
An Evolutionary Framework for Bi-objective
Dynamic Economic and Environmental
Dispatch Problems

Forhad Zaman, Saber M. Elsayed, Tapabrata Ray and Ruhul A. Sarker

Abstract A dynamic economic and environmental dispatch (DEED) problem is a

challenging bi-objective optimization problem that simultaneously minimizes both

operating costs and gas emissions. To solve it, several evolutionary algorithms (EAs)

have been used, each of which has pros and cons, with one performing better in an

early stage of evolution and another later. In this paper, to solve such problems, an

evolutionary framework is designed based on two EAs, a genetic algorithm (GA) and

differential evolution (DE), dynamically configures the better of the two during the

evolution. In it, two sub-populations are performed, one for each of GA and DE, and

their sizes updated in each generation according to the respective algorithm’s per-

formance in previous generations. Moreover, a heuristic is employed to improve the

performance of the proposed algorithm by repairing infeasible individuals towards

feasible directions. To demonstrate its performance, two renewable-based DEED

problems are solved using the proposed and state-of-the-art algorithms. An analy-

sis of the simulation results reveals that the proposed algorithm is the best of those

considered, with the heuristic enhancing its performances.
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1 Introduction

Over the last decade, economic dispatch (ED) problems have been used to determine

the allocation of electricity demand among fossil fuel-based thermal generating units

to minimize operating costs subject to physical and technological constraints [13].

However, the excessive use of fossil fuels produces large amounts of atmospheric

pollutants that are continuously released into the environment. Therefore, alterna-

tives to thermal energy power generation have emerged, such as solar, wind and

hydro energy, which are now widely used because of their lower production costs

and environmentally friendly characteristics [14, 17]. Consequently, the economic

and environmental dispatch (EED), a new bi-objective optimization problem, has

been introduced to simultaneously minimize operating costs and air pollution [12].

A DEED problem is an extension of the conventional EED one that schedules

generators for an operational cycle in a time horizon divided into multiple periods

while taking into account the intrinsic links between two hours of the ramp limit of

a thermal generator [15]. Although the DEED is a more realistic problem than the

EED, its computational process is also more complex because of its large number of

decision variables and chain of equality constraints [13]. Moreover, considering the

valve point effect (VPE) of a thermal generator’s cost function, it becomes a non-

linear, non-smooth, non-convex and multi-modal bi-objective optimization problem

which is difficult to solve using a classical optimization approach [13, 16]. Therefore,

an efficient algorithm, such as an EA, is required because of its flexible, efficient and

stochastic searching feature [13].

During the last decade, several meta-heuristic methods, such as GA [13], sim-

ulated annealing (SA) [8], particle swarm optimization (PSO) [18] and DE [13],

PSO—sequential quadratic programming (PSO-SQP) [11] and modified hybrid evo-

lutionary programming (EP)–SQP (MHEP-SQP) [11] have been effectively used to

solve various single-objective DED problems. Also, several algorithms, such as a

binary PSO [6], hybrid PSO, non-dominated sorting GA-II (NSGA-II) with a heuris-

tic (H-NSGA-II) [12], infeasibility-driven EA (IDEA) with a heuristic (H-IDEA)

[12] and gravitational search algorithm (GSA) with GA [5], have been used to solve

bi-objective DEED problems. However, most solve the problems as single-objective

optimization ones by aggregating two objectives to produce a single solution, not a

Pareto frontier, with many runs required to generate a set of trade-off solutions [12].

In our previous research [13], it was found that, for solving different types of DED

problems, one EA may perform well in an early stage of the optimization process

but less well in later generations and vice versa. To efficiently solve a DED problem,

multi-method EAs that integrate two or more optimization techniques in order to

utilize their strengths and overcome their own and each other’s weaknesses, have

been developed. Similar ones, such as multiple operators of a GA in [10], a multi-

operator evolutionary framework with various EAs in [4] and a general framework of

two EAs (GA and DE) in [13] have been developed to solve various single-objective

optimization problems. However, to the best of our knowledge, solving bi-objective

DEED problems using a multi-EAs framework has not yet been explored.
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In this paper, an evolutionary framework called GA-DE, in which two EAs (GA

and DE) are run in parallel under two sub-populations, is designed to solve bi-

objective DEED problems. Although the initial sub-population sizes are the same,

they are dynamically varied in each generation based on the performance of each

EA in previous generations. After a predefined number of generations (also called

a cycle), only the better algorithm is allowed to run alone for a subsequent cycle.

After that cycle is finished, both algorithms are run again for another cycle, with

both using the same sub-population size. The process is continually repeated until a

stopping criterion met. Moreover, rather than setting the control parameters of DE,

self-adaptive mutation and crossover techniques that automatically configure the best

ones in each generation are used. Also, a heuristic technique is employed to improve

the convergence rate of each algorithm by rectifying infeasible individuals towards

feasible directions. The results obtained by the proposed approach for solving two

renewable-based bi-objective DEED problems, (i) hydro-thermal [1] and (ii) solar-

thermal [16], are compared with those from recent state-of-the-art algorithms, with

GA-DE shown to perform best.

The rest of this paper is organized as follows: Sect. 2 presents the problem for-

mulation, Sect. 3 the proposed methodology, Sect. 4 the experimental results and

analysis and Sect. 5 conclusion and future works.

2 Mathematical Formulations

The bi-objective hydro-thermal and solar-thermal DEED problems are formulated to

determine the optimal level of power generation in each participating plant by mini-

mizing both the fuel costs and greenhouse gas emissions while satisfying a number

of constraints, as presented in this section.

2.1 Hydro-Thermal

In the hydro-thermal DEED problem, the objectives are to minimize both the oper-

ating costs and gas emissions subject to a number of equality and inequality con-

straints.

2.1.1 Objective Functions

Considering the VPE, the cost and emission functions of thermal generators are,

respectively:
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The first objective of Eq. (1) is to minimize the sum of all the fuel costs of the

thermal power plants (PTi,t ) under consideration (NT ) during an operational cycle

(T), where, ai, bi, ci, di and ei are the cost coefficients. The second Eq. (2) is to min-

imize the gas emissions from the thermal plants, where, 𝛼i, 𝛽i, 𝛾i, 𝜆i and 𝜂i are their

emission coefficients.

2.1.2 Constraints

The hydro-thermal DEED problem includes the following constraints.

NT∑
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NT∑
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PHj,t
= PDt

t ∈ T (3)
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Equation (3) is the power balance constraint, where PHj
, Xj, and Vj are the hydro

power generation, water storage rate and volume of jth hydro plant, respectively.

NH , Ck,j∀k, Ij, Sj, Nup, and tdr,j are the number of hydro power plants, the genera-

tion coefficient, natural water inflow rate, spillage water (assume zero, as in [1]),

number of upstream plants and water transport delay from the rth to jth reservoir,

respectively. The constraints in Eqs. (6)–(9) are the capacity limits of the hydro and

thermal plants, water storage volume and water discharge rate, respectively, where,

PHj
min

and PHj
max

, Vj
min

and Vj
max

, and Xj
min

and Xj
max

are the minimum and maxi-

mum output power of the hydro power plant, water storage volumes and water dis-

charge rates, respectively. The initial and final reservoir storage volumes, which must

meet the requirements of all the reservoirs, are expressed in Eq. (10), where, Vini
j and

Vend
j are the initial and final water volumes of the jth reservoir, respectively.

2.2 Solar-Thermal

The solar-thermal DEED problem is considered a mixed-integer non-linear bi-

objective optimization problem (MINP) [6] in which the solar and thermal units are

represented as binary and continuous variables, respectively. Its objective functions

and constraints are described below.

2.2.1 Objective functions

The objective functions of the solar-thermal DEED problem are to minimize both

the operating costs and gas emissions, respectively, as:

Min ∶ FC
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=
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+
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FSs (Uss,t ) = PUcos tsPSs,tUss,t , USs,t ∈ {0, 1} s ∈ NS t ∈ T (13)

PSs,t = Prs

{
1 +𝛺

(
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)} Sis,t
1000

(14)
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where ,FEi
(PTi,t ) = 𝛼i + 𝛽iPTi,t + 𝛾iP2

Ti,t
+ 𝜂ie

𝜆iPTi,t i ∈ NT t ∈ T (16)

The first objective function in Eq. (11) involves the operational costs of the solar

and thermal generators, and the second in Eq. (15) the gas emissions from the thermal

plants normalized to the cost function. Equation (13) indicates the operational costs

of solar power generation (PSs,t ), where, USs,t is a binary decision variable that deter-

mines whether a unit is turned on or off, and PUcost the per unit cost of PSs,t , which

expressed in Eq. (14), where Prs is the rated power, Trefs and Tambs,t the reference and

temperature, respectively, 𝛺 the temperature coefficient and Sis,t the incident solar

radiation of the sth plant at the tth time.

2.2.2 Constraints

The solar-thermal DEED problem has the following equality and inequality con-

straints.

NT∑
i=1

PTi,t +
NS∑
s=1

PSs,tUSs,t = PDt
+ Plosst t ∈ T (17)

Pmin
Ti

≤ PTi,t ≤ Pmax
Ti

i ∈ NT , t ∈ T (18)

− DRi ≤ PTi,t − PTi,t−1 ≤ URi i ∈ NT t ∈ T (19)

T∑
t=1

NS∑
s=1

PSs,tUSs,t ≤ 0.3PDt
(20)

Equation (17) defines the power balance constraints, and Eqs. (18) and (19) the

capacity and ramp constraints of the thermal generators, respectively, with UR
and DR the upward and downward transition limits, respectively. The constraint in

Eq. (20) is used to limit the solar share at any time based on a 30 % upper limit to

avoid any uncertainty in terms of solar irradiance [6].
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3 Proposed Bi-objective GA-DE Algorithm

In this research, an evolutionary framework is designed by configuring two optimiza-

tion algorithms, namely GA and DE for solving the bi-objectives DEED problems.

In the design, an initial population of size NP is generated and then randomly divided

into two subpopulations of equal size of NP1 and NP2 for GA and DE, respectively.

In subsequent generations, the new individuals in GA and DE are generated from

random individuals from either subpopulation (NP1 and NP2) rather than only their

own which results in information being exchanged between the two algorithms in

each generation. Once the fitness functions of both the parents and children are eval-

uated, a non-dominated sorting approach [2] is applied to rank each individual, with

the best NP individuals selected for the next generation.

Based on the percentage of offspring surviving to the next generation, the success

rate (SR) of each algorithm is calculated, and their subpopulation sizes subsequently

updated considering their lower (Nmin
P1 ) and upper (Nmax

P1 ) bounds as in Eq. (24). This

process is continued until a predefined number of generations (Ngc) is performed.

Then, the best algorithm is determined, based on its average SR (ASR) during the

last Ngc, and used to evolve all the NP individuals from both subpopulations for the

next Ngc generations. Once subsequent Ngc are completed, the final individuals are

again equally and randomly assigned to both algorithms with two subpopulations

(NP1 and NP2) to evaluate next Ngc with the GA-DE algorithm terminating once the

maximum number of generations, NG is over. The pseudo code of the proposed GA-

DE algorithm is shown in Algorithm 1.

3.1 Initial Population

The chromosomes or representations of the decision variables for both GA and DE

are expressed as:

x⃗p =
{ [PTi,t ,Xj,t]1∶Nx

for hydrothermal system

[PTi,t ,USs,t ]1∶NX
for solar-thermal system

(21)

where, i = 1, 2,… ,NT , j = 1, 2,… ,NH , s = 1, 2,… ,NS, t = 1, 2,… ,T ,USs,t ∈ [0, 1],
p ∈ NP, with NP the population size and Nx the number of decision variables as

T × (NT + NH) for the hydrothermal system, and T × (NT +NS) for the solar-thermal

one. Each individual is generated as:

x⃗p = x⃗min +
(
x⃗max − x⃗min) lhs(Nx), ∀p = 1, 2,… ,NP (22)

where x⃗min
and x⃗max are the vectors of the lower and upper bound, respectively, and x⃗p

the pth individual in the NP population, with lhs
(
Nx

)
random individuals generated

using Latin hypercube sampling (LHS) rules [15].
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Algorithm 1 GA-DE algorithm

Require: NG, NP,Nmin
P1 and Nmax

P1
1: Set, count1 = count2 = 0
2: Randomly generate initial individuals using Eq. (21)

3: Evaluate the individuals after repairing the infeasible individuals using heuristic described in

Sect. 3.3

4: Randomly distribute NP individuals over two subpopulations with sizes of NP1 and NP2, such

that NP1 = NP2
5: for g = 1 ∶ NG do
6: Set, count1 = count1 + 1
7: if count1 ≤ Ngc then
8: Generate NP1 and NP2 offspring from the all NP parents using GA and DE operators,

respectively

9: Repeat step 3 for both NP1 and NP2
10: Determine best individuals from parents and offspring based on non-dominated selec-

tion approach described in Sect. 3.4

11: Calculate SR1,g and SR2,g based on numbers of offspring of GA and DE surviving to

next generation, respectively,

12: Group selected individuals, NP ← NP1 + NP2
13: Update NP1 and NP2 according to Eqs. (24) and (25), respectively

14: else
15: set, count2 = count2 + 1
16: if count2 ≤ Ngc then
17: Calculate average success rates of GA (ASR1) and DE (ASR2)

18: if ASR1 > ASR2 then
19: Perform GA, considering NP1 ← NP1 + NP2
20: else
21: Perform DE, considering NP2 ← NP1 + NP2
22: end if
23: end if
24: if count2 = Ngc then
25: Repeat step 4 and set again, count1 = count2 = 0
26: end if
27: end if
28: end for

3.2 GA-DE Search Operators

To update the individuals in GA-DE, we use either GA or DE search operators in

various stages of an evolution, as previously discussed. Of the different operators

available, simulated binary crossover (SBX) and non-uniform mutation (NUM) are

used in GA and two self-adaptive mutation operators and one binomial crossover in

DE because they showed superior performances for solving various DED problems

in [3, 12, 13, 15]. Due to the limitation of this paper’s number of pages, details of

these operators are not provided but can be found in [15].
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3.3 Heuristic for DEED Constraints

As previously mentioned, a DEED problem involves a number of equality and

inequality constraints, all of which new solutions generated by an EA process may

not satisfy, especially during the early stages of an evolution. To maintain feasibil-

ity throughout generations, in our previous research, we developed a heuristic for a

single-objective DED problem [15]. In it, a DED problem with a 24-h load cycle

is converted into 24 sub-problems, with the hourly infeasible individuals repaired

in feasible directions based on a forward and backward slack-generation approach.

In this paper, we employ this heuristic for a bi-objective DEED problem, with its

detailed steps provided in [15].

3.4 Selection Process

To rank the chromosomes, firstly, the parents and offspring are grouped together and

the best NP individuals among them selected for the next generation. To do this, we

use a popular constraint-handling approach with a non-dominated sorting technique

[2] in which an additional objective is considered based on the amount of relative

constraint violations (CVs). Then, a crowding sorting technique and non-dominated

mechanism are used to preserve diversity and elitism among the population mem-

bers. The advantages of having an additional objective for constrained optimization

problems are explicitly demonstrated in [9], with that of each individual of each

algorithm expressed as:

CVp =
K∑
k=1

max
(
0,Gk

(
x⃗p
))

+
E∑
e=1

max
(
0,He

(
x⃗p
)
− 𝜀g

)
∀p ∈ NP (23)

where x⃗p represents the pth individual in a sub-population, G and H their inequal-

ity and equality constraints, respectively, K and E their numbers of inequality and

equality constraints, respectively, for a DEED problem.

Based on the number of individuals selected from the offspring, the SR of each

algorithm is calculated; for example, if 30 % of the offspring of GA survive to the next

generation, SR1 is 30 %. Then, the subpopulation sizes (NP1 and NP2) are updated for

the next generation according to their normalized SRs as:

NP1 = max
[
Nmin
P1 ,min

{
NP

SR1,g

SR1,g + SR1,g
,Nmax

P1

}]
(24)

SR1,g ∪ SR2,g ≠ 0, g ∈ NG

NP2 = NP − NP1 (25)
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Equations (24) and (25) are applied when at least one SR is nonzero, whereas,

if both are zero, the values of NP1 and NP2 remain the same as in the immediate

previous generation.

4 Experimental Results and Analysis

For the experimental study, two standard benchmarks, (i) a 7-unit hydro thermal

power system from [1, 12]; and (ii) a 19-unit solar-thermal power system from [6,

13, 14], for a 24-h planning horizon in one-hour time period are solved using our

proposed and state-of-the-art algorithms with and without considering the heuristic,

as follows:

1. Non-dominated sorting GA-II (NSGA-II) without heuristic,

2. Multi-objective DE (MODE) without heuristic,

3. Proposed GA-DE without heuristic,

4. NSGA-II with heuristic (H-NSGA-II),

5. MODE with heuristic (H-MODE),

6. Proposed GA-DE with heuristic (H-GA-DE),

Based on [13], NP,Ng are set to 200, 500, and 100, 1000 for the hydro-thermal and

solar-thermal systems, respectively, and NPmin
1 , NPmax

1 , and Ngc to 20, 80, and 50,

respectively for both. It is also noted that each algorithm evaluates an equal number

of fitness functions for a fairer comparisons. Also, each one runs 30 times using a

desktop personal computer which has a 3.4 GHZ Intel Core i7 processor with 16 GB

of RAM using the MATLAB (R2014a) environment.

4.1 Hydro-Thermal DEED

In this section, a 7-unit bi-objective hydro-thermal DEED problem comprising 3

thermal and 4 hydro units is solved using the proposed and state-of-the-art algo-

rithms on the same platform. Once the 30 random runs of each algorithm are com-

pleted, their hyper-volume (HV) values are calculated based on their normalized

fitness values as [7]:

fnorm =
f − fideal

fNadir − fideal
(26)

where, fnorm and f are the normalized and actual function values, respectively, and

fideal, and fNadir the ideal and nadir points [7] for this problem, respectively, which are

found to be (7.17E+4,10.09) and (1.28E+5,142.95), respectively from all the runs

of all the algorithms considered. The best, mean, median, worst, and standard devia-

tion (STD) of the HV values obtained from algorithm with and without the heuristic
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Table 1 Comparison of performances of algorithms for hydro-thermal DEED

Algorithm HV (reference: [1,1]) Time (sec) MR

Best Mean Median Worst STD

NSGA-II 0.59 0.53 0.54 0.44 0.05 56.81 1.60

MODE 0.49 0.43 0.44 0.35 0.05 48.91 1.70

GA-DE 0.71 0.67 0.68 0.63 0.03 53.75 2.70

H-NSGA-II 0.84 0.81 0.81 0.79 0.01 237.82 4.90

H-MODE 0.81 0.77 0.78 0.71 0.03 232.55 4.10

H-GA-DE 0.91 0.89 0.89 0.87 0.01 234.41 6.00

Fig. 1 Pareto-frontiers for

hydro-thermal problem
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are shown in Table 1. It is indicated that the proposed approach with the heuristic

(H-GA-DE) obtains the best and most consistent results of all the algorithms in a

reasonable computational time. The Pareto-frontiers of the best runs based on the

HV values for all the algorithms are plotted in Fig. 1 which also shows the superi-

ority of the proposed algorithm. In fact, the GA-DE approach obtains the best non-

dominated solutions, both inclusive and exclusive of the heuristic, with H-GA-DE

the best algorithm of all. Also, a Friedman test is performed considering the HV of

each run of each algorithm with their mean ranks (MRs) are listed on Table 1 which

proved that the H-GA-DE is the best algorithm.

4.2 Solar-Thermal DEED

To demonstrate the performances of the six algorithms, with and without the heuris-

tic, on larger problems, in this section, we solve a 19-unit solar-thermal DEED prob-

lem formulated as a mixed-integer, non-linear, bi-objective optimization one that
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Table 2 Comparison of performances of algorithms for solar-thermal DEED

Algorithm HV (reference: [1,1]) Time (sec) MR

Best Mean Median Worst STD

NSGA-II 0.18 0.17 0.17 0.15 0.01 64.47 1.00

MODE 0.21 0.20 0.21 0.18 0.01 52.21 2.80

GA-DE 0.20 0.19 0.20 0.18 0.01 75.38 2.20

H-NSGA-II 0.52 0.51 0.51 0.51 0.00 158.21 5.00

H-MODE 0.50 0.49 0.49 0.47 0.01 148.30 4.00

H-GA-DE 0.56 0.55 0.55 0.54 0.00 212.48 6.00

minimizes both the operating costs and gas emissions. The binary decision variables

of the solar units are handled as continuous ones and then rounded off in order to

avoid different representations.

Once the 30 independent runs are completed, the functions’ values are normalized

according to Eq. (26) based on nadir and ideal points, and found to be, (8.17E+5,

2.36E+5) and (3.08E+5, 2.0E+5), respectively. Subsequently, the HV of each run

is calculated and the best, mean, median, worst and STD values presented in Table 2

which indicates that the proposed H-GA-DE obtains the best solutions of all the

algorithms within a reasonable computational time. Also, based on the MR of the

Friedman test, H-GA-DE is the best algorithm once again.

The Pareto frontiers of the best runs based on the HV values are presented in Fig. 2

in which it is clear that including a heuristic significantly improves the performances

of all the algorithms considered, with the proposed H-GA-DE the best in terms of

obtaining non-dominated solutions. In fact, when the algorithms do not include the

heuristic, as their numbers of feasible solutions are very limited, the range of Pareto

Fig. 2 Pareto-frontiers for

solar-thermal problem
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frontiers is very narrow. Conversely, when the heuristic is applied to rectify infeasible

solutions towards a feasible direction, the algorithms quickly obtain non-dominated

feasible solutions while simultaneously minimizing both objectives.

5 Conclusion and Future Work

In this paper, an evolutionary framework based on the automatic configuration of

GA and DE was designed to solve bi-objective DEED problems. In it, random indi-

viduals from the initial population were evaluated in parallel through two different

sub-populations, one using GA and the other DE. The sub-population sizes were

dynamically updated during the evolutionary process based on their prior perfor-

mances, with the better-performing algorithm receiving more individuals to evolve

and vice versa. To enhance the performance of the proposed algorithm, a heuris-

tic was employed to rectify infeasible individuals. The proposed framework was

tested by solving two renewable-based bi-objective DEED problems using the pro-

posed and state-of-the-art algorithms. A comparison indicated that the proposed GA-

DE framework consistently performed better than all the other algorithms, with the

heuristic greatly enhancing all their performances.

In future, bi-objective DEED problems could be solved using this configuration

but with more algorithms and the uncertainty factors of renewable sources incorpo-

rated in the model.
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