3. Algorithm2 terminates almost surely.

Proof. Recall that Algorithm 2 generates two sequences of random variables
{Xsat,n}n∈N and {Xusat,n}n∈N. From [17, Theorem 1] we get that Xsat,n

(Xusat,n) converges a.s., for n → ∞, to the constant random variable
E[Xsat] (E[Xusat]). In particular, the posterior probability of any open interval
containing the posterior mean (11) must converge to 1. Therefore, the posterior
probability of any interval not including the posterior mean must converge to 0.

Now, the interval (0, p̂usat +ξ) contains the posterior mean (p̂usat) of Xusat,n

and therefore the posterior probability F(u+α,n−u+β)(p̂usat + ξ) converges to 1.
Also, the interval (0, p̂sat − ξ) does not contain the mean (p̂sat) of Xsat,n, so
F(s+α,n−s+β)(p̂sat − ξ) tends to 0, and this concludes the proof. �

Algorithm 2. Bayesian Estimation Algorithm
1 input: system H, δ - solver precision, l-reachability depth, c - confidence, ξ -

accuracy, α, β - Beta distribution parameters;
2 output: confidence interval with posterior probability not smaller than c;
3 n = 0; s = 0; u = 0; v = 0;
4 repeat
5 p = get random sample(); // sample the initial parameters

6 n = n + 1;
7 switch evaluate(H, l,p, δ) do // δ-complete evaluation

8 case sat do
9 s = s + 1;

10 case unsat do
11 v = v + 1;

12 u = n − v;
13 p̂sat = s+α

n+α+β
; p̂usat = u+α

n+α+β
; // posterior means for Xsat,n, Xusat,n

// calculate confidence

14 p̂sat = max(ξ, p̂sat); p̂usat = min(1 − ξ, p̂usat);
15 p = F(u+α,n−u+β)(p̂usat + ξ) − F(s+α,n−s+β)(p̂sat − ξ);

16 until p ≥ c;
17 return [p̂sat − ξ, p̂usat + ξ];

In the next section we extend our technique to hybrid systems that feature
both nondeterministic and random parameters.
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4 Cross-Entropy Algorithm

We perform probabilistic reachability analysis for hybrid systems featuring both
random and nondeterministic parameters by solving an optimisation problem
aimed at finding parameter values for which the system achieves maximum (min-
imum) reachability probability. We present an algorithm (Algorithm3) based
on the cross-entropy (CE) method [10], a powerful stochastic technique for
solving estimation and optimisation problems. The main idea behind the CE
method is obtaining the optimal parameter distribution by minimizing the dis-
tance between two probability density functions. The cross-entropy (or Kullback-
Leibler divergence) between two probability density functions g and f is:

Θ(g, f) =
∫

g(λ) ln
g(λ)
f(λ)

dλ.

The CE is nonnegative and Θ(g, f) = 0 iff g = f , but it is not symmetric
(Θ(g, f) 	= Θ(f, g)), so it is not a distance in the formal sense.

The optimisation problem solved by the CE method can be formulated as
the following: given a family of densities {f(·;v)}v∈V find the value v∗ ∈ V that
minimizes Θ(g∗, f(·;v)) (where g∗ is the optimal density). The CE method com-
prises two general steps: (1) generating random samples from some initial distri-
bution; (2) updating the distribution based on the obtained samples in order to
obtain better samples in the next iteration. Note that for solving optimisation
problems it is necessary that the family {f(·;v)}v∈V contains distributions that
can approximate arbitrarily well single-point distributions.

In Algorithm 3 we use a parametrized family of normal distributions f(λ;v)
(the first element of v is the mean and the second element is the standard
deviation). Initially the standard deviation should be relatively large in order
to sample a larger space on the first iteration of the algorithm. Let D be the
definition domain of the nondeterministic parameters (obtained by projecting the
hybrid system parameter space P over the nondeterministic parameters only).
Starting with v0 = {μ0, σ0} such that μ0 is the center of D and each element of
σ0 is half-size the corresponding interval from D the algorithm draws s samples
from f(λ|μ0, σ0) and evaluates them using the sample performance function:

P (λ) =

{
probability that H(λ) reaches the goal if λ ∈ D

−∞ otherwise.

To compute P (·) we run Algorithm 2 and take the mid point of the returned
interval. Note that when solving probability minimization problems the second
option in the definition of P (·) should be changed to ∞.

Given a number of samples, it is easy to see that as the number of nonde-
terministic parameters increases, the more difficult it becomes to draw samples
lying inside of D. In fact, given n nondeterministic parameters the probability
that a sample λ belongs to D is equal to:

Pr(λ ∈ D) =
n∏

j=1

∫

Dj

f(λj |μj , σj)dλj (12)
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where Dj is the domain of the j-th parameter, and we assumed that the
parameters are sampled independently. Hence, in order to increase the likeli-
hood that s samples lie in D it is sufficient to generate s∗ = � s

η � samples, where
η = Pr(λ ∈ D) is obtained using (12). The performance of each sample is then
evaluated, and the samples are sorted in descending order (ascending in the case
of probability minimization) according to their performance value. We label a
number k = �ρs∗� of them as elite samples, where ρ ∈ [10−2, 10−1] is a positive
constant chosen by the user. The set of elite samples E is then used for updating
the distribution parameters μi and σi on the i-th iteration of the algorithm using
the formulas from [10, Chapter 8.7]:

μi =

∑
j∈[1,k] Ej

k

σi =

√∑
j∈[1,k](Ej − μi)2

k

(13)

The algorithm terminates when the largest element of vector σ reaches a user-
defined precision σ̂, and it outputs the estimated maximum reachability proba-
bility P and a (nondeterministic) parameter value λ for which P (λ) = P.

5 Experiments

We apply our algorithms to three models (two of which are hybrid), a model
of irradiation therapy for psoriasis [16], a car collision scenario and a model of
human starvation [12]. The algorithms have been implemented in C++, and the
experiments have been carried out on a 32-core (2.9 GHz) Linux machine.

UVB Irradiation Therapy. We consider a simplified version of a hybrid UVB
irradiation therapy model [16] used for treating psoriasis, an immune system-
mediated chronic skin condition which is characterised by overproduction of
keratinocytes. The simplified model comprises of three (six in the original model)
categories of normal and three (five in the original model) categories of psoriatic
keratinocytes whose dynamics is presented by nonlinear ODEs. The therapy
consists of several episodes of UVB irradiation, which is simulated in the model
by increasing the apoptosis rate constants (β1 and β2) for stem cells (SC) and
transit amplifying (TA) cells by InA times. Every such episode lasts for 48 h
and is followed by 8 h of rest (InA = 1) before starting the next irradiation.
The efficiency of the therapy depends on the number of alternations between
the irradiation and rest stages. An insufficient number of treatment episodes can
result into early psoriasis relapse: The deterministic version of this model predicts
psoriasis relapse for the number of therapy episodes less than seven [16]. We
consider the parameter InA characterising the therapy strength to be normally
distributed with mean value 6 ·104 and standard deviation 104 and λ ∈ [0.2, 0.5]
characterising the strength of psoriatic stem cells to be nondeterministic, and we
calculate the maximum and the minimum probabilities of psoriasis relapse within
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Table 1. UVB irradiation therapy: results with ξ = 10−1, c = 0.99, δ = 10−3, ρ = 10−1,
s = 10 and σ̂ = 10−2, where λ – estimated value of nondeterministic parameter, μλ

and σλ – mean and standard deviation of the resulting distribution, CI – confidence
interval returned, sR – total number of random samples used during s∗

N executions of
Algorithm 2, sN – total number of nondeterministic samples, s∗

N – number of nonde-
terministic samples drawn from D, i – number of iterations of Algorithm 3, Time –
CPU time in seconds.

λ μλ σλ CI sR sN (s∗
N ) Time

0.4953 0.4878 0.0089 [0.8268,1] 3,118 26(24) 13,492

0.1303 0.1347 0.0079 [0,0.1086] 2,880 26(23) 12,550

2,000 days after the last therapy episode for nine alternations (l = 9) between
the ‘on’ and ‘off’ therapy modes (five therapy cycles). The results (Table 1)
show that the estimated maximum probability lies in the interval [0.8268, 1]
for λ = 0.4953 and the minimum probability is in the interval [0, 0.1086] for
λ = 0.1303. Algorithm 3 required two iterations in both cases and generated 24
(out of total 26) and 23 (out of 26) samples from the domain of nondeterministic
parameters D.

Cars Collision Scenario. We consider a taking over and deceleration sce-
nario modelled as a hybrid system. Initially two cars are moving with speed
υA0 = υB0 = 11.12 m/s at a distance υA · τsafe from each other, where
τsafe ∈ [1, 2] s is nondeterministic. In the initial mode CarA changes the
lane and starts accelerating until it gets ahead of CarB by υB · τsafe meters.
After that CarA changes the lane back and starts decelerating with normally-
distributed acceleration adA ∼ N(−2, 0.2). The driver in CarB reacts within
τreact ∈ [0.5, 1.5] s and starts decelerating with acceleration adB ∼ N(−1.35, 0.1)
until both cars stop completely.

The model contains three modes: CarA overtakes CarB, CarA decelerates
while CarB keeps moving for τreact second, and both cars decelerate until they
stop. There are two nondeterministic (τsafe and τreact) and two random (ad1

and ad2) parameters in the system. We aim at determining whether there is a
non-zero probability of the cars colliding (l = 2).

We apply Algorithm3 to this model with different values of s, the CE sam-
ple size. The obtained results (Table 2) confirm that choosing smaller values of
τreact and larger values of τsafe decreases the probability value. Also, choosing
a larger s increases the accuracy of the obtained result from P (0.609, 1.791) =
[0.0252, 0.0352] for s = 10 to P (0.522, 1.953) = [0.0121, 0.0221] for s = 20. The
execution of the algorithm took three iterations in both cases drawing 32 (out
of 43) and 57 (out of 90) samples lying in D for s = 10 and s = 20 respectively.

Human Starvation. The human starvation model [12] tracks the amount of
fat (F ), protein in muscle mass (M), and ketone bodies (K) in the human body
after glucose reserves have been depleted from three to four days of fasting.
These three variables are modelled using material and energy balances to ensure
that the behaviour of the model tracks what is observed in actual experiments
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Algorithm 3. Cross-Entropy Algorithm
1 input: hybrid system H, δ - solver precision, l - reachability depth, α, β - Beta

distribution parameters, c - confidence, ξ - accuracy, s - sample size, ρ - elite
samples ratio, σ̂ - maximum variance ;

2 output: (parameter value, maximum probability) ;

3 μ = {min(D1)+max(D1)
2

, · · · , min(Dn)+max(Dn)
2

} ;

4 σ = { |D1|
2

, · · · , |Dn|
2

}; σ′ = σ;
5 while (max1≤j≤n σ′

j) > σ̂ do
6 η =

∏n
j=1

∫
Dj

f(xj |μj , σj)dxj ;

7 m = 
 s
η
�; k = 
ρ s

η
� ; // adjusting sample size

8 for i = 1 : m do
9 λ = get random normal sample();

10 if λ �∈ D then
11 P = [−∞, −∞];

12 else
13 P = mid(bayes(H(λ), δ, l, α, β, ξ, c)) ; // applying Algorithm 2

14 Q.push(λ,P);

15 sort(Q) ; // sorting in descending order by the probability value

16 res = Q[1] ; // updating the result

17 μ =
∑

i∈[1,k] Q[i]

k
; // updating the mean

18 σ′ = σ ; // saving current value of standard deviation

19 σ =

√∑
i∈[1,k](Q[i]−μ)2

k
; // updating the standard deviation

20 clear(Q);

21 return res;

Table 2. The minimum probability for the cars collision scenario with ξ = 5 · 10−3,
c = 0.99, δ = 10−3, ρ = 10−1 and σ̂ = 10−1, where τreact – CarB driver reaction
time, τsafe – time interval between the cars, μτreact and στreact – mean and standard
deviation of the resulting distribution for τreact, μτsafe and στsafe – mean and standard
deviation of the resulting distribution for τsafe, CI – confidence interval returned, sR –
total number of random samples used during s∗

N executions of Algorithm 2, sN – total
number of nondeterministic samples, s∗

N – number of nondeterministic samples drawn
from D, Time – CPU time in seconds.

τreact μτreact στreact τsafe μτsafe
στsafe

CI sR s sN (s∗
N ) Time

0.609 0.619 0.011 1.791 1.753 0.019 [0.0252,0.0352] 658,528 10 43(32) 18,005

0.522 0.583 0.077 1.953 1.795 0.079 [0.0121,0.0221] 952,057 20 90(57) 27,126

involving fasting. Randomising two model parameters we evaluate the proba-
bility of a 40 % decrease in the muscle mass by the τg’s day of fasting where
τg ∈ [20, 27] is a nondeterministic parameter. The reachability depth value l is
0. The results (Table 3) demonstrate that the maximum probability of losing
40 % of the muscle mass is within the interval [0.99131, 1] for τg = 26.47 and
the minimum probability is inside [0, 0.0057] for τg = 20.22. The execution of
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Table 3. The minimum and the maximum reachability probabilities for the human
starvation model with ξ = 5 · 10−3, c = 0.99, δ = 10−3, ρ = 10−1, s = 10 and
σ̂ = 10−1, where τg – time (days) from the beginning of fasting, μτg and στg – mean
and standard deviation of the resulting distribution, CI – confidence interval returned,
sR – total number of random samples used during s∗

N executions of Algorithm 2, sN –
total number of nondeterministic samples, s∗

N – number of nondeterministic samples
drawn from D, Time – CPU time in seconds.

τg μτg στg CI sR sN (s∗
N ) Time

20.2264 20.2125 0.068 [0,0.0057] 408,061 37(31) 2,703

26.4713 26.5146 0.033 [0.99131,1] 485,721 36(34) 4,360

the algorithm took three iterations in both cases drawing 31 (out of 37) and
34 (out of 36) samples from D for calculating the minimum and the maximum
probabilities respectively.

Discussion. From our results we see that the chosen value of δ did not affect the
length (2ξ) of the returned confidence intervals in any experiment. Also choos-
ing a larger number of samples per iteration (s) in Algorithm 3 and a higher
precision (ξ) for Algorithm 2 increases the accuracy of the obtained result. The
sample size adjustment in Algorithm 3 increases the likelihood of drawing the
desired number of samples from the domain of nondeterministic parameters. For
example, in the cars collision scenario featuring two nondeterministic parameters
almost a third of all drawn samples were outliers. However, the desired number
of samples belonging to the domain of nondeterministic parameters was still
provided. Finally, the performance of Algorithms 2 and 3 significantly depends
of the complexity of the system’s dynamics. For example, the UVB irradiation
therapy model is more complex in comparison to other two models. As a result,
Algorithm 1 required more CPU time for evaluating each pair (random and non-
deterministic) of samples.

Implementation. All algorithms presented in this paper were implemented in
our tool ProbReach [11], which can be downloaded from https://github.com/
dreal/probreach. We also used dReal [5] as an SMT solver (δ-complete decision
procedure). The models used in this section can be found at https://github.com/
dreal/probreach/tree/master/model/hvc2016.

6 Conclusions and Future Work

We introduce novel Monte Carlo (i.e., statistical) techniques for computing both
numerically and statistically rigorous confidence intervals for bounded reacha-
bility probability in hybrid systems with random and nondeterministic parame-
ters. To enable formal numerical reasoning we employ δ-complete SMT decision
procedures, and we combine them with sequential Bayesian estimation and the
cross-entropy method. We exploit δ-complete procedures to build under- and
over-approximations of the reachability probability. We prove the correctness of

https://github.com/dreal/probreach
https://github.com/dreal/probreach
https://github.com/dreal/probreach/tree/master/model/hvc2016
https://github.com/dreal/probreach/tree/master/model/hvc2016
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such approximations, the statistical validity of our techniques, and termination
of our Bayesian algorithm. Our techniques compute confidence intervals that
are formally and statistically correct independently of the numeric precision (δ)
used. This offers users the choice of trading accuracy of the returned interval for
computational cost, thereby enabling faster verification. Our experiments with
highly nonlinear hybrid systems show that our techniques are useful in practice.

For future work, understanding the relation between the numerical precision
(δ) and the returned interval size is an important avenue of research. Also, we
plan to extend the range of models analysable (e.g., probabilistic jumps and
stochastic differential equations).
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Abstract. We propose a “formula slicing” method for finding inductive
invariants. It is based on the observation that many loops in the program
affect only a small part of the memory, and many invariants which were
valid before a loop are still valid after.

Given a precondition of the loop, obtained from the preceding program
fragment, we weaken it until it becomes inductive. The weakening proce-
dure is guided by counterexamples-to-induction given by an SMT solver.
Our algorithm applies to programs with arbitrary loop structure, and it
computes the strongest invariant in an abstract domain of weakenings of
preconditions. We call this algorithm “formula slicing”, as it effectively
performs “slicing” on formulas derived from symbolic execution.

We evaluate our algorithm on the device driver benchmarks from
the International Competition on Software Verification (SV-COMP),
and we show that it is competitive with the state-of-the-art verification
techniques.

1 Introduction

In automated program verification, one crucial task is establishing inductive
invariants for loops: properties that hold initially, and also by induction for any
number of execution steps.

Abstract-interpretation-based approaches restrict the class of expressible
invariants to a predefined abstract domain, such as intervals, octagons, or convex
polyhedra. Any candidate invariants which can not be expressed in the chosen
abstract domain get over-approximated. Traditionally, this restriction applies at
all program locations, but approaches such as path focusing [1] limit the precision
loss only to loop heads, representing program executions between the loop-heads
precisely using first-order formulas.

This is still a severe restriction: if a property flows from the beginning of the
program to a loop head, and holds inductively after, but is not representable
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Fig. 1. Motivating example for finding inductive weakenings.

within the chosen abstract domain, it is discarded. In contrast, our idea exploits
the insight that many loops in the program affect only a small part of the
memory, and many invariants which were valid before the loop are still valid.

Consider finding an inductive invariant for the motivating example in Fig. 1.
Symbolic execution up to the loop-head can precisely express all reachable states:

i = 0 ∧ (p �= 0 =⇒ x ≥ 0) ∧ (p = 0 =⇒ x < 0) (1)

Yet abstraction in a numeric convex domain at the loop head yields i = 0, com-
pletely losing the information that x is positive iff p �= 0. Observe that this infor-
mation loss is not necessary, as the sign of x stays invariant under the multiplica-
tion by a positive constant (assuming mathematical integers for the simplicity of
exposition). To avoid this loss of precision, we develop a “formula slicing” algo-
rithm which computes inductive weakenings of propagated formulas, allowing to
propagate the formulas representing inductive invariants across loop heads. In
the motivating example, formula slicing computes an inductive weakening of the
initial condition in Eq. 1), which is (p �= 0 =⇒ x ≥ 0) ∧ (p = 0 =⇒ x < 0),
and is thus true at every iteration of the loop. The computation of induc-
tive weakenings is performed by iteratively filtering out conjuncts falsified by
counterexamples-to-induction, derived using an SMT solver. In the motivating
example, transition i = 1 from i = 0 falsifies the constraint i = 0, and the rest
of the conjuncts are inductive.

The formula slicing fixpoint computation algorithm is based on performing
abstract interpretation on the lattice of conjunctions over a finite set of predi-
cates. The computation starts with a seed invariant which necessarily holds at
the given location on the first time the control reaches it, and during the compu-
tation it is iteratively weakened until inductiveness. The algorithm terminates
within a polynomial number of SMT calls with the smallest invariant which can
be expressed in the chosen lattice.

Contributions. We present a novel insight for generating inductive invariants,
and a method for creating a lattice of weakenings from an arbitrary formula
describing the loop precondition using a relaxed conjunctive normal form (Defi-
nition 2) and best-effort quantifier elimination (Sect. 4).

We evaluate (Sect. 7) our implementation of the formula slicing algorithm
on the “Device Drivers” benchmarks from the International Competition on
Software Verification [2], and we demonstrate that it can successfully verify large,
real-world programs which can not be handled with traditional numeric abstract
interpretation, and that it is competitive with state of the art techniques.
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Related Work. The Houdini [3] algorithm mines the program for a set of
predicates, and then finds the largest inductive subset, dropping the candidate
non-inductive lemmas until the overall inductiveness is achieved. The optimality
proof for Houdini is present in the companion paper [4]. A very similar algorithm
is used by Bradley et al. [5] to generate the inductive invariants from negations
of the counter-examples to induction.

Inductive weakening based on counterexamples-to-induction can be seen as
an algorithm for performing predicate abstraction [6]. Generalizing inductive
weakening to best abstract postcondition computation Reps et al. [7] use the
weakening approach for computing the best abstract transformer for any finite-
height domain, which we also perform in Sect. 3.1.

Generating inductive invariants from a number of heuristically generated
lemmas is a recurrent theme in the verification field. In automatic abstraction [8]
a set of predicates is found for the simplified program with a capped number
of loop iterations, and is filtered until the remaining invariants are inductive for
the original, unmodified program. A similar approach is used for synthesizing
bit-precise invariants by Gurfinkel et al. [9].

The complexity of the inductive weakening and that of the related template
abstraction problem are analyzed by Lahiri and Qadeer [10].

2 Background

2.1 Logic Preliminaries

We operate over first-order, existentially quantified logic formulas within an
efficiently decidable theory. A set of all such formulas over free variables in X
is denoted by F(X). Checking such formulas for satisfiability is NP-hard, but
with modern SMT (satisfiability modulo theories) solvers these checks can often
be performed very fast.

A formula is said to be an atom if it does not contain logical connectives
(e.g. it is a comparison x ≤ y between integer variables), a literal if it is an
atom or its negation, and a clause if it is a disjunction of literals. A formula is
in negation normal form (NNF) if negations are applied only to atoms, and it is
in conjunctive normal form (CNF) if it is a conjunction of clauses. For a set of
variables X, we denote by X ′ a set where the prime symbol was added to all the
elements of X. With φ[a1/a2] we denote the formula φ after all free occurrences
of the variable a1 have been replaced by a2. This notation is extended to sets
of variables: φ[X/X ′] denotes the formula φ after all occurrences of the free
variables from X were replaced with corresponding free variables from X ′. For
brevity, a formula φ[X/X ′] may be denoted by φ′. We use the brackets notation
to indicate what free variables can occur in a formula: e.g. φ(X) can only contain
free variables in X. The brackets can be dropped if the context is obvious.

A formula φ(X), representing a set of program states, is said to be inductive
with respect to a formula τ(X ∪ X ′), representing a transition, if Eq. 2 is valid:

φ(X) ∧ τ(X ∪ X ′) =⇒ φ′(X ′) (2)
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That is, all transitions originating in φ end up in φ′. We can query an SMT
solver for the inductiveness of φ(X) with respect to τ(X∪X ′) using the constraint
in Eq. 3, which is unsatisfiable iff φ(X) is inductive.

φ(X) ∧ τ(X ∪ X ′) ∧ ¬φ′(X ′) (3)

For a quantifier-free formula φ inductiveness checking is co-NP-complete.
However, if φ is existentially quantified, the problem becomes Πp

2 -complete. For
efficiency, we shall thus restrict inductiveness checks to quantifier-free formulas.

2.2 Program Semantics and Verification Task

Definition 1 (CFA). A control flow automaton is a tuple (nodes , edges , n0,X),
where nodes is a set of program control states, modelling the program counter,
n0 ∈ nodes is a program starting point, and X is a set of program variables.
Each edge e ∈ edges is a tuple (a, τ(X ∪ X ′), b), modelling a possible transition,
where {a, b} ⊆ nodes, and τ(X ∪ X ′) is a formula defining the semantics of a
transition over the sets of input variables X and output variables X ′.

A non-recursive program in a C-like programming language can be trivially
converted to a CFA by inlining functions, replacing loops and conditionals with
guarded gotos, and converting guards and assignments to constraints over input
variables X and output variables X ′.

A concrete data state m of a CFA is a variable assignment X → Z which
assigns each variable an integral value.1 The set of all concrete data states is
denoted by C. A set r ⊆ C is called a region. A formula φ(X) defines a region
S of all states which it models (S ≡ {c | c |= φ}). A set of all formulas
over X is denoted by F(X). A concrete state c is a tuple (m,n) where m is
a concrete data state, and n ∈ nodes is a control state. A program path is a
sequence of concrete states 〈c0, . . . , cn〉 such that for any two consecutive states
ci = (mi, ni) and ci+1 = (mi+1, ni+1) there exists an edge (ni, τ, ni+1) such
that mi(X) ∪ mi+1(X ′) |= τ(X ∪ X ′). A concrete state si = (m,n), and the
contained node n, are both called reachable iff there exists a program path which
contains si.

A verification task is a pair (P, ne) where P is a CFA and ne ∈ nodes is an
error node. A verification task is safe if ne is not reachable. Safety is traditionally
decided by finding a separating inductive invariant: a mapping from program
locations to regions which is closed under the transition relation and does not
contain the error state.

2.3 Invariant and Inductive Invariant

A set of concrete states is called a state-space, and is defined using a mapping
from nodes to regions. A mapping I : nodes → F(X) is an invariant if it contains
1 The restriction to integers is for the simplicity of exposition, and is not present in

the implementation.
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all reachable states, and an inductive invariant if it is closed under the transition
relation: that is, it satisfies the conditions for initiation and consecution:

Initiation: I(n0) = �
Consecution: for all edges (a, τ, b) ∈ edges , for all X,X ′

I(a)(X) ∧ τ(X ∪ X ′) =⇒ (I(b))′(X ′)
(4)

Intuitively, the initiation condition dictates that the initial program state at
n0 (arbitrary contents of memory) is covered by I, and the consecution condition
dictates that under all transitions I should map into itself. Similarly to Eq. 3,
the consecution condition in Eq. 4 can be verified by checking one constraint for
unsatisfiability using SMT for each edge in a CFA. This constraint is given in
Eq. 5, which is unsatisfiable for each edge (a, τ, b) ∈ edges iff the consecution
condition holds for I.

I(a)(X) ∧ τ(X ∪ X ′) ∧ ¬(I(b))′(X ′) (5)

2.4 Abstract Interpretation over Formulas

Program analysis by abstract interpretation [11] searches for inductive invariants
in a given abstract domain: the class of properties considered by the analysis
(e.g. upper and lower bounds on each numeric variable). The run of abstract
interpretation effectively interprets the program in the given abstract domain,
performing operations on the elements of an abstract domain instead of concrete
values (e.g. the interval x ∈ [1, 2] under the transition x += 1 becomes x ∈ [2, 3]).

We define the abstract domain D ≡ 2L ∪ {⊥} to be a powerset of the set of
formulas L ⊆ F(X) with an extra element ⊥ attached. A concretization of an
element d ∈ D is a conjunction over all elements of d, or a formula false for ⊥.

Observe that D forms a complete lattice by using set operations of inter-
section and union as meet and join operators respectively, and using syntactical
equality for comparing individual formulas. The syntactic comparison is an over-
approximation as it does not take the formula semantics into account. However,
this comparison generates a complete lattice of height ‖L‖ + 2.

2.5 Large Block Encoding

The approach of large block encoding [12] for model checking, and the approach
of path focusing [1] for abstract interpretation are based on the observation that
by compacting a control flow and reducing a number of abstraction points, analy-
sis precision and sometimes even analysis performance can be greatly improved.
Both approaches utilize SMT solvers for performing abstraction afterwards.

A simplified version of compaction is possible by applying the following two
rules to a CFA until a fixed point is reached:

– Two consecutive edges (a, s1, b) and (b, s2, c) with no other existing edge enter-
ing or leaving b get replaced by a new edge (a,∃X̂. s1[X ′/X̂] ∧ s2[X/X̂], c).

– Two parallel edges (a, s1, b) and (a, s2, b) get replaced by (a, s1 ∨ s2, c).

In our approach, this pre-processing is used on the CFA obtained from the
analyzed program.
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L1 L2

L1 ∧ L2

M(X)

X X ′

L1 L2

¬L′
1 ∨ ¬L′

2

M(X ′)

τ(X ∪ X ′)

Fig. 2. Formula φ(X) ≡ L1(X) ∧ L2(X) is tested for inductiveness under τ(X ∪ X ′).
Model M identifies a counter-example to induction. From M |= ¬L′

2(X
′) we know

that the lemma L2 has to be dropped. As weakening progresses, the shaded region in
the left box is growing, while the shaded region in the right box is shrinking, until there
are no more counterexamples to induction.

3 Counterexample-to-Induction Weakening Algorithm

The approaches [3,5,8,9] mentioned in Sect. 1 are all based on using counterex-
amples to induction for filtering the input set of candidate lemmas. For com-
pleteness, we restate this approach in Algorithm 1.

In order to perform the weakening without syntactically modifying φ during
the intermediate queries, we perform selector variables annotation: we replace
each lemma li ∈ φ with a disjunction si ∨ li, using a fresh boolean variable
si. Observe that if all selector variables are assumed to be false the annotated
formula φannotated is equivalent to φ, and that assuming any individual selector
si is equivalent to removing (replacing with �) the corresponding lemma li from
φ. Such an annotation allows us to make use of incrementality support by SMT
solvers, by using the solving with assumptions feature.

Algorithm 1 iteratively checks input formula φ for inductiveness using Eq. 3
(line 13). The solver will either report that the constraint is unsatisfiable, in
which case φ is inductive, or provide a counterexample-to-induction represented
by a model M(X ∪X ′) (line 14). The counterexample-driven algorithm uses M
to find the set of lemmas which should be removed from φ, by removing the
lemmas modelled by M in ¬φ′ (line 20). The visualization of such a filtering
step for a formula φ consisting of two lemmas is given in Fig. 2.

As shown in related literature [4], Algorithm 1 terminates with the strongest
possible weakening within the linear number of SMT calls with respect to
‖φannotated‖.
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Algorithm 1. Counterexample-Driven Weakening.
1: Input: Formula φ(X) to weaken in RCNF, transition relation τ(X ∪ X ′)
2: Output: Inductive φ̂ ⊆ φ

3: � Annotate lemmas with selectors, S is a mapping from selectors to lemmas they
annotate.

4: S, φannotated ← Annotate(φ)
5: T ← SMT solver instance
6: query ← φannotated ∧ τ ∧ ¬φ′

annotated

7: Add query to constraints in T
8: assumptions ← ∅
9: removed ← ∅

10: � In the beginning, all of the lemmas are present
11: for all (selector , lemma) ∈ S do
12: assumptions ← assumptions ∪ {¬selector}
13: while T is satisfiable with assumptions do
14: M ← model of T
15: assumptions ← ∅
16: for all (selector , lemma) ∈ S do
17: if M |= ¬lemma ′ or lemma ′ is irrelevant to satisfiability then

18: � lemma has to be removed.
19: assumptions ← assumptions ∪ {selector}
20: removed ← removed ∪ {lemma}
21: else
22: assumptions ← assumptions ∪ {¬selector}
23: � Remove all lemmas which were filtered out
24: return φ[removed/
]

3.1 From Weakenings to Abstract Postconditions

As shown by Reps et al. [7], the inductive weakening algorithm can be generalized
for the abstract postcondition computation for any finite-height lattice.

For given formulas ψ(X), τ(X ∪ X ′), and φ(X) consider the problem of
finding a weakening φ̂ ⊆ φ, such that all feasible transitions from ψ through τ
end up in φ̂. This is an abstract postcondition of ψ under τ in the lattice of
all weakenings of φ (Sect. 2.4). The problem of finding it is very similar to the
problem of finding an inductive weakening, as similarly to Eq. 3, we can check
whether a given weakening of φ is a postcondition of ψ under τ using Eq. 6,

ψ(X) ∧ τ(X ∪ X ′) ∧ ¬φ′
annotated(X

′) (6)

Algorithm 1 can be adapted for finding the strongest postcondition in the
abstract domain of weakenings of the input formula with very minor modifi-
cations. The required changes are accepting an extra parameter ψ, and chang-
ing the queried constraint (line 6) to Eq. 6. The found postcondition is indeed
strongest [7].
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4 The Space of All Possible Weakenings

We wish to find a weakening of a set of states represented by φ(X), such that it is
inductive under a given transition τ(X ∪X ′). For a single-node CFA defined by
initial condition φ and a loop transition τ such a weakening would constitute an
inductive invariant as by definition of weakening it satisfies the initial condition
and is inductive.

We start with an observation that for a formula in NNF replacing any subset
of literals with � results in an over-approximation, as both conjunction and
disjunction are monotone operators. E.g. for a formula φ ≡ (la ∧ lb) ∨ lc such
possible weakenings are �, lb ∨ lc, and la ∨ lc.

The set of weakenings defined in the previous paragraph is redundant, as it
does not take the formula structure into account — e.g. in the given example if
lc is replaced with � it is irrelevant what other literals are replaced, as the entire
formula simplifies to �. The most obvious way to address this redundancy is to
convert φ to CNF and to define the set of all possible weakenings as conjunctions
over the subsets of clauses in φCNF. E.g. for the formula φ ≡ la ∧ lb ∧ lc possible
weakenings are la ∧ lb, lb ∧ lc, and la ∧ lc. This method is appealing due to the
fact that for a set of lemmas the strongest (implying all other possible induc-
tive weakenings) inductive subset can be found using a linear number of SMT
checks [5]. However (Sect. 2.1) polynomial-sized CNF conversion (e.g. Tseitin
encoding) requires introducing existentially quantified boolean variables which
make inductiveness checking Πp

2 -hard.
The arising complexity of finding inductive weakenings is inherent to the

problem: in fact, the problem of finding any non-trivial (�= �) weakening within
the search space described above is Σp

2 -hard.
Thus instead we use an over-approximating set of weakenings, defined by all

possible subsets of lemmas present in φ after the conversion to relaxed conjunctive
normal form.

Definition 2 (Relaxed Conjunctive Normal Form (RCNF)). A formula
φ(X) is in relaxed conjunctive normal form if it is a conjunction of quantifier-free
formulas (lemmas).

For example, the formula φ ≡ la ∧ (lb ∨ (lc ∧ ld)) is in RCNF. The over-
approximation comes from the fact that non-atomic parts of the formula are
grouped together: the only possible non-trivial weakenings for φ are la and lb ∨
(lc ∧ ld), and it is impossible to express la ∧ (lb ∨ lc) within the search space.

We may abuse the notation by treating φ in RCNF as a set of its conjuncts,
and writing l ∈ φ for a lemma l which is an argument of the parent conjunction
of φ, or φ1 ⊆ φ2 to indicate that all lemmas in φ1 are contained in φ2, or ‖φ‖
for the number of lemmas in φ. For φ in RCNF we define a set of all possible
weakenings as conjunctions over all sets of lemmas contained in φ. We use an
existing, optimal counter-example based algorithm in order to find the strongest
weakening of φ with respect to τ in the next section.

A trivially correct conversion to a relaxed conjunctive normal is to convert
an input formula φ to a conjunction

∧ {φ}. However, this conversion is not
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very interesting, as it gives rise to a very small set of weakenings: φ and �.
Consequently, with such a conversion, if φ is not inductive with respect to
the transition of interest, no non-trivial weakening can be found. On the other
extreme, φ can be converted to CNF explicitly using associativity and distribu-
tivity laws, giving rise to a very large set of possible weakenings. Yet the output
of such a conversion is exponentially large.

We present an algorithm which converts φ into a polynomially-sized con-
junction of lemmas. The following rules are applied recursively until a fixpoint
is reached:

Flattening. All nested conjunctions are flattened. E.g. a ∧ (b ∧ c) �→ a ∧ b ∧ c.
Factorization. When processing a disjunction over multiple conjunctions we

find and extract a common factor. E.g. (a ∧ b) ∨ (b ∧ c) �→ b ∧ (a ∨ c).
Explicit expansion with size limit. A disjunction

∨
L, where each l ∈ L is

a conjunction, can be converted to a conjunction over disjunctions over all
elements in the cross product over L. E.g. (a ∧ b) ∨ (c ∧ d) can be converted
(a ∨ c) ∧ (a ∨ d) ∧ (b ∨ c) ∧ (b ∨ d).
Applying such an expansion results in an exponential blow-up, but we only
perform it if the resulting formula size is smaller than a fixed constant, and
we limit the expansion depth to one.

Eliminating Existentially Quantified Variables. The formulas resulting
form large block encoding (Sect. 2.5) may have intermediate (neither input nor
output), existentially bound variables. In general, existential quantifier elimina-
tion (with e.g. Fourier-Motzkin) is exponential. However, for many cases such as
simple deterministic assignments, existential quantifier elimination is easy: e.g.
∃t. x′ = t+3∧t = x+2 can be trivially replaced by x′ = x+5 using substitution.

We use a two-step method to remove the quantified variables: we run a best-
effort pattern-matching approach, removing the bound variables which can be
eliminated in polynomial time, and in the second step we drop all the lemmas
which still contain the existentially bound variables. The resulting formula is an
over-approximation of the original one.

5 Formula Slicing: Overall Algorithm

We develop the formula slicing algorithm in order to apply the inductive weak-
ening approach for generating inductive invariants in large, potentially non-
reducible programs with nested loops.

“Classical” Houdini-based algorithms consist of two steps: candidate lemmas
generation, followed by counterexample-to-induction-based filtering. However,
in our case candidate lemmas representing postconditions depend on previous
filtering steps, and careful consideration is required in order to generate unique
candidate lemmas which do not depend on the chosen iteration order.

Abstract Reachability Tree. In order to solve this problem we use abstract
reachability tree [13] (ART) as a main datastructure for our algorithm. For the
simplicity of notation we introduce the projection function πi, which projects
the ith element of the tuple. An ART describes the current invariant candidate
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processed by the analysis for a fixed CFA (nodes, edges , n0,X), and is defined
by a set of nodes T . Each node t ∈ T is a triple, consisting of a CFA node
n ∈ nodes, defining which location t corresponds to, an abstract domain element
d ∈ D, defining the reachable state space at t, and an optional backpointer
b ∈ (T ∪{∅}), defining the tree structure. The tree topology has to be consistent
with the structure of the underlying CFA: node a ∈ T can have a backpointer
to the node b ∈ T only if there exists an edge (π1(a), , π1(b)) in the CFA. The
starting tree node t0 is (n0,�, ∅).

An ART is sound if the output of each transition over-approximates the
strongest postcondition: that is, for each node t ∈ T with non-empty backpointer
b = π3(t), an edge e = (π1(b), τ, π1(t)) must exist in edges, and the abstract
domain element associated with t must over-approximate the strongest post-
condition of b under τ . Formally, the following must hold: ∃X. [[π2(b)]] ∧ τ =⇒
[[π2(t)]]′ (recall that priming is a renaming operation [X/X ′]). A node b ∈ T is
fully expanded if for all edges (π1(t), τ, n) ⊆ edges there exists a node t ∈ T ,
where π1(t) = n, and π2(t) over-approximates the strongest post-condition of
π2(b) under τ . A node (a, d1, ) covers another node (a, d2, ) iff [[d2]] =⇒ [[d1]].
A sound labelled ART where all nodes are either fully expanded or covered
represents an inductive invariant.

The transfer relation for the formula slicing is given in Algorithm3. In order
to generate a successor for an element (na, d, b), and an edge (na, τ, nb) we first
traverse the chain of backpointers up the tree. If we can find a “sibling” element
s where π1(s) = na

2 by following the backpointers, we weaken s until induc-
tiveness (line 4) relative to the new incoming transition τ , and return that as
a postcondition. Such an operation effectively performs widening [11] to enforce
convergence. Alternatively, if no such sibling exists, we convert ∃X.∧τ to RCNF
form (line 6), and this becomes a new element of the abstract domain.

The main fixpoint loop performs the following calculation: for every leaf in
the tree which is not yet expanded or covered, all successors are found using the
transfer relation defined in Algorithm3, and for each newly created element, cov-
erage relation is checked against all elements in the same partition. A simplified
version of this standard fixpoint iteration on ART is given in Algorithm 2.

Observe that our algorithm has a number of positive features. Firstly, because
our main datastructure is an ART, in case of a counterexample we get a path to a
property violation (though due to abstraction used, not all taken transitions are
necessarily feasible, similarly to the leaping counterexamples of LoopFrog [14]).
Secondly, our approach for generating initial candidate invariants ensures unique-
ness, even in the case of a non-reducible CFA.

As a downside, tree representation may lead to the exponential state-space
explosion (as a single node in a CFA may correspond to many nodes in an ART).
However, from our experience in the evaluation (Sect. 7), with a good iteration
order (stabilizing inner components first [15]) this problem does not occur in
practice.

2 In the implementation, the sibling is defined by a combination of callstack, CFA
node and loopstack.
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Algorithm 2. Formula Slicing: Overall Algorithm
1: Input: CFA (nodes, edges, n0, X)

2: � Expanded.
3: E ← ∅
4: � Covered.
5: C ← ∅
6: t0 ← (n0, 
, ∅)
7: T ← {t0}
8: while ∃t ∈ (T \ E \ C) do

9: � Expand.
10: for all edge e ∈ edges where π1(e) = π1(t) do
11: T ← T ∪ { TransferRelation(e, t) }
12: E ← E ∪ {t}
13: � Check Coverage.
14: for all t1 ∈ (T \ C) where π1(t1) = π1(t) do
15: if [[π2(t1)]] =⇒ [[π2(t)]] then
16: C ← C ∪ {t1}
17: if [[π2(t)]] =⇒ [[π2(t1)]] then
18: C ← C ∪ {t}

Algorithm 3. Formula Slicing: Postcondition Computation.
1: function TransferRelation(edge e ≡ (na, τ, nb), state t ≡ (na, d, b))
2: sibling s ← FindSibling(b, n0)
3: if s = ∅ then

4: � Abstract postcondition of d under τ in weakenings of s (Sect. 3.1).
5: e ← Weaken(d, τ ∧ nb, s)
6: else

7: � Convert the current invariant candidate to RCNF.
8: e ← ToRCNF([[d]] ∧ τ)

9: return (nb, e, t)

10: function FindSibling(state b, CFA node n)
11: if π1(b) = n then
12: return b
13: else if π3(b) = ∅ then
14: return ∅
15: else
16: return FindSibling(π3(b), n)

5.1 Example Formula Slicing Run

Consider running formula slicing on the program in Fig. 3, which contains two
nested loops. The corresponding edge encoding is given in Eq. 7:
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Fig. 3. Example program with nested loops: listing and CFA.

τ1 ≡x′ = 0 ∧ y′ = 0 ∧ (p′ = 1 ∧ s′ ∨ p′ = 2 ∧ ¬s′)
τ2 ≡x′ = x + 1 ∧ c′ = 100
τ3 ≡(¬(p �= 1 ∧ p �= 2) ∨ (p �= 1 ∧ p �= 2 ∧ c′ = 0))

∧ y′ = y + 1 ∧ p′ = p

τ4 ≡x′ = x ∧ y′ = y ∧ p′ = p ∧ c′ = c

(7)

Similarly to Eq. 3, we can check candidate invariants A(X), B(X) for induc-
tiveness by posing an SMT query shown in Eq. 8. The constraint in Eq. 8 is
unsatisfiable iff {A : A(X), B : B(X)} is an inductive invariant (Sect. 2.3).

∃X ∪ X ′ ∨
τ1(X ′) ∧ ¬A(X ′)

A(X) ∧ τ2(X ∪ X ′) ∧ ¬B(X ′)
B(X) ∧ τ3(X ∪ X ′) ∧ ¬B(X ′)
B(X) ∧ τ4(X ∪ X ′) ∧ ¬A(X ′)

(8)

Equation 8 is unsatisfiable iff all of the disjunction arguments are unsatisfi-
able, and hence the checking can be split into multiple steps, one per analyzed
edge. Each postcondition computation (Algorithm3) either generates an initial
seed invariant candidate, or picks one argument of Eq. 8, and weakens the right
hand side until the constraint becomes unsatisfiable. Run of the formula slicing
algorithm on the example is given below:

– Traversing τ1, we get the initial candidate invariant
I(A) ← ∧ {x = 0, y = 0, p = 1 ∨ p = 2, s =⇒ p = 1}.

– Traversing τ2, the candidate invariant for B becomes
I(B) ← ∧ {x = 1, y = 0, p = 1 ∨ p = 2, s =⇒ p = 1, c = 100}.

– After traversing τ3, we weaken the candidate invariant I(B) by dropping the
lemma y = 0 which gives rise to the counterexample to induction (y gets incre-
mented). The result is

∧ {x = 1, p = 1 ∨ p = 2, s =⇒ p = 1, c = 100}, which
is inductive under τ3.
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– The edge τ4 is an identity, and the postcondition computation results in lem-
mas x = 0 and y = 0 dropped from I(A), resulting in

∧{y = 0, p = 1 ∨ p =
2, s =⇒ p = 1}.

– After traversing τ2, we obtain the weakening of I(A) by dropping the lemma
x = 1 from I(B), resulting in

∧ {p = 1 ∨ p = 2, s =⇒ p = 1, c = 100}.
– Finally, the iteration converges, as all further postconditions are already cov-

ered by existing invariant candidates. Observe that the computed invariant is
sufficient for proving the asserted property.

6 Implementation

We have developed the Slicer tool, which runs the formula slicing algorithm on
an input C program. Slicer performs inductive weakenings using the Z3 [16]
SMT solver, and best-effort quantifier elimination using the qe-light Z3 tac-
tic. The source code is integrated inside the open-source verification framework
CPAchecker [17], and the usage details are available at http://slicer.metaworld.
me. Our tool can analyze a verification task (Sect. 2.2) by finding an inductive
invariant and reporting true if the found invariant separates the initial state
from the error property, and unknown otherwise.

We have implemented the following optimizations:

Live Variables. We precompute live variables, and the candidate lemmas gen-
erated during RCNF conversion (Algorithm 3, line 6) which do not contain
live variables are discarded.

Non-Nested Loops. When performing the inductive weakening (Algorithm3,
line 4) on the edge (N, τ,N) we annotate and weaken the candidate invariants
on both sides (without modifications described in Sect. 3.1), and we cache the
fact that the resulting weakening is inductive under τ .

CFA Reduction. We pre-process the input CFA and we remove all nodes from
which there exists no path to an error state.

6.1 Syntactic Weakening Algorithm

A syntactic-based approach is possible as a faster and less precise alternative
which does not require SMT queries. For an input formula φ(X) in RCNF,
and a transition τ(X ∪ X ′), syntactic weakening returns a subset of lemmas
in φ, which are not syntactically modified by τ : that is, none of the variables
are modified or have their address taken. For example, the lemma x > 0 is not
syntactically modified by the transition y′ = y + 1 ∧ x ≥ 1, but it is modified by
x′ = x + 1.

7 Experiments and Evaluation

We have evaluated the formula slicing algorithm on the “Device Drivers”
category from the International Competition on Software Verification (SV-
COMP) [2]. The dataset consists of 2120 verification tasks, of which 1857 are

http://slicer.metaworld.me
http://slicer.metaworld.me
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designated as correct (the error property is unreachable), and the rest admit a
counter-example. All the experiments were performed on Intel Xeon E5-2650 at
2.00 GHz, and limits of 8 GB RAM, 2 cores, and 600 s CPU time per program.
We compare the following three approaches:

Slicer-CEX (rev 21098). Formula slicing algorithm running counterexample-
based weakening (Sect. 3).

Slicer-Syntactic. Same, with syntactic weakening (Sect. 6.1).
Predicate Analysis (rev 21098). Predicate abstraction with interpolants [18],

as implemented inside CPAchecker [19]. We have chosen this approach for
comparison as it represents state-of-the-art in model checking, and was found
especially suitable for analyzing device drivers.

PAGAI [20] (git hash e44910). Abstract interpretation-based tool, which imple-
ments the path focusing [1] approach.

Unabridged experimental results are available at http://slicer.metaworld.me.
In Table 1 we show overall precision and performance of the four compared

approaches. As formula slicing is over-approximating, it is not capable of finding
counterexamples, and we only compare the number of produced safety proofs.

From the data in the table we can see that predicate analysis produces the
most correct proofs. This is expected since it can generate new predicates, and
it is driven by the target property. However, formula slicing and abstract inter-
pretation have much less timeouts, and they do not require target property
annotation, making them more suitable for use in domains where a single error
property is not available (advanced compiler optimizations, multi-property veri-
fication, and boosting another analysis by providing an inductive invariant). The
programs verified by different approaches are also different, and formula slicing
verifies 22 programs predicate analysis could not.

The performance of the four analyzed approaches is shown in the quantile
plot in Fig. 4a. The plot shows that predicate analysis is considerably more time
consuming than other analyzed approaches. Initially, PAGAI is much faster
than other tools, but around 15 s it gets overtaken by both slicing approaches.
Though the graph seems to indicate that PAGAI overtakes slicing again around
100 s, in fact the bend is due to out of memory errors.

The quantile plot also shows that the time taken to perform inductive weak-
ening does not dominate the overall analysis time for formula slicing. This can be
seen from the small timing difference between the syntactic and counterexample-
based approaches, as the syntactic approach does not require querying the SMT
solver in order to produce a weakening.

Finally, we present data on the number of SMT calls required for computing
inductive weakenings in Fig. 4b. The distribution shows that the overwhelming
majority of weakenings can be found within just a few SMT queries.

http://slicer.metaworld.me
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Table 1. Evaluation results. The “# incorrect” column shows the number of safety
proofs the tool has produced where the analyzed program admitted a counterexample.

Tool # proofs # incorrect # timeouts # memory outs

Slicer-CEX 1253 0 475 0

Slicer-Syntactic 1166 0 407 0

Predicate analysis 1301 0 657 0

PAGAI 1214 3 409 240
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Fig. 4. Evaluation results: timing data.

8 Conclusion and Future Work

We have proposed a “formula slicing” algorithm for efficiently finding potentially
disjunctive inductive invariants in programs, which performs abstract interpreta-
tion in the space of weakenings over the formulas representing the “initial” state.
We have demonstrated that it could verify many programs other approaches
could not, and that the algorithm can be run on real programs.

The motivation for our approach is addressing the limitation of abstract
interpretation which forces it to perform abstraction after each analysis step,
which often results in a very rough over-approximation. Thus we believe our
method is well-suited for augmenting numeric abstract interpretation.

As with any new inductive invariant generation technique, a possible future
work is investigating whether formula slicing can be used for increasing the
performance and precision of other program analysis techniques, such as k-
induction, predicate abstraction or property-directed reachability. An obvious
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approach would be feeding the invariants generated by formula slicing to a con-
vex analysis running abstract interpretation or policy iteration [21].

Acknowledgements. The authors wish to thank Grigory Fedyukovich and Alexey
Bakhirkin for proof-reading and providing valuable feedback, and the anonymous
reviewers for their helpful suggestions.
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Abstract. Motivated by the practical need for verifying embedded con-
trol programs involving linear, polynomial, and transcendental arith-
metics, we demonstrate in this paper a CEGAR technique addressing
reachability checking over that rich fragment of arithmetics. In contrast
to previous approaches, it is neither based on bit-blasting of floating-
point implementations nor confined to decidable fragments of real arith-
metic, namely linear or polynomial arithmetic. Its CEGAR loop is based
on Craig interpolation within the iSAT3 SMT solver, which employs
(abstract) conflict-driven clause learning (CDCL) over interval domains
together with interval constraint propagation. As usual, the interpolants
thus obtained on spurious counterexamples are used to subsequently
refine the abstraction, yet in contrast to manipulating and refining the
state set of a discrete-state abstraction, we propose a novel technique for
refining the abstraction, where we annotate the abstract model’s transi-
tions with side-conditions summarizing their effect. We exploit this for
implementing case-based reasoning based on assumption-commitment
predicates extracted from the stepwise interpolants in a lazy abstraction
mechanism. We implemented our approach within iSAT3 and demon-
strate its effectiveness by verifying several benchmarks.

1 Introduction

The wide-spread use of embedded control programs involving linear, polynomial,
and transcendental arithmetic provokes a quest for corresponding verification
methods. A crucial technique here is the automatic verification of reachability
properties in such programs, as many problems can be reduced to it and as it
in particular provides a method for detecting unreachable code fragments, a.k.a.
dead code, in such programs. The latter is an industrial requirement, as various
pertinent standards for embedded system development either demand adequate
handling of dead code during testing or even bar it altogether, like DO-178C,
DO-278A, or ISO/IEC PDTR 24772.
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The set of verification tools being able to address reachability properties
in arithmetic programs involving such a rich fragment of arithmetic is con-
fined. Tools manipulating real-valued rather than machine arithmetic tend to
be limited to linear or at most polynomial arithmetic due to the obvious decid-
ability issues arising in richer fragments of real arithmetic; tools resorting to
bit-blasting, like C Bounded Model Checking (CBMC) [1], tend to adopt the
very same restrictions for complexity reasons. Abstract interpretation [2] could
in principle easily go beyond, but then suffers from inexactness since the geom-
etry of sets of numbers representable by its usual lattices and the graphs of the
monotonic functions over these can only provide coarse overapproximations.

Our Contributions: Within this paper, (1) we are trying to overcome this defi-
ciency by a combination of techniques forming a viable counterexample guided
abstraction refinement (CEGAR) loop: we exploit Craig interpolation [3] in the
interval constraint-propagation based satisfiability modulo theory (SMT) solving
algorithm iSAT [4,5] in order to extract reasons for an abstract counterexample
being spurious, leading to goal-directed abstraction refinement as in CEGAR [6].
(2) In contrast to the usual scheme manipulating and refining the state set of a
discrete-state abstraction by splitting cases [7,8] or splitting paths depending on
automata [9], we annotate the abstract model’s transitions with side-conditions
summarizing their effect. Due to a tight integration of checking the abstraction
into the SMT solver iSAT3, we can exploit these annotations for implement-
ing case-based reasoning based on assumption-commitment predicates extracted
from the stepwise interpolants in a lazy abstraction mechanism, thereby elimi-
nating all spurious counterexamples that share a local reason of being spurious
at one transition by using one predicative expression.

We implemented our approach within iSAT3 and demonstrate its effective-
ness by verifying several benchmarks. We do in particular compare our app-
roach to a model-checking technique exploiting Craig interpolants over the same
fragment of arithmetics as an overapproximation of reachable state sets [5], as
originally suggested for the finite-state case by McMillan [10], i.e., implement-
ing approximate reach-set computation rather than CEGAR. The benchmarks
indicate superior performance of the new CEGAR approach on non-linear bench-
marks.

Related Work: To the authors’ best knowledge, this is the first attempt to
verify programs which may involve transcendental functions by using CEGAR.
Most previous work is confined only to linear arithmetics or polynomials [8,11–
15], where our work supports richer arithmetic theories, namely transcendental
functions. Although our approach is similar with IMPACT [8], WHALE [16] and
Ultimate Automizer [17] solvers regarding the usage of interpolants as necessary
predicates in refining the abstraction, there are fundamental differences in the
learning procedure. While IMPACT and WHALE explicitly split the states after
each learning, Ultimate Automizer which is based on ω−automata in learning
reasons of spurious counterexamples [18], applies trace abstraction where inter-
polants are used to construct an automaton that accepts a whole set of infeasible
traces and on the same time overapproximates the set of possible traces of the
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safe program. In contrast to that, our refinement procedure adds neither tran-
sitions nor states to the abstraction, but we do annotate the abstract program
transitions with necessary assumption-commitment conditions that eliminate the
spurious counterexamples.

2 Preliminaries

We use and suitably adapt several existing concepts. A control flow graph (CFG)
is a cyclic graph representation of all paths that might be traversed during
program execution. In our context, we attach code effect to edges rather than
nodes of the CFG. i.e., each edge comes with a set of constraints and assignments
pertaining to execution of the edge. Formally, constraints and assignments are
defined as follows:

Definition 1 (Assignments and constraints). Let V be a set of integer and
real variables, with typical element v, B be a set of boolean variables, with typical
element b, and C be a set of constants over rationals, with typical element c.

– The set Ψ(V,B) of assignments over integer, real, and boolean variables with
typical element ψ is defined by the following syntax:

ψ ::= v := aterm | b := bterm

aterm ::= uaop v | v baop v | v baop c | c | v

bterm ::= ubop b | b bbop b | b

uaop ::= − | sin | cos | exp | abs | ...

baop ::= + | − | · | ...

ubop ::= ¬
bbop ::= ∧ | ∨ | ⊕ | ...

By ψ we denote a finite list of assignments on integer, real, and boolean
variables, ψ = 〈ψ1, ..., ψn〉 where n ∈ N≥0. We use Ψ(V,B)∗ to denote the
set of lists of assignments and 〈 〉 to denote the empty list of assignments.

– The set Φ(V,B) of constraints over integer, real, and boolean variables with
typical element φ is defined by the following syntax:

φ ::= atom | ubop atom | atom bbop atom

atom ::= theory atom| bool

theory atom ::= comp | simple bound

comp ::= term lop c | term lop v

simple bound ::= v lop c

bool ::= b | ubop b | b bbop b

term ::= uaop v | v baop v | v baop c

lop ::= < | ≤ | = | > | ≥

where uaop, baop, ubop and bbop are defined above.
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We assume that there is a well-defined valuation mapping ν : V ∪ B →
D(V ) ∪ D(B) that assigns to each assigned variable a value from its associated
domain. Also, we assume that there is a satisfaction relation |=⊆ (V ∪ B →
D(V ) ∪ D(B)) × Φ(V,B) and in case of arithmetic or boolean variables we
write ν |= φ iff ν|V ∪B |= φ. The modification of a valuation ν under a finite
list of assignment ψ = 〈ψ1, ..., ψn〉 denoted by ν[ψ] = ν[ψ1]...ν[ψn], where
ν[v := aterm](v′) = ν[aterm] if v′ = v, otherwise ν[v := aterm](v′) = ν(v′).
The same concept of modification is applied in case of boolean assignments.

Definition 2 (Control Flow Graph (CFG)). A control flow graph γ =
(N,E, i) consists of a finite set of nodes N , a set E ⊆ N × Φ × Ψ × N of
directed edges, and an initial node i ∈ N which has no incoming edges. Each edge
(n, φ,ψ, n′) ∈ E has a source node n, a constraint φ, a list ψ of assignments
and a destination node n′.

CFG’s operational semantics interprets the edge constraints and assignments:

Definition 3 (Operational Semantics). The operational semantics T
assigns to each control flow graph γ = (N,E, i) a labelled transition system
T (γ) = (Conf(γ), { e−→ | e ∈ E}, Cinit) where Conf(γ) = {〈n, ν〉 | n ∈ N ∧ ν :
V ∪ B → D(V ) ∪ D(B)} is the set of configurations of γ, e−→⊆ Conf(γ) ×
Conf(γ) are transition relations where 〈n, ν〉 e−→ 〈n′, ν′〉 occurs if there is an
edge e = (n, φ,ψ, n′), ν |= φ and ν′ = ν[ψ], and Cinit = {〈i, νinit〉} ∩ Conf(γ) is
the set of initial configurations of γ.

A path σ of control flow graph γ is an infinite or finite sequence 〈n0, ν0〉 e1−→
〈n1, ν1〉 e2−→ 〈n2, ν2〉 . . . of consecutive transitions in the transition system T (γ),
which furthermore has to be anchored in the sense of starting in an initial state
〈n0, ν0〉 ∈ Cinit. We denote by Σ(γ) the set of paths of γ and by ↓ σ the set
{〈n0, ν0〉, 〈n1, ν1〉, ...} of configurations visited along a path σ.

As we are interested in determining reachability in control flow graphs, we
formally define reachability properties as follows:

Definition 4 (Reachability Property(RP)). The set Θ(N,Φ) of reacha-
bility properties (RP) over a control flow graph γ = (N,E, i) is given by the
syntax

θ ::= n

Given an RP θ and a path σ, we say that σ satisfies θ and write σ |= θ iff σ
traverses a configuration 〈n, ν〉 that satisfies θ, i.e., σ |= θ iff ∃ν : 〈n, ν〉 ∈↓ σ.
We say that γ satisfies a reachability property θ iff some path σ ∈ Σ(γ) satisfies
θ. By Σ(γ, θ), we denote the set of all paths of γ that satisfy θ.

We analyze CFGs by a counterexample-guided abstraction refinement
(CEGAR) scheme [6] employing lazy abstraction [11]. As usual, that refinement
is based on identifying reasons for an abstract counterexample by means of con-
structing a Craig interpolant [3].
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Definition 5 (Craig Interpolation). Given two propositional logic formulae
A and B in an interpreted logics L such that |= LA → ¬B, a Craig interpolant
for (A,B) is a quantifier-free L-formula I such that |= LA → I, |= LI → ¬B,
and the set of variables of I is a subset of the set of the free variables shared
between A and B, i.e., Var(I) ⊆ V ar(A) ∩ V ar(B).

Depending on the logics L, such a Craig interpolant can be computed by
various mechanisms. If L admits quantifier elimination then this can in principle
be used; various more efficient schemes have been devised for propositional logic
and SAT-modulo theory by exploiting the connection between resolution and
variable elimination [13,19].

3 Description of the SMT Solver iSAT3

We build our CEGAR loop on the iSAT3 solver, which is an SMT solver accept-
ing formulas containing arbitrary boolean combinations of theory atoms involv-
ing linear, polynomial and transcendental functions (as explained in Defini-
tion 1). In classical SMT solving a given SMT formula is split into a boolean
skeleton and a set of theory atoms. The boolean skeleton (which represents the
truth values of the theory atoms) is processed by a SAT solver in order to search
for a satisfying assignment. If such an assignment is found, a separate theory
solver is used to check the consistency of the theory atoms under the truth val-
ues determined by the SAT solver. In case of an inconsistency the theory solver
determines an infeasible sub-set of the theory-atoms which is then encoded into
a clause and added to the boolean skeleton. This scheme is called CDCL(T).

In contrast to CDCL(T), there is no such separation between the SAT and
the theory part in the family of iSAT solvers [4]; instead interval constraint
propagation (ICP) [20] is tightly integrated into the CDCL framework in order
to dynamically build the boolean abstraction by deriving new facts from theory
atoms. Similarly to SAT solvers, which usually operate on a conjunctive nor-
mal form (CNF), iSAT3 operates on a CNF as well, but a CNF additionally
containing the decomposed theory atoms (so-called primitive constraints). We
apply a definitional translation akin to the Tseitin-transformation [21] in order
to rewrite a given formula into a CNF with primitive constraints.

iSAT3 solves the resulting CNF through a tight integration of the Davis-
Putnam-Logemann-Loveland (DPLL) algorithm [22] in its conflict-driven clause
learning (CDCL) variant and interval constraint propagation [20]. Details of the
algorithm, which operates on interval valuations for both the boolean and the
numeric variables and alternates between choice steps splitting such intervals and
deduction steps narrowing them based on logical deductions computed through
ICP or boolean constraint propagation (BCP), can be found in [4]. Implementing
branch-and-prune search in interval lattices and conflict-driven clause learning
of clauses comprising irreducible atoms in those lattices, it can be classified as an
early implementation of abstract conflict-driven clause learning (ACDCL) [15].

iSAT3 is also able to generate Craig interpolants. Here we exploit the sim-
ilarities between iSAT3 and a CDCL SAT solver with respect to the conflict
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resolution. As atoms occurring as pivot variables in resolution steps are always
simple bounds mentioning a single variable only, we are able to straightforwardly
generalize the technique employed in propositional SAT solvers to generate par-
tial interpolants [5].

Fig. 1. Left: an arithmetic program, middle: corresponding control flow graph, right:
encoding in iSAT3 CFG format.

3.1 Encoding Control Flow Graphs in iSAT3

In order to encode control flow graphs in the iSAT3 input language, we extend
the syntax of iSAT3 as shown in Fig. 1. A control flow graph file in iSAT3 (iSAT3-
CFG) contains five parts, namely the declaration, nodes, initialization, edges, and
specification sections, which are all started by the respective keywords.

As in iSAT3, the declaration part defines all variables and constants to be
used subsequently. Non-boolean variables must have an assigned initial range
over which a solution is sought. The second part is the newly introduced nodes
part, which defines the set of control flow graph nodes to be used as source or
destination locations of transitions. The initialization part then defines both the
initial edge of the CFG and the permissible initial values of all program variables.
The latter is achieved by stating a predicate confining the possible values. Its
counterpart is the reachability specification, which may name the destination
node or define a set of variable valuations to be reached.

The edges part, introduced by the keyword EDGES, represents the control
flows in the graph. This part contains a list of edges as defined in Definition 2,
each defined by a source node, a list of guards, a list of assigned variables that
are changed, a list of assignments where the assigned variable has to be primed,
and a destination node which has to be primed as well. In case that the list of
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assigned variables is empty, it means all previous values of variables are propa-
gated. In contrast to the iSAT3 tradition, a framing rule is applied such that all
unspecified assignments and behaviors during unrolling are not considered to be
nondeterministic choices, but values are maintained by implicit equations x′ = x
for all unassigned variables.

4 Interpolation-Based Abstraction Refinement in iSAT3

The basic steps in counterexample guided abstraction refinement (CEGAR) are
to, first, compute an initial abstraction, then model-check it, thereafter termi-
nating if no counterexample is found or trying to concretize the counterexample
otherwise. If concretization succeeds then the counterexample is real, else spuri-
ous. In the latter case, a reason for the occurrence of the spurious counterexam-
ple is extracted and subsequently used for refining the abstraction, after which
model checking is repeated.

As concretization of the abstract counterexample involves solving its concrete
path condition, which is a conjunctive constraint system in the logical theory
corresponding to the data domain of the program analyzed, SAT-modulo-theory
solving often is the method of choice for concretization and Craig interpolation
consequently a natural candidate for the extraction of reasons. It has been sug-
gested by Henzinger et al. [12]. Of these classical approaches, we do in particular
adopt lazy abstraction [8,11] and inductive interpolants in [14], yet lift them
to the analysis of programs featuring arithmetic beyond decidable fragments.
While CEGAR on such rich fragments of arithmetic has been pursued within
the field of hybrid-system verification, in particular by Ratschan et al. [23], refine-
ment there has not been directed by Craig interpolation and, using explicit-state
techniques, the targets where relatively small control skeletons rather possibly
unwieldy CFGs. By a tight integration of checking the abstraction and SMT
including CI, we are trying to overcome such limitations.

4.1 The Algorithm

This section presents the four main steps of CEGAR in iSAT3; namely abstrac-
tion, abstract model verification, predicate extraction during counterexample
validation, and refinement.

Initial Abstraction. The first step of applying CEGAR is to extract an initial
abstraction from the concrete model by a well-defined abstraction function. The
first abstraction represents just the graph structure of the CFG without consid-
ering edge interpretations by assignments and guards. It is introduced as follows:

Definition 6 (Initial Abstraction Function). Given a control flow graph
γ = (N,E, i) ∈ Γ , its initial abstraction mediated by the abstraction function α
is the CFG α(γ) = (N,E′, i), where E′ = {(n, true, 〈〉, n′) | (n, φ,ψ, n′) ∈ E}.
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Verifying the Abstraction. In the model checking community it is common to
verify reachability problems in the abstract model by using finite-state model-
checkers, like BDD-based approaches [24]. In this work, we verify reachability
properties in the abstract models by SMT solving together with interpolation [10]
in order to verify reachability for unbounded depths. The individual runs of thus
unbounded SMT-based model-checking are bound to terminate, as the initial
abstraction is equivalent to a finite-state problem and as the predicates that are
added to enrich the abstraction during refinement are just logical formula over
simple bounds x ∼ c which are bounds on boolean propositions; i.e., literals, thus
keeping the model finite-state. By this idea, we can pursue model-checking of
the abstraction and the concretizability test of abstract counterexamples within
the same tool, thus avoiding back and forth translation between different tools
and checking technologies.

Path-Condition Generation and Extraction of Reasons. Given that the abstract
model α(γ) is a CFG, it induces a set of paths. We call any path σabs ∈ Σ(α(γ))
an abstract path. As the abstraction function just relaxes edge conditions, we
can build a corresponding concrete path—if existent—by just reintroducing the
missing constraints and assignments as follows.

Definition 7 (Path-Conditions Generation Function). Given a control
flow graph γ = (N,E, i) and its abstraction α(γ) = (N,E′, i) ∈ Γ and a finite

abstract path σabs : 〈i, ν′
init〉

e′
1−→ 〈n1, ν

′
1〉

e′
2−→ ...

e′
m−−→ 〈nm, ν′

m〉 ∈ Σ(α(γ)), the
path-conditions generation function κ : Γ × Σ → Σ that builds a concrete path
semantically by completing its conditions, is defined as follows:

κ(γ, σabs) = σ where, σ : 〈i, νinit〉 e1−→ 〈n1, ν1〉 e2−→ ...
em−−→ 〈nm, νm〉,

{e1, ..., em} ⊆ E and {n1, ..., nm} ⊆ N

We say that σ is a real path if and only if its generated path condition, i.e.,
νini ∧ ∧m

i=1 φi ∧ ψi is satisfiable, else it is spurious.

The crucial step in the CEGAR loop is to extract a reason for counterexam-
ples being spurious such that case splitting on that reason would exclude the
particular (and similar) counterexamples. Several previous works used differ-
ent approaches and schemes to capture such reasons, like state splitting [23],
word matching by using ω-automata [18], or interpolants [8,11–14]. In our
work, we exploit stepwise interpolants as in [13,14] in order to obtain predi-
cates capturing the reasons, where the first and last interpolants during refin-
ing any spurious counterexample are always true and false respectively [13].
This can be carried out as follows: When encountering a spurious counterex-

ample σsp = 〈i, ν′
init〉

e′
1−→ ...

e′
m−−→ 〈nm, ν′

m〉 ∈ Σ(γ′), where γ′ is an abstraction,
{e′

1, .., e
′
m} ⊆ E′ – primed edges denote abstract ones –, m > 0 and θ = nm is

the goal to be reached,

– we complete the abstract path σsp in the original model γ semantically by
using the path-conditions generation function κ as in Definition 7.
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– as σsp is spurious, we obtain an unsatisfiable path formula κ(γ, σsp) /∈ Σ(γ),
i.e., νinit ∧ ∧m

i=1 φi ∧ ψi |= False.
– by using CI in order to extract reasonable predicates as in lazy abstrac-

tion [12], one computes a reason of unsatisfiability at each control point
(node) of γ. For example, consider that κ(γ, σsp) = A ∧ B, where A =
νinit ∧ ∧k

j=1 φj ∧ ψj , B =
∧m

j=k+1 φj ∧ ψj and 0 ≤ k ≤ m. If we run the
iSAT3 solver iteratively for all possible values of k, we obtain m + 1 inter-
polants, where interpolant Ik is an adequate reason at edge ek justifying the
spuriousness of σsp.

– in case of using inductive interpolants, one uses the interpolant of iteration
k, i.e., Ik as A-formula while interpolating against the above formula B in
order to obtain interpolant Ik+1. As Ik overapproximates the prefix path
formula till k, we compute the next interpolant Ik+1 that overapproximates
Ik ∧φk+1 ∧ψk+1. This step assures that the interpolant at step k implies the
interpolant at step k + 1.

This guarantees that the interpolants at the different locations achieve the goal of
providing a reason eliminating the infeasible error path from further exploration.

Abstraction Refinement. After finding a spurious counterexample and extracting
adequate predicates from the path, we need to refine the abstract model in a
way such that at least this counterexample is excluded from the abstract model
behavior. This refinement step can be performed in different ways. The first
way is a global refinement procedure which is the earliest traditional approach,
where the whole abstract model is refined after adding a new predicate [25]. The
second way is a lazy abstraction [8,11,26] where instead of iteratively refining
an abstraction, it refines the abstract model on demand, as it is constructed.
This refinement has been based on predicate abstraction [11] or on interpolants
derived from refuting program paths [8]. The common theme, however, has been
to refine and thus generally enlarge the discrete state-space of the abstraction
on demand such that the abstract transition relation could locally disambiguate
post-states (or pre-states) in a way eliminating the spurious counterexample.

Our approach of checking the abstraction within an SMT solver (by using
interpolation based model checking) rather than a finite-state model-checker
facilitates a subtly different solution. Instead of explicitly splitting states
in the abstraction, i.e., refining the nodes of the initial abstraction, we stay
with the initial abstraction and just add adequate pre-post-relations to
its edges. These pre-post-relations are akin to the ones analyzed when locally
determining the transitions in a classical abstraction refinement, yet play a dif-
ferent role here in that they are not mapped to transition arcs in a state-enriched
finite-state model, but rather added merely syntactically to the existing edges,
whereby they only refine the transition effect on an unaltered state space. It is
only during path search on the (refined) abstraction that the SMT solver may
actually pursue an implicit state refinement by means of case splitting; being
a tool for proof search, it would, however, only do so on demand, i.e., only
when the particular case distinction happens to be instrumental to reasoning.
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Fig. 2. CEGAR iterations where bold paths and cyan predicates represent the current
counterexample and added constraints in each iteration after refinement. (Color figure
online)

We support this implicit refinement technique for both lazy abstraction (with
inductive interpolants as optional configuration) and global refinement.

In the following we concisely state how the (novel) implicit refinement is
performed by attaching pre-post-conditions to edges. Given a spurious coun-

terexample σsp = 〈i, νinit〉 e′
1−→ ...

e′
m−−→ 〈nm, νm〉 ∈ Σ(γ′) with θ = nm as shown

in the previous subsection, we obtain m + 1 (optionally inductive) interpolants,
where Ik and Ik+1 are consecutive interpolants at edges ek and ek+1, respectively,
and 0 < k < m. We continue as follows:
1. if Ik ∧ φk+1 ∧ ψk+1 → Ik+1 holds, then we add I → I ′ to e′

k+1,
2. if Ik ∧ φk+1 ∧ ψk+1 → ¬Ik+1 holds, then we add I → ¬I ′ to e′

k+1,
3. if ¬Ik ∧ φk+1 ∧ ψk+1 → ¬Ik+1 holds, then we add ¬I → ¬I ′ to e′

k+1,
4. if ¬Ik ∧ φk+1 ∧ ψk+1 → Ik+1 holds, then we add ¬I → I ′ to e′

k+1,

where I is Ik with all its indexed variable instances xk replaced by undeco-
rated base names x and I ′ is Ik+1 with all its indexed variable instances xk+1
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replaced by primed base names x′. These checks capture all possible sound rela-
tions between the predecessor and successor interpolants. For example, consider
the abstract model in the first iteration as in Fig. 2. Interpolation on the path
condition of the spurious counterexample yields I1 := true and I2 := x ≥ 0.0002.
By performing the previous four checks, we obtain only one valid check, namely

true︸︷︷︸
I1

∧ true︸︷︷︸
φ1

∧x2 = sin(y1) + 1.0002 ∧ y2 = y1
︸ ︷︷ ︸

ψ1

→ x2 ≥ 0.0002
︸ ︷︷ ︸

I2

We consequently construct the pre-post-predicate true → x′ ≥ 0.0002 as shown
on the arc from n3 to n4 of Image 1 of Fig. 2. We can derive that the pre-post-
predicate thus obtained is a sufficient predicate to refine not only the abstract
model at edge e′

k+1 for eliminating the current spurious counterexample, but
also for any other spurious counterexample that (1) has a stronger or the same
precondition before traversing edge e′

k+1 and (2) has a stronger or the same
postcondition after traversing edge e′

k+1.

Lemma 1. Given a control flow graph γ ∈ Γ , its abstraction α(γ) and a spu-
rious counterexample σsp ∈ Σ(α(γ) over the sequence of edges e1, ...em, adding
side-conditions is sufficient to eliminate the spurious counterexample.

Proof. (sketch): by using stepwise interpolants, we get a sequence of interpolants
I0, ..., Im attributing the previous (spurious) abstract counterexample with the
path condition

∧m−1
i=0 (Ii → Ii+1),1 where “Ii → Ii+1” is obtained since Ii∧φi+1∧

ψi+1 → Ii+1 is a tautology. As the first and – at least – the last interpolants
are true and false respectively, the path formula (

∧m−1
i=0 Ii → Ii+1) becomes

contradictory. Thus the current spurious counterexample is eliminated. ��
Due to their implicational pre-post-style, we can simply conjoin all discovered
predicates at an edge, regardless on which path and after how many refine-
ment steps they are discovered. Such incremental refinement of the symbolically
represented pre-post-relation attached to edges by means of successively con-
joining new cases proceeds until finally we can prove the safety of the model
by proving that the bad state is disconnected from all reachable states of the
abstract model, or until an eventual counterexample gets real in the sense of its
concretization succeeding. To prove unreachability of a node in the new abstrac-
tion, we use Craig interpolation for computing a safe overapproximation of the
reachable state space as proposed by McMillan [10]. The computation of the
overapproximating CI exploits the pre-post conditions added.

In the following, we illustrate how the program in Fig. 1 is proven to be safe;
i.e., that location error is unreachable. The arithmetic program, the correspond-
ing control flow graph, and the encoding of the control flow graph in iSAT3 are
stated in the Fig. 1. In the first iteration, we get the initial coarse abstraction
according to Definition 6. In case of finding spurious counterexample, which is
the case in the first four iterations, we refine the model as shown in Fig. 2. After

1 The proof considers the first type of implication check, the others hold analogously.
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that, the solver proves that the error is not reachable in the abstract model.
Additionally, the third and fourth counterexamples have a common suffix, but
differ in the prefix formula, therefore both are needed for refining the abstrac-
tion in the third and fourth iterations. However, as all following paths from loop
unwinding share the prefix formula with the previous two counterexamples, yet
have stronger suffix formulas, the already added pre-post predicates are sufficient
to eliminate all further counterexamples.

5 Experiments

We have implemented our approach, in particular the control flow graph encod-
ing and the interpolation-based CEGAR verification, within the iSAT3 solver.
We verified reachability in several linear and non-linear arithmetic programs and
CFG encodings of hybrid systems. The following tests are mostly C-programs
modified from [25] or hybrid models discussed in [5,27]. As automatic trans-
lation into CFG format is not yet implemented, the C benchmarks are cur-
rently mostly of moderate size (as encoding of problems is done manually), but
challenging; e.g., hénon map and logistic map [5]. We compared our approach
with interpolant-based model checking implemented in both CPAchecker [28]
(IMPACT configuration [8]), version 1.6.1, and iSAT3,2 where the interpolants
are used as overapproximations of reachable state sets [5]. Also, we compared
with CBMC [1] as it can verify linear and polynomial arithmetic programs. Com-
parison on programs involving transcendental functions could, however, only be
performed with interpolant-based model checking in iSAT3 as CBMC does not
support these functions and CPAchecker treats them as uninterpreted functions.

CBMC, version 4.9, was used in its native bounded model-checking mode with
an adequate unwinding depth, which represents a logically simpler problem, as
the k-inductor [34] built on top of CBMC requires different parameters to be
given in advance for each benchmark, in particular for loops, such that it offers
a different level of automation. We limited solving time for each problem to
five minutes and memory to 4 GB. The benchmarks were run on an Intel(R)
Core(TM) i7 M 620@2.67GHz with 8 GB RAM.

5.1 Verifying Reachability in Arithmetic Programs

Table 1 summaries the results of our experimental evaluation. It comprises five
groups of columns. The first includes the name of the benchmark, type of the
problem (whether it includes non-linear constraints or loops), number of control
points, and number of edges. The second group shows the result of verifying the
benchmarks when using iSAT3 CEGAR (lazy abstraction), thereby stating the
verification time in seconds, memory usage in kilobytes, number of abstraction
refinements, and the final verdict. The third group has the same structure, yet
2 Although we contacted the authors of dReal [29] which supports unbounded model

checking for non-linear constraints [30], they referred us to the latest version which
does not support unbounded model checking, thus it is excluded.
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Table 1. Verification results of linear/non-linear hybrid models. Bold lines refer to
best results w.r.t. best verification time.

reports results for using iSAT3 with interpolation-based reach-set overapproxi-
mation used for model checking.

Fig. 3. Accumulated verification times for the
first n benchmarks

The fourth part provides fig-
ures for CBMC with a maximum
unwinding depth of 250. CBMC
could not address the benchmarks
7 and 10 as they contain unsup-
ported transcendental functions.
The fifth part provides the fig-
ures for CPAchecker while using
the default IMPACT configura-
tion where the red lines refer
to false alarms (for comparison,
CPAchecker was run with differ-
ent configurations, yet this didn’t
affect the presence of false alarms.)
reported by IMPACT due to non-linearity or non-deterministic behaviour of the
program. For each benchmark, we mark in boldface the best results in terms of
time. iSAT3-based CEGAR outperforms the others in 18 cases, interpolation-
based MC in iSAT3 outperforms the others in 2 cases, and CBMC outperforms
the others in 3 cases. Figures 3 and 4 summarize the main findings. The tests
demonstrate the efficacy of the new CEGAR approach in comparison to other
competitor tools. Concerning verification time, we observe that iSAT3 with
CEGAR scores the best results. Namely, iSAT3-based CEGAR needs about 27 s
for processing the full set of benchmarks, equivalent to an average verification
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time of 1.2 s, iSAT3 with the interpolation-based approach needs 2809 s total
and 122 s on average, CBMC needs 168 s total and 8 s on average, and IMPACT
needs 64 s total and 2.7 s on average.

Fig. 4. Memory usage (#benchmarks
processed within given memory limit)

Concerning memory, we observe
that iSAT3 with CEGAR needs
about 15 MB on average, iSAT3 with
interpolation 906 MB on average,
CBMC needs 66 MB on average, and
IMPACT needs 141 MB on average.
The findings confirm that at least on
the current set of benchmarks, the
CEGAR approach is by a fair mar-
gin the most efficient one.

The only weakness of both iSAT3-
based approaches is that they some-
times report a candidate solution, i.e.,
a very narrow interval box that is hull
consistent, rather than a firm satisfia-
bility verdict. This effect is due to the incompleteness of interval reasoning, which
here is employed in its outward rounding variant providing safe overapproxima-
tion of real arithmetic rather than floating-point arithmetic. It is expected that
these deficiencies vanish once floating-point support in iSAT3 is complete, which
currently is under development as an alternative theory to real arithmetic. It
should, however, be noted that CEGAR with its preoccupation to generating
conjunctive constraint systems (the path conditions) already alleviates most of
the incompleteness, which arises particularly upon disjunctive reasoning.

6 Conclusion and Future Work

In this paper, we tightly integrated interpolation-based CEGAR with SMT solv-
ing based on interval constraint propagation. The use of the very same tool,
namely iSAT3, for verifying the abstraction and for concretizing abstract error
paths facilitated a novel implicit abstraction-refinement scheme based on attach-
ing symbolic pre-post relations to edges in a structurally fixed abstraction. The
resulting tool is able to verify reachability properties in arithmetic programs
which may involve transcendental functions, like sin, cos, and exp. With our
prototype implementation, we verified several benchmarks and demonstrated
the feasibility of interpolation-based CEGAR for non-linear arithmetic programs
well beyond the polynomial fragment.

Minimizing the size of interpolants (and thus pre-post relations generated)
and finding adequate summaries of loops in case of monotonic functions will be
subject of future work.
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malen Modellprüfung. Ph.D. thesis, Albert-Ludwigs-Universität Freiburg im Breis-
gau (2013)

33. Seghir, M.N.: Abstraction refinement techniques for software model checking.
Ph.D. thesis, Albert-Ludwigs-Universität Freiburg im Breisgau (2010)

34. Donaldson, A.F., Haller, L., Kroening, D., Rümmer, P.: Software verification using
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Abstract. The paper presents a tool suite centered around the Predator
shape analyzer for low-level C code based on the notion of symbolic mem-
ory graphs. Its architecture, optimizations, extensions, inputs, options,
and outputs are covered.

1 Introduction

Analysing programs with dynamic pointer-linked data structures is one of the
most difficult tasks in program analysis. The reason is that one has to deal
with infinite sets of program configurations having the form of complex graphs
representing the contents of the program heap. The task becomes even more
complicated when considering low-level pointer manipulating programs where
one has to deal with operations such as pointer arithmetic, address alignment,
or block operations.

Many different formalisms have been proposed for finitely representing infi-
nite sets of heap configurations. One of them is the formalism of symbolic mem-
ory graphs (SMGs) [6]. In particular, SMGs specialise—at least for the time
being—in representing sets of configurations of programs manipulating various
kinds of lists, which can be singly- or doubly-linked, hierarchically nested, cyclic,
shared, and have various additional links (head pointers, tail pointers, data point-
ers, etc.). SMGs were originally inspired by the notion of separation logic with
higher-order list predicates, but they were given a graph form to allow for an as
efficient fully-automated shape analysis based on abstract interpretation as pos-
sible. Moreover, SMGs turned out to be a suitable basis for extensions allowing
one to capture various low-level memory features.

SMGs are used as the underlying formalism of the Predator shape analyser for
low-level pointer programs written in C. The first version of Predator, based on
a notion of SMGs significantly simpler than that of [6], appeared in [5]. Predator
is capable of checking memory safety (no dereferencing of invalid pointers, no
memory leaks, no double free operations, etc.), it can check assertions present
in the code, and it can also print out the computed shape invariants. Since its
first version, Predator was extended to support low-level memory operations in
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the way proposed in [6] and optimized in various ways (e.g., by using function
summaries, elimination of dead variables, etc.).

Later on, a parallelized layer, called Predator Hunting Party (Predator
HP), was built on top of the basic Predator analyzer [8]. Predator HP runs
the original analyzer in parallel with several bounded versions of the analysis in
order to speed up error discovery and reduce the number of false alarms. The
efficiency of SMGs together with all the optimizations allowed Predator to win
6 gold medals, 3 silver medals, and 1 bronze medal at the International Software
Verification Competition SV-COMP’12–16 organised within TACAS’12–16 as
well as the Gödel medal at FLoC’14 Olympic Games.

Apart from optimizations, Predator has also been extended with various
further outputs, such as error traces required at SV-COMP. Moreover, recently,
another (experimental) extension of Predator has been implemented [3] which
uses (slightly extended) shape invariants computed by Predator to automatically
convert pointer programs manipulating lists to higher-level container programs.

In this paper, we describe the architecture of Predator and the entire tool
suite formed around it, its various optimizations, as well as its different inputs,
options, and possible outputs. This should make it significantly easier for any-
body interested in Predator to start using it, join its further development, and/or
get inspiration applicable in development of other program analyzers. Moreover,
we believe that one can also directly re-use some of the modules of the architec-
ture, such as the Predator’s connection to both gcc and (recently added) LLVM.
Indeed, all components of the tool suite are open source and freely available1

together with an extensive set of use cases.

Related work. There are, of course, many other shape analysers, such as TVLA
[10], Invader [11], SLAyer [1], Xisa [2], or Forester [7]. These tools differ in
the underlying formalisms, generality, scalability, and/or degree of automation.
Predator is distinguished by its high efficiency, degree of automation, and cov-
erage of low-level features for analysing list-manipulating programs.

2 Abstract Domain of Symbolic Memory Graphs

Fig. 1. An example of a Linux-style cyclic DLL
(top) and its SMG representation (bottom)

Predator is based on the SMG
abstract domain [6]. We now
shortly highlight its main fea-
tures. For an illustration of SMGs,
see Fig. 1 which provides an
SMG describing a cyclic Linux-
style doubly-linked list with nodes
linked by pointers pointing into
the middle of the nodes (requiring
pointer arithmetic to get access to
the data stored in the list). SMGs

1 http://www.fit.vutbr.cz/research/groups/verifit/tools/predator.

http://www.fit.vutbr.cz/research/groups/verifit/tools/predator
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are directed graphs consisting of two kinds of nodes and two kinds of edges.
The nodes include objects representing allocated space and values representing
addresses and non-pointer data (mainly, integers). The edges have the form of
has-value and points-to edges.

Objects are further divided into regions representing individual blocks
of memory, doubly- and singly-linked list segments (DLSs/SLSs) representing
doubly- and singly-linked sequences of nodes uninterrupted by any external
incoming pointer, respectively, and optional objects that can but need not be
present. Each object has some constant size in bytes (with a so far preliminary
extension to interval-sized objects), a validity flag (deleted objects are kept till
they are pointed to), and a placement tag distinguishing objects stored in the
heap, stack, and statically allocated memory.

Each DLS is given by the hfo offset of the head structure of its nodes, storing
the next and previous (“prev”) pointers, which is the offset to which linking fields
usually point in low-level list implementations, and the nfo/pfo offsets of the
next and prev fields themselves. DLSs are tagged by a length constraint of the
form N+ for N ≥ 0, meaning that the DLS abstractly represents all concrete list
segments of length N or bigger, or by a constraint of the form 0-1 representing
segments of length zero or one. Nodes of DLSs can point to objects that are
shared (each node points to the same object) or nested (each node points to a
separate copy of the object). The nesting is implemented by tagging objects by
their nesting level. For SLSs, the situation is similar.

Has-value edges lead from objects to values and are labelled by the field
offset at which the given value is stored and the type of the value (like the sim-
plified pointer type ptr in Fig. 1). Points-to edges lead from values encoding
addresses to the objects they point to. They are labelled by a target offset and
a target specifier. For a DLS, the latter specifies whether a points-to edge encodes
a pointer to its first or last node (fst/lst in Fig. 1), or even a set of pointers (one
for each node abstracted by the DLS) incoming into the DLS from “below”. This
way, back-links from nested objects to their parent DLS are encoded. Predator
supports even offsets with constant interval bounds, which is crucial to support
pointers obtained by address alignment wrt an unknown base pointer. In addi-
tion, SMGs can also contain inequality constraints between values.

Program statements are symbolically executed on regions, possibly concretised
from list segments. Block operations, like memcopy, memset, or memmove, are sup-
ported. When reading/writing from/to regions, Predator uses re-interpretation to
try to synthesise fields, which were not yet explicitly defined, from the currently
known ones. This is so far supported (and highly needed) for low-level handling
of nullified and undefined blocks—which can, e.g., nullify a field of 32 bytes and
then read its sub-field of length 4 only. This way, overlapping fields can arise and
be cached for efficiency purposes.

The join operator is based on traversing two SMGs from the same pointer
variables and joining simultaneously encountered objects, sometimes replacing
some more concrete objects with more abstract ones and/or inserting 0+ or
0-1 list segments when some list segment is found missing in one of the SMGs.
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Entailment checking is based on the join operator: Predator checks whether the
two given SMGs can be joined while always encountering more general objects
in the same SMG out of the two given. Abstraction collapses uninterrupted
sequences of compatible regions and list segments into a single list segment,
using the join operator to join sub-heaps nested below the nodes being collapsed.
Predator tries to collapse first the longest sequence of objects with the lowest
loss of precision (with configurable thresholds on the minimum such length). The
abstraction loop is repeated till some collapsing can be done.

3 Predator Front End

The architecture of the Predator tool suite is shown in Fig. 2. Its front end is
based on the Code Listener (CL) infrastructure [4] that can accept input from
both the gcc and Clang/LLVM compilers. CL is connected to both gcc and Clang
as their plug-in.

When used with gcc, CL reads in the GIMPLE intermediate representation
(IR) from gcc and transforms it into its own Code Listener IR (CL IR), based
on simplified GIMPLE. The resulting CL IR can be filtered—currently there
is a filter that replaces switch instructions by simple conditions—and stored
into the code storage. When used with Clang/LLVM, CL reads in the LLVM IR
and (optionally) simplifies it through a number of filters in the form of LLVM
optimization passes, both LLVM native and newly added. These filters can in-
line functions, split composed initialization of global variables, remove usage of
memcpy and memset added by LLVM, change memory references to register refer-
ences (removing unnecessary alloca instructions), and/or remove LLVM switch
instructions. These transformations can be used independently of Predator to
simplify the LLVM IR to have a simpler starting point for developing new ana-
lyzers. Moreover, CL offers a listeners architecture that can be used to further
process CL IR. Currently, there are listeners that can print out the CL IR or
produce a graphical form of the control flow graphs (CFGs) present in it.

The code storage stores the obtained CL IR and makes it available to the
Predator verifier kernel through a special API. This API allows one to easily
iterate over the types, global variables, and functions defined in the code. For
each function, one can then iterate over its parameters, local variables, and its
CFG. Of course, other verifier kernels than the one of Predator can be linked
to the code storage. Currently, it is also used by the Forester shape analyzer
[7], and, as a demo example, a simple static analyzer for finding null pointer
dereferences (fwnull) is implemented over it too.

4 The Predator Kernel

The kernel of Predator (written in C++ like its front end) implements an
abstract interpretation loop over the SMG domain. An inter-procedural approach
based on function summaries, in the form of pairs of input/output sub-SMGs
encoding parts of the heap visible to a given function call, is used. As a further
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Fig. 2. Architecture of the Predator tool suite

optimization, copy-on write is used when creating new SMGs by modifying the
already existing ones.

Predator’s support of non-pointer data is currently limited. Predator can
track integer data precisely up to a given bound and can—optionally—use inter-
vals with constant bounds (which may be widened to infinity). Arrays are han-
dled as allocated memory blocks with their entries accessible via field offsets. Re-
interpretation is used to handle unions. Predator also supports function point-
ers. String and float constants can be assigned, but any operations on these data
types conservatively yield an undefined value.

The kernel supports many options. Some of them can be set in the config.h
file and some when starting the analysis. Apart from various debugging options
and some options mentioned already above, one can, e.g., decide whether the
abstraction and join should be performed after every basic block or at loop
points only (abstraction can also be performed when returning from function
calls). One can specify the maximum call depth, choose between various search
orders, switch on/off the use of function summaries and destruction of dead local
variables, control error recovery, or control re-ordering and pruning of the lists
of SMGs kept for program locations.

5 Outputs and Extensions

Predator automatically looks for memory safety errors: illegal pointer derefer-
ences (i.e., dereferences of uninitialised, deleted, null, or out-of-bound pointers),
memory leaks, and/or double-free errors. It also looks for violations of asser-
tions written in the code. Predator reports discovered errors together with their
location in the code in the standard gcc format, and so they can be displayed in
standard editors or IDEs. Predator can also produce error traces in a textual or
graphical format or in the XML format of SV-COMP.

5.1 Predator Hunting Party

Predator Hunting Party is an extension of the Predator analyzer implemented in
Python. It runs in parallel several instances of Predator with different options.
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One Predator instance, called verifier, runs the standard sound SMG-based
analysis. Then there are several (by default two) Predator instances—called DFS
hunters—running bounded depth first searches over the CL IR of the program
(with different bounds on the number of CL IR instructions to perform in one
branch of the search). Finally, there is also a single Predator instance, a BFS
hunter, running a timeout-bounded breadth-first search. The hunters use SMGs
but without any heap abstraction, just non-pointer data get abstracted as usual.
The verifier is allowed to claim a program safe, but it cannot report errors (to
avoid false alarms stemming from heap abstraction). The hunters can report
errors but cannot report a program safe (unless they exhaust the state space
without reaching any bound). This strategy significantly increases the speed of
the tool as well as its precision.

5.2 Transformation from Low-Level Lists to Containers

The latest (experimental) extension of Predator—denoted as ADT in Fig. 2—
leverages the sound shape analysis of Predator to provide a sound recognition of
implementation of list-based containers in low-level pointer code [3]. Moreover,
it also implements a fully automated (and sound) replacement of the low-level
implementation of the containers by calls of standard container operations (such
as push back, pop front, etc.). Currently, (non-hierarchical) NULL-terminated
doubly-linked lists (DLLs), cyclic DLLs, as well as DLLs with head/tail pointers
are supported.

At the input, Predator ADT expects a specification of destructive container
operations (such as push back or pop front) to look for. The operations are
specified by pairs of input/output SMGs whose objects are linked to show which
object is transformed into which. A fixed set of non-destructive operations (i.e.,
iterators, tests, etc.) is also supported. Predator ADT takes from Predator the
program CFG labelled by the computed shape invariants (i.e., sets of SMGs per
location), slightly extended by links showing which objects are transformed into
which between the locations. It then looks in the SMGs for container shapes
(i.e., sub-SMGs representing the supported container types) and sub-sequently
tries to match the way the containers change along the CFG with the provided
templates of container operations. While doing so, safe reordering of program
statements is done. If all operations with some part of memory are covered
this way, Predator replaces the original operations by calls of standard library
functions (so far in the CFG labels only).

The recognition of container operations and their transformation to library
calls can be used in a number of ways, ranging from program understanding and
optimization to simplification of verification. The last possibility is due to a split
of concerns: first, low-level pointer manipulation is resolved, then data-related
properties can be checked [3].
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6 Experiments

Predator was successfully tested on a quite high number of test cases that are all
freely available. Among them, there are over 250 test cases specially created to
test capabilities of Predator. They, however, reflect typical patterns of dealing
with various kinds of lists (creating, traversing, searching, destructing, or sorting)
with a stress on the way lists are used in system code (such as the Linux kernel).
Predator was also successfully tested on the driver code snippets available with
SLAyer [1]. Next, Predator found a bug in the cdrom.c test case of Invader [11]
caused by the test harness used (unfound by Invader itself as it was not designed
to track the size of allocated memory blocks)2.

Further, Predator successfully verified several aspects of the Netscape
Portable Runtime (NSPR). Memory safety and built-in asserts during repeated
allocation and deallocation of differently sized blocks in arena pools (lists of are-
nas) and lists of arena pools (lists of lists of arenas) were checked (for one arena
size and without allocations exceeding it). Further, some aspects of the Logical
Volume Manager (lvm2) were checked, so far with a restricted test harness using
doubly-linked lists instead of hash tables.

Predator was quite successful on memory-related tasks of the SV-COMP
competition as noted already in the introduction. Up to SV-COMP’16, if Preda-
tor was beaten on such tasks, it was by unsound bounded checkers only. In the
competition, in line with its stress on soundness, Predator has never produced
a false negative.

Finally, the extension of Predator for transforming pointers to containers
was successfully tested on more than 20 programs using typical list operations
(insertion, removal, iteration, tests) on null-terminated DLLs, cyclic DLLs, and
DLLs with head/tail pointers. Moreover, various SLAyer’s test cases on null-
terminated DLLs were handled too. Verification of data-related properties (not
handled by Predator) on the resulting container programs (transformed to Java)
was tested by verifying several programs (such as insertion into sorted lists) by
a combination of Predator and J2BP [9].

7 Future Directions

In the future, the kernel of Predator should be partially re-engineered to allow
for easier extensions. Next, a better support for non-pointer data, a support
for non-list dynamic data structures, and for open programs are planned to be
added.
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