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Abstract In this paper, a new differential evolution framework is proposed. In it, the

best-performing differential evolution mutation strategy, from a given set, is dynami-

cally determined based on a problem’s landscape, as well as the performance history

of each operator. The performance of the proposed algorithm has been tested on a

set of 30 unconstrained single objective real-parameter optimization problems. The

experimental results show that the proposed algorithm is capable of producing good

solutions that are clearly better than those obtained from a set of considered state-

of-the-art algorithms.

1 Introduction

Optimization is an important decision making tool in many fields, including, but

not limited to, operations research, engineering design and data mining. Without

loss of generality, a global unconstrained single objective optimization problem, as

considered in this paper, can be stated as finding the values of a decision vector

⃖⃗x = (x1, x2,… , xD) ∈ ℝD
, which satisfies the variable bounds, xmin ≤ x ≤ xmax and

minimizes or maximizes an objective function f (⃖⃗x), where xmin and xmax are the lower

and upper boundaries, respectively. In these problems, the decision variables may

be integer, real, discrete, or mixed [10] and the objective function can be linear or

K.M. Sallam (✉) ⋅ S.M. Elsayed ⋅ R.A. Sarker ⋅ D.L. Essam

School of Engineering and Information Technology, University of New

South Wales, Canberra, Australia

e-mail: karam.sallam@student.adfa.edu.au

S.M. Elsayed

e-mail: s.elsayed@adfa.edu.au

R.A. Sarker

e-mail: r.sarker@adfa.edu.au

D.L. Essam

e-mail: d.essam@adfa.edu.au

© Springer International Publishing AG 2017

G. Leu et al. (eds.), Intelligent and Evolutionary Systems,
Proceedings in Adaptation, Learning and Optimization 8,

DOI 10.1007/978-3-319-49049-6_27

371



372 K.M. Sallam et al.

nonlinear, convex or non-convex, continuous or not continuous, and uni-modal or

multi-modal [9].

As gradient based methods usually encounter many difficulties when solving such

complex problems [16], evolutionary algorithms (EAs) have received much inter-

est over the last few decades. EAs are population-based search strategies that have

demonstrated promising results in solving complex optimization problems [29]. The

reasons for this popularity are (1) they do not require the satisfaction of specific

mathematical properties; (2) they are flexible to dynamic changes; and (3) they have

the capability for self-organization [12]. However, as EAs are stochastic algorithms,

there is no guarantee that they will reach an optimal solution in every run. To add to

this, the performance of EAs depends on parameter settings.

The family of EAs contains various algorithms, such as differential evolution

(DE) [30], genetic algorithm (GA) [13] and evolution strategy (ES) [27]. The major

difference between these algorithms, is in the way they produce new solutions.

Among those algorithms, DE has gained popularity in solving continuous optimiza-

tion problems [7, 28]. However, there is no guarantee that a DE algorithm, which

performs well for one problem, or a certain class of problems, will work well for

another, or on a range of problems. One reason for this is the variability of the under-

lying mathematical properties of optimization problems.

As a consequence, researchers have proposed multi-operator and multi-method

based algorithms to solve complex optimization problems [9, 11]. However, the way

of combining these operators and/or methods in the best way is still a challenging

task. In the evolutionary algorithms, the selection of operators for use in a search

process is made based on different criteria, such as the improvement in the quality of

solutions, and/or constraint violations and/or the feasibility rate [9], re-enforcement

learning mechanisms [1, 17], convergence differences and progress ratios [14]. How-

ever, the use of landscape information in the selection process is rare, even though

it may boost the performance of an algorithm if it is carefully incorporated [2, 6].

However, for these methods that do exist, they have some limitations: (1) the land-

scape analysis was performed using an off-line mode, i.e., initial experiments were

conducted to calculate landscape statistics values independently of the evolutionary

process used for solving the problem [22, 23]; (2) the calculation of the landscape

measures was computationally expensive [23]; and (3) a training and testing mech-

anism is used, which may mean the algorithm is biased towards the considered test

problems, and hence its performance can deteriorate when solving another set of

problems.

In this paper, a new DE framework is proposed, in which a function’s land-

scape information is considered, in addition to the usual performance history of

the operators in selecting the best-performing DE operator during the evolutionary

process. We also consider linear population size reduction, in which population size

is reduced continuously with a linear function. In linear population size reduction,

the worst individual is deleted to resize the population. In this paper, before deleting

the worst-ranking individuals, a modified technique is used, the 2 worst solutions and

the centroid of the entire population are used to generate a new individual. If the new

one is better than the second worst one, it replaces it. To speed up the convergence
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of the proposed algorithm, the sequential quadratic programming (SQP) technique

is periodically applied, once every predefined number of generations. This DE algo-

rithm with landscape based operator selection is named DE-LOS.

To judge the performance of the proposed framework, a total of 30 test func-

tions were solved from the CEC2014 competition [18]. These benchmark sets have

different mathematical properties, and are of 10, 30, 50 and 100 dimensions. The

computational results show that the performance of DE-LOS is much better than the

top two algorithms from the CEC2014 competition.

The rest of this paper is organized as follows: in Sect. 2, a review of DE algorithms

and operators are reviewed, along with some landscape measures. Section 3 presents

the proposed framework. The simulation results on benchmark problems, and the

value of parameters are provided in Sect. 4. Finally, Sect. 5 provides conclusions and

possible future research directions.

2 Related Work

In this section, a literature review of DE and the concept of landscape analysis are

discussed.

2.1 Differential Evolution Algorithm

DE was proposed by Storn and Price [30]. It is a popular EA because it usually con-

verges fast, is simple in implementation, and the same settings can be used for many

different optimization problems. As of the literature, DE showed good performance

in comparison to several other EAs on a wide variety of problems [8]. The DE algo-

rithm uses three operators (mutation, crossover and selection) to evolve a population

of individuals during the search process.

2.2 Improved DE Algorithms

In this section, some of the improved variants of DE are discussed.

2.2.1 Single Operator de Variants

An adaptive DE algorithm with an optional external memory (JADE) was proposed

by Zhang et al. [35], in which the CRi of each individual xi at each generation was

independently generated according to a normal distribution of mean 𝜇Cr and stan-

dard deviation 0.1, where when the value of CRi falls outside [0,1], it is repaired to a
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value in [0,1]. Also, the value of, Fi, of each individual, xi, was independently gener-

ated according to a Cauchy distribution with parameter 𝜇F and scale parameter 0.1.

If its value is greater than 1, then it is truncated to 1, or regenerated if Fi < 0.

Success-history based parameter adaptation for differential evolution (SHADE),

which is an improved version of JADE, uses a history based parameter adaptation

method. In SHADE, instead of using a single pair (𝜇CR, 𝜇F) to guide parameter

adaptation, the mean values of SCR and SF for each generation, were stored in mem-

ory as MCR and MF.

The L-SHADE [31] algorithm is a SHADE algorithm that uses linear popu-

lation size reduction (LPSR) to dynamically re-size its population during a run.

LPSR reduces the population linearly as the number of fitness evaluations increases.

LSHADE showed good performance, in comparison with other algorithms over a

set of unconstrained optimization problems.

Sallam et al. [28] proposed a neurodynamic differential evolution algorithm for

solving the CEC2015 single objective optimization problems. An adaptive mecha-

nism was proposed for the appropriate use of LSHADE and neuro-dynamic during

the search process.

2.2.2 Multi-operator DE Variants

In this section, a brief review of multi-operator based DE and self-adaptive DE is

provided.

Self adaptive multi-operator differential evolution (SAMO-DE) was proposed by

Elsayed et al. [9] for solving constrained optimization problems. In their proposed

algorithm, each operator has its own sub-population which are evolved by different

DE operators. Based on an improvement measure, in which the solution quality,

constraint violation and feasibility ratio were used to calculate the success of each

operator, the number of individuals in each sub-population was adaptively updated,

and more emphasis was given to the operator with the highest success. The results

showed that SAMO-DE performed better than other-state-of-the-art algorithms.

Composite DE (CoDE) was proposed by Wang et al. [33] for solving optimization

problems. In CoDE, three mutation strategies were randomly combined with three

fixed control parameter settings for generating a new trial vector at each generation.

To generate a new solution, three vectors were generated, then the best one among

them was selected to enter the next generation. From the experimental results, it

was concluded that CoDE is a promising DE algorithm for solving optimization

problems.

A self-adaptive DE (SaDE) was proposed by Qin et al. [26] for solving uncon-

strained real-parameter optimization. In SaDE, both the trial vector generation strat-

egy and its associated control parameter values, were gradually self-adapted accord-

ing to a success rate, that was calculated based on previous learning experience. At

the beginning, all mutation strategies had equal probability to generate a new solu-

tion, and the probability was updated after an initial LP generations, accordingly as

follows: at the end of each generation, after evaluating all the generated trial vectors,
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the number of trial vectors generated by each strategy that successfully entered the

next generation was recorded in its success memory and the number of trial vectors

generated by each strategy that failed to enter the next generation was recorded in its

failure memory. This algorithm performed much better than both the traditional DE

algorithm and several state-of-the-art adaptive parameter DE variants.

All of the above mentioned methods did not incorporate any landscape informa-

tion in the selection phase.

2.3 Landscape Analysis

Generally, a fitness landscape consists of: (1) a set of solutions (populations of indi-

viduals), (2) fitness values (objective function values) of individuals, and (3) a neigh-

borhood operator which can be used as a distance measure [19, 22]. Measuring the

fitness landscape of a problem aids researchers to classify a problem as easy or hard

to solve [25]. Many landscape measures have been proposed to understand and ana-

lyze different characteristics of a problem [19, 24], and this section reviews some of

them.

Auto-correlation is often used to measure the ruggedness of a fitness landscape

[5, 24]. Fitness distance correlation (FDC), proposed by Jones and Forrest [15], is

another method used to measure problem difficulty [32]. It measures the correlation

between the objective value and the distance to the nearest optimum in the search

domain. Among landscape measures is also the searchability of a problem. To mea-

sure the searchability of a problem, which is the ability of the search operator to

move to a region of a search space of better fitness value, an information landscape

metric exists, which is computed based on the difference between the information

landscape vector of the problem to be solved and a reference landscape vector. The

reference landscape is the landscape of a function that is easy to be optimized by any

optimization algorithm in any dimension [3].

An information matrixM = [ai,j] for a minimization problem, is constructed using

Eq. 1

ai,j =
⎧
⎪
⎨
⎪
⎩

1 if f (xi) < f (xj)
0.5 if f (xi) = f (xj)
0 otherwise

(1)

Not all of the entries in the information landscape are necessary for defining the

information landscape [3, 4]. There is duplication in the entries due to symmetry

(so the lower triangle should be omitted), the entries on the diagonal are always

0.5 (and also should be omitted), and the row and column of the optimum solu-

tion should also be omitted. So, the information matrix can be reduced to a vector

LS = (ls1, ls2, ..., ls|LS|), where the number of elements in LS, |LS| = (NP−1) × (NP−2)
2

.

Continuing from this:
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LD = 1
|LS|

×
|LS|∑

i=1
|(lsi)f − (lsi)p| (2)

where (lsi)p is the information landscape vector of the problem to be solved, and

(lsi)f is the information landscape vector of the reference function. When LD is near

0, the problem is considered easy, while LD = 1, means the problem is difficult.

In the recent past, researchers and practitioners have used fitness landscape to

determine and select an appropriate algorithm or operator for solving optimization

problems. In [20], a prediction model was developed to predict when a particle

swarm optimization (PSO) algorithm would fail to solve a particular optimization

problem. Decision trees were employed to predict the failure of seven different PSO

algorithms, by using a number of different fitness landscape metrics. In [6], an adap-

tive operator selection mechanism, based on a set of four fitness landscape analysis

techniques, was used to train an online regression learning model (dynamic weighted

majority), which was used to predict the weight of each operator in each genera-

tion. Their proposed mechanism was used to determine the most suitable crossover

operator, among four crossover operators, to solve a set of Capacitated Arc Routing

Problem (CARP) instances. The authors used instantaneous reward, in which the

reward was considered as the value computed at the last evaluation. In comparison

with some of the-state-of-the-art algorithms, the algorithm did not show significant

benefit.

3 Landscape-Based Adaptive Operator Selection DE

In this section, our novel DE-LOS algorithm is presented.

3.1 DE-LOS

The existing multi-operator algorithms use an adaptive operator selection mecha-

nism, which is usually based on the success of generating new offspring. In this

section, a DE-LOS algorithm is proposed, which uses problem landscape informa-

tion, as well as the performance of operators, to adaptively place emphasis on the

most suitable DE operator. The general steps in DE-LOS are given in Algorithm 1.

To begin with, three mutation strategies (DE/𝜑best/1, DE/current-to-𝜑best/

1/archive and DE/current-to-𝜑best/1/without archive) are used. Initially, NP random

individuals are generated within the variable bounds using a Latin Hypercube design.

Then, each operator is randomly assigned to the same number of individuals. Next, a

new solution is generated using its assigned mutation strategy. At the same time, the

information landscape negative searchability metric and performance history, using

Eqs. 4 and 2, respectively, are calculated for each single operator. This process con-
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Algorithm 1 Proposed algorithm

1: C ← 0; Generate an initial population (X) of size NP using Latin Hypercube Design;

2: Calculate the fitness values of X;

3: FES ← FES + NP;

4: while FES ≤ MAXFES do
5: C ← C + 1;

6: if FES ≤ limit then
7: if C < CS then
8: Evolve the population using m DE operators;

9: else if C ≥ CS and C < 3CS then
10: if mod(C,CS==0) then
11: Calculate the average normalized value ANV for each DE operator using Eq. 7;

12: m ← m − 1 - i.e., the best m − 1 DE operators;

13: Evolve the population using the best m DE operators;

14: else if mod(C, 2CS==0) then
15: Calculate average normalized value ANV of each DE operator using Eq. 7;

16: m = m − 1, i.e., discard the worst DE operator;

17: end if
18: Evolve the population using m operators;

19: else if mod(C, 3CS==0) then
20: C ← 0, reset m to 3, and go to step 5;

21: end if
22: else
23: if mod(iter,100==0) then
24: apply SQP as a local search up to a fixed number of fitness evaluations.

25: end if
26: Evolve the population using the best DE operator;

27: end if
28: FES ← FES + NP
29: Update population using Eq. 8

30: end while

tinues for a certain number of generations, say CS generations. After CS generations,

the average value of the landscape metric and performance history are computed for

every operator, using Eqs. 5 and 6, respectively. Subsequently, the normalized value

of both measures is computed using Eq. 7. Based on this value, the best two oper-

ators are selected to be used in the subsequent cycle. Throughout the next cycle, at

each generation, offspring are generated using one of those two operators, while the

performance measure and landscape value are calculated for each operator. Then,

the normalized values are calculated for the two mutation strategies. Based on the

overall mean normalized performance measure (Eq. 7), the worst operator (the one

with the minimum value) is discarded. Subsequently, the remaining best operator is

used to evolve the entire population, for the subsequent CS generations. Note that

after every CS generations, the success and landscape metrics are reset to zero. The

above process is repeated every 3CS generations, however, after a predefined num-

ber of fitness evaluations is reached, the best-performing operator so far, is used to

evolve the population until a stopping criterion is reached. Furthermore, during this

stage, SQP is periodically applied to the best individual from the whole population.
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Algorithm 2 Algorithm for computing the Information landscape negative searcha-

bility.

1: Input: population of individuals (X) updated by operator op;

2: Determine the location of the best individual in the sample, x∗.

3: Construct the pairwise comparison matrix M using Eq. 1;

4: Construct vector LSf that represents the information matrix of the problem.

5: Construct the reference function, fref , by using Eq. 3.

6: Construct the vector LSref that represents the information landscape of the reference function.

7: Compute the value of the Information Landscape negative searchability index using Eq. 2.

3.2 The Selection Phase

3.2.1 Information Landscape Negative Searchability Measure

The information landscape negative searchability measure, which is based on the

difference between the information landscape vector of the problem to be solved

and a well-known spherical function as a reference landscape, is considered in this

research, due to its simplicity and scalability [21].

The reference function fref (⃖⃗x) is constructed using Eq. 3.

fref (⃖⃗x) =
D∑

j=1
(xj − x∗j )

2
(3)

where ⃖⃗x∗i is the best individual in the sample.

In this paper, Latin Hypercube Design is used to generate an initial population

[34] that properly covers the search space of the problem. After constructing the

vector landscape of the problem to be optimized (LSf ) and the vector landscape of the

reference function (LSref ), the information landscape negative searchability measure

is computed using Eq. 2, this is done as part of Algorithm 2.

3.2.2 Average Normalized Value (ANV)

After the information landscape negative searchability value for each operator was

computed, the success rate (SR) of each operator is computed. The success rate of

each operator (SRop) is defined as the number of successful offspring generated by a

search operator (op), divided by the number of individuals assigned to op, as shown

in Eq. 4:

SRop =
Number of improved offsprings

Number of all individuals evolved by operator
(4)
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The normalized value for the SR and landscape metrics are calculated using Eqs. 5

and 6, respectively.

NMSR =
MSROP

∑m
OP=1 MSROP

(5)

NMLD =
(1 −MLDOP

)
∑m

OP=1(1 −MLDOP
)

(6)

where MSR and MLD are the mean value of the success rate and landscape value,

respectively.

Subsequently, the normalized performance of each operator is computed using

Eq. 7:

ANVOP = (NMSROP
+ NMLD)∕2 (7)

3.3 Population Updating Method

A linear population size reduction scheme is used to adaptively re-size NP during

the evolutionary process [31], as follows:

NPiter = round[(NP
min − NPmax

FESmax
) × cfe + NPmax] (8)

where NPmin
is the smallest number of individuals that the proposed algorithm can

use. cfe is the current number of fitness evaluations, FESmax is the maximum number

of fitness evaluations. The default value of NPmax
is set as 18D, NPmin

is set as 7.

To get some benefit from the worst individuals before deleting them, a new solu-

tion is generated using information from the worst two individuals and the centroid

of the population (Xcent =
∑D

j=1
∑NP

i=1 xi,j
NP

), as

Xnew = Xcent + rand × (XNP − XNP−1) (9)

Then the worst individual is deleted, and a decision is made to decide if XNP−1 is

replaced by Xnew or not, based on the objective value.

4 Experimental Results

In this section, the performance of the proposed algorithm is tested by solving a set

of problems taken from the CEC2014 competition on learning-based real-parameter

single objective optimization [18]. The CEC2014 benchmark test set contains 30 test



380 K.M. Sallam et al.

problems. The search space for all the problems is [−100, 100]D. The proposed algo-

rithm was run following the guidelines of the competition. That required 51 indepen-

dent runs for each test problem with up to FESMAX = 10, 000D fitness evaluations. In

the experimentation, if the deviation of the best fitness value from the optimal solu-

tion is less than or equal to 1.0e − 8, it was considered as zero. The algorithm was

coded using Matlab R2014a, and was run on a PC with a 3.4 GHz Core I7 processor

with 16 GB RAM, and windows 7.

4.1 Algorithm Parameters and Operators

The default values of NPinit
, and NPmin

were set based on our experimental analysis,

NPinit = 18D and NPmin = 7. 𝜑 was set at a value of 0.6 for DE/𝜑best/1 to maintain

diversity, while its value was 0.1, for the other two variants, to speed up the conver-

gence rate. A is the archive rate, and it was set at a value of 1.4. H, the memory size,

was set at the value of 5. limit the maximum limit to run the multi-operator phase,

where as after it the best performing operator evolves the population until the end of

the run, was set at the value of
2
3
× FESMAX , and CS was100. The scaling factor F

and the crossover probability CR were set as in [31].

4.2 Detailed Results for 10, 30, and 50D

The computational results of DE-LOS for 10, 30, and 50D are shown in Table 1.

For 10D, from the results obtained, the proposed algorithm provided the optimal

solutions for all unimodal functions (F01 − F03). For the multimodal functions

(F04 − F16), DE-LOS was able to obtain the optimal solutions on six problems,

while it was very close for the rest. For hybrid functions (F17 − F22), DE-LOS was

able to obtain the optimal solution for only F17, and was very close for the rest of

the test problems. However it became stuck in local solutions for all the composition

test problems, F23 − F30.

For 30D, from the results, DE-LOS was able to obtain the optimal solution on

all the unimodal problems. For multimodal problems, DE-LOS was able to obtain

the optimal solution for F04, F06, F07, F08 and F10, while it was very close to

the optimal solution for the rest. For hybrid functions, the best solutions obtained

were close to the optimal. Again, for the composition problems, DE-LOS got stuck

in local solutions.
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For 50D, DE-LOS was able to obtain the optimal solutions in F02 and F03, while

forF01 it obtained very close solutions to the optimal one. For multimodal problems,

DE-LOS was robust in solving F08, efficient in solving F04, F07, F08 and F10,

while it got stuck in local solutions for the rest of the test problems. This was also

the situation for the hybrid and composition problems, although its performance in

solving the hybrid problems was a little bit better than its performance in solving the

composition problems.

4.3 DE-LOS Versus State-of-the-art Algorithms on CEC2014

DE-LOS was compared with the top two algorithms in the literature LSHADE [31]

and UMOEAs [11]. The matlab source codes for LSHADE and UMOEAs were

downloaded online. We ran these algorithms using the same parameters suggested

by the authors in their papers and the other conditions were the same as the compe-

tition guidelines. To make a fair comparison, all the algorithms were run using the

same seeds.

Table 2 shows a comparison summary of the results obtained from DE-LOS and

the other two algorithms for 10D, 30D, and 50D problems. A non-parametric test,

Wilcoxon rank-sum test, was chosen, to judge the difference between any paired

algorithms. The results regarding the best and average fitness functions are pre-

sented in Table 2. The significance level was set at a value of 10%. Based on the

test results/rankings, one of three signs (+, −, and ≈) was assigned for the compar-

ison of any two algorithms (shown in the last column), where the “+” sign means

that the first algorithm is significantly better than the second, the “−” sign means

that the first algorithm is significantly worse, and the “≈” sign means that there is no

significant difference between the two algorithms. Considering the quality of solu-

tions, and from the results in Table 2, it is clear that DE-LOS is always better than the

other algorithms, based on the best and average results obtained, and this is obvious

for 30D and 50D.

Based on the statistical test, DE-LOS is better than UMOEAs in 10D, 30D, and

50D in regard to best and average results, except for the best results in 10D and 50D,

where there is no significant difference between DE-LOS and UMOEAs. Consider-

ing the comparison between DE-LOS and LSHADE, DE-LOS is significantly better

than LSHADE in 10D, 30D, and 50D.

In addition, based on the average results obtained, the average ranking of DE-

LOS, LSHADE and UMOEAs, as produced by the Friedman test, is summarized

in Table 3. The results in Table 3 are consistent with the results in Table 2, in which

DE-LOS had the best rank.



384 K.M. Sallam et al.

Ta
bl

e
2

A
c
o
m

p
a
r
is

o
n

s
u
m

m
a
r
y

b
e
tw

e
e
n

D
E

-
L

O
S

a
n
d

o
th

e
r

s
ta

te
-
o
f
-
th

e
-
a
r
t

a
lg

o
r
it

h
m

s

1
0
D

3
0
D

5
0
D

D
E

-
L

O
S

B
e
tt

e
r

E
q
u

a
l

W
o
r
s
e

D
e
c
.

B
e
tt

e
r

E
q
u

a
l

W
o
r
s
e

D
e
c
.

B
e
tt

e
r

E
q
u

a
l

W
o
r
s
e

D
e
c
.

V
e
r
s
u
s

L
S

H
A

D
E

B
e
s
t

1
4

1
0

6
+

1
7

9
4

+
1
8

4
8

+

M
e
a
n

1
8

6
6

+
1
4

8
8

+
1
6

1
0

4
+

V
e
r
s
u
s

U
M

O
E

A
s

B
e
s
t

1
0

1
3

7
≈

1
5

8
7

+
1
2

6
1
2

≈

M
e
a
n

1
8

4
8

+
2
2

4
4

+
2
4

1
5

+



Differential Evolution with Landscape-Based Operator Selection . . . 385

Table 3 Friedman’s test results

Algorithm 10D 30D 50D

Rank Rank Rank

DE-LOS 1.63 1.60 1.58
LSHADE 2.08 1.85 1.85

UMOEAs 2.28 2.55 2.57

5 Conclusion and Future Work

During the last few decades, DE algorithms have shown superior performance

to many other-state-of-the-art algorithms in solving both unconstrained and con-

strained optimization problems. It is known that no single algorithm or operator is

able to solve all kinds of optimization problems. Even though for a single run, an

algorithm or operator may perform well in the earlier generations, its performance

often decreases during later generations. So the selection of an appropriate algo-

rithm or operator is not an easy task. In this paper, the DE-LOS algorithm has been

presented. It used landscape and normalized performance measures to dynamically

place more emphasis of the best-performing DE mutation.

The algorithm has been tested on 30 bound constrained numerical optimization

problems from the CEC2014 competition. The results obtained were better than

those obtained from the best two algorithms in the literature.

In future work, we will investigate the use of more than one landscape measure,

and will incorporate some of them with multi-method-based algorithms.
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